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Preface

Significant advances in contact mechanics have been achieved since the first the-
oretical derivations 130 years ago with Hertz, primarily associated with the solution
of contact problems in statics and dynamics involving later on friction, adhesion,
wear, roughness, heat or electric conduction, and also with materials not only linear
elastic. Principles of contact mechanics can be applied in many traditional
mechanical engineering areas such as locomotive wheel–rail contact, coupling
devices, braking systems, tires, bearings, combustion engines, mechanical linkages,
gasket seals, metal forming, ultrasonic welding, electrical contacts, and many
others. Current challenges in the field regard to the extension of contact mechanics
methodologies to the micro- and the nanoscale, to coupled multi-field problems,
and to advanced mechanical engineering, microelectronics, and nanomechanics
applications involving roughness, adhesion, friction, and wear.

With the goal to convey, in a self-contained manner, the fundamental concepts
for the classification of the types of contact, the mathematical methods for the
formulation of the contact problems, and the numerical methods required for their
solution, we organized a course on “Modelling and simulation of tribological
problems in technology” in the International Centre for Mechanical Sciences
(CISM) in Udine, Italy, from May 28 to June 1, 2018. Such a course featured 5 days
of lectures delivered by A. Almqvist (Luleå University of Technology, Sweden),
J. R. Barber (University of Michigan, USA), D. Dini (Imperial College London,
UK), D. A. Hills (University of Oxford, UK), and M. Paggi (IMT School for
Advanced Studies Lucca, Italy) to an audience of more than 40 researchers from
academia and industry.

As a consequence, this book and its seven chapters—based on the lectures of the
aforementioned CISM course—aim at conveying a strong background on the
theory and numerical methods for contact mechanics, with also the in-depth
treatment of cutting-edge research topics and applications. The book is primarily
tailored for doctoral students of applied mathematics, mechanics, engineering, and
physics with a strong research interest in theoretical modeling, numerical simula-
tion, and experimental characterization of contact problems in technology. It is also
suited for young and senior researchers in the above-mentioned and neighboring
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fields working in academia or in private research and development centers, inter-
ested in gaining a compact yet comprehensive overview of contact mechanics from
its fundamental mathematical background, to the computational methods and the
experimental techniques available for the solution of contact problems.

As a start, Chap. 1 “Fundamentals of Elastic Contacts” provides a classification
of contact problems and the half-space solutions for linear elasticity. For the class of
complete contacts, asymptotic methods are formulated and applied to mechanical
engineering problems. Chapter 2 “Contact Problems Involving Friction” further
extends the discussion to contact problems with friction and partial slip, with
attention to coupling between the normal and the tangential contact problems, also
in elastodynamics. Chapter 3 “Nonequilibrium Molecular Dynamics Simulations of
Tribological Systems” focuses on modeling contact problems at the nanoscale,
exploiting nonequilibrium molecular dynamics methods. Chapter 4 “Computational
Methods for Contact Problems with Roughness” introduces computational methods
for the solution of normal and tangential contact problems at the microscale, with
special attention to modeling of surface roughness. Chapter 5 “Emergent Properties
from Contact Between Rough Interfaces”, exploiting the methods presented in the
previous chapter, focuses on the key research question of how nonlinear interac-
tions between contact patches induced by roughness across different length scales
influence the emergent physico-mechanical properties of an interface. Chapter 6
“Modelling Flows in Lubrication” introduces the reader to lubrication theory and
describes the governing equations, models and methods that can be used to simulate
various types of lubricated systems. Finally, Chap. 7 “Contact Mechanics of
Rubber and Soft Matter” focuses on the role of viscoelasticity and adhesion in
contact problems, the methods for their solution and also the characterization of the
phenomenon of energy dissipation in tangential contacts.

We would like to thank all the colleagues for their great efforts and dedication to
share their knowledge, and their engagement in the CISM lectures and the con-
tributions to this book.

Lucca, Italy Marco Paggi
Oxford, UK David Hills
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Chapter 1
Fundamentals of Elastic Contacts

David Hills and Hendrik Andresen

Abstract Contacts are classified into the fundamental types and their characteristics
briefly explored. The formulation of incomplete contacts using a half-plane formu-
lation is then developed, and used to obtain the plane solution for a Hertzian contact,
while providing the framework for many other geometries. Williams’ solution for a
sharp infinite elastic wedge is described in detail, and it is shown how this may be
applied to advantage in understanding complete contacts and especially their near-
edge properties. We then go back to look at incomplete contacts and analyse how
they respond when there is interfacial friction present and they remain stationary, but
a partial slip state evolves. The chapter concludes by reviewing the other possible
types of contact.

Introduction and Taxonomy

There are only two ways in which loads can be transferred into and out of any
component in an engineering assembly—one is through body forces, which are often
small, themain exception being centrifugal forces developed in rotatingmachinery—
and the other is by contact with other components. It follows that loads which, in
general terms, are diffusely carried in the majority of a component are localised
where it is in contact with other things. Detailed consideration of contacts is therefore
important, whether they are stationary (or notionally stationary), sliding or rolling.
Here, we are going to consider only contactsmade from elastic (usually linear elastic)
material, and capable of analysis within linear elastic theory, so that it follows that
displacements are small and also that conventional first-order definitions of strains
apply, which may be an important consideration in certain indentation problems, as
we shall see.

D. Hills (B) · H. Andresen
Department of Engineering Science, University of Oxford,
Parks Road, Oxford OX1 3PJ, UK
e-mail: david.hills@eng.ox.ac.uk

© CISM International Centre for Mechanical Sciences 2020
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Fig. 1.1 Types of contact

It is very instructive to start a systematic study by looking at the kinds of contacts
which arise, and to begin to think about their basic properties and what these imply.
Figure1.1 shows the fourmain kinds of contact.Wewill restrict ourselves throughout
to two-dimensional contacts, and assume that their extent perpendicular to the plane
of the page is large, so that plane strain conditions are obtained. One of the things we
shall concentrate on is behaviour of the contact edges andhere even three-dimensional
contacts have properties which are locally ‘plane’. We will, where appropriate, be
able also to include out-of-plane deformation by looking at the corresponding anti-
plane solution.

Incomplete, or non-conformal contacts, Fig. 1.1a, are those which arise when
bodies having convex front surfaces are pressed into contact. They have the properties
that the contact increases in size (or advances) as the applied load is increased, and
that the contact pressure falls smoothly to zero at the edges in a locally square root
bounded manner, so that p(s) ∼ √

s. Often, provided that the size of the contact is
small compared with the extent of the body, we can approximate each to a ‘half-
plane’. The best known incomplete contact is that between two circular cylinders
having their axes parallel, and this is the plane form of the configuration famously
studied by Hertz over 130years ago (Hertz 1881). It was he who made this sweeping
simplificationbutwhich, it turns out, is quitewell satisfiedbyawide rangeof contacts.
When we come to solve the contact problem in detail we will use a formulation
appropriate to a half-plane for each body and it follows that, because the contact
interface is a plane of symmetry, when a normal load is applied, surface particles
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Fig. 1.2 Incomplete contact
which is nearly conformal
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in the contact surfaces will displace laterally by the same amount if the bodies
are elastically similar. No interfacial shear tractions therefore arise. Equally, if a
shear force is applied so that shear tractions develop along the interface, the surface
normal displacement of each body will be the same so that no change in relative
surface gradient arises, and therefore the contact pressure distribution is unmodified.
Contacts of this kind, where the normal problem induces no shear traction and shear
tractions cause no modification of the normal pressure, regardless of the value of the
coefficient of friction, are said to be ‘uncoupled’.

Some contacts which are advancing in character do not permit representation of
the bodies by half-planes. A good example is shown in Fig. 1.2 whichmay be thought
of as the traditional civil engineering bearing bolt. The small clearance between the
pin and hole in which it is journalled (� = R1 − R2 > 0 but � � R2) means that
a formulation appropriate to an elastic disk and anti-disk is needed (Persson 1964).
These contacts are also said to be ‘nearly conformal’.

Awedge-shapedbodypressed into the surface of a secondbody is another example
of an incomplete contact and ismentioned because surface elements of the contacting
bodies will have to rotate as they pass into the contact patch under increasing normal
load, with a combined rotation equal to the external wedge angle. Recall that linear
elasticity requires the rotation of elements of material to be small and so solutions to
this problem using this underlying theory will be valid only when the wedge is very
shallow (say with an external wedge angle of no more than 10◦ to 15◦), and solutions
for steeper wedges than this should be viewed with suspicion (Truman et al. 1995).

We turn, now, to contacts where the front faces of the bodies have the same profile
in the unloaded configuration, and so as they are placed together they conform, such
as the square block resting on the elastically similar half-plane, Fig. 1.1b. In these
problems, the size of the contact is fixed by the points where there is a discontinuity
in profile gradient, and the size of the contact is independent of the applied load. A
half-plane idealisation of the square block is inappropriate because the side faces of
the block must be traction free and so no general, simple, closed-form formulation
is possible. However, if we are interested in mainly the contact edges then, as we
shall see later, one possibility is to assume that the contact interface does not slip, and
hence an observation point near the edge experiences a three-quarter plane domain or,
more generally, if the block had inclined sides, then a wedge. The Williams analysis
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of these (section “Williams’ Solution”) show that p(s) ∼ sλ−1, where λ < 1, and is
therefore singular. Even if the contact edge slips it will usually be the case that the
pressure takes the same form and λ < 1, although there are cases (Karuppanan and
Hills 2008) where λ > 1, and hence the contact pressure is bounded.

The problem of an elastic strip or layer resting on an elastically similar half-plane
also conforms but when the extent of the loading on the upper surface is much less
than the lateral extent of the strip—in Fig. 1.1c, we have the extreme case of a line
load on what may be an infinitely long strip—the application of a finite normal
load causes the contact to become much smaller, or to recede. In a problem of this
kind where the basic geometry includes only a solitary length scale (here, the strip
thickness, h) the contact ‘snaps’ to its final size upon application of an infinitesimal
normal load. Increasing the force merely causes the state of stress and displacements
to increase in proportion, but the separation points remain the same and, in all cases,
p(s) ∼ √

s (if the bodies are elastically similar). Returning to the ‘nearly conformal’
contact illustrated in Fig. 1.2, we note that, when � = 0 the application of a radial
force to the pin causes the contact to ‘snap’ to an included angle of φ = 87.46◦. This
is also the angle to which an advancing contact extends when R � � > 0 and to
which it smoothly recedes when −R � � < 0 (Ciavarella et al. 2006).

It will be apparent that, in all the contacts considered so far, the contact pressure
adjacent to the contact edge can take one of only two values—p(s) → 0 as s → 0
in the cases of advancing or receding contacts, and p(s) → ∞ as s → 0 in the case
of most stationary, complete contacts. The last type of contact to be considered,
illustrated in Fig. 1.1d, is when the bodies conform over their front faces but where
the length of those faces is the same in each body, terminated by an abrupt change in
front-face gradient. If the angle between the side faces is not 180◦, a local analysis
would again follow the Williams’ analysis for a wedge, but for the cases where
the contact side faces are collinear, forming a straight line, and that face is traction
free, the local contact pressure is finite (p(s) ∼ s0). Also, in the absence of tractions
the only non-zero component of stress lies parallel with the free surface and, in
the absence of out-of-plane loading but in the presence of some increasing in-plane
loading, the edges must be the last point to slip. This is obvious in the case when
the interface is perpendicular to the free face as the complement to the free-face
shear traction lies along the contact interface. We might call problems of this kind
‘common-edge’.

A general point which emerges from this taxonomy is that, in the cases of confor-
mal contact (of whatever class—complete, receding, and common edge) a possible
method of investigating what happens along the interface is simply to assume that it
is in intimate contact and adhered, i.e. we model the contact pair as one body—as
if they form a monolith—and then we look at the tractions along the interface. If
the normal (direct) traction σn is everywhere negative then there is no tendency to
separate (which forms one of the Signorini conditions—see Barber’s chapter). If we
also look at the shear traction, σt , and form the ratio − |σt | /σn then, providing that
ratio is everywhere less than the coefficient of friction, f , the interface will also
be stuck and the initial assumptions justified. When the latter condition (alone) is
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not satisfied slip may be introduced by using an array of glide dislocations (Moore
et al. 2018) and in an uncoupled contact such an array would not change the contact
pressure distribution but in others it would, and might well cause separation.

Half-Plane Problems

The vast majority of solved contact problems—in the sense that there is a simple,
clear algebraic expression of the contact law—the relationship between the applied
load and contact size—and a simple description of the contact pressure distribution
fall into the category of those where the bodies may be adequately idealised as
half-planes.

The starting point of their solution is the Flamant solution using an Airy stress
function description of the stress state within a wedge (Barber 2010), particularised
to the case where the internal wedge angle is 180◦, Fig. 1.3. If the normal load is P
and shear force Q (in each case per unit depth into the page), the appropriate Airy
function is

φ = −rθ

π
(P sin θ + Q cos θ) (1.1)

from which we may find the stress components by differentiation alone, using the
relations

σrr (r, θ) = 1

r

∂φ

∂r
+ 1

r2
∂2φ

∂θ2
(1.2)

σθθ (r, θ) = ∂2φ

∂r2
(1.3)

σrθ (r, θ) = − ∂

∂r

(
1

r

∂φ

∂θ

)
, (1.4)

giving σrθ = σθθ = 0 everywhere, and

Fig. 1.3 Forces acting on a
half-plane

 x

P
Q

 r

 y

(r, )
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Fig. 1.4 Contact pressure
distribution for Flamant’s
solution

 y

 x

d

(x,y)

 p(x)

σrr = − 2

πr
(P cos θ − Q sin θ) . (1.5)

So, the state of stress induced is very simple: there is only onenon-zero component,
a radial direct stress acting towards the point of application of the load. In the case of
the normal load, P , this takes its maximum compressive value immediately beneath
the load and falls smoothly to zero as the surface is approached. With the shear force,
Q, the stress is zero beneath the load, and takes maximum compressive value at the
surface ahead of the load and maximum tensile value on the surface but ‘behind’
it. The state of stress in polar coordinates is very simple, but it is not a great deal
of practical use. The transformation to a Cartesian set and a shift of origin provide
something of very much more utility, as we can then find the state of stress arising
beneath distributed surface tractions (p(x), q(x)) representing the contact pressure
and shear traction distribution, respectively, Fig. 1.4.

The state of stress is given by

σxx (x, y) = −2

πy

∫
contact

p(ξ)(x − ξ)2y2 − q(ξ)(x − ξ)3y

((x − ξ)2 + y2)2
dξ (1.6)

σyy(x, y) = −2

πy

∫
contact

p(ξ)y4 − q(ξ)(x − ξ)y3

((x − ξ)2 + y2)2
dξ (1.7)

σxy(x, y) = −2

πy

∫
contact

p(ξ)(x − ξ)y3 − q(ξ)(x − ξ)2y2

((x − ξ)2 + y2)2
dξ. (1.8)

In practice, these integrals may be quite hard to evaluate but, in principle, they
may be used to find the internal stress beneath a contact. If the contact is sliding
so that q(x) = ± f p(x) along the whole surface, the symmetry of the results within
Eqs. (1.6), (1.7), and (1.8) possesses useful properties.

But, to solve the contact problem itself, we need the displacement field produced
by the line forces, so to find this we first find the strain field under conditions of
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plane strain and then integrate the strains to find the displacements. We specialise
the results to the surface with the outcome

u(x) = − P

[
(1 − 2ν) (1 + ν)

2E

]
sgn(x)+

+ Q

[
2 (1 − ν) (1 + ν)

πE

]
ln |x | + c1 (1 + ν)

E
(1.9)

v(x) = − P

[
2 (1 − ν) (1 + ν)

πE

]
ln |x |+

+ Q

[
(1 − 2ν) (1 + ν)

2E

]
sgn (x) + c2 (1 + ν)

E
, (1.10)

where v(x) is the surface normal displacement, u(x) is the surface tangential dis-
placement, E is Young’s modulus, and ν is Poisson’s ratio. These results merit
comment; first, observe that, as we might intuitively expect, the normal force, P ,
causes a logarithmically varying surface normal depression, Fig. 1.5, with the depth
of the depression becoming unbounded as the point of application of the load is
approached. Perhaps rather less obvious is that the normal force also causes surface
particles to be drawn in, parallel with the surface, towards the loaded point, and with
the magnitude of the displacement independent of the position of the particle being
considered. Similarly, the shear force causes surface particles to be pushed/drawn
along with a magnitude varying logarithmically with position. But note, also, that
ahead of the shear force material is pushed down by a constant amount whilst behind
it it is raised, forming a step, Fig. 1.5. Lastly, note that each equation incorporates an
arbitrary constant so that some datum depth must be chosen at which the displace-
ments are arbitrarily set to zero.

Partly to eliminate the need for an arbitrary datum depth, we develop a contact
formulation in terms of the gradient. So, it is straightforward to find the surface slope,
dv/dx , at point x due to an element of pressure, p(ξ)dξ at point ξ , but the effect
of the shear force needs a little more thought. If the shear force, Q, is smeared over
a small length dx (and Q = q(x)dx), we see that the surface slope is affected only
by the surface shear traction at that point, and not elsewhere; by contrast the contact
pressure at any point influences the slope at all points. Therefore,

Fig. 1.5 Surface
displacements due to surface
forces

P

 x

 xQ
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dv

dx
= 2 (1 − ν) (1 + ν)

πE

∫
contact

p(ξ)dξ

x − ξ
− (1 − 2ν)(1 + ν)

E
q(x). (1.11)

Similar results follow immediately for the surface tangential displacement gradi-
ent which, we note, is the surface strain

εxx = du

dx
= (1 − 2ν)(1 + ν)

E
p(x) + 2 (1 − ν) (1 + ν)

πE

∫
contact

q(ξ)dξ

x − ξ
. (1.12)

The next step is to look at the relative surface normal displacements and relative
surface tangential strains when two elastic half-planes, not necessarily having the
same elastic properties, are brought into contact. The contact pressure and interfacial
shear traction are obviously mutual but we must work in a common coordinate set
so that some signs are reversed and we can write down the relative change in surface
slope as

1

A

d(v1 − v2)

dx
= 1

π

∫
contact

p(ξ)dξ

x − ξ
− βq(x), (1.13)

where A is the composite plane strain compliance (the sum of the reciprocal plane
strain moduli) and is explicitly given by

A = 2

{
1 − ν2

1

E1
+ 1 − ν2

2

E2

}
= 4

E∗ , (1.14)

where the last term applies when the contacting bodies are elastically similar, and
this defines the plane strain elastic modulus of a material, E∗.

The subscripts refer to bodies 1 and 2 as shown in the figure, and β is one of the
two Dundurs’ constants.1 The last term in Eq. (1.13) is zero when both bodies have
the same elastic constants, E∗, or when

Aβ

2
= (1 + ν1) (1 − 2ν1)

E1
− (1 + ν2) (1 − 2ν2)

E2
(1.15)

vanishes. Similarly, the difference in surface strains is given by

1

A

d(u1 − u2)

dx
= 1

π

∫
contact

q(ξ)dξ

x − ξ
+ βp(x). (1.16)

If either (a) the two bodies are made from the same material (or certain other
special combinations such that β vanishes) or (b) the contact is perfectly lubricated
so that shear tractions cannot be supported, the two equations are uncoupled and take
on these simpler forms

1Dundurs (1969) showed that plane elastic problems composed of two bodies depend not on the
obvious three dimensionless properties ν1, ν2, E1/E2 but, in fact, on only two quantities (α, β).
Half-plane problems have a further reduced dependence on only the solitary quantity β.
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d(v1 − v2)

dx
= A

π

∫
contact

p(ξ)dξ

x − ξ
(1.17)

d(u1 − u2)

dx
= A

π

∫
contact

q(ξ)dξ

x − ξ
. (1.18)

An example in the use of these equations is to establish the contact pressure
distribution when one convex body is pressed into another, using Eq. (1.17). If the
form of the contacting profile is symmetric, and we think of the relative separation
when the bodies are just touching but no external load is applied as h(x), contact will
be made over a symmetrical interval, and we shall denote the ends of the contact by
[−a a]. Then,

d(v1 − v2)

dx
= dh

dx
= A

π

∫ a

−a

p(ξ)dξ

x − ξ
− a ≤ x ≤ a. (1.19)

It is important to note that the interval of integration and the interval over which
the LHS is set to the integral is matched; this is necessary for the integral equation
to be properly posed. In setting the gradient of the gap to the shape formed by the
contact pressure we are, effectively, ensuring that there is intimate contact within the
proposed contact region.And,we are also ensuring that external to the putative region
of contact there is no contact pressure. These constitute two of the requirements of
contact embodied in the so-called Signorini conditions. The other two have to be
verified a posteriori and are (a) that the contact pressure is compressive throughout
the contact and (b) that external to the contact there is no interpenetration of the
surfaces so that, for example, dv/dx > dh/dx, x > a.

Inversion of Integral Equations

It is not possible, here, to develop, in full, the inversion procedures for the Cauchy
integral equations of the type developed in the last section. They are said to have
Cauchy kernels because, when the observation (or collocation) point, x , approaches
the integration point, ξ , a ‘1/x’ type singularity arises. The inversion of the equations
is, in principle, achievable through the evaluation of an integral, but first it is necessary
to decide what kind of end-point behaviour is expected. So, the extent of contact
is unknown a priori, and we seek a ‘bounded both ends’ solution. If we press a
rigid punch having a straight front face width of width 2a into an elastic half-plane
(which we would also require to be incompressible—ν = 1/2—in order to ensure
that Dundurs’ second constant vanishes, the size of the contact would be known and
we would require a ‘singular both ends’ solution. We will not consider mixed ends
conditions in this brief introductory text, for which see (Hills et al. 1993).
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If the integral equation has the generic form

1

π

∫ a

−a

f (s)ds

s − x
= g(x) − a ≤ x ≤ a, (1.20)

its solution is given by

f (x) = −w(x)

π

∫ a

−a

g(s)ds

w(s)(s − x)
+ Cw(x), (1.21)

where, if we seek a ‘singular both ends’ solution

w(x) = 1√
a2 − x2

C �= 0, (1.22)

whereas, if we seek a ‘bounded both ends’ solution

w(x) =
√
a2 − x2 C = 0, (1.23)

and, in addition, we must enforce the consistency condition

∫ a

−a

g(s)ds

w(s)
= 0. (1.24)

When these integrals are analytically intractable numerical integration procedures
to solve these equations very efficiently are available, and the key reference is an
extended paper by Erdogan et al. (1973).

Hertz’ Problem

As an example application consider the problem of pressing together two elastically
similar circular cylinders, of radii R1, R2, having their axes parallel, as shown in
Fig. 1.6. The circular profiles may be approximated by parabolae, as may be seen by
applying Pythagoras’ theorem and taking the first term in a binomial expansion, so
that

2Rh(x) � x2, (1.25)

where

1

R
= 1

R1
+ 1

R2
, (1.26)
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Fig. 1.6 The Hertz contact
problem
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2R

1R

P

p(x)

and hence

dh

dx
� x

R
. (1.27)

Substitution of this geometric result into Eq. (1.20) gives

x

R
= A

π

∫ a

−a

p(ξ)dξ

x − ξ
− a ≤ x ≤ a, (1.28)

and the inversion procedure gives

p(x) = − 1

π AR

√
a2 − x2

∫ a

−a

rdr√
a2 − r2(r − s)

= −
√
a2 − x2

AR
. (1.29)

At the moment this is in an unfamiliar form. But, if we write down the normal
equilibrium condition, viz.

P =
∫ a

−a
p(x)dx, (1.30)

and substitute in this result, we find that

a2 = 2APR

π
, (1.31)

so that

p(x) = −2P

πa

√
1 − (x/a)2. (1.32)
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Further Examples and Summary

In the case of a rigid, square-ended punch pressed onto an incompressible half-plane
we seek a ‘singular both ends’ solution, and, as the front face is flat, dh/dx = 0.
Therefore,

A

π

∫ a

−a

p(r)dr

s − r
= 0 − a ≤ x ≤ a, (1.33)

so that

p(x) = C√
a2 − x2

, (1.34)

and the imposition of normal equilibrium gives the value of the constant, C, so that

p(x) = P

π
√
a2 − x2

. (1.35)

Figure1.7 provides a comparison of the profiles of common indenters against
the corresponding resulting pressure distribution. The values for cylinders and a flat
punch, already analysed, are included, together with a shallow wedge. Care must
be taken when evaluating the integral within the interval (−a ≤ x ≤ a) when it is
Cauchy, and external to that interval, when it is regular.

Lastly, caution is urged when one of the bodies has a profile where other fea-
tures are present over a length scale not big compared with the contact half-width.

 p(x)a/P

 x/a
10-1

 h(x)/PA

a) 

b) c) 
a) 

b) 

c) 

Fig. 1.7 Comparison of different indenter profiles and resulting pressure distributions for a) a
wedge, b) Hertzian contact, and c) a complete contact
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Examples include internal corners at, for example, firtree root corners and external
corners, for example, in the case of a railway line head where the line head width is
only 2–3 times the contact size.

Complete Contacts

Because it is not possible to form simple closed-form elasticity solutions to shapes
such as rectangles, except by series representation, it is equally impossible to produce
simple recipes for the state of stress for complete contacts generally, even thosewhere
the bodies have simple shapes, such as that shown inFig. 1.8. It is inevitable, therefore,
that numerical methods, such as the finite element method, will have to be used. But,
we can obtain at least some useful information in the neighbourhood of the corners
of these contacts, and it is these regions which are often of the most practical interest,
as it is at or near them that there is the greatest possibility of fretting, or where cracks
may start. If we ‘zoom in’ with a microscope so that the field of view includes just
the surfaces near the contact edge, Fig. 1.8, we see something which is simply two
wedges—one a half-plane and the other, in this case, a quarter plane. The bodies
may be locally separated, or in contact but slipping, or adhered, depending on the
loading on the bodies overall, but we shall start off with the simplest assumption—
that they are, at the edge, in intimate contact and adhered, so that they may, together,
be thought of as a monolithic three-quarter plane. This is simply a special case of a
wedge of included angle 2α with free surfaces, and was studied in detail byWilliams
in a very celebrated solution which we now present.

Williams’ Solution

Figure1.9 shows a semi-infinite wedge of internal angle 2α, and with a polar axis set
centred on its apex, and our aim is to state what we can about the stress field locally
(before the features outside our field of view become important). We will assume a

Fig. 1.8 Square block on
half-space forming a
complete contact

-a a

P

x

y
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Fig. 1.9 Axis set used in
elastic wedge solution

 r

traction-free

variable separable type solution, and we will initially assume that the state of stress
varies with r in a power order manner. For consistency with most solutions published
in the literature, we will actually assume that σi j ∼ rλ−1, and as the corresponding
Airy stress function in polar form (see section“Half-Plane Problems”) is seen to be
two orders of r higher, we assume a solution of the form

φ = rλ+1 f (θ). (1.36)

When this is substituted into the biharmonic equation it is seen that the variation of
the solution with r assumed is acceptable and it turns the partial differential equation
into the following ordinary differential equation

(
d2

dθ2
+ (λ + 1)2

) (
d2

dθ2
+ (λ − 1)2

)
f = 0. (1.37)

For λ �= ±1, the four possible solutions to this equation correspond to the follow-
ing form for the Airy stress function

φ = rλ+1 (A1 cos(λ + 1)θ + A2 sin(λ + 1)θ+
+ A3 cos(λ − 1)θ + A4 sin(λ − 1)θ ) . (1.38)

When we evaluate the derivatives needed we see that the corresponding state of
stress is given by

σrr = λrλ−1 [−A1 (λ + 1) cos (λ + 1) θ − A2 (λ + 1) sin (λ + 1) θ−
− A3 (λ − 3) cos (λ − 3) θ − A4 (λ − 3) sin (λ − 3) θ ] (1.39)

σθθ = λrλ−1 [A1 (λ + 1) cos (λ + 1) θ + A2 (λ + 1) sin (λ + 1) θ+
+A (λ + 1) cos (λ − 1) θ − +A (λ + 1) sin (λ − 1) θ ] (1.40)
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σrθ = λrλ−1 [A1 (λ + 1) sin (λ + 1) θ − A2 (λ + 1) cos (λ + 1) θ+
+A3 (λ − 1) sin (λ − 1) θ − A4 (λ − 1) cos (λ − 1) θ ] . (1.41)

The requirements that the free boundaries of the wedge be devoid of tractions
means that

σθθ = σrθ = 0 θ = ±α. (1.42)

When this is applied to the second and third equations above, and then sums and
differences are taken to tidy up the appearance of the equations, we find that

A1 (λ + 1) sin (λ + 1) α + A3 (λ − 1) sin (λ − 1) α = 0 (1.43)

A1 (λ + 1) cos (λ + 1) α + A3 (λ − 1) cos (λ − 1) α = 0 (1.44)

A2 (λ + 1) cos (λ + 1) α + A4 (λ − 1) cos (λ − 1) α = 0 (1.45)

A2 (λ + 1) sin (λ + 1) α + A4 (λ − 1) sin (λ − 1) α = 0, (1.46)

or, we may write these in matrix form, where the first pair of homogeneous equations
corresponds to a symmetric solution

[
(λ + 1) sin (λ + 1) α (λ − 1) sin (λ − 1) α

(λ + 1) cos (λ + 1) α (λ − 1) cos (λ − 1) α

] {
A1

A3

}
=

{
0
0

}
, (1.47)

and the second pair to an antisymmetric solution

[
(λ + 1) cos (λ + 1) α (λ − 1) cos (λ − 1) α

(λ + 1) sin (λ + 1) α (λ − 1) sin (λ − 1) α

] {
A2

A4

}
=

{
0
0

}
. (1.48)

Each pair of equations will possess a solution if, and only if, the determinant of
the matrix vanishes, and these characteristic equations, when expanded out, are

λ sin 2α ± sin 2λα = 0, (1.49)

where the + sign is adopted for the symmetric solution and the − sign for the
antisymmetric solution. Solutions to these equations may be found by numerical
methods. For either sign, there are many solutions, and each corresponds to a valid
eigensolutionof thewedgeproblemposed.We shouldnot be surprisedby this because
we have specified the solution to the problem displayed in Fig. 1.9 only by requiring
the free surfaces to be just that—traction free.
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Fig. 1.10 Williams’ solution eigenvalues λ − 1

We have made no assertions at all about how the region might be loaded. Thus,
we can expect to find a series of physically acceptable answers to this very idealised
problem. What we wish to do is to look at the dominant solution, that is, the one
which would dwarf all others as the observation point approached the wedge apex.
Therefore, we wish to find the value of λ which is ‘smallest’ (furthest to the left
on a directed number scale), and there will be two such values of interest, one for
symmetric loading and one for antisymmetric loading. We recall that the state of
stress corresponding to a particular value of λ will vary as rλ−1, and therefore plot,
in Fig. 1.10, the relevant values of λ − 1 found. For symmetric loading, we see that
there is no singular eigensolution for all external corners (2α < 180◦), and that as
the value of α is increased the value of the smallest eigenvalue becomes smaller
still, until when 2α = 360◦, and the notch is folded rounded to form a semi-infinite
crack, λ (= λI say) = 1/2, and the state of stress is square root singular. Turning to
the antisymmetric solution, we see that the dominant term remains bounded (non-
singular) not only for all external corners but also for modest internal corners, until
2α approaches 257.4◦. Further increase in α cause the value of λI I to become smaller
(but always greater than λI ), until a crack results when this solution, too, becomes
square root singular in terms of stress state.

Thus, for any value of α, we can see how quickly the dominant symmetric and
antisymmetric solutions decay with radius as the observation point moves away from
the wedge apex. But we can go rather further. If we back substitute the value of λI

into Eq. (1.47) and multiply out either equation, we can effectively determine the
ratio A1/A3 so, for mode I loading, for example, we can rewrite the state of stress in
the following form:
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⎧⎨
⎩

σrθ
σθθ

σrr

⎫⎬
⎭ = A3λI (λI + 1)

r1−λI

⎧⎪⎨
⎪⎩

A1
A3

sin (λI + 1) θ + sin (λI − 1) θ
A1
A3

cos (λI + 1) θ + cos (λI − 1) θ

− A1
A3

cos (λI + 1) θ − cos (λI − 1) θ

⎫⎪⎬
⎪⎭ . (1.50)

This makes it clear that the spatial variation of stress, for each value of λ, is fully
specified. The variationwith both r and θ is fully specified. For any value of λ, there is
only one degree of freedom in the solution, and that is the overall multiplier (here A3)
which must be found, and its value is determined by collocating this semi-infinite
solution into whatever finite problem is being studied. Note that this symmetrical
solution induces no shear traction, σrθ , on the bisector (θ = 0) line, and similarly the
antisymmetric solution induces no direct stress (neither σrr nor σθθ ) on that line, so
that they effectively uncouple along it. The multipliers on the solution are known as
generalised stress intensity factors (generalised, because the nomenclature is more
particularly used for the special case of a crack tip), and are usually given the symbols
KI , KI I , andwemay thereforewrite the state of stress corresponding to the dominant
values of λ in the form

σi j (r, θ) = KIr
λI−1gI

i j (θ) + KI I r
λI I−1gI I

i j (θ) , (1.51)

where the functions gki j (θ) are the eigenvectors, as described above, scaled so that,
along the bisector line, gI

θθ (0) = 1 and gI I
rθ (0) = 1. With these definitions, the mul-

tipliers for any given problemmay be found by looking at the stress state along θ = 0
developed by the external loads on the component, and finding2

KI = Ltr→0r
1−λI σθθ (r) (1.52)

and

KI I = Ltr→0r
1−λI I σrθ (r). (1.53)

A further class of solutions may be developed when the wedge is subject to
antisymmetric loading but this will not be covered here. It, too, becomes singular
when 2α exceeds π , and, in terms of order of singularity, always lies between the
λI , λI I curves, λI I I − 1 becoming 1/2 when 2α reaches 2π radians.

Contact Edges

Figure1.11 shows the problem of a square elastic block, of side 2a, pressed onto an
elastically similar half-plane by a normal force, P , together with a shear force, Q

2Note that, in defining crack tip stress intensity factors, for historical reasons the stress intensity
factors have an extra factor of

√
2π included in both Eq. (1.51) in the denominator, and in the right

hand side of the definitions of stress intensity factor, Eqs. (1.52) and (1.53).
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Fig. 1.11 Square block on
half-plane subject to a
normal and shear force

-a a

P

x

y
Q

M2a

which we shall actually apply along the upper surface but with an applied moment,
M = 2aQ so as to make it statically equivalent to application through the plane of
contact.

We do this so that local effects associated with the point of application of the
force do not abruptly affect the state of stress along the interface, but have a ‘smooth’
influence there. What we wish to do is to find out the conditions along the interface
for various ratios of Q/P—to see if intimate contact is maintained, and to see if
there are any regions of slip. Intuition tells us that, if the shear force acts to the right,
the likely first point of slip and separation might be the left hand corner, and so it
is this which we examine in some detail. As stated at the beginning of this section,
we assume that it is both in intimate contact and adhered, so that locally the corner
behaves like a wedge of include angle 3π/2, and we set up a local polar axis set there
with θ measured from the ‘notch’ bisector. Using the results found in the previous
section, and taking 2α = 3π/2, we see that we can write down the local state of
stress in the form

σθθ (r, π/4) = KIr
λI−1gI

θθ (π/4) + KI I r
λI I−1gI I

θθ (π/4) , (1.54)

σrθ (r, π/4) = KIr
λI−1gI

rθ (π/4) + KI I r
λI I−1gI I

rθ (π/4) , (1.55)

and hence the ratio of the shear to the direct traction is simply

σrθ (r, π/4)

σθθ (r, π/4)
= KIrλI−1gI

θθ (π/4) + KI I rλI I−1gI I
θθ (π/4)

KIrλI−1gI
rθ (π/4) + KI I rλI I−1gI I

rθ (π/4)
. (1.56)

For a three-quarter plane, the eigenvalues are λI = 0.5445 and λI I = 0.9085,
so that the symmetric term is only just less than square root singular, whereas the
antisymmetric term is only quite weakly singular, and therefore regardless of the
values of KI , KI I it will always be possible to choose observation points which are
sufficiently close to the contact edge for the symmetric terms to dominate and we
can see that



1 Fundamentals of Elastic Contacts 19

Fig. 1.12 Traction ratio along the interface for various ratios Q/P

σrθ (r, π/4)

σθθ (r, π/4)
→ gI

θθ (π/4)

gI
rθ (π/4)

= 0.543. (1.57)

Thus, providing that the coefficient of friction is at least this big, and the sign of
KI gI

θθ (π/4) < 0 so that intimate contact is maintained, the corners of the contact
will stick. The sign of this ratio implies that the square block will tend to ‘spread’
as it is pushed into contact. Note that we have found this result without any need to
calibrate the asymptote—no values have been ascribed to KI , KI I . Also, it should
be appreciated that the individual traction components become infinitely big as the
contact corner is approached (σi j ∼ r−0.45), but their ratio is finite. A finite element
study of the problem shown in Fig. 1.11 was carried out, and the two components
were assumed to be bonded together along the interface. The implied traction ratio
along the interface, for various ratios Q/P is shown in Fig. 1.12. Convergence of
the model is imperfect at the edges but convincingly converges at the ratio derived
above. For low values of Q/P , the magnitude of the traction ratio at interior points
is less than at the ends, so that a coefficient of friction of 0.543 guarantees adhesion
along the whole interface. Above Q/P � 0.3, the traction ratio at internal points
exceeds that at the edges, so that slip from an interior point will start first, unless the
coefficient of friction is high enough. For example, if f ≈ 0.7 and Q/P ≈ 0.4 slip
will start from an interior point (roughly a quarter point), and then further increase
in the shear force will cause the asymptotic solution to be eroded from an interior
point, towards the apex. The solution and the arguments above hinge on there being
a hinterland of adhered material.

The point of first separation is the trailing edge of contact. The value of the shear
force which causes this may be determined directly by looking at the output from
the finite element analysis but will lack precision. A better way is to use the finite
element results to calibrate the generalised ‘notch’ intensity factors, with the result
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{
KI aλI−1

KI I aλI I−1

}
=

[−0.157 + 0.179
−0.130 − 0.274

] {
P/2a
Q/2a

}
. (1.58)

Note that, because the local solution is referred to the ‘notch’ bisector, both ele-
ments of loading (P, Q) excite both eigensolutions (KI , KI I ) and, in turn, each
eigensolution contributes to both traction components (σθθ , σrθ ) arising along the
contact interface. So, the condition for edge closure (KI < 0) is found by expanding
the upper row and closure is maintained if Q/P < 0.877. This calculation assumes,
of course, that there is no slip, and so is only precisely accurate when the slip zone
is both small and remote from the edge, but in practice it is an extremely accurate
predictor, much more precise than a direct interpretation of the finite element output,
without collocation of asymptotic forms, would allow.

Wehave established the condition for adhesion at edges of the contactwhennormal
contact is first made. The question arises ‘What happens when this inequality is not
satisfied, i.e f < 0.543?’ In order to answer this question convincingly, we need to
conduct a new eigenvalue analysis—one where, instead of the half-plane and the
wedge being bonded together to form a new wedge, in this case of internal angle
270◦, we instead look at what happens when a quarter plane (or, more generally,
a semi-infinite wedge) slides with friction over an elastically similar half-plane.
There is insufficient space in this brief introductory text to look at this in detail,
and for a full explanation the original papers by Comninou (1976) should be looked
at, together with papers in which their results are applied to a range of practical
problems, including this one (Churchman and Hills 2006a). In essence, two series
representations of the kind described above for theWilliams solution are put together,
one for each body and then, in addition to ensuring that the faces are traction free,
conditions arewritten down for the interfacewhich ensure continuity of displacement
and direct traction in the θ−direction, together with a requirement that the shear
traction be a constant (the coefficient of friction) multiplied by the normal traction,
at all points. It should be noted that, in connection with this, we give a sign to the
coefficient of friction, f . It is positive at a trailing edge (where the outwards normal
faces the opposite direction to the velocity of the contact defining body (the quarter
plane), and is negative at the leading edge, where the outward normal to the contact
defining body has the same sense as the body’s velocity).

When the contact is formed both edges tend to slip outwards, and they are both,
therefore, like leading edges. If a shear force is applied which acts to the right, the RH
edges suffer a change in shear traction which is in the same sense as when the contact
was formed—it continues to be a leading edge—and therefore the slip zone simply
grows. It is at the trailing edge where changes arise, because what was formerly a
leading edge now becomes trailing, and so the change in magnitude of the shear
traction (a reduction) is now in the opposite sense to the slip displacement giving
rise to instantaneous stick. What happens next can be found from the asymptotics.
We state, without proof, that at the leading edge of frictional sliding contact between
a quarter plane and an elastically similar half-plane, the tractions are given by an
eigensolution of the form
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Fig. 1.13 Eigenvalues λ for a sensible range of values of the coefficient of friction

q(s)

f
= p(s) = KSs

λs−1, (1.59)

where λs is shown in Fig. 1.13 for a sensible range of values of the coefficient of
friction. This calculation is relevant only where the coefficient of friction is less
than the naturally occurring traction ratio at the adhered contact corner, and it will be
noted that, in these cases, λS > λI . It follows that the slipping corner shows a singular
behaviour which is more weakly singular than an adhered corner. Therefore, when
we now exert a finite shear force the change in solution corresponds to the adhered
eigensolution, but, because this is more strongly singular than the slipping one, there
will be local separation accompanied by a reversal of the slip direction adjacent to
the point of separation, i.e. we will now have

p(s) = KSs
λS−1 + �KI g

I
θθ (π/4)sλI−1 + �KI I g

I I
θθ (π/4)sλI I−1 (1.60)

q(s) = f KSs
λS−1 + �KI g

I
rθ (π/4)sλI−1 + �KI I g

I I
rθ (π/4)sλI I−1, (1.61)

where KS is the multiplier on the slipping eigensolution. The order of strength of the
terms is—weakest KI I , middle KS and strongest KI . The actual length of separation
is tiny in comparison with the contact half-width (Churchman and Hills 2006b).

A summary of the results found in this family of calculations is provided in
Fig. 1.14. It should be noted that, for practical purposes, all contacts of this class
become fully stuck as, even, when the coefficient of friction is too small to ensure
adhesion to the contact edge in the first cycle of loading, some shaking down to a
practically stuck state (save for a very, very small region adjacent to the contact edge)
will occur. The exception is when the friction is sufficiently high to inhibit all edge
slip but the application of a shear load cause slip to start from a point well within the
contact. In such cases, though, the island of slip is surrounded by adhered material,
limiting the slip displacement.

We turn, now, briefly, to a consideration of what happens when we have a square-
ended elastic body sliding over an elastically similar half-plane, in the presence of
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Fig. 1.14 Dominant eigenvalue for a rectangular block sliding on an elastically similar half-plane.
Note at RH edge eigenvalue becomes complex and real and imaginary parts are displayed

friction. We have mentioned that an asymptotic solution exists for a quarter plane
sliding over an elastically similar half-plane, and now show the dominant eigenvalue
for the problem as a function of the coefficient of friction, Fig. 1.14.

This shows that, as the coefficient of friction is increased, the order of the singular
behaviour increases at the leading edge. At the trailing edge, however, increasing
the coefficient of friction reduces the order of the singularity, and, when f exceeds
1/π (about 0.318) λS exceeds unity, so that the state of stress becomes bounded.
A further increase in the coefficient of friction, to value just a little less than 0.4,
(see Fig. 1.14) causes the value to become complex, and this implies separation of
the surfaces—very locally this becomes an incomplete contact so that the contact
pressure becomes square root bounded. The results of a finite element analysis of
the whole square-ended contact, and further results for shapes other than rectangular
pads are given in the papers by Karuppanan (2008).

Lastly, we ask what the transition in behaviour is between these two classes of
problem—a stationary contact and a sliding one—if we first apply a normal load
alone, and then gradually increase it until the body slides. As might be expected
from our consideration of a stationary contact there are two kinds of behaviour,
depending on whether the coefficient of friction is sufficient to maintain adhesion
to the contact edges upon application of a normal load alone, and the results are
summarised in Fig. 1.15. For the case when the friction is high enough to maintain
full stick everywhere, we recall that the asymptotes for corner behaviour can only
be eroded from the hinterland—an interior point—and extend outwards until finally
the corners slip, and this is exactly what we observe. With a coefficient of friction
of 0.8 the whole contact remains stuck until the shear force is almost 60% of the
value needed to causes sliding, and then the quarter point nearer to the leading edge
starts to slip, Fig. 1.15. Slip breaks through to the leading edge when the shear force
is about three-quarters of that needed to cause sliding, and then the very last point to
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Fig. 1.15 The evolution of
contact behaviour during
transition from normal load
to sliding for two coefficients
of friction

slip is at the trailing edge. The problem is quite hard to maintain numerically stable
when sliding is approached.

On the other hand, when the coefficient of friction is 0.3, slip zones of opposite
sign, of approximate extent one-quarter of the half-width, are established on forma-
tion of the contact. An infinitesimal shear force causes the trailing edge to stick, and
there will then be a minute separation region, too small to resolve in the figure. But
the leading edge slip zone increases smoothly in size as the shear force is increased,
exceeding half of the width of the contact when the shear force is about 40% of the
sliding value and, as with the higher coefficient of friction, the last point to slip is at
the trailing edge.

Incomplete Contacts in Partial Slip

Contacts may slide, or they may roll, or they may be stationary, meaning that there
is no rigid-body movement between the contacting bodies. But it does not follow
that, for the last class, there are no regions of slip. In this section, we will introduce
the partial slip solution for contacts which are capable of being represented using
half-plane theory, where slip is resisted by pointwise Coulomb friction, and where
the bodies are made from the same material. The most general kind of problem of
this kind we can have is shown in Fig. 1.16, where the contact is subject to a normal
load, P , moment, M , shear force, Q, and tensions parallel with the free surface
whose difference is σ—we shall consider the last to be present only in body B, for
simplicity. In the most general case, all of these effects may be present, and they may
all vary in some general way with time. The first two affect only the normal load
problem, and induce no shear tractions while the last two induce only shear tractions
and induce no change in the contact pressure, as has been shown (section“Half-Plane
Problems”).



24 D. Hills and H. Andresen

Fig. 1.16 Generic
half-plane contact subject to
P , M , Q, and σ
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To start with, take the simpler problem where only the normal load and shear
force are present. Note that the behaviour of this kind of problem depends not only
where we are in P − Q space, Fig. 1.17, but how we got there, and first we will
find the condition for the contact being in a fully stuck state. In section“Further
Examples and Summary”, it was shown that a constant normal displacement over a
patch [−a a] is produced by a pressure distribution of the form

p(x) = P

π
√
a2 − x2

(1.62)

and, as the integral equations relating normal surface displacement to contact pres-
sure and tangential surface displacement to shear tractions are the same, it follows
immediately that a shear tractions distribution

q(x) = Q

π
√
a2 − x2

(1.63)
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corresponds to a constant surface tangential displacement. Suppose that we have
already formed a contact whose extent is currently [−a a] and we impose a small
increase in normal load�P and a small change in shear force�Q. If we assume that
this element of loading leads to a wholly stuck contact there will be no gradient in
the tangential displacement within the contact, so that we may expect the changes in
tractions to be given by the equations above, with P replaced by�P and Q replaced
by �Q. The changes in traction distributions are therefore similar and, regardless of
whether, before this change was made, the contact was in a sliding, partial slip, or
adhered state, and it will now be stick everywhere provided that (Barber et al. 2011)

� |Q|
�P

< f. (1.64)

Upon unloading slip will always result unless the unloading trajectory follows the
loading trajectory.

A consequence of the result just found is that, if the normal load is applied and
held constant, a change in the shear force will produce some partial slip, and we shall
now look at this case in more detail. This kind of problem was originally studied first
by Cattaneo (1938) and subsequently by Mindlin (1949) for a Hertzian contact, but
Ciavarella (1998) and Jäger (1998) subsequently showed that the ideas apply equally
to any geometry of contact. Consider, first, forming the normal contact. It was shown
in section“Half-Plane Problems” that

E∗ dh
dx

= 4

π

∫ a

−a

p(ξ)dξ

x − ξ
− a ≤ x ≤ a, (1.65)

where E∗is the plane strain elastic modulus and dh/dx is the ‘overlap’ (or gap)
function denoting the front-face relative profile of the contacting bodies, and a is
the contact half-width. This would normally be inverted to discover the contact
pressure distribution, p(x), and then the contact law found by exerting overall normal
equilibrium by setting

P =
∫ a

−a
p(x)dx . (1.66)

When the contact is formed, strains develop in the surfaces of both bodies parallel
with the free surface—but, as they are elastically similar and the pressure experienced
mutual, these strains are equal so that no shear tractions develop.When an increasing
shear force is applied, this will be resisted by the development of shear tractions along
the interface. Intuitively, we expect the central portion, where the contact pressure is
highest, to remain stuck, and so in this region, we expect the relative normal strains to
be preserved, at zero. Towards the edges of the contact, as the pressure falls smoothly
to zero, we expect slip zones to be present and limiting friction to be attained. To
represent this state, assume that the central stick patch occupies the region [−b b],
and write the shear traction down as the sliding distribution (q(x) = f p(x)) over the
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whole contact, together with an, as yet unknown, corrective distribution within the
stick interval. The relative surface direct strain, εxx ,we write down in terms of the
following integral equation, which is analogous to the normal integral equation:

E∗ dεxx
dx

= 4

π

∫
contact

q(ξ)dξ

x − ξ
= 4 f

π

∫ a

−a

p(ξ)dξ

x − ξ
+ 4

π

∫ b

−b

q ′(ξ)dξ

x − ξ
. (1.67)

But we know that εxx = 0 when −b ≤ x ≤ b, so that

0 = 4 f

π

∫ a

−a

p(ξ)dξ

x − ξ
+ 4

π

∫ b

−b

q ′(ξ)dξ

x − ξ
− b ≤ x ≤ b, (1.68)

and by comparison with the first integral, and also bearing in mind that we wish to
look at values of x in the range −a < b < x < b < a, we see that

−E∗ dh
dx

= 4

π

∫ b

−b

q ′(ξ)dξ

x − ξ
− b ≤ x ≤ b. (1.69)

It follows from a further comparison of the normal and tangential integral equa-
tions that the corrective shear traction distribution, q ′(x), must just be a scaled form
of the contact pressure, corresponding to the pressure which would be present at a
lower load, and the value of the corrective shear force, Q′ = ∫ b

−b q
′(x)dx , is given

by

Q = f P − Q′. (1.70)

This apparently fairly obvious way of looking at things is a very important result.
It is exceptionally powerful when considering, for example, a rough contact or one
with multiple contact areas (Dini and Hills 2009), because without it the partial
slip aspect would be very intractable to conduct as a separate calculation. We have
shown the results, here, for a two-dimensional problem and the technique applies
only approximately to three-dimensional problems, unless the bodies are made from
material displaying no Poisson effect, but the full solution of, for example, Hertz’
problem for spheres shows only a small discrepancy (Munisamy et al. 1994).

There is insufficient room, here, for a full description of all types of solution
possible. The chapter by Barber describes briefly more complex loading trajectories
where the normal and shear forces form closed loops in P-Q space, but we will
conclude with a brief description of the steady-state solution between two points 1,
2 in P-Q-σ space where the trajectory is in the form of a straight line. This is of
some practical significance, because there are many cases of fretting contacts where
a steady force develops a particular value of these quantities and then vibration, for
example, introduces small changes in them all, so that

P1 = Pmean − �P/2 P2 = Pmean + �P/2, (1.71)
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Fig. 1.18 Load history
displayed in P-Q-σ space
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Q1 = Qmean − �Q/2 Q2 = Qmean + �Q/2, (1.72)

σ1 = Pmean − �σ/2 σ2 = σmean + �σ/2. (1.73)

It is easiest to think of the loading trajectory as a straight line between the end
points, Fig. 1.18, but this might be relaxed to include some hysteresis provided that
the slip zones advance monotonically during load changes in each direction. Because
the normal load changes so will the size of the contact, and we also know that the
slip zones will increase in size during each load change, and that as load reversals
are experienced the entire contact will stick. Provided that the bulk tension effects
are small, the shear traction in the slip regions will be the same at each end of the
contact, and the maximum size of the slip zones will always be reached immediately
before the reversal of load. Lastly, we know that the size and position of the stick
zones at these extremes—otherwise the ‘permanent stick zone’—must be same so
thatmaterial flows both in and out at each end of the contact andmaterial is preserved.
Thus, the problem is solved when once we know a1 = a(P1), a2 = a(P2) together
with the extent of the permanent stick zone [−m n] which might, in principle, be
a function of several quantities in Eqs. (1.72) and (1.73).

Refer to Fig. 1.18 which is a sketch of the loading problem in P-Q-σ space, and
Fig. 1.19 which shows the expected layout of the stick and slip zones as the end
points 1, 2 are approached. When the load reverses the contact becomes fully stuck,
and the slip zones grow monotonically as loading heads towards the other end of
the trajectory, so that Fig. 1.19 shows the maximum extent of the slip zones and the
minimum extent of the stick zone, i.e. the permanent stick zone. An important feature
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Fig. 1.19 Expected layout
of the stick and slip zones as
point 1, 2 is approached -a2  a2

-m  a1-a1 n

 e

of the sketch is that the permanent stick zone is of the same extent and at the same
location at each end of the loading regime. This follows directly from a consideration
of conservation of material; slip displacements in one direction at any point in the
contact at some point in the cycle must be precisely matched by a return of those
slipping points to their original locations at another point in the cycle, bearing in
mind that this is a steady state. If this principle were violated it would follow that
slip displacement would increase in a ratcheting fashion. Also, because it never slips,
the permanent stick zone includes a surface strain difference�εxx (x)which remains
constant in time and, in particular, is locked in strains difference at points 1, 2.

From the integral equations developed in section“Half-Plane Problems”, and the
Ciavarella-Jäger method described at the beginning of this section, we may write
down thedifferential surface strain at point 1, as usual using the concept of a corrective
shear traction over the permanent stick interval [−m n] superimposed on a sliding
distribution as

�εxx1(x)
E∗

4
= − 1

π

∫ a1

−a1

f p1 (ξ) dξ

ξ − x
+ 1

π

∫ n

−m

q∗
1 (ξ)dξ

ξ − x
+ σ1

4
, (1.74)

and, at point 2 there is an analogous state with the direction of the sliding shear
reversed, i.e.

�εxx2(x)
E∗

4
= 1

π

∫ a2

−a2

f p2 (ξ) dξ

ξ − x
+ 1

π

∫ n

−m

q∗
2 (ξ)dξ

ξ − x
+ σ2

4
, (1.75)

and, as these two quantities are matched over the stated interval, and making use of
the solution for normal contact, as before

2 f E∗ dh
dx

+ �σ

4
= − 1

π

∫ n

−m

(q∗
2 (ξ) − q∗

1 (ξ))dξ

ξ − x
− m < x < n, (1.76)

where �σ = σ1 − σ2. Also, the range of shear force experienced, �Q, is given by

�Q = f (P2 + P1) +
∫ n

−m

(
q∗
2 (ξ) − q∗

1 (ξ)
)
dξ. (1.77)

Details of the inversion of integral equation (1.76) are given in the original paper
(Andresen et al. 2018), but a key point is that the LHS includes only two terms; the
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profile, implying a corrective shear traction which is a scaled form of the contact
pressure, and a constant which does not appear in the solution, save in the con-
sistency condition. For the particular case of a Hertzian contact, the inversion is
straightforward and leads to the result that the offset of the stick zone

n − m

2
= − �σ R

4 f E∗ (1.78)

is independent of the magnitude of the shear force range, and the extent of the stick
zone

m + n = 2

√
R

πE∗

[
2Pmean − �Q

f

]
(1.79)

is independent of the magnitude of the range of bulk tension applied. A further
important general result (not just for the Hertzian geometry) is that the size of the
permanent stick zone depends on just three of the six possible quantities given above,
viz.�Q,�σ , Pmean. Another possibly unexpected feature of the solution, apart from
its relative simplicity, is that we may solve for the size of the permanent stick zone
independently of a consideration of the normal contact law. The size and position
of the permanent stick zone depend only on the contacting profile within the stick
zone, and the overall size of the contact does not appear in the solution.

Further Types of Contact

Far fewer general results are available for the remaining two types of contact, and
we provide, here, some example results.

Receding Contacts

Before any external forces are applied, receding contacts conform, in the same way
that complete contacts do. In some cases the initial extent of the contact is defined by
the limits of conformality, such as the thin rectangular strip resting on the elastically
similar half-plane shown in Fig. 1.20. Indeed, if the contact pressure is applied over a
significant fraction of the upper surface, the contact may well extend along the whole
of the lower length of the rectangle and not recede, but be complete. If, on the other
hand, pressure on the upper surface stops well short of the ends they will tend to lift
off, and so the contact will recede. Receding contacts of this kind have the property
that the application of an infinitesimal load causes the contact to ‘snap’ to a reduced
length, and an increase in the applied pressure does not cause a change in the contact
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Fig. 1.20 Receding contact

-a a

P
x

y

h

length, so that the problem becomes linear, in the sense that the magnitude of the
stresses and displacements (including the lift-off angle) are simply proportional to the
applied load. If contacts of this class are to be modelled by the finite element method,
it is probably best to represent the contacting pair as a monolithic entity, and then to
look for the development of interfacial tension near the edges. If tension arises (and
this will depend, also, on the coefficient of friction present) then the contact is clearly
going to recede and a good tip is to model the layer with a very small gap between
it and the half-plane in the majority of the length over which tension was observed,
and to permit further separation. With this modification, when the contact lifts (at a
very small load) the number of node pairs where separation occurs is much smaller
than if the gap was not present. Finite element programmes do not cope well with
the sudden separation of a large length of the interface and this helps considerably.

The tendency for a strip to lift off is very strongly controlled by the presence of
friction along the interface. If we have a layer of thickness c resting on an elastically
similar half-plane, we can think of the pair, together as a half-plane of additional
‘depth’ h, and, if a line load is applied, Fig. 1.20, use the Flamant solution to discover
what happens. We can convert the solution derived in section“Half-Plane Problems”
into Cartesian coordinates, and this then gives

p(x) ≡ σyy (x, h) = −2Ph3

π
(
x2 + h2

)2 , (1.80)

q(x) ≡ σxy (x, h) = −2Pxh2

π
(
x2 + h2

)2 , (1.81)

so that, prima facie, it would seem that intimate contact will be maintained between
layer and substrate. But notice that, if we take the traction ratio

σxy

σyy
= x

h
(1.82)
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keep h constant and increase x we can see that the traction ratio becomes infinitely
large, and it would therefore require an infinitely large coefficient of friction to inhibit
all slip. For a finite coefficient of friction, therewill be a region of slip, and consequent
separation. In order to solve problems of this class, one possibility is to set up an
integral equation using dislocations as the kernel, rather than surface forces as was
done for half-plane problems. These are very effective at permitting discrete regions
of slip and separation whilst continuity of material is maintained elsewhere.

The solution is known for the state of stress induced by an edge dislocation in
a half-plane, in closed form. For the purposes of the present problem, it is best if
the origin lies on the surface of the true half-plane, on top of which lies a layer
of thickness c, so that the ‘augmented half-plane’ (the actual half-plane and layer
together) occupies the region y < c, Fig. 1.20. The tractions arising on the putative
interface line, y = 0, generated by a dislocation, also on the line, installed at point ξ
and having Burgers vector component (bx , by) are given by

{
σxy (x, 0)
σyy (x, 0)

}
= E

4π
(
1 − ν2

)
[

1
x−ξ

+ Gxxy(x, ξ) Gyxy (x, ξ)

Gxyy (x, ξ) 1
x−ξ

+ Gyyy (x, ξ)

]

{
bx (ξ, 0)
by(ξ, 0)

}
(1.83)

in plane strain, where the functions Gi jk account for the presence of the free surface
and are given explicitly in (Chaise et al. 2014). Note that there are Cauchy singular
terms—the glide dislocation generates a singular behaviour in the shear traction and
the climb dislocation develops a singular behaviour in the direct traction, but these
singularities will integrate out when we have distributions of dislocations. We expect
the solution to be inherently symmetrical about the x = 0 line, and for regions of
separation to develop when |x | > b, and regions of slip will be present just ‘inboard’
of the separation points, a < |x | < b. The total direct and shear tractions arising
along the line y = 0 are therefore given by

N (x) = p(x) + E

4π
(
1 − ν2

)
[∫ −b

−∞

[
1

x − ξ
+ Gyyy (x, ξ)

]
By (ξ) dξ+

+
∫ ∞

b

[
1

x − ξ
+ Gyyy (x, ξ)

]
By (ξ) dξ +

∫ −a

−∞
Gxyy (x, ξ) Bx (ξ) dξ+

+
∫ ∞

a
Gxyy (x, ξ) Bx (ξ) dξ

]
(1.84)
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S(x) = q(x) + E

4π
(
1 − ν2

)
[∫ −b

−∞
Gyxy (x, ξ) By (ξ) dξ+

+
∫ ∞

b
Gyxy (x, ξ) By (ξ) dξ +

∫ −a

−∞

[
1

x − ξ
+ Gxxy (x, ξ)

]
Bx (ξ)dξ+

+
∫ ∞

a

[
1

x − ξ
+ Gxxy (x, ξ)

]
Bx (ξ)dξ

]
, (1.85)

respectively, where Bi (x) = dbi/dx, i = x, y, and represent the primary unknowns
in the problem, the dislocation densities.We now exploit the inherent symmetry in the
problem and observe that the glide dislocations are antisymmetrically disposedwhile
the climb dislocations are symmetrically arranged, so that the dislocation densities
have the properties

Bx (x) = Bx (−x) By(x) = −By(−x). (1.86)

Further, the kernels themselves have symmetry properties which we can exploit,
and write

Fyyy (x, ξ) = − 1

x + ξ
+ Gyyy (x, ξ) − Gyyy (x,−ξ) (1.87)

Fxxy (x, ξ) = 1

x + ξ
+ Gxxy (x, ξ) + Gxxy (x,−ξ) (1.88)

Fxyy (x, ξ) = Gxyy (x, ξ) + Gxyy (x,−ξ) (1.89)

Fyxy (x, ξ) = Gyxy (x, ξ) − Gyxy (x,−ξ) . (1.90)

With these substitutions, the integral representations of the dislocation densities
may be written down compactly in the conventional form as

N (x) = p(x) + E

4π
(
1 − ν2

)
[∫ ∞

b

[
1

x − ξ
+ Fyyy (x, ξ)

]
By (ξ) dξ+

+
∫ ∞

a
Fxyy (x, ξ) Bx (ξ) dξ

]
(1.91)

S(x) = q(x) + E

4π
(
1 − ν2

)
[∫ ∞

b
Fyxy (x, ξ) By (ξ) dξ+

+
∫ ∞

a

[
1

x − ξ
+ Fxxy (x, ξ)

]
Bx (ξ)dξ

]
. (1.92)
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Fig. 1.21 Slip and lift-off points as a function of the coefficient of friction

Lastly, we impose the requirements that both components of traction vanish in
the open region and that the shear traction be proportional to the direct traction in the
slipping region with the constant of proportionality being the coefficient of friction.
This gives rise to the integral equations

N (x) = 0 b ≤ x < ∞ (1.93)

S(x) = − f N (x) a ≤ x < ∞. (1.94)

These two simultaneous integral equations with generalised Cauchy kernels must
be solved by a numerical method and details of this may be found in the original
paper (Chaise et al. 2014). It is a Gaussian formulation which correctly allows both
for the Cauchy character of the kernel and the end-point behaviour. Note (a) that we
require the dislocation density to go smoothly to zero in a square root bounded fashion
as the observation point approaches the closure point or stick-slip transition point,
(b) that the primary unknowns in the problem, apart from the dislocation density,
are the closure and stick-slip transition points, and their location is dependent on the
coefficient of frictionbut does not dependon the applied load. Figure1.21 summarises
the results found.
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Fig. 1.22 Shrink-fitted disk
in an infinite plane subject to
a point load
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Other Kinds of Recession

Not all receding contacts exhibit the ‘snapping’ phenomenon. Consider the problem
of an oversized circular disk, of radius R + � (� � R) fitted into an infinite plane
containing a circular hole of radius R, so that there is interference between the two
bodies, and the interfacial contact pressure is easily found from Lame’s thin-walled
cylinder solution, under conditions of plane strain, to be

σrr (R, θ) = E∗�
R

, (1.95)

and now suppose that a radial force, P , is applied to the centre of the disk, as shown
in Fig. 1.22. The state of stress induced within an infinite plane is given by Barber
(2010)

σrr (R, θ) =3 + ν

4π

P sin θ

R
(1.96)

σrθ (R, θ) =1 − ν

4π

P cos θ

R
(1.97)

σθθ (R, θ) = = 1 − ν

4π

P sin θ

R
(1.98)

and the point where the radial stress is most quickly diminished is θ = π/2. Intimate
contact is maintained there providing that
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Fig. 1.23 Common edge contact

σrr,max ≤ 0, r = R → P

σ0R
≤ 4π

3 + ν
(1.99)

but if this inequality is exceeded a region of tensionwill develop. The arc of separation
maybe found by, for example, deploying edge dislocations around the interface again,
as described in section“Other Kinds of Recession”. As the load is steadily increased,
the arc of contact between disk and hole will steadily and smoothly recede.

Note that if, in contrast, there is no interference between disk and hole, but the
two have an exactly matched radius, the contact becomes one of the ‘snapping’ kind,
and the angle to which the contact jumps is precisely the same limit found above.
On the other hand, if the disk is very slightly smaller than the hole in which it sits,
the contact becomes an advancing or incomplete one, and if the difference in size
between disk and hole is very small, the contact angle to which the contact advances
for sufficiently large loads is also this same angle.

Common Edge Contacts

When two bodies are brought into contact and where their edges align, Fig. 1.23, the
local contact pressure is expected to take a finite value, in contrast to other forms of
contact. As has been recommended elsewhere, a good way of studying contacts of
this class is to think of the two contacting bodies as being in intimate contact in the
presence of full stick, and then to look for violations of the Signorini inequalities, and
the friction law. With the simple straight edge shown in Fig. 1.23, it is clear that, at
the edge (x → 0), the only non-zero component of stress must be that which is not a
traction, viz. σyy = −p < 0. Therefore, an infinitesimal coefficient of friction would
be sufficient to prevent all slip and, providing that intimate contact was maintained,
one might expect this very simple asymptotic principle to persist, and therefore be
eroded only from interior points, so that the edge will be the last point to slip. This
is easy to illustrate by looking at the classical solution for a beam with a shear force
gradually exerted, Fig. 1.24.
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Fig. 1.24 Beam with a shear force gradually exerted

If the beam is of depth 2h, and is subject to an axial force, P (per unit depth), there
is uniform compressive stress across the interface of magnitude σyy = −P/2h. Let
the beamalso be suffering a linearly varying bendingmoment of gradient dM/dx , and
let the interface between the two separate parts of the beam be located, for simplicity,
at precisely the point where the moment vanishes. A shear force, Q(= dM/dx), is
also present and let us suppose that the bending moment gradient and hence the shear
force are increasing in magnitude. Elementary results for the shear stress distribution
associated with a shear force (Barber 2001) show that it is of the parabolic form

σxy (x, y) = 3Q

4h

(
1 − x2

h2

)
. (1.100)

So, the first point to slip will be a pair of particles on the centreline of the beam,
and slip will start when

Q

f P
= 2

3
. (1.101)

At higher values of shear force a region of slip will develop from the centreline,
and this may be modelled using either the solution for an edge dislocation in a strip
as a kernel, or by employing a series solution (Kartal et al. 2010). The last points to
slip are, indeed, the outer edges of the interface when, of course, Q

f P → 1.
If the interface meets the edges not at a right angle but at some other angle, it is

very easy to employ Mohr’s circle (or to use a different transform method) to find
the tractions present on the plane and it is easy to see that, if the angle the interface
makes with the surface normal is θ , the minimum coefficient of friction to ensure
edge adhesion is f > tan θ . It is now not absolutely certain that the contact edge will
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be the last point to slip in any particular problem but, for practically arising values
of θ , this still seems quite likely.

One class of problem where it is quite likely that the edge will slip first is when
there is anti-plane loading present.Again elementary strength ofmaterials knowledge
is all that is needed to illustrate this point. If we have two cylinders of radius R, made
of the same material pressed together by a force, P , the pressure is uniform over the
interface and of magnitude σzz = −p = P

πR2 . We now apply an increasing torque, T ,
to the assembly, which will give rise to a shear traction on the interface of magnitude

σr z (r, θ) = 2Tr

πR4
, (1.102)

so that slip will start, at the outer edge of the contact, when

T

PR
= f

2
. (1.103)

The limit state condition (free spinning) will be attained when

T = f P

πR2

∫ R

0
2πr2dr i.e.

T

PR
= 2 f

3
. (1.104)

Summary

Incomplete contacts are bestmodelled,wherever possible, using half-plane (or space)
theory, and with the solution for surface line (point) force as the starting point. This
works well even in partial slip problem where we have to establish a stick condition
over part of the contact. Incomplete contacts have the property that the contacting
surfaces do not conform and contacts advancewith increasing load. All other kinds of
contact (complete, receding, and common edge) have the property that the contacting
surfaces, at least initially, do conform and there is therefore the possibility that the
contact remains intimate and does not slip. As a consequence, a ‘good bet’ to start
off any analysis is to assume that the bodies are, indeed, in intimate contact and
are also stuck everywhere so that the two bodies are formed into a monolith with
the interface merely a trace line in the combined solid. This makes analysis easier,
in the first instance, and then, if there is implied slip, glide dislocations’ may be
distributed where there is slip, and climb dislocations where there is tension (and
therefore separation). Of course for this to be a viable approach, the solution is
needed for a dislocation in the domain of the contact (contacting pair treated as a
single body). Note that these ideas apply also to anti-plane loading, where the kernel
needed for representing anti-plane slip is a screw dislocation. These ideas have been
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used successfully in a range of problems and recently even to incomplete contacts
(Moore and Hills 2018).
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Chapter 2
Contact Problems Involving Friction

J. R. Barber

Abstract The Coulomb friction law is simple to apply in the formulation of elastic
contact problems, but it is also a rich source of unexpected physical phenomena,
including ranges of unstable dynamic response, history-dependence, ‘wedging’ and
mathematical problems of existence and uniqueness of solution. We first explore the
implications of the law in the context of simple discrete systems and demonstrate
the importance of interaction [coupling] between the normal and tangential con-
tact problems, particularly in problems of periodic loading. The discussion is then
extended to problems of the elastic continuum, and to cases where elastodynamic
effects must be included [for example, the interaction of a seismic disturbance with
a frictional interface]. It is shown that finite element formulations of elastodynamic
problems with Coulomb friction are inherently ill-posed and alternative friction laws
that avoid this difficulty are discussed.

Frictional Forces and Tractions

If two bodies are pressed together, both normal and tangential contact forces and
tractions [force per unit area] may be developed. The normal tractions result from
interatomic force potentials and [when compressive] resist the interpenetration of
material. However, the mechanism responsible for tangential or frictional tractions
is much less clear and indeed has been a subject of scientific speculation for hundreds
of years. Frictional tractions play a crucial rôle in a wide range of engineering and
natural systems, including for example frictional damping in nominally static bolted
joints, fretting fatigue (e.g. in turbine blade roots), the settlement of soils or masonry
structures, tectonic plate movement during earthquakes, frictional ‘wedging’ during
automatic assembly processes and frictional slip in belt drives.
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Microslip and Gross Slip [Sliding]

In the contact of rigid bodies, there is a sharp dichotomy between sliding, where there
is a non-zero relative tangential velocity V , and stick, where |V | = 0. However, if
the bodies are deformable, it is possible for the parts of the nominal contact area to
be in a state of stick, whilst the rest is slipping. The extent of slip in these cases is
limited by the deformation of the materials. It is therefore generally very small and
is referred to as microslip. By contrast, once the entire contact area slips, substantial
slip displacements can accumulate and generally, we need to define the deformations
of the two bodies in separate coordinate systems.

The Coulomb Friction Law

In engineering applications, it is often assumed that the magnitude of the friction
force Q during sliding is proportional to the normal force P—i.e. |Q| = f P , where
f is an experimentally determined constant known as the coefficient of friction. This
is known variously as Amontons’ or Coulomb’s law of friction.

The Coulomb law is at best only an approximation to the frictional behaviour
of actual solids. The ratio |Q|/P has been shown to vary with normal force P and
sliding speed |V | as well as other material and geometric features, and at small length
scales such as in the atomic force microscope [AFM], significant deviations from the
law are observed.Also, experiments aremostly restricted to themeasurement of force
resultants under sliding conditions, and it does not necessarily follow that the same
proportionality exists between the tractions in a pointwise sense—i.e. |q(x, y)| =
f p(x, y) for all points (x, y) in the contact area that are experiencing microslip.
However, the law has the virtue of simplicity and deviations from it at the macroscale
are often not much larger than the inevitable variance of experimental measurements.
We shall therefore use the Coulomb law in most of this discussion, though some
alternative treatments will be introduced towards the end.

Physical Explanations of Coulomb’s Law

Most authors attribute the approximate constancy of the friction coefficient to the
inevitable roughness of the contacting surfaces. For example, Bowden and Tabor
(1950) argued that contact would be restricted to a relatively small region near the
peaks of the rough surfaces and that the resulting actual contact pressures would be
sufficiently high to cause plastic deformation. By likening this process to that in the
hardness test, they argued that the total area of actual contact would be A = P/H ,
where H is the hardness of the softer material. Bowden and Tabor further argued that
the materials would bond together in this area and that a limiting value S of shear
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traction would be needed to break these bonds. We therefore obtain |Q| = S A =
S P/H and hence |Q| = f P with f = S/H .

An alternative explanation depends on conceiving the rough surfaces as compris-
ing a statistically distributed ensemble of ‘asperities’which act independently of each
other. The force resultants can then be expressed as a function of this distribution and
of the normal approach of the surfaces. Many theories of this kind were proposed
in the 1950s, but a significant discovery due to Greenwood and Williamson (1966)
is that with practical [e.g. Gaussian] height distributions of asperities, the relation
between normal force and total actual contact area is almost linear, regardless of the
assumedmicromechanics at the individual asperity. A similar argument then predicts
approximate linearity between normal and tangential force resultants during sliding.

A weakness of these theories is that real surfaces exhibit multiscale features and
the predictions depend on the scale at which asperities are defined. However, other
models of rough surface contact (Archard 1957; Persson 2001; Barber 2013) reach
similar conclusions based on the multiscale character of rough surfaces without
relying on a description in terms of asperities.

Mathematical Definition of Coulomb’s Law

If Coulomb’s law is assumed to apply in a pointwise sense, each point in the contact
area must be in a state either of stick V = 0, or slip |V | > 0. In slip regions, the local
tangential traction must oppose the relative velocity, so

q(x, y) = − f p(x, y)eV ; |V | > 0, (2.1)

where

eV = V
|V | (2.2)

is a unit vector defining the direction of slip.
In stick regions, we have

|q(x, y)| ≤ f p(x, y); V = 0. (2.3)

In other words, the magnitude of the tangential traction is not larger than that during
slip. This assumes that the ‘coefficient of static friction’ is the same as that for
‘dynamic’ or ‘kinetic’ friction. The case where this assumption is relaxed will be
discussed later.
Two-dimensional problems. In two-dimensional problems, the sliding speed V and
the tangential traction q are scalars and slip, when it occurs, can only be either to the
right or to the left. The friction law is therefore simplified to



44 J. R. Barber

q(x, y) = − f p(x, y) sgn(V ); V �= 0

− f p(x, y) < q(x, y) < f p(x, y); V = 0,

where sgn(·) is the signum function defined such that sgn(z) = 1 if z > 0 and
sgn(z) = −1 if z < 0.

We can then distinguish three possible contact states:

forward slip V > 0; q(x, y) = − f p(x, y)

backward slip V < 0; q(x, y) = f p(x, y)

stick V = 0; − f p(x, y) < q(x, y) < f p(x, y). (2.4)

If the state is known for all points (x, y) in the contact area, the governing equations
for the elastic contact problem are then linear.

History-Dependence

TheCoulomb law introduces history-dependence into the contact problem, even if all
the contacting bodies are linear elastic. This is demonstrated by the simple example
of Fig. 2.1. A rigid block is pressed against a frictional rigid plane by a constant
normal force P and then loaded by a time-varying tangential force F(t). Tangential
motion [displacement] u is resisted by a linear spring of stiffness k.

If the spring is initially undeformed and the force F(t) increases monotonically
from zero, the body will move to the right and the motion will be opposed by a
friction force f P and a spring force ku(t). If the loading rate is slow enough for
inertial effects to be neglected [the quasi-static assumption], we therefore obtain

F(t) = f P + ku(t) or u(t) = F(t) − f P

k
. (2.5)

However, if F(t) increases to a maximum value Fmax and then falls monotonically,
the body will stick at the point

Fig. 2.1 A simple frictional
problem exhibiting load
history-dependence

P

F(t)

u(t)

k
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umax = Fmax − f P

k
(2.6)

until the condition for backward slip [u̇ < 0] is reached when

kumax − F(t) = f P or F(t) = Fmax − 2 f P. (2.7)

Further reduction in F(t) will then lead to a displacement

u(t) = F(t) + f P

k
. (2.8)

The stick location. Suppose after some initial period, the force F(t) is maintained
constant and equal to F1. Under quasi-static conditions, the displacement u(t) = u1

must also be constant, so we have stick and Q = F1 − ku1. The stick inequality
− f P ≤ Q ≤ f P then tells us that

− f P ≤ F1 − ku1 ≤ f P or
F1 − f P

k
≤ u1 ≤ F1 + f P

k
, (2.9)

but within this range, u1 can take any value. This uncertainty can be resolved only
by tracking the displacement in time from some known initial condition, using the
friction law to determine the changes in displacement due to changes in applied
forces.

The ‘Rate’ and ‘Static’ Problems

The problem of determining the evolution of the frictional state due to a known
loading history F(t) can be stated in differential form, such that we determine the
time derivative u̇(t) of the contact displacements as a function of the loading rate
Ḟ(t) and parameters such as u(t) defining the instantaneous state. This incremental
problem is known as the rate problem. In principle, the solution of the rate problem
could then be integrated in time to define the solution of the evolution problem.

In the special case of proportional loading, where F(t) = g(t)F0 and g(t)
increases monotonically from zero, the velocities in Eqs. (2.1)–(2.4) can be replaced
by instantaneous tangential displacements u, defining what is usually known as
the static problem. Here, we shall be mainly concerned with more complex non-
monotonic loading, to which the static formulation does not apply.

Unfortunately, we encounter a difficulty here. Mathematicians have been unable
to prove that the rate problem for a general elastic system is well-posed in either
the discrete or the continuum formulation. This is a particular problem for finite
element codes, since these are usually designed to be user-friendly and need to be
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‘robust’,meaning thatmeaningful results are returnedwhen the problem is physically
well-defined.

More precisely, existence and uniqueness theorems have been proved for frictional
problems under the stipulation that the friction coefficient f be sufficiently small
(Haslinger and Nedlec 1983; Kikuchi and Oden 1988). In mathematical language,
this means that for a given elastic system, there exists some critical coefficient of
friction fcr such that if f < fcr, the rate problem has a unique solution for all loading
scenarios F(t). But unfortunately, fcr is system dependent and usually cannot be
easily determined. And even if we can determine fcr, how will a frictional system
evolve with a given F(t) if f > fcr? To explore these issues, we shall first consider
a very simple frictional system due to Klarbring (1990).

The Klarbring Model

Figure2.2a shows a pointmass M supported by a generalized two-dimensionalmass-
less spring K and making frictional contact with a rigid plane surface, with friction
coefficient f . The mass is loaded by a time-varying force F = {F1, F2} and as a
result experiences displacements u = {v,w} in directions {x1, x2} respectively.

Figure2.2b shows a free-body diagram of the mass, including the spring force
−Ku and the normal and tangential contact reactions p, q, respectively. We assume
that the loading rate is sufficiently slow for quasi-static conditions to apply, so the
mass is always in equilibrium, leading to the equations

F1 + q − k11v − k12w = 0

F2 + p − k21v − k22w = 0. (2.10)

F

u

K
x2

x1

M

p q

2F

1F11 12k   v + k   w 21 22k   v + k   w

(a) (b)

Fig. 2.2 a The Klarbring model, b free-body diagram of the mass M
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At any given time, the system must be in one of the following four states:

v̇ = 0 w = 0 |q| ≤ f p stick
q = − f p w = 0 v̇ > 0 forward slip
q = f p w = 0 v̇ < 0 backward slip
q = 0 p = 0 w > 0 separation.

(2.11)

We also require that the normal contact force be non-tensile—i.e. p ≥ 0.

Monotonic Proportional Loading

Suppose the force components F1, F2 are increasedmonotonically and in proportion.
For example, F(t) = Ct , where C = {C1, C2} is a time-independent vector. This is
a case where the static and rate problems are equivalent, and the system can remain
in the same state for all t .
Stick. If that state is stick, we have v = w = 0. so q = −C1t, p = −C2t and stick
is possible if and only if

f C2 < C1 < − f C2. (2.12)

Separation. If the state is separation, we have p = q = 0, and solving for w, we
obtain

w = k11C2 − k21C1

(k11k22 − k12k21)
. (2.13)

The denominator must be positive since K is positive definite, so separation is pos-
sible if and only if

k11C2 − k21C1 > 0 or C2 >
k21
k11

C1. (2.14)

Similar calculations can be performed on the equations and inequalities for for-
ward slip and backward slip. The resulting inequalities define the admissible domains
for each state in F1F2-space. Figure2.3 shows the resulting diagram for the case
where k21 > 0 and f < k11/k21. Notice that one and only one state is possible for
any given set of values of {C1, C2}. In otherwords, at least under proportional loading,
a solution exists and is unique.

More General Loading Scenarios

Suppose now that we define a loading scenario that starts with a period in which
|F1| < f F2, but which later crosses the stick-backward slip boundary in Fig. 2.3.
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Fig. 2.3 State diagram for
proportional loading for a
case where k21 > 0 and
f < k11/k21

1F

stick

separation

backward
     slip

forward
   slip

11k

21k 2F=1F2F

2F1F =-f1F =f 2F

The system will therefore start with a period of stick and then transition to backward
slip. In other words, the mass will move to the left by a distance just sufficient to
maintain the condition q = f p. This modifies the state diagram to that shown in
Fig. 2.4a. In other words, the vertex of the stick sector moves along the separation
boundary.

When contact transitions to separation or vice versa, this always occurs through the
vertex of the stick sector and in a transition to contact, the initial state [backward slip,
stick, or forward slip] depends on the local slope of the force trajectory. Figure2.4b
illustrates a case of a transition from separation to forward slip.

In summary, the system has a well-defined and unique response to all possible
loading scenarios. Similar results are obtained for all cases for which

1F

separation

2F

P
Q

1F

separation2F

P

Q

(a) (b)

Fig. 2.4 a Response to a period of backward slip, b transition from separation to forward slip
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f < fcr where fcr = |k21|
k11

(2.15)

defines the critical coefficient of friction.

The Case f > fcr

A similar analysis for the case where f > fcr shows that with proportional loading
there exists a sector in F1F2-space where stick, slip and separation are all possible.
Figure2.5 illustrates this for a case where k21 > 0, in which case the slip direction
in the multiple-solution sector is backward.

The non-uniqueness occurs strictly only at the origin. For example, if the contact
remains stuck as we move a finite distance into the multiple-solution sector, it must
then remain stuck, since a finite disturbance would be needed to move to separation
[say]. The same applies to the other states in this sector, except that backward slip is
dynamically unstable. If the inertia terms are reintroduced into Eq. (2.10), it can be
shown that a state of backward slip at constant speed satisfies the equations of motion
identically, but an infinitesimal perturbation on this state would grow exponentially
until a transition occurred to either stick or separation (Cho and Barber 1998).
Loading scenarios requiring a jump. Figure 2.6 shows a non-proportional loading
scenario that starts in the stick sector, but which then passes through the multiple
solution sector into that where separation is the only option.

In this case, stick must occur as far as A and at this point the inequality |q| < f p
is satisfied in the strict sense, so no slip can occur. In fact, stick must continue until
we reach the point B, after which there must be a transition to separation, but this
implies an instantaneous change in both displacements {v,w}. In other words, under
the quasi-static assumption, the system must experience a discontinuous jump in
displacements. It is no coincidence that existence theorems for frictional contact

Fig. 2.5 State diagram for
proportional loading for a
case where k21 > 0 and
f > fcr

1F

stick

separation

forward
   slip

11k

21k 2F=1F
2F

2F1F =-f

1F =f 2Fbackward
     slip
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Fig. 2.6 A loading scenario
passing through the multiple
solution sector
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   slip
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2F
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1F =f 2Fbackward
     slip

A

B

problems can be proved if the condition that displacement be a continuous function
of load be relaxed (Martins et al. 1992).

The actual behaviour at such a jump will necessarily be elastodynamic and will
occur on the time scale of the natural frequencies of the system. If the system is
critically damped, it will tend monotonically to the new [separation] state, but if it is
sub-critically damped, it may bounce off the support a few times before settling into
a decaying oscillation about the new state.

If the loading rate is ‘slow’, this dynamic event is fast relative to the loading
rate, and in the limit, we can say that these transitions occur instantaneously. The
rate problem is strictly ill-posed, but we can still define a quasi-static solution to the
evolution problem, provided we accept that infinitesimal changes in load sometimes
require finite changes of displacement. Notice however that the non-uniqueness at
the origin in Fig. 2.5 still remains.

Finite Element Discretization of a Two-Dimensional
Frictional Contact Problem

Consider the case where a two-dimensional elastic body is in contact with a rigid
obstacle, and the solution is approximated using the finite element method. At the
contact nodes j = (1, N ), we anticipate normal and tangential nodal forces p j , q j

and corresponding displacements w j , v j as shown in Fig. 2.7.
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Fig. 2.7 a Nodal forces and
b nodal displacements in a
two-dimensional finite
element discretization qj

pj

wj

vj

(a) (b)

Static Reduction

The entire elastic system will be discretized using M nodes [M > N ], but we can
partition the stiffness matrix such that the nodal forces

F ≡
⎧
⎨

⎩

F I

F E

F C

⎫
⎬

⎭
= Ku ≡

⎡

⎣
K II K IE K IC

K EI K EE K EC

K CI K CE K CC

⎤

⎦

⎧
⎨

⎩

u I

u E

uC

⎫
⎬

⎭
, (2.16)

where u I is a vector comprising the displacements at internal [unloaded] nodes, and
u E comprises externally loaded non-contact nodes.

We then use the equation F I = 0 and the known values of the external loads
F E(t) to eliminate u I, u E (Thaitirarot et al. 2014), obtaining an equation of the
form {

q
p

}

=
{
qw(t)
pw(t)

}

+
[
A BT

B C

] {
v

w

}

, (2.17)

where pw
i (t), qw

i (t) are the contact (nodal) forces that would be produced by the
external loads F E(t) if the nodes were all welded in contact at v = w = 0.

The reduced stiffness matrix

K =
[
A BT

B C

]

(2.18)

is symmetric and positive definite, so A andC are also symmetric and positive definite
and of dimension N × N . Thematrix B defines the coupling between normal contact
forces and tangential displacements and vice versa. We shall find that B has a critical
effect on the history-dependence of the frictional contact problem. It isnot necessarily
symmetric or positive definite.

Notice that we have developed this description from a finite element discretization
of a continuum problem, but the resulting equations are mathematically equivalent
to those from a generalization of the Klarbring model to N nodes—i.e. to a system
comprising N rigid bodies connected by a generalized spring K andmaking frictional
contact with N obstacles.
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Frictional Contact Conditions

For a two-dimensional system, each contact node i must be in one of the four states
of Eq. (2.11) at any given time t and hence

v̇i = 0 wi = 0 |qi | ≤ f pi stick
qi = − f pi wi = 0 v̇i > 0 forward slip
qi = f pi wi = 0 v̇i < 0 backward slip
qi = 0 pi = 0 wi > 0 separation.

(2.19)

Solution Algorithms

Various algorithms are available for the solution of problems defined by given func-
tions pw(t), qw(t) and conditions (2.19).
Iteration on the set of states. One of the simplest involves the use of a ‘sufficiently
small’ constant time step defining a set of instants yk . Then, assuming that all the
nodal values are known at time tk , we:

(i) Assume the state at each node remains the same at tk+1.
(ii) Use the equations from (2.19) to calculate the values of pi , qi , vi , wi at time

tk+1 for all i .
(iii) Check the state inequalities from (2.19).
(iv) If an inequality is violated at node j , make an appropriate change of state at that

node and re-solve the equations.
(v) Repeat until the state assumptions for this time step satisfy the appropriate

inequalities at all N nodes.
(vi) Advance by one time step.

Gauss–Seidel iteration. For larger values of N , it is more efficient to combine this
algorithm with a Gauss–Seidel approach (Ahn and Barber 2008):

(i) We solve the equations for p j , q j , v j , w j for node j under the assumption that
the corresponding values for nodes i �= j remain at their most recent estimated
values.

(ii) The state at node j [only] is also changed if necessary to satisfy the inequalities
at that node.

(iii) We then track through the nodes repeatedly until a suitable convergence criterion
is satisfied.

LCP solution. An alternative approach is to use an LCP [Linear Complementarity
Problem] algorithm:

(i) Assuming the states remain the same and that the loads change linearly with
time, solve the resulting linear equations for the time tk+1 at which each of the
inequalities will first be violated.
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(ii) Choose the smallest of these times—i.e. the time at which an inequality is first
violated.

(iii) Use the nature of the violation to predict what will happen next—e.g. if p j

is predicted to become negative starting at t = τ , set tk+1 = τ and make a
transition [pivot] at node j to separation for the next time step.

Evolution in Displacement Space

The instantaneous configuration of the system is completely defined by the displace-
ment components vi , wi , so the evolution of the system due to varying loads can
be described by the motion of a point in a space defined by these coordinates. We
consider a simpler case where all nodes are in contact [wi = 0 for all i] and we track
the evolution in vi -space.
The two-node case. The process is most easily visualized in a system with only two
nodes. The contact forces are then given by

p1 = pw
1 + B11v1 + B12v2

q1 = qw
1 + A11v1 + A12v2

p2 = pw
2 + B21v1 + B22v2 (2.20)

q2 = qw
2 + A21v1 + A22v2.

Stick at node 1 [for example] requires that − f p1 ≤ q1 ≤ f p1 and hence

(A11 − f B11) v1 + (A12 − f B12) v2 ≤ f pw
1 − qw

1 I

(A11 + f B11) v1 + (A12 + f B12) v2 ≥ − f pw
1 − qw

1 II . (2.21)

Each of these two inequalities excludes the domain on one side the straight line
defined by the corresponding equality. There are two more similar inequalities for
node 2, so the stick domain is defined by the four straight lines in Fig. 2.8 (Ahn et al.
2008).

During periods of slip, the corresponding inequality is satisfied as an equality, and
the point P(v1, v2) must lie on the corresponding line. The corresponding direction
of slip is indicated by arrows on Fig. 2.8. If both nodes are slipping, P must lie at
the intersection of the corresponding two lines. Also, if the excluded regions overlap
so that there is no admissible region, then at least one of the two nodes must be in a
state of separation.
Loading scenario. The slope of the line

(A11 − f B11) v1 + (A12 − f B12) v2 = f pw
1 − qw

1



54 J. R. Barber

Fig. 2.8 The inequalities
(2.21) exclude the region to
the right of line I and to the
left of line II respectively.
During forward slip at node
1 [v̇1 > 0], the instantaneous
point must lie on the line II admissible

  region
I

II

III

IV

v2

v1

Fig. 2.9 Motion of the point
P(v1, v2) due to changes in
the external loads causing
constraints IV and I to move
in succession

I
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III

IV

v2

v1

1P

2P
3P4P

[for example] depends only on the matrices A, B and the coefficient of friction f . So
as pw

i , qw
i change, the lines in Fig. 2.8 move [excluding more or less space], but they

retain the same slope. In effect, they ‘push’ the point P(v1, v2) around the space.
Figure2.9 shows a case where the constraint IV advances to the dotted line, after

which constraint I advances. If the initial condition was defined by the point P1, the
advance of IV initially causes only node 2 to slip until we reach P2 where node 1
also starts to slip. When I advances, only node 1 slips and P moves to P4.
The critical coefficient of friction. It is clear that for this kind of evolution to be
possible, slip at any node must move P away from the excluded region, rather than
into it. In the case of constraint I in Eq. (2.21), this requires that

A11 − f B11 > 0 and hence f <
B11

A11
. (2.22)

This is clearly similar to the criterion f < k21/k11 for the single node Klarbring
model [Eq. (2.15)], and similar criteria can be written for the other constraints.
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Fig. 2.10 If the constraints
I, IV move so as to increase
the shaded area, P would
need to move downwards
and to the right, but these
directions are not compatible
with the slip directions for
these constraints

v2

v1

P
I

IV

However, Fig. 2.10 shows a situation in which both constraints I and IV satisfy
conditions of the form (2.22)—i.e. separately they permit slip at their respective
nodes as they advance—but in which in combination the two constraints can ‘trap’
P in such a way that the permitted directions of slip are impossible.

With larger numbers of nodes [N > 2],v-space becomes an N -dimensional hyper-
space and each constraint excludes the hypervolume on one side of a hyperplane of
dimension (N − 1). The instantaneous admissible stick space is then a polyhedron in
this hyperspace,whose facets are defined by segments of these hyperplanes. Trapping
of the instantaneous point P(v1, v2, . . . , vN ) can involve the interaction of multiple
constraints. For example, P can be trapped in a vertex or along an edge.

Klarbring’s P-Matrix Condition

Klarbring (1999) has shown that the discrete frictional rate problem ismathematically
well-posed if and only if every matrix of the form

A + f ΛB

is a P-matrix, where A, B are defined in Eq. (2.18) and Λ is any diagonal matrix
each of whose diagonal elements is either+1 or−1. A P-matrix is a positive definite
matrix, all of whose principal minors are also positive definite.

The matrix A is a P-matrix, so Klarbring’s criterion is always satisfied for f = 0.
However, if B �= 0, there exists some critical coefficient f = fcr above which the
criterion is not satisfied.

We can find fcr by

(i) Evaluating the determinant of all principal minors of (A + f ΛB) for all pos-
sible matrices Λ.

(ii) Equating each such determinant to zero and solving for f .
(iii) Setting fcr equal to the minimum of these values.
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However, the number of calculations involved increases combinatorially with the
number of nodes N and is prohibitively computer-intensive for values bigger than
about N = 20.
The Two-node case. If there are only two nodes, the determinants to be evalu-
ated comprise (i) the complete matrix (A + f ΛB) and (ii) the diagonal elements
(A11 ± f B11) and (A22 ± f B22). The latter is associated with a single constraint, an
example being the criterion (2.22), whereas the former precludes the two-node trap
of Fig. 2.10. More generally, for the N -node system, a criterion involving a princi-
pal minor of order M × M [M < N ] involves the point P becoming trapped at the
intersection between M hyperplanes.

Ahn (2010) developed a dynamic solution to the two-node system and showed
that in scenarios involving a two-node trap, an initial instability causes the system to
evolve dynamically to a unique state involving a displacement discontinuity at both
nodes. It seems likely that similar dynamic responses would be predicted for N -node
systems at higher order traps, but the present author is unaware of any proof, and one
can only speculate as to whether the final state reached would be unique.

Wedging

We define a frictional elastic system as ‘wedged’ if it exists in a non-trivial state of
stick [i.e. the internal forces are non-zero] even though the imposed external loads
and/or displacements are zero. It is analogous to a state of residual stress in an
elastic–plastic system that has been loaded past the yield state and then unloaded.

Wedging is important in automated assembly processes, since components may
‘jam’ in an incorrect configuration during assembly. But in other contexts [e.g.
screwed fasteners], wedging is necessary for the satisfactory performance of the
device.

It is clear that some coupling [e.g. B �= 0] is needed for a wedged state, since if
there is no coupling, the solution for the normal forces is trivial [they will all be zero]
and hence none of the contacts could support a frictional force.

Figure2.11 shows a simple mechanical system that can become wedged when the
force F is removed if the coefficient of friction is sufficiently high, or the angle of
the wedge sufficiently low.

Ideally, we would like to be able to determine a critical coefficient of friction fw
below which wedging is impossible.
Wedging for the Klarbring model. For theKlarbringmodel of Fig. 2.2 to bewedged,
we must have w = 0 and F = 0, so the equilibrium equation (2.10) reduce to

q = k11v; p = k21v. (2.23)

We can always choose the sign of v to satisfy the inequality p > 0, and wedging is
possible if and only if |q| < f p and hence
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Fig. 2.11 A frictional elastic
system susceptible to
wedging

F

k

Fig. 2.12 The unshaded
sector defines the region in
which wedging is possible

v2

v1
IV

III
III

f > fw = k11
|k21| . (2.24)

In this case, the critical coefficient of friction is identical to the value of fcr
given by Eq. (2.15), which is also a special case of Klarbring’s Condition of
section “Klarbring’s P-Matrix Condition”. However, the two problems are not iden-
tical for the more general N -node case, as we shall see.
The N -node case. If there are no external loads [ pw = qw = 0], the right-hand
sides of all the constraints analogous to (2.21) are zero. It follows that if a non-trivial
wedged state v0 satisfies all of the frictional constraints [i.e. lies strictly within the
admissible region for all nodes], then the state λv0 will also satisfy these constraints
for all λ > 0.

In v-space, all the constraints for this homogeneous case define hyperplanes that
pass through the origin and the region where wedging is possible comprises a sec-
tor radiating from the origin, bounded by hyperplanes and open to infinity. This is
illustrated for the two-node case in Fig. 2.12.

In this particular case, the two constraints defining the wedging sector also com-
prise a two-node trap in the evolution problem, but this is not always the case. For
example, if we interchange the lines defining II and IV, the interaction of constraints
II and III would still define a trap, but the wedged region would be defined by the
smaller sector between III and IV. More generally, it can be shown that if there exists
an open sector allowing wedging, then at least one trap exists, implying that f > fcr.
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Fig. 2.13 A two-node case
where the rate problem is
ill-posed, but wedging is not
possible
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v1
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The converse is not always true. Figure2.13 shows a case where constraints II
and III define a trap at A implying f > fcr, but wedging is not possible because if
all the external loads were zero, the constraint lines would all pass through the origin
and the open sector between II and III would be excluded by IV. Arguments of this
kind permit us to prove that fw ≥ fcr for the two-node system [in other words, fcr
defines a lower bound to fw], but to the present author’s knowledge, no such general
proof exists for the N -node case.

Hild’s Eigenvalue Problem

Hild and coworkers (Hassani et al. 2003; Hild 2004) have developed a method for
determining an upper bound for fw by considering the condition under which there
are no applied loads and all points in the contact area are in a state of incipient slip—
i.e. |q| = f p. If a non-trivial state can be identified for some particular value fk , then
this state will also define a wedged state for any coefficient of friction f > fk and
hence fk constitutes an upper bound to fw.

For the discrete system defined by Eq. (2.17), if there are no external loads [ pw =
qw = 0], and if all the nodes are in contact [w = 0], we obtain

q = Av; p = Bv. (2.25)

If the limiting condition |qi | = f pi is satisfied at all nodes, we then obtain the gen-
eralized eigenvalue equation

Av = f ΛBv, (2.26)

where once againΛ is a diagonal matrix each of whose diagonal components is either
+1 or −1.
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For any given eigenvalue fk of (2.26), the determinant

|A − fkΛB| = 0 (2.27)

and this is one of the conditions from “Klarbring’s P-Matrix criterion” defining fcr. It
follows that fk ≥ fcr, where the inequality arises because there are other conditions in
Klarbring’s condition involving principalminors of thismatrix that do not correspond
to states involving incipient slip at all nodes.

More significantly, an eigenvalue of (2.26) defines an incipient slip state if and
only if the corresponding eigenfunction defines values of pi that all have the same
sign [which can then be chosen so as to make pi > 0 for all i]. In the special case
where N = 1, there are no principal minors and there is only one term, so the two
criteria necessarily coincide.

A Relaxation Procedure

Suppose that we impose arbitrary values of vi whilst keeping all nodes in contact
[w = 0]. This will usually imply that some of the resulting pi will be negative.
Suppose we identify one such node [say j] and ‘release’ it, meaning that we set
p j = q j = 0whilst keeping all other nodal displacements unchanged. Repeating this
process we can find a state where (i) all the nodes that remain in contact satisfy the
condition pi > 0 and (ii) at these nodes, there are non-zero tangential displacements
vi and hence also tangential forces qi . This will define a wedged state if

f > max

( |qi |
pi

)

≡ f1, (2.28)

where only the contacting nodes are considered. Suppose that the maximum value
[which therefore defines f1] occurs at node k.

Imagine now that we had some physical procedure that would allow us to reduce
the coefficient of friction gradually at all nodes.When f falls slightly below f1, node
k will start to slip, but the other nodes will remain stuck. This phase of the process can
be modelled by assuming slip at node k and stick at the remaining contact nodes until
the coefficient of friction becomes low enough for a second node to reach incipient
slip. This process can be repeated, also allowing nodal separation when required,
until we reach a state where only one node remains stuck. The coefficient of friction
at which this last node reaches incipient slip then defines a tighter upper bound to
fw than does f1.
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Periodic Loading

Engineering systems involving nominally static loading frequently also experience a
periodic loading component. Examples include bolted joints subject to vibration, aero
engine blade roots, periodic machine operating cycles, thermal stresses associated
with diurnal temperature variation and many others. In these situations, periodic
microslip can occur, often leading eventually to the initiation and propagation of
fretting fatigue cracks.

Systems of this kind generally accumulate a large number of cycles during their
lifetime, sowe are principally interested in the steady state, rather than in the transient
behaviour during the first few cycles. This is often overlooked in the theoretical and
numerical literature, where there are numerous treatments of systems loaded mono-
tonically from an unloaded state. Notice that the steady state may be reached after
one or two cycles, or it may be approached asymptotically. The latter case implies a
larger number of time steps in a numerical solution, but often this can be reduced by
identifying the proportional change in residual tractions and displacements during a
single cycle and approximating the limit by extrapolation.

Shakedown

In some circumstances, the steady state involves stick throughout the contact inter-
face. In other words, somemicroslip occurs during the first few cycles, but the result-
ing residual stresses inhibit slip in subsequent cycles. This phenomenon is known as
shakedown.

A similar effect is observed in the cyclic loading of elastic–plastic bodies, where
residual stresses are associated with inelastic strains. For this case, Melan’s theorem
(Melan 1936) states essentially that ‘the system will shake down if it can’—in other
words, if a distribution of inelastic strain can be identified such that the resulting
stress state lies within the yield surface at all points throughout the cycle.

For many years it was believed that a similar theorem could be applied to the
microslip problem. In other words [in the discrete formulation]:

If there exists a set of time-invariant nodal slips such that the resulting nodal
forces would satisfy the frictional stick condition at all nodes throughout the cycle,
then the system will eventually shake down, though not necessarily to the state so
identified.

However, we now know that this theorem can be proved if and only if the system is
uncoupled (Klarbring et al. 2007).Counter-examples [i.e. loading scenarios forwhich
both cyclic slip and shakedown are possible depending on the initial conditions] can
be found for all systems where this condition is not satisfied.

In the two-dimensional discrete problem, this condition requires that the coupling
matrix B = 0 in Eq. (2.16), so that the contact tractions are defined by
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{
q
p

}

=
{
qw(t)
pw(t)

}

+
[
A 0
0 C

] {
v

w

}

, (2.29)

or

q = qw(t) + Av

p = pw(t) + Cw. (2.30)

However, the theorem also applies to uncoupled three-dimensional systems and to
problems of the continuum.

The most common example of an uncoupled system is one in which contact
occurs on a plane which is also a plane of symmetry. Also, if the contact problem
is one which can be modelled by representing the bodies as elastic half spaces, the
uncoupled assumption will be satisfied if Dundurs’ bimaterial constant β = 0, where

β =
[
(1 − 2ν1)

G1
− (1 − 2ν2)

G2

] /[
(1 − ν1)

G1
+ (1 − ν2)

G2

]

, (2.31)

and Gi , νi are the shear modulus and Poisson’s ratio respectively for the contacting
materials i = 1, 2 (Dundurs 1969). Situations in which β = 0 [or at least β � 1]
include:

• One material is relatively rigid [G1 � G2] and the other is incompressible [ν2 =
0.5].

• Both materials are incompressible [ν1 = ν2 = 0.5].

This is important in many modern applications involving polymers and biomaterials,
for which ν might be quite close to 0.5.

Ponter’s Theorem

More generally, it can be shown (Andersson et al. 2014) that if an uncoupled two
or three-dimensional discrete frictional problem is subjected to periodic loading, the
following quantities are independent of initial conditions in the steady state:

• the set T of nodes that never slip (the permanent stick zone).
• the status of any given node i (stick, slip or separation) at any time t .
• the frictional tractions qi (t) for all nodes i /∈ T .
• the nodal velocities v̇i (t).
• the frictional energy dissipation per cycle.

The tractions qi (t) for i ∈ T will generally depend on initial conditions, but since
these nodes never slip, this does not affect the frictional dissipation. The frictional
Melan’s theorem can be regarded as the special case of Ponter’s theorem in which
all nodes are in T and the frictional dissipation is zero.
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Proof The normal contact problem. Since the system is uncoupled, the normal
contact tractions pi (t) and normal displacements (gaps) wi (t) are uniquely deter-
mined by the instantaneous normal loads. They are therefore independent of initial
conditions.
The tangential contact problem. The evolution of the periodic state is described
by the time-dependence of the tangential displacements v(t). The corresponding
tangential tractions are given by

q(t) = Av(t). (2.32)

The energy norm Suppose there exist two distinct transient solutions (orbits)
v1(t), v2(t) which correspond to the same external loading pw(t), qw(t) but dif-
ferent initial conditions v1(0), v2(0).

We define an energy norm

E = 1

2
(v1(t) − v2(t))

T · A (v1(t) − v2(t)) , (2.33)

which can be regarded as a scalar measure of the difference between the two orbits.
The time derivative of E can then be written

Ė = (v̇1(t) − v̇2(t))
T · A (v1(t) − v2(t))

= (v̇1(t) − v̇2(t))
T · (

q1(t) − q2(t)
)
. (2.34)

Non-zero contributions to Ė can arise from node i at time t if and only if

v̇
(i)
1 (t) − v̇

(i)
2 (t) �= 0 and q̇(i)

1 (t) − q̇(i)
2 (t) �= 0. (2.35)

This implies that node i is in contact and slipping at time t in one or both of orbits 1
and 2.
Slip in orbit 1 and stick in orbit 2. Consider the case where node i is slipping in
orbit 1 but stuck in orbit 2. We then have

q1
i = − f pi (t)v1

i (t)

|v1
i (t)|

and v2
i = 0; |q2

i (t)| < f pi (t). (2.36)

Figure2.14 shows a cross section through the friction cone at node i and time t .
Since the node is slipping in orbit 1, q1

i must lie on the dashed circle |qi | = f pi and
must oppose the slip velocity v̇1

i as shown. In orbit 2 where node i is stuck, q2
i must

lie strictly within the circle as shown.
It is clear from the figure that all states satisfying these conditions will correspond

to cases where the scalar product v̇1
i (t) · (

q1
i (t) − q2

i (t)
)

< 0, and since v̇2
i = 0, this

means that the contribution of this node to Ė is negative.
Slip in both orbits. We next consider the case where node i is slipping at time t in
both orbits, but in different directions. The cross section through the friction cone is
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Fig. 2.14 Cross section
through the friction cone at
node i and time t
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Fig. 2.15 Cross section
through the friction cone
when both nodes are
slipping, but in different
directions
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shown in Fig. 2.15. In particular, we note that the traction q i must oppose the slip
velocity v̇i in both orbits.

It is clear from the figure that the scalar products

(q1
i − q2

i ) · v̇2
i > 0 and (q1

i − q2
i ) · v̇1

i < 0, (2.37)

so (q1
i − q2

i ) · (v̇1 − v̇2
)

< 0 and once again the contribution of this node to Ė is
negative.
Summary. Similar proofs show that the contribution of any node to Ė is strictly
negative whenever the state is different in orbits 1 and 2, or if both are slipping,
whenever the slip directions are different. In all other cases the contribution to Ė
is zero. Thus, E decreases monotonically and must eventually converge [possibly
asymptotically] on a positive value or zero.

The norm E is non-negative and non-increasing and hence, when both orbits have
reached their steady states, it must be independent of time. We conclude that this
condition is satisfied if and only if

1. The state of any given node i at any time t is the same in the two orbits.
2. When this unique state is one of slip, the slip direction is the same in the two

orbits.

From (1), it follows that The set T of nodes that never slip in the steady state is
the same for both orbits.
The homogeneous ‘difference’ problem. If the time-varying states of the nodes and
the slip directions are assumed given, the remaining governing equations for the prob-
lem are linear and permit linear superposition. The difference v(t) = v1(t) − v2(t)
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corresponds to the solution of these equations with zero external force. During stick
periods at node i , the slip velocity v̇i = 0, whereas during slip periods, the trac-
tions in the two orbits are the same, giving qi (t) = q1

i (t) − q2
i (t) = 0. The solution

of this homogeneous problem is v̇i = 0, so distinct orbits can differ by at most a
time-invariant set of nodal displacements.

At nodes that are slipping, the slip velocities are the same in the two orbits, both
in magnitude and direction. Since the normal forces are also the same, the frictional
forces and hence the frictional energy dissipation are the same in the two orbits. We
would expect fretting fatigue damage to correlate with frictional energy dissipation.
It follows that for uncoupled systems, fretting damage should be independent of
initial conditions [such as the assembly protocol for a bolted joint].
The permanent stick zone. When E �= 0 in the steady state, the difference between
the two orbits can lie only in a time-invariant difference between v1(t) and v2(t).
This difference can exist if and only if there exists a non-null permanent stick zone T
comprising those nodes that never slip during the steady state. The ‘systemmemory’
resides in the slip displacements in these nodes.
Counter-examples. If in any given system there is coupling, we can always devise
a loading scenario that defines a counter-example to the theorem. Suppose we apply
large time-invariant normal loads to all the nodes except node i , sufficient to ensure
that nodes j �= i never slip in the steady state.

If the initial conditions involve tangential displacements v0 of these stuck nodes,
and if there are appropriate off-diagonal terms in B, the normal load at the ‘slipping’
node i will depend on v0. So, the frictional force and the energy dissipation will also
depend on v0.

Coupled Systems

If the system is coupled [e.g. if B �= 0], the steady-state response to periodic loading
will generally depend on the initial conditions or the loading history. This implies
that the system must in some sense possess memory. This is characteristic of hys-
teretic systems [those where the response depends on the direction but not the rate
of deformation]. Based on the previous discussion, we anticipate that the memory
must reside in the slip displacements vi at nodes that are instantaneously stuck.
Cyclic load factor. Suppose the external loading takes the form

{
qw(t)
pw(t)

}

=
{
qw
0
pw
0

}

+ λ

{
qw
1 (t)
pw
1 (t)

}

, (2.38)

where qw
0 , pw

0 are constant mean loads, qw
1 (t), pw

1 (t) are normalized periodic loads,
and λ is a scalar load factor.

We anticipate the existence of critical values of λ, such that the steady state
comprises:
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Fig. 2.16 Range of variation
of the constraints I, II, III, IV
during a periodic loading
cycle

v2

v1

IIE

IIIE

IE

safe shakedown
       region IVE

0 < λ < λ1 Shakedown for all initial conditions.

λ1 < λ < λ2 Shakedown or cyclic slip depending on initial conditions.

λ2 < λ < λ3 Cyclic slip, but dissipation depends on initial conditions.
At least some nodes must be permanently stuck.

λ3 < λ < λ4 Unique cyclic slip (or one of a few such states) approached
asymptotically. The permanent stick zone T = ∅.

λ > λ4 Unique cyclic slip reached after a few cycles.
There is some time during each cycle when all nodes slip.

We shall illustrate this sequence in the context of the two-dimensional two-node
system.

In the corresponding v1v2-diagram, each of the four constraints I, II, III, IVmoves
during the loading cycle between two extreme positions, For example, constraint
IV moves in the range indicated by arrows in Fig. 2.16. We denote the extreme
positions—i.e. those which exclude the largest area of the diagram—by IE, IIE,IIIE,
IVE as shown.

For shakedown to be possible, there must exist a safe shakedown region that
is never excluded by any of the constraints. This region is defined by the extreme
constraints, as shown in Fig. 2.16. However, whether this region is reached during a
sequence of periodic loading cycles can depend on the initial condition v(0).

Figure2.17 shows a loading scenario in which constraint IV [which controls slip
at node 2 with v̇2 > 0] advances to IVE and then recedes, after which constraint I
[which controls slip at node 1 with v̇1 < 0] advances to IE. If the initial condition is
defined by the point P1, this loading sequence will ‘push’ P to P4. Repeating this
sequence will result in P approaching the bottom left corner of the safe shakedown
region [labelled SD in this figure] asymptotically, through geometrically decreasing
alternating vertical and horizontal segments.
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Fig. 2.17 Motion of the
point P during the first
loading cycle, from an initial
position P1
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Fig. 2.18 A scenario in
which the steady state can
comprise cyclic slip [e.g.
between points P1 and P2] or
shakedown [in the unshaded
triangle] depending on initial
conditions
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Ahn et al. (2008) have shown that P always reaches the safe shakedown space
if this is a quadrilateral, but if it is triangular, shakedown depends on the initial
condition. For example, Fig. 2.18 shows a case where the steady state can comprise
cyclic slip between points P1 and P2, since the constraint II nevermoves far enough to
the right to push P into the safe region. In this case, node 1 comprises the permanent
stick zone T . However, if the initial position lies to the right of the dark shaded
triangle, P will always reach the safe [unshaded] region and the system will shake
down.
Calculation of λ1, λ2. If λ is gradually increased from zero, the safe shakedown
space will be a quadrilateral for λ < λ1 and a triangle for λ2 > λ > λ1. Figure2.19
illustrates this case for (a) λ = λ−

1 and (b) λ = λ+
1 . Clearly the limiting case λ = λ1

corresponds to the situation where the three constraints IIE, IIIE, IVE intersect at a
common point. More generally, for the two-node system, we consider all possible
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Fig. 2.19 The safe shakedown space [unshaded] for a λ = λ−
1 , b λ = λ+

1

combinations of three extreme constraints. Treating these as equalities, we obtain
three equations for the three unknowns v1, v2, λ. The lowest value of λ so obtained
defines λ1.

If λ is further increased, the triangular safe shakedown space will get smaller
until eventually it shrinks to a point when λ = λ2. This value can be determined
by requiring that the three constraint lines defining the triangle should intersect in
a common point. In Fig. 2.19, the three equations are those associated with IE, IIIE,
and IVE. More generally, there are four combinations of three constraint equations
from the set of four, and λ1, λ2 are two of the four values of λ obtained from these
combinations. The lowest positive value defines λ1, but λ2 is not always the second
lowest.
The N -node system. For an N -node system, the safe shakedown space is an N -
dimensional polyhedron in vi -hyperspace and arguments similar to those above show
that itwill always be reached if all the 2N constraint hyperplanes are active in defining
it (Ahn et al. 2008). The load factor λ1 is then the lowest value at which one facet of
this hypervolume shrinks to a point.

To determine λ1, we choose both extreme constraints from one node [for which
there are N choices] and one from each pair of extreme constraints at each of the
other N − 1 nodes [2N−1 choices]. The corresponding equations are then solved for
vi , i = (1, N ) and λ. This procedure defines a set of 2N−1N candidate values for λ,
the lowest of which is λ1. Like Klarbring’s P-matrix criterion, the procedure becomes
computationally impractical for N much larger than 20. Alternatively, optimization
methods can be used to approach the correct limit more rapidly.
Asymptotic approach to a unique steady state. Consider a loading scenario where
all the nodes slip at least once during each cycle, so the permanent stick zone T
is null. At any given time, the system memory must reside in those nodes that are
instantaneously stuck. This implies that the memory is ‘exchanged’ between nodes
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Fig. 2.20 A unique
rectangular orbit acting as an
attractor. Although the two
starting points A and B are
quite distinct, the orbits are
almost indistinguishable
after two loading cycles

v1

v2

A

B

IE

IIIE
IIE

IVE

during each cycle. We should expect some ‘degradation’ of memory during each
interchange, so the system should tend asymptotically to a unique steady state.

Figure2.20 shows the evolution of a two-node in which the extreme positions of
the constraints are reached in the sequence I → II → III → IV → I → …. The
response is shown for two initial positions A and B, but the results converge rapidly
on a unique rectangular orbit. In other words, this orbit serves as an attractor in the
iterative procedure.

However, if the coupling is stronger, implying a bigger difference between the
slopes of constraints I and II, and between III and IV, a steady-state orbit can act as
a repeller. Klarbring’s P-matrix condition limits the degree of coupling if the rate
problem is to be well-posed, but there exist well-posed problems leading to divergent
orbits (Andersson et al. 2013).

A typical example is shown in Fig. 2.21, where the dashed rectangle represents the
steady-state solution which is unique. In this case, the divergent response alternates
from one side to the other of the steady state, so qualitatively similar orbits are
obtained for all starting positions. The predicted deviation from the steady state
increases without limit. However, with finite loading parameters, the position of the
constraints must lie in the finite domain at all times and hence eventually we must
encounter a situation when both nodes slip simultaneously.

For example, suppose the constraints in Fig. 2.21 advance to their extreme posi-
tions and then retract to a ‘rest’ position before the next constraint in the sequence
moves. Figure2.22 shows possible rest positions, with the regions that are excluded
at all times indicated by solid colours.

In diverging from the unstable steady state, the transient orbit must eventually
reach one of these boundaries at which point there will be a period during which
both nodes slip. At this instant, since there are no stuck nodes, the system retains no
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Fig. 2.21 The dashed rectangle defines a unique rectangular orbit which acts as a repeller. Starting
from point A, the transient orbit alternates on the two sides of the steady state and increasingly
deviates from it

Fig. 2.22 A limit cycle is
established including a
period in which both nodes
slip. In the case illustrated,
the limit cycle involves a
double period of the loading
cycle
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memory and the state is a unique function of the instantaneous loads. Subsequent
evolution of the system follows the unique [and stable] ‘double’ orbit shown in
Fig. 2.22.

Continuum Problems

Frictional problems for continuous elastic bodies can be reduced to discrete problems
using [for example] finite element methods, but there remain important distinctions
between the discrete and continuum formulations. To illustrate some of these, we
consider the simple one-dimensional problem shown in Fig. 2.23.

A thin elastic strip of length L and cross-sectional area A and Young’s modulus
E is pressed against a rigid plane by a force w per unit length, after which a time-
varying force F0(t) is applied to the right end. We assume that Coulomb friction
conditions apply at the interface, with friction coefficient f .

Figure2.24 shows a small element of the strip of length δx . Axial equilibrium
then requires that

F(x + δx) − F(x) + qδx = 0 and hence
d F

dx
+ q = 0, (2.39)

where q is the frictional force per unit length.
In a region that is slipping, the frictional force must oppose the relative motion,

so

q = − f w sgn(u̇) and
d F

dx
= f w sgn(u̇), (2.40)

where u is the local displacement in the positive x-direction. Since the strip is elastic,
we also have

Fig. 2.23 An elastic strip
pressed against a rigid plane
and loaded by a time-varying
force F0(t)

L
x

w per unit length
F0

Fig. 2.24 Equilibrium of a
small element of the strip F(x + δx)F(x)

q δx

δx
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Fig. 2.25 Distribution of
axial force in the strip under
monotonically increasing
loading
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and hence F = E A

du

dx
. (2.41)

Solving Eq. (2.40) for F , we obtain

F = f wx sgn(u̇) + C, (2.42)

where C is a constant of integration.
If F0(t) increases monotonically with time t , slip will start on the right, whilst the

left end of the strip remains stuck. In the stuck region, u = 0 and hence F = 0 from
Eq. (2.41). This also implies that the frictional traction q = 0 in the stuck region.

These considerations show that the internal axial force F(x) has the form shown
in Fig. 2.25 and we conclude that the length c of the slip region is

c = F0

f w
. (2.43)

Unloading. Suppose now that F0(t) increases to some value Fmax and then decreases
monotonically. If F0 were held at Fmax for some period before unloading, we would
necessarily have u̇(x) = 0, since we assume the loading rate to be slow enough for
quasi-static assumptions to apply. Thus, the unloading process essentially starts from
a state of stick, but one in which a distribution of residual stress exists, defined by
Fig. 2.25.

During unloading, we anticipate that backward slip [u̇ < 0] will start on the right
whilst the rest of the strip remains stuck, but the axial force in this stuck region will
remain at the value reached during the loading phase, as shown in Fig. 2.26.

Fig. 2.26 Distribution of
axial force in the strip during
unloading
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backward
    slip
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Fig. 2.27 Axial force distribution for F0(t) < 0

...

P PP PPP P
k kk kk F0

Fig. 2.28 Discrete model of the strip problem

Notice in particular that even if F0(t) is reduced to zero, the strip is left in a
state of residual stress defined by the dashed line in Fig. 2.26. The unloading process
can be extended to negative values of F0(t) as shown in Fig. 2.27. This shows that
the distribution of axial force retains some memory of the initial loading phase [in
particular of the maximum value Fmax] as long as |F0(t)| < |Fmax|. In effect, the
system remembers only the local extreme values of the time-varying load F0(t).
Systems exhibiting this behaviour are also found in elastoplastic mechanics and are
sometimes known as Iwan models (Iwan 1967).

The Inverse Problem

Suppose we wish to achieve a given state of residual stress F(x) satisfying the
‘unloaded’ condition F(0) = F(L) = 0. Is it possible to devise a loading scenario
F0(t) to achieve this, starting from the condition F(x) = 0 at t = 0? For the discrete
problem, idealized as in Fig. 2.28, the answer is ‘yes’ provided the required frictional
tractions on each element satisfy the frictional inequality |Q| < f P .

The residual stress distribution implies a prescribed set of nodal displacements ui ,
assuming the first [leftmost] element is not moved [so u1 = 0]. We first increase the
magnitude of F0(t) monotonically [with an appropriate sign] until all the elements
i > 1 slip and until u2 reaches the desired value. We then reverse the direction
of F0 and change the magnitude until all the elements i > 2 slip in the opposite
direction and until u3 reaches the desired value. Alternating the direction of F0 using
appropriately chosen extrema will then yield the desired residual stress distribution.
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Fig. 2.29 The desired residual stress distribution is shown as a solid line, but we can only achieve
the correct value at a denumerable set of points, as illustrated by the dashed line

The situation is very different for the continuous strip. A similar scenario will
enable us to achieve the desired axial displacement u(x) at any denumerable set of
points, but between these points the derivative d F/dx is everywhere either + f w or
− f w. In Fig. 2.29, the dashed line shows one such ‘approximation’ to the desired
residual stress distribution, shown as a solid line. Other scenarios can be devised
that define residual stress fields that alternate above and below the desired curve.
Also, we could choose the points to be non-uniformly spaced, so as to minimize an
appropriate measure of the difference between the approximation and the desired
curve.

Contact of Half Spaces

If the linear dimensions of the contact area are small compared with those of the
contacting bodies, it is reasonable to approximate the bodies as half spaces. In this
case, the normal and tangential problems are uncoupled [equivalent to B = 0 in the
discrete problem] if Dundurs’ constant β = 0 [see Eq. (2.31)].

The Cattaneo–Mindlin Problem

Cattaneo (1938) solved the uncoupled problemwhere a Hertzian contact is loaded by
a normal force P , which is then held constant whilst a tangential force Q is increased
monotonically from zero. The same problem was later solved by Mindlin (1949),
who was apparently unaware of Cattaneo’s earlier publication.

The two-dimensional case is illustrated in Fig. 2.30. Since the problem is uncou-
pled, the contact area of width 2a remains constant during the tangential loading
phase, but equal slip zones are developed on either side of a stick zone of width 2c.
The corresponding normal and tangential contact traction distributions are given by
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Fig. 2.30 The
two-dimensional
Cattaneo–Mindlin problem
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Fig. 2.31 Contact tractions
for the Cattaneo–Mindlin
problem
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p(x) = E∗

2R

√
a2 − x2 (2.44)

q(x) = f E∗

2R

(√
a2 − x2 −

√
c2 − x2

)
(2.45)

and are illustrated in Fig. 2.31.
The tangential traction in Eq. (2.45) can be characterized as

q(x) = f p(x, P) − f p(x, PS), (2.46)

where p(x, P) is the normal traction [contact pressure] when the normal load is P ,
and PS is a fictitious load defined by

PS = P − Q

f
. (2.47)

Cattaneo and Mindlin used this superposition for the general three-dimensional
Hertzian problem, where the contact area is elliptical so the assumed stick region is
a smaller ellipse of the same eccentricity. Equation (2.46) is then replaced by

qx (x, y) = f p(x, y, P) − f p(x, y, PS); qy(x, y) = 0. (2.48)
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They showed that the stick conditions are then satisfied in this central ellipse, and
clearly |q| = f p in the surrounding slip region. However, Eq. (2.48) satisfies (2.1)
and (2.2) only if the slip direction eV is alignedwith the negative x-direction through-
out the slip region, and this condition is not satisfied, particularly near to the stick-slip
boundary. However, Munisamy et al. (1994) used a numerical method to assess the
effect of this error and found that it has very little effect on the actual traction distri-
bution.

The Ciavarella–Jäger Theorem

Ciavarella (1998) and Jager (1998) have shown that the superposition (2.46) gives an
exact solution to all two-dimensional uncoupled problems of the half space, loaded
as shown in Fig. 2.32, which also shows a construction for the fictitious load PS .

We also note that that the stick area

Astick = A(PS), (2.49)

where A(P) comprises the extent of the contact area when the normal load has the
value P . In other words, the first points to slip are the last ones that made contact
during monotonic normal loading to P . These results apply for all initial contact
geometries, including [for example] the case of a rough surface, where the highest
asperities in the original surface will be the last to slip as Q is increased.

Fig. 2.32 Loading history
for Cattaneo’s problem. This
figure also shows a
geometrical construction for
PS of Eq. (2.47)

P

O

Q Q = f P

Q = - f P

PS
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Periodic Loading

Consider the case where the steady-state loading is periodic, a typical case being
defined by

P = P0 + P1 cos(ωt); Q = Q0 + Q1 cos(ωt − φ), (2.50)

where P0, P1, Q0, Q1 are constants, ω is the frequency, t is time and φ is a phase
lag.

This loading cycle is illustrated in Fig. 2.33. Notice that the point {P(t), Q(t)}
must satisfy the condition − f P < Q < f P at all times, and we also need to define
an initial loading path O A before the periodic loading starts.

During periods when

d P

dt
> 0 and

d|Q|
d P

< f, (2.51)

the contact area is increasing and all points are in a state of stick. The problemmust be
solved incrementally because slip displacements are ‘locked in’ as new areas come
into contact. For all other parts of the loading cycle, the shear traction distribution can
be obtained by superposition of appropriate Ciavarella–Jäger distributions (Barber
et al. 2011).

Figure2.34 identifies the conditions holding at various instants during the periodic
cycle. The points B, C and E are defined such that the local tangent to the loading
locus has slope of ± f . Between C and E , a forward slip zone grows from the edges
of the contact area, but the slip velocity at all points in this zone goes simultane-
ously to zero at E , which therefore corresponds to a state of instantaneous stick. A
corresponding backward slip zone then grows between E and B. Between B and C ,
conditions (2.51) are satisfied, so the contact area grows in a state of complete stick.

Q

PO A

Q = f P

Q = - f P

Fig. 2.33 A periodic loading cycle
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Fig. 2.34 Conditions obtaining during a steady-state periodic loading cycle

If the tangents at B and E are extended to intersect at the point D as shown, the
permanent stick zone is then defined as A(PD) (Barber et al. 2011). We notice that
this point is independent of the initial loading segment O A, as required by “Ponter’s
theorem”.

Example: A Flat and Rounded Punch

Consider the problem where a flat punch with rounded corners is pressed into a half
plane, as shown in Fig. 2.35. Contact occurs throughout the flat regionAflat ≡ −b <

x < b even when the normal load P = 0, soAflat ∈ A(PS) for all PS . It follows that
Aflat never slips for any loading cycle of the form of Fig. 2.34.

Now suppose thatmicroslip at the contact area causeswear governed byArchard’s
wear law

ẇ(x, t) = α f p(x, t)Vs(x, t) (2.52)

Fig. 2.35 Normal
indentation by a flat and
rounded punch

P

a
b

radius R
rigid

elastic
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(Archard 1953), where ẇ(x, t) is the time derivative of the wear depth, Vs(x, t) is
the local microslip velocity, and α is a constant. Since the region Aflat never slips,
it will never wear and hence remains flat. Wear will occur in the rounded segments
only.
More general cases. For indenters of more general shape, we can identify the per-
manent stick zone A(PD) from the construction in Fig. 2.34. If wear then occurs
according toArchard’s law, the long-time solutionwill involve contact only inA(PD)

and there will be no slip.

Proof Consider the case where some wear has occurred outsideA(PD). Because of
the change of profile, the solution of the contact problem p(x, P), A(P) is changed
for P > PD , but it is not changed for P ≤ PD , since in this range only the profile
insideA(PD) affects the solution and no wear has occurred in this region. It follows
thatA(PD) is not affected by wear and hence that all points x ∈ A(PD) remain stuck
at all times.

As wear occurs outside A(PD), the contact pressure there decreases, so it must
increase for x ∈ A(PD) to preserve the same normal force P(t) at any given point in
the periodic loading cycle. As long as the solution remains elastic, the system tends
asymptotically to one in which A(PD) is the only contact area. But this implies the
development of a square-root singularity at the boundary of A(PD). In most cases,
this will be limited by plastic deformation. A finite element solution (Hu et al. 2016)
of the resulting elastic–plastic contact problem [including wear] shows that slip now
starts to penetrate the original stick zone.

Coupled Problems

We recall that for the half space, contact problems are coupled if β �= 0, where
Dundurs constant β is defined in Eq. (2.31). The simplest problem of this kind
comprises a rigid flat punch loaded by a normal force P and tangential force Qx as
shown in Fig. 2.36

Fig. 2.36 Indentation and
tangential loading of a flat
rigid punch

P

b a

Qx
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Fig. 2.37 Normal tractions near x = b for purely normal loading [Qx = 0]

If slip is everywhere prevented, the contact tractions can be determined as

p(x) + ıqx (x) = (P + ı Qx )

π
√
1 − β2

√
(a − x)(x − b)

(
x − b

a − x

)ıε

, (2.53)

where

ε = 1

2π
ln

(
1 + β

1 − β

)

. (2.54)

Notice that if β = 0 then also ε = 0.
At the edge of the contact area, the tractions exhibit an oscillatory singularity. The

local normal traction p(x) near x = b is shown in Fig. 2.37 for the case where Qx =
0. The dashed lines define positive and negative square-root singular distributions,
but the contact pressure oscillates between these envelopes an infinite number of
times as x → b. This implies that the Signorini inequality [that the normal traction
be everywhere compressive] is violated neat the edges of the contact region, except
in the uncoupled case.
Finite coefficient of friction. Spence (1975) solved the normal loading problem for
the problemof Fig. 2.36 and also the corresponding axisymmetric problem, assuming
a finite coefficient of friction f . He found that a slip region is developed at the edge
of the contact, the extent of which is independent of the magnitude of the normal
force P . Remarkably, the size of the slip zone tends to a finite limit even as f → ∞.
Unloading. If the punch in Fig. 2.36 is loaded by a normal force P which is first
increased and then reduced, the traction during the unloading phase is considerably
more complex (Turner 1979). Slip at the contact edge continues in the same direction
at the beginning of the process, but eventually separate regions of radially inward
and outward slip are obtained, separated by a stick region with moving boundaries.
Non-conformal coupled problems with Friction. If the contact area increases with
P , points on the surface are free to move tangentially until they come after contact,
after which theymust move only vertically if friction is sufficient to prevent slip. This
situation is illustrated in Fig. 2.38 for indentation by an axisymmetric rigid punch.
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Fig. 2.38 Tangential
displacement during
non-conformal indentation

contact radius r = a

P

undeformed surface

deformed surface

rigid
punch

In the incremental problem [change from P to P + δP] with full stick, points
in the instantaneous contact area A(P) all move downwards by the same distance.
This is the same boundary condition as for the flat punch problem of planformA(P).
Spence showed that forHertzian contactwith finite f , the slip zone in this incremental
problem is also the same as that for a flat punch, and hence the proportion of the
contact area that is slipping remains constant throughout the loading process.

Storakers and Elaguine (2005) extended this argument to show that the proportion
of the contact area in a state of stick will remain constant during loading for any two-
dimensional or axisymmetric indenter, provided only that the stick region increases
monotonically with P—i.e. for which Astick(P1) ∈ Astick(P2) if P2 > P1.

Elastodynamic Effects

We have seen that even for arbitrarily slow loading rates, frictional contact can result
in rapid changes of configuration and these will occur on a time scale associated
with one or more of the natural frequencies of the system.We shall also see that even
the elementary Coulomb friction law can give rise to instabilities during arbitrarily
slow sliding. To introduce this topic, we need to review some fundamental results in
elastodynamics.
Bulk waves. In an infinite elastic body, two kinds of waves can propagate without
dispersion [i.e. whilst retaining the same waveform].

If the particle displacements associated with the wave are aligned with the direc-
tion of propagation, it is known as a dilatation wave or P-wave. For example, if the
wave propagates in the x-direction, we can write

ux (x, y, z, t) = f (x − c1t); uy = uz = 0 (2.55)
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and substitution into Hooke’s law and the equations of motion shows that the dilata-
tional wave speed

c1 =
√
2G(1 − ν)

(1 − 2ν)ρ
, (2.56)

where ρ is the density of the material.
By contrast, if the particle displacements are orthogonal to the direction of prop-

agation, we have a shear wave or S-wave. For example,

uy(x, y, z, t) = f (x − c2t); ux = uz = 0 (2.57)

where the shear wave speed

c2 =
√

G

ρ
, (2.58)

For all materials, c2 < c1.
Rayleigh waves. For a half space with a traction-free plane surface, Rayleigh waves
can propagate without dispersion along the surface at a speed cR < c2. These com-
prise displacement fields that decay with distance away from the surface.
Green’s function for moving contact problems. In two dimensions, if a concen-
trated normal force P moves at constant speed V over the surface of the half plane
z > 0, the normal surface displacement in the steady state is

uz(x, 0) = P

G
[F1(V ) ln |x | + F2(V )H(−x)] , (2.59)

where H(·) is the Heaviside step function and F1(V ), F2(V ) are functions of V that
are illustrated in Fig. 2.39.

Fig. 2.39 The functions F1(V ), F2(V ) from Eq. (2.59) for the case where ν = 0.3
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For V < c2, F2(V ) = 0 and the term including F1(V ) is of the same form as
the static Green’s function. In this speed range, the motion has the same effect
as a modification in the elastic modulus, but in other respects, solutions of two-
dimensional contact problems proceed as in the quasi-static case. The special case
V = cR can be seen as a resonance of the system in that a force moving at this speed
produces an arbitrarily large displacement, or equivalently, a finite displacement can
be produced by a negligibly small [or in the limiting case zero] force.

At the other extreme, if V > c1, F1(V ) = 0 and the response is dictated by the
step function term. Points ahead of the moving load experience no displacement. In
a sense they cannot know that the load is approaching, since waves emanating from
the load cannot travel faster than speed c1. Behind the moving load, the displacement
is constant.

Transmission of Waves Across an Interface

Contacting bodies rarely move at speeds close to or above the wave speeds, but
contact problems of this kind arise if a bulk wave impinges on an inclined interface
between two bodies. Consider the case of two identical half planes z > 0 and z < 0
that make contact over the common plane z = 0.

Figure2.40 illustrates the case where a shear wave moving in the x ′-direction
strikes this interface. We suppose that the direction of particle motion lies in the
y-direction and hence is orthogonal to the figure. Waves of this kind in an otherwise
two-dimensional context are known as SH waves.

If the half planes were bonded together, they would comprise a single infinite
body and could support an incident wave of the form

uy(x ′, z′, t) = u0 sin
{
ω(x ′ − c2t)

}
. (2.60)

This would imply the existence of time-dependent shear tractions on the interface
defined as

qy(x, t) = Gu0ω cosα cos {ω̂(x − ct)} , (2.61)

Fig. 2.40 Transmission of
an SH wave across the
interface z = 0 between two
identical half planes
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Fig. 2.41 Frictional tractions at the interface resulting from a transmitted SH wave, where ξ =
x − ct

where
c = c2

sin α
> c2 and ω̂ = ω sin α, (2.62)

so the disturbance appears to move along the interface at a speed greater than the
wave speed.

Now suppose that the two half planes are actually not bonded, but are pressed
together by a uniform traction p0 and sheared by a uniform shear traction q0. There
will be no slip provided the coefficient of friction f satisfies the condition

|q0 + Gu0ω cosα| < f p0. (2.63)

If this inequality is not satisfied, regions of slip and stick will propagate along the
interface at speed c > c2. This problem can be solved by superposing a ‘corrective’
distribution of out-of-plane forces moving along the interface at speed c (Chez et al.
1978). But since c > c2, the corresponding Green’s function is of step function form,
so the correction is simply f p0 ± qy(x, t). In other words, it is purely local.

Figure2.41 illustrates the resulting distribution for the case where the frictional
inequality is violated only in the range qy > 0. The shaded segments define the cor-
rection and the actual interfacial traction comprises the resulting truncated sinusoid.
Notice also that the accumulated slip displacements cause the half planes to ‘creep’
relative to each other in the y-direction.
Dissimilar materials. If the two contacting half planes [1, 2] comprise different
materials, they will generally have different shear wave speeds c(1)

2 , c(2)
2 . In this

case, even if the bodies are bonded together we shall obtain a reflected wave and a
refracted wave, as shown in Fig. 2.42. These must all correspond to the same velocity
c along the interface, and hence the directions of propagation are determined from
the equations

β1 = α; c(1)
2

sin α
= c(2)

2

sin β2
= c. (2.64)
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Fig. 2.42 Transmission of
an incident SH wave across
an interface between two
dissimilar half planes
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Fig. 2.43 Transmission of
an incident in-plane wave
across an interface between
two dissimilar half planes.
Notice that c(1)

0 must be

either c(1)
1 or c(1)

2 , depending
on whether the incident wave
is a dilatational or a shear
wave α

2
(1)β

1
(1)β

1
(2)

β

2
(2)

β

1.

2.

incident wave

1c(1)

c(1)
2

c
(2)
2

c
(2)
1

z

x

0c(1)

Notice that if

c(2)
2 >

c(1)
2

sin α
i.e. sin α >

c(1)
2

c(2)
2

, (2.65)

there can be no refractedwave. Instead, an evanescent wave [whose amplitude decays
with |z|, like that of a Rayleighwave] propagates along the interface in half plane 2. In
both cases, the problem for a finite friction coefficient can be solved by superposing
an appropriate corrective solution involving moving point forces, but if the wave in
body 2 is evanescent, the correction is subseismic [c < c(2)

2 ] and the corresponding
Green’s function will be of logarithmic form.
In-plane waves. If the incident wave is in-plane [meaning that the periodic dis-
placements lie in the plane of the figure], both shear and dilatational waves will be
refracted, as shown in Fig. 2.43.

The angles defining the directions of propagation, and the velocity c at which the
disturbance propagates along the interface are related by the equation

c = c(1)
0

sin α
= c(1)

1

sin β
(1)
1

= c(1)
2

sin β
(1)
2

= c(2)
1

sin β
(2)
1

= c(2)
2

sin β
(2)
2

. (2.66)
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The corresponding interface tractions now involve both normal and tangential com-
ponents, so there can be propagating regions of separation as well as slip (Comninou
and Dundurs 1979). As in the simpler SH-wave case, one or both of the refracted
waves may become evanescent.

Interface Waves

If two dissimilar half spaces are bonded together at a common plane, Stoneley waves
can propagate along the interface for some combinations of material properties. As
with Rayleigh waves, the disturbance decays exponentially with distance from the
interface. In fact, Rayleigh waves can be considered as the limiting case where the
elastic modulus of one of the materials goes to zero. Notice that Stonely waves are
not possible if the two half spaces are of similar materials, since in that case, there
is essentially no interface.

Waves can also propagate along a frictionless interface between two half spaces.
These are known as slip waves, since they involve relative tangential displacements
at the interface. Slip waves can occur even when the materials of the two half spaces
are similar. They would then take the form of identical Rayleigh waves moving along
the surfaces of the two half spaces, oriented such that the normal displacements in
each are always equal, ensuring complete contact, but without requiring tractions.
Slip waves with dissimilar materials. Slipwaves can occur at a frictionless interface
betweendissimilarmaterials, but therewill then generally be non-zero normal contact
tractions. These must produce equal and opposite normal displacements on the two
half planes, and this is satisfied for an arbitrary moving traction distribution if the
propagation speed c is below the shear wave speed c2 in both materials [so that F2(c)
in Eq. (2.59) is zero] and if

f (1)(c) = − f (2)(c) where f (c) = F1(c)

G
. (2.67)

We notice from Fig. 2.39 that F1(V ) changes sign at V = cR , so this condition
requires that the propagation speed c be intermediate between the Rayleigh wave
speeds of the two materials—e.g. c(1)

R < c < c(2)
R .

Stability of Steady Frictional Sliding

Consider now the case where two half planes are pressed together by a uniform pres-
sure p0 and caused to slide over each other by the application of uniform tangential
tractions q0 = f p0.We suppose that the sliding speed V is very small compared with
the wave speeds in the materials [e.g. V � cR].
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There is clearly a trivial solution in which the stresses are uniform throughout the
two bodies. However, suppose we superpose the displacements and stresses associ-
ated with a frictionless slip wave. These will maintain contact everywhere and, if
the materials are similar, they will not change the contact tractions, so the frictional
sliding condition q(x, t) = f p(x, t) is still satisfied everywhere. We conclude that
this disturbance of the uniform solution is neutrally stable.

If the materials are dissimilar, the superposition of a frictionless slip wave would
modify the normal tractions, but not the shear tractions, and the resulting solution
would therefore violate the frictional condition q(x) = f p(x). However, suppose
that in place of the slip wave, we postulate an exponentially growing or decaying
perturbation of the form

u(i)(x, z, t) = � [
U (i) exp {ω[ı(x − ct) + at − λi z]}

]
(2.68)

in body i [i = 1, 2]. The governing equations define λi in terms of the other param-
eters and the material properties and, since the perturbation is not to change the
condition q(x) = f p(x), the boundary conditions lead to an eigenvalue problem for
(a − ıc).

For similar materials, we obtain a = 0 indicating neutral instability, as argued
above.However, for dissimilarmaterials,Adams (1995) has shown that if thematerial
combination supports a frictionless slip wave, there always exists an eigenvalue with
a positive exponential growth rate a > 0. In other words, uniform steady slip is
unstable. Adams also showed that if the material combination does not support a
frictionless slip wave, there exists some critical coefficient of friction above which
uniform steady slip is unstable.

If the amplitude of an unstable wave grows exponentially, eventually there must
be a transition in some region[s] to stick and/or separation. Adams (1998) identified
steady-state [i.e. limit state] solutions for the sliding of dissimilar materials, which
involve propagating regions of stick, slip and/or separation. He also showed that
these propagating waves allow one body to creep over the other at a mean tangential
traction lower than that required for gross slip.
Implications for finite element studies. The exponential growth rate a increases
with wavenumber ω, so short wavelengths growmore rapidly. In finite element mod-
els, discretization errors act as initial perturbations and the ‘effective wavelength’ is
linked to the smallest element size. This implies that mesh refinement will introduce
more rapidly growing disturbances and hence require a shorter time step. Also, in
FE studies, we usually assume that with sufficient mesh refinement we approach
the continuum solution [in some sense]. This clearly fails if short wavelength per-
turbations are increasingly unstable. Even in a continuum formulation, the transient
elastodynamic frictional contact problem with Coulomb friction is mathematically
ill-posed.
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Alternative Friction Laws

Numerous alternatives to the classical Coulomb friction law have been proposed.
Usually, the motivation is to give a better approximation to observed physical
behaviour, but as we have seen in the last section, an alternative motivation might be
to avoid computational instabilities. Here we shall examine the following modifica-
tions to the Coulomb law:

• Differing static and dynamic friction coefficients.
• Velocity-dependent friction coefficient.
• ‘Rate–state’ friction laws.

Stick-Slip Friction

Figure2.44 shows a mass M supported by a spring of stiffness k and a damper of
coefficient c that is sliding against a surface that moves at constant speed V0.

If the friction force is Q and the rightward displacement of the mass is u, the
equation of motion is

Mü + cu̇ + ku = Q. (2.69)

During periods of stick, u̇ = 0, so Q = cV0 + ku, and slip must start when Q =
fs P , where fs is the coefficient of static friction.
At this instant

u = fs P − cV0

k
; u̇ = V0, (2.70)

and these define the initial conditions for a period of slip, during which we assume
that Q = fd P , where fd [< fs] is the coefficient of dynamic friction.

Figure2.45 shows the subsequent evolution of the dimensionless velocity u̇/V0

for

λ ≡ ωn( fs − fd)

kV0
= 1 where ωn =

√
k

M
(2.71)

Fig. 2.44 An elastically
supported mass sliding
against a plane

k

P

c
M

V0
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Fig. 2.45 Dimensionless slip velocity u̇/V0 following a period of stick for the system of Fig. 2.44
with λ = 1 and two values of ζ

Fig. 2.46 Domain of the parameters λ, ζ in which stick-slip vibrations are possible

and two different values of the damping factor

ζ = cωn

2k
. (2.72)

For ζ = 0.05, the speed returns toV0 after one almost complete cycle of oscillation
and the system reverts to a state of stick. The long-time solution is therefore a stick-
slip vibration. However, for a higher level of damping ζ = 0.08, the speed never
returns to V0 and the long-time solution is steady slip with u̇ = 0.

The range of parameters in which stick-slip vibrations can occur is defined in
Fig. 2.46. Below the solid line, the long-time state will comprise stick-slip vibration
if the initial transient involves any period of stick, but continuous slip is still a
possible long-time state, depending on the initial conditions. For given values of the
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other parameters, stick-slip is more likely to occur when the sliding speed V0 is low
and hence λ is large.

Velocity-Dependent Friction

In lubricated systems, the coefficient of friction increases at high sliding speeds
due to viscous effects, but at low speeds the lubricant film is thin compared with
the surface roughness amplitude and solid–solid contact occurs, increasing friction.
This typically leads to a dependence of f on V as shown in Fig. 2.47, known as the
Stribeck curve.

At low speeds, the curve has a negative slope and this can give rise to instabilities.
For example, suppose the system in Fig. 2.44 is sliding at constant speed V0 so that
Q = P f (V0). We consider the stability of a small perturbation from this state, for
which we can approximate the curve in Fig. 2.47 by the dashed straight line. The
instantaneous sliding velocity is V0 − u̇, so the equation of motion (2.69) can be
written

Mü + cu̇ + ku = P f (V ) ≈ P f (V0) − P f ′(V0)u̇ (2.73)

or
Mü + [

c + P f ′(V0)
]

u̇ + ku = P f (V0) (2.74)

The system will be unstable if the damping term is negative and hence if

f ′(V0) < − c

P
. (2.75)

The long-time state will then be either a periodic vibration [limit cycle] or stick-slip
motion.

f

V0 V0

f(V )0

Fig. 2.47 Velocity-dependence of the coefficient of friction
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Rate–State Friction Models

The friction force may depend on the history of loading or sliding as well as on
instantaneous conditions. For example, if the shear traction is proportional to the
actual contact area, an increase in this area due to an increased normal load may take
time to develop because of viscoelasticity or creep. Also, if the static and dynamic
coefficients of friction are different, some finite sliding distance may be required
before the dynamic value is fully established, as shown in Fig. 2.48

This is an example of a slip-weakening friction law. In particular, we note that the
work done per unit area required to ‘break’ the static friction bond is

W = p

∞∫

0

[ f (u) − fd ] du = ( fs − fd) pδ

2
, (2.76)

where u is the sliding distance and p is the local contact pressure.
Rabinowicz (1951) devised a simple experiment to estimate W which is shown in

Fig. 2.49. The inclination θ of the plane surface is chosen such that fs > tan θ > fd ,
so that the mass can rest in static equilibrium, but will slide down the plane once it is
set in motion. The ball is then released from different heights h. If h is chosen as the
minimum value needed to initiate permanent sliding down the plane, an energetic
analysis, including the rebound distance of the ball, allows us to estimate the value
of W .

Fig. 2.48 A slip-weakening
friction law

u

f

0

W
p

fd

fs

δ

Fig. 2.49 Rabinowicz’
experiment for estimating the
parameter W in Eq. (2.76) h

θ
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State variables. History-dependent friction laws of this kind can be characterized
by defining a state variable S whose value represents some measure of the history.
The tangential force is then defined by a function

Q = f (P, V, S), (2.77)

where P is the normal force and V is the sliding speed.We also define an evolutionary
equation for S, typically of the form

d S

dt
= g(P, V, S). (2.78)

This will typically predict an exponential approach to a new steady state when there
is a step change in P and/or Q.

Example Ranjith and Rice (2001) proposed the simple rate–state model

Q = Q0 sgn(V ); d Q0

dt
= −|V |

L
(Q0 − f P) , (2.79)

where f is a constant coefficient of friction, Q0 performs the function of a state
variable and L is a length scale. They showed that this law is sufficient to regularize the
elastodynamic problem at small length scales, hence avoiding the problem identified
in section “Stability of Steady Frictional Sliding”.

Estimating rate–state parameters. More generally, rate–state equations can be
based on physical arguments, or we can simply use a ‘black box’ approach and
determine the corresponding parameters with appropriate experiments. These might
comprise:

• Steady sliding experiments [so Ṡ = 0].
• Steady sliding with a superposed oscillation in speed or normal load (Cabboi et al.
2016).

• Response to a step change. Prakash (1998) generated step changes in frictional
conditions by causing a bulk wave to impinge on an oblique interface.

Conclusions

These examples show that friction can give rise to quite complex phenomena in
contact mechanics. Even the elementary Coulomb friction law can lead to non-
existence and non-uniqueness of solution if the coefficient of friction is ‘sufficiently
high’. Also steady sliding of dissimilar materials can be elastodynamically unstable
and numerical solutions of such problems may be ill-posed.

We have seen that coupling between normal and tangential loading has a criti-
cal effect on frictional behaviour. Uncoupled systems have limited dependence on
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loading history, they cannot become wedged and always lead to well-posed evolu-
tion problems. We also note that finite element codes involving frictional boundary
conditions may fail or give erroneous results, particularly if the mechanical system
is one that is prone to wedging.
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Chapter 3
Nonequilibrium Molecular Dynamics
Simulations of Tribological Systems

James P. Ewen, Eduardo Ramos Fernández, Edward R. Smith and
Daniele Dini

Abstract Nonequilibrium molecular dynamics (NEMD) simulations are
increasingly being used to investigate the nanoscale behaviour of tribological sys-
tems. This chapter focuses on the application of classical NEMD simulations of
liquid lubricants and additives confined between solid surfaces. Ab initio NEMD,
which can be used to accurately model tribochemsitry, and coupled computational
fluid dynamics (CFD)-NEMD are also introduced. Specific example systems and
recommendations for future research are provided.

Introduction

In recent years, nonequilibriummolecular dynamics (NEMD) simulations have given
unique insights into the nanoscale behaviour of fluids under shear. A detailed under-
standing of this behaviour is crucial in tribology since this often governs the macro-
scopic friction (Vanossi et al. 2013) and wear (Molinari et al. 2018) responses that
are observed experimentally. MDwas invented in the 1950s and can be used to study
the dynamics of a system of interacting particles by numerically solving Newtons
equations of motion using a finite difference scheme over a series of short time steps.
In classical MD, the forces between the particles and their potential energies are
calculated using interatomic potentials or molecular mechanics force fields (Ewen
et al. 2018a). Initially, MD played a central role in corroborating theories of the liq-
uid state (Barker and Henderson 1976). For example, Alder and Wainwright (1957)
showed that ‘hard sphere’ liquids crystallized as the density were increased above a
certain value while Rahman (1964) showed that the diffusion and structural evolu-

J. P. Ewen · E. R. Fernández · E. R. Smith · D. Dini (B)
Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
e-mail: d.dini@imperial.ac.uk

E. R. Smith
Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge,
Middlesex UB8 3PH, UK

© CISM International Centre for Mechanical Sciences 2020
M. Paggi and D. Hills (eds.), Modeling and Simulation of Tribological Problems
in Technology, CISM International Centre for Mechanical Sciences 593,
https://doi.org/10.1007/978-3-030-20377-1_3

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20377-1_3&domain=pdf
mailto:d.dini@imperial.ac.uk
https://doi.org/10.1007/978-3-030-20377-1_3


96 J. P. Ewen et al.

Fig. 3.1 Schematic of confined NEMD simulation (a) and an example snapshot from confined
NEMD simulation (b). Adapted from Ewen et al. (2018a)

tion of liquid argon takes place by a series of small, highly coordinated motions of
neighbouring atoms.

More recently, MD has been increasingly utilized to study liquid transport proper-
ties such as viscosity, initially without shear applied (Levesque et al. 1973) but using
Green–Kubo formalism (Kubo 1957). This remains a popular equilibriummethod to
study such transport coefficient, but NEMDsimulations, inwhich the fluid is sheared,
is particularly useful for tribological applications. In early NEMD simulations, the
systemwas sheared by applying an equal and opposite velocity to the regions of fluid
atoms at the top and bottom of the simulation cell (Ashurst andHoover 1975). Instead
of moving the outer fluid atoms, shear is now more commonly applied by adding
velocities to solid walls which confine the system (Bitsanis et al. 1987). Confinement
can significantly influence the fluid behaviour (Granick 1991; Gubbins et al. 2011),
which is discussed in more detail below.

An example system setup for confined NEMD simulations with moving solid
surfaces is shown in Fig. 3.1. Periodic boundary conditions are applied in x and y
directions.

Alternatively, bulk NEMD simulations can be performed with periodic boundary
conditions in all three Cartesian directions. In bulk NEMD simulations, the periodic
cell is deformed using the SLLOD equations of motion (Evans and Morriss 1984),
Lees–Edwards boundary conditions (Lees and Edwards 1972) and temperature is
controlled by a non-stochastic thermostat like Nosé–Hoover (Nosé 1984; Hoover
1985). It is important to note that excellent agreement between bulk and confined
NEMD simulations has been observed when the surfaces are sufficiently separated
such that there is a negligible confinement-induced viscosity increase in the latter
(Liem et al. 1992; Todd and Daivis 2007). In this chapter, we will focus on recent
applications of NEMD simulations in tribology. For the underlying theory, readers
are directed to comprehensive books on the topic by Evans and Morriss (2008) and
Todd and Daivis (2017).

Over the past four decades, advances in computational power, software paral-
lelization and model sophistication have enabled NEMD simulations to progress
significantly in terms of time and length scale accessibility, molecule complexity
and accuracy compared to experiment (Ewen et al. 2018a). Thus, NEMD has now
become capable of directly evaluating physical properties in industrially important
systems. For example, NEMD can now accurately describe the high-pressure rhe-
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ology of lubricant molecules (Jadhao and Robbins 2017), which is of significant
industrial interest. Moreover, relatively new techniques, such as ab initio NEMD,
are starting to be applied to study additive tribochemistry (Loehlé and Righi 2018;
Kuwahara et al. 2019). As a result, NEMD can now be employed to test the appli-
cability of macroscopic models and even facilitate the rational design of improved
lubricants and additive molecules (Ewen et al. 2018a).

This chapter will first discuss key simulation methodology required to obtain
accurate results from NEMD simulations. The subsequent sections will focus on
three important areas where NEMD has been recently applied. The first section
will discuss classical NEMD simulations of confined lubricants, the second and
third sections are devoted, respectively, to NEMD and ab initio NEMD simulations
of confined lubricant additives. The final section examines a multi-scale method
by domain decomposition coupling CFD and NEMD and applied to tribologically
relevant systems.

Simulation Details

Within the constraints of commonly available computational resources, only rather
small time (ns) and length (nm) scales are generally accessible to MD simulations.
As a consequence, an important consideration for any MD simulation is whether the
behaviour of interest can be captured over these accessible scales (Elber 2016).

Examples of simulation methods used in tribology and their accessible time and
length scales are shown in Fig. 3.2.

Fig. 3.2 Different methods
and accessible scales for
simulations of tribological
systems. Adapted from
Ewen et al. (2018a)
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One important manifestation of the rather short accessible timescales in NEMD
simulations are that high shear rates (generally ≥107 s−1) are required to reach a
nonequilibrium steady state (Bair et al. 2002a; Jadhao andRobbins 2017). Simulating
lower shear rates have been a long-term goal of NEMD simulations to facilitate
direct overlap with experiments and real components. For comparison, the high-
pressure viscosity of lubricants can generally only be measured up to shear rates of
approximately 104 s−1 (Bair et al. 2002a), tribology experiments can extend up to
around 106 s−1 (Spikes and Jie 2014), while high-performance engine components
can reach up to 108 s−1 (Taylor and de Kraker 2017). Direct NEMD simulations have
been conducted for squalane at shear rates as low as 105 s−1 through µs simulations
on large supercomputers by Jadhao and Robbins (2017), although direct overlap
between experiments and NEMD simulations has still not been obtained for realistic
fluids. Techniques, such as the transient-time correlation function (TTCF) (Evans and
Morriss 1988), facilitate accurate results for shear rates below105 s−1 using ensemble
averaging correlation products from many independent NEMD trajectories (Pan and
McCabe 2006). However, thousands of independent trajectories are required, making
it a rather computationally expensive technique, and thus it has only been used to
study rather small molecules (n-decane) up to now (Pan and McCabe 2006).

To obtain accurate results from confined NEMD simulations, which are represen-
tative of experiments, a number of methodological choices need to be carefully con-
sidered. For example, an appropriate thermostatting strategy and force field should
be employed; these are briefly outlined below. In NEMD simulations, effective ther-
mostatting is essential to reach a nonequilibrium steady state by removing heat pro-
duced during the shearing process. There are a number of possible thermostatting
methods available for confined NEMD simulations, as reviewed by Bernardi et al.
(2010) and Yong and Zhang (2013). For confined NEMD simulations, the thermostat
is most commonly applied only to the wall atoms. This allows a thermal gradient to
develop through the thickness of the lubricant film (Khare et al. 1997), as it occurs in
tribology experiments (Lu et al. 2018). NEMD simulations with thermostats applied
directly to the confined fluidmolecules do not allow temperature gradients to develop
and can artificially influence the structure, flow and friction behaviour (Martini et al.
2008; Bernardi et al. 2010; Yong and Zhang 2013). In confinedNEMDsimulations of
tribological systems, wall thermostatting is performed using stochastic thermostat-
ting algorithms, e.g. Langevin (Schneider and Stoll 1978), are generally utilized due
to their efficient energy dissipation (Berro et al. 2011). For the relatively thin films
usually studied in confined NEMD simulations (nm), the temperature rise, which is
generally largest in the centre of the film, only becomes significant at high shear rates
(Berro et al. 2011).

In MD simulations, force fields are used to describe the forces between the sys-
tem of interacting atoms. The accuracy of any MD simulation is heavily dependent
on the force field used, and thus significant effort should be spent choosing and
testing before production simulations are conducted (Ewen et al. 2016b). The func-
tional forms of most classical molecular force fields are quite similar, most include
bonded (bond stretching, angle bending, and dihedral torsion) and nonbonded (van
der Waals, electrostatic) terms. Bonded interactions are commonly represented with
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simple harmonic potentials while nonbonded terms are usually represented by the
Lennard-Jones (LJ) and Coulomb potentials. LJ interactions are usually cut-off at
a distance of around 10Å whereas long-ranged Coulombic interactions are treated
with a solver such as particle–particle, particle–mesh (PPPM) since truncation can
lead to unphysical results (Feller et al. 1996). These potentials can be empirically
parametrized to reproduce important experimental properties for a set of training
compounds, derived from first principles calculations, or computed using a combi-
nation of the two. Force field parameterization is a complex and time-consuming
process, and most of the force fields used to study liquid lubricants were originally
developed for biological applications (Ewen et al. 2016b).

A key target of NEMD simulations of tribological systems is to yield realistic
viscous behaviour of lubricant-sized molecules, which requires the use of highly
accurate force fields. The computational expense of classical NEMD simulations
is usually dominated by the nonbonded interactions. Consequently, most historic
simulations of tribological systems which include alkane molecules have employed
united-atom (UA) force fields where the nonpolar hydrogens are grouped with the
carbon atoms to generate CH, CH2 and CH3 pseudo-atoms (Ewen et al. 2016b).
This decreases the number of interaction sites by around 2/3 and computational
expense by up to an order of magnitude compared to all-atom (AA) force fields
(Martin and Siepmann 1999). However, UA force fields have been shown to lead
to large viscosity under prediction for linear, long-chain alkanes (50% error for
n-hexadecane) compared to experiment (Ewen et al. 2016b). For alkanes with mul-
tiple short branches, UA force fields can give reasonably accurate viscosity results
(15% for squalane), but for those with fewer, longer branches they are less accurate
(50% for 9-n-octyldocosane) (Moore et al. 2000). For suchmolecules, all-atom (AA)
force fields are required to accurately reproduce viscous behaviour (Allen and Row-
ley 1997; Ewen et al. 2016b). For example, the L-OPLS-AA force field (Siu et al.
2012) within 10% for n-hexadecane at ambient and high-temperature–high-pressure
conditions (Ewen et al. 2016b). Thus, for accurate viscosity prediction, AA force
fields are required for longer, linear molecules, while for more branched, shorter
molecules, UA force fields may be an acceptable trade-off.

Classical NEMD Simulations of Lubricants

Many lubricated engineering components include elements that roll and slide
together, for example, rolling bearings, gears, constant velocity joints and cam/
follower systems. In these components, a significant proportion of the friction loss
is in the elastohydrodynamic lubrication (EHL) regime, where very thin (nm) fluid
films are sheared at very high shear rate, γ̇ (105–108 s−1) and pressure, P (GPa)
(Spikes and Jie 2014). Such extreme conditions are clearly difficult to investigate
with in situ experiments and thus prediction of EHL friction remains a considerable
challenge.
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Bulk NEMD Simulations

NEMD simulations have beenwidely utilized to study fluids under high-pressure and
shear conditions. For example,Moore et al. (2000) studied the effect of high shear rate
and temperature on the viscosity of C30 isomers. While the Newtonian viscosity was
significantly underpredicted due to the UA force field used, the change in viscosity
with temperature, also knownas viscosity index (VI),was in excellent agreementwith
experiments. Similarly, McCabe et al. (2001) and Liu et al. (2015) performed NEMD
simulations to study the change in viscosity with pressure of 9-octylheptadecane and
1-decene trimer. The Newtonian viscosity was again significantly underpredicted
due to the UA force fields used; however, the change in viscosity with pressure, the
α value was in good agreement with experiment in both cases. Accurate prediction
of VI and α of new molecules is a potentially valuable application of NEMD since
these properties are important to their performance under EHL conditions (Bair and
Kottke 2003).

NEMD has been used to test the applicability of the Eyring (1936) and Carreau
(1972) shear thinning models commonly applied to predict EHL friction. For exam-
ple, Bair et al. (2002a) compared the high-pressure viscosity of a molecular lubricant
(squalane) from a rheometer and bulk NEMD simulations. This was the first com-
parison of the nonlinear rheology predicted by NEMD with experiment, and was
thus the first experimental test of NEMD simulations in the shear thinning regime.
Although the experimental and simulation data were separated by several orders of
magnitude in shear rate, they collapsed onto the same time–temperature superposi-
tion master curve (Bair et al. 2002a). This master curve was successfully fit using
the power-law Carreau (1972) model. Similarly, Liu et al. (2017) used the Carreau
(1972) model to describe the shear thinning behaviour of squalane as well as sev-
eral types of poly-alpha-olefin (PAO) molecule. They correlated the shear thinning
behaviour with changes to the conformation of the molecules, quantified through the
radius of gyration. Recent bulk NEMD simulations by Jadhao and Robbins (2017)
suggested that, although the viscosity-shear rate behaviour at lower pressure was bet-
ter described by the Carreau (1972) model, the Eyring (1936) shear thinning model
was more appropriate at higher pressure. Moreover, the ‘incremental viscosity’ of
the Eyring model, measured for LJ fluids using a ‘shear-kick’ NEMD scheme, has
been shown to be a special case of the Carreau model (Heyes et al. 2018).

Confined NEMD Simulation Results

A significant assumption of bulk NEMD simulations is that a linear velocity profile
develops in the fluid between the sliding surfaces (Delhommelle et al. 2003; Cao
and Likhtman 2012). However, deviations from this Couette case were suggested by
Israelachvili (1986) from surface forces apparatus experiments and later confirmed
by confined NEMD simulations (Thompson and Robbins 1990). Such behaviour in
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nanoconfinement has been attributed to phase transitions (vitrification or crystalliza-
tion) and large viscosity increases that facilitate localization of the shear at the con-
fining surfaces or within the fluid itself (Thompson and Robbins 1990). Robbins and
Smith (1996) suggested that high pressures could induce similar phase transitions to
those in the relatively thicker EHL films (≈100nm) (Spikes and Jie 2014).Moreover,
nonlinear flow has been used for more than half a century to explain observations
from EHL experiments (Plint 1967; Ehret et al. 1998), but conclusive experimental
proof has remained elusive for realistic lubricants. However, such behaviour has been
observed in confined NEMD simulations, with increasing complexity, as discussed
below.

Comprehensive confined NEMD simulations of atomic Lennard-Jones (LJ) fluids
under EHL conditions (Heyes et al. 2012; Gattinoni et al. 2013; Maćkowiak et al.
2016) have identified the transition from Couette flow to various types of shear
localization with increasing pressure. For example, central localization (CL), where
the outer regions of the fluid move at the same velocity as the confining surfaces
and only the central region is sheared. Another form of shear localization is plug
slip (PS), where the outer regions of the fluid are sheared while the central region
remains unsheared. In the LJ fluid systems, friction behaviour deviated from classical
friction relations between macroscopic bodies, for example, the friction force was
observed to decrease with increasing load and shear rate in some cases (Maćkowiak
et al. 2016). More recently, similar NEMD simulations have been performed for
molecular systems (Ewen et al. 2017b; Washizu et al. 2017; Porras-Vazquez et al.
2018).

The EHL friction coefficient from these NEMD simulations was in good agree-
ment with extrapolations from experiments conducted at lower shear rates (Ewen
et al. 2017b; Porras-Vazquez et al. 2018). For example, Fig. 3.3a shows the change
in friction with logarithmic shear rate for two molecular fluids; 2,6,10,15,19,23-
hexamethyl-tetracosane (squalane) and 2,3-dimethyl-2-[(3-methylbicyclo[2.2.1]
hept-2-yl)methyl]bicyclo[2.2.1]heptane (DM2H). Squalane is a linear C24 alkane
with six methyl branches that have commonly been employed as a model lubricant,
designed to give low friction. DM2H is a rigid bicyclic molecule designed to give
high friction for use in traction drives (Zhang et al. 2017).

In Fig. 3.3a-i, the friction coefficient for squalane increases logarithmically with
shear rate and also generally increases with pressure (Ewen et al. 2017b). This type
of behaviour is commonly observed in experiments and NEMD simulations of lubri-
cants under EHL conditions (Spikes and Jie 2014). The slope of the friction coef-
ficient with logarithmic shear rate decreases with increasing pressure, as was also
observed in NEMD simulations of binary atomic LJ fluids (Gattinoni et al. 2013).
At very high shear rate, the friction coefficient of squalane at 0.5 GPa exceeds that
at 2.0GPa, which has also been observed for LJ fluids (Maćkowiak et al. 2016).

Although Fig. 3.3a-ii shows that the friction coefficient of DM2H also increases
logarithmically with shear rate, it does so with a much lower slope than for squalane.
This behaviour is similar to that observed inNEMD simulations of single-component
LJ fluids subjected to high pressures (Heyes et al. 2012; Gattinoni et al. 2013;
Maćkowiak et al. 2016).Moreover,DM2Hshowsmuch higher friction than squalane,
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Fig. 3.3 a Friction coefficient versus log(shear rate) for the fluids at: 353K and 0.5–2.0GPa;
squalane (i) a DM2H (ii). Thermally corrected experimental data shown as filled diamonds. Isother-
mal NEMD data shown as filled circles, NEMD data with a temperature rise shown as open circles.
NEMD data time-averaged for the final 10nm of sliding. b Flow profiles for squalane at 0.5GPa (i),
squalane at 2.0GPa (ii), DM2H at 0.5GPa (iii), DM2H at 2.0GPa (iv). Adapted from Ewen et al.
(2017b)

particularly at low shear rate. The high friction of DM2H can be attributed to inter-
locking of the bulky bicyclo[2.2.1]heptyl groups which coupled with its internal
molecular stiffness, increases energy barriers for neighbouring molecules to slide
over one another (Ewen et al. 2017b). The friction coefficient of DM2H at 0.5GPa
exceeds that at 2.0GPa at much lower shear rate than for squalane.

Figure 3.3b shows the flow profiles for squalane at 0.5GPa (i) and 2.0GPa (ii)
and DM2H at 0.5GPa (iii) and 2.0GPa (iv). In all cases, the outer molecular layer
of fluid moves at the same velocity as the iron oxide surfaces, indicating that no
boundary slip occurs (Ewen et al. 2017b). For squalane at 0.5GPa, a Couette flow
profile develops, with a linear velocity gradient in the fluid confined between the two
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surfaces. At 2.0GPa, the mass density profile shows strong layering of the fluid close
to the surfaces, suggesting the formation of an ordered, solid-like region close to the
slabs, with a liquid-like region in the centre of the film. It is important to note that
the strong layering extends much further into fluid than was directly influenced by
the surface (LJ interactions cut-off at 12Å). The flow profile for squalane at 2.0GPa
shows CL behaviour, in common with the simulations for LJ fluids (Heyes et al.
2012; Gattinoni et al. 2013; Maćkowiak et al. 2016). Experiments have also shown
CL (Bair et al. 1993, 1994; Bair and McCabe 2004; Galmiche et al. 2016) under
EHL conditions, although presently only for very viscous polymers.

The change in flow behaviour with pressure for DM2H is similar to that for
squalane, but it shows greater divergence from Couette flow under equivalent condi-
tions. Even at 0.5GPa, DM2H shows weak CL, with layering of the molecules close
to the surface resulting in a cubic velocity profile. At 2.0GPa, DM2H shows PS,
another phase identified in confined NEMD simulations of LJ fluids (Heyes et al.
2012; Gattinoni et al. 2013; Maćkowiak et al. 2016). Note that PS is distinct from
the boundary slip behaviour, which is commonly observed in NEMD simulations
of very thin films (Martini et al. 2008). PS has also been observed experimentally
for very viscous polymers under EHL conditions (Ponjavic et al. 2014; Sperka et al.
2014; Jeffreys et al. 2019).

From theseNEMDsimulations, potential links have been drawn between the glass
transition, nonlinear flow and the limiting shear stress. This is the point at which
the friction coefficient becomes insensitive to shear rate and pressure (Martinie and
Vergne 2016). Recent NEMD simulations have suggested that it is the glass transition
of the confined fluid that drives both the unusual friction and flow behaviour (Porras-
Vazquez et al. 2018).

Classical NEMD Simulations of Lubricant Additives

Organic friction modifiers (OFMs) are amphiphilic surfactant molecules that contain
nonpolar hydrocarbon tail groups attached to polar head groups. Commercial OFMs
generally contain unbranched aliphatic tail groups containing 12–20 carbon atoms
as a result of their effective friction reduction, high base oil solubility and high
availability from natural fats and oils. Many head groups have been employed, but
the most commonly studied in the literature are carboxylic acids, amines, amides and
glyceride esters. Extensive experimental evidence suggests thatOFMs reduce friction
through the adsorption of their polar head groups tometal-, ceramic- or carbon-based
surfaces, with strong, cumulative van der Waals forces between proximal nonpolar
tails leading to the formation of incompressible monolayers that prevent contact
between solid surfaces (Spikes 2015).

Classical NEMD simulations can be used to simultaneously probe the nanoscale
structure and friction of OFM films, making them a valuable complement to experi-
ments (Ewen et al. 2018a; Apóstolo et al. 2019). Due to the relatively slow film for-
mation process onMD timescales, NEMD simulations with preformed films, similar
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to those formed by Langmuir–Blodgett experiments (Briscoe and Evans 1982), are
usually employed. Carboxylic acid Langmuir–Blodgett films on solid surfaces were
first studied by MD in the 1990s (Moller et al. 1991). This was soon followed by the
first NEMD simulations of such systemswhich showed that higher coverage films led
to lower friction (Kong et al. 1997). Their simulations predicted that OFMmolecules
were approximately normal to the surface at high surface coverage (4.8nm−2) but
became more tilted at lower surface coverage. The authors suggested that tilting
maximizes the van der Waals attraction between the chains by increasing the pack-
ing efficiency. The tilting transition was attributed to the packing of the hydrogen
atoms belonging to methylene groups on neighbouring molecules, meaning that the
correct behaviour could only be accurately reproduced using AA and not UA force
fields (Karaborni and Verbist 1994). NEMD simulations Ewen et al. (2016b) showed
that the use of AA force fields is also critical to give accurate flow and particularly
friction behaviour for OFM films under shear.

More recently, NEMD simulations of preformed OFM films have investigated the
effect of head group type (Eder et al. 2013; Ewen et al. 2016a), tailgroup structure
(Doig et al. 2014; Ewen et al. 2016a) and surface roughness (Eder et al. 2013; Ewen
et al. 2017a) on their structure and friction under boundary lubrication conditions.
For example, Fig. 3.4 shows the change in mass density and flow profiles (a) and
friction coefficient (b) with surface coverage for a representative OFM, stearic acid
(SA). The velocity profiles at all SA coverages in Fig. 3.4a show that there is no slip
at the surface, as expected for the strongly absorbed OFMhead groups. The OFM tail
groups move at a similar velocity as the slab to which they are absorbed (±5ms−1)
until the region where they become interdigitated with the n-hexadecane lubricant.
The low-coverage (1.44nm−2) flow profile (i) resembles Couette flow, with a near-
linear fluid velocity profile between the slabs. The velocity profile contains step-
like features, suggesting partial plug flow between the combined OFM-hexadecane
layers. At medium coverage (2.88nm−2) (ii), the OFM tail groups are sheared in the
region in which they are interdigitated with hexadecane. The velocity profile passes
through zero at the centre of the hexadecane layer, with a steeper gradient than at low
coverage.At high coverage (4.32nm−2) (iii), thefluid layers remainmostly unsheared
and slip planes form between the well-defined OFM and hexadecane layers.

This flowbehaviour correlateswith the observed change in friction coefficientwith
surface coverage in Fig. 3.4b. Results are shown for SA, oleic acid (OA), stearamide
(SAm), oleamide (OAm, glycerol monostearate (GMS), and glycerol monooleate
(GMO). For all of the OFMs at 10ms−1, the friction coefficient increases by around
5% for all OFMs between low and medium coverage (Fig. 3.10a) before decreas-
ing by 30% between medium and high coverage. This trend is consistent with SFA
experiments using monolayer films formed from other surfactants in which fric-
tion increased as the film moved from a liquid-like to an amorphous film and then
decreased when a solid-like film was formed (Yoshizawa et al. 1993).

Comparisons have also beenmade between the friction-sliding velocity behaviour
from confined NEMD simulations of OFMs and boundary friction experiments.
Figure 3.5 shows the change in the friction coefficient with logarithmic sliding
velocity from CETR UMT boundary friction experiments (Campen et al. 2012)
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Fig. 3.4 a Flow and mass density profiles during sliding, for a representative OFM system (SA)
at low (i), medium (ii) and high (iii) coverage. b Friction coefficient as a function of coverage for
SA, OA, SAm, OAm, GMS and GMO. Both at 0.5GPa and 10ms−1. Adapted from Ewen et al.
(2016a)

and NEMD simulations (Ewen et al. 2016a, b). The NEMD simulations were per-
formed at much higher sliding speeds (1–10ms−1) than the tribology experiments
(10−7–10−2 ms−1). TheNEMD simulationswere performedwith iron oxide surfaces
at 0.5GPa and 300K for low-coverage (1.44nm−2) and high-coverage (4.32nm−2)
SA films. In the tribology experiments, OFM concentration, rather than coverage,
is varied since this is far easier to measure and control. The tribology experiments
were performed in a steel–steel contact at 0.7GPa and 308–373K for SA and OA
at a concentration of 0.01moldm−3. Desorption isotherm experiments have shown
that SA forms films with higher maximum coverage (≈4nm−2) compared to OA
(≈2nm−2) on iron oxide surfaces (Wood et al. 2016). This is due to the Z-alkene
group in the OA tail group which leads to less efficient surface packing. Moreover,
NEMD simulations (Fig. 3.4) have shown that, at equal surface coverage, there is
negligible difference in friction coefficient between SA and OA (Ewen et al. 2016a).
Therefore, at high concentration, the SA experimental results are comparable to the
high-coverage (4.32nm−2) NEMD simulations while the OA experimental results
are comparable to the low-coverage (1.44nm−2) NEMD simulations.

The tribology experiments in Fig. 3.5 show that OFMs with saturated tails (SA)
give lower friction which increases logarithmically with sliding velocity. Conversely,
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Fig. 3.5 Change in friction
coefficient with logarithmic
sliding velocity from
experiments and NEMD
simulations. NEMD results
for SA at low coverage,
1.44nm−2 (LC) and high
coverage, 4.32nm−2 (HC)
from Ewen et al. (2016a, b)
and experimental results for
SA and OA from Campen
et al. (2012)

OFMs with Z -unsaturated tail groups (OA) show higher friction, which is more
weakly dependent on sliding velocity (Campen et al. 2012). Similarly, the NEMD
simulations at low coverage give higher friction than at low coverage and increase
with a shallower slope than at high coverage. This can be attributed to themore liquid-
like film and widely spaced OFM molecules which are able to rearrange in order to
reduce the energy barrier height during sliding (Ewen et al. 2016a). Moreover, the
high-coverage NEMD results are in quantitative agreement with extrapolations from
the SA experiments to higher sliding velocity. It is important to note that such agree-
ment is only attainablewith an accurate, AA force field (Ewen et al. 2016b). Although
the low-coverage friction results are somewhat higher than extrapolations from the
OA experiments to higher sliding velocity, and they show the same qualitative trend.
Thus, combined these NEMD and experimental results provide strong evidence that
OA forms lower coverage films than SA, which leads to higher friction which is less
dependent on sliding velocity.

Some NEMD studies have studied film formation from concentrated OFM solu-
tions rather than using preformed films. OFM molecules are unlikely to exist in
isolation in nonpolar solvents and most are expected to form dimers (Jaishankar
et al. 2019). Moreover, some OFMs, such as glyceride esters, are known to form
reverse micelles in nonpolar solvents (Bradley-Shaw et al. 2015). NEMD simula-
tions have also been used to study the resilience of these reverse micelles to pressure
and shear (Bradley-Shaw et al. 2016, 2018). They have shown that, while they are
stable without sliding, the reverse micelles usually disintegrate under shear to form
surface films. Thus, it is expected that such OFMs eventually form films similar to
those shown in Fig. 3.4 inside tribological contacts.

In addition to reducing boundary friction, OFMs have also been postulated to
reduce friction in the hydrodynamic lubrication regime by inducing liquid slip (Choo
et al. 2007). This has also been investigated in recent NEMD simulations (Ewen
et al. 2018b). The simulations showed that a measurable slip length was only observ-
able for OFM films with a high surface coverage, which provide smooth interfaces
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between well-defined OFM and n-hexadecane layers. Slip commenced above a crit-
ical shear rate, beyond which the slip length first increased with increasing shear rate
and then asymptoted towards a constant value. This was consistent with previous
NEMD simulations of n-alkane slip on flexible solid surfaces (Martini et al. 2008).
The maximum slip length increased significantly with increasing pressure. Systems
and conditions which showed a larger slip length typically gave a lower friction coef-
ficient. Generally, the friction coefficient increased linearly with logarithmic shear
rate; however, it showed a much stronger shear rate dependency at low pressure than
at high pressure. Relating slip and friction, slip only occurred above a critical shear
stress (Spikes and Granick 2003), after which the slip length first increased linearly
with increasing shear stress and then asymptoted. This behaviour was well-described
using the slip model due toWang and Zhao (2011) which is based on Eyring’s molec-
ular kinetic theory. The NEMD simulations supported that high-coverage OFMfilms
can significantly reduce friction by promoting slip, even when the surfaces are well
separated by a lubricant (Ewen et al. 2018b).

Ab Initio NEMD Simulations of Lubricant Additives

A detailed understanding of tribochemical reactions is of paramount importance
for designing new, more effective and environmental-friendly lubricant additives.
Density functional theory (DFT) calculations can provide insights into the adsorption
and dissociation of additives on solid surfaces from first principles (Gattinoni and
Michaelides 2015; Loehlé and Righi 2017; Gattinoni et al. 2018). However, in most
cases, these calculations are static, i.e. no shear is applied.

Sliding surfaces are ubiquitous in tribology, and thus ‘mechanochemistry’ is of
critical importance (Spikes and Tysoe 2015; Spikes 2018). Classical NEMD simu-
lations can give insights regarding tensile forces on the bonds of molecules under
compression and shear (Adams et al. 2015). However, the harmonic formof the bond-
ing term in most classical force fields prevents the study of tribochemical processes.
Force fieldswhich approximate chemical reactivity through bond order potentials, for
example, ReaxFF (Senftle et al. 2016) can be used to study tribochemistry in NEMD
simulations. ReaxFF NEMD simulations of phosphoric acid confined and sheared
between solid surfaces were used to explain its liquid superlubricity behaviour (Yue
et al. 2013). Previous experiments by Li et al. (2011) showed that phosphoric acid
andwater mixtures can exhibit liquid superlubricity when confined between sapphire
surfaces. Confined NEMD simulations of phosphoric acid molecules using ReaxFF
(Yue et al. 2013) showed that the variation of hydrogen bond interaction strength
and change of velocity accommodation affect the frictional response. At high tem-
perature, tribochemical reactions, specifically, polymerization of phosphoric acid
molecules, generation of water molecules and formation of slip planes occurred.
The generation of water molecules, and their accumulation at the sliding interface,
leads to weaker interfacial hydrogen bond interactions and velocity accommodation
between the interfacial water layers.
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ReaxFF is more computationally expensive than most classical force fields, and
thus simulations are limited to shorter timescales (≈1ns) and higher sliding velocities
(≈100ms−1) (Yue et al. 2013). As well as ReaxFF, many other ‘reactive’ force
fields are available for MD simulations, as discussed in a recent review by Harrison
et al. (2018). A considerable drawback of all reactive force fields is the limited
availability of reliable parameter sets to study thematerials, conditions and properties
of interest in tribology.Thegeneration of high-quality parameter sets is a very difficult
and time-consuming task due to the huge number of parameters which need to be
fitted in comparison to conventional molecular force fields (Ewen et al. 2018a).
However, when properly fitted, reactive force fields facilitate simulation studies of
relatively large systems for appreciable timescales, which can significantly improve
our understanding of additive tribochemistry.

Ab initio MD can be used to model additive tribochemistry from first principles
and thus does not require force field parameterization. However, they increase the
computational expense by more than an order of magnitude compared to MD simu-
lations with reactive force fields, meaning that the accessible length (usually single
molecules) and timescales (ps) are more limited. This can be mitigated somewhat by
employing less computationally intensive ab initio techniques such as Car–Parrinello
and tight binding.

Despite the limited length and timescales accessible, recent ab initio MD simula-
tions have given useful insights in tribochemistry of lubricant additives. For example,
Mosey et al. (2005) performed compression/decompression cycles up to very high
pressures (2.5–32.5GPa) using ab initio MD simulations to study the tribochem-
istry of zinc dialkyldithiophosphate (ZDDP) antiwear additives. The Car–Parrinello
method (Car and Parrinello 1985) was used for the ab initio calculations. The simu-
lations revealed the molecular origins of ZDDP film formation, wear resistance and
energy dissipation. These effects were shown to originate from pressure-induced
changes in the coordination number of atoms acting as cross-linking agents to form
chemically connected networks (Mosey et al. 2005). More recently, shear has also
been applied, for example, by Loehlé and Righi (2018) who performed ab initio
NEMD simulations of trimethylphosphite (TMPi) molecules confined between Fe
surfaces. The ab initio calculations were performed using full DFT. Gas phase lubri-
cation (GPL) experiments suggested that TMPi dissociates on Fe surfaces leading
to the formation of Fe–P tribofilms that significantly reduces friction and wear (Gao
et al. 2004). The ab initio molecular dynamics simulations (Loehlé and Righi 2018)
uncovered the atomistic mechanisms that lead to P release under boundary lubrica-
tion conditions. These P atoms are critical to passivate the Fe surface and reduce
friction. Simulation snapshots of a TMPi molecule confined between Fe surfaces,
thermostatted at 300K, pressurized at 2.0GPa, and moved at 200ms−1 are shown
in Fig. 3.6. The activation time for molecular dissociation observed in the simula-
tions was orders of magnitudes smaller than that expected for open surfaces under
static conditions on the basis of the calculated activation barriers. This observation
and the observed dependence of reaction rates on the applied load constitute clear
evidence that mechanical stress is able to activate tribochemical reactions, even at
room temperature (Loehlé and Righi 2018). These findings are consistent with exper-
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Fig. 3.6 Snapshots acquired during ab initio NEMD simulation of a TMPi molecule confined
between sliding iron surfaces at 200ms−1, 2.0GPa, and 300K. The simulation time increases from
0ps (a) to 7ps (f). Fe is coloured in blue, P in yellow, O in red, C in grey, and H in white. Adapted
from Loehlé and Righi (2018)

imental evidence for ZDDP film formation on solid surfaces (Gosvami et al. 2015;
Zhang and Spikes 2016). Combined, experimental and simulation evidence strongly
supports a stress-augmented thermal activation (SATA) model for antiwear additive
tribochemistry (Spikes 2018).

Ab initio NEMD simulations have also been used by Kuwahara et al. (2019) to
study the mechanochemical decomposition of OFMs with multiple reactive centres.
This is important since such additives have shown superlow friction when confined
and sheared between tetrahedral amorphous carbon (ta-C) surfaces (Kano et al. 2005).
The ab initio calculationswere performed using the tight binding approximation (Sut-
ton et al. 1988). The simulations (Kuwahara et al. 2019) revealed that, due to the
simultaneous presence of two reactive centres (carboxylic acid and alkene groups),
unsaturated fatty acids can concurrently chemisorb on both of the ta-C surfaces.
When sliding was initiated, mechanical strain triggers a cascade of molecular frag-
mentation reactions releasing passivating hydroxyl, keto, epoxy and olefinic groups.
Simulation snapshots of anOAmolecule confined between ta-C surfaces, thermostat-
ted at 300K, pressurized at 5.0GPa, and moved at 100ms−1 are shown in Fig. 3.7.
Similarly, glycerol, which has three hydroxyl groups, reacts simultaneously with
both ta-C surfaces, causing complete mechanochemical fragmentation and forma-
tion of aromatic passivation layers with superlow friction. Conversely, OFMs with
only one reactive centre, such as SA, can only adsorb to one of the ta-C surfaces,
and are thus less reactive, are less efficient in passivating the surfaces, and thus show
higher friction (Kuwahara et al. 2019).



110 J. P. Ewen et al.

Fig. 3.7 Snapshots acquired during ab initio NEMD simulation of an OA molecule confined
between sliding ta-C surfaces at 100ms−1, 5.0GPa, and 300K. The simulation time increases from
0ps (left) to 10ps (right). Surface C is coloured in black, OA saturated C in green, OA unsaturated
C in orange, O in red and H in white. Adapted from Kuwahara et al. (2019)

These examples showcase how ab inito NEMD simulations can provide mech-
anistic insights into the tribochemistry of lubricant additives confined and sheared
between solid surfaces. Such techniques also show significant promise for the ratio-
nal design of improved antiwear (Spikes 2004, 2008) and OFM additives (Spikes
2015) in the near future.

Multi-scale Modelling of Hydrodynamic Lubrication.
Coupling MD-CFD Using Domain Decomposition

Introduction

It is evident, from the previous sections, that classical and ab initio NEMD meth-
ods are of paramount importance to the understanding of tribological mechanisms.
Despite this, computational fluid dynamics (CFD) remains the de facto method for
modelling hydrodynamic lubrication. By solving the Navier–Stokes equations or,
most commonly, their thin film approximation known as Reynolds equation, a wide
range of tribological problems can be studied. Accurate continuum simulation of
tribological systems requires accurate constitutive relations, transport coefficients
and boundary conditions for the system of interest. In some cases, this information
may not be readily available nor evenmeasurable with the current experimental tech-
nology. In addition, many physical processes that can be modelled explicitly at the
atomic level (e.g. adsorption, phase changes, slip, etc.) cannot be easily incorpo-
rated into continuum methods. These aspects arise naturally in atomistic modelling,
from the interatomic interactions defined by the force field in use. Why then not use
NEMD pervasively? The big drawback of atomistic simulations is their enormous
computational cost. Despite the huge increase in available computer power since the
advent of high-performance computing (HPC), length scales over a few nanometres
and timescales beyond nanoseconds are currently unfeasible to simulate. This lim-
itation can be found in the systems reviewed in previous sections, where lubricant
films modelled do not go beyond a few tens of nanometres at most. In the case where
the scales of interests are beyond our computational power a multi-scale method
can, for certain cases, be employed as a trade-off between computational efficiency
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Fig. 3.8 Three types of coupling, a parameterizing data by running MD simulations to build
up lookup tables or design closure models, b embedded coupling using MD simulation on-the-
fly driven by the local CFD field, with resulting behaviour passed back to the CFD, c domain
decomposition where both CFD andMD share a single simulation domain, exchanging information
at the overlapping boundaries

and accuracy. An extensive overview of tribological modelling at different scales
(including multi-scale modelling) can be found in Vakis et al. (2018). A multi-scale
simulationmethod is a combination of two ormoremethods which operate at distinct
scales. It is useful to categorize multi-scale methods into three types:

1. Parameterization of macroscopic models through microscopic data, see Fig. 3.8a.
Constitutive relations like stress-velocity in fluids are computed and tabulated
from amicroscopic model and incorporated into a macroscopic one. This strategy
is also feasible to obtain non-trivial boundary conditions (e.g. slip condition) for
PDE-based macroscopic models (Holland et al. 2015).

2. Heterogeneous Multi-scale Method (Ren andWeinan 2005) (also termed embed-
ded method) represents a general framework for tackling multi-scale problems,
see Fig. 3.8b. In this method, the macroscopic solver is used throughout the
whole simulation domain and the microscopic solvers are used to perform ‘local
refinement’ on demand (e.g. computing viscosity using NEMD-SLLOD algo-
rithm (Hoover et al. 2008) to feedback a CFD solver). This strategy is useful
when the parameter space is too big to pre-compute and tabulate the data.

3. Methods which deal with isolated defects, see Fig. 3.8c. In this context, a defect
means a certain region of the simulation domain where the macroscopic model
is invalid. We can find several methods in this category (Weinan et al. 2004)
but, among them, it is worth highlighting coupled continuum-NEMD strategies
through domain decomposition (Mohamed and Mohamad 2009). The defect in
fluid dynamics is often at an interface between two flow regimes where the con-
tinuum becomes invalid, for example, a solid–liquid or liquid–vapour interface
or a moving shock wave between fast and slow moving fluid.
Domain decomposition along an interface will be the method of interest in this
section.
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Fig. 3.9 A detailed typical setup for MD-CFD domain decomposition is depicted. The bottom
domain where the liquid interacts with the surface is modelled using an atomistic description. Far
from the surface, where bulk behaviour of the fluid is found, CFD is employed. The mesh (grid)
discretizing the domain has been plotted with black lines. Two kinds of boundary conditions can
be found in the CFD. The ones provided by the MD domain to the CFD (pink dots) and the user-
provided (black dots). The constrained region is the region within the MD domain where the CFD
constrains/fluxes are applied. In the averaging region, the coupled fields are averaged and passed
from the MD to the CFD solver. The box diagram on the right is a schematic of how the software
framework is set up. CPL_Library (Smith et al. 2016b) acts as a communication interface through
the CFD and MD solver

Another family ofmulti-scalemethodswhich deserve amention are the ‘equation-
free’ type. They are used to compute macroscopic properties without having to fit
the data to a model when this is too complicated or unknown in advance (Weinan
et al. 2004). The NEMD simulations presented in the previous sections of fluid lubri-
cant films under shear are limited to the nanoscale. Simulations are limited to a few
hundred nanometres in length scale with the longest timescales generally of order
nanoseconds. The timescale limitation cases are hard to tackle, but length scale accel-
eration is naturally suited to a domain decomposition multi-scale method (Fig. 3.9).
The idea is to use NEMD near the surface to capture interfacial phenomena and CFD
far from it, where the liquid behaviour can be well described by bulk approxima-
tions. This coupled approach allows the exploration of larger fluid (lubricant) films
by enlarging the CFD domain at virtually no extra cost, since the bottleneck, in terms
of computational resources, is always in theMD domain which remains fixed in size.
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The complexity lays in how to couple both solvers consistently which is explained
in this section, after a brief introduction to computational fluid dynamics. The rest
of the chapter is devoted to the theory and implementation details of the domain
decomposition method for fluids with special consideration of tribological systems.

The Domain Decomposition Method

The continuum hypothesis is an idealization of a real material, which replacesmolec-
ular detail with a mean-field approximation. Intuitively, a mean field considers so
many molecules they can be treated as a continuous flowing substance, with the
individual molecular motion and structure no longer important. The evolution of
this mean field is then governed by identical physical laws to molecular dynamics,
namely, mass and energy conservation along with a continuum analogue of New-
ton’s Law. This mean description allows the evolution of countless molecules to be
simulated with affordable computational effort.

The key equation for fluid simulation is the Navier–Stokes equations, a set of
nonlinear partial differential equations describing how the fluid velocity field evolves
in time,

∂u
∂t

+ (u · ∇) u = − 1

ρ
∇P + ν∇2u, (3.1)

where u is velocity field, P the pressure field, ρ density and ν the coefficient of
kinematic viscosity. The use of the Navier–Stokes equation in this form is valid for
many fluids, where the complex evolution of molecular structures can be reduced to
a single viscosity coefficient (Gad-el Hak 2006). Often in tribological applications,
this assumption is not valid and more complex descriptions would be required. The
analytical solution of Eq. (3.1) turns out to be impossible in all but the simplest
of cases. Numerical simulations, called computational fluid dynamics (CFD), are
therefore the main engineering approach to predicting fluid motion. Various meth-
ods are employed to solve the equations numerically. Perhaps the simplest is the
finite differences method, where derivatives in Eq. (3.1) are approximated using a
truncated Taylor expansion and the higher the truncation, the higher the accuracy.
More common for fluid simulation is the finite volume approach, where the contin-
uum equations of motion are solved in a weakened form as fluxes over the surface
of a volume. The finite volume form has the advantage of being conservative as flow
from one volume goes directly into the adjacent one, as well as allowing arbitrary-
shaped grid cells. The time evolution at each point on the grid is therefore obtained
from a combination of the values at the previous time and flow from adjacent points
on the grid, described by the terms in Eq. (3.1). The values at the edges, known as
boundary conditions, have to be explicitly provided and determine the evolution of
the simulation. It is these values that coupled domain decomposition simulation aims
to provide from the average behaviour of the molecular simulation.
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The continuum representation of a fluid often fails to capture solid-liquid inter-
facial behaviour. Nucleation events for micelle and bubble formation, cavitation,
liquid–vapour interfaces and the non-Newtonian liquids prevalent in tribological
applications, all require the addition of extra models with a set of increasingly tenu-
ous empirical assumptions. In addition, the Navier–Stokes equations do not ensure
energy conservation without additional models, a factor which can become decisive
in high-pressure and shear systems.MD captures all this and more with no additional
models, extending to chemical reactions and interfacial interactions with the addition
of quantum detail. Domain decomposition aims to model these key events by using
a molecule model only where molecular detail is important.

The first example of domain decomposition for fluid dynamics is given in the
work of O’Connell and Thompson (1995), which established the key features of
this form of two-way concurrent coupling. Many of these features have a historical
precedent from techniques used in solid mechanics for coupling of particles and con-
tinuum, dating back to the 1970s (Curtin and Miller 2003). The simulation domain
is decomposed into two subdomains which overlap in a certain region, as shown in
Fig. 3.9. This region acts as a ‘handshake’ zone, also called the hybrid simulation
interface (HSI), where the two subdomains interchange data in real time. The bottom
subdomain where the liquid interacts with a flat/rough surface is modelled atomisti-
cally, shown with molecules in Fig. 3.9. In the top subdomain, CFD is employed
and the mesh (grid) discretizing the domain into a grid of finite volumes is denoted
by the black lines. Two boundary conditions are shown in Fig. 3.9 for the CFD, the
bottom boundary condition provided by the MD subdomain (pink dots) and the top
boundary condition specified by the user (black dots). The left and right boundaries
are set to periodic, which is consistent with the periodic boundaries in the MD part
of the domain. In the MD region, the constrained region applies a force to guide the
molecular to a value which agrees with the CFD subdomain, while in the average
region, the data from the MD system is accumulated to provide the CFD boundary.

The challenges for domain decomposition coupling include the following:

1. A termination of the MD subdomain. A restraint mechanism is required at the
boundary of the molecular region to prevent molecules escaping. This can be a
generic force (O’Connell and Thompson 1995; Nie et al. 2004), one based on a
previous simulation or calculated from the radial distribution function (Werder
et al. 2005). Another method uses a reflective boundary with a correction for
density fluctuations based on exponential smoothing of the unbalanced forces
due to the missing fluid at the termination boundary (Issa and Poesio 2014).
Alternatively, a buffer zone of molecules can be used (Hadjiconstantinou 1999;
Delgado-Buscalioni 2012).

2. A method of inserting and removing molecules is required to match the mass flux
from the continuum. For simplemolecules, themost commonmethod is a steepest
descent energy search approach calledUSHER(Delgado-Buscalioni andCoveney
2003). For complexmolecules, energy insertion location can be impossible to find,
so techniques exist which try to insert slowly, gradually increasing the complexity
of the inserted molecules (Praprotnik et al. 2005).
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3. A procedure for averaging the MD region to obtain the continuum boundary con-
ditions (blue region in Fig. 3.9). The MD simulation can be thought of as simply
providing a boundary condition to the CFD solver, with as many boundary con-
ditions as fields required. In the simplest case, this is just a velocity boundary
value, but for more complex CFD problems, required fields can include density,
stress, temperature, concentration, phase or many others. This requires summing
over time and space to establish averaged values in discrete locations (Allen and
Tildesley 1987; Irving and Kirkwood 1950). The removal of statistical noise is
a key issue (Kotsalis et al. 2007), as is the ratio of timesteps used in the two
solvers and size of averaged region in terms of statistics (Hadjiconstantinou et al.
2003). The domain decomposition coupling literature is divided into state cou-
pling (mass, momentum, energy) and flux coupling (mass flux, stress, energy
flux) (Mohamed and Mohamad 2009), with different statistical properties for the
different averaging methods (Hadjiconstantinou et al. 2003).

4. A constraint must be applied to the molecular region to match properties to the
continuum (green region in Fig. 3.9). This can be performed by an applied force
derived as a constraint using a variational principle formulation of mechanics
(Goldstein et al. 2002; O’Connell and Thompson 1995; Nie et al. 2004), an
applied force based on stresses (Flekkøy et al. 2000) or Maxwell’s demon-type
approach (Hadjiconstantinou 1998).

5. Software to exchange the information between the two descriptions, ideally
designed for distributed simulations on high-performance computers (HPC).

The last three points are the focus of this section.
We start with point three, the averaging of the MD to give a CFD boundary

condition. A rigorous link between the continuum and molecular descriptions is
obtained from Irving and Kirkwood (1950) in a derivation of the equations of fluid
motion in terms of statistical mechanics. The equations of Irving and Kirkwood
(1950) are equivalent to the pointwise continuum, with the limit of the continuum
infinitesimal resulting in a Dirac delta function in the molecular description. As a
result, an equivalent description for the whole domain results in a number of inherent
problems for coupled simulations. As amathematical idealization of an infinitely thin
point, the Dirac delta functional cannot be used in practice in a numerical simulation,
so some relaxed function must be employed, such as a Gaussian Kernel or other
weighting function (Hardy 1982; Lucy 1977). For NEMD, in general, this is perfectly
valid as we obtain an average field for the molecular system which can be used to
interpret the system andmeasure quantities. For domain decomposition coupling, we
need both systems to be expressed in the same form, as they exist at the same time
and length scales. Any choice of relaxed function departs from the rigorous Irving
and Kirkwood (1950) limit and the descriptions are no longer equivalent, with some
arbitrary-averaged region assumed to be equivalent to a point in the continuum. To
avoid these problems, both molecular and continuum equations should be expressed
in terms of control (or finite) volumes (Smith et al. 2012). This replaces theDirac delta
function with an integral over a volume, called the control volume function, defined
as ϑi ≡ ∫

V δ(r i − r)dV . Mathematically, this gives an expression for ϑi in terms of
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Heaviside functions, useful as it is amenable to both theoretical manipulation and
numerical implementation (for details, please see Smith et al. 2012). More important
is the conceptual shift, we relax the assumption that it is possible to define quantities at
every point in space, accepting that only an average in a volume is possible to obtain.
This is exactly the assumption made when solving CFD using the finite volume
method, and as many CFD solvers express the continuum equations in finite volume
form, the exact flux conservation can be matched between the two descriptions. The
relationship between molecular and continuum can then be formally expressed as
follows, for any face of a control volume,

∫

S f

[−ρuu + �] · dS f = −
N∑

i=1

mi ṙ i ṙ f i dS f i + 1

2

N∑

i, j

f i j dS f i j , (3.2)

where the left-hand side has the continuum convective term, ρuu and stress � over
the surface of a control volume, equal to the fluxes over a surface f of an equivalent
(or overlapping) molecular control volume. Molecular fluxes are obtained by taking
the sum of all molecular motions and selecting only the surface-motions fluxes using
the function dS f i , as well as the sum over all cumulative intermolecular interactions
and selecting only the ones crossing the surface using the function dS f i j . The form
of these surface-crossing terms are obtained by applying the same process used
in the continuum control volume derivation to the function ϑi through standard
manipulations of the Delta function. The resulting form of stress is also well known
in the literature as the method of planes (Todd et al. 1995). The sum of this stress on
every surface of an enclosed volume can be shown to entirely define the momentum
evolution inside. In this way, we have obtained a consistent description of both
continuum and molecular systems.

Next, we consider point 4, applying a constraint to ensure the MD region agrees
with the CFD. In this context, the mathematical control volume operator is use-
ful as it can be incorporated directly in a minimization constraint. As described in
section “Introduction”, much of the theory of NEMD focuses on techniques for peri-
odic systems (i.e. SLLOD) or aims to constrain to ensembles, such as the NVT with
the Nosé–Hoover thermostat. The use of local thermostatting is valid when applied
to wall molecules as no flow is induced. When applied to a part of the fluid, a heat
gradient will be created and careful control over molecules entering and leaving the
thermostatted regionmay be required. For coupled simulation, the constraint must be
local, as shown in Fig. 3.9, and so we have to apply these local constraints with care.
This unique challenge for coupling can still use NEMD theory: applying minimiza-
tion principles, which include Gauss’ principle of least constraint (Hoover 1991).
When minimization is applied to a region in space as selected by the control volume
function (Smith et al. 2015), a constrained equation is obtained, Eq. (3.3), localized
to a volume in space. This is simply a statement that the fluxes must be the same in
both continuum and molecular systems,
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mi r̈ =
N∑

i, j

f i j −
N f aces∑

f

F f , (3.3)

where the force Ff ensures Eq. (3.2) is satisfied for each face f , which over all
faces enforces the constraint that the sum of surface crossing is subtracted for a
volume and replaced by the continuum surface fluxes. This provides a differential
constraint which ensures the momentum evolution (d/dt

∫
ρudV ) in a molecular

control volume is identical to the continuum. In order to achieve this, the constraint
is iterated as molecules enter and leave the volume in order to ensure the correct
change in momentum to machine precision. Careful implementation can be used to
provide exact control of momentum in any arbitrary volume in the molecular system.

Finally, we address point 5, the information exchange between the two descrip-
tions in parallel. The development of CPL_library (Smith et al. 2016b) started with
the coupling of two in-house codes, aiming to provide optimal scaling by ensuring
minimal point-to-point communication between overlapping processes. This evolved
to become an open-source shared library with a minimal interface to facilitate the
coupling of any CFD to anyMD program. This is done by providing a minimal set of
functions in Fortran, C++ and Python to set up themapping between two overlapping
subdomains, ensuring all information is sent and received on the right processes. By
providing a minimal shared library, it becomes easy to couple new codes, as well
as allowing the user to divide up the problem so both CFD and MD codes can be
tested in isolation. This divide and test philosophy is a major part of the design of
CPL_library, with a wide range of automated unit and integration tests provided for
both the library and for coupled case with OpenFOAM and LAMMPS. Deployment
is provided using Docker and Anaconda, with a range of minimal examples and
quickstart guides detailed on the project website http://www.cpl-library.org.

We now demonstrate the combination of control volume averaging, constrained
dynamics Eq. (3.3) and CPL_library applied to the problem of domain decomposi-
tion. One of the simplest useful simulations for tribological application is pictured in

Fig. 3.10 A schematic of a coupled Couette flow with polymer brushes. The top wall of the
continuum is driven at a velocity of one, and the colours in the background show the velocity field
in the coupled system (with molecules coloured by the same field). The constraint regions and CFD
boundaries are denoted on the figure to show the way the coupling is applied

http://www.cpl-library.org
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Fig. 3.11 Couette flow analytical solution compared to the coupled CFD-MD results overlapping a
snapshot of the liquid molecules (black) and polymer brushes (pink). The MD velocity is shown by
green crosses with a green spot showing the constrained cell, red lines and points denote the CFD
values with black circles the boundary values and all values are matched to the analytical solution
shown by the dotted blue line at times t = {15, 25, 37.5, 65, 200}

Fig. 3.10, with the effect of shear shown using the same schematic as in Fig. 3.1. This
comparison emphasizes an important application of coupled modelling, namely, the
reduction of MD system size by use of a continuum model. By modelling polymer
brushes attached to the wall, the complex molecular detail is isolated to a region
in space and the remainder of the domain is well described by a Newtonian fluid.
For this reason, the use of a continuum solver is ideal as it replaces the complexity
and cost of modelling a large molecular system, while retaining the effect of the
polymer brushes on the flow itself, which persists into the continuum region. This
can be seen in Fig. 3.11 where the Couette flow solution is effectively shifted up
from the wall by the presence of the polymer brushes. The MD solver is Flowmol,
which is fully verified (Smith 2014) and has been demonstrated in a range of fluid
dynamics studies (Smith et al. 2016a; Trevelyan and Zaki 2016). TheMD simulation
consists of 356,864 molecules, with fluid molecules at a density of ρ = 0.8 interact-
ing via the Lennard-Jones potential with a cut-off of 21/6. The walls are set to the
same density of ρ = 0.8, tethered using the anharmonic potential of (Petravic and
Harrowell 2006) with the polymer brushes grafted onto them at a density of 0.1 as
chains of 10 FENE molecules with maximum separation of R0 = 30.0 and spring
constant kFENE = 1.5. The outer half of the walls is thermostatted to T = 1.0 using
the Nosé–Hoover thermostat with a heat bath size obtained from the product of 0.1,
the number of thermostatted molecules and the timestep 	t = 0.005. The MD sub-
domain is 140.2 × 27.4 × 116.3 in reduced LJ units split into four cells in x each of
size 35.1, 16 in y of size 1.71, and in z of size 29.1. The CFD has the same number
of cells and the same size, with both subdomains overlapping by eight cells and the
timestep ratio between the CFD and MD codes is set to one (i.e. 	tCFD = 	tMD),
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so both systems evolve together. The constraint (Eq. 3.3) is applied to cell 14 of the
MD subdomain, and the top two cells are left as a buffer. The control volume aver-
aging and constraint methodologies discussed above are implemented in Flowmol
with runtime tests to ensure exact momentum control at each step. In Fig. 3.11, the
constrained region can be seen to agree exactly with the CFD value at that location,
with control to machine precision.

The continuum solver is based on OpenFOAM’s icoFOAM (version 3.0.1; Weller
et al. 1998), a flow solver for Eq. (3.1) with a single viscosity coefficient ν = 2.1,
estimated from the current MD density ρ = 0.8 and temperature T = 1.0 through
a parameter study obtained in previous work (Smith 2015). The icoFOAM solver
is adapted to receive information from the MD through CPL_library and apply this
to the bottom cells of the domain as a boundary condition, all other features of the
solver are kept identical. The bottom CFD boundary can be seen to result from an
average of the MD region, while the top boundary is set to a velocity of one, with left
and right boundaries periodic. Both MD and CFD codes are run on four processes
each, with optimal parallel exchange between the overlapping processes managed
by CPL_Library.

Beyond Lennard-Jones fluids

Lennard-Jones fluids are ubiquitous in MD-CFD-coupled simulations due to their
simplicity. They consist of point particles which do not exhibit non-Newtonian
behaviour nor significant shear heating at moderate shear rates. Furthermore, mea-
surable quantities (velocity, stress, temperature, etc.) are less noisy than in molecular
fluids, since they do not contain any internal degree of freedom leading to high-
frequency motion modes. Hence, they are perfect candidates for test cases and proof
of concept simulations. It is difficult to find in the literature studies which actually
exploit the benefit of domain decomposition to solve a real problem. To achieve this,
particularly in tribology, it would be at least necessary to couple molecular fluids
using a realistic potential.

A fully coupled simulation using OPLS benzene is shown in Fig. 3.12. The sim-
ulation is performed at γ = 1010 s−1, T = 300K and ρ = 0.89 kg/m3, where the
molecule exhibit Newtonian behaviour (Lee 2004). Excellent agreement is shown
during the transient and (pseudo-) steady state and shows promising evidence that
moving from simple to molecular fluids is achievable without much modification of
the method. It is yet to be proven if this is also true for more complicated molecules
like linear and branched hydrocarbons.

Applications of Domain Decomposition in Tribology

NEMD shear simulations applied to tribology are limited by several factors which
make the comparison against experimental data quite difficult: (a) high shear rates
of O(108–1011 s−1), due to small system sizes and high shear velocities (Bair et al.
2002a, b); (b) number of atoms, O(106) which for dense fluids means characteristic
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Fig. 3.12 Time evolution of velocity field for a CFD-MD coupled simulation of 40,691 molecules
of OPLS (Jorgensen et al. 1996) benzene. Initial configuration equilibrated at T = 300K and
P = 1000 atm with a density ρ = 0.89 kg/m3. The NEMD viscosity (SLLOD method) of benzene
measured at γ = 1010 s−1 at the given conditions isη = 0.58mPa s. Shearing velocity at the topwall
v = 100m/s with a total domain length L = 40 nm. Fluid–surface interactions are strong enough
to avoid slip. A shear rate of γ = 2.5 × 1010 s−1 is registered at the steady state and a linear profile
obtained is a sign of the Newtonian behaviour of benzene under simulated conditions

system sizes of no more than O(10nm); (c) simulation time, O(10ns) due to timestep
sizes of O(1 fs).

Multi-scale domain decomposition allows the removal of limitation (b). By mod-
elling most of the domain using a CFD solver and keeping the NEMD solver close
to the surface (Fig. 3.9), we can arbitrarily enlarge the direction perpendicular to it.
This method provides the opportunity to tackle (at least) two type of problems:

1. Comparing simulations with experimental data. The possibility of simulating
liquid lubricant films of hundreds of nanometres to micrometres would permit
the comparison of time-evolving velocity fields obtained from numerical simu-
lations, with the ones obtained from thin-film experiments such as fluorescence
lifetime-based techniques (Galmiche et al. 2016; Ponjavic et al. 2015). Further-
more, lubricant layers of this size are technologically relevant since they can be
found in lubricated engine parts (Tung and McMillan 2004) and in biological
systems (Myant et al. 2012).

2. Prediction of no-slip condition. Experimental data is fitted to models which usu-
ally assume no-slip condition (Ponjavic et al. 2015; Ponjavic and Wong 2014)
but it has been experimentally known for almost two decades (Pit et al. 2000)
that this is not always true. The question to answer is: for a particular interface,
at a certain thermodynamic point and fixed shear velocity, what is the minimum
film thickness that makes the no-slip assumption valid (Asproulis et al. 2012)?
Therefore, being able to compute scaling laws for slip can guide experimentalists
to obtain more accurate measurements by choosing appropriate models.
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The applications presented here are interesting enough to justify the implementa-
tion of a domain decomposition framework despite the difficulties this might entail.
A caveat of multi-scale methods is the complexity to understand, develop and test
them properly. Typically, a decent amount of software development is required since
it is unlikely to find a readily available software package for this specific purpose.
In the author experience, the effort on this regard should not be taken lightly. This is
discussed in the next sections along with some recommendations for someone who
wants to develop a domain decomposition framework.

Implementation Caveats of Domain Decomposition

The complexity of using/developing amulti-scalemethodwhere two (ormore)meth-
ods are coupled, is greater than the sum of the complexities of using/developing each
individual method alone. This is true because the coupling method itself introduces
a new layer of complexity both at the conceptual and implementation level. A list of
some caveats of domain decomposition for MD-CFD coupling is presented (most of
are also, in general, applicable to any multi-scale method). Along with them, some
recommendations are made on how to tackle each one.

General

1. Training on each of the methods to be coupled. This can be a daunting task itself
due to the disparity in the theory and technical considerations between them. This
is an effort that has to be assumed.

2. Development considerations I. The first decision to make is to either develop
in-house solvers or to use existing software packages that allow source code
modification or development through a scripting interface. In this regard, it is
advisable to follow the DRY (Do not Repeat Yourself) principle from software
development. It is tempting to write your own code for the sake of learning and
self-prise, but widespread third-party software is in general well tested and stable.
It is a good idea to use as much as it is already available and add features to it as
needed.

3. Development considerations II. Coupling two solvers at the software level means
passing back and forth information between them in some way. This can be
done in (A) a monolithic fashion, by compiling and linking them together at the
binary level (calling one from inside the other) or (B) decoupling them by using a
coupling library designed for the purpose, in which case the solvers are developed
and compiled independently and data is exchanged in a smart way (commonly)
throughMPI communication. In this regards, there are several options. Frommore
general frameworks like MUI library (Tang et al. 2015) and PRECICE (Bungartz
et al. 2016), to more user-friendly options targeted for coupled simulation like
CPL_Library (Smith et al. 2016b). In general, while strategy (A) is more efficient,
strategy (B) is preferable. Some notable advantages of strategy (B) are:
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(a) Independent development and testing of each coupled solver is easier. Ver-
sion upgrading of a certain solver is less involved.

(b) Avoid solver incompatibility due to dependencies. A complicated issue
arises if two solvers depend directly (or indirectly) on a certain library,
but different versions of it. If those versions are not compatible between
them we are in trouble.

(c) Arbitrary parallel domain decomposition of each solver. Each solver can
independently decompose its domain, whereas in a monolithic approach,
one decomposition has to fit both solvers.

4. Difficult to identify sources of errors and quantify them. Errors in the outcome of
a multi-scale simulation can be difficult to track back to their origin. Is it an error
in the inputs/outputs of the individual solvers or in the coupling methodology
itself? Furthermore, codes used in multi-scale simulations are designed usually
to run in parallel which makes debugging much harder.

Tribology related

1. Pre-computing transport coefficients and Equation of State from molecular
dynamics simulations. This is necessary to achieve consistent coupling between
MD and CFD (time evolution of momentum, density and energy are consistent in
both solvers). In the case of tribologically relevant fluids (e.g. hydrocarbon mix-
tures) under high pressure, these fluids exhibit strong non-Newtonian behaviour
(Jadhao and Robbins 2017). This requires a careful selection of a non-Newtonian
model which represent the viscous behaviour of the molecular fluid in the MD.
As far as we know, the non-Newtonian regime is still fertile ground to explore in
the field of coupled simulations.

2. Coupling density field for complex molecules. There is currently no easy pro-
cedure to tackle this problem. If the density field varies significantly over time,
removal or insertion of molecules is needed at the overlap region. This can be suc-
cessfully performed for point-particle fluids like Lennard-Jones using theUSHER
method (Delgado-Buscalioni and Coveney 2003). On the other hand, molecule
insertion can be trickier than point particles and a triple-scale scheme (AdResS)
(Praprotnik et al. 2005) has been developed for this purpose to coarse-grain all-
atom molecules into blobs near the insertion/removal zone. Other less physically
meaningful methods like FADE (Borg et al. 2014) could, in principle, do the
job but there are concerns about the effect non-instantaneous insertion on time-
evolving flows.

This section has been written with the idea of facilitating the newcomer to grasp
the potential complexities of implementing a multi-scale method, in particular, CFD-
MD domain decomposition. It is our hope that by attracting research momentum into
these techniques, eventually they will find their way to the mainstream engineering
use.
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Conclusions

In this chapter, we have reviewed recent advances in methodologies made available
as modelling tools to tribologists who want to investigate molecular-scale effects
and their link to structural and electronic properties at the lowest scales and to the
macroscopic response at the larger scales. Some recent applications of NEMD simu-
lations in tribology are first discussed and then critically reviewed. Such simulations
have given unique insights into the nanoscale structure, flow and friction behaviour
of lubricants and additives. Classical NEMD simulations of lubricants have shown
how these fluids behave under high-pressure and shear conditions, which is particu-
larly useful to study EHL. Classical NEMD simulations of lubricant additives have
demonstrated the importance of surface coverage on the friction behaviour. Ab ini-
tio NEMD simulations of lubricant additives have started to reveal tribolochemical
degradation mechanisms of lubricant additives under compression and shear. Cou-
pled CFD-NEMD simulations of lubricants provide access to larger time and length
scales, which are inaccessible to standard NEMD simulations. An overview of how
to tackle issues related to the use of coupling techniques has been provided, together
with a critical outlook.
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Maćkowiak, Sz., Heyes, D. M., Dini, D., & Brańka, A. C. (2016). Non-equilibrium phase behavior
and friction of confined molecular films under shear: A non-equilibrium molecular dynamics
study. Journal of Chemical Physics, 145(16), 164704.

Martin, M. G., & Siepmann, J. I. (1999). Novel configurational-bias Monte Carlo method for
branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of
branched alkanes. Journal of Physical Chemistry B, 103(21), 4508–4517.

Martini, A., Hsu, H. Y., Patankar, N. A., & Lichter, S. (2008). Slip at high shear rates. Physical
Review Letters, 100(20), 206001.

Martinie, L., &Vergne, P. (2016). Lubrication at extreme conditions: A discussion about the limiting
shear stress concept. Tribology Letters, 63(2), 21.

McCabe, C., Cui, S. T., Cummings, P. T., Gordon, P. A., & Saeger, R. B. (2001). Examining the
rheology of 9-octylheptadecane to giga-pascal pressures. Journal of Chemical Physics, 114(4),
1887–1891.

Mohamed, K. M., & Mohamad, A. A. (2009). A review of the development of hybrid atomistic–
continuum methods for dense fluids. Microfluidics and Nanofluidics, 8, 283.

Molinari, J.-F., Aghababaei, R., Brink, T., Frérot, L., & Milanese, E. (2018). Adhesive wear mech-
anisms uncovered by atomistic simulations. Friction, 6(3), 245–259.

Moller, M. A., Tildesley, D. J., Kim, K. S., & Quirke, N. (1991). Molecular dynamics simulation
of a Langmuir–Blodgett film. Journal of Chemical Physics, 94(12), 8390–8401.

Moore, J. D., Cui, S. T., Cochran, H. D., & Cummings, P. T. (2000). Rheology of lubricant base-
stocks: A molecular dynamics study of C-30 isomers. Journal of Chemical Physics, 113(19),
8833–8840.

Mosey, N. J., Müser, M. H., & Woo, T. K. (2005). Molecular mechanisms for the functionality of
lubricant additives. Science, 307(5715), 1612–1615.



128 J. P. Ewen et al.

Myant, C., Underwood, R., Fan, J., & Cann, P. M. (2012). Lubrication of metal-on-metal hip joints:
The effect of protein content and load on film formation and wear. Journal of the Mechanical
Behavior of Biomedical Materials, 6, 30–40.

Nie, X. B., Chen, S. Y., E, W. N., & Robbins, M. O. (2004). A continuum and molecular dynamics
hybrid method for micro- and nano-fluid flow. Journal of Fluid Mechanics, 500, 55.

Nosé, S. (1984). A molecular-dynamics method for simulations in the canonical ensemble.Molec-
ular Physics, 52(2), 255–268.

O’Connell, S. T., & Thompson, P. A. (1995). Molecular dynamics-continuum hybrid computations:
A tool for studying complex fluid flow. Physical Review E, 52, R5792.

Pan, G., &McCabe, C. (2006). Prediction of viscosity for molecular fluids at experimentally acces-
sible shear rates using the transient time correlation function formalism. Journal of Chemical
Physics, 125(19), 194527.

Petravic, J., & Harrowell, P. (2006). The boundary fluctuation theory of transport coefficients in the
linear-response limit. Journal of Chemical Physics, 124, 014103.

Pit, R., Hervet, H., & Léger, L. (2000). Direct experimental evidence of slip in hexaecane: Solid
interfaces. Physical Review Letters, 85(5), 980–983.

Plint, M. A. (1967). Traction in elastohydrodynamic contacts. Proceedings of the Institution of
Mechanical Engineers, 182(14), 300–306.

Ponjavic,A.,&Wong, J. S. S. (2014).The effect of boundary slip on elastohydrodynamic lubrication.
RSC Advances, 4(40), 20821–20829.

Ponjavic, A., di Mare, L., & Wong, J. S. S. (2014). Effect of pressure on the flow behavior of
polybutene. Journal of Polymer Science Part B: Polymer Physics, 52(10), 708–715.

Ponjavic, A., Dench, J., Morgan, N., & Wong, J. S. S. (2015). In situ viscosity measurement of
confined liquids. RSC Advances, 5, 99585.

Porras-Vazquez, A., Martinie, L., Vergne, P., & Fillot, N. (2018). Independence between friction
and velocity distribution in fluids. Physical Chemistry Chemical Physics, 20, 27280–27293.

Praprotnik, M., Delle Site, L., & Kremer, K. (2005). Adaptive resolution molecular-dynamics sim-
ulation: Changing the degrees of freedom on the fly. Journal of Chemical Physics, 123, 224106.

Rahman, A. (1964). Correlations in the motion of atoms in liquid argon. Physical Review, 136,
405–411.

Ren, W., & Weinan, E. (2005). Heterogeneous multiscale method for the modeling of complex
fluids and micro fluidics. Journal of Computational Physics, 204, 1–26.

Robbins, M. O., & Smith, E. D. (1996). Connecting molecular-scale and macroscopic tribology.
Langmuir, 12(19), 4543–4547.

Schneider, T., & Stoll, E. (1978). Molecular-dynamics study of a three-dimensional one-component
model for distortive phase-transitions. Physical Review B, 17(3), 1302–1322.

Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., et al. (2016). The
ReaxFF reactive force-field: Development, applications and future directions. npj Computational
Materials, 2, 15011.

Siu, S. W. I., Pluhackova, K., & Bockmann, R. A. (2012). Optimization of the OPLS-AA force field
for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470.

Smith, E. R. (2014). On the coupling of molecular dynamics to continuum computational fluid
dynamics. Ph.D. thesis, Imperial College London. http://hdl.handle.net/10044/1/15610.

Smith, E. R. (2015). A molecular dynamics simulation of the turbulent Couette minimal flow unit.
Physics of Fluids, 27, 115105.

Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2012). Control-volume representation of
molecular dynamics. Physical Review E, 85, 056705.

Smith, E. R., Heyes, D. M., Dini, D., & Zaki, T. A. (2015). A localized momentum constraint for
non-equilibrium molecular dynamics simulations. Journal of Chemical Physics, 142(7), 074110.

Smith, E. R., Mller, E. A., Craster, R. V., & Matar, O. K. (2016a). A langevin model for fluctuating
contact angle behaviour parametrised using molecular dynamics. Soft Matter, 12, 9604–9615.

Smith, E. R., Trevelyan, D., & Ramos Fernandez, E. (2016b). cpl-library. https://doi.org/10.5281/
zenodo.46573.

http://hdl.handle.net/10044/1/15610
https://doi.org/10.5281/zenodo.46573
https://doi.org/10.5281/zenodo.46573


3 Nonequilibrium Molecular Dynamics Simulations … 129

Sperka, P., Krupka, I., & Hartl, M. (2014). Evidence of plug flow in rolling-sliding elastohydrody-
namic contact. Tribology Letters, 54(2), 151–160.

Spikes, H. (2004). The history and mechanisms of ZDDP. Tribology Letters, 17(3), 469–489.
Spikes, H. (2008). Low- and zero-sulphated ash, phosphorus and sulphur anti-wear additives for
engine oils. Lubrication Science, 20, 103–136.

Spikes, H. (2015). Friction modifier additives. Tribology Letters, 60, 5.
Spikes, H., & Granick, S. (2003). Equation for slip of simple liquids at smooth solid surfaces.
Langmuir, 19(12), 5065–5071.

Spikes, H., & Jie, Z. (2014). History, origins and prediction of elastohydrodynamic friction. Tribol-
ogy Letters, 56(1), 1–25.

Spikes, H., & Tysoe, W. (2015). On the commonality between theoretical models for fluid and solid
friction, wear and tribochemistry. Tribology Letters, 59(1), 14.

Spikes, H. A. (2018). Stress-augmented thermal activation: Tribology feels the force. Friction, 6(1),
1–31.

Sutton, A. P., Finnis, M. W., Pettifor, D. G., & Ohta, Y. (1988). The tight-binding bond model.
Journal of Physics C: Solid State Physics, 21, 35–66.

Tang, Y.-H., Kudo, S., Bian, X., Li, Z., & Karniadakis, G. E. (2015). Multiscale universal interface:
A concurrent framework for coupling heterogeneous solvers. Journal of Computational Physics,
297, 13–31.

Taylor, R. I., & de Kraker, B. R. (2017). Shear rates in engines and implications for lubricant design.
Proceedings of the Institution ofMechanical Engineers, Part J: Journal of Engineering Tribology,
231(9), 1106–1116.

Thompson, P. A., & Robbins, M. O. (1990). Shear flow near solids: Epitaxial order and flow
boundary conditions. Physical Review A, 41(12), 6830–6837.

Todd, B. D., &Daivis, P. J. (2007). Homogeneous non-equilibriummolecular dynamics simulations
of viscous flow: Techniques and applications. Molecular Simulation, 33(3), 189–229.

Todd, B. D., & Daivis, P. J. (2017). Nonequilibrium molecular dynamics: Theory, algorithms and
applications. Cambridge: Cambridge University Press.

Todd, B. D., Evans, D. J., & Daivis, P. J. (1995). Pressure tensor for inhomogeneous fluids. Physical
Review E, 52, 1627.

Trevelyan, D. J., & Zaki, T. A. (2016). Wavy taylor vortices in molecular dynamics simulation of
cylindrical couette flow. Physical Review E, 93, 043107.

Tung, S. C., & McMillan, M. L. (2004). Automotive tribology overview of current advances and
challenges for the future. Tribology International, 37(7), 517–536.

Vakis, A. I., Yastrebov, V. A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., et al. (2018). Modeling
and simulation in tribology across scales: An overview. Tribology International, 125, 169–199.

Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., & Tosatti, E. (2013). Colloquium: Modeling
friction: From nanoscale to mesoscale. Reviews of Modern Physics, 85(2), 529–552.

Wang, F.-C., & Zhao, Y.-P. (2011). Slip boundary conditions based on molecular kinetic theory:
The critical shear stress and the energy dissipation at the liquidsolid interface. Soft Matter, 7(18),
8628.

Washizu, H., Ohmori, T., & Suzuki, A. (2017). Molecular origin of limiting shear stress of elas-
tohydrodynamic lubrication oil film studied by molecular dynamics. Chemical Physics Letters,
678, 1–4.

Weinan, E., Li, X., & Vanden-Eijnden, E. (2004). Some recent progress in multiscale modeling. In
S. Attinger, & P. Koumoutsakos (Eds.),Multiscale modelling and simulation (pp. 3–21). Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-642-18756-8.

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to computational
continuum mechanics using object-oriented techniques. Computers in Physics, 12(6), 620–631.

Werder, T., Walther, J. H., & Koumoutsakos, P. (2005). Hybrid atomistic continuum method for the
simulation of dense fluid flows. Journal of Computational Physics, 205, 373.



130 J. P. Ewen et al.

Wood, M. H., Casford, M. T., Steitz, R., Zarbakhsh, A., Welbourn, R. J. L., & Clarke, S. M. (2016).
Comparative adsorption of saturated and unsaturated fatty acids at the iron oxide/oil interface.
Langmuir, 32, 534.

Yong, X., & Zhang, L. T. (2013). Thermostats and thermostat strategies for molecular dynamics
simulations of nanofluidics. Journal of Chemical Physics, 138(8), 084503.

Yoshizawa, H., Chen, Y. L., & Israelachvili, J. (1993). Fundamental mechanisms of interfacial
friction. 1. Relation between adhesion and friction. Journal of Physical Chemistry, 97(16), 4128–
4140.

Yue, D. C., Ma, T. B., Hu, Y. Z., Yeon, J., van Duin, A. C. T.,Wang, H., et al. (2013). Tribochemistry
of phosphoric acid sheared betweenquartz surfaces:A reactivemolecular dynamics study. Journal
of Physical Chemistry C, 117(48), 25604–25614.

Zhang, J., & Spikes, H. (2016). On the mechanism of ZDDP antiwear film formation. Tribology
Letters, 63(2), 24.

Zhang, J., Tan, A., & Spikes, H. (2017). Effect of base oil structure on elastohydrodynamic friction.
Tribology Letters, 65(1), 13.



Chapter 4
Computational Methods for Contact
Problems with Roughness

Marco Paggi, Alberto Bemporad and José Reinoso

Abstract This chapter provides a self-consistent introduction to computational
methods for the solution of contact problems between bodies separated by rough
interfaces. Both frictional and frictionless contact problems are examined. Themath-
ematical formulation of the boundary element method is presented first, with details
on the possible algorithmic implementation strategies and their computational effi-
ciency. In the second part of the chapter, the fundamentals of the finite element
method for the solution of contact problems are presented, along with an overview
on the different strategies available in the literature to accurately discretize the mul-
tiscale features of roughness. A synopsis of the major advantages and disadvantages
provided by the computational methods based on the boundary element method or
the finite elementmethod concludes the chapter, illustrating also perspective research
directions.

Introduction

Contact mechanics between rough surfaces is a very active area of theoretical and
applied research in physics and engineering (Vakis et al. 2018). Due to rough-
ness, when two bodies separated by rough boundaries are brought into contact, they
exchange forces through the so-called contact spots, which correspond to the tips of
the asperities, i.e., the local maxima of the surfaces. As a consequence, the real area
of contact is usually a small percentage of the nominal one, which would be attained
only if the surfaces were perfectly flat. The evolution of the contact domain, which
includes all the contact spots, the size of the real area of contact, and the normal con-
tact stiffness, do depend on the applied normal load level, see Borri-Brunetto et al.
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(1999), Ciavarella et al. (2000, 2004, 2008a), Campaña et al. (2001), Barber (2003),
Nosonovsky and Bhushan (2005), Persson (2006), Hyun and Robbins (2007), Car-
bone and Bottiglione (2008), Paggi and Ciavarella (2010), Paggi and Barber (2011),
Paggi et al. (2014), and Yastrebov et al. (2015) for a selection of studies. Simi-
larly, when a shearing load is applied, there is a progressive transition of the contact
spots from a full stick condition, with perfect adhesion and no relative displacement
between the bodies, to full slip, when sliding takes place. Such a transition is ruled
by the Coulomb friction law at the asperity level, while the emerging quantities, such
as for instance the total shearing load versus the size of the contact area in stick or
slip conditions, are the result of a collective response emerging from the complex
local interactions (Carpinteri and Paggi 2005, 2009; Paggi et al. 2014).

In this context, semi-analytical micromechanical contact theories relying on the
statistical distribution of the elevation of the asperities and their radii of curvature
have been proposed and widely explored in the engineering community (seeMcCool
1986; Zavarise et al. 2004a for comprehensive review articles), following the pio-
neering approach by Greenwood and Williamson (1966) and extending it to more
complex statistical distributions of elevations and curvatures (Ciavarella et al. 2006;
Greenwood 2006; Paggi and Ciavarella 2010), considering also elastic interactions
between asperities (Ciavarella et al. 2008b) that were not included in the original
pioneering formulations. Since the 1990s, research focused on the multiscale fea-
tures of roughness, exploiting the use of fractal geometry for the understanding of
its role on the contact behavior (Majumdar and Bhushan 1990; Borri-Brunetto et al.
1999; Carpinteri and Paggi 2005; Persson et al. 2005).

More recently, it has been found that neither the random process theory, which
is the theoretical framework for the derivation of micromechanical contact theories,
nor the fractal description of roughness is able to reproduce the complexmorphology
of surfaces (Greenwood andWu 2001), as recently proved for natural or engineering
surfaces with functionalized textures (Borri and Paggi 2015, 2016). Therefore, the
predictions of semi-analytical contact models based on random process theory or
fractal assumptions should be checked with care and led to a wide range of compar-
isons and validation studies (Mueser et al. 2017). On the other hand, experimental
investigations are challenging to be performed and involve approximations too (Woo
and Thomas 1980). For example, very often the contact quantities can only be esti-
mated by indirect measurements of thermal or electric resistances of compressed
rough joints (Sridhar and Yovanovich 1994), or they are mostly concerned with the
measurement of the real area of contact under special conditions allowing for its
inspection (O’Callaghan and Probert 1970; Hendriks and Visscher 1995).

Therefore, due to the general considerations above, numericalmethods able to deal
with realistic surface topologies without making approximations and assumptions on
their shape, and with any constitutive response of the continuum and of the interface,
are very important to predict the contact response and infer general conclusions on
the observed trends.

In the linear elastic regime, if the multiscale character of roughness covering a
wide range of wavelengths is one of the most prominent research topics, then the use
of the boundary elementmethod (BEM) has been historically preferred over the finite
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element method (FEM) (Andersson 1981; Man 1994). This is essentially due to the
fact that only the surface must be discretized in the boundary element method, and
not the surrounding continuum, as required by the finite element method. Moreover,
it is not necessary to adopt surface interpolation techniques, like Bezier curves, to
discretize the interface (see, e.g., the approach in Wriggers and Reinelt (2009)) and
make it amenable for the application of contact search algorithms. This avoids an
undesired smoothing of the fine-scale geometrical features of roughness.

In the application of the boundary element method, the core of the procedure is
based on the knowledge of the so-called Green functions that relate the displacement
of a generic point of the half-plane to the action of a concentrated force on the
surface caused by contact interactions. An integral convolution of the effects of all
the contact tractions provides the deformed contact configuration. After introducing
a discretization of the half-plane consisting of a grid of boundary elements, the
problem of point-force singularity is solved numerically by using the closed-form
solution for a patch load acting on a finite-size boundary element (Johnson 1985,
Chaps. 3, 4). The contact problem is then set in terms of equalities and inequalities
stemming from the unilateral contact constraints and it can be solved by constrained
optimization algorithms, see Polonsky andKeer (1999), Bemporad and Paggi (2015).
The basic version of the boundary element method can be also extended to solve
contact problems with friction (Li and Berger 2003; Pohrt and Li 2014) and between
viscoelastic materials, see Carbone and Putignano (2013) and the references therein
given.

However, standard boundary element formulations are based on the fundamental
assumptions of linear elasticity and homogeneity of the materials, and their exten-
sion to inhomogeneities (Leroux et al. 2010), finite-size geometries (Putignano et al.
2015), or interface constitutive nonlinearities such as adhesion (Rey et al. 2017;
Popov et al. 2017; Li et al. 2018) are sometimes possible but are not so straight-
forward. For these problems, the finite element method would be conceived as a
more versatile computational approach to pursuit in order to overcome all the major
limitations of the boundary element method. The finite element method can in fact
take into account any material or interface constitutive nonlinearity, and it can easily
treat finite-size geometries of practical interest in industrial applications. Moreover,
it is prone to be extended for the solution of nonlinear multi-field problems involved
in heat transfer or in reaction–diffusion systems (Zavarise et al. 2019; Sapora and
Paggi 2014; Lenarda et al. 2018), for which the boundary element method has not
been applied so far.

In spite of the different appealing aspects of the finite element method over the
boundary element method, this approach has been limited to few remarkable studies
concerning contact problemswith roughness, especially in relation to elastoplasticity
(Pei et al. 2005; Hyun et al. 2004). The motivation is primarily due to the need for
discretizing the bulk and also the rough interface, which is not an easy task from
the mathematical standpoint and it also gives a rise in computation costs. As shown
in Wriggers and Reinelt (2009), Bezier interpolation techniques can be employed
to regularize rough interfaces to become amenable for contact search algorithms.
Nevertheless, smoothing should be applied with care in order to avoid artificial
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filtering of finer surface features relevant to the physics of contact. To overcome
such limitations, a recent approach which does not explicitly discretize roughness,
but it embeds its analytical form in a nominally flat interface finite element has proved
to be very efficient in solving contact problems with roughness in the finite element
method (Paggi and Reinoso 2018), significantly simplifying the issue of roughness
discretization.

In this chapter, an overview of computational methods for solving contact prob-
lems with roughness is proposed. Section “The Boundary Element Method” focuses
on the fundamentals of the boundary element method, first in relation to the friction-
less normal contact problem. Based on the results in Bemporad and Paggi (2015),
special attention is given to the review of the computational challenges of themethod,
which regard two main aspects: (i) efficiently solve the system of linear equations;
(ii) impose the satisfaction of the unilateral contact constraints (contact inequalities).
Regarding the first issue, iterative methods like the conjugate gradient algorithm or
the Gauss–Seidel method (Francis 1983; Borri-Brunetto et al. 1999, 2001), or the
capabilities of multigrid or multilevel methods (Raous 1999; Polonsky and Keer
1999), or even the solution of the linear system of equations in the Fourier space
(Nogi and Kato 1997; Polonsky and Keer 2000a, b; Batrouni et al. 2002; Scaraggi
et al. 2013; Prodanov et al. 2014; Vollebregt 2014) are possible strategies.

Regarding the imposition of the contact inequalities, on the other hand, a greedy
approach where the boundary elements bearing tensile loads are iteratively excluded
can be exploited (Kubo et al. 1981; Borri-Brunetto et al. 1999, 2001; Karpenko
and Akay 2001; Batrouni et al. 2002), although it has been demonstrated by Bem-
porad and Paggi (2015) that it often fails for very compact contact domains. The
constrained conjugate gradient method proposed by Polonsky and Keer (1999) and
based on the theory in Hestenes (1980, Chaps. 2, 3) to solve the linear system of
equations and rigorously impose the satisfaction of the contact constraints is also
discussed, along with its developments (Polonsky and Keer 2000a, b). Finally, other
optimization algorithms based on the solution of the corresponding quadratic pro-
gram, such as nonnegative least squares (NNLS) and the alternative directionmethod
of multipliers (ADMM), proposed in Bemporad and Paggi (2015), are detailed. A
careful comparison of the available methods in terms of computation cost is also
provided, along with other more advanced acceleration strategies.

The presentation moves then to the contact problem with friction, which is sig-
nificantly complicated by the coupling between the normal and the tangential defor-
mations, and by the Coulomb friction law to be locally satisfied in the tangential
direction.

Section “The Finite Element Method” presents the basis of the finite element
method, starting from the variational formulation of the problem, including the strong
form, the governing equations for the continuum and the interface, and also the weak
form.Next, finite element procedures basedon the explicit discretizationof roughness
are briefly summarized in relation to seminal work published in the literature. Finally,
the zero-thickness interface finite element with embedded profile for joint roughness
(MPJR interface finite element, recently proposed in Paggi and Reinoso (2018))
is presented, along with its implementation details in the research finite element
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analysis program FEAP (Zienkiewicz and Taylor 2000). A comparison between
the different finite element discretization strategies for the solution of a benchmark
Hertzian contact problem concludes the section and it shows the great potential of
the MPJR interface finite element for future research.

The last section provides an overall summary of the chapter with a synopsis
reporting the major advantages and disadvantages of the computational methods
herein reviewed, along with an overview of perspective research directions in the
field of contact mechanics between rough surfaces.

The Boundary Element Method

The boundary element method (BEM) is an efficient technique to solve the contact
problem between two linear elastic bodies, say �1 and �2, with rough boundaries
�1 and �2, respectively. The first step for the application of the method is the knowl-
edge of the topographies �i (i = 1, 2), which are nowadays acquired using confocal
profilometers or atomic force microscopes. They are stored in a matrix containing
the xi , yi , and zi coordinates with respect to an arbitrary datum. Such surfaces are
nonconforming, i.e., they do not match when in contact. Hence, the shape of the
contact area changes with the applied load and the contact area is an unknown of the
problem, which is a source of complexity for the solution procedure.

Due to linear elasticity of the continuum, the actual contact problem can be sim-
plified by reducing it to the solution of a fictitious contact problem between a rigid
microscopically rough surface with a composite topography and a flat linear elastic
half-space with composite elastic moduli E and G dependent on the Young’s moduli
Ei and the Poisson’s ratios νi of the two materials (i = 1, 2). The composite topog-
raphy is simply obtained by summing up the elevations of the two rough surfaces
�i (i = 1, 2). The composite elastic moduli, on the other hand, are given by the
following formulae:

E =
(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)−1

, (4.1a)

G =
(
2 − ν1

4G1
+ 2 − ν2

4G2

)−1

, (4.1b)

where Gi = Ei/[2(1 + νi )]. The composite Poisson ratio ν is related to E and G via
ν = E/(2G) − 1.

In this simplified setting, the next step for the application of the method is the
knowledge of the so-called Green functions, which relate the displacements of any
point belonging to the deformable half-space to the applied tractions on its surface.
This allows formulating the problem by involving only contact tractions and surface
displacements, getting rid of the surrounding continua. While the simplest expres-
sions for the Green functions are those for a cylindrical punch on a homogenous



136 M. Paggi et al.

and isotropic half-space, other forms for more complex material configurations can
be of interest in engineering applications. For instance, multilayered half-spaces,
deformable elastic bodies with finite size (Putignano et al. 2015), or half-spaces
with spatial inclusions or voids (Leroux et al. 2010) have been investigated in the
literature. Quite recently, adhesion effects in tension have been included in BEM for
frictionless normal contact problems, see Rey et al. (2017), Popov et al. (2017), Li
et al. (2018).

For more complex heterogeneous material compositions due to the random pres-
ence of inclusions or voids of arbitrary shape, or functionally graded compositions,
the Green functions can be solely determined in numerical form (Paggi and Zavarise
2011). For that, the finite element method (FEM) can be used to preliminary extract
the Green functions. This is done by discretizing the bulk of the deformable body
and its internal microstructure. Then, unit tractions are applied at any point over the
half-plane boundary, and the induced surface displacements are computed. There-
fore, point-by-point, the Green functions can be numerically reconstructed. In the
sequel, we shall restrict the attention to linear elastic homogeneous and isotropic
half-spaces, for the sake of simplicity. More complex material compositions can be
dealt with by modifying the expression for the Green functions.

It is important to remark here that the knowledge of the relation between tractions
and surface displacements is a key point for the simplification of the complexity of
the contact problem, since it allows avoiding the discretization of the bulk. This is
indeed a significant gain over the finite element method in terms of computation
costs, especially for problems with rough boundaries where the discretization of the
rough interface has to be very fine to capture its essential multiscale features. On the
other hand, BEM is rigorously exact only for linear elastic contact problems, since
the principle of superposition is applied to convolute the effect of any distribution
of surface tractions applied over the half-plane. For elastoplastic contact problems
with isotropic or kinematic hardening laws, Chen et al. (2008) generalized the BEM
formulation by considering modified discrete expressions for the Green functions
and the residual displacements caused by plastic deformation. For other relevant
publications on this topic, the reader is referred to Kogut and Etsion (2002), Chang et
al. (1987), Nelias et al. (2006). For other problems involving material or geometrical
(finite elasticity) nonlinearities of the continuum, or for multi-field problems, the
finite element method is indeed preferable over the boundary element method and it
would be the ideal framework for their investigation.

The Frictionless Normal Contact Problem

Back to the classical framework of BEM for frictionless normal contact problems
in linear elasticity, the normal displacements u(x) at any point of the half-plane
identified by the position vector x are related to the contact tractions p(y) at other
points as follows (Johnson 1985; Barber 2018):
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u(x) =
∫
S

H(x, y)p(y)dy, (4.2)

where H(x, y) represents the displacement at a point x due to a surface contact pres-
sure p acting at y, and S is the elastic half-plane. For homogeneous, isotropic, linear
elasticmaterials, the influence coefficients (Green function) are given byBoussinesq:

H(x, y) = 1 − ν2

πE

1

‖ x − y ‖ , (4.3)

where ‖ · ‖ denotes the standard Euclidean norm. The total contact force P is the
integral of the contact pressure field:

P =
∫
S

p(x)dA. (4.4)

By referring to Fig. 4.1, in the following we define for each surface point
x ∈ S its elevation ξ(x), measured with respect to a reference frame, and set
ξmax � maxx∈S ξ(x) the maximum elevation. The indentation of the half-plane at
the points in contact is denoted by ū, whereas a generic displacement along the
surface is u.

For a given far-field displacement � ≥ 0 in the direction perpendicular to the
undeformed half-plane, the problem is to find the solution of the normal contact u(x),
p(x) satisfying (4.2) and the unilateral contact (linear complementarity) conditions

Fig. 4.1 Sketch of the contact problem between a rigid rough surface and an elastic half-plane.
Its deformed configuration corresponding to the imposed far-field displacement � is depicted with
a solid line. The dashed line corresponding to a rigid body motion of the half-plane identifies the
heights to be included in the initial trial contact domain. Once the contact problem is solved, one
may have (i) heights certainly not in contact from the beginning, type (a); (ii) heights loosing contact
due to elastic interactions, type (b); (iii) heights in contact, type (c). Adapted from Bemporad and
Paggi (2015)
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u(x) − ū(x,�) ≥ 0, (4.5a)

p(x) ≥ 0, (4.5b)

(u(x) − ū(x,�))p(x) = 0, (4.5c)

for all points x ∈ S, where contact tractions are considered positive when compres-
sive.

Introducing the quantityw(x,�) = u(x) − ū(x,�), Eq. (4.5) can be rewritten as

w(x,�) ≥ 0, (4.6a)

p(x) ≥ 0, (4.6b)

w(x,�)p(x) = 0. (4.6c)

The above contact problem is an infinite-dimensional linear complementarity
problem. A finite-dimensional approximate solution can be sought by discretizing
the surface as a square grid of spacing δ consisting of N × N average heights. Let
Si j be the cell of area δ2 indexed by i, j ∈ IN , with IN � {1, . . . , N } × {1, . . . , N }.
Let xi, j � 1

Si j

∫
x∈Si j xdA, ξi, j � 1

Si j

∫
x∈Si j ξ(x)dA, pi, j �

∫
x∈Si j p(x)dA, and ui, j �

1

Si j

∫
x∈Si j u(x)dA be, respectively, the barycentric coordinate, average height, resul-

tant of the contact tractions, and the corresponding average displacement on the
surface element Si j . Consider the following discretized version of (4.2)

ui, j =
N∑

k=1

N∑
l=1

Hi−k, j−l pk,l (4.7)

for all (i, j), (k, l) ∈ IN , pk,l ≥ 0, where the term Hi−k, j−l is the Green function
in (4.3) averaged over the elementary area δ2. For instance, Borri-Brunetto et al.
(1999) used the following approximation related to a uniform pressure acting on a
rounded punch of radius δ/2:

Hi−k, j−l =

⎧⎪⎨
⎪⎩

2

Eπδ
, if i = k and j = l

2

Eπδ
arcsin

δ

2‖xi, j − xk,l‖ , if i �= k, j �= l
(4.8)

but other formulae for a square punch can also be taken as in Pohrt and Li (2014).
Let ĪC � {(i, j) ∈ IN : ξi, j < ξmax − �} be the set of indices corresponding to

elements Si j that are certainly not in contact (cf. Fig. 4.1), and hence

pk,l = 0,∀(k, l) ∈ ĪC . (4.9)
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Letm = # ĪC be the number of elements of ĪC and n = #IC the number of elements
belonging to the initial trial contact domain, IC � IN \ ĪC . The set IC is only a super-
set of the set I ∗

C of actual contact points, since the corrections to the displacements
induced by elastic interactions may induce lack of contact in some elements (i, j),
i.e., ui, j > ūi, j , where ūi, j � � − ξmax + ξi, j is the value of the compenetration of
the height corresponding to the element (i, j) in the half-plane (see Fig. 4.1).

For a generic (i, j) ∈ IC corresponding to an element of the surface which is
potentially in contact with the elastic half-plane, we denote by

wi, j � ui, j − ūi, j ≥ 0 (4.10)

the corresponding elastic correction to the displacement. Clearly, it must hold that

wi, j pi, j = 0, ∀(i, j) ∈ IC (4.11)

since wi, j > 0 implies no contact between the surfaces and therefore vanishing con-
tact pressures, while pi, j > 0 implies contact, ui, j = ūi, j , or equivalently wi, j = 0.

By taking into account that pk,l = 0 for all (k, l) ∈ ĪC , Eq. (4.7) can be recast as
the following condition:

wi, j + ūi, j =
∑

(k,l)∈IC
Hi−k, j−l pk,l, ∀(i, j) ∈ IC , (4.12)

which is limited to the nodes belonging to the initial trial contact domain IC , whose
number of elements is in general significantly smaller than those of IN . The rela-
tions (4.9)–(4.12) can be recast in matrix form as the following Linear Complemen-
tarity Problem (LCP) (Cottle et al. 1992):

w = Hp − ū (4.13a)

w ≥ 0, p ≥ 0, wTp = 0, (4.13b)

where w ∈ R
n is the vector of unknown elastic corrections wi, j , (i, j) ∈ ĪC , wT

denotes its transpose, p ∈ R
n is the vector of unknown boundary element contact

forces pi, j , (i, j) ∈ IC , ū ∈ R
n is the vector of compenetrations ūi, j , (i, j) ∈ IC , and

H = HT is the matrix obtained by collecting the compliance coefficients Hi−k, j−l ,
for (i, j), (k, l) ∈ IC . Due to the properties of linear elasticity (Johnson 1985, p.
144), we have that

H = HT � 0, (4.14)

that is,H is a symmetric positive definitematrix (with the additional property deriving
from (4.8) of having all its entries positive). After solving (4.13), the vector u ∈ R

n

of normal displacements ui, j , (i, j) ∈ IC , is simply retrieved as u = ū + w.
By the positive definiteness property (4.14) of H, we inherit immediately the

following important property (Cottle et al. 1992, Theorem 3.3.7): the discretized
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version (4.6), (4.9)–(4.12) of the contact problem admits a unique solution p, u, for
all � ≥ 0.

The LCP problem (4.13) corresponds to the Karush–Kuhn–Tucker (KKT) condi-
tions for optimality of the following convex quadratic program (QP):

minp
1

2
pTHp − ūTp (4.15a)

s.t. p ≥ 0 (4.15b)

in that the solution p of (4.15) and its corresponding optimal dual solution w
solve (4.13), and vice versa.

The QP problem is consistent with former considerations by Kalker and van
Randen (1972) and also summarized in Johnson (Johnson 1985, pp. 151–152). In
fact, the contact pressures solving the unilateral contact problem can be obtained by
minimizing the total complementary energyW of the linear elastic system, subject to
the constraint p(x) ≥ 0, ∀x ∈ S. For a continuous system, the total complementary
energy is

W = U −
∫
S

p(x)ū(x,�) dx, (4.16)

whereU is the internal complementary energy of the deformed half-plane in contact.
For linear elastic materials, we have

U = 1

2

∫
S

p(x)u(x) dx. (4.17)

Although such an energy-based approach can be used to derive finite element
formulations, it is also possible to remain within the boundary element method and
introduce a surfacediscretization as before.By invoking the averagedGreen functions
in (4.8), the discretized version of W , say W̃ , reads

W̃ = 1

2

∑
(i, j)∈IC

∑
(k,l)∈IC

Hi−k, j−l pk,l pi, j −
∑

(i, j)∈IC
pi, j ūi, j , (4.18)

which represents a quadratic function of p to be minimized, under the constraints
pi, j ≥ 0, ∀(i, j) ∈ IC , as in (4.15). Since it is unlikely that the contact area is known
a priori, the active set of nodes in contact results only after solving problem (4.13)
or equivalently (4.15).

A large variety of solvers for LCP and QP problems were developed in the last
60 years (Beale 1955; Fletcher 1971; Goldfarb and Idnani 1983; Cottle et al. 1992;
Schmid and Biegler 1994; Patrinos and Bemporad 2014), and is still an active area of
research in the optimization and control communities. Historically, in the mechanics
community, Kalker and van Randen (1972) proposed the simplex method, although
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it was found to be practical only for relatively small N . More recent contributions
adopt algorithms to solve the unconstrained linear system of equations and then
correct the solution by eliminating the boundary elements bearing tensile tractions
(Francis 1983; Borri-Brunetto et al. 1999, 2001), or use a constrained version of the
conjugate gradient (CG) algorithm (Polonsky and Keer 1999). These methods are
simply initialized by considering arbitrary nonnegative entries in p, without taking
advantage of the monotonic increase (or decrease) of pressures by increasing (or
decreasing) the far-field displacement, an important property guaranteed by rigorous
elasticity theorems (Barber 1974). The history of pressures can be saved during a
contact simulation and it is easy to access and use and it can be beneficial to save
computation time, as proved by Bemporad and Paggi (2015).

Optimization algorithms. Since now on, we use the subscript i to denote the i th
component of a vector or the i th row of a matrix, the subscript I to denote the
subvector obtained by collecting all the components i ∈ I of a vector (or all the rows
i of a matrix), and the double subscript I, I1 to denote the submatrix obtained by
collecting the i th row and j th column, for all i ∈ I, j ∈ I1.

In the sequel, following the content in Bemporad and Paggi (2015), a brief
overview of algorithms to solve the constrained contact problem is provided, starting
first with those for the solution of the LCP, namely, the greedy method and the con-
strained conjugate gradient algorithm. Next, optimization algorithms for the solution
of the corresponding QP are discussed, such as the nonnegative least squares and
the alternative direction method of multipliers. Finally, a comparison of the algo-
rithms above in terms of computation performance is presented. Further acceleration
strategies and advanced methods are also discussed.

A greedy method corresponds to solve problem (4.15) by iteratively solving the
unconstrained linear system of equations w = Hp − ū = 0 with respect to p and
increasingly zeroing negative elements of p until the condition p ≥ 0 is satisfied.
By construction we obtain wTp = 0. The method is described in Algorithm 1, in
which a standard conjugate gradient (CG) is employed to solve the unconstrained
linear system of equations. Steps 2.1–2.4 can be replaced by any other algorithm for
solving the linear system of equations, like the Gauss–Seidel iterative scheme as in
Borri-Brunetto et al. (1999, 2001), the MATLAB’s mldivide solver, or even the
FFT algorithm as in Karpenko and Akay (2001), Batrouni et al. (2002), Vollebregt
(2014).

Assuming that the prescribed initial p and I are such that p j = 0 for all j ∈
{1, . . . , n} \ I, and Kmax is sufficiently large, the output of the greedy algorithm
leads to a contact pressure vector p∗ and a normal displacement vector u∗ satisfying
u∗ = Hp∗, p∗ ≥ 0, (u∗ − ū)Tp∗ = 0. In fact, condition p∗ ≥ 0 is guaranteed by the
condition in Step 2 up to ε precision. By letting w∗ � u∗ − ū, at termination of
the algorithm we have w∗

I = HI,Ip∗
I − ūI = 0 because of the solution of the CG

method (Step 2.4), or equivalently u∗
I = ūI (cf. Step 4). By setting u∗

Ī � HĪ,IpI in
Step 4, and recalling that p∗

Ī = 0, we have
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Input: Matrix H = HT � 0, vector ū; initial guess p and initial active set I ⊆ {1, . . . , n}
such that p{1,...,n}\I = 0; maximum number Kmax of iterations, tolerance ε > 0.

1. i ← 0; Ī ← {1, . . . , n} \ I;
2. while (i ≤ Kmax and min(p) < −ε) or i = 0 do:

(2.1) wI ← HI,IpI − ūI ;
(2.2) nw ← ‖wI‖2;
(2.3) bI ← −wI
(2.4) while nw > ε and i ≤ Kmax do:

(2.4.1) sI ← HI,IbI ;

(2.4.2) pI ← pI − wT
IbI

bTIsI
bI ;

(2.4.3) w̄I ← HI,IpI − ūI ;

(2.4.4) bI ← −w̄I + w̄T
IsI

bTIsI
bI ;

(2.4.5) wI ← w̄I ;
(2.4.6) nw ← ‖wI‖2;
(2.4.7) i ← i + 1;

(2.5) for j ∈ I do:
(2.5.1) if p j < −ε then p j ← 0; I ← I \ { j}; Ī ← Ī ∪ { j};

3. p∗ ← p;
4. u∗

I = ūI , u∗̄
I ← HĪ,IpI ;

5. end.

Output: Contact force vector p∗ and normal displacement vector u∗.

Algorithm 1: Greedy method with Conjugate Gradient (greedy CG)

[
w∗

I
w∗

Ī

]
=

[
0 0

HĪ,I 0

] [
p∗
I
0

]
+

[
0

−ūĪ

]
=

[
HI,I HI,Ī
HĪ,I HĪ,Ī

] [
p∗
I

p∗
Ī

]
+

[−ūI
−ūĪ

]

and hence u∗ = w∗ + ū = Hp∗. The complementarity condition (u∗ − ū)Tp∗ =
(w∗)Tp∗ = 0 follows by construction, as Step 2.4 zeroes all the components of w∗

j
that correspond to nonnegative p∗

j , ∀ j ∈ I, and zeroes all the components p∗
j that

correspond to possible nonzero components w∗
j , ∀ j ∈ Ī.

However, Bemporad and Paggi (2015) demonstrated that there is no formal proof
that the conditionw∗

Ī ≥ 0 (i.e., thatu∗ ≥ ū) is satisfied after the algorithm terminates.
If the algorithm is applied to randomly generated ū vectors and H positive definite
matrices with positive coefficients, Bemporad and Paggi (2015) found that in many
cases the LCP is not solved exactly. This problem was noticed especially when
the contact domain is densely packed, with many boundary elements close to each
other and all in contact. A MATLAB routine of the counterexample is available for
download at http://musam.imtlucca.it/counterexample.m.

Therefore, as a word of caution, the reliability of the greedy method should be
carefully checked in case of applications of the boundary element method to contact

http://musam.imtlucca.it/counterexample.m
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problems governed by other forms ofH, as in the case of contact with an anisotropic
or an inhomogeneous half-plane.

Another drawback of the algorithm is the difficulty to warm start the method with
a proper choice of the initial active set I. Since at Step 2.5.1 the number of elements
in the sequence I is decreased by removing negative enough components p j of the
current solution vector, i.e., eliminating the points bearing tensile (negative) forces,
in a monotonic way (no index j that has been removed from I can be added back),
a safe cold start is to set I = {1, . . . , n} and pick up a vector p ≥ 0, usually a vector
with arbitrary nonnegative numbers. The history of boundary element contact forces
obtained during the solution of a sequence of imposed displacements is not taken into
account by the method to accelerate its convergence, although we know that contact
forces are monotonically increasing functions of the far-field displacement. In any
case, for a complex sequence of loading with an increased or decreased far-field
displacement, any warm starting on forces cannot be implemented in the method,
since the elimination of contact points is irreversible.

A constrained conjugate gradient (CG) algorithm was proposed by Polonsky and
Keer (1999) based on the theory by Hestenes (1980, Chaps. 2, 3), to solve the linear
system of equations and rigorously impose the satisfaction of the contact constraints.
Algorithm 2 has been applied by Polonsky and Keer (1999) to simulations under
load control. However, it can be used also for displacement control. The condition
for convergence set by Polonsky and Keer (1999) in terms of relative variation in the
local contact forces from an iteration to the next has been recast in terms of the error
in the local contact displacements. The two criteria are completely equivalent.

This constrained CG algorithm does not remove the points bearing tensile forces
from the active set, as the Greedy algorithms do. Therefore, the size of the linear
system of equations is not reduced during the iterations, increasing the computation
time for its solution. On the other hand, themethod assures the satisfaction of the LCP
conditions (4.13) and itwas found inBemporad andPaggi (2015) to convergencewith
a reduced number of iterations as compared to the Greedy CG algorithm. Although
not investigated in Polonsky and Keer (1999), it can be warm-started in case of a
sequence of loading steps by considering both an initial trial contact domain and a set
of contact pressures derived from the previous converged solution. The FFT method
can be used to accelerate step (3.8) of Algorithm 2, as in Polonsky and Keer (2000a).

The QP problem with positive definite Hessian matrix having the special form
(4.15) and corresponding to the LCP can be effectively solved as a nonnegative least
squares problem, as proposed by Bemporad and Paggi (2015).

Thanks to property (4.14), matrix H admits a Cholesky factorization H = CTC.
Hence, we can theoretically recast problem (4.15) as the nonnegative least squares
(NNLS) problem:

minp
1

2
‖Cp − C−T

ū‖22 (4.19a)

s.t. p ≥ 0. (4.19b)
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Input: Matrix H = HT � 0, vector ū, initial guess p ≥ 0, initial active set I = {1, . . . , n};
maximum number Kmax of iterations, tolerance ε > 0.

1. i ← 0, nw,old = 1, d = 0, err = +∞;
2. w ← Hp − ū;
3. while (i ≤ Kmax and err > ε):

(3.1) if i = 0 ;
then t ← w ;

else: t ← w + d
nw

nw,old
told;

(3.2) τ = wTt
tTHt

;

(3.3) p ← p − τ t;
(3.4) ∀ j ∈ I : p j ← max{p j , 0};
(3.5) Find Iol = { j ∈ I : p j = 0, w j < 0};

if Iol = ∅ then d = 1 else d = 0; p j ← p j − τw j , ∀ j ∈ Iol ;
(3.6) I ← { j : p j > 0} ∪ Iol ;
(3.7) told ← t, nw,old ← nw;
(3.8) w ← Hp − ū;
(3.9) nw = ‖w‖2;

(3.10) err ← |nw − nw,old|/nw,old;
(3.11) i ← i + 1;

4. p∗ ← p; u∗ = Hp∗;
5. end.

Output: Contact force vector p∗ and normal displacement vector u∗.

Algorithm 2: Constrained Conjugate Gradient

A simple and effective active-set method for solving the NNLS problem (4.19) is
the one in Lawson and Hanson (1974, p. 161) that was extended by Bemporad and
Paggi (2015) in Algorithm 3 to directly solve (4.15) without explicitly computing the
Cholesky factorC and its inverseC−1, and to handlewarmstarts.After a finite number
of steps, Algorithm 3 converges to the optimal contact force vector p∗ and returns
the normal displacement vector u∗ whose components pi, j , ui, j satisfy pi, j ≥ 0,
ui, j ≥ ūi, j , (ui, j − ūi, j )pi, j = 0, and (4.12), ∀(i, j) ∈ IC .

The method is easy to warm start in case of a loading scenario consisting of an
alternating sequence of increasing or decreasing far-field displacements. The contact
forces determined for a given imposed displacement are used to initialize vector p.
Due to the monotonicity of the contact solution, this initialization is certainly much
closer to the optimal solution p∗ than a zero vector. This usually significantly reduces
the iterations of the method to convergence. Such a warm start has a fast implementa-
tion requiring a projection of the forces of the points belonging to I ∗

C(�k) to the same
points of the trial domain I ∗

C(�k+1) for a new imposed far-field displacement �k+1.
For an increasing far-field displacement, i.e., �k+1 > �k the forces in the elements
belonging to I ∗

C(�k+1) − I ∗
C(�k) are simply initialized equal to zero.
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Input: Matrix H = HT � 0, vector ū, initial guess p; maximum number Kmax of iterations,
tolerance ε > 0.

1. I ← {i ∈ {1, . . . , n} : pi > 0}; ini t ← FALSE; k ← 0;
2. if I = ∅ then ini t ← TRUE;
3. w ← Hp − ū;
4. if ((w ≥ −ε or I = {1, . . . , n}) and ini t = TRUE) or k ≥ Kmax

then go to Step 13;
5. if ini t = TRUE then i ← argmini∈{1,...,n}\I wi ; I ← I ∪ {i};

else ini t ← TRUE;
6. sI ← solution of the linear system HI sI = ūI
7. if sI ≥ −ε then p ← s and go to Step 3;

8. j ← argminh∈I: sh≤0

{
ph

ph−sh

}
;

9. p ← p + p j
p j−s j

(s − p);
10. I0 ← {h ∈ I : ph = 0};
11. I ← I \ I0; k ← k + 1;
12. go to Step 6;
13. p∗ ← p;
14. u∗ ← w + ū;
15. end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfying u∗ = Hp,
u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)Tp = 0.

Algorithm 3: Non-Negative Least Squares (NNLS)

Note that Step 6 of Algorithm 3 is equivalent to Step 2.4 of Algorithm 3 and it
has been performed in Algorithm 1 by using the MATLAB’s mldivide solver.
This step can be accelerated by the use of an approach based on the FFT (for its
implementation, see, e.g., Batrouni et al. (2002)). Alternatively, since the set I0
changes incrementally during the iterations of the algorithm, more efficient iterative
QR (Lawson and Hanson, 1974, Chap. 24) or LDLT Bemporad (2014) factorization
methods can be employed.

An alternative method to solve the QP problem (4.15) is to use an accelerated
gradient projection (GP) method for QP (Nesterov 1983; Patrinos and Bemporad
2014). Because of the simple nonnegative constraints in (4.15), rather than going to
the dual QP formulation as in Patrinos and Bemporad (2014), the GP problem was
formulated directly for the primal QP problem (4.15). Numerical experiments have
shown slow convergence of a pure accelerated GP method to solve (4.15). However,
the method can be used to warm start Algorithm 3, as described in Algorithm 4
proposed in Bemporad and Paggi (2015). If Algorithm 4 is executed (K > 0), it
returns a vector p that is immediately used as an input to Algorithm 3, otherwise
one can simply set p = 0 (cold start). As shown in the algorithms’ comparison in
the sequel, GP iterations provide large benefits in warm starting the NNLS solver,
therefore allowing taking the best advantages of the two methods: quickly getting in
the neighborhood of the optimal solution (GP iterations of Algorithm 4) and getting
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solutions up to machine precision after a finite number of iterations (the active-set
NNLS Algorithm 3).

Input: Matrix H = HT � 0 and its Frobenius norm L , vector ū, initial guess p, number K
of iterations.

1. p̄ ← p;
2. for i = 0, . . . , K − 1 do:

(2.1) β = max{ i−1
i+2 , 0};

(2.2) s = p + β(p − p̄);
(2.3) w = Hs − ū;
(2.4) p̄ ← p;
(2.5) p ← max{s − 1

Lw, 0};
3. end.

Output: Warm start for contact force vector p and elastic correction vector w.

Algorithm 4: Accelerated Gradient Projection (GP) to be used to warm start the
NNLS algorithm

The QP problem (4.15) can also be solved by the alternating direction method of
multipliers (ADMM), which belongs to the class of augmented Lagrangian meth-
ods. The reader is referred to Boyd et al. (2011) for mathematical details, while its
application to contact problems was proposed in Bemporad and Paggi (2015). The
method treats the QP (4.15) as the following problem:

minp,s
1
2p

THp − ūTp + g(s)
s.t. p = s,

(4.20)

where

g(s) =
{

0 if s ≥ 0
+∞ if s < 0

.

Then, the augmented Lagrangian function

Lρ(p, s,w) = 1

2
pTHp − ūTp + g(s) + wT(p − s) + ρ

2
‖p − s‖22

is considered, where ρ > 0 is a parameter of the algorithm. The basic ADMM algo-
rithm consists of the following iterations:

pk+1 = argminp Lρ(p, sk,wk)

sk+1 = argmins Lρ(pk+1, s,wk)

wk+1 = wk + ρ(pk+1 − sk+1).

(4.21)
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A scaled form with over-relaxation of the ADMM iterations (4.21) is summa-
rized in Algorithm 5. The algorithm is guaranteed to converge asymptotically to the
solution p∗, u∗ of the problem. The over-relaxation parameter α > 1 is introduced
to improve convergence. Typical values for α suggested in Boyd et al. (2011) are
α ∈ [1.5, 1.8].

A warm start of the algorithm that takes into account the loading history is pos-
sible in a way analogous to that described for the NNLS approach. However, as an
additional complexity, also an initialization for the dual variable vector w must be
provided, possibly obtained by projecting the solution obtained for a certain �k to
that for �k+1.

Input: Matrix H = HT � 0, vector ū, initial guesses p, w, parameter ρ > 0,
over-relaxation parameter α > 1, maximum number Kmax of iterations, tolerance ε > 0.

1. M ← ( 1
ρ
H + I)−1;

2. wρ ← − 1
ρ
w;

3. s ← p;
4. i ← 0;
5. while (i ≤ Kmax and ‖p − s‖∞ > ε) or i = 0 do:

(5.1) s ← M(p − wρ − 1
ρ
ū);

(5.2) s̄ ← αs + (1 − α)p;
(5.3) p ← max{s̄ + wρ, 0};
(5.4) wρ ← wρ + s̄ − p;
(5.5) i ← i + 1;

6. p∗ ← p;
7. u∗ ← ū − ρwρ ;
8. end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfying u∗ = Hp,
u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)Tp = 0.

Algorithm 5: Alternative Direction Method of Multipliers (ADMM)

Comparison of the algorithms’ performance. To assess the computation efficiency
and performance in terms of number of iterations required to achieve convergence,
the optimization algorithms reviewed in the previous section can be compared in
relation to a benchmark frictionless normal contact problem involving a numerically
generated fractal rough surface and a half-plane.

To this aim, the random midpoint displacement algorithm (Peitgen and Saupe
1988) can be used to generate the synthetic height field of surfaces with multiscale
fractal roughness, i.e., with a power spectral density (PSD) function of the height
field of power-law type. The surface with a given resolution (pre-fractal) is realized
by a successive refinement of an initial coarse representation by adding a sequence of
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Fig. 4.2 Rough surfaceswithmultiscale roughness and different resolutions, numerically generated
by the random midpoint displacement algorithm. From Bemporad and Paggi (2015)

intermediate heights whose elevation is extracted from aGaussian distribution with a
suitable rescaled variance, see a qualitative sketch in Fig. 4.2. Several applications of
the method to model rough surfaces for contact mechanics simulations are available
in Zavarise et al. (2004a, b), Paggi and Ciavarella (2010).

In particular, let us consider a test problem consisting of a surface with Hurst
exponent H = 0.7, lateral size L = 100 µm, and 512 heights per side. The surface
is brought into contact with an elastic half-plane under displacement control. Ten
displacement steps are imposed to reach a maximum far-field displacement which is
set equal to (ξmax − ξave)/2, where ξmax and ξave are the maximum and the average
elevations of the rough surface, respectively. All the simulations were carried out
with the server 653745-421 Proliant DL585R07 from Hewlett Packard with 128
GB Ram, 4 processors AMD Opteron 6282 SE 2.60 GHz with 16 cores running
MATLAB R2014b.

The parameters for the Greedy CGmethod are the maximum number of iterations
Kmax = 1 × 105 and the convergence tolerance ε = 1 × 10−8. The contact forces are
initialized at zero (cold start). The constrained CG method also considers Kmax =
1 × 105 and the same tolerance ε = 1 × 10−8. Both the original version by Polonsky
and Keer (1999) (labeled P&K1999 in Fig. 4.3) and its warm-started variant (labeled
P&K1999 + warm start in Fig. 4.3) are considered.

For the NNLS algorithm (Algorithm 3), the warm start strategy based on the pro-
jection of contact forces from the solution corresponding to a previous displacement
step is adopted. Alternatively, warm starting using gradient projections (denoted
as NNLS+GP) is examined, using 100 gradient projections to initialize vector p.
The parameters for the ADMM method are α = 1.5, ρ = 1, Kmax = 3 × 103, and
ε = 10−8. The total number n of optimization variables is varying with the amount
of imposed displacement � and therefore with the force level. For the highest inden-
tation level of the present test, n = 35,555. Warm starting the algorithm is achieved
by projecting primal variables as for the NNLS and dual variables w as well. The
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Fig. 4.3 Comparison
between the optimization
algorithms in terms of
speedup of computation time

projection simply consists of assigning the values of p∗
i, j and w∗ of the boundary

elements in contact for the step �k to the same boundary elements belonging to the
trial contact domain IC corresponding to the higher indentation �k+1.

Once convergence is achieved for each imposed far-field displacement, the opti-
mization algorithms provide the same normal force P and contact domains, with
small roundoff errors due to finite machine precision. The ratio between the CPU
time required by each method to achieve convergence and the CPU time employed
by the Greedy CG algorithm, which is the slowest, is considered as a measure of
speedup. This ratio is plotted vs. the dimensionless normal force P/(E A) in Fig. 4.3,
where A = L2 is the nominal contact area. The best performance is achieved by the
application of the NNLS method with 100 gradient projections (GP), which is 25
times faster than the original constrained CG method by Polonsky and Keer (1999)
and about two orders of magnitude faster than the ADMM and the Greedy CG algo-
rithms, with an increasing efficiency for high loads. The NNLS with warm start is
also very well performing, with a stable speedup of about 25 times for any load level.

As outlined in the introduction, the Greedy method can be used in conjunction
with other algorithms for solving the unconstrained linear system of equations (Step
2.4) than the CG algorithm. For instance, the CG Step 2.4 in the Greedy algorithm
can be replaced with the optimized built-in mldivide function of MATLAB, or
with the Gauss–Seidel algorithm, as proposed in Borri-Brunetto et al. (1999, 2001).

The MATLAB’s mldivide solver (which employs the Cholesky factorization)
leads to a reduction of computation time of 30–40% with respect to the CG method,
almost regardless of the size of the system n, see Fig. 4.4. Even with this gain in
computation speed, the overall performance is still quite far from that of the NNLS
Algorithm 3 on the platform used for the tests. Moreover, the MATLAB solver leads
to an error of lack of memory for n >20,000, a serious problem for large systems
that are not suffered by the CG solver described in Step 2.4 of Algorithm 1. The
Gauss–Seidel algorithm does not suffer for the lack of memory but it is about 3 times
slower than the CG method.
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Fig. 4.4 Ratio between
computation times for the
Greedy method using
different solvers
(MATLAB’s mldivide
solver or Gauss–Seidel
algorithm) as compared to
the conjugate gradient (CG)
algorithm, for different sizes
n of the contact superset IC .
Adapted from Bemporad and
Paggi (2015)

Fig. 4.5 Computation times
of the NNLS algorithm
depending on the number K
of gradient projection (GP)
iterations. Adapted from
Bemporad and Paggi (2015)

The effect of the number K of GP iterations applied before the NNLS algorithm
was also investigated in Bemporad and Paggi (2015). Figure 4.5 shows, for the same
test problemwhose results are shown in Fig. 4.3, the effect of K on the total computa-
tion time. For K from 0 to 100, we observe a reduction in the total computation time
due to a decrease in the number of iterations requested by the NNLS algorithm to
achieve convergence, thanks to a better initial guess of p. However, a further increase
in K (see, e.g., the curve in Fig. 4.5 corresponding to K = 200 iterations) does not
correspond to further savings of CPU time. This is due to the fact that the number of
NNLS iterations was already reduced to its minimum for K = 100 GP iterations, so
that the application of further gradient projections is just leading to additional CPU
time without further benefit.

Further acceleration strategies and variants of the boundary element method.
A further speedup of computation time, as compared to the NNLS method, can be
achieved by improving the criterion for the guess of the initial set IC of points in
contact. The standard criterion based on checking the interpenetration of the surface
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Fig. 4.6 A sketch illustrating the property of lacunarity of the contact domain: the real contact area
progressively diminishes by refining the surface, until vanishes in the fractal limit of δ → 0. This
implies that some boundary elements detected by the rigid body interpenetration criterion (dashed
gray elements) can be neglected a priori since they are outside the real contact area corresponding
to the coarse scale contact solution. From Bemporad and Paggi (2015)

heights into the half-plane in case of a rigid body motion is the most conservative
one. However, at convergence, we know that only a small subset I ∗

C of that initial set
is actually in contact. Therefore, a better choice of the initial trial contact domain
would reduce the size of the system of linear equations with an expected benefit in
terms of computation time.

As shown in Borri-Brunetto et al. (1999) via numerical simulations on pre-fractal
surfaces with Hurst exponent H > 0.5 and different resolutions by refining the sur-
face height field via a recursive application of the random midpoint displacement
algorithm, the real contact area of each surface representation decreases by reducing
the grid spacing δ, as illustrated in the sketch in Fig. 4.6. In the fractal limit of δ → 0,
the real contact area vanishes. Therefore, this property of lacunarity implies that the
heights that are not in contact for a coarser surface representation are not expected to
come into contact by a successive refining of the height field, for the same imposed
far-field displacement.

Therefore, a possible better criterionwas proposed byBemporad and Paggi (2015)
and was called cascade multiresolution (CMR) algorithm. In the method, the initial
trial contact domain is selected by retaining, among all the heights selected by the
rigid body interpenetration check, only those located within the areas of influence of



152 M. Paggi et al.

the nodes belonging to the contact domain of a coarser representation of the rough
surface for the same imposed displacement �. This criterion, inspired by fractal
considerations, shares some analogies with multigrid methods, where coarse and
fine grids are used to compute the contact solution.

As graphically shown in Fig. 4.6, an area of influence of a given node in contact
can be defined by the radius

√
2δ, where δ is the grid size of the coarser surface

representation. Since the criterion is not exact, Bemporad and Paggi (2015) suggested
to consider a multiplicative factor h larger than unity for the radius defining the nodal
area of influence. It is remarkable to note that this numerical scheme can be applied
recursively to a cascade of coarser representations of the same rough surface. As
a general trend, computation time is expected to drastically diminish by increasing
the number of cascade projections. However, the propagation of errors due to the
wrong exclusion of heights that would actually make contact cannot be controlled
by the algorithm and it is expected to increase with the number of projections as well.
The advantage of the method is represented by the fact that, in addition to saving
computation time with respect to that required by the NNLS algorithm to solve just
one contact problem for the finest surface, all the contact predictions for the coarser
scale representations of the same surface are providedwithout additional costs, which
is a useful result for the multiscale characterization of contact problems. Moreover,
the CMRmethod can be used in conjunction with any of the optimization algorithms
reviewed in the previous sections. The algorithm is illustrated in Algorithm 6.

Input: s = 1, . . . , l surface representations with different resolution or grid spacing δ(s);
area of influence parameter h ≥ 1.

1. for s = 1, . . . , l do:

(1.1) Determine IC (s) = {(i, j) ∈ IN (s) : ξi, j ≥ ξmax(s) − �};
(1.2) if s = 1 then IC,p(s) = IC (s)

else
IC,p(s) = {(i, j) ∈ IC (s) : ri−k, j−l = ‖xi, j − xk,l‖ ≤ hδ(s − 1)}, ∀(k, l) ∈ I ∗

C (s − 1)
end

2. Construct H based on the projected trial contact domain IC,p(s);
3. Apply optimization algorithms (e.g., NNLS) and determine p∗, u∗, I ∗

C (s);
4. end.

Algorithm 6: Cascade multi-resolution (CMR) algorithm

To assess the computational performance of the method, the CMD algorithm was
applied in conjunction with the NNLS algorithm to pre-fractal surfaces with different
H numerically generated by the RMD method (Bemporad and Paggi 2015). As an
example, the lateral size was set equal to 100 µm for all the surfaces and the finest
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resolution whose contact response has to be sought corresponded to 256 heights per
side. The method requires the storage of the coarser representations of such surfaces
that are in any case available by the RMD algorithm during its various steps of
random addition.

The cascade of projections was applied starting with a coarser representation of
the surfaces with only 16 heights per side and then considering 32, 64, 128, and
finally 256 heights per side. A parameter h = 2 was used for the definition of the
area of influence. The solution of the contact problem for the surface with 16 heights
per side was obtained in an exact form, since it is the starting point of the cascade
projections, whereas the contact predictions for the finer surface representations can
be affected by an error intrinsic in the criterion. The approximate predictions for
the surface with 256 heights per side were compared with the reference solution
corresponding to the application of the NNLS algorithm with warm start directly to
the finest representation of the rough surface.

The computation time of the CMR+NNLS solution is the sum of the CPU time
required to solve all the coarser surface representations and it is found to bemuch less
than the CPU time required by the NNLS algorithm to solve just one single surface
with the finest resolution, see Fig. 4.7, where we observe a reduction of about 50%
in CPU time almost regardless of H . The relative error in the computation of the
maximum normal force between the predicted solution and the reference one is a

Fig. 4.7 Performance of the CMR+NNLSmethod applied to numerically generated fractal surfaces
with a different Hurst exponent H and h = 2. Adapted from Bemporad and Paggi (2015)
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Fig. 4.8 Performance of the
CMR+NNLS method with
respect to NNLS for a
numerically generated fractal
surface with H = 0.7,
depending on the parameter
h. Adapted from Bemporad
and Paggi (2015)

rapidly decreasing function of H , as shown in Fig. 4.7. Considering that real surfaces
have often a Hurst exponent H > 0.5, the method is very promising.

A synthetic diagram illustrating the effect of the parameter h for the surface with
H = 0.7 and for a single imposed displacement corresponding to the maximum load
is shown in Fig. 4.8. The relative error is rapidly decreasing to values less than 1%
by increasing h. The ratio between the number of points expected to be in contact
after the application of the CMR projection criterion, np, and the number of points
that would be included by using the classic rigid body interpenetration check, n, is
ranging from 0.4 to 0.8 by increasing h from 1.25 to 3.0. The ratio between CPU
times, on the other hand, tends to an asymptotic value of 0.6, which implies a saving
of 40% of computation time as compared to the exact solution, with less than 0.01%
of relative error.

Among the variants of the boundary element method published in the literature,
some concerned with the treatment of the key features of roughness and its evolu-
tion during contact. Starting from the fundamental assumption of micromechanical
contact theories that only the asperities, i.e., the local maxima of the rough surface,
make contact (Greenwood and Williamson 1966; Zavarise et al. 2004a; Paggi and
Ciavarella 2010), then one could simplify the boundary element approach by treat-
ing only the set of asperities as boundary elements. Each asperity can be modeled
as a paraboloid whose geometry is defined by its position (x, y) in the plane, its
elevation z above a reference plane, and its mean radius of curvature R, as proposed
in Greenwood (2006). For such a Hertzian asperity, the theory of elasticity provides
the displacement of the half-plane in the location of the asperity itself, as well as the
displacement in any other position, see Nowell andHills (1989). Such an information
can be used to define the Green functions for the application of a generalized bound-
ary element method, where a recursive elimination of asperities supporting tensile
forces can be implemented till the final active set of asperities in contact and the
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corresponding normal contact forces are identified, using, for instance, the Greedy
algorithm. Alternatively, the problem can be formulated by an iterative correction to
the asperity deformation as proposed in Ciavarella et al. (2006), avoiding the inver-
sion of the compliance matrix. Moreover, the scheme allows also studying the effect
of short- or long-range elastic interaction effects, as carefully investigated in Paggi
and Barber (2011).

The above multi-asperity contact problem overcomes the limitations of the origi-
nal semi-analytical contact theory by Greenwood and Williamson (1966) which did
not include elastic interactions in its original form. Moreover, the correction scheme
proposed inCiavarella et al. (2006) inspired also away to improve theGreenwood and
Williamson contact theory by introducing a yet simple but effective mean pressure
elastic interaction effect (Ciavarella et al. 2008b). Moreover, the approach presents
several advantages over the standard boundary element method, especially in terms
of speedup of computation time which is mainly achieved by the fact that the size of
the set of potential asperities in contact is significantly much smaller than the total
number of boundary elements. On the other hand, drawbacks regard the fact that
the method strongly relies on the geometrical parameters of the asperities, which
are resolution-dependent as discussed in Majumdar and Bhushan (1990), Zavarise
et al. (2004b). Another limitation as compared to a more general boundary element
method regards the fact that the contact problem relies on the undeformed asperity
geometry. This limitation has been partially overcome by Afferrante et al. (2012),
who proposed an update of the asperity detection and their geometrical parameters
during contact, to model the phenomenon of merging of asperities by forming bigger
ones with completely different geometrical features as compared to what estimated
from the undeformed configuration.

The Contact Problem with Friction

In the most general three-dimensional contact problem with friction, the surface
displacement vector projected onto an orthogonal Cartesian frame Oxyz has three
components, ux , uy , and uz . The component uz is the component perpendicular to
the mean plane of the nominally flat rough surface and it corresponds to the vari-
able u for the frictionless normal contact problem detailed in the previous section.
The other components ux and uy correspond, on the other hand, to the in-plane sur-
face displacements. The latter are intimately connected to the corresponding surface
tractions qx , qy , and p through the Green functions.

For instance, a uniform distributed normal traction p(y) acting over a square
surface element S of lateral size δ identified by the position vector y = (x ′, y′)T
leads to the following surface displacements at another point x = (x, y)T at a distance
r = ‖x − y‖:
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ux = −1 − 2ν

4πG

∫
S

x − x ′

r2
p(y)dy, (4.22a)

uy = −1 − 2ν

4πG

∫
S

y − y′

r2
p(y)dy, (4.22b)

uz = 1 − ν

2πG

∫
S

p(y)
r

dy. (4.22c)

Similarly, for a uniform distributed tangential traction qx (y),

ux = 1

2πG

∫
S

[
1 − ν

r
+ ν

(x − x ′)2

r3

]
qx (y)dy, (4.23a)

uy = 1

2πG

∫
S

ν
(x − x ′)(y − y′)

r3
qx (y)dy, (4.23b)

uz = 1 − 2ν

4πG

∫
S

x − x ′

r2
qx (y)dy, (4.23c)

and for a uniform distributed tangential traction qy(y):

ux = 1

2πG

∫
S

ν
(x − x ′)(y − y′)

r3
qy(y)dy, (4.24a)

uy = 1

2πG

∫
S

[
1 − ν

r
+ ν

(y − y′)2

r3

]
qy(y)dy, (4.24b)

uz = 1 − 2ν

4πG

∫
S

y − y′

r2
qy(y)dy. (4.24c)

Therefore, we recognize that the normal contact problem is in general fully cou-
pled with the tangential one, in the sense that a normal pressure induces not only
normal displacements but also not-vanishing in-plane deformation. After introduc-
ing a boundary element discretization of the nominally rough surface into N × N
elements as for the frictionless normal contact problem, surface displacements in a
point defined by the indices i, j are related to uniform surface tractions acting on a
square element defined by the indices k, l via amatrix collecting the Green functions,
see Love (1999), Pohrt and Li (2014):

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭

i, j

=
N∑

k=1

N∑
l=1

⎡
⎣Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

⎤
⎦

i jkl

⎧⎨
⎩
qx
qy
p

⎫⎬
⎭

k,l

, (4.25)



4 Computational Methods for Contact Problems with Roughness 157

where Hzx = −Hxz , Hzy = −Hyz , Hyx = Hxy .
The special case ν = 1/2 leads to Hxz = Hyz = 0 and therefore the normal contact

problem becomes uncoupled from the tangential one. Another notable case corre-
sponds to ν = 0, where the coefficient Hxy vanishes and Hxx = Hyy = 2Hzz , leading
to coupling between the normal and the tangential contact problems, but uncoupling
between the two in-plane directions.

The computation of the surface displacements requires a convolution of the trac-
tion effects according to the application of Eq. (4.25), which has a complexity of the
order of O(N 4) operations. Although the number of boundary elements #IC included
in the superset of the possible candidates in contact, IC , is usually smaller than N 2,
a speedup is certainly required. To this aim, a multilevel multi-integration procedure
has been proposed in Lubrecht and Ioannides (1991) reducing the complexity to
O(N 2 log N ) by carrying out a summation over a coarser grid and then introducing
a correction in the vicinity of the point i, j . The same complexity can be reached by
doing the convolution in the Fourier space using a Fast Fourier Transform technique,
as proposed in Vollebregt (2014), Pohrt and Li (2014).

Suppose now to apply a monotonically increasing displacement in the normal
direction, till a given maximum value which is then held constant. Afterward, a
monotonically increasing displacement is applied in a tangential (in-plane) direction.
While the normal contact problem is ruled by the unilateral contact condition, in the
tangential direction it is customary to postulate the existence of two regimes locally
valid for any point in contact: stick, when the points of the two surfaces are intimately
adhering to each other, and slip, when the points experience a relative displacement
in the tangential direction. The distinction between such two states is ruled by the
Coulomb law of friction, which affirms that any point with q ≤ μp is in the stick
condition, being μ the local coefficient of static friction. Therefore, the solution of
the tangential contact problem requires finding the boundary elements belonging to
the stick or to the slip state, for a given fixed normal displacement and an imposed
tangential one.

Due to coupling, tangential tractions determined from the solution of the tangential
contact problem lead to an additional contribution to the normal displacements,which
would demand the recursive solution of the normal contact problem to identify the
corresponding updated normal contact tractions. Since coupling is in general weak,
this feedback effect is often neglected also in the case of ν �= 1/2, simply setting
Hxz = Hyz ∼= 0, see, e.g., the implementation in Pohrt and Li (2014). Physically,
this approximation implies that the real contact area does not change due to tangential
tractions.

Under these assumptions, after solving the frictionless normal contact problem for
a given imposed normal displacement �, the set I ∗

C of boundary elements in contact
(#I ∗

C = N ∗
C) is known. The subsequent application of a tangential displacement �T

leads to a partition of the contact set into two parts: a set where stick is observed, I ∗
C,st,

and a set where slip is expected, I ∗
C,sl. Hence, in matrix form, the relation between

surface displacements and tangential tractions can be formally partitioned as follows:
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{
ust
usl

}
=

[
Ast,st Ast,sl

Asl,st Asl,sl

]{
qst
qsl

}
, (4.26)

whereust collects the value of the imposed far-field tangential displacement�T for all
the boundary elements in stick condition. On the other hand, by definition, the vector
qsl collects entries which are given by the product between the friction coefficient
μ and the local pressure p acting on the boundary element in slip condition, and
therefore it is known.

The solution of the problem requires an iterative algorithm to identify I ∗
C,st, I

∗
C,sl,

and all the tractions and the surface displacements. To do so, the set I ∗
C,st is usually

initialized equal to I ∗
C , i.e., all the boundary elements in contact are supposed to be

in stick condition, while I ∗
C,sl is empty. Then, the tangential tractions of the boundary

elements in stick condition associated to the surface deflections can be computed
using the first row of Eq. (4.26):

Ast,stqst = ust − Ast,slqsl, (4.27)

which requires the inversion of the matrix Ast,st using an inverse fast convolution (a
conjugate gradient algorithm, for instance). In the first iteration, qsl = 0 and ust is a
vector of entries all equal to �T.

If all the boundary elements haveqst < μp, then the initial tentative approximation
was correct. However, in general, there will be some elements with a tangential
traction overcoming the limit value for the stick condition, and therefore they slip
and have to be moved to the I ∗

C,sl set. Correspondingly, the tangential tractions of
those boundary elements have to be limited to the maximum admissible value μp.
The tangential deflections ust and usl can now be recomputed from the updated
distribution of the stick and the slip tractions using again Eq. (4.26). At this point
it is still necessary to check if any boundary element in the tentative slip domain
presents usl ≥ �T. If this is the case, then such boundary elements should be sticking
and therefore they have to be transferred back to the stick domain and usl has to be
limited by�T. Afterward, for the updated partition of stick and slip domains, another
iteration is performed, which requires the computation of qst from Eq. (4.27) and
the surface displacements from Eq. (4.26). The iterative procedure stops when the
entries in I ∗

C,st and I ∗
C,sl do not change anymore, all the boundary elements belonging

to I ∗
C,st are subject to tangential tractions less than μp, and all the boundary elements

belonging to IC,sl have usl < �T.
Applications of this algorithm have been made in Paggi et al. (2014) for the iden-

tification of the evolution of the stick and slip contact domains from full stick to
full slip for fractal rough surfaces subject to a given normal force and an increasing
shearing displacement. Results pinpointed that the last boundary elements entering
the contact domain are the first slipping, due to the low normal pressures acting on
them. Therefore, the contact domain in stick condition is initially coincident with the
normal contact domain and it progressively shrinks to zero, when all the boundary
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elements slip. From the macroscopical point of view, the shearing force level corre-
sponding to full slip is simply equal to the local friction coefficient multiplied by the
applied total normal force, consistently with the Coulomb criterion adopted at the
microscopical level.

The Finite Element Method

Variational Formulation

In this section, the variational formulation governing the problem of contact between
two bodies across a rough interface is detailed. Since the mathematical formula-
tion leading to the finite element method can easily handle in a consistent manner
also adhesive (tensile) interactions at the interface, the most general scenario is
herein examined. Therefore, starting from the strong differential form describing the
mechanics of the continua and the problem of contact with adhesion along the inter-
face, the correspondingweak form is derived. Afterward, different solution strategies
and finite element discretization schemes are discussed, comparing methods based
on the explicit discretization of roughness versus a recent method proposed in Paggi
and Reinoso (2018) to analytically embed roughness into a special interface finite
element.

Governing equations and strong form. Let two deformable bodies occupy the
domains�i ∈ R

2 (i = 1, 2) in the undeformed configuration defined by the reference
system Oxyz. The two domains are separated by an interface � defined by the
opposite boundaries �i (i = 1, 2) of the two bodies, viz., � = ⋃

i=1,2 �i , where
contact or adhesive interactions take place. The whole boundary of the i th body,
∂�i , is therefore split into three parts: (i) a portion where displacements are imposed,
i.e., the Dirichlet boundary ∂�D

i ; (ii) a portion where tractions are specified, i.e.,
the Neumann boundary ∂�N

i ; (iii) and the interface �i = �C
i

⋃
�A
i where specific

boundary conditions have to be imposed to model contact on �C
i or adhesion on �A

i ,
see Fig. 4.9. The partition of �i in �C

i and �A
i is not known a priori, but it is the result

of the solution of the elastic problem.
In the most general case, we postulate the existence of a displacement field for

each body, ui = (ui , vi , wi )
T, that maps the transformation from the underformed

configuration to the deformed one, and vice versa. Such functions are thereby
assumed to be continuous, invertible, and differentiable functions of the position
vector x = (x, y, z)T within each body. At the interface �∗, on the other hand, the
configuration of the system is described by the relative displacement field�u, usually
called gap field g across the interface, which is mathematically defined as the projec-
tion of the relative displacement u1 − u2 onto the normal and tangential directions of
the interface defined by the unit vectors n, t1 and t2, respectively. In components, the
vector �u collects the relative tangential displacements, �ut,1, �ut,2, and the rel-
ative normal displacement, �un , i.e., �u = (�ut1,�ut2,�un)T. The total relative
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Fig. 4.9 Domains �i (i = 1, 2), their Dirichlet (∂�D
i ) and Neumann (∂�N

i ) boundaries, and the
interface � = �1

⋃
�2 composed of an adhesive part, �A

i , and a contact part, �C
i . Adapted from

Paggi and Reinoso (2018)

displacement in the tangential plane is given by�ut = (�ut1,�ut2)T. In the sequel,

we denote gn = �un and gt = �ut , with its modulus gt = �ut =
√

�u2t1 + �u2t3.
Inside each deformable material, the small deformation strain tensor εi (i = 1, 2)

is introduced as customary, which is defined as the symmetric part of the dis-
placement gradient: εi = ∇sui . In the sequel, the standard Voigt notation will
be used and the strain tensor components will be collected in the vector εi =
(εxx , εyy, εzz, γxy, γxz, γyz)

T
i .

In the absence of body forces, the strong (differential) formof equilibrium for each
body is provided by the linear momentum equation along with the Dirichlet and the
Neumann boundary conditions on ∂�D

i and ∂�N
i , respectively (i = 1, 2), equipped

by unilateral contact conditions in the normal direction on �∗
C , Coulomb frictional

conditions on the stick and slip partitions �∗
C,st and �∗

C,sl of �∗
C , and adhesion on �∗

A:

∇ · σ i = 0 in�i , (4.28a)

ui = u on ∂�D
i , (4.28b)

σ i · n = T on ∂�N
i , (4.28c)

gn = 0, pn < 0 on�∗
C , (4.28d)

gt = 0, ‖q‖ < μ|pn| on�∗
C,st, (4.28e)

q = −μ|pn| ġt
‖ġt‖ on�∗

C,sl, (4.28f)

gn > 0, pn = pA > 0 on�∗
A, (4.28g)
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where u denotes the imposed displacement,T the applied traction vector, pA(gn) is a
function of the relative displacement�u, and q is the shearing traction vector. There-
fore, the nonlinearity of the problem stems from the fact that the contact and adhesive
portions of the interface �∗ are known only once the displacement field, solution of
the problem, is known. As a consequence, the present problem can be ascribed to the
family of the so-called moving boundary value problems and it requires an iterative
solution scheme.

For its solution, the strong form has to be equipped by the constitutive equations
for the bulk and for the interface. For the bulk, recalling standard thermodynamic
arguments, general (linear or nonlinear) constitutive stress–strain relations can be
postulated without any loss of generality for the i th material domain: σ i := ∂εi �(εi )

and Ci := ∂2
εi εi

�(εi ), whereby �(εi ) is the Helmholtz free-energy function for the
body i , whereas its corresponding Cauchy stress tensor and the constitutive oper-
ator are, respectively, denoted by σ i and Ci . The two bodies are in general both
deformable, but in the present setting it is also possible to consider one of them as
rigid. This condition is of paramount interest for contact mechanics in the presence
of two dissimilar linear elastic bodies. In such a case, it is possible to simplify the
matter by replacing the bi-material system by a rigid body indenting a linear elastic
material having composite elastic parameters, function of the Young’s moduli Ei ,
and Poisson’s ratios νi (i = 1, 2) of the two elastic materials, as previously detailed
for the boundary element method, see also Barber (2010, 2018).

Regarding the interface, the constitutive response should be introduced by distin-
guishing between the normal and the tangential directions. In the normal direction,
the contact condition imposes that the displacement field solution leads to a vanish-
ing normal gap gn = 0 for the points in contact. Correspondingly, contact tractions
are negative valued in the finite element method, while it is remarkable to note that
the opposite convention was adopted in the boundary element method. For gn > 0,
positive-valued adhesive tractions apply, and they can be, for instance, given by a
relation dictated by an adhesion model inspired by the interatomic Lennard-Jones
potential:

pA = 24ε

[
κ6

(gn + gn,0)7
− 2

κ12

(gn + gn,0)13

]
, (4.29)

where ε and κ are the model parameters and gn,0 is the molecular equilibrium dis-
tance. The parameter gn,0 is such that the condition gn = 0 leads to vanishing adhe-
sive tractions and it correctly captures the transition from adhesion to contact. Other
nonlinear adhesive models can be used in the present approach without any loss of
generality, e.g., the surface potential derived from the interatomic Lennard-Jones
potential, see Yu and Polycarpou (2004). To treat both contact and adhesive tractions
in a unified framework, relaxing at the same time the unilateral contact constraint, a
generalized penalty approach can be efficiently exploited (Paggi and Reinoso 2018).
Physically speaking, a nonlinear springmodel is inserted along the interface between
the two bodies, where pn is given by
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pn(gn) =
{
Kgn, if gn < 0,

pA, if gn ≥ 0.
(4.30)

This formulation leads to a solution allowing for small compenetration, depending
on the value of the penalty stiffness K . Hence, K should be high enough to reduce
material penetration between adjacent continua and, at the same time, it should not
be too high to cause ill-conditioning of the tangent operator resulting from the com-
putational scheme. Following the pioneering work in Zavarise et al. (2019, 1992),
the penalty stiffness K could be related to the normal contact stiffness predicted by
semi-analytical micromechanical contact models, giving a physical ground for its
estimation.

In the tangential direction, q is the tangential traction vector which obeys the
Coulomb friction law. To simplify its treatment into a computational scheme, a
regularized dependency of q upon ġt is usually put forward, smoothing the sharp
transition from the stick to the slip condition, see, e.g., Wriggers (2006, Sect. 5.2.3).

It is remarkable to note here that the treatment of the contact problem with fric-
tion in the finite element method is more general than the analogous treatment in
the boundary element method, since it allows simulating any loading path in three
dimensions. According to Eq. (4.28), the tangential traction vector q changes sign
depending on the velocity of sliding, ġt, which has to be computed using a time
integration routine, usually based on the implicit Euler scheme. Moreover, the stick
and slip portions of q can be computed using a return mapping algorithm, in anal-
ogy with elastoplasticity. For small tangential displacements leading to a situation
intermediate from full stick to full slip, before the onset of gross sliding, and for
simple monotonic loading paths in one given tangential direction, the formulation
can be simplified and rewritten in terms of the total relative displacement gt, instead
of its time derivative. This leads to a penalty-like formulation similar to that used for
Mode II cohesive zone models for fracture, see Paggi et al. (2006), Carpinteri et al.
(2008), where tangential tractions are opposing to the relative sliding deformation
and are specified as a closed-form equation in terms of gt.

Weak form. According to the principle of virtual work, the weak form associated to
the strong formEq. (4.28)with the penalty regularization in the normal and tangential
directions reads

� =
∫

�1

σ 1(u1)Tε1(v1)d� +
∫

�2

σ2(u2)Tε2(v2)d�

−
∫

∂�N
1

TTv1d∂� −
∫

∂�N
2

TTv2d∂�

−
∫

�∗
C

pn(�u)gn(�v)d� −
∫

�∗
C

q(�u)gt(�v)d�

−
∫

�∗
A

pA(�u)gn(�v)d� = 0,

(4.31)
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where vi is the test function (virtual displacement field), and gn(�v) and gt (�v) are
the virtual normal and tangential relative displacements at the interface �∗. The test
function in the i th body fulfills the condition vi = 0 on ∂�D

i and the adhesive-contact
condition on �∗. The displacement field ui solution of the weak form (4.31) is such
that it corresponds to the minimum of � for any choice of the test functions vi .

The numerical treatment of the weak form (4.31) within the finite element method
requires the introduction of two different types of finite element discretization, one
for the bulk,�i,h , and another for the interface,�∗

h , where the subscript h refers to the
respective discretized geometrical feature. For the bulk, standard linear quadrilateral
or triangular isoparametric finite elements can be invoked, see classical finite element
textbooks (Zienkiewicz and Taylor 2000) for details. For the interface, different
strategies can be exploited and they are discussed in the next sections.

Methods Based on the Explicit Discretization of Roughness

Methods based on the explicit discretization of roughness introduce special dis-
cretization schemes to model the rough interface topology.

The simplestmethodwas proposed byHyun et al. (2004) and Pei et al. (2005),who
investigated the frictionless normal contact problem between a rough surface and a
flat half-plane for elastic (Hyun et al. 2004) or elastoplastic (Pei et al. 2005) continua.
In their approach, a three-dimensional mesh for a rough surface was constructed
in two stages. First, a flat surface with nodes at each point on the square grid was
considered.A local refinement techniquewas used to achieve a strongmesh gradation
with very small elements near the surface and a coarser discretization in the bulk, to
reduce the number of finite elements and, therefore, indirectly, the computation cost
associated to the solution of the algebraic equations associated to the finite element
method. In the second step, all nodes belonging to the surface were displaced to
create the desired roughness.

Since only a small fraction of the nodes of the rough surface are in contact after
the application of the load, it was convenient to assemble only nonvanishing contact
contributions to the weak form. To do that, the conventional master/slave node-to-
surface contact search was employed in Hyun et al. (2004), Pei et al. (2005). The
contact search computes the valueof the normal gap for eachnodeof the rough surface
with respect to the opposingmaster flat surface, considering the projection of the node
position in the direction normal to the flat surface, see Wriggers (2006, Sect. 10.1).
Depending on the sign of the gap function, nodes experiencing a compenetration are
retained in the so-called active set. After inserting the finite element discretization,
an explicit Newmark time-stepping algorithm was adopted in Hyun et al. (2004),
Pei et al. (2005) to further reduce the computation cost. The advantage is that the
explicit method leads to a set of uncoupled algebraic equations whose solution can
be parallelized. The disadvantage is represented by the fact that an artificial damping
has to be introduced to simulate quasi-static contact problems and the algorithm is
not unconditionally stable, thus requiring small time steps.
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More sophisticate discretizationmethods available in the literature exploit smooth
interpolation schemes based on splines with randomly chosen heights to generate
the asperities of the surface (Wriggers and Reinelt 2009), in conjunction with con-
tact search algorithms and implicit Newton–Raphson incremental-iterative solution
schemes for the solution of the nonlinear algebraic equations. Such an approach
is unconditionally stable, thanks to the computation of the tangent stiffness matrix.
However, sparse global stiffness matrices are obtained, which do not allow a straight-
forward parallelization of the linearized set of algebraic equations as for the explicit
approach. Moreover, the introduction of smooth interpolation schemes can be ben-
eficial for modeling wavy surfaces or spheres, as in the case of NURBS used in De
Lorenzis and Wriggers (2013) to depict sinusoidal wavy profiles, but it is cumber-
some for the description of multiscale roughness features over multiple wavelengths.
Due to the complexity of the implicit solution scheme and the explicit discretization
of the rough geometry, applications have been confined to the solution of small-scale
problems on representative surface elements. This is, for instance, the case of two-
scale finite element simulations as proposed in Wriggers and Reinelt (2009), where
a reduced fine-scale model of a wavy surface was used for the computation of a
microscopically constitutive law to be passed to standard smooth macroscale finite
element computations.

Interface Finite Elements with Embedded Profile for Joint
Roughness

As an alternative approach to the explicit discretization of roughness, which is com-
putationally demanding and poses severe limitations for the use of the finite element
method, a new interface finite element with analytically embedded roughness has
been proposed in Paggi and Reinoso (2018).

The method assumes that the boundaries �i in Fig. 4.9 are nominally flat but
microscopically embedding rough profiles. �1 and �2 can be one the negative of the
other, as in the case of an interface originated by fracture, or different from each
other, as for two bodies coming into contact, without any restriction.

It is convenient to introduce for the i th rough profile �i its smoother line hi (ξi )
parallel to the average line of the profile and with datum set in correspondence
of its deepest valley (see Fig. 4.10). A point along the curve hi (ξi ) is identified
by a value of the curvilinear coordinate ξi = ξi (x, y), which establishes a one-to-
one correspondence with the coordinates of the same point in the global reference
system Oxy. It also associates the tangential and normal unit vectors ti (ξi ) and
ni (ξi ) to hi (ξi ), to identify the normal and the tangential directions at any point
along the smoothed line hi (ξi ), with ni pointing outward from the domain �i . Due
to the assumption that the two non-conformal profiles are microscopically rough but
nominally flat, the two smoother lines hi (ξi ) are parallel to each other and therefore
n1(ξ) = −n2(ξ) and t1(ξ) = −t2(ξ), ∀ξ .
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Fig. 4.10 Parametrization of two microscopically rough profiles composing an interface �.
Adapted from Paggi and Reinoso (2018)

Fig. 4.11 Composite topography of the interface �. Adapted from Paggi and Reinoso (2018)

The actual elevation of the rough profile measured from hi (ξi ) is finally described
by the roughness function hi (ξi ). Therefore, the i th boundary �i is parametrized
such that its actual elevation ei (ξi ) in the curvilinear setting is given by ei (ξi ) =
hi (ξi ) + hi (ξi ).

It is in general convenient to exploit the concept of composite topography �∗ of
the interface �, as also routinely done for the boundary element method. The contact
problem between two linear elastic materials with dissimilar rough boundaries is
therefore simplified into the contact problem between an infinitely stiff indenter
with such a composite topography taken as boundary, and a linear elastic half-plane
with composite elastic parameters function of those of the parent elastic bodies. This
transformation also allows the study of the contact problem involving a rigid indenter
of arbitrary profile (spherical, conical, etc.) and a half-plane.

In the context of the present method, the composite topography is mathematically
represented by a flat line, e2 = h2(ξ), and a profile with elevation e1(ξ) = h2(ξ) +
h∗(ξ), where h∗(ξ) = maxξ [h1(ξ) + h2(ξ)] − [h1(ξ) + h2(ξ)] (see Fig. 4.11).

This transformation does not apply for two elastoplastic or viscoelastic materials,
while it does apply for any nonlinear interface constitutive model provided that the
two materials are linear elastic. Elastoplastic or viscoelastic contact problems can be
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Fig. 4.12 Zero-thickness interface representation �∗ of the composite topography. Adapted from
Paggi and Reinoso (2018)

still simulated using the proposed approach, provide that the attention is restricted to
the contact problem between a rigid indenter with rough boundary �1 and a flat half-
plane �2 with any prescribed material constitutive relation. In such a case, in fact,
the composite topography simply reduces to �1 and the original indenter geometry
is kept unchanged.

After this transformation, a zero-thickness interface model for �∗ is introduced
and defined by the two initially coincident but distinct (not-joined) flat lines described
by the function e2(ξ), plus the associated function h∗(ξ). This composite topography
has also unique tangential and normal unit vectors t and n, as previously discussed,
see Fig. 4.12.

In this framework, the normal gap gn of the composite topography, which rep-
resents the actual physical separation between the composite topography and the
smooth curve e2 after deformation, is given by gn = �un + h∗, since material 1 acts
as a rigid indenter with a rough profile h∗. Based on the value of gn, the portion of
the interface in contact, �C = �C

1

⋃
�C
2 , is identified by the condition gn = 0. On

the other hand, the portion subject to adhesion, �A = �A
1

⋃
�A
2 , presents a positive-

valued normal gap gn > 0. A negative-valued normal gap is not admissible so far by
definition, since it would imply compenetration between the bodies.

At the interface, a conforming finite element discretization for the continua can
be simply adopted. Consequently, a special interface finite element with embedded
profile for joint roughness (MPJR interface finite element) whose kinematics departs
from the formulation of interface elements used in nonlinear fracture mechanics for
cohesive crack growth (Ortiz and Pandolfi 1999; Paggi and Wriggers 2011, 2012;
Reinoso and Paggi 2014; Paggi and Reinoso 2015) has been proposed in Paggi and
Reinoso (2018) to be inserted along the interface.

In 2D problems, the interface element is defined by nodes 1 and 2, which belong
to �∗

2,h , and by nodes 3 and 4, which belong to �∗
1,h , see Fig. 4.13.

For frictionless normal contact problems, the contribution of the interface to the
weak form is provided by the integral

∫
�∗ p(gn)gnd� in Eq. (4.31), which can be

Fig. 4.13 Sketch of the
interface finite element
topology. From Paggi and
Reinoso (2018)
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computed as the sum of the contributions of the whole interface elements, invoking
the property of compactness of isoparametric shape functions:

∫
�∗

p(gn)gnd� ∼=
∫
�∗
h

p(gn)gnd� = Anel
e=1

⎧⎪⎨
⎪⎩

∫
�∗
e

p(gn)gnd�

⎫⎪⎬
⎪⎭ , (4.32)

where the subscript e refers to the eth interface element e = 1, . . . , nel , and A sym-
bolically denotes an assembly operator.

The interface integral is herein computed exactly, by using the two-point Newton–
Cotes quadrature formula which implies the sampling of the integrand at the nodes
1 and 2 (or, equivalently, at nodes 3 and 4):

∫
�∗
e

p(gn)gnd� =
∑
j=1,2

pi (gn)gn,i det J, (4.33)

where det J is the standard determinant of the Jacobian of the transformation that
maps the geometry of the interface element from its global reference frame to the
natural reference system.

To evaluate the normal gap gn at any point inside the interface element, the nodal
displacement vector d = (u1, v1, . . . , u4, v4)T has to be introduced, which collects
the displacements u and v of the four interface finite element nodes. The relative
displacement �u for the nodes 1–4 and 2–3 is then computed by applying a matrix
operator L which makes the difference between the displacements of nodes 1 and
4, and between nodes 2 and 3. The relative displacement within the interface finite
element is then given by the linear interpolation of the corresponding nodal values,
performed by the multiplication with the matrixNwhich collects the shape functions
at the element level. Finally, the tangential and the normal gaps are determined by
the multiplication with the rotation matrix R defined by the components of the unit
vectors t and n. In formulae, we have

�u = RNLd, (4.34)

where the operators present the following matrix form:

L =

⎡
⎢⎢⎣

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

⎤
⎥⎥⎦ , (4.35a)

N =
[
N1 0 N2 0
0 N1 0 N2

]
, (4.35b)

R =
[
tx ty
nx ny

]
, (4.35c)
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where nx , ny , tx , and ty are the components of the unit vectors n and t along the x
and y directions, respectively.

Once �u = (�ut,�un)T is determined, the actual normal gap is given by a cor-
rection to �un to account for the embedded profile that models the non-planarity
of the rigid indenter �∗, i.e., gn = �un + h∗. The normal gap is used to compute
the normal traction pn according to Eq. (4.30). Similarly, for further extensions to
adhesive-contact problems with friction in the tangential direction, a relationship
between the shearing traction pt and the relative sliding displacement gt, or its veloc-
ity, should be introduced, in analogy with the normal problem.

Due to the intrinsic nonlinearity, a full Newton–Raphson iterative and incremental
scheme was adopted in Paggi and Reinoso (2018) to solve the implicit nonlinear
algebraic system of equations resulting from the finite element discretization:

K(k)�d(k) = −R(k), (4.36a)

d(k+1) = d(k) + �d(k), (4.36b)

where the superscript k denotes the iteration inside the Newton–Raphson loop. The
residual vector R(k)

e and the tangent stiffness matrix K(k)
e associated with the eth

interface finite element, to be assembled to the global residual vector R and to the
global stiffness matrix K, are

R(k)
e =

∫
�∗
e

LTNTRTp d�, (4.37a)

K(k)
e =

∫
�∗
e

LTNTRT
CRNL d�, (4.37b)

where p = (pt, pn)T = (0, pn)T for frictionless normal contact problems, and C is
the linearized interface constitutive matrix:

C =
⎡
⎢⎣

∂pt
∂gt

∂pt
∂gn

∂pn
∂gt

∂pn
∂gn

⎤
⎥⎦ , (4.38)

where, again for the frictionless normal contact problem, one needs to specify only
∂pn/∂gn depending on the sign of the normal gap, distinguishing between the penalty
relation in compression or the adhesive relation in tension.

In principle, the MPJR interface element contributions to the stiffness matrix
could be added only for the elements in contact, using a conventional contact search
algorithm. However, in case of adhesive contact with long-range adhesive effects,
all the interface elements can contribute to tension or compression and have to be
assembled in any case. Due to the simplicity in modeling roughness according to
this approach, which is embedded in the computation of the normal gap, the cost of
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assembling the whole set of interface finite elements is much less important than for
the methods relying on an explicit discretization of roughness. Therefore, contact
search algorithms can be skipped, further simplifying the numerical implementation
and the robustness of the computational method.

Comparison Between Different Approaches

As a benchmark problem to compare the different approaches presented in Sects.
4.3.2 and 4.3.3, we simulate the bidimensional frictionless normal contact problem
without adhesion between a rigid cylinder indenting a half-plane. For comparison
purposes, we recall the Hertzian analytical solution, which is available to assess the
model accuracy.

The standard procedure for solving this problem within the finite element method
requires modeling of the circular cross section of the cylinder and the use of a contact
formulation to enforce the unilateral contact constraint along the interface between
the cylinder and the half-plane. For that, among the possible numerical strategies, the
penalty approach, the Lagrangemultiplier method, and themortar method are among
the most popular formulations, see Wriggers (2006). In spite of the simplicity of this
nonconforming contact problem, it is well known that all such methods require very
finemeshes to resolve the contact area and the contact traction distribution, especially
near the edges of the contact strip. This is primarily due to the fact that a C1 linear
finite element interpolation scheme is not sufficiently accurate to describe the circular
shape of the cylinder. To overcome this drawback and increase the accuracy in the
boundary element method and in the finite element method relying on the explicit
discretization of the interface geometry, adaptive mesh refinement was proposed by
Oysu (2007), see Fig. 4.14.

Alternatively, the NURBS finite element technique, which adopts shape functions
with a very high regularity and smoothness to approximate curvilinear shapes, can
be adopted to explicitly discretize the interface geometry, since it has been demon-
strated in Dimitri et al. (2014) to provide the best accuracy over other discretization
techniques. In spite of that, NURBS still presents problems in capturing the analyti-
cal Hertzian contact solution for the frictionless normal contact problem between a
sphere and a half-plane, though a very fine mesh was used in Dimitri et al. (2014),
see Fig. 4.15.

In the MPJR interface finite element, instead of modeling the geometry of the
circular cross section, the non-planarity of the interface is simply embedded in the
interface finite element with its exact analytical function. The actual circular shape of
the boundary �1 is therefore given by the composite topography of the interface pro-
file: e1(x) = h2 + h∗(x), where h2 = xl and h∗(x) = R − √

R2 − x2. This strategy
resolves the issues related to the accuracy of finite element interpolation schemes for
the bulk and the interface, which can now have low-order linear shape functions. In
this context, the geometry of the cylinder of radius R occupying the domain �1 can
be simply replaced by a rectangular block of lateral size xl and thickness xl/20, while
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Fig. 4.14 Problems in resolving contact tractions in Hertzian normal contact problems arising
from the boundary element method and the finite element method with or without mesh refinement.
Adapted from Oysu (2007)

Fig. 4.15 Problems in
resolving contact tractions in
Hertzian normal contact
problems arising from the
finite element method with
NURBS discretization of the
interface geometry. Adapted
from Dimitri et al. (2014)

the half-plane occupying the domain �2 can be modeled as a plane strain domain
with size xl , see Fig. 4.16. Since the indenter is rigid, the equivalent model is exact,
because there is no error resulting from the deformation associated to the different
geometries of body 1. The low-order interpolation scheme used for the interface,
on the other hand, is enhanced by the exact analytical representation of the circular
indenter profile.

To achieve the condition of a rigid cylinder pressed onto an elastically deformable
half-plane, E1 canbe simply set equal to 1000E2,where the subscripts 1 and2 identify
the rigid (indenter) and deformable (half-plane) bodies, respectively. Regarding the
ratio between the cylinder radius and the lateral size of the half-plane, R/xl , two cases
were examined in Paggi and Reinoso (2018): (i) R/xl = 100, which corresponds
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Fig. 4.16 The actual geometry of the Hertz contact problem (left), and its finite element model
based on the present variational approach with embedded roughness (right), which incorporates the
analytical expression of the curved interface profile into the MPJR interface finite elements instead
of explicitly discretizing the interface geometry

to a slightly nonplanar interface; (ii) R/xl = 1, which corresponds to a significant
deviation of the interface from the non-planarity. For both cases, uniform meshes for
the domains �1 and �2 were used, employing four nodes linear finite elements for
the bulk and the proposed MPJR interface elements with embedded roughness for
the interface. The whole interface was discretized in the horizontal direction by only
nel = 100 finite elements, which is much less than what was used in Fig. 4.15 for
NURBS, and without adopting any mesh refinement.

Dirichlet boundary conditions are represented in this test by imposed downward
vertical displacements w on the topmost side of the domain �1, monotonically
increasing with a pseudo-time variable to simulate the quasi-static normal contact
problem; a fully restrained lower side of the domain�2; and a symmetry condition on
the vertical size of domains �1 and �2 to account for the symmetry in the geometry
and in the loading (Fig. 4.16).

Numerical predictions are provided in terms of the dimensionless normal con-
tact pressure, p/E , versus the dimensionless position along the interface, x/R. The
contact pressure p is given by p = −pn, and therefore it is positive valued on the
portion of the interface �C in contact and it must be zero elsewhere, since adhesion
is not considered here. The penalty stiffness K is set K = 10E1/xl , to model a very
stiff interface and avoid material penetration.

Results from the current simulations are shown in Fig. 4.17 for the case R/xl =
100 and R/xl = 1, considering nine increasing values for the imposed far-field dis-
placement w. Analytical Hertzian results, corresponding to the same contact radii,
are also superimposed by circles. As can be observed in these graphs, the agree-
ment between the present model predictions and theory is excellent, also for the case
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Fig. 4.17 Dimensionless contact pressure along the interface for different imposed far-field dis-
placements and two different values of R/xl . E , R, and xl denote, respectively, the composite
Young’s modulus, the cylinder radius, and the lateral size of the domain, respectively. The analyti-
cal Hertzian solution is superimposed with circles. Adapted from Paggi and Reinoso (2018)

R/xl = 1, which is indeed very challenging from the computational point of view
due to the significant non-planarity of the interface.

Conclusive Remarks

The solution of the contact problem between bodies separated by rough boundaries
is very important in many tribological applications and it is a challenging research
topic due to the multiscale features of roughness that span over multiple length
scales. So far, especially in relation to the linear elastic frictionless normal contact
problem, the boundary element method has been proved to be very efficient from
the computational point of view and preferable over the finite element method. It
has been used to validate semi-analytical approaches based on asperities or other
prominent contact theories, see, e.g., Mueser et al. (2017), inspiring also further
developments in the framework of multi-asperity contact models including elastic
interaction effects. Moreover, it has been applied to identify valuable trends on the
effect of roughness on the emerging contact response, such as the real contact area
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Table 4.1 Synopsis of the computational methods reviewed in this chapter

Approach Roughness
discretization

Continua Interface Pros Cons

BEM Exact
representation

Linear
elasticity or
elastoplastic-
ity

Recently
extended to
adhesion

Fast and
accurate

Nonlinearities
and multi-field
problems are
difficult to be
addressed

Multi-asperity
BEM

Only
asperities

Linear
elasticity

Resolution-
dependent
discretization

Very fast As BEM, plus
the limits of
defining the
asperities

FEM with
explicit
discretization
of the
interface
geometry
(NURBS,
splines, etc.)

Modeling
multiscale
roughness is
problematic

No restrictions No restrictions Ideal for
nonlinear and
multi-field
problems

Limits in the
discretization
of roughness;
computation-
ally
demanding

FEM-MPJR
with
embedded
roughness

Exact No restrictions No restrictions Ideal for
nonlinear and
multi-field
problems

Faster and
simpler than
FEM, but still
computation-
ally
demanding as
compared to
BEM

versus load relation (Paggi and Ciavarella 2010), the normal contact stiffness versus
load dependency (Paggi and Barber 2011), as well as the evolution of the free volume
between rough surfaces during the progress of contact (Paggi and He 2015).

If the research on the frictionless normal contact problem between linear elastic
materials has seen a significant impulse during the last decades, the contact problem
in the presence of friction still presents open issues and aspects deserving investi-
gation. So far, the evolution of the stick and slip contact domains in the case of a
monotonically increasing tangential displacement applied by keeping constant the
normal load has been investigated using the boundary element method in Paggi et al.
(2014). Another important topic regards the effect of roughness on hysteretic energy
dissipation caused by cyclic tangential loading paths, see, e.g., Borri-Brunetto et al.
(2006), Barber et al. (2011).

Finally, there is a range of contact problems involving nonlinear constitutive rela-
tions, nonlinear geometric (finite elasticity) effects, and coupled multi-field prob-
lems that have been only marginally challenged so far. For instance, the problem of
electromechanical interaction between excitable deformable cells in finite elasticity
investigated in Lenarda et al. (2018) is an exemplary problem requiring the exten-
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sion of the methods of contact mechanics to soft biological matter. For this class
of problems, the constitutive nonlinearities for the interface and the continua sug-
gest passing to the finite element method. In this regard, further advancements in the
interface finite element discretization are indeed required for an efficient treatment of
contact problems with roughness features covering multiple length scales. The novel
approach based on the interface finite element with embedded roughness proposed
in Paggi and Reinoso (2018) opens new perspectives in this direction.

As a guideline for new researchers entering the field, and also for experienced
researchers willing to explore future directions of research in contact mechanics
between rough surfaces, a synopsis of the computational methods reviewed in this
chapter is provided in Table 4.1, emphasizing the advantages and the disadvantages
of each approach.
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Chapter 5
Emergent Properties from Contact
Between Rough Interfaces

Marco Paggi

Abstract Interface phenomena at the micro- and nanoscales are of paramount
importance in nature and technology. Real surfaces present roughness over multiple
scales, and understanding the role of roughness in surface physics (heat and elec-
tric transfer, hydrophobic properties), surface chemistry (chemical reactions) and
tribology (stress transfer, adhesion, lubrication) is a very active research topic. This
chapter focuses on the key research question of how nonlinear interactions between
contact patches induced by roughness across different length scales influence the
emergent physico-mechanical properties of an interface. Special attention is given to
the scaling of the real area of contact with the applied normal load, the dependency
of the thermal and electric contact conductance on the normal pressure, the evolution
of the free volume network between rough surfaces in contact, the role of adhesion
and also the evolution of partial slip in frictional contacts.

Introduction

Due to the technological trend of pushing the design and the production of structures
down to the micro- and nanoscales (see, e.g. micro- and nanoelectromechanical sys-
tems), surface-related phenomena become predominant over bulk properties (Luan
and Robbins 2005). Therefore, local imperfections and deviation from the ideal flat-
ness of surfaces (Raja et al. 2002), and especially waviness, roughness and texturing,
have a fundamental effect on surface physics (heat and electric transfer, optical
properties, fluid–solid interactions including hydrophobic properties, etc.), surface
chemistry (adhesion, chemical reactions, diffusion, etc.), and tribology (stress trans-
fer between interacting surfaces in relative motion, friction, wear, lubrication, etc.),
see (Paggi and Hills 2016a, b; Vakis et al. 2018) for a wide overview.Moreover, these
problems are a neat example of a highly interdisciplinary research area which draws
on many academic fields including physics, chemistry, materials science, mathemat-
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ics, biology and engineering. In this regard, the role of mechanics is essential for
understanding, modelling and simulating the stress and the deformation fields expe-
rienced by rough surfaces in contact, as well as for the description of their evolution
over time (Rabinowicz 1965; Johnson 1985; Goryacheva 1998; Persson 2000; Popov
2010; Popov and Hess 2015; Barber 2018).

A closer look at the scientific literature shows that a significant effort has been
devoted to understanding and predicting the emergent physico-mechanical properties
resulting from surfaces in contact, towards the identification of possible universal
trends and scaling laws. Even in the simplest case of linear elastic continua, the
presence of roughness highly complicates the solution of the contact problem since
the real area of contact is changing with the applied load level, and it is therefore
a source of nonlinearity. Therefore, understanding how the geometrical/topological
features of roughness influence the relation between the real area of contact and the
normal force, the relation between the thermal/electrical contact resistance and the
contact pressure, or the apparent value of the friction coefficient, just as few exem-
plary problems, is an intriguing research question with also practical technological
implications.

The relation between the real area of contact and the normal load has been for
the first time investigated by micromechanical contact theories (Greenwood and
Williamson 1966; Onions and Archard 1973; Nayak 1973; Bush et al. 1976; Green-
wood and Wu 2001; Greenwood 2006; Ciavarella et al. 2008b; Paggi and Ciavarella
2010) relying on random process theory (Cartwright and Longuet-Higgins 1956;
Longuet-Higgins 1957a, b;Whitehouse and Archard 1970; Nayak 1971; Greenwood
1984, 2006) for the description of the geometrical features of asperities—the 3D
maxima of the rough surface—modelled as Hertzian paraboloids with joint statisti-
cal distributions of heights and curvatures. Further achievements in the identification
of synthetic relations between the topology of the contact domain and the scale-
invariant features of roughness were made in (Majumdar and Bhushan 1990, 1991;
Bhushan and Majumdar 1992; Borodich and Mosolov 1992; Borodich 1997; Borri-
Brunetto et al. 1999; Ciavarella and Demelio 2000; Persson 2001a, 2006; Persson
et al. 2002; Carbone andBottiglione 2008;Yastrebov et al. 2015) by exploiting fractal
geometry concepts, without hinging on the asperity definition. Of particular interest
was the study of the linearity in the relation between the real contact area and the
applied load. If the linearity is proved, then this has the important implication that the
Amontons’ second law of friction holds true, i.e. the force of friction is independent
of the apparent area of contact (Bowden and Tabor 1964).

The relation between the thermal contact conductance and the applied pressure has
been pioneeringly investigated in a series of combined experimental and theoretical
studies by Yovanovich and his group (Cooper et al. 1968; Mikic 1974; Blahey et al.
1980; Sridhar and Yovanovich 1996a, b, 1994; Milanez et al. 2003b). This topic is
of major importance in the design of electronic packaging, where the conductance
between electronic devices and dissipators should be increased asmuch as possible to
maintain low operating temperatures and safety conditions. This need would suggest
the useof large contact areas to enhancedissipation,which is however a trendopposite
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to miniaturization. Therefore, a careful analysis of the effect of roughness on the heat
flux at asperities is required, see Holm (1958) and the references therein given. In
this field, the theoretical proof of the mathematical analogy between the solution
of the normal contact problem and the thermal or the electric contact conduction
established by Barber (2003) paved the way to a series of theoretical investigations
on the scaling relation between the normal contact stiffness and the applied pressure
(Ciavarella et al. 2004a, b, 2008a; Campaña et al. 2001; Paggi and Barber 2011).
In particular, Paggi and Barber (2011) revisited the whole problem by applying
dimensional analysis considerations and incomplete self-similarity concepts, with
the important result of reconciling a wide range of empirically identified scaling
laws within a unified theoretical framework. Moreover, Paggi and Barber (2011)
clearly elucidated on the effect of the long wavelength cut-off of rough surfaces on
the normal contact stiffness, pinpointing the limitations of previous numerical results
published in the literature.

Frictional phenomena, and in particular sliding as a result of an avalanche process,
where asperities progressively change their state from full stick to full slip, were
also subject of investigation for their importance in controlling sliding friction of
tyres and engineering components (Persson 2001b; Persson et al. 2005; Carbone
and Mangialardi 2004; Carbone and Putignano 2013; Paggi et al. 2014), and also to
assess the amount of energy dissipated during cyclic loading (Borri-Brunetto et al.
2006; Barber et al. 2011). The understanding of the amount of friction involved
in the sliding of natural faults (Carpinteri and Paggi 2005, 2008, 2009) led to the
discovery of important size-scale effects on the nominal friction coefficient caused by
the complex fractal pattern of the contact domain. They were predicted by theory and
confirmed by the experimental evidence in geophysics and rock mechanics (Bandis
et al. 1981), across several length scales ranging from the laboratory one up to the
planetary size-scale.

Adhesion effects in the presence of wavy (Guduru 2007; Guduru and Bull 2007;
Waters et al. 2009) and rough interfaces (Persson 2002a, b; Yu and Polycarpou 2004)
have also been subject of experimental and theoretical investigation, with recent
developments towards the proposal of novel numerical techniques for studying adhe-
sive contact problems in the presence of roughness based on the boundary element
method (Popov et al. 2017; Rey et al. 2017; Li et al. 2018) and on the finite element
method (Paggi and Reinoso 2018).

The topology of surfaces is also governing other physical properties of engineer-
ing interest, such as the ability of a surface to repel water, which inspires the design of
surfaces possessing a self-cleaning behaviour. The relation between surface texture
and hydrophobic properties has been studied in (Sherge and Gorb 2001; Nosonovsky
2007; Nosonovsky and Bhushan 2008), also in reference to bio-inspired solutions. In
this regard, Lotus and Ginkgo Biloba leaves possess such features through a complex
texture involving channels and roughness over multiple length scales, as experimen-
tally characterized by Borri and Paggi (2015, 2016) using a confocal profilometer
with different magnifications and a scanning electron microscope (Fig. 5.1).

Other physical surface properties governed by roughness are the optical ones and
in particular the ability of reflecting or absorbing the incident light. This feature is
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Fig. 5.1 Multi-scale texture and roughness of a Ginkgo Biloba leaf observed at different magnifi-
cations within a scanning electron microscope

of technological importance in silicon solar cells, whose surface has a rough texture
designed to enhance trapping of the light between the asperities and increase in its
turn the solar energy conversion efficiency (Fig. 5.2).

Another important topic regards the transport properties of rough surfaces in con-
tact. A free volume between bodies in contact separated by roughness is present in
conditions far from full contact. Such a free volume constitutes a fractal network
whose properties are important for flow and transport of hydrothermal fluids, water
and contaminants in groundwater systems, but also for oil and gas in petroleum
reservoirs (Berkowitz 2002; Scaraggi and Persson 2012). For instance, the transport
properties of proppant through fracture networks are relevant for hydraulic fracturing
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Fig. 5.2 Rough texture of the surface of silicon solar cells observed with a scanning electron
microscope

(Tarabay 2014). At amuch smaller scale, welded surfaces inmicroelectromechanical
systems may present a free volume forming channels and capillaries of random dis-
tribution. Such channels are critical for gas leakage that may penetrate the soldered
joint and affect the reliability of the system itself (Han 2012). These problems are
also relevant in materials for energy applications, such as in solid oxide fuel cells
(Green 2007) and in photovoltaic modules (Lenarda and Paggi 2016; Gagliardi et al.
2017) where moisture can diffuse along the interface between the textured surface
of solar cells and the encapsulating polymer, promoting chemical oxidation of elec-
tric contacts. The topological features of roughness in seal contacts are also very
important for the onset of wear (Leachman et al. 2014).

The presence of a network of microscopical channels is a key issue also for lubri-
cation (Almqvist and Dasht 2006; Almqvist et al. 2014). It is in fact technologically
well established that surface texturing, such as micro-dimples, can enhance lubrica-
tion by trapping oil between surfaces in relative motion (Scaraggi 2012).

Numerical Methods for the Simulation of Rough Surfaces

The generation of synthetic random rough surfaces to be used in contact mechan-
ics simulations has received a beneficial input from fractal geometry in the 1980s
and 1990s, with the pioneering article by Mandelbrot et al. (1984) investigating the
fractal character of fracture surfaces of metals, which was stimulating the discussion
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between mathematicians (Feder 1988; Russ 1994) and engineers (Carpinteri 1994;
Carpinteri and Chiaia 1995). Fractals have been largely explored for the simulation
of realistic natural landscapes and forms, especially in connection with computer
graphics applications, see Peitgen and Saupe (1988) for a comprehensive overview
of algorithms. At the same time, the scale-invariant properties of roughness gener-
ated using these methods were opening new perspectives for the quantification of the
effect of the resolution of roughness measurement systems, dramatically increased
with the advent of non-contact profilometers, confocal and interferometric tech-
niques, as well as atomic force microscopy (Majumdar and Bhushan 1990, 1991;
Bhushan and Majumdar 1992; Borri-Brunetto et al. 1999; Zavarise et al. 2004b).
Moreover, at the same time, the fractal generation algorithms were opening a long
dispute on the use of random process theory and in particular Gaussianmodels for the
statistical distribution of surface elevations and asperity curvatures (Zavarise et al.
2004a), which is still debated today in the case of textured surfaces (Borri and Paggi
2015).

In this section, the Weierstrass–Mandelbrot (WM) function, the Random Mid-
point Displacement (RMD) algorithm and the Spectral Synthesis Method (SSM) are
considered and reviewed for their popularity in contact mechanics. The algorithms
are also provided in a pseudo-MATLAB language. All such methods attempt at gen-
erating a profile in 2D whose power spectral density function � is a power-law of
the spatial frequency ω:

�p(ω) = Kpω
−(5−2D), 1 < D < 2, (5.1)

where D stands for the fractal dimension of the rough profile, which is a scale-
invariant geometrical property. The same methods can be generalized to generate 3D
surfaces with a power spectral density function scaling with ω as

�s(ω) = Ksω
−(7−2D), 2 < D < 3, (5.2)

where now the fractal dimension D is augmented by unity. Roughly speaking, the
generated rough profile has a topological dimension intermediate between that of
a Euclidean (smooth) line (D = 1) and that of a Euclidean (flat) plane (D = 2),
while a rough surface has a topological dimension ranging from that of a Euclidean
plane (D = 2) and that of a Euclidean volume (D = 3). These topological properties
correspond to an invasive character of roughness.

Another measure of the topological dimension is the Hurst exponent, see (Feder
1988; Russ 1994) for its rigorousmathematical definition. In the present applications,
D and H are often related to each other, being H given by the largest Euclidean
dimension (2 for a profile or 3 for a surface), minus the corresponding fractal dimen-
sion D. The only exception concerns bi-fractal randomly rough surfaces, having
their power spectral density function separated into two distinct power-law regimes,
see Borri and Paggi (2016). In the first range, for low spatial frequencies, the Hurst
exponent H is adopted for the topology characterization, while in the second range,
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for higher spatial frequencies above a crossover value, the fractal dimension D is
used.

The Weierstrass–Mandelbrot Function

One interesting model of random roughness based on the Weierstrass–Mandelbrot
(WM) functionwas first explored byMajumdar (1989) to generate rough profiles and
rough surfaces. The method was exploited by many authors and in particularly by
Ciavarella in a series of fundamental articles (see Ciavarella et al. (2000), Ciavarella
et al. (2006), Paggi and Ciavarella (2010) for a selection). In this method, a simple
and closed-form analytic equation is providing the pointwise elevation z(x) for a
rough profile (Peitgen and Saupe 1988, Sect. 1.4.5):

z(x) = A0

∞∑

n=0

γ (D−2)n cos

(
2π

γ nx

λ

)
, (5.3)

where A0, γ (γ > 1) and D(1 < D < 2) are model parameters, λ is the longest
wavelength of the profile and n ∈ N denotes the number of length scales of roughness
involved. The sum is usually truncated at a given nmax, obtaining a pre-fractal rough
profile. Its extension to 3D is straightforward and a possible expression is that used
in Paggi and Ciavarella (2010):

z(x, y) =A0

M∑

m=1

nmax∑

n=0

γ (D−3)n
{
cosφm,n

− cos

[
2πγ n

√
x2 + y2

λ
cos

(
tan−1

( y

x

)
− πm

M

)
+ φm,n

]}
,

(5.4)

where m is an additional integer summation index ranging from 1 to M , and φm,n

are randomly generated phases for each value of m and n.
The advantage of using WM profiles and surfaces is given by the fact that they

are constructed by adding cosinusoidal functions with random phases and rescaled
amplitudes. However, for a given m and n pair, the additional contribution to the
interface topology is a smooth and differentiable function whose geometrical prop-
erties and scaling can be quantified in closed form. This advantage, in conjunction
with contact models based on asperities, led to the development of theoretical models
for the prediction of the dependency of contact quantities, such as the real area of
contact and the normal contact stiffness, on the surface resolution (Ciavarella et al.
2000).

Just as an illustrative example, examining a rough profile, a single cosinusoidal
function of x/λ, with a λ-periodicity in the horizontal direction, is obtained for
n = 0. This function has a peak (maximum) at x/λ = 0 and at x/λ = 1, and a valley
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Fig. 5.3 Weierstrass–Mandelbrot profiles depending on the resolution parameter n ranging from 0
up to 3, fractal dimension D = 1.25 and scaling parameter γ = 5

(minimum) at x/λ = 0.5 (see the dashed curve shown in Fig. 5.3 in the range 0 ≤
x/λ ≤ 0.5, symmetric in the range 0.5 ≤ x/λ ≤ 1). The profile with n = 1 obtained
by superimposing to the profilewith n = 0 a finer cosinusoidal functionwith a shorter
wavelength λ/γ and a rescaled amplitude A0γ

(D−2) is also shown in Fig. 5.3 with
a dashed-dotted curve. The addition of further length scales proceeds in a similar
manner by adding finer roughness with shorter wavelengths up to λ/γ n and rescaled
amplitudes A0γ

(D−2)n . For n = 2 and n = 3, this procedure leads to the profiles
shown in Fig. 5.3 with dotted line and continuous line, respectively.

The Random Midpoint Displacement Algorithm

Rough surfaces with fractal properties can also be numerically generated according
to the Random Midpoint Displacement (RMD) algorithm (Peitgen and Saupe 1988,
Sect. 2.2.4). This method allows generating rough surfaces with a power spectral
density function approximating a power-law dependency of the spatial frequency.
The method was proposed by Borri-Brunetto et al. (1999) for the generation of
synthetic randomly rough surfaces to be used as input for the boundary element
method for contact mechanics simulations.

In the algorithm, square surfaces with different resolutions can be generated by
successively refining an initial mesh by a successive addition of a series of inter-
mediate heights. The number of successive refinements is defined by the parameter
n, which is related to the number of heights per side of the squared generated grid,
2n + 1. Given L the lateral size of the surface, the grid spacing is therefore δ = L/2n ,
and the resolution is defined as s = 1/δ. The method generates surfaces with higher
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Fig. 5.4 Recursive steps for the generation of rough surfaces using the RMD algorithm (from
Paggi and He (2015))

n that are finer representations of the coarser ones, i.e. the height field of a surface
with n = i , i ∈ N, contains the height field of the coarser realizations with n < i .

A sketch showing how the RMD algorithm operates is available in Fig. 5.4. Start-
ing with n = 1, the elevation of the four corner nodes of the grid, nodes o, p, j , s in
Fig. 5.4, are set equal to zero. Afterward, the elevation of the central point of the grid,
l, is determined by the average value of the elevations of the corner nodes, plus a
random number extracted from a Gaussian distribution with zero mean and variance
σ 2
1 = σ 2

0 /2(3−D)/2, where σ 2
0 is a free parameter, often set equal to 1/

√
0.09 to repro-

duce surfaces consistent with real ones. The elevations of the nodes i , k, q, r are then
assigned by averaging over three elevations, those of the two corner nodes and that
of the central node, plus a random number extracted from a Gaussian distribution
with zero mean and reduced variance σ 2

2 = σ 2
1 /2(3−D)/2. This procedure is further

iterated at the next refinement, n = 2. This version differs from the original RMD
algorithm detailed in Peitgen and Saupe (1988) by the single fact that the elevations
of the four initial corner nodes are set equal to zero rather than randomly assigned.
The reason for that is to avoid topologies dominated by these initial values, which
might constitute a bias especially at low resolution. The Algorithm is detailed in
Algorithm 1.

An increase in the fractal dimension D from 2.1 to 2.5 leads to an increase in the
amount of roughness, as shown in Fig. 5.5. Although any fractal dimension between
2 and 3 could be theoretically explored, measurements on real surfaces suggest
limiting D up to 2.2 or 2.3 (Bouchaud 1997; Jones et al. 2016). The effect of the
surface resolution can be visualized by varying the generation parameter n, see
Fig. 5.6 by comparing the same surface generated with n = 5 or with n = 8. It has
to be remarked that the RMD algorithm allows generating surfaces whose spectral
density function has an approximated power-law dependency on ω with a power-law
exponent related to the expected one, based on the input fractal dimension D, which
is however retrieved only for large values of n.
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Function: z=RMD(σ 2
0 ,n,D); Input: generation parameter σ 2

0 ,
resolution parameter n, fractal dimension D.

(1) rand(‘state’,0), rnd=rand(1)*100, randn(‘state’,rnd);
(2) N = 2n ;
(3) x = 1 : 1 : 2n + 1;
(4) z(1, 1) = 0, z(1, N + 1) = 0, z(N + 1, 1) = 0, z(N + 1, N + 1) = 0;
(5) α = σ 2

0 ;
(6) M = N , m = N/2;
(7) for i = 1 : n;

(7.1) α = α/2(3−D)/2;
(7.2) for j = m + 1 : M : N − m + 1

(7.2.1) for k = m + 1 : M : N − m + 1
(7.2.2) z( j, k) = (z( j + m, k + m) + z( j + m, k − m) + z( j − m, k + m) + z( j −

m, k − m))/4 + α × randn;
(7.2.3) end

(7.3) end

(8) α = α/2(3−D)/2;
(9) for j = m + 1 : M : N − m + 1

(9.1) z( j, 1) = (z( j + m, 1) + z( j − m, 1) + z( j,m + 1))/3 + α × randn;
(9.2) z( j, N + 1) =

(z( j + m, N + 1) + z( j − m, N + 1) + z( j, N − m + 1))/3 + α × randn;
(9.3) z(1, j) = (z(1, j + m) + z(1, j − m) + z(m + 1, j))/3 + α × randn;
(9.4) z(N + 1, j) =

(z(N + 1, j + m) + z(N + 1, j − m) + z(N − m + 1, j))/3 + α × randn;

(10) end
(11) for j = m + 1 : M : N − m + 1

(11.1) for k = m + 1 : M : N − m + 1
(11.2) z( j, k) = (z( j, k + m) + z( j, k − m) + z( j + m, k) + z( j − m, k))/4 + α × randn;
(11.3) end

(12) end
(13) for j = M + 1 : M : N − m + 1

(13.1) for k = m + 1 : M : N − m + 1
(13.2) z( j, k) = (z( j, k + m) + z( j, k − m) + z( j + m, k) + z( j − m, k))/4 + α × randn;
(13.3) end

(14) end
(15) M = M/2, m = m/2;
(16) end

Output: matrix z containing the generated height field.

Algorithm 1: Random Midpoint Displacement algorithm
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Fig. 5.5 The effect of the fractal dimension D on the roughness of numerically generated RMD
surfaces (n = 7)

Fig. 5.6 The effect of the generation parameter n on the resolution of numerically generated RMD
surfaces (D = 2.3)

The Generalized Spectral Synthesis Method for Fractal or
Bi-fractal Surfaces

Synthetic rough surfaces can also be generated based on the Spectral Synthesis
Method (SSM) (Peitgen and Saupe 1988, Sect. 2.5.3). The basic algorithm allows
generating rough surfaces directly from an imposed power-law spectral density func-
tion with a given slope related to the desired surface fractal dimension D. Therefore,
it is more accurate than RMD in reproducing randomly rough surfaces with a pre-
scribed power-law spectral density function.

Hence, in this algorithm, the starting point is the power spectral density function
�(ω). In its generalized form proposed in Borri and Paggi (2016) for isotropic bi-
fractal surfaces, � is defined in terms of a Hurst exponent H(0 < H < 1) in the
low-frequency domain, and in terms of a fractal dimension D(2 < D < 3) in the
high-frequency range, see Fig. 5.7:
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Fig. 5.7 The power spectral density function in a bi-logarithmic diagram used in input for the SSM
algorithm, generalized to deal with bi-fractal surfaces

�(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

G2(1−H)
1

ω1+2H
, forωl < ω ≤ ωc

G2(D−2)
2

ω7−2D
, forωc ≤ ω < ωu

(5.5)

where ωl = 2π/L is the lowest frequency related to the sample lateral size L , ωu =
2π/δ is the highest frequency related to the sampling interval δ and ωc is a crossover
frequency which denotes the transition between the two power-law regimes.

The algorithm is detailed in all its steps in Algorithms 2 and 3, and it basically
employs a discrete inverse fast Fourier transform to generate the height field from
the expression of the power spectral density function given in input.

As remarked, the modified SSM algorithm can generate surfaces with a bi-fractal
behaviour that shows a kink in the power spectral density function for low frequen-
cies. This kind of surface is typically the result of machining and refining processes,
like grinding, where the threshold frequency ωc is related to physical parameters like
the dimension of the grit particles.

As an example, bi-fractal surfaces have been generated in Borri and Paggi (2016)
with a lateral size of 850µm and 512 heights per side. A crossover frequency ωc

was set equal to 15µm−1. The fractal dimension in the high-frequency range was
kept constant and equal to D = 2.05, while it was varied in the low-frequency range
by acting on the Hurst exponent H . The simulated surfaces have the power spectral
density function computed a posteriori on the generated height fields with a clear
change of slope for ω = ωc as expected, see the bi-logarithmic plot in Fig. 5.8a. The
3D topographies of two cases corresponding to H = 0.05 and H = 0.95 are shown
in Fig. 5.8b and 5.8c, respectively.

Bi-fractal rough surfaces obtained via a modification of the fractal dimension D
at high frequencies is also a case of practical interest, since it can be the outcome of a
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Function: z=SSM(n, ωc, H , D) Input: generation parameter n, crossover frequency ωc,
Hurst exponent H , fractal dimension D.

(1) rand(‘state’,0); N = 2n ;
(2) for i = 0 : N/2

(2.1) for j = 0 : N/2
phase = 2π × rand; ω = √

i2 + j2; radm = ω
−(H+1)
l ; radp = ω

−(4−D)
l ;

if(ω < ωl )

if(i �= 0| j �= 0)
rad = (radp/radm) × ω−(H+1) × random(‘norm’, 0, 1);
else
rad = 0;
end

else
if(i �= 0| j �= 0)
rad = ω−(4−D) × random(‘norm’, 0, 1);
else
rad = 0;
end

end
(2.2) a(i + 1, j + 1) = complex(rad × cos(phase), rad × sin(phase));
(2.3) if(i == 0)

i0 = 0;
(2.4) else

i0 = N − i ;
(2.5) end
(2.6) if( j == 0)

j0 = 0;
else;

j0 = N − j ;
end

(2.7) a(i0 + 1, j0 + 1) = complex(rad × cos(phase),−rad × sin(phase));
(2.8) end

(3) end

Algorithm 2: First part of the algorithm of the modified Spectral SynthesisMethod
for bi-fractal surface generation.

microscopical texturing. As an example, Fig. 5.9a shows the power spectral density
function of SSMsurfaces generatedwith aHurst exponent in the low-frequency range
equal to 0.95, which is typical of a very smooth surface at the mesoscale. The fractal
dimension in the high-frequency range is varied from D = 2.05 to D = 2.95. The
topography of fractal surfaces corresponding to D = 2.05 and D = 2.95 is shown in
Fig. 5.9b and 5.9c, respectively. As expected, the long wavelength features of rough-
ness are not influenced by changing D, while the overall roughness is augmented by
increasing the fractal dimension, as well as the depth of peaks and valleys.
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(4) a(N/2 + 1, 1) = complex(real(a(N/2 + 1, 1)), 0);
(5) a(1, N/2 + 1) = complex(real(a(1, N/2 + 1)), 0);
(6) a(N/2 + 1, N/2 + 1) = complex(real(a(N/2 + 1, N/2 + 1)), 0);
(7) for i = 1 : N/2 − 1

for j = 1 : N/2 − 1
phase = 2π × rand; ω = √

i2 + j2;
radm = ω

−(H+1)
l ; radp = (ωl )

−(4−D);
if (ω < ωl )

rad = (radp/radm) × ω−(H+1) × random(′norm′, 0, 1);
else

rad = ω−(4−D) × random(′norm′, 0, 1);
end
a(i + 1, N − j + 1) = complex(rad × cos(phase), rad × sin(phase));
a(N − i + 1, j + 1) = complex(rad × cos(phase),−rad × sin(phase));

end

(8) end
(9) z = ifft2(a);

Output: matrix z containing the generated height field.

Algorithm 3: Second part of the algorithm of the modified Spectral Synthesis
Method for bi-fractal surface generation.

Fig. 5.8 Power spectral density functions of bi-fractal rough surfaces generated with the modified
SSM algorithm with D = 2.05 and different values of H (a). Surface with H = 0.05 (b). Surface
with H = 0.95 (c)
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Fig. 5.9 Power spectral density functions of bi-fractal rough surfaces generated with the modified
SSM algorithm with H = 0.95 and different values of D (a). Surface with D = 2.05 (b). Surface
with D = 2.95 (c)

Therefore, the SSM algorithm gives more flexibility than the WM and the RMD
algorithms in generating complex forms of roughness. On the other hand, the main
difference from the other algorithms, which has some relevance for multi-scale anal-
yses performed to assess the role of the surface resolution, regards the fact the height
field of a surface generated with a given n is not included in the height field of a
finer representation of the same surface obtained for n′ > n. In doing that, the SSM
algorithm is reproducing exactly what happens in reality when a surface is sampled
using a confocal or an interferometric profilometer at different magnifications by
using different lenses. Lower magnification measures allow sampling a portion of
the surface around a given point (xc, yc) with a lateral dimension L and a discretiza-
tion consisting in N heights per side (usually N = 256 or 512). The repetition of the
same measure at the point (xc, yc)with a higher magnification provides again a sam-
ple of N heights per side, but this time with a lateral dimension L ′ < L , depending
on the ratio between themagnifications used. Therefore, the finer surface has a height
field which has few points in common with the coarser one, while it provides a zoom
into the surface microstructure at point (xc, yc). The WM and RMD algorithms, on
the other hand, keep the lateral dimension L the same regardless of the resolution
used, and simply refine the height field over the whole surface.
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Scaling of the Real Area of Contact

When a rough surface is pressed against a half-plane, for low loads only the asperities,
which are the local maxima of the interface elevations, come into contact forming
isolated contact patches.By increasing the normal load, the number of contact patches
progressively increases. Therefore, if one examines the contact domain, which is
given by the collection of patches in contact as seen from a top view perpendicular
to the half-plane, a progressive transition from a very rarefied contact domain up to a
dense one takes place, till the limit of full contact when the real contact area becomes
equal to the nominal one. However, in many applications, the real area of contact,
which is a measure of the size of the contact domain, remains confined within a small
percentage of the nominal one, which is the square of the lateral specimen size.

The surface resolution plays an important role in the predicted real contact area,
and the underlying effect was intensively investigated in (Borri-Brunetto et al. 1999;
Ciavarella and Demelio 2000; Ciavarella et al. 2000).

To fix ideas, let solve the frictionless normal contact problem without adhesion
between a rigid indenter whose shape is defined by the WM profile described by
Eq. (5.3) (D = 1.25, γ = 5, A0/λ = 0.0025, see Fig. 5.3) and a deformable half-
plane, using the finite element method with interface finite elements with eMbedded
Profile for Joint Roughness (MPJR interface finite elements) to discretize the rough
interface, as detailed in Chap.4, section “Interface Finite Elements with Embedded
Profile for Joint Roughness”. Therefore, in this setting, roughness associated to the
indenter is analytically defined as e1(x) = h2 + h∗(x), where h∗(x) = z(0) − z(x).
Different resolution parameters n can be examined, with n ranging, for instance,
from zero up to three.

To solve the present problem numerically, it is convenient to take into account the
λ-periodicity of the profile by imposing periodic boundary conditions at x/λ = 0
and at x/λ = 1. Then, due to the symmetry in geometry and loading, which is given
by an imposed far-field displacement w to the rigid indenter, the contact predictions
can be shown only in the range 0 ≤ x/λ ≤ 0.5, since the solution is symmetric
elsewhere. The finite element discretization is chosen to have h/λmin = 0.125, where
λmin = λ/γ n , in order to properly resolve the contact traction distribution for any
rough profile.

Contact pressures p = −pn along the interface are shown in Fig. 5.10 by vary-
ing n from 0 (topmost figure) to 3 (bottommost figure). The set of curves shown in
the subfigures correspond to the same values of the various imposed far-field dis-
placements. The solution for n = 0 shows that the size of the contact domain where
tractions are not vanishing is a continuous increasing function of w and it spreads
all over the interface, achieving full contact. A refinement of the profile by adding
another term in the series (n = 1) leads to an increase in the contact pressures for
the same imposed displacement w. The full contact condition is attained in this case,
but it requires higher values of w. The addition of further length scales (n = 2 and
n = 3) drastically increases the value of the contact pressures and it reduces the real
contact area which localizes near the asperities, inhibiting the achievement of full

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Fig. 5.10 Dimensionless contact pressure along theWM rough profiles shown in Fig. 5.3 in contact
with a half-plane, depending on the resolution parameter n from 0 to 3, from the top to the bottom.
E , λ denote, respectively, the composite Young’s modulus and the longest wavelength of the profile
(from Paggi and Reinoso (2018))
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contact. The contour plot of the dimensionless stress field component σyy/E in the
bulk in correspondence to the maximum imposed displacement is shown in Fig.5.11,
quantitatively showing up to which depth from the interface the non-uniformity in
the contact tractions influences the stress field component σyy , before smearing out
its effect.

A closer observation at the trends depending on the resolution parameter n high-
lights that the real area of contact diminishes by adding more and more details to the
profile. This effect has been called lacunarity of the contact domain byBorri-Brunetto
et al. (1999). A quantitative assessment of lacunarity can be made by plotting the
dimensionless real contact area, A/(λL), versus the total dimensionless compressive
normal force, F/(EλL), where L denotes the out-of-plane thickness of the model
that is unity in the present plane strain setting (see Fig. 5.12). The value A/(λL) = 1
corresponds to full contact. The addition of finer length scales of roughness leads to a
progressive reduction of the real contact area in correspondence of the same applied
force, with a trend consistent with analytical estimates in Ciavarella et al. (2000) for
WM profiles, strictly valid for very large values of n.

A more comprehensive investigation of the dependency of the real area of contact
on the fractal dimension and of the surface resolution was made in Paggi and He
(2015), where randomly rough surfaces were numerically simulated using the RMD
algorithm. Their contact with an elastic half-plane was simulated using the boundary
element method, see Chap.4, section “The Boundary Element Method” for details
on the computational approach. Numerical predictions in terms of dimensionless
real area of contact versus dimensionless contact pressure corresponding to the same
applied far-field normal displacement, related to surfaces with resolution parameter
n = 8 and different fractal dimensions D, considering ten random repetitions for each
set, is shown in Fig. 5.13. In that plot, σ denotes the root mean square of the surface
heights, which is a parameter dependent on D as discussed in Zavarise et al. (2004b).
The dependency of the real contact area upon the contact pressure is almost linear
and, by increasing the surface fractal dimension, the slope of the curves diminishes.
This is physically due to the fact that the surface appears rougher and rougher, and
less asperities come into contact for the same level of imposed far-field displacement.

The dependency of the real contact area upon the surface resolution is analysed in
Fig. 5.14, where the contact response of a RMD surface with D = 2.3 and different
values of the generation parameter n is depicted. Considering a linear approximation
for the relation between real contact area and pressure, a power-lawdependency of the
type A/p ∼ δ0.37 is noticed, which is in good agreement with theoretical predictions
provided by Persson theory of contact (Persson 2001b), suggesting A/p ∼ δD−2 =
δ0.3 for the present problem.

It has to be remarked that a careful quantitative assessment of the slope of the real
contact area–load curve was leading to a wide debate in the contact mechanics com-
munity, directed towards a comparison of predictions provided by different contact
models. The point of departure was a seminal article by Bush et al. (1975), where
an asperity contact model was proposed within the statistical framework in Green-
wood and Williamson (1966) but introducing a joint probability density function for
the asperity radii of curvature and their elevations, rather than adopting an average

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Fig. 5.11 Dimensionless vertical contact stress σyy in the bulk corresponding to the maximum
imposed far-field displacement leading to the contact pressures in Fig. 5.10, depending on the
resolution parameter n. Adapted from Paggi and Reinoso (2018)
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Fig. 5.12 Dimensionless real contact area versus dimensionless contact force for WM rough pro-
files, depending on the resolution parameter n. Adapted from Paggi and Reinoso (2018)

Fig. 5.13 Dependency of the dimensionless real area of contact versus dimensionless pressure for
numerically generated RMD rough surfaces with n = 8 and different fractal dimensions D. Ten
randomly generated surfaces have been tested for each value of D, to assess also the scatter in the
predictions. Adapted from Paggi and He (2015)

Fig. 5.14 Dependency of the dimensionless real area of contact versus dimensionless pressure for
numerically generated RMD rough surfaces with D = 2.3 and different resolutions defined by the
generation parameter n. Adapted from Paggi and He (2015)
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constant radius. In the low contact regime (asymptotic approximation for low loads),
the model suggested a real contact area scaling linearly with load, depending only
on the composite elastic modulus E and the second moment of the spectral density
function,m2, which physically corresponds to the variance of the profile slopes. This
suggested the use of the following parameter to measure the slope of the real contact
area–load relationship:

κ = E
√
2m2

A

F
, (5.6)

where A is the real contact area and F is the total normal load. The extrapolation of
the validity of this parameter, and therefore of the approximation of the asymptotic
model by Bush et al. (1975) (BGT-A model) to any load level was inappropriate, as
pointed out byPaggi andCiavarella (2010), since the completemodel (BGT-Gmodel)
should have been considered. Moreover, elastic interactions between asperities were
not included in the model by Bush et al. (1975), and therefore, Paggi and Ciavarella
(2010) proposed to improve it by accounting for this effect leading to a refinedmodel
(BGT-I model), following the approach already proposed in Ciavarella et al. (2008b)
for the contact theory by Greenwood and Williamson (1966) (GW-N model), to
account for elastic interactions (GW-I model).

A numerical campaign of normal contact simulations carried out on WM, RMD
and SSM surfaces with generation parameter n = 8, different fractal dimensions D
from 2.3 till 2.95, and for the same dimensionless mean plane separation d/σ =
1.0, was carried out in Paggi and Ciavarella (2010). Ten surfaces for each value of
D were randomly generated and the boundary element method was employed to
obtain reference numerical results not based on the model assumptions of stochastic
micromechanical contact theories (asperity-basedmodels) or of the Persson’s theory,
to assess the goodness of their predictions. Results revealed a strong dependency of
the parameter κ upon the bandwidth parameter of the surfaces,α = m0m4/m2

2, where
m0,m2 andm4 denote the variance of asperity heights, slopes and curvatures, see the
bi-logarithmic plots in Figs. 5.15, 5.16 and 5.17 for WM, RMD and SSM surfaces,
respectively. The use of the bandwidth parameter instead of the fractal dimension
D (or the Hurst exponent H ) and of the sampling interval δ was proposed in Paggi
and Ciavarella (2010) by noting that α takes into account both dependencies, since,
for δ 
 L , the following relation holds (Sayles and Thomas 1977; Zavarise et al.
2004b) (2 < D < 3):

α ∼= (D − 2)2

(D − 1)(3 − D)

(
δ

L

)2(D−3)

. (5.7)

Moreover, the dependency on α was also emerging from the above micromechan-
ical contact theories, as found in Paggi and Ciavarella (2010):
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Fig. 5.15 The parameter κ

for WM rough surfaces in
contact with a half-plane
predicted by the boundary
element method (dots), and
comparison with predictions
by analytical theories

Fig. 5.16 The parameter κ

for RMD rough surfaces in
contact with a half-plane
predicted by the boundary
element method (dots), and
comparison with predictions
by analytical theories

κ = CGW(α − 0.8968)−1/4, for GW-N and GW-I models (5.8)

κ = CBGT
3
√
2π

4
α−1/4, for BGT-N and BGT-I models, (5.9)

where CGW and CBGT are nonlinear functions of the dimensionless mean plane sep-
aration d/σ .

Such a dependency was predicted neither by Persson’s theory of contact, nor by
the asymptotic BGT-A model. On the other hand, predictions by asperity contact
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Fig. 5.17 The parameter κ

for SSM rough surfaces in
contact with a half-plane
predicted by the boundary
element method (dots), and
comparison with predictions
by analytical theories

theories accounting for elastic interaction effects (GW-I and BGT-I models) were
quite close to the reference numerical ones shown with dots in Figs. 5.15, 5.16 and
5.17.

The Effect of the Finite Size of the Continuum

The predictions for the frictionless normal contact problemobtained using the bound-
ary element method and summarized in the previous sections refer to half-plane
contact problems. The effect of reducing the depth t of the continuum is indeed
interesting in many applications and it was investigated in Paggi and Reinoso (2018)
using the finite element method with the MPJR interface finite element to model and
discretize a Weierstrass–Mandelbrot rough profile (see Chap.4 for more details on
the method).

In particular, a WM rough profile was generated with D = 1.25, γ = 5, A0/λ =
0.0025, and n = 2 (Paggi and Reinoso 2018). Contact mechanics predictions for
an imposed far-field displacement w/A0 = 3, and for t/λ = 1, 0.5, and 0.1 were
compared. The contour plots of the dimensionless stress field component σyy/E
are shown in Fig. 5.18 for such three cases, highlighting an increase in the stress
level for the same amount of imposed displacement w as a result of the increased
stiffness of the finite-size domain obtained by reducing t . This is also evident from the
comparison in terms of contact tractions along the interface shown in Fig. 5.19, which
pinpoints that thin substrates are very likely to experience full contact as compared to
the half-plane geometry, even in the presence of roughness that is usually promoting
strong lacunarity of the contact domain.

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Fig. 5.18 Dimensionless vertical contact stress σyy in the continuum depending on the domain
size, t , for a far-field imposed displacement w/A0 = 3 (WM rough profile with D = 1.25, γ = 5,
n = 2, see Fig.5.3 for the visualization of half profile). Adapted from Paggi and Reinoso (2018)

Fig. 5.19 Dimensionless contact pressure along the interface depending on the domain size, t ,
corresponding to the contour plots in Fig. 5.18. E and λ denote, respectively, the composite Young’s
modulus and the longest wavelength of the profile. Adapted from Paggi and Reinoso (2018)

Scaling of the Free Volume and Implications for Leakage

The free volume trapped between rough surfaces in contact and its evolution is of
great interest for fluid lubrication and percolation. International standards (Stout
et al. 1994) suggest the use of the valley fluid retention index, Svi , as a quantitative
indicator for the amount of free volume. This index is deduced from the Abbott–
Firestone bearing area curve (Abbott and Firestone 1933), which gives the amount
of potential areas in contact estimated from the probability density function of the
surface heights, neglecting elastic deformation. Specifically, the valley fluid retention
index is computed as the volume V comprised between the undeformed surface and
a rigid plane intersecting the surface and leaving only 20% of heights below it,
divided by the root mean square of the surface heights, σ , and the nominal specimen
size, L2.
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Fig. 5.20 Dependence of
V ∗ on the mean plane
separation d/σ . Note the
deviation from linearity for
small separations. Curves
correspond to 10 randomly
generated RMD rough
surfaces with n = 8 and
D = 2.1 (black) or D = 2.9
(grey). Adapted from Paggi
and He (2015)

Paggi and He (2015) investigated how the actual dimensionless free volume
accounting for elastic deformation, V ∗ = V/(σ L2), evolves during contact, and how
it scales with the dimensionless contact pressure, p∗ = p/E , where E is the compos-
ite Young modulus, or with the dimensionless separation between the mean planes
of the rough surfaces, d/σ . Predictions from rigorous contact mechanics simulations
based on the boundary element method were obtained for two sets of 10 randomly
generated RMD rough surfaces with n = 8 and two limit values of the fractal dimen-
sion D (D = 2.1, very smooth, and D = 2.9, very rough). Results shown in Fig. 5.20
pinpoint that the simple relation V ∗ ∼= d/σ (depicted with a dashed line) holds only
for very large separations (d/σ � 3). For d/σ � 3, V ∗ and d/σ cannot be con-
fused any longer with each other, and the free volume starts depending on the fractal
dimension D.

By investigating the relation between V ∗ and the other contact quantities, namely
the dimensionless pressure p∗ and the dimensionless real contact area A∗ = A/L2,
by varying D, the numerically predicted trends are shown in Fig. 5.21. A decay of the
free volume by increasing the dimensionless contact pressure or the dimensionless
real contact area is clearly observed. The relation between V ∗ and p∗ is significantly
affected by D. On the other hand, as a notable result, the relation between V ∗ and
A∗ is approximately independent of the fractal dimension, since all the curves lie in
a narrow band.

To examine the role played by the surface resolution, a single surfacewith D = 2.3
and different values for the generation parameter n ranging from 3 to 8 has been also
characterized in Paggi and He (2015). The trends shown in Fig. 5.22 pinpoint a
convergence of the relation V ∗ versus p∗ by increasing n. On the other hand, the
relation V ∗ versus A∗ is strongly resolution-dependent.

Numerical simulations allow also having a closer look at local quantities, such as
the spatial distribution of the real contact area and the amount of the free volume vi, j
at each grid point of the boundary element discretization defined by a pair of indices
(i, j). As a general trend, due to roughness, the asperities, which are the maxima of
the 3D surface, come into contact at isolated points and then progressively merge
together by forming wider contact regions with vanishing free volume. Other regions
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Fig. 5.21 Dimensionless volume V ∗ versus dimensionless nominal contact pressure p∗, or versus
real contact area fraction A∗, for various fractal dimensions D (10 randomly generated RMD rough
surfaces with n = 8 for each D). Adapted from Paggi and He (2015)

Fig. 5.22 Dimensionless volume V ∗ versus dimensionless nominal contact pressure p∗, or versus
real contact area fraction A∗, for D = 2.3 and different values of the surface resolution parameter
n. Adapted from Paggi and He (2015)

of the surface present free volumes vi, j whose size depends on the amplitude of the
valleys.

A deeper insight into the morphological properties of the spatial distribution of
the free volumes was made in Paggi and He (2015) by examining the contour levels
corresponding to different volume thresholds, vth , as shown in Fig. 5.23 for an RMD
surface in contact with a half-plane with D = 2.3, L = 100, n = 7 and A∗ ∼ 0.1.
In these contours, the black area denotes free volume domains D with vi, j ≤ vth .
Therefore, the dark islands for the limit case of vth = 0 would simply correspond
to the real contact area domain. By selecting vth larger than the maximum value of
the volume of the deepest valley, vth = max(vi, j ), then the picture becomes entirely
black since all the grid points have vi, j ≤ vth . This second limit situation corresponds
to the Euclidean domain of the nominal contact area.

It has to be remarked that the contour plots in Fig. 5.23, corresponding to the same
contact pressure and contact area, dynamically change during contact.At first contact,
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Fig. 5.23 Free volume domains (black areas) D(vi, j ≤ vth) corresponding to a surface with D =
2.3, L = 100, n = 7 and A∗ ∼ 0.1, for different free volume thresholds vth (from Paggi and He
(2015))

the real contact area A∗ is vanishing and the free volume V ∗ is therefore the largest as
possible. By increasing the contact pressure, the contact domain increases until the
real contact area achieves A∗ = 1 in the limit scenario of full contact. Conversely,
the free volume domain progressively goes to zero in the same limit.

For each contour plot in Fig. 5.23, the topological properties of the free volume
domains D(vi, j ≤ vth) can be investigated according to the box counting method.
For A∗ = 0, which corresponds to the undeformed rough surface, the free volume
domains are expected to be self-affine as a consequence of the self-affinity of the
parent surface (Bigerelle and Iost 2004). For a value 0 < A∗ ≤ 1, on the other hand,
the topological properties of the free volume domains have to be correlatedwith those
of the deformed surface, whose heights have been modified by elastic deformation.

To do so, in the box counting method, for each box of lateral size r , the number
N of boxes containing at least one black grid point is counted. This operation has
to be repeated by varying r from 1 up to 2n lateral size divisions, with a geometric
progression of 2. The cumulative number N (r) is plotted versus r in a bi-logarithmic
diagram and the local fractal dimension D of the volume domain can be finally
obtained by differentiating log(N ) w.r.t. log(r).

By performing this analysis for the domainsD in Fig. 5.23, the diagram in Fig. 5.24
on the left is obtained. The curves have a trend close to a straight line in this bi-
logarithmic plot, which suggests a power-law scaling typical of fractals.
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Fig. 5.24 Fractal characterization of the free volume domains D(vi, j ≤ vth). The local fractal
dimension D is a function of r and vth . Adapted from Paggi and He (2015)

The local fractal dimension is shown in Fig. 5.24 on the right, and it is depen-
dent on r . In the limit case corresponding to vth = 0, the fractal dimension of the
corresponding free volume domain is equal to that of the real contact area, which is
less than 2 due to the lacunarity of the contact domain. According to the results in
Borri-Brunetto et al. (1999), the fractal dimension of the contact area is an increasing
function of the applied pressure, but it is a decreasing function of D. In the other
limit scenario of vth = maxi, j (vi, j ), the fractal dimension is equal to 2, i.e. it is equal
to that of a Euclidean smooth surface. These limit values represent the bounds to the
fractal dimension of the free volume contours D(vi, j ≤ vth) by varying vth .

Scaling of the Normal Contact Stiffness

The specific contact conductance of rough surfaces, or conductance per unit nominal
area, C , can be correlated to the derivative of the force–indentation curve, i.e. the
incremental normal contact stiffness, according to the electrical–mechanical analogy
established by Barber (2003). In formulae:

C = − 2

ρE

dp

dd
, (5.10)

where p is the nominal applied pressure and d is the mean plane separation between
rough surfaces in contact. The parameters E and ρ are the composite elastic mod-
ulus and the composite resistivity of the contact pair defined by continua 1 and 2,
respectively. While E has been already introduced in Chap. 4, ρ is computed from
the resistivities of the continua as ρ = ρ1 + ρ2.

Thedependence of the contact conductance on the applied pressure for rough inter-
faces can therefore be investigated by focusing on the incremental normal contact
stiffness. Here, it should be remarked that steady-state thermal and electric conduc-
tion through a given set of contact spots are mathematically analogous problems.

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Therefore, Eq. (5.10) holds also for thermal conduction, provided that ρ is replaced
by 1/k, where k is the composite thermal conductivity of the continua, see Cooper
et al. (1968). Radiation and convection contributions to heat exchange through the
air gaps are neglected here, although they could have a role for a class of physical
problems. In the presence of insulated surface films, or for very high temperature
excursions across the interface, their contribution could become relevant over con-
duction.

As demonstrated in (Barber 2003; Greenwood andWu 2001), the coarser features
of the surface rule the contact conductance. Realistic surfaces often exhibit quasi-
fractal properties at the fine scale, but generally there exists a cut-off to the power
spectral density function at small wavenumbers (long wavelengths). If this is not
the case (e.g. if the surface is fractal in the Weierstrass–Mandelbrot sense), there
must nonetheless exists the largest length dimension representing the finite size of
the nominal contact area. For a rigorous analysis of this issue, the long wavelength
cut-off, defined by the length parameter , should be in principle distinguished by
the finite size of the nominal contact area, L . Following this reasoning, Paggi and
Barber (2011) proposed the following functional dependence for the incremental
stiffness per unit area:

dp

dd
= dp

dd
(E, p,m0,m2,m4, δ, L ,, D) , (5.11)

where m0, m2 and m4 are the spectral moments of the rough surface (Nayak 1971),
D is the surface fractal dimension, and δ is the sampling interval. Notice inciden-
tally that most theoretical studies of contact conductance tacitly assume that the
effect of surface roughness can be decoupled from that of the macroscale conduc-
tion problem. In other words, the effect of surface roughness is to add a nominal
pressure-dependent additional resistance between the macroscopic contacting bod-
ies. However, this decoupling of scales is justified if and only if  
 L .

The number of independent parameters in Eq. (5.11) can be reduced by applying
the Buckingham’s � theorem (Buckingham 1915), as first proposed in Paggi and
Barber (2011). Most authors used the root mean square roughness σ = √

m0 to
normalize the length parameters (Sridhar and Yovanovich 1994), but here we shall
show that when the above scale separation is possible, a greater reduction in the
number of parameters is achieved by normalizingwith respect to the longwavelength
cut-off . Hence:



E

dp

dd
= −�

(
p

E
, α,

√
m0


,

δ


,
L


, D

)
, (5.12)

where the bandwidth parameter α = m0m4/m2
2 has been introduced. This parameter

is dependent on the fractal dimension and on the resolution. For δ 
 , the following
approximation holds (Sayles and Thomas 1977; Zavarise et al. 2004b) (2 < D < 3):
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α ∼= (D − 2)2

(D − 1)(3 − D)

(
δ



)2(D−3)

. (5.13)

Therefore,α can be dropped from the dependencies in (5.12), retaining only D, and
δ in the subsequent analysis. Equation (5.10) can be used to define the dimensionless
specific contact conductance C̃ as

C̃ ≡ Cρ = −2

E

dp

dd
= 2�

(
p

E
, α,

√
m0


,

δ


,
L


, D

)
. (5.14)

An alternative description of the contact conductance can be obtained by noting that
the imperfect contact at the interface is equivalent to the interposition of a fictitious
layer of the same material whose thickness h is given by ρh = 1/C . Normalizing
this thickness with respect to , one has

h


= 1

C̃
. (5.15)

Now consider the effect of holding D, δ, L , and  constant and just rescaling√
m0 to λ

√
m0, where λ is a scalar multiplier. The contact problem is nonlinear,

but the underlying elastic field is linear. Suppose that, at a given value of nominal
pressure p, the actual pressure distribution is p (x, y) and the actual contact area is
(x, y) ∈ A. It follows that the contact pressure distribution λp (x, y) acting over the
same area A will produce displacements scaled in the same ratio λ with respect to
the original ones. These will be exactly what is needed to establish the contact areaA
when the roughness is characterized by λ

√
m0, D, δ, L , . Furthermore, the contact

conductance depends only A, and hence, one has

�

(
λp

E
,
λ
√
m0


,

δ


,
L


, D

)
= �

(
p

E
,

√
m0


,

δ


,
L


, D

)
(5.16)

for all scalar multipliers λ. Now suppose a new dimensionless parameter
p/(E

√
m0) is defined and used to characterize the nominal pressure p. Accord-

ingly, Eq. (5.14) will be modified to

C̃ = �1

(
p

E
√
m0

,

√
m0


,

δ


,
L


, D

)
, (5.17)

and due to the result in (5.16), one has

�1

(
p

E
√
m0

,
λ
√
m0


,

δ


,
L


, D

)
= �1

(
p

E
√
m0

,

√
m0


,

δ


,
L


, D

)
(5.18)
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for all λ, showing that the new function �1 is independent of the dimensionless
parameter

√
m0/. Therefore,

√
m0/ can be dropped from the functional depen-

dence, obtaining

C̃ = �1

(
p

E
√
m0

,
δ


,
L


, D

)
, (5.19)

where the number of dimensionless parameters has been reduced from five to four.
At this point, it is interesting to note that semi-empirical power-law correla-

tions between the contact conductance and the applied pressure can be recovered
by dimensional analysis in case of incomplete similarity in the dimensionless num-
ber p/(E

√
m0). This condition usually applies in physical systems that are in an

intermediate state between two limit conditions (Barenblatt and Botvina 1980). For
very low pressures, a deviation from the power-law behaviour has been experimen-
tally observed in Milanez et al. (2003a). This is attributed to the truncation of the
asperity height distribution function of tested samples, which leads to an enhance-
ment of thermal contact conductance at light contact pressures as compared to that
predicted by a power-law equation. For typical values of the dimensionless trunca-
tion dmax/

√
m0 ranging from 3.5 to 4.5, a deviation from the power-law scaling was

experimentally observed for p/E � 1 × 10−5. Regarding the upper threshold, this
may correspond to very high pressures, when the asperities merge with each other
and create large contact clusters. This limit situation is however not reached in most
of the cases, since one usually explores mean plane separations d/

√
m0 > 0.

Assuming incomplete similarity in p/(E
√
m0), Paggi and Barber (2011) pos-

tulated a power-law dependence on this dimensionless parameter, giving:

C̃ =
(

p

E
√
m0

)β

�2

(
δ


,
L


, D

)
, (5.20)

where β is the incomplete similarity exponent, which may depend on the other
dimensionless numbers in parenthesis and can only be obtained from real or numer-
ical experiments. The function �2 is a new dimensionless function of the remaining
dimensionless parameters.

It is interesting to note that Eq. (5.20) was found to be consistent with most of
the semi-empirical correlations published in the literature for the thermal contact
conductance of rough surfaces (Paggi and Barber 2011; Paggi 2014). Such correla-
tions suggested power-law dependencies between the contact conductance and the
applied pressure, with coefficients of proportionality depending on various statistical
parameters. Mikic (1974) used an asperity model similar to that of Greenwood and
Williamson (1966) to fit experimental results, obtaining:

C̃ = 2.18

(√
m0



)−0.06

m0.03
2

(
p

E
√
m0

)0.94

∼= 2.43

(
3 − D

D − 2

)0.03 (
δ



)0.06(2−D) (
p

E
√
m0

)0.94

.

(5.21)



210 M. Paggi

Comparing Eq. (5.21) with Eq. (5.20), we note that they are of the same form with
β = 0.94. Notice in particular the independence of the dimensionless ratio

√
m0/,

as expected from dimensional analysis arguments. The model by Mikic was subse-
quently reconsidered by theYovanovich’s group in a series of papers, proposing some
variants. For instance, Blahey et al. (1980) established the following correlation:

C̃ = 3.86

(√
m0



)−0.07 (
m2

√
α
)0.035

(
p

E
√
m0

)0.93

∼= 4.39
(D − 1)−0.035

√
(D − 1)(3 − D)

(
δ



)−0.035(D−1) (
p

E
√
m0

)0.93
(5.22)

which is also exactly of the form (5.20). Subsequently, Sridhar and Yovanovich
(1994) re-examined the theory byGreenwood andWilliamson (1966) and proposed a
correlation valid for p/E > 1 × 105 and for 5 < α < 100,where a slight dependence
on the bandwidth parameter α was suggested:

C̃ = kSY
( p

E

)0.922α1/205.54

, (5.23)

where kSY is a coefficient dependent on α in its turn (see Sridhar and Yovanovich
(1994) for more details). Such a dependence of β on α is also plausible according to
the previous dimensional analysis arguments, since the exponent β may depend on
the dimensionless numbers in Eq. (5.12).

Removing the assumption of a constant (average) radius of curvature for the
asperities, Bush and Gibson (1979) derived a correlation similar to the previous
ones, but with a significantly lower exponent of p/E :

C̃ = 1.38

(√
m0



)−0.11

(m2
√

α)1/2m−0.44
2

(
p

E
√
m0

)0.89

∼= 1.69
(D − 2)0.49

(D − 1)0.25(3 − D)0.19

(
δ



)0.78(D−2)−1 (
p

E
√
m0

)0.89

,

(5.24)

which again is of the form of Eq. (5.20), this time with β = 0.89. Notice that this
model shows a significantly stronger dependence on the parameter δ/.

Equation (5.20) can be recast as an ordinary differential equation with separable
variables, in order to determine the relationship between pressure and separation.
Doing that, one obtains

d p̃

p̃β
= −�2

2
dd̃, (5.25)

where the following dimensionless variables are introduced:

p̃ = p

E
√
m0

; d̃ = d√
m0

.
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If β �= 1, this equation has the solution

p̃1−β

1 − β
= �2

2
(d̃0 − d̃), (5.26)

where d̃0 is a constant of integration. This is a power-law relationship between
the applied pressure and the normal compliance associated with the asperities,
wa = d̃0 − d̃. Notice however that although the value d̃ = d̃0 corresponds to p̃ = 0,
we cannot identify the constant d̃0 with the highest point in the surface, since the
power-law behaviour depends upon incomplete similarity which breaks down at very
low pressures. Indeed, the highest point of the surface d̃max depends on extreme-value
statistics of the surface and is likely to exhibit significant variance, making it unre-
liable as a parameter in a contact model.

For the special case β = 1, the ordinary differential equation (5.25) has the expo-
nential solution:

p̃ = K exp

(
−�2d̃

2

)
, (5.27)

where the dimensionless multiplying constant K is related to the constant of integra-
tion and hence is indeterminate. A similar expression was obtained by Greenwood
andWilliamson (1966), by considering an exponential distribution of asperity heights
in their model derivation:

p̃ = KGW exp(−d̃), (5.28)

where the multiplying constant KGW depends on the number of asperities per unit
area and the summit radii. This agrees with the form (5.27) with �2 = 2.

Persson’s contact theory (Persson 2001b) also suggested an exponential relation
between p and d:

p = γ E exp (−d/d0), (5.29)

where the coefficient γ depends on the fractal dimension and on the length scales δ

and , and it was estimated from the best fit on numerical data. The constant d0 was
found to be of the order of magnitude of

√
m0, implying �2 of order 2 in Eq. (5.27).

Finally, in case of exponential relations between p̃ and d̃ , it is remarkable to note
that a straightforward application of Eq. (5.20) leads to a linear dependence between
C̃ and p/E .

To provide an independent insight into the effect of the sample lateral size and of
the low-frequency cut-off to the power spectral density function, Paggi and Barber
(2011) carried out contactmechanics simulations using a version of the boundary ele-
ment method for multi-asperity contacts, accounting for elastic interactions between
asperities. In view of uncoupling the effect of the sample lateral size from that caused
by the low-frequency cut-off, synthetic rough surfaces were numerically generated
by collecting together RMD surfaces (RMD patches). Supposing that each RMD
patch might have its intrinsic low-frequency cut-off to the power spectral density
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Fig. 5.25 The scaling between the dimensionless contact conductance and the dimensionless con-
tact pressure, for rough surfaces with D = 2.3 obtained by collecting 8 × 8 RMD patches together,
to separate the length scales and L , i.e. 
 L . The role of elastic interactions is also highlighted
by comparing results from different approximations

function of the same order of magnitude as the patch size, a collection of patches
leads to much bigger surfaces to test, achieving L �  and therefore separation
of scales. Numerical predictions in Fig. 5.25 show for such a surface what happens
if elastic interactions are neglected (empty circles), if they are included between
asperities within each RMD patch (solid line), or if full elastic interactions across
the whole surface are considered (filled circles). Predictions obtained by neglecting
elastic interactions led to a power-law dependency with an exponent β = 0.82 very
close to what predicted by analytical contact theories based on statistical distribu-
tions of asperities and without elastic interactions. Full elastic interactions led to a
power-law trend with two distinct regimes, one for low pressures with β = 0.72,
and another for high pressures with β = 0.46. The transition from the two regimes
was explained by the overcoming of a pressure threshold which leads to merging of
asperities together, in analogy with the physical phenomenon of percolation.

The Interplay Between Roughness and Long-Range
Adhesion

Adhesion between solids in the presence of roughness is a research topic that attracted
a significant attention by the scientific community, especially for its importance
in nanoscale applications, see Peressadko et al. (2005), Ciavarella (2016), Guduru
(2007), Carbone et al. (2009), Pastewka and Robbins (2014, 2016), Papangelo and
Ciavarella (2018) for a selection of recent references. The frictionless normal contact
problem between a rigid WM rough plane strain indenter profile with parameters
A0/λ = 0.0025, D = 1.25, γ = 5, and n = 1 and a deformable half-plane in the
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presence of long-range adhesion was investigated in Paggi and Reinoso (2018), to
assess the interplay between roughness and long-range adhesion. Adhesive tractions
were simulated in the finite element framework based on the MPJR interface finite
element discretization by a relation dictated by an adhesion model inspired by the
interatomic Lennard-Jones potential (for gn > 0):

pA = 24ε

[
κ6

(gn + gn,0)7
− 2

κ12

(gn + gn,0)13

]
(5.30)

with ε = 1 × 10−3 N/m, κ/λ = 2.57 × 10−4 and gn,0/λ = 2.885 × 10−4. The equi-
librium distance gn,0 is such that the condition gn = 0 leads to vanishing adhesive
tractions and it correctly captures the transition from adhesion to contact.

Two ramps for the imposed far-field displacements were considered: (i) an
approaching stage, characterized by an increasing w to put the indenter in con-
tact with the half-plane up to w/A0 = 3, and (i i) a separation stage, where w was
reduced until the complete separation of the profile. As compared to smooth geome-
tries, the modelling complexity regards the noncompactness of the contact domain,
which imposes severe limitations in the use of semi-analytical methods. For instance,
the method proposed in Guduru (2007) strictly applies to profiles whose shapes are
leading to monotonically increasing gaps to avoid partial contact, which is on the
other hand occurring in the present case.

Let focus the attention onto the evolution of the pressure distribution at the inter-
face, p/E , and of the corresponding normal gap gn/A0. Numerical predictions for
selected values ofw are shown in Figs. 5.26 and 5.27 for the approaching stage, and in
Figs. 5.28 and 5.29 for the separation stage. During the approach, contact takes place
near the first peak at x/λ = 0, with contact pressures (positive valued in the plot)
followed by adhesive tractions (negative valued) significant within a small distance
after the end of the contact strip (solid curve A in Fig. 5.26). A further increase in
the closing displacement w leads to an increase in the contact and adhesive domains
in a self-similar manner, leading to curves intermediate from the curve A and the

Fig. 5.26 Dimensionless contact pressure along the interface for different far-field imposed dis-
placements w during the approaching stage. Adapted from Paggi and Reinoso (2018)
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Fig. 5.27 Dimensionless gap along the interface for different far-field imposed displacements w

during the approaching stage. Adapted from Paggi and Reinoso (2018)

curve B. Within that evolution, another peak comes into contact near x/λ ∼= 0.17
(see the curve B which highlights the presence of another contact strip along the
rough profile). A further increase in w leads to the curve C which now looks quite
different from the previous traction profiles in the region between the two peaks near
x/λ ∼= 0.1. The normal gap is significantly diminished in that region, as it can be
noticed from the magnification in Fig. 5.27, and the adhesive zones of the two peaks
in between the two contact strips start interacting. Such an interaction leads to adhe-
sive tractions in the ascending branch of the adhesive law based on the Lennard-Jones
potential in between gn = 0 and gn corresponding to themaximum adhesive traction.
As a result, the corresponding adhesive traction distribution along the interface near
x/λ ∼= 0.1 presents now a bell-shaped form, with a fully pressurized gap. The size of
such pressurized gap is then diminished by further increasing w (curve D) due to the
growth of the strips in contact. We also observe that another peak comes in contact
at x/λ ∼= 0.38. This proceeds up to curve E , which corresponds to the maximum
imposed far-field displacement w = 3A0.

The unloading stage, whose numerical predictions are shown in Figs. 5.28 and
5.29, starts from the curve E and proceeds, by progressively reducing w, to the
sequence of curves F, G, H and I, just before the complete separation of the entire
profile. During the separation stage, the contact strips shrink and the adhesive ones
increase.

Once the fundamental mechanisms taking place during adhesive contact in the
presence of roughness have been elucidated, the role played by the length scales
of roughness is finally discussed by comparing the pressure distributions for the
same far-field imposed displacement w/A0 = 2.4, but for WM rough profiles with
different resolution parameters n ranging from 0 up to 3, see Fig. 5.30.

Numerical predictions show that the addition of length scales of roughness leads
to an increase in the maximum tractions in the noncompact contact regions, a trend
noticed also for the adhesiveless scenario. On the other hand, the adhesive contact
pressure is always bounded by the fact that the adhesive constitutive relation has
maximum adhesive traction that cannot be overcome.
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Fig. 5.28 Dimensionless contact pressure along the interface for different far-field imposed dis-
placements w during the separation stage. Adapted from Paggi and Reinoso (2018)

Fig. 5.29 Dimensionless gap along the interface for different far-field imposed displacements w

during the separation stage. Adapted from Paggi and Reinoso (2018)

Fig. 5.30 Dimensionless contact pressure along the interface for different values of the resolution
parameter n, for the same far-field imposed displacement w/A0 = 2.4
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The key effect of roughness can be well appreciated by comparing tractions for
n = 0 and the other predictions for larger n. For n = 0, a single compact contact
domain occurs, with a corresponding zone of the interface ahead of the edge of
the contact strip with adhesive tractions rapidly decaying in space. For n = 1, two
contact strips occur and the contact domain becomes noncompact. As a result, a fully
pressurized region between the two peaks in contact takes place. The same trend,
even more pronounced, can be observed by a further increase in n, which leads to
very rarefied noncompact contact strips along the profile, and many fully pressurized
adhesive gaps in between the peaks in contact.

The Effect of Roughness on the Transition from Full Stick to
Full Slip in Frictional Contacts

When a rigid rough surface is pressed against a deformable linear elastic half-plane
without adhesion, contact takes place across the so-called real contact area, as dis-
cussed in the previous sections. Let’s hold the normal contact force and impose a
monotonically increasing displacement to the rough surface in a given tangential
direction. If one postulates the existence of a constant static friction coefficient μ at
the local level, then the shearing displacement will lead to a progressive slip of the
points in contact. Overall, the state of contact will change from full stick in absence
of shearing displacement, when the rough surface adheres to the half-plane through
the real contact area, to full slip, when gross sliding takes place with a macroscopic
relative displacement between the bodies. The transition from these two regimes is
referred to as partial slip. As discussed in Chap.4, the most general scenario with a
Poisson ratio ν �= 1/2 leads to coupling between the normal and the tangential con-
tact problems, and therefore shearing tractions activated by friction would modify
the real contact area. However, in many cases of engineering relevance, this coupling
is negligible, and it is often neglected for simplicity.

The solution of the contact problem during the partial slip regime requires find-
ing the shearing contact tractions and surface deflections for any imposed far-field
displacement. This problem was solved in closed form for smooth geometries of
the indenter leading to compact contact domains, and in particular for indenters
of parabolic shape by Cattaneo (1938) and Mindlin (1949), who established inde-
pendently a mathematical analogy between the tangential contact problems and the
normal one.

The transition from full stick to full slip for spheres in contact is schematically
depicted in Fig. 5.31. At the beginning, for ux = 0, the real contact area has a radius
a0 = √

Rd0 given by the imposed normal interference d0, which corresponds to the

normal contact force Fz,0 = 4

3
ER1/2d3/2

0 according to Hertz theory, where R is the

radius of curvature and E is the composite Young’s modulus. The increase in the
shearing displacement leads to a progressive slip at the points of the contact domain
for which the ratio between the shearing traction and the normal pressure reaches
the value of the local friction coefficient μ. Therefore, the slip domain is represented
by an annulus, developing from the outer border of the circular contact area towards

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Fig. 5.31 Partition and evolution of the contact domain into stick and slip portions, by holding the
normal force and increasing the shearing displacement

its centre. The contact domain in stick condition, for which the ratio between the
shearing traction and the normal pressure is less than μ, progressively shrinks from
the circle of radius a0 to a point. The radius c0 of the circle defining the stick contact
domain can be computed from the following equation (Johnson 1985, Chap. 7):

ux = μd0
(2 − ν)E

4G

(
1 − c20

a20

)
. (5.31)

The displacement corresponding to the onset of full-sliding is therefore given by the
condition c0 = a0 and it is equal to ux = μd0(2 − ν)E/(4G).

The investigation of the evolution of the stick and slip parts of the real contact
area is indeed relevant for many applications. For example, the differential tangential
stiffness is only dependent on the current configuration of the stick region of contact.
If bodies are subjected to tangential oscillation with a small amplitude (smaller than
the maximum slip amplitude for complete sliding), then wear will occur only in the
slip-region (fretting). As shown by Ciavarella and Hills (1999) for arbitrary two-
dimensional contacts and by Popov (2014) for three-dimensional axis-symmetrical
contacts, during fretting the initial stick region always stays in the stick state (both at
a constant normal force and a constant indentation), while in the initial sliding region
the surfaces finally loose contact completely. This leads to changes in stiffness aswell
as in the electrical and thermal conductivities, which in the final statewill only depend
on the initial configuration of the stick region. The area of the stick region is also
of interest for instance for impurity-film resistance of contacts. The decomposition
of the contact area into stick and slip parts plays an important role in other practical
problems such as frictional energy dissipation (Dini and Hills 2009; Barber et al.
2011), geotechnical engineering (Desai et al. 1985), damping and stiffness of joints
(Kirsanova 1967), and control engineering (Harnoy et al. 1994).
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The investigation of partial slip contact problems with arbitrary rough contacts
can be made by exploiting the generalization of the Cattaneo–Mindlin analogy
between the tangential contact problem and the normal one for noncompact contact
domains, proposed independently by Ciavarella (1998a, b) and Jaeger (1998). They
have proven that the solution of the tangential contact problem can be gained from
the linear superposition of two normal solutions, one corresponding to the limiting
frictional traction distribution and a negative correction due to a distribution equal
to the coefficient of friction multiplied by the normal contact pressure distribution
corresponding to some lower value of the normal load. Numerical implementation
of this technique was discussed in Borri-Brunetto et al. (2001) and its extension to
a more general loading case consisting in an oscillatory tangential force is available
in Borri-Brunetto et al. (2006). Alternatively, the direct solution of the tangential
contact problem can be gained using the boundary element method, see Chap.4,
section “The Contact Problem with Friction” of this book.

From an operative point of view, the application of the Cattaneo–Mindlin analogy
requires two steps. First, the application of a displacement uz in the normal direction,
with a value from 0 up to uz,0, and the solution of the corresponding normal contact
problem, determining Fz for the sequence of displacements. We call Fz,0 the normal
contact force corresponding to uz,0. This step can be solved analytically for smooth
convex contact domains, or numerically using the boundary element method or the
finite element method for rough surfaces. Next, the normal force is held constant and
a progressively increasing shearing displacement ux is applied. The solution of the
tangential problem can be deduced from the solution of two normal contact prob-
lems: one associated to the problem for uz,0, and another corresponding to smaller

Fig. 5.32 Evolution of the real contact area and of the stick and slip portions of the contact domain
based on the application of the Cattaneo–Mindlin analogy

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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displacement uz , using the same formulae shown in Fig. 5.32 for the contact problem
involving a sphere and a half-plane.

For smooth surfaces like spheres or cylinders, it has been shown in Carpinteri
et al. (2009) that the tangential force component acting in the stick region and the
stick contact area are both nonlinear functions of the total tangential force.

For rough surfaces, semi-analytical predictions based on the Greenwood and
Williamson contact theory (Greenwood and Williamson 1966) have been made
in Paggi et al. (2014), integrating the individual asperity contributions (treated
as Hertzian spheres in contact with a half-plane with a constant radius of cur-
vature and an elevation obeying the exponential probability distribution function
�(z) = C exp(−z/λ)) to the stick and slip components of the contact domain. After
some algebra, the following simple result was achieved:

Fx

Fx,max
=

[
1 − exp

(
−dmin

λ

)]
, (5.32)

Fx

Fx,max
= 1 − Astick

A0
= Aslip

A0
, (5.33)

where Fx,max = μFz . The former equation leads to a smooth regularization of the
Coulomb friction law of the overall interface, as an emerging property from the
local partial slip evolution of the asperities, see Fig. 5.33. The latter is a simple
linear dependency between the portion of the real contact area in stick condition

Fig. 5.33 Shearing force–displacement relation analytically obtained from the progressive slip
of asperities for the Greenwood and Williamson contact model with an exponential probability
distribution function of asperity heights. The Coulomb friction law is also superimposed to the
diagram and it corresponds to a sharp transition from full stick to full slip, as for a flat plane bearing
a uniform normal pressure. The emergent response due to roughness and partial slip leads to a
smooth transition between the two regimes
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Fig. 5.34 Dependence of
the real contact area in stick
conditions and the shearing
force for RMD rough
surfaces. All the results
present the same linear curve
as for the Greenwood and
Williamson contact theory
with an exponential
probability distribution
function of asperity heights,
suggesting a universal trend

and the applied shearing force. Surprisingly, such a linear trend was confirmed in
Paggi et al. (2014) by numerical simulations on RMD fractal surfaces with n = 8
and D = 2.1, 2.5 and 2.9. This suggests a universal trend independent of the actual
probability density functions of the asperity elevations and curvatures, or on fractality,
see Fig. 5.34.

Conclusions

Contact mechanics between rough surfaces is a prominent example of a complex
system, where understanding the role of the multi-scale features of roughness on the
overall interface mechanical properties is a key research question. As shown in the
examples collected in this chapter, even in the simplest case of homogeneous and
isotropic linear elastic continua, the local interactions between elastic contact spots
lead to a collective behaviour with non-trivial emergent features.

Such emergent properties regard the relation between the real contact area and
the load, the scaling of the thermal/electric contact conductance with the normal
pressure, the evolution of the free volume network trapped between rough surfaces
in contact, as well as the evolution of the stick and slip portions of the contact domain
under the application of a shearing load. For all of such properties, the application
of numerical methods, such as the boundary element method or the finite element
method as detailed in Chap. 4, allows understanding of the role of roughness and
identifying possible universal trends. In this regard, algorithms for the numerical
generation of synthetic rough surfaces, such as theWM, RMD and SSM, can be used
to provide the height field to be used as input for computational contact mechanics
simulations, so far mostly focused on multi-scale roughness with self-affine scaling
typical of fractals.

http://dx.doi.org/10.1007/978-3-030-20377-1_4
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Recent trends opening further research directions regard the study of other com-
plex surface topologies, as, for instance, textured surfaces. It is in fact known that
some natural surfaces present specific textures for the promotion of hydrophobicity.
Similarly, special textures can be used to enhance wave absorbance or lubrication.
Many other forms are yet unexplored and the connection between the surface topol-
ogy and the physico-mechanical response is yet unrevealed. Moreover, a key issue
in the realization of bio-inspired surfaces is the understanding of how many length
scales of roughness should be included in the mimicking artificial surfaces, in order
to guarantee the achievement of the desired response.Machine learning algorithms to
select and identify optimal topologies to achieve a target response could be a method
to purse, following the pioneering approach in Cinat (2018), Cinat et al. (2019).

Finally, to foster sharing of real surface data in the scientific community, an
international collaborative project called Wiki Surface (http://musam.imtlucca.it/
wikisurf.html) has recently been launched to create the first open access database
of rough surfaces from nature and technology. The database is expected to signifi-
cantly contribute to the research in surface physics, surface chemistry and tribology,
extending the investigation on the role of roughness to amuchwider range of complex
topologies and surface textures.
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Chapter 6
Modelling Flows in Lubrication

Andreas Almqvist and Francesc Pérez-Ràfols

Abstract This chapter introduces the reader to lubrication theory and describes the
governing equations, models and methods that can be used to simulate various types
of lubricated systems. It starts with an introduction to the tribological contact and to
the different lubrication regimes. The basis for the classical lubrication theory is then
given and thereafter follows a presentation of how to obtain the Reynolds equation
by means of scaling and asymptotic analysis of the Navier–Stokes equations. After
having obtained the Reynolds equation, a quite elaborate presentation of cavitation
algorithms is given. It includes discretisation and presents the analytical solution for
a pocket bearing as a benchmark model problem. Then, the concept of homogenisa-
tion of surface roughness is introduced. This starts from the simplest iso-viscous and
incompressible case, expands to include compressibility with a constant bulk mod-
ulus constitutive relation and then also addresses the case of ideal gases. Thereafter,
the relation between homogenised coefficients and the Patir and Cheng flow factors
is described and finally it is shown how to incorporate the effect of mixed lubrication
into the model.

Introduction

Machines consist of machine elements and their safe and efficient operation relies
on carefully designed interfaces between these elements. Many of these are lubri-
cated and the material herein is meant to provide an understanding of established
models and numerical solution procedures that can be used to study the behaviour
of lubricated interfaces such as bearings and seals. Hopefully, it also inspires and
encourages the reader to contribute to further development thereof.
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The Tribological Contact

At start-ups, at stops as well as during operation, most machine elements experience
varying contact conditions. Take, for example, the (axial) tilted pad thrust bearing
illustrated in Fig. 6.1. This type of bearing belongs to the class of hydrodynamic
fluid film bearings, which are designed to generate a fluid film pressure build-up
that separates the rotating and stationary surfaces so that contact-less rotation is
achieved while carrying the load on the shaft. In fact, it is the relative motion of the
surfaces, as the lubricant is pulled into the converging geometry between the collar
and the pad, that creates the necessary fluid film pressure. Typically, the collar in
a tilting pad thrust bearing is made of steel while the pads have a soft (compliant)
facing made of Babbitt (metal alloy) or Teflon® (polytetrafluoroethylene (PTFE)).
This means that the smallest direct contact the collar makes with the shaft while
rotating, will cause severe wear on the facing surface and it is of crucial importance
to have a system that separates the surfaces during initiation of start-up and stop. A
common solution is to implement a system that pressurises the supplied lubricant,
generating hydrostatic lift.

Another example is the piston with its reciprocating motion inside the cylinder
of a heavy-duty diesel engine, such as the one depicted in Fig. 6.2. In this case,
the lubricated ring interfaces never see stationary conditions as they are decelerating
frommaximum speed at midstroke to fully stopped at the dead centres, reversing and
then accelerating to reach maximum speed when back at midstroke again. Together
with the speed, the lift generated by the resulting fluid pressure distribution will also
vary from a maximum value at the midstroke to almost nothing at the dead centres.

As revealed by these two examples, the conditions seen by the interfaces may
be substantially different. Therefore, depending on the application and the operating
conditions it is common to characterise the tribological contact by the lubrication
regime it operates in. The lubricant regimes are often divided into: Boundary Lubri-
cation (BL), Mixed Lubrication (ML) and Full Film Lubrication (FL). Note that
some systems may operate in various regimes. One such example is the aforemen-

Fig. 6.1 Schematics of a
tilting pad thrust bearing
including the shaft
connecting, e.g. the turbine
to the generator in a
hydro-power machine
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Fig. 6.2 Piston with rings
inside cylinder liner.
Illustration courtesy
Söderfjäll (2017)

tioned piston rings of a heavy- duty diesel engine, in which the load that the interface
between the compression ring and liner surface see comes from ring tension and
possibly the gas pressure behind the compression ring. During operation, the contact
between ring and the linear varies and it is understood that it can be in the full-film
regime at some parts in the mixed at others and sometimes it may even enter the
boundary lubrication regime.

The Boundary Lubrication Regime

In the boundary lubrication (BL) regime, the lubricant’s hydrodynamic action is
negligible and the load is carried directly by surface asperities or by surface-active
additives (a so-called tribofilm). Here, the surface topography is preferably chosen to
optimise the frictional behaviour without increasing the rate of wear. To do this, one
must also understand how the chemical processes are affected by the actual contact
conditions, in terms of, e.g. heat generation, pressure peaks or real area of contact, and
vice versa. This book does not describe any comprehensive BL-model incorporating
all these features. It can be pointed out, however, that there exists nowadays a well-
known elasto-plastic contact mechanics model Tian and Bhushan (1996), Almqvist
et al. (2007b), Sahlin et al. (2010a) with the corresponding numerical approach
grounded on a variational formulation, expressed in terms of total complementary
potential energy, with acceleration relying on the fast Fourier transform (FFT) Liu
et al. (2000, 2007), Wang et al. (2003). This approach has proved to ensure a stable
and effective simulation of (rough) contact mechanics and it can help to increase
the understanding of how the surface roughness influences the elastic deflection, the
plastic deformation (and plasticity index), the pressure build- up and the real area of
contact. An in-depth understanding of this connection is required to refine the design
of interfaces operating under these circumstances.



232 A. Almqvist and F. Pérez-Ràfols

As the hydrodynamical action of the lubricant increases, the contact mechanical
response becomes less influential in terms of pressure and real contact area, and a
transition from the BL- to the ML-regime may therefore occur.

The Mixed Lubrication Regime

What characterizes theML-regime is that the load is mostly carried by the lubricant’s
hydrodynamical action, which may be influenced by the elastic deflection of the sur-
faces, the tribofilm, directly by surface asperities, or a combination thereof. Indeed,
in this regime, a certain degree of contact between the interfaces is still expected.

This means that the objectives of the surface topography are in this case to support
the hydrodynamic action of the lubricant, aid the elastic deflection in rendering a
smoother surface, enable bonding of the surface active additives and optimise friction
in the contact spots without increasing wear.

Modelling mixed lubrication has turned out to be a true challenge and the models
available are built upon assumptions simplifying the physics involved in the tran-
sition from the BL- and the FL-regime. As indicated above, a contact mechanics
model may be used to indicate a possible transition between the BL- and the ML-
regimes. Similarly, modelling performed regarding full-film lubrication has lead to
numerical approaches that may be used to increase the understanding of the transi-
tion from the FL- to the ML-regimes. One well-known example of an ML-model,
is the Luleå mixed lubrication model by Sahlin et al. (2010a), in which partitioning
between lubricant- carried load and load carried by direct contact, is determined by
the separation. More precisely, when the separation between the interfaces becomes
smaller than a chosen measure of the surface roughness height, the lubricant load is
alleviated with the amount that the corresponding unlubricated interface would carry
at that separation. The main constituents of this type models are a contact mechanics
model and a thin film flow model based on a homogenised two-scale formulation,
which incorporates the influence of the surface roughness in an averaged sense.

The Full-Film Lubrication Regime

When the hydrodynamic action of the lubricant fully separates the surfaces and the
load is no longer carried by the contact between the surfaces, the interface enters the
full-film lubrication (FL) regime. In the FL regime, friction may still be reduced by
carefully chosen topographies. Even though there is no direct contact, the lubricant
pressuremay lead to stress concentrations high enough to cause fatigue, likely leading
to excessive wear in the form of spalling in highly loaded situations.

This regime is commonly subdivided into hydrodynamic lubrication (HL) and
elastohydrodynamic lubrication (EHL), since the performance is greatly affected by
the presence of elastic deflections, i.e. fluid–structure interaction, at the lubricated
interface.
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Hydrodynamic Lubrication

Slider bearings are typical examples of applications that, under certain conditions,
operate in the hydrodynamic lubrication (HL) regime where the elastic deforma-
tions of the bearing surfaces are sufficiently small to be neglected. For exam-
ple, the tilting pad thrust bearing, as depicted in Fig. 6.1, exhibits a conformal
interface between the pad and the collar and is designed to for operation in the
hydrodynamic lubrication regime. Note that the angle of inclination of the pads,
which is generally only a fraction of a degree, has been greatly exaggerated in the
figure. One problem that arise when modelling conformal interfaces like this one,
comes from the large differences in scales. More precisely, the global scale describ-
ing the geometry, pad–collar interface, is several orders of magnitude larger than
the local scale describing the surface topography/roughness. This situation can be
approached by means of homogenisation. This is also a subject further discussed in
section ‘Homogenisation of the Reynolds Equation’.

Elastohydrodynamic Lubrication

Elastohydrodynamic lubrication (EHL) is the type of hydrodynamic lubrication
where the fluid–structure interaction (FSI), caused by elastic deformations of the
contacting surfaces, plays a major role. This situation may occur when lubricat-
ing interacting non-conformal bodies. This leads to highly localised (concentrated)
contacts, and it is the lubricant’s piezo-viscous response combined with the elastic
flattening of surface roughness features that facilitate the separation of the interacting
surfaces. An example where EHL is typically found is at the interface between the
roller and the raceway in a typical roller bearing, as shown in Fig. 6.3, which are
most commonly designed to operate in the full-film elastohydrodynamic lubrication
regime.

Fig. 6.3 Schematics of a
typical rolling element
bearing
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The apparent contact zone for a rolling bearing is, in general, elliptic in shape.
Depending on the design parameters previously mentioned and the actual running
conditions, the shape of the ellipse will change. In any case, the contact region is
small and the concentrated load implies a severe surface—as well as sub-surface
stress condition that may lead to both elastic—but also plastic deformation. For a
bearing in operation, high stresses eventually cause fatigue, which in turn can lead
to shortened service life due to, for example, spalling. When the contact is starved of
lubricant, or when running conditions do not allow for a hydrodynamic action that
fully separates the surfaces, the risk for plastic deformation increases.

If the width of the contact ellipse exceeds the minimum width of the raceway and
the roller, the contact will be then truncated and this leads lead to increased stresses
in the material. In the case of a contact ellipse which is more than 4 times wider
than its length in the rolling direction, the pressure at the centerline in the rolling
direction can be approximated to the pressure corresponding to a line contact, Evans
et al. (2001), Shirzadegan et al. (2016). This motivates describing the problem with
a two-dimensional instead of a three-dimensional domain. Moreover, it has been
shown that the one-dimensionalReynolds equation cangive highly accurate estimates
of deformations and stresses inside the interface. Still, as with most tribological
problems, this is a very demanding problem that requires advanced mathematical
descriptions aswell as highly efficient numerical solution procedures, see e.g. Venner
and Lubrecht (2000), Holmes (2002), Holmes et al. (2003a, b), Hooke and Li (2006),
Persson (2010), Scaraggi and Carbone (2012), Ahmed et al. (2012), Zhu et al. (2015),
Habchi (2018, 2019). Homogenisation of roughness, Fast Fourier Transformation
(FFT), and multilevel techniques are examples of such. This usually renders quite
complex methods that often require end users with rather specialised background.

Introduction to Lubrication Theory

In the celebrated paper Reynolds (1886), Reynolds presented an analysis of hydrody-
namic flows in thin gaps. Examples of such are the gap between the rolling element
and the raceway in a bearing, between the contacting surfaces in a seal, between the
eye and the contact lens, in our joints and when a water film is generated between a
car’s tyre and the road surface. Figure 6.4 illustrates the typical schematics of a flow
domain in lubrication, which is representative of all aforementioned cases. What
these situations have in common is that Reynolds’ thin film approximation applies,
implying that, h0 � l0 and h0 � b0, where h0 represents the gap between the sur-
faces hu and hl , and l0 and b0 represent the dimensions of the surfaces. The main
advantage of using this approach is that the resulting equation is a partial differential
equation for the fluid pressure, p, which is of one dimension less than the physical
problem, viz.,

∂(ρh)

∂t
= ∇ ·

(
ρh3

12μ
∇ p − 1

2

[
uu + ul
vu + vl

]
ρh,

)
(6.1)
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Fig. 6.4 Schematic illustration of a thin gap between the two impermeable surfaces hu and hl

where h = hu − hl models the gap between the surfaces, ρ and μ are the density
and viscosity of the fluid, the velocity in the x-direction of the upper and the lower
surfaces are denoted by uu and ul , respectively, and vu and vl denote the surfaces’
velocities in the y-direction. This equation, known asReynolds equation, was derived
originally by Reynolds for incompressible and iso-viscous fluids by simplifying the
Navier–Stokes equation under the thin film assumption and neglecting inertia.

Common examples of this use of Reynolds equation can be found in the field of
hydrodynamic lubrication of thrust and journal bearings, elastohydrodynamic lubri-
cation and leakage in seals, where (6.1) is often used together with semi-empirical
expressions for density– and viscosity–pressure relationships.

In the following, a simplistic scaling and straightforward analysis will be applied
to the Navier–Stokes equations for flows in thin gaps. It will be demonstrated that
it is possible to obtain the set of reduced equations for the classical lubrication
approximation governing incompressible and iso-viscous flows. The reduced set
of equations will thereafter be integrated to obtain an explicit formulation of the
velocity field. Finally, the continuity equation will be integrated rendering the well-
knownReynolds equation.We start by introducing the continuity equation describing
conservation of mass and the Navier–Stokes momentum equations, for compressible
and viscous flow in 3D, i.e.

0 = ∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
, (6.2a)

ρ
Du

Dt
= ρgx − ∂ p

∂x
− 2

3

∂

∂x
(μξ) + 2

∂

∂x

(
μ

∂u

∂x

)
+

∂

∂y

(
μ

(
∂u

∂y
+ ∂v

∂x
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+ ∂

∂z

(
μ

(
∂u

∂z
+ ∂w

∂x

))
, (6.2b)
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ρ
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where D/Dt is the material derivative

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

and ξ is the dilation

ξ = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
. (6.3)

This form of the Navier–Stokes equations is based on the Stokes’ assumption that
the bulk viscosity is zero, which is an assumption that is justified for ideal gases and
for monatomic liquids, see e.g. Buresti (2015). It is here highlighted that, although
a fluid (in general) exhibits both compressibility and nonlinear viscosity–pressure
and temperature dependence, the analysis presented herein is restricted to isothermal
conditions.

In the following the fact that fluid film is very thin relative to the other dimensions
will be used, in order to derive simplified forms of (6.2). More precisely, this will be
done by scaling and dimensional analysis.

Scaling and Asymptotic Analysis of the Navier–Stokes
Equations

The derivation of Reynolds equation can be started by transforming (6.2) into dimen-
sionless from via scaling. To this end, a set of scaling parameters is introduced that
applies to flow situations were the typical length and speed in the x- and y-directions,
respectively, are of the same order. In order to write the independent and dependent
variables in dimensionless form, the following scaling is introduced:

x̄ = x/ l0, ȳ = y/ l0, z̄ = z/h0, t̄ = t
/
t0,

ū = u/u0, v̄ = v/u0, w̄ = w/w0,

p̄ = p/p0, ρ̄ = ρ/ρ0, μ̄ = μ/μ0.

(6.4)

Among the scaling parameters (subscripted 0), l0 and h0 are problem specific and so
is u0 for the situation where the flow is shear driven and caused by relative motion of
the surfaces. The scaling parameters t0,w0 and p0 are a priori unknown. The fluid is,
at this point, regarded compressible and piezo-viscous meaning that ρ = ρ(p) and
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μ = μ(p), respectively, and it should be noted that ρ0 and μ0 should not be directly
used in the dimensional analysis as the scaling of the density and viscosity will
depend on terms of p0 and specific inputs to the constitutive relations (6.5) and (6.6)

ρ = ρa fρ(p), (6.5)

and
μ = μa fμ(p), (6.6)

where fρ and fμ are strictly increasing functions with fρ(pa) = fμ(pa) = 1 and ρa
and μa are the density and the viscosity at the ambient pressure pa .

By means of (6.4), the non-dimensional form of Eq. (6.2a) becomes

1

t0

∂ρ̄

∂ t̄
+ u0

l0

∂(ρ̄ū)

∂ x̄
+ u0

l0

∂(ρ̄v̄)

∂ ȳ
+ w0

h0

∂(ρ̄w̄)

∂ z̄
= 0. (6.7)

The current objective is to analyse the asymptotic behaviour of (6.2) as h0/ l0 goes
to zero. The notation

ε = h0/ l0 (6.8)

is, therefore, convenient. In this notation, (6.7) becomes

ε
l0
t0u0

∂ρ̄ε

∂ t̄
+ ε

∂(ρ̄εūε)

∂ x̄
+ ε

∂(ρ̄εv̄ε)

∂ ȳ
+ w0

u0

∂(ρ̄εw̄ε)

∂ z̄
= 0, (6.9)

where the subscript ε indicates dependent variables’ parameterisation in ε. For steady
or incompressible flow, it is realised that (6.9) has little if any meaning if not at least
the three last terms are of the same order. In case not, ρ̄εw̄ε would not depend on z,
which is unreasonable for most types of flow situations, e.g. for an incompressible
fluid confined in a (narrow) converging gap. This is the motivation for the scaling
w0 = εu0. In the case of compressible and unsteady flow there are two cases, i.e. (i)
the time scale for the variations in the density is larger or of the same order as l0/u0
or (ii) the density oscillates extremely fast in comparison to l0/u0. In the first case,
we can choose t0 = l0/u0 and w0 = εu0 and all terms become of the same order. In
the latter case, t0 = h0/u0 and the first term will dominate the flow. This situation
will not be considered here and thus the following scaling can be adopted:

w0 = εu0, t0 = l0
/
u0. (6.10)

In terms of this scaling, the continuity equation (6.9) becomes

∂ρ̄ε

∂ t̄
+ ∂(ρ̄εūε)

∂ x̄
+ ∂(ρ̄εv̄ε)

∂ ȳ
+ ∂(ρ̄εw̄ε)

∂ z̄
= 0. (6.11)



238 A. Almqvist and F. Pérez-Ràfols

Now, (6.2b)–(6.2d) can be scaled using (6.4) and (6.10). These read

ε2
ρ0u0l0

μ0
ρ̄ε

(
∂ūε

∂ t̄
+ ūε

∂ūε

∂ x̄
+ v̄ε

∂ūε

∂ ȳ
+ w̄ε

∂ūε

∂ z̄

)
= ε2

ρ0l20
μ0u0

ρ̄εgx

−ε2
p0l0
μ0u0

∂ p̄ε

∂ x̄
+ −ε2

2

3

∂

∂ x̄

(
μ̄ε

(
∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄

))

+2ε2
∂

∂ x̄

(
μ̄ε

∂ūε

∂ x̄

)
+ ε2

∂

∂ ȳ

(
μ̄ε

(
∂ūε

∂ ȳ
+ ∂v̄ε

∂ x̄

))

+ ∂

∂ z̄

(
μ̄ε

(
∂ūε

∂ z̄
+ ε2

∂w̄ε

∂ x̄

))
,

(6.12)

ε2
ρ0u0l0

μ0
ρ̄ε

(
∂v̄ε

∂ t̄
+ ūε

∂v̄ε

∂ x̄
+ v̄ε

∂v̄ε

∂ ȳ
+ w̄ε

∂v̄ε

∂ z̄

)
= ε2

ρ0l20
μ0u0

ρ̄εgy

−ε2
p0l0
μ0u0

∂ p̄ε

∂ ȳ
− 2

3
ε2

∂

∂ x̄

(
μ̄ε

(
∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄

))

+ε2
∂

∂ x̄

(
μ̄ε

(
∂ūε

∂ ȳ
+ ∂v̄ε

∂ x̄

))
+ 2ε2

∂

∂ ȳ

(
μ̄ε

∂v̄ε

∂ ȳ

)

+ ∂

∂ z̄

(
μ̄ε

(
∂v̄ε

∂ z̄
+ ε2

∂w̄ε

∂ ȳ

))
,

(6.13)

and

ε2
ρ0u0l0

μ0
ρ̄ε

(
∂w̄ε

∂ t̄
+ ūε

∂w̄ε

∂ x̄
+ v̄ε

∂w̄ε

∂ ȳ
+ w̄ε

∂w̄ε

∂ z̄

)
= ε

ρ0l0
μ0u0

ρ̄εgz

− p0l0
ρ0u0

∂ p̄ε

∂ z̄
− 2

3

∂

∂ z̄

(
μ̄ε

(
∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄

))

+ ∂

∂ x̄

(
μ̄ε

(
∂ūε

∂ z̄
+ ε2

∂w̄ε

∂ x̄

))
+ ∂

∂ ȳ

(
μ̄ε

(
∂v̄ε

∂ z̄
+ ε2

∂w̄ε

∂ ȳ

))

+2
∂

∂ z̄

(
μ̄ε

∂w̄ε

∂ z̄

)
,

(6.14)

after multiplication with
l20

μ0u0
.



6 Modelling Flows in Lubrication 239

It should be noted that the modified Reynolds number defined as

Rε := ε2
ρ0u0l0

μ0
(6.15)

appears in the left-hand sides of (6.12)–(6.14).
The importance of incorporating the precise relationship μ(p) before carrying

out the asymptotic analysis, rather than after, was highlighted in Rajagopal and
Szeri (2003). There, the asymptotic analysis was carried out by adopting the most
commonly used viscosity–pressure constitutive relation in EHLmodelling, known as
Barus’ law, i.e. μ = exp (αp), where α is the so-called pressure–viscosity constant.
Thiswas also addressed in otherworks, Bayada et al. (2013), Gustafsson et al. (2015),
all of which highlighted the importance of incorporating the precise constitutive
relationships before carrying out the asymptotic analysis, rather than after. Similarly,
the derivation of a model for a gas- lubricated system, needs to incorporate the well-
known linear constitutive relation between density and pressure for an ideal gas,
i.e. ρ = kp, where k is a constant, before the asymptotic analysis is carried out. The
reason for this need comes from the fact that the typical values of density and viscosity
to be used for the scaling, ρ0 and μ0, depend on the pressure in a manner determined
by the precise constitutive relation. Without knowing it, the relative magnitude of
the different terms in (6.12)–(6.14) cannot be assessed.

In the following, a recapitulation is given of the derivation of the reduced system
for an incompressible and iso-viscous fluid, i.e. a fluid with constant density and vis-
cosity, leading to the well-known Reynolds equation. With incompressible is hereby
meant that the density is constant and without loss of generality ρ = ρa is specified.
Similarly, by iso-viscous, it is meant that the viscosity is constant and μ = μa is
defined. Clearly, in this case the density and viscosity are no longer dependent vari-
ables and ρ0 = ρa and μ0 = μa can be chosen. This means that ρ̄ε = 1 and μ̄ε = 1
and that the continuity equation (6.11) reduces to

∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄
= 0. (6.16)

Further, by using (6.16) it follows that (6.12)–(6.14) become

ε2
ρau0l0

μa

(
∂ūε

∂ t̄
+ ūε

∂ūε

∂ x̄
+ v̄ε

∂ūε

∂ ȳ
+ w̄ε

∂ūε

∂ z̄

)
= ε2

ρal20
μau0

gx

−ε2
p0l0
μau0

∂ p̄ε

∂ x̄
+ 2ε2

∂2ūε

∂ x̄2

+ε2
∂

∂ ȳ

(
∂ūε

∂ ȳ
+ ∂v̄ε

∂ x̄

)
+ ∂

∂ z̄

(
∂ūε

∂ z̄
+ ε2

∂w̄ε

∂ x̄

)
,

(6.17)
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ε2
ρau0l0

μa

(
∂v̄ε

∂ t̄
+ ūε

∂v̄ε

∂ x̄
+ v̄ε

∂v̄ε

∂ ȳ
+ w̄ε

∂v̄ε

∂ z̄

)
= ε2

ρal20
μau0

gy

−ε2
p0l0
μau0

∂ p̄ε

∂ ȳ
+ ε2

∂

∂ x̄

(
∂ūε

∂ ȳ
+ ∂v̄ε

∂ x̄

)

+2ε2
∂2v̄ε

∂ ȳ2
+ ∂

∂ z̄

(
∂v̄ε

∂ z̄
+ ε2

∂w̄ε

∂ ȳ

)
,

(6.18)

and

ε2
ρau0l0

μa

(
∂w̄ε

∂ t̄
+ ūε

∂w̄ε

∂ x̄
+ v̄ε

∂w̄ε

∂ ȳ
+ w̄ε

∂w̄ε

∂ z̄

)
= ε

ρal20
μau0

gz

− p0l0
μau0

∂ p̄ε

∂ z̄
+ ∂

∂ x̄

(
∂ūε

∂ z̄
+ ε2

∂w̄ε

∂ x̄

)

+ ∂

∂ ȳ

(
∂v̄ε

∂ z̄
+ ε2

∂w̄ε

∂ ȳ

)
+ 2

∂2w̄ε

∂ z̄2
.

(6.19)

Without considering the physics of the flow that a reduced model would reflect,
one could just neglect the terms of order ε and higher in (6.17)–(6.19). This leads to
the system

∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄
= 0, (6.20a)

0 = ∂2ūε

∂ z̄2
, (6.20b)

0 = ∂2v̄ε

∂ z̄2
, (6.20c)

∂2ūε

∂ x̄∂ z̄
+ ∂2v̄ε

∂ ȳ∂ z̄
+ 2

∂2w̄ε

∂ z̄2
= p0l0

μau0

∂ p̄ε

∂ z̄
, (6.20d)

which after using (6.16) reads

∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄
= 0, (6.21a)

0 = ∂2ūε

∂ z̄2
, (6.21b)

0 = ∂2v̄ε

∂ z̄2
, (6.21c)

∂2w̄ε

∂ z̄2
= p0l0

μau0

∂ p̄ε

∂ z̄
. (6.21d)
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From (6.21b) and (6.21c), it is clear that thismodel implies that ūε and v̄ε vary linearly
with z, as in the case with moving parallel plates, in other words, plain Couette type
of flow. In this case, the pressure is constant and equal to the atmospheric pressure,
pa , specified at the boundaries and thus p0 = pa is a perfectly reasonable choice. In
other cases, however, a pressure built up occurs and the reference pressure to choose
p0 is unknown. In order to model more general flow situations the pressure needs
to be scaled relative to the velocity so that the pressure is preserved as a dependent
variable as ε goes to zero. Indeed, this motivates the scaling p0 = ε−2μau0

/
l0, which

leads to that the system (6.17)–(6.19) is reduced to

∂ūε

∂ x̄
+ ∂v̄ε

∂ ȳ
+ ∂w̄ε

∂ z̄
= 0, (6.22a)

∂ p̄ε

∂ x̄
= ∂2ūε

∂ z̄2
, (6.22b)

∂ p̄ε

∂ ȳ
= ∂2v̄ε

∂ z̄2
, (6.22c)

∂ p̄ε

∂ z̄
= 0, (6.22d)

when terms of order ε and higher are neglected. Note that this is actually the classical
set of lubrication equations, which in dimensions reads

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (6.23a)

∂ p

∂x
= μa

∂2u

∂z2
, (6.23b)

∂ p

∂y
= μa

∂2v

∂z2
, (6.23c)

∂ p

∂z
= 0. (6.23d)

Remember that the underlying assumption for arriving at (6.23) is that p scales with
ε−2. It is also important to have inmind that even though the explicit time dependence
has disappeared from the original set of equations, the dependent variables are still
functions of time. For example, the domain may change with time as in the case with
moving surfaces.

Derivation of the Reynolds Equation

Proceeding with the derivation of the Reynolds equation, (6.23) can be integrated
to obtain an analytical description of the velocity field. First, it should be noted that
(6.23d) implies that p does not depend on z, hence (6.23b) and (6.23c) may be
integrated twice with respect to z. This leads to
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u(x, y, z, t) = 1

2μa

∂ p

∂x
z2 + A(x, y, t)z + B(x, y, t), (6.24a)

v(x, y, z, t) = 1

2μa

∂ p

∂y
z2 + C(x, y, t)z + D(x, y, t). (6.24b)

The functions A, B,C and D may be found via boundary conditions on the surfaces.
Indeed, consider the case when it can be assumed that the fluid stick to the surfaces
(i.e. no-slip boundary conditions). This means that the velocity boundary condition
at the lower surface is

ul =
⎛
⎝ u(x, y, hl(x, y, t), t)

v(x, y, hl(x, y, t), t)
w(x, y, hl(x, y, t), t)

⎞
⎠ =

⎛
⎜⎝

ul(x, y, t)
vl(x, y, t)
∂hl
∂t

(x, y, t)

⎞
⎟⎠ , (6.25)

and at the upper surface it is

uu =
⎛
⎝ u(x, y, hu(x, y, t), t)

v(x, y, hu(x, y, t), t)
w(x, y, hu(x, y, t), t)

⎞
⎠ =

⎛
⎜⎝

uu(x, y, t)
vu(x, y, t)
∂hu
∂t

(x, y, t)

⎞
⎟⎠ , (6.26)

where ul , vl , uu and vu are explicitly specified. The boundary condition at the lower
surface (6.25) together with (6.24) gives

u(x, y, hl , t) = 1

2μa

∂ p

∂x
h2l + Ahl + B = ul , (6.27a)

v(x, y, hl , t) = 1

2μa

∂ p

∂y
h2l + Chl + D = vl (6.27b)

and for the upper surface we obtain

u(x, y, hu, t) = 1

2μa

∂ p

∂x
h2u + Ahu + B = uu, (6.28a)

v(x, y, hu, t) = 1

2μa

∂ p

∂y
h2u + Chu + D = vu . (6.28b)

It is straightforward to find A, B,C and D by solving the system (6.27)–(6.28).
Inserting the result into (6.24) gives

u =

⎛
⎜⎜⎜⎝

(z − hl)(z − hu)

2μa

∂ p

∂x
+ (uu − ul)

z − hl
h

+ ul

(z − hl)(z − hu)

2μa

∂ p

∂y
+ (vu − vl)

z − hl
h

+ vl

⎞
⎟⎟⎟⎠ , (6.29)
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The final step in the derivation is to integrate the continuity equation (6.23a) from
z = hl to z = hu , i.e.

hu∫
hl

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
dz = 0. (6.30)

It follows from straightforward calculations that

hu∫
hl

∂u

∂x
dz = ∂

∂x

(
− h3

12μa

∂ p

∂x
+ (uu + ul)

2
h

)

hu∫
hl

∂v

∂y
dz = ∂

∂y

(
− h3

12μa

∂ p

∂y
+ (vu + vl)

2
h

)

hu∫
hl

∂w

∂z
dz = w(x, y, hu, t) − w(x, y, hu, t) = ∂h

∂t
,

where h = hu − hl . The resulting equation is indeed the well-known Reynolds equa-
tion for an incompressible and iso-viscous fluid;

∂h

∂t
= ∂

∂x

(
h3

12μa

∂ p

∂x
− (uu + ul)

2
h

)
+ ∂

∂y

(
h3

12μa

∂ p

∂y
− (vu + vl)

2
h

)
. (6.31)

In the literature, the Reynolds equation is commonly derived in another way.
Indeed, it starts from the Navier–Stokes momentum equations without considering
the density– and viscosity–pressure relationship prior carrying out the asymptotic
analysis. More precisely, it is typically assumed that p0 ∝ ε−2 and without consid-
ering the density–pressure relationship, the inertial- and body-force terms become
of the order ε2 and are then neglected. Taking the example of an ideal gas, for
which ρ = kp, and with p0 ∝ ε−2 the modified Reynolds number (6.15) becomes
ku0l0/μ0, which is, obviously, not dependent on ε. A similar consideration can be
made for viscosity–pressure relationships. When overlooking this, the analysis leads
to the same expression for the velocity field as in (6.29), with μ = μ(p) replacing
μa . However, as already pointed out by Rajagopal and Szeri (2003), this is not cor-
rect, since the viscosity–pressure relationship (and the density–pressure relationship)
must be considered a priori carrying out the asymptotic analysis. Disregarding this,
the analysis typically continues based on the velocity field (6.29), with, μ = μ(p)
replacing μa , and by considering mass conservation. That is, the continuity equation
(6.2a) is integrated with respect to z (across the fluid film, from hl to hu) viz.

0 =
hu∫

hl

(
∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z

)
dz, (6.32)
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where it is assumed that density is independent of z, i.e. ρ = ρ(x, y). This leads
to a Reynolds equation including density– and viscosity–pressure relationships that
describefluid compressibility andpiezo-viscous behaviour. In thisway, theReynolds’
type of equation (6.1), implying that both the density and the viscosity do not need
to be constants and thus may depend on the pressure, viz.

∂(ρh)

∂t
= ∂

∂x

(
ρh3

12μ

∂ p

∂x
− (uu + ul)

2
ρh

)
+ ∂

∂y

(
ρh3

12μ

∂ p

∂y
− (vu + vl)

2
ρh

)
.

This type of derivation, that overlooks the aforementioned difficulties, may lead
to the impression that Reynolds equation is universally valid for general fluids. It
might be noted, however, that already in his original derivation Reynolds (1886),
Reynolds considered the viscosity to be ‘nearly constant’. He also assumed that ‘the
forces arising fromweight and inertia are altogether small comparedwith the stresses
arising from viscosity’. Under these assumptions, all the terms involving the density
in the momentum equations may be omitted and safely arrived at (6.31).

It is clear from this discussion, however, that the use of (6.1) togetherwith density–
and viscosity–pressure relationships other than unity, may lead to erroneous results.
In the case of mildly compressible or piezo-viscous fluids, this error may be suf-
ficiently small for practical purposes. In general, however, the inconsistency in the
derivation must be noted so that one is aware of the possible occurrence of these
errors and can thus assess it influence before using Reynolds equation as in (6.1).

Modelling Mass-Conserving Hydrodynamic Cavitation

Hydrodynamic cavitation is found in various lubrication situations. For example, at
the divergent section between the shaft and the bushing in a plain journal bearing,
where thefluidfilm is subjected to a tensile stress situation. Thefluid cannotwithstand
these stresses and thus the fluid film ruptures. In this situation, Reynolds equationwill
fail to capture this phenomenon. Instead, it will wrongly predict negative (tensile)
pressures. An early approach to avoid this issue was simply to ignore the negative
pressures. This, however, does not preserve mass continuity and thus leads to inac-
curate results. The first attempts to model mass-conserving hydrodynamic cavitation
were presented by three authors Jacobson, Floberg, and Olsson, see Jakobsson and
Floberg (1957), Floberg (1960, 1961), Olsson (1965). They described the so-called
rupture and reformation boundary conditions and showed how they could be incor-
porated in the Reynolds equation leading to a mathematical model of hydrodynamic
cavitation.

Elrod and Adams (1975) developed a cavitation algorithm using a single equation
throughout the lubrication region without the need for explicit equations to locate the
cavitation boundaries, and used a switch function to terminate the pressure gradient
in the region of cavitation. In Elrod (1981), Elrod presented a variant of the cavitation
algorithm proposed in Elrod andAdams (1975), inwhich he used a different constitu-
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tive relationship between pressure and density. Vijayaraghavan and Keith introduced
a more rigorous derivation and presented their contribution to cavitation modelling
in Vijayaraghavan and Keith Jr (1989, 1990). As in Elrod and Adams (1975), their
algorithm was derived based on a constant bulk modulus type of compressibility.
For real lubricants, the bulk modulus varies with pressure. The importance of using
more realistic models for the compressibility was investigated further in the paper
by Sahlin et al. (2007). However, treating the bulk modulus as a constant could pro-
duce good results in a narrow pressure range. Examples of other work addressing
the difficulties associated with cavitation modelling are Woods and Brewe (1989),
Boukrouche and Bayada (1993), Ausas et al. (2009).

JFO Theory

Jakobsson and Floberg (1957) developed a mass-preserving cavitation theory. They
assumed a constant pressure in the cavitation region, i.e. the pressure gradient is
zero. They also derived a set of conditions to locate the cavitation boundaries. Later,
Floberg and Olsson (Floberg 1960, 1961; Olsson 1965), extended the theory of cavi-
tation and implemented it in the numerical solution procedures for numerous bearing
types. The JFO theory is based on the complementary assumption that the fluid is
either fully saturated, i.e. θ = 1 and the fluid pressure is larger than the cavitation
pressure p > pc, or cavitated, i.e. θ < 1 and the pressure equals the cavitation pres-
sure p = pc. They formulated this mathematically as a boundary condition for the
location xc of the cavitation inception or rupture, i.e.

p(xc) = pc and
∂ p

∂n

∣∣∣∣
x=xc

(6.33)

and as a condition for preservation of mass flow at the point xr of where the fluid
film reforms

h3

12μa

∂ p

∂n

∣∣∣∣
x=xr

= Vn

2
(1 − θ)

∣∣∣∣
x=xr

. (6.34)

Though the JFO-rupture and reformation conditions can be applied to various lubri-
cation problems, such as the ones for journal bearings, piston ring–cylinder liner
conjunctions and rolling element bearings, it is difficult to handle situations where
rupture and cavitation occurs many times inside the interface, as would be the case
with, e.g. a textured bearing surface. This lead successors to develop ‘universal’
cavitation algorithms, as will be presented below.
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Elrod’s and Adams’ Universal Cavitation Algorithm

It is not so easy to describe the universal cavitation algorithm developed by Elrod and
Adams. One reason is that they did not use a consistent density–pressure relationship.
Indeed, their work starts in Elrod and Adams (1975), with a paper in which they
employ a constant bulk modulus type of constitutive relationship between density
and pressure, i.e.

p = pc + βg(θ) ln θ, (6.35)

where θ is the saturation or the dimensionless density given by

θ(x) = ρ(p(x))

ρc
,

and where ρc = ρ(pc) and g(θ) is a so-called switch function

g(θ) =
{
1, p > pc,
0, p = pc.

(6.36)

The expression (6.35) comes from

ρ = ρae
(p−pa)/β (6.37)

with pa = pc. By means of precisely this constitutive relationship between p and
θ, Elrod and Adams presented a ‘universal differential equation’ originating from
(6.1), which reads

∂ (θh)

∂t
= ∇x ·

(
βh3

12μa
g(θ)∇xθ − us

2
θh

)
. (6.38)

Elrod then continues the development in Elrod (1981) but there another constitutive
relationship between density and pressure is adopted, i.e. (6.39). Elrod describes
his model like this: ‘Within the cavitated zone, the liquid everywhere possesses the
density, ρc, but the actual mass content is ρcθh per unit area. Here 1 − θ, then, is
the same as the void fraction. Within the complete film, due to variation in pressure,
the fluid density also varies. By reason of slight compression, the film mass content
exceeds the content that would exist if the pressure were pc. In other words, θ = ρ/ρc
and the corresponding film pressure is:

p = pc + βg(θ) (θ − 1) (6.39)

where β = O
(
109

)
in SI units for a typical lubricating oil. It is realised, of course,

that θ will be very nearly unity in the full-film zone, but when Eq. (6.39) constitutes
an analytical convenience, it will be used’. In a more condensed form, this means
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that the fluid behaves more or less as incompressible in the full-film zones and that
it expands as a homogeneous blend in the cavitated zones.

Based on (6.39), the corresponding Reynolds equation (6.1) would become

∂ (θh)

∂t
= ∇x ·

(
βθh3

12μa
∇x (g(θ)(θ − 1)) − us

2
θh

)
. (6.40)

The finite difference scheme presented in Elrod (1981) implies that it would originate
from

∂ (θh)

∂t
= ∇x ·

(
βh3

12μa
∇x (g(θ)(θ − 1)) − us

2
θh

)
, (6.41)

which differs from (6.40) as it reflects a flow situation where the fluid behaves like
an incompressible liquid in the full-film zones and as a homogeneous compressible
gas–liquid mixture in the cavitated zones. This is, also, to some extent consistent
with Elrod’s description of his model, reprinted above. However, they found, and so
did successors, that obtaining a converged numerical solution to this equation can be
quite challenging if not even impossible sometimes.

In the following sections, the inconsistency of the introduction of the constitu-
tive expression in (6.39) and the controversy that Reynolds equation, (6.1), actually
reduces to (6.40) when adopting the constitutive relation given by (6.35) will be
elaborated upon.

Vijayaraghavan’s and Keith Jr’s Cavitation Model

As done in Elrod and Adams (1975), Vijayaraghavan and Keith Jr (1989, 1990)
also used the constant bulk modulus type of compressibility as a starting point in
their derivation of a cavitation model. They, however, presented a more rigorous
derivation, which finally lead to a cavitation algorithm similar to the one presented
in Elrod (1981). More precisely, they use the density–pressure relation defined in
(6.37) and reach again

∂ (θh)

∂t
= ∇x ·

(
βh3

12μa
g(θ)∇xθ − us

2
θh

)
.

Studying this equation, they conclude

g(θ)∇x · (θ) = g(θ)∇x · (θ − 1) = ∇x · (g(θ)(θ − 1)) − (θ − 1)∇x · (g(θ)) .

(6.42)
However, in the full-film zones θ = 1 and in the cavitated ones g(θ) = 0 thus the
last term in (6.42) vanishes everywhere except at the point of rupture and we have

g(θ)∇x · (θ) = ∇x · (g(θ)(θ − 1)) (6.43)
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so that (6.38) remarkably reduces to (6.41), which is the continuous interpretation of
the cavitation algorithm that Elrod proposed in Elrod and Adams (1975). Moreover,
they introduce the concept of type differencing from transonic flow computations to
obtain a finite difference stencil for the shear flow term that effectively considers that
the governing equation goes from elliptic to hyperbolic when flow goes from fully
flooded to cavitated. That is,

∂(θh)

∂x
= ∂

∂x

(
θh − (1 − g(θ))

∂(θh)

∂x

�x

2

)
, (6.44)

where �x is the element size in the x-direction. When discretised this leads to the
finite difference scheme

∂(θh)

∂x

∣∣∣∣
xi

= (θh)|xi − (θh)|xi−1

�x
+ O(�x), (6.45)

for the shear flow term within the cavitated zone, while it becomes

∂(θh)

∂x

∣∣∣∣
xi

= (θh)|xi+1 − (θh)|xi−1

2�x
+ O(�x)2, (6.46)

in the full-film zone. In comparison, the scheme presented in Elrod (1981) yields

∂(θh)

∂x

∣∣∣∣
xi

= h|xi − h|xi−1

�x
+ O(�x), (6.47)

which clearly represents shear flow for an incompressible fluid. The scheme (6.45) is
of first order, while (6.46) is of second order. In Vijayaraghavan and Keith Jr (1990),
the remedy for this was presented by extending the type differencing scheme to

∂E

∂x
= ∂

∂x

(
E − (1 − g(θ))

(
∂2E

∂x2
(�x)2

2
− ∂3E

∂x3
(�x)3

8

))
, (6.48)

where E = θh. This leads to the second-order finite difference scheme

∂E

∂x

∣∣∣∣
xi

= 1

2�x

(
gi+1/2Ei+1 − (2 − gi+1/2 − gi−1/2)Ei − (2 − gi−1/2)Ei−1

)+

= 1

2�x

(
(1 − gi+1/2)Ei − (2 − gi+1/2 − gi−1/2)Ei−1 + (1 − gi−1/2)Ei−2

)+
O(�x)2. (6.49)
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The pressure-driven flow can then be discretised with a standard second-order accu-
rate finite difference scheme. This method leads to a much more robust solution than
previous approaches.

Arbitrary Compressibility Switch Function Based Cavitation
Algorithm

In the paper Sahlin et al. (2007), they adopted the expression (6.5), viz.

ρ = ρa f (p),

as the constitutive relationship for the fluid compressibility. We recall, from above,
that f is a strictly increasing function with f (pa) = 1 and that ρa is the density at
the ambient pressure pa . This means that

∇ρ = ρa f
′(p)∇ p, (6.50)

which can be inverted to express the pressure gradient as

∇ p = 1

f ′(p)
∇θ, (6.51)

where θ(x) = ρ(p(x))/ρa . This means that (6.1) including the switch function g(θ)
(6.36) can be posed as

∂ (θh)

∂t
= ∇x ·

(
h3

12 f ′(p)μa
g(θ)∇xθ − us

2
θh

)
. (6.52)

In Sahlin et al. (2007), they analyse the resulting predictions based on both the
constant bulk modulus type of compressibility (6.37) and another kind of density–
pressure relationship, the well-known relation,

ρ = ρa
C1 + C2(p − pa)

C1 + p − pa
, (6.53)

deduced by Dowson and Higginson and presented in Dowson and Higginson (1966),
together with the constants C1 = 0.59 GPa and C2 = 1.34 that they found to be best
fit to mineral oil density–pressure data they had access to. Sahlin et al. Sahlin et al.
(2007) fitted the constants to another set of mineral oil density-pressure data for
pressures up to 1 GPa, and found a close fit for C1 = 2.22 GPa and C2 = 1.66.
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The Linear Complementarity Problem Formulation

In 2005, Bayada presented in Bayada et al. (2005b) a continuous complementarity
formulation of Elrod’s and Adams’ cavitation algorithm Elrod and Adams (1975).
Later,Giacopini et al. (2010) presented the same formulation togetherwith the discre-
tised linear complementarity problem formulation of the same cavitation algorithm
on the basis that the fluid in the fully flooded regions behaves as incompressible. Inde-
pendent of each other, two groups of authors, Bertocchi et al. (2013) and Almqvist
et al. (2014), Almqvist andWall (2016) developed this further. The work in Almqvist
et al. (2014) is built upon the Reynolds equation, expressed in its most fundamental
form:

∇ · q = 0, (6.54)

where q is the mass flow. It proceeds by stating that in the full- film zones, the
density can be expressed as ρ = ρce(p−pc)/β . In the cavitation zones the density, or
the saturation, is an unknown, here denoted by δ, hence

ρ (p) = ρc

{
e(p−pc)/β , p > pc
δ , p = pc

. (6.55)

The unknown saturation function δ satisfies 0 ≤ δ ≤ 1. Since ∇ p = 0 in the region
where p = pc, the mass flow is

q = ρc

⎧⎪⎨
⎪⎩

e(p−pc)/βh

2
U − e(p−pc)/βh3

12μ
∇ p , p > pc

δh

2
U , p = pc

, (6.56)

which is a nonlinear expression in p. By introducing the following change of variables

u = e(p−pc)/β − 1, u ≥ 0, (6.57)

the mass flow can be expressed as

q = ρc

⎧⎪⎨
⎪⎩

uh

2
U + h

2
U − βh3

12μ
∇u , u > 0

δh

2
U , u = 0

. (6.58)

A key point in the derivation of the cavitation model presented in Almqvist et al.
(2014) is that (6.58) is rewritten by introducing a new unknown variable η, which is
complementary to u in the whole domain, i.e. uη = 0.The variable η is defined as

η = 1 − δ =
{
0 , u > 0
1 − δ , u = 0

. (6.59)
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This means that, if u > 0 then η = 0 and if u = 0 then 0 ≤ η ≤ 1. The expression
for the mass flow (6.58) can now be rewritten as

q = ρc

⎧⎪⎨
⎪⎩

hu

2
U + h

2
U − βh3

12μ
∇u , u > 0

h

2
U − ηh

2
U , u = 0

,

or alternatively

q = ρc

(
hu

2
U + h

2
U − βh3

12μ
∇u − ηh

2
U

)
, u ≥ 0. (6.60)

With this expression for the mass flow, the continuity equation becomes

∇ · q = ρc∇ ·
(
hu

2
U + h

2
U − βh3

12μ
∇u − ηh

2
U

)
= 0,

and summing up, the mass preserving cavitation model is expressed as

∇ ·
(

βh3

12μ
∇u − hu

2
U

)
= ∇ ·

(
h

2
U

)
− ∇ ·

(
ηh

2
U

)
, (6.61)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.

The beauty of this formulation is that it permits a subsequent numerical LCP
analysis by means of readily available methods, such as Lemke’s algorithm, see e.g.
Cottle et al. (2009). It should also be noted that MATLAB code for the numerical
solution of this cavitation algorithm has been made available at MATLAB file cen-
tral, Almqvist et al. (2013). This model was later generalised in to include elastic
deformation as well as the situation where the distance between the surfaces varies
with time in Almqvist and Wall (2016).

By varying the bulk modulus, the compressibility of the lubricant is varied. A
low value of the bulk modulus corresponds to a highly compressible lubricant, while
a high value corresponds to a nearly incompressible lubricant. In fact, in the limit
β → ∞, (6.61) becomes

∇ ·
(

h3

12μ
∇ p

)
= ∇ ·

(
h

2
U

)
− ∇ ·

(
ηh

2
U

)
, (6.62)

p ≥ 0, 0 ≤ η ≤ 1, pη = 0,

which is the same cavitation algorithm as in Giacopini et al. (2010). It should be
noted that, the system (6.62) can also be obtained by starting from the assumption
ρ = ρc and thereafter following the procedure presented above.
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Fig. 6.5 Schematic illustration of the modelled pocket bearing

Analytical Solution

The analytical solution to the cavitation algorithm (6.61) can be obtained for some
simple cases. One of these is the two-dimensional pocket slider bearing, defined as

h (x) =
⎧⎨
⎩
h0 0 ≤ x ≤ a
h1 a < x < b
h0 b ≤ x ≤ l

, with h1 > h0, (6.63)

with graphical representation as presented in Fig. 6.5. The analytical solution to this
pocket bearing, for an the incompressible case (6.62) can be found in Olver et al.
(2006), see also Fowell et al. (2007). For 2D pocket bearing geometry, the continuity
equation becomes one-dimensional and reads

dq

dx
= ρc

d

dx

(
hu

2
U + h

2
U − βh3

12μ

du

dx
− ηh

2
U

)
= 0.

Together with the boundary conditions p (0) = pin and p (l) = pout , for the inlet
and outlet, respectively, the cavitation model can be formulated as

d

dx

(
βh3

12μ

du

dx
− U

2
hu

)
= U

2

dh

dx
− U

2

d

dx
(ηh) , (6.64)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.

It is assumed that the fluid cavitates inside the pocket between the point of rupture
at x = a and the point of reformation at x = z, where a ≤ z ≤ b. This means that
the bearing can be subdivided into three liquid-phase zones; 0 ≤ x ≤ a, z ≤ x ≤ b,
and b ≤ x ≤ l and one gas-phase zone a ≤ x ≤ z, where u = 0 and 0 ≤ η ≤ 1. In
each of the liquid-phase zones, η = 0 and u are given by

d

dx

(
βh3

12μ

du

dx
− U

2
hu

)
= U

2

dh

dx
.
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from which an explicit solution for u can be obtained. Summing up, for each of the
zones, the solution explicitly reads

u = C1 + C2 exp

(
6μU

βh20
x

)
, η = 0, 0 ≤ x ≤ a, (6.65)

u = 0, η = C, a ≤ x ≤ z, (6.66)

u = C3 + C4 exp

(
6μU

βh21
x

)
, η = 0, z ≤ x ≤ b, (6.67)

u = C5 + C6 exp

(
6μU

βh20
x

)
, η = 0, b ≤ x ≤ l. (6.68)

The boundary conditions u (0) = e(pin−pc)/β − 1 and u (a) = 0, can be used to deter-
mine the constants C1 and C2, i.e.

C1 = −1 − exp ((pin − pc) /β)

1 − exp

(
−6μUa

βh20

) , (6.69)

C2 = −C1 exp

(
−6μUa

βh20

)
. (6.70)

Knowing unambiguously the solution u in 0 ≤ x ≤ a, it can be used to compute the
mass flow,

q = ρcUh0
2

⎛
⎜⎜⎝1 − 1 − exp ((pin − pc) /β)

1 − exp

(
−6μUa

βh20

)
⎞
⎟⎟⎠ . (6.71)

which is preserved throughout the whole domain. According to Eq. (6.60), the mass
flow in a < x < z is given by

q = ρcUh0
2

(1 − C) , (6.72)

and the constant C can be determined using the condition that the mass flow is
constant. More precisely,

C = 1 − exp ((pin − pc) /β)

1 − exp

(
−6μUa

βh20

) ( = −C1) .

The remaining constantsCi , i = 3, . . . , 6 and z, can be found by using the conditions
that both u and the mass flow are continuous at x = z and x = b and the boundary
condition u (l) = e(pout−pc)/β − 1. Summing up
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C3 = h0
h1

(1 − C) − 1, (6.73)

C5 = −C, (6.74)

C6 = exp ((pout − pc) /β) − 1 − C5

exp

(
6μUl

βh20

) , (6.75)

C4 =
−C3 + C5 + C6 exp

(
6μUb

βh20

)

exp

(
6μUb

βh21

) . (6.76)

The point of reformation (if it exists) reads

z = βh21
6μU

ln

(
−C3

C4

)
− a. (6.77)

Note thatC3 in (6.73) is the correct value. In Almqvist et al. (2014), it was not correct
but an errata with the expression in (6.73) was published shortly after.

Numerical Solution Procedures

In the following subsections, a discretization of (6.61) is presented such that the dis-
cretised problem is in the form of a standard linear complementary problem (LCP).
Notice that once written as a LCP, the problem can be solved using various methods.
Lemke’s algorithm can, for example, be used. Although a two-dimensional formu-
lation is straightforward, a one-dimensional version is presented here in order not to
complicate the notation unnecessarily. Two different types of differencing schemes
are discussed. In the first type, central and upwind differencing is combined, while
the second type is based on central differences only.

Combined Central and Upwind Differencing

The one-dimensional form of (6.61) reads

d

dx

(
a
du

dx
+ bu

)
= dF

dx
− d

dx
(ηF) , (6.78)

u ≥ 0, 0 ≤ η ≤ 1, uη = 0.

where

a = βh3

12μ
, b = −U

2
h, F = U

2
h. (6.79)
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The problem here is discretised using finite differences. First, the domain 0 < x < l
is divided into a uniform grid with N + 2 points, thus having elements of size �x =
l/(N + 1). Note that, by interpreting u as pressure and choosing coefficients as

a = h3

12μ
, b = 0, F = U

2
, (6.80)

themodel obtained corresponds to the one presented inGiacopini et al. (2010), where
the lubricant is assumed to be incompressible in the full-film regions. The following
notation is adopted xi := il/N , where i = 0, . . . , N + 2 and

ui := u (xi ) .

The problem at hand is elliptic in the full-film domain, where η = 0. A central
difference scheme is, therefore, used to approximate the derivatives in (6.78). Using
the notation

ai±1/2 = ai±1 + ai
2

,

and the approximation

du

dx

∣∣∣∣
i+1/2

≈ ui+1 − ui
�x

and
du

dx

∣∣∣∣
i−1/2

≈ ui − ui−1

�x
,

the left-hand side of (6.78) can be approximated as

d

dx

(
a
du

dx
+ bu

)
≈

ai+1/2
du

dx

∣∣∣∣
i+1/2

− ai−1/2
du

dx

∣∣∣∣
i−1/2

�x
+ (bu)i+1 − (bu)i−1

2�x

≈

(
ai+1 + ai

2

)(
ui+1 − ui

�x

)
−
(
ai−1 + ai

2

)(
ui − ui−1

�x

)

�x
+ bi+1ui+1 − bi−1ui−1

2�x

= 1

2�x2
[
(ai + ai−1) ui−1 − (ai−1 + 2ai + ai+1) ui + (ai + ai+1) ui+1

]+
+ bi+1ui+1 − bi−1ui−1

2�x
.

The first term in the right-hand side becomes

dF

dx
≈ Fi+1 − Fi−1

2�x
.
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In the cavitated regions, where u = 0, the equation is hyperbolic in η and an upwind
difference scheme should be employed accordingly, i.e.

d

dx
(ηF) ≈ ηi Fi − ηi−1Fi−1

�x
.

To simplify the presentation, the following notation is introduced:

ew
i = ai−1 + ai

2�x2
− bi−1

2�x
,

eci = −ai−1 + 2ai + ai+1

2�x2
,

eei = ai + ai+1

2�x2
+ bi+1

2�x
,

zi = Fi+1 − Fi−1

2�x
,

gci = − Fi
�x

,

gw
i = Fi−1

�x
.

Using this notation, the following matrices and vectors are defined:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ec1 ee1 0 0 0 · · ·
ew
2 ec2 ee2 0 0 · · ·
0 ew

3 ec3 ee3 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .

ew
N−2 e

c
N−2 e

e
N−2

0 ew
N−1 e

e
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.81)

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 − ew
1 u0 − gw

1 η0
z2
z3

zN−2

zN−1 − eeN−1uN − gcN−1ηN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.82)
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where the values of η on the boundaries are computed from the complementarity
conditions u0η0 = 0 and uNηN = 0, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gc1 0 0 0 0 · · ·
gw
2 gc2 0 0 0 · · ·
0 gw

3 gc3 0 0 · · ·
...

...
. . .

. . .

. . .
. . .

. . .
. . .

gw
N gcN−2 0
0 gw

N−1 gcN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.83)

The discretised form of (6.78) can now be written as

Au = f + Bη, ui , ηi ≥ 0, uiηi = 0. (6.84)

Solving this system for u gives

u = q + Mη, ui , ηi ≥ 0, uiηi = 0, (6.85)

where q = A−1 f and M = A−1B.

The linear complementarity problem (6.85) can readily be solved by employing
standard numerical methods. One which is frequently used is Lemke’s pivoting algo-
rithm, see Cottle et al. (2009). One advantage, is that Lemke’s pivoting algorithm
finds the solution in a finite number of steps. Hence, the solution obtained is numeri-
cally exact. The method chosen here to compute a numerical example is a vectorized
MATLAB version of a pivoting algorithm solving linear complementarity problems
given by Almqvist et al. (2013).

Note that in the Lemke algorithm it not explicitly stated that ηi ≤ 1. However, by
using the same ideas as in Bayada et al. (2005b), it can be proved that any solution
to (6.61) with Dirichlet boundary conditions, even without the condition η ≤ 1, still
satisfies 0 ≤ η ≤ 1. This implies that the numerical solution found with the Lemke
algorithm automatically satisfies ηi ≤ 1. This agrees with the physical interpretation
that the saturation (1 − η) must be positive and cannot be larger 1.

Elliptic Formulation and Central Differencing

In the previous subsection, central differences were used in the full-film region and
upwind differences in the cavitated regions. However, it is possible to use central
differences throughout the whole domain by introducing a small perturbation, which
makes the problem (6.78) elliptic also in η and not only in u. Indeed,
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d

dx

(
a
duε

dx
+ buε

)
= dF

dx
− d

dx

(
ε
dηε

dx
+ ηεF

)
, (6.86)

uε ≥ 0, 0 ≤ ηε ≤ 1, uεηε = 0.

where ε > 0 is a small parameter. Discretised by central differences, in the same
manner as described above, this can be written as

Auε = f + (εD + B) ηε, uε
i , η

ε
i ≥ 0, uε

i η
ε
i = 0, (6.87)

where the matrix D is computed in a similar manner as the other matrices. In order
to get the standard form for linear complementarity problems, we can rewrite this as

uε = qε + Mεηε, uε
i , η

ε
i ≥ 0, uε

i η
ε
i = 0,

where
qε = A−1 f and Mε = A−1 (εD + B) .

For small values of ε, uε and ηε in (6.86) are good approximations of u and η
in (6.78). In practice, relatively small means small compared to (�x)2. The idea
of adding an extra term is inspired from regularity theory for partial differential
equations, which in this context is known as artificial viscosity, see e.g. Evans (2010).

Numerical versus Analytical Solution

In this example, the numerical simulation procedure described above is verified
against the analytical solution for the pocket bearing problem earlier in this section.
The selected set of input parameters are presented in Table 6.1.

Figure 6.6 depicts the analytical and the numerical pressure solutions for the
pocket bearing with input parameters given Table 6.1. The solutions are obtained for
β = 5 × 108 and N = 512. The relative error, defined as

N∑
i=0

∣∣∣panalyticali − pnumerical
i

∣∣∣
/

N∑
i=0

panalyticali ,

was 6%, 2.5% and 1% (and the computational times were 3 ms, 22 ms and 106
ms on a standard laptop) for N = 128, N = 256 and N = 512, respectively. The
numerical difficulties are concentrated to the reformation occurring close to the
discontinuity in h.

Table 6.1 Input parameters for the pocket bearing problem

a b l h0 h1 pc U μ pin = pout

2 mm 5 mm 20 mm 1 µm 10 µm 0 Pa 1m/s 0.01 Pa s 100 kPa
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Fig. 6.6 The analytical and
the numerical pressure
solutions for the pocket
bearing with input
parameters given in
Table 6.1, β = 5 × 108 and
N = 512
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Homogenisation of the Reynolds Equation

Up until this point, the surfaces have been implicitly assumed to be smooth. This
is, however, not generally the case. An illustration of a 3D step bearing with two
rough surfaces is depicted in Fig. 6.7. This roughness poses a problem when solv-
ing the problem numerically. Indeed, a very fine discretisation would be needed
to resolve the roughness with sufficient accuracy, which would result to very long
computations. An alternative is to use a two-scale formulation. Roughly speaking,
a two-scale formulation works by solving the problem at two distinct scales. The
smooth geometry is considered at the global scale. Since the geometry is smooth,
a coarse discretisation can be used in this scale thus avoiding lengthy computation
times. To incorporate the effect of roughness, the equation is modified by introducing
the so-called ‘flow factors’. These are computed by solving a similar flow problem
at the local scale. In this scale, the domains are very small and thus can be resolved
in the detail required by the roughness. The translation of these loose concepts to
mathematical terms is known as homogenization, which is the topic of this section.

Homogenisation is a type of averaging which has been found applicable for two-
scale problems with highly varying coefficients. There are many papers reporting the
successful application of Homogenisation in the field of lubrication, where the fluid
flow may be governed by the Reynolds equation, see Bayada and Chambat (1988),
Bayada et al. (2005a), Almqvist and Dasht (2006), Wall (2007), Almqvist et al.
(2007a, 2012), Lukkassen et al. (2009), Fabricius et al. (2014), Almqvist (2011).
This has lead to highly effective numerical tools where the effects caused by the
surface roughness are embedded in the derived homogenised equations. Moreover,
the equations are unambiguously determined and their nature allow for straight-
forward parallelisation. These tools enable studies of hydrodynamically lubricated
problems involving rough surfaces such as that arising in the bearing configuration
visualised in Fig. 6.1. For this, the theoretical model must consider different types
of the non-stationary Reynolds equation in two dimensions.
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Fig. 6.7 A step-shaped bearing including idealised periodic surface roughness at a given time t .
The lower surface is moving in the x1-direction with speed ul and the upper surface is stationary

The key ingredient when homogenising the effect of surface roughness in the
Reynolds equation is the two-scale description of the gap between the surfaces. This
is done via a mathematical description of the film thickness, including the surface
roughness, that appears in the Reynolds equation. More precisely, it is assumed that
the film thickness can be modelled by means of the following auxiliary function:

h(x, t, y, τ ) = hg(x, t) + hu(y − uuτ ) − hl(y − ulτ ), (6.88)

where hg , hu and hl are (mathematically) smooth functions, expressed in the global-
scale variables x and t and the local-scale variables y and τ . The expression uu =
[uu, vu]T defines the velocity of the upper surface and ul = [ul , vl ]T defines the
velocity of the lower surface. Note that the velocities may depend on position, x .
The global-scale film thickness is modelled by the function hg, which describes the
geometry of the problem, and the local-scale film thickness is modelled via the y-
and τ -periodic functions hu and hl that describes the surface roughness of the upper
and the lower surfaces, respectively. Indeed, the functions hu and hl are assumed to
be periodic in their second argument and the cell of periodicity is denoted by Y for
both hu and hl . It is also assumed that ul , uu , vl and vu are such that h is periodic
in τ and the cell of periodicity, in τ , is denoted by Z . By means of this auxiliary
function, a simplified physical description of the gap hε between the surfaces can be
achieved. That is

hε(x, t) = h(x, t, x/ε, t/ε), ε > 0. (6.89)

In this expression for the film thickness, ε is a (small) parameter which moderates
thewavelength of the surface roughness.Asmentioned above (6.89) admits a velocity
field that varieswith position x (encountered in, e.g. a rotating application).Moreover,
since hl and hu are functions of x , this also allows for different roughness descriptions
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on different positions.An illustration of a bearingwith step-shaped geometry (global-
scale) and idealised periodic surface roughness (local-scale) at a given time t , is
presented in Fig. 6.7. The lower surface is moving in the x1-direction with speed
ul , i.e. ul = [ul , 0]T , and the upper surface is stationary. Assuming iso-viscous and
compressible flow, then, in terms of the small wavelength parameter ε, the Reynolds
equation (6.1), may be stated as

∂

∂t
(cε(x, t)) = ∇x · (Aε(x, t)∇x pε − Bε(x, t)) , (6.90)

where

cε(x, t) = ρ(pε)hε, Aε(x, t) = ρ(pε)h3ε
12μa

, Bε(x, t) = us
2

ρ(pε)hε. (6.91)

Due to roughness, the coefficients cε(x, t), Aε(x, t) and Bε(x, t) are rapidly oscil-
lating functions that require high spatial and time resolution for a mesh-independent
numerical analysis.

Themain idea in homogenization is to prove that there exists a solution p0, solving
a so-called homogenised equation that does not involve rapidly oscillating coefficient
functions, such that

pε → p0, as ε → 0.

This means that for small values of epsilon—which is the case for realistic surfaces,
p0 is a good approximation of pε.

In the subsections below, the multiple scale expansion homogenisation procedure
will be applied to the Reynolds equation in order to obtain the equation that governs
p0. This will be done for the flow of incompressible fluids, as well as compressible
fluids governed by constant bulk modulus and ideal gas type of density–pressure
relationships, will be presented. The fluid is in all three of these cases assumed to be
iso-viscous. It should be noted that a more mathematically rigorous derivation of the
cases below can be found using the two-scale convergence method Lukkassen et al.
(2002). The presentation here is, however, more intuitive.

Incompressible Fluid

The stationary form of the Reynolds equation for iso-viscous and compressible flow
of ideal gases, in both cartesian and polar coordinates, admits the following gener-
alisation:

∇ · (A(x)∇u(x)) − ∇ · B(x) = 0, (6.92)

where u is the dependent variable, A and B are known functions and x = (x1, x2)
T .

In a non-dimensional cartesian coordinate formulation, A = h3 and B = h are scalar
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functions but in polar coordinates, for the fluid film formation in a rotating device,
as discussed Almqvist (2011), they are a matrix and a vector, respectively. That is,

A(x) = h3
[
x2 0
0 1/x2

]
, (6.93)

B(x) = h

[
x2
0

]
, (6.94)

where h describes the gap between the surfaces (film thickness function) and where
x1 is the angular coordinate and x2 is the radial coordinate. For the subsequent
homogenisation process, we consider the following auxiliary equation

∇ · (A(x, y)∇u(x, y)) − ∇ · (B(x, y)) = 0, (6.95)

where, again, u is the dependent variable and A and B are known functions. The vari-
ables x = (x1, x2)

T and y = (y1, y2)
T refer to the global- and local-scale domains,

respectively. It holds that y = x/ε.
It is assumed that A(x, y) and B(x, y) are periodic in y and also that the following

expansion holds:

u(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · , (6.96)

where ui are periodic in y. Note that Eq. (6.96) reflexes that u(x, y) can be expanded
with respect with the perturbation ε. Indeed, roughness is treated as a perturbation of
the smooth geometry.What Eq. (6.96) claims is therefore that, when ε = 0 (i.e. when
the surface is smooth), u = u0. It further claims that, when there is some roughness
(ε > 0, small), the solution can be approximated by adding to u0 correction terms
of the form εi ui , which become very small as the index i increases. This approach
is commonly used in mathematics under the name of perturbation theory. In this
terminology, (6.95) becomes

(
∇x + 1

ε
∇y

)
·
(
A(x, y)

(
∇x + 1

ε
∇y

) (
u0 + εu1 + ε2u2 + · · · )

)

−
(

∇x + 1

ε
∇y

)
· B(x, y) = 0,

(6.97)

where ∇x and ∇y indicate that the ∇ operator is applied to the set of variables x
and y, respectively. In the following, the asymptotic behaviour of (6.97) as ε goes
to zero will be considered. It can be realised that obtaining a reasonable result when
expanding (6.97) requires that the coefficients for ε−2, ε−1 and ε0 are equivalent to
zero independently of each other. Indeed, as ε → 0 the coefficients of higher orders of
ε, i.e. εk with k ≥ 1, will not influence the result and the following set of determining
equations ca be obtained:
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ε−2 : 0 = ∇y · (A∇yu0
)
, (6.98a)

ε−1 : 0 = ∇y · (A∇yu1
)+ ∇y · (A∇x u0) + ∇x · (A∇yu0

)− ∇y · B, (6.98b)

ε0 : 0 = ∇y · (A∇yu2
)+ ∇y · (A∇x u1) + ∇x · (A∇yu1

)+ ∇x · (A∇x u0) − ∇x · B,

(6.98c)

where the dependency to x and y has dropped for the readers convenience.
From (6.98a), it follows that u0 = u0(x). By means of this fact, (6.98b) simplifies

to
∇y · (A∇yu1

)+ ∇y (A∇xu0) − ∇y · B = 0. (6.99)

Moreover, if ∇y A denotes the gradient of each of the columns of A independently,
then (6.99) can be written as

∇y · (A∇yu1
)+ ∇y A · ∇xu0 − ∇y · B = 0. (6.100)

This means that the solution u1 to this equation must be on the form

u1 = χ0 + χ1
∂u0
∂x1

+ χ2
∂u0
∂x2

, (6.101)

where χi are the solutions of the following (periodic) local problems:

0 = ∇y · (A∇yχ0
)− ∇y · B in Y, (6.102a)

0 = ∇y · (A∇yχ1
)+ ∇y · (Ae1) in Y, (6.102b)

0 = ∇y · (A∇yχ2
)+ ∇y · (Ae2) in Y, (6.102c)

where Y is the domain defining one period in y.
Now, the fact that u0 = u0(x) together with (6.101) can be inserted into (6.98c)

and we can complete the homogenisation process of (6.92). This process starts by
rewriting (6.98c) as

∇x · (A∇xu0 + A∇yu1 − ∇x · B) = ∇y · (A∇xu1 + A∇yu2
)

(6.103)

and realising that, due to periodicity

∇x ·
⎛
⎝∫

Y

A(x, y) dy∇xu0 +
∫
Y

A(x, y)∇yu1 dy − ∇x ·
∫
Y

B(x, y) dy

⎞
⎠ = 0.

(6.104)
Making use of (6.101) the homogenised equation can be obtained

∇x · (A0(x)∇xu0) − ∇x · B0(x) = 0, (6.105)
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where A0 is a 2 × 2 matrix and B0 is a 2 × 1 vector, i.e.

A0(x) =
(
a11 a12
a21 a22

)
(6.106)

and

B0(x) =
(
b1
b2

)
(6.107)

The coefficient functions of A0 and B0 read

a011(x) =
∫
Y

A(x, y)

(
1 + ∂χ1

∂y1

)
dy, (6.108)

a012(x) =
∫
Y

A(x, y)
∂χ2

∂y1
dy, (6.109)

a021(x) =
∫
Y

A(x, y)
∂χ1

∂y2
dy =

∫
Y

A(x, y)
∂χ2

∂y1
dy = a012(x), (6.110)

a022(x) =
∫
Y

A(x, y)

(
1 + ∂χ2

∂y2

)
dy, (6.111)

b01(x) =
∫
Y

(
B(x, y) − A(x, y)

∂χ0

∂y1

)
, (6.112)

and

b02(x) =
∫
Y

(
B(x, y) − A(x, y)

∂χ0

∂y2

)
. (6.113)

The homogenised equation, (6.105) is on the same form as the original one (6.95),
where the coefficientsmatrices A(x, y) and B(x, y) are replaced by the homogenised
counterparts A0(x) and B0(x).

Constant Bulk Modulus Fluid

Recall that an iso-viscous fluid with constant bulk modulus is characterised by a
constant viscosity and a density of the form

ρ = ρae
(p−pa)/β . (6.114)
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By replacing pressure by density as the main dependent variable, the Reynolds equa-
tion can, in this case, be written as

∇ ·
(

h3β

12μa
∇ρ

)
= us

2
∇ (ρh) . (6.115)

More generally, this can be written, both in Cartesian and polar coordinates as

∇ · (A(x, y)∇u(x, y)) − ∇ · (B(x, y)u(x, y)) = 0, (6.116)

where, again, u is the dependent variable and A and B are known functions. Notice
that u in this case represent fluid density and not pressure. Again, it is assumed that
A(x, y) and B(x, y) are periodic in y and also that the expansion (6.96) holds. In
this terminology (6.116) becomes

(
∇x + 1

ε
∇y

)
·
(
A(x, y)

(
∇x + 1

ε
∇y

) (
u0 + εu1 + ε2u2 + · · · )

)

−
(

∇x + 1

ε
∇y

)
· (B(x, y)

(
u0 + εu1 + ε2u2 + · · · )) = 0.

(6.117)

Following the procedure introduced in the previous section for incompressible and
iso-viscous flow, this leads to the following set of determining equations:

ε−2 : 0 = ∇y · (A∇yu0
)
, (6.118a)

ε−1 : 0 = ∇y · (A∇yu1
)+ ∇y · (A∇xu0) + ∇x · (A∇yu0

)− ∇y · (Bu0),
(6.118b)

ε0 : 0 = ∇y · (A∇yu2
)+ ∇y · (A∇xu1) + ∇x · (A∇yu1

)+ ∇x · (A∇xu0)+
− ∇x · (Bu0) − ∇y · (Bu1). (6.118c)

Similarly to what we had before, (6.118a) implies that u0 = u0(x) and (6.118b),
therefore, simplifies to

∇y · (A∇yu1
)+ ∇y A · ∇xu0 − u0∇y · B = 0. (6.119)

This implies that u1 is on the form

u1 = χ0u0 + χ1
∂u0
∂x1

+ χ2
∂u0
∂x2

, (6.120)

whichmeans thatχi is the solution to the same set of local problems as in the previous
case (6.102). Following the same procedure as before leads to the homogenised
equation

∇x · (A0(x)∇xu0) − ∇x · (B0(x)u0) = 0. (6.121)
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Remarkably, the coefficient functions of A0 and B0 are the same as for the incom-
pressible fluid, thus given (6.108)–(6.113).

Ideal Gas

An ideal gas has a constant viscosity and a density of the form ρ = κp. The Reynolds
equation for these gases, in both cartesian and polar coordinates, admits the following
generalisation:

∇ · (A(x)u(x)∇u(x)) − ∇ · (B(x)u(x)) , (6.122)

where u is the dependent variable representing fluid pressure. For the subsequent
homogenisation process, the auxiliary equation

∇ · (A(x, y)u(x, y)∇u(x, y)) − ∇ · (B(x, y)u(x, y)) (6.123)

is considered and it is assumed that the expansion (6.96) holds. Following the pro-
cedure introduced earlier for incompressible and iso-viscous flow, this leads to the
following set of determining equations:

ε−2 : 0 = ∇y · (Au0∇yu0
)
, (6.124a)

ε−1 : 0 = ∇y · (Au1∇yu0
)+ ∇y · (Au0∇yu1

)+ ∇y · (Au0∇xu0)+
∇x · (Au0∇yu0

)+ −∇y · (Bu0), (6.124b)

ε0 : 0 = ∇y · (Au0∇xu1 + Au1∇xu0 + Au0∇yu2 + Au1∇yu1 + Au2∇yu0
)+

∇x · (Au0∇xu0 + Au0∇yu1 + Au1∇yu0
)− ∇x · (Bu0) − ∇y · (Bu1)

(6.124c)

Similarly to what we had before, (6.124a) implies that u0 = u0(x) and (6.124b)
simplifies to

u0∇y · (A∇xu0 + A∇yu0
)− u0∇y · B = 0,

which, since u0 > 0 (note that u0 = 0 would imply a zero density), becomes

∇y · (A∇x p0 + A∇y p1
)− ∇y · B = 0, (6.125)

i.e. the same as (6.100) with solution (6.101). Thus, the same (periodic) local prob-
lems (6.102) as for the two previous cases also apply here. The homogenised equation
for this case finally becomes

∇x · (p0(x)A0(x)∇x p0(x)) − ∇x · (p0(x)B0(x)) = 0, (6.126)
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Notably, the coefficient functions of A0 and B0 are the same as the ones for iso-
viscous and incompressible case, as well as the one for the iso-viscous and constant
bulk modulus compressible case, thus given (6.108)–(6.113).

Homogenised Coefficients and Patir and Cheng Flow Factors

The method proposed by Patir and Cheng (1978, 1979) considers a representative
part of the surface roughness andmodel the complete surface as its periodic extension.
This means that the film thickness can be expressed in the form of (6.88), which will
be utilised in its stationary form in the following presentation of the Patir and Cheng
averaging technique. Note that the x1-direction must be chosen so that it is aligned
with the direction of motion. Retaining as much as possible of the already introduced
notation, the averaged Reynolds equation presented in Patir and Cheng (1978, 1979)
is restated as

∇ ·
((

φ1 0
0 φ2

)
h3g

12μa
∇ ppc

)
(6.127)

= ∇ ·
⎛
⎝
(
us/2
0

)⎛
⎝ 1

l1l2hg

∫
Y

h dy + φ0

⎞
⎠ hg

⎞
⎠ in �,

where the flow factors φi are given by

φ0 = − 1

l1l2hg

∫
Y

h3
∂v0

∂y1
dy, (6.128)

φ1 = 1

l2h3g

∫
Y

h3
∂v1

∂y1
dy, (6.129)

and

φ2 = 1

l1h3g

∫
Y

h3
∂v2

∂y2
dy. (6.130)

The Patir and Cheng local problems, i.e. the so-called micro- bearing problems,
determining vi read

∇y · (h3∇yv0
) = ∂h

∂y1
in Y, (6.131a)
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v0 (x, 0, y2) = v0 (x, l1, y2) = 0,
∂v0

∂y2

∣∣∣∣
(x,y1,0)

= ∂v0

∂y2

∣∣∣∣
(x,y1,l2)

= 0,

∇y · (h3∇yv1
) = 0 in Y, (6.131b)

v1 (x, 0, y2) = 0, v1 (x, l1, y2) = 1,
∂v1

∂y2

∣∣∣∣
(x,y1,0)

= ∂v1

∂y2

∣∣∣∣
(x,y1,l2)

= 0,

∇y · (h3∇yv2
) = 0 in Y (6.131c)

∂v2

∂y1

∣∣∣∣
(x,0,y2)

= ∂v2

∂y1

∣∣∣∣
(x,l1,y2)

= 0, v2 (x, y1, 0) = 0, v2 (x, y1, l2) = 1.

In Patir and Cheng (1978, 1979), these local solutions vi are interpreted as local
pressures.

To facilitate a comparison between Patir and Cheng flow factors and homogenised
coefficients the results presented above are reformulated in the following, see also
Almqvist et al. (2011). Indeed, another way of formulating (6.127) is

∇ · (Apc∇ ppc
) = ∇ · Bpc, (6.132)

where

Apc = 1

12μa

(
a pc
11 a pc

12
a pc
12 a pc

22

)
,

a pc
11 (x) = 1

l2

∫
Y

h3
∂v1

∂y1
dy, (6.133a)

a pc
12 (x) = a pc

21 (x) = 0, (6.133b)

a pc
22 (x) = 1

l1

∫
Y

h3
∂v2

∂y2
dy, (6.133c)

and

Bpc = us
2

(
bpc
1 (x)
bpc
2 (x)

)
= us

2

⎛
⎜⎝

1

l1l2

∫
Y

(
h − h3

∂v0

∂y1

)
dy

0

⎞
⎟⎠ , (6.134)

and where the functions vi solve the local problems defined in (6.131).
Analternativewayof presenting thehomogenization results in section ‘Homogeni-

sation of the Reynolds Equation’ is obtained by introducing the new dependent vari-
able ψi ;

ψi (y) = yi + χi (y)

li
, i = 1, 2, (6.135)
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for which (6.102b) and (6.102c) become

∇y · (h3∇yψ1
) = 0 in Y, (6.136a)

ψ1 (x, 0, y2) + 1 = ψ1 (x, l1, y2) , ψ1 (x, y1, 0) = ψ1 (x, y1, l2) ,

∇y · (h3∇yψ2
) = 0 in Y, (6.136b)

ψ2 (x, 0, y2) = ψ2 (x, l1, y2) , ψ2 (x, y1, 0) + 1 = ψ2 (x, y1, l2) .

Hence, (6.108)–(6.111) become

a11 (x) = 1

l2

∫
Y

h3
∂ψ1

∂y1
dy, (6.137a)

a12 (x) = 1

l1

∫
Y

h3
∂ψ2

∂y1
dy, (6.137b)

a21 (x) = 1

l2

∫
Y

h3
∂ψ1

∂y2
dy, (6.137c)

a22 (x) = 1

l1

∫
Y

h3
∂ψ2

∂y2
dy. (6.137d)

With this, the Patir and Cheng results and the homogenised ones are stated in an
equal manner and they can now be easily compared. It is clear that the methods
share quite a few features, and that the main differences are the boundary conditions
for the local problems and that the off-diagonal terms of Apc and the y2-direction
coefficient of Bpc are identical to zero while they are not for the homogenised model.
The homogenisationmethod gives the correct flow factors for any kind of topography,
provided it fulfils the Reynolds roughness assumption. The Patir and Cheng method
will give the same result as the homogenised method for surface topographies that
are symmetric in both the x- and y-directions. To elucidate on this, Figs. 6.8, 6.9, and
6.10, are presented. In Fig. 6.8, the solution of the local problem (6.131b), in the Patir
and Cheng method for a bi-sinusoidal surface is depicted. The figure illustrates the
effect of the Neumann boundary conditions, which impose the absence of flow over
the upper and lower boundaries. This result should be compared to the solution of the
local problem in (6.136a) in the homogenization method, for the same bi-sinusoidal
surface patch. This is depicted in Fig. 6.9, illustrating how the periodic boundary
conditions allows for flow around the protrusions of the bi-sinusoidal texture as
well as to take place over the upper and lower boundaries. Figure 6.10 shows what
the result becomes when replacing the bi-sinusoidal surface with a symmetric bi-
cosinusoidal one. In this case, due to the horizontal symmetry, solving (6.136a) with
periodic boundary conditions or (6.131b) with Neumann boundary conditions gives
identical results.
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Fig. 6.8 Streamlines
computed from the solution
of the local problem in
(6.131b) in the Patir and
Cheng method. The contour
map depicts the film
thickness for a bi-sinusoidal
surface roughness patch. Red
for thinner and blue for
thicker film. Arrows
visualise fluid velocity

Fig. 6.9 Streamlines
computed from the solution
of the local problem in
(6.136a) in the
homogenisation method. The
contour map depicts the film
thickness for a bi-sinusoidal
surface roughness patch. Red
for thinner and blue for
thicker film. Arrows
visualise fluid velocity

Homogenised Flow Factors for Mixed Lubrication Conditions

In the previous sections, the expressions for coefficient functions ai j and bi in the
homogenised matrix A0 and vector B0 were derived. Indeed, the explicit expres-
sions (being the same for each of the three types of fluids considered) are given
by (6.108)–(6.113). It is also clear that they are functions of the global coordinates
(x1, x2) and this is also what couples the local- and the global-scale problems. Obvi-
ously, computing the coefficients for each node (x1i , x2 j ), in the discretised global
domain require solving the set (6.102) of the local problems for all (i, j) belonging
to the grid. Although this procedure could be used it is impractical for (at least) the
following reasons: (i) it renders an unnecessarily large set of data, (ii) the values of
the coefficient functions are computed only for the points (x1i , x2 j ). Thus if they
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Fig. 6.10 The contour map
depicts the film thickness for
a symmetric bi-cosinusoidal
surface roughness patch. Red
for thinner and blue for
thicker film. Streamlines
obtained from (6.131b) and
(6.136a) coincide. Arrows
visualise fluid velocity

are not ‘tabulated’ together with the values of the discretised film thickness func-
tion h equated at exactly the same points (x1i , x2 j ), it would not be possible to use
them together with another representation of the global-scale geometry. However,
precisely as Patir and Cheng (1978) did, it is possible to render a more versatile set
of coefficient functions by means of a simplistic parametrisation. In Patir (1978) a
routine for generating randomly rough surfaces with Gaussian height distribution
and with the possibility of specifying the aspect ratio (or lay) of the topography
was presented. This routine was also used to generate the set of surfaces they used
to generate the flow factors they presented. In connection to this, Pérez-Ràfols and
Almqvist (2019) developed a routine that can be used to generate self-affine fractal
surfaces with given height distribution and power spectrum. Let us now describe a
procedure that can be applied in order to accomplish this.

We start by noting that on the local scale hg is to be treated as a parameter
representing the global-scale average interfacial separation.Wedenote this parameter
α and let hα replace h in (6.88). More precisely, for full-film conditions, we define
hα as

hα(y, τ ) = α + hr (y, τ ), α > h̄r (6.138)

where
hr ..= (hu − hl) − min

∀(y,τ )
(hu − hl) . (6.139)

to ensure that hr ≥ 0 and h̄r is the arithmetic mean of hr .
For mixed lubrication conditions α ≤ h̄r and the shape of the gap depend on the

contact mechanics between the two rough surfaces being pressed together and before
we proceed, we will very briefly explain how h (in (6.88)) is connected to the contact
mechanics model. Indeed, let
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hd = hr + u − g00 (6.140)

describe the (local scale) gap that between the deformed surfaces hu and hl , that
results due to the application of normal force F pressing them together. Note that
u = u(pd), where pd is the contact pressure, is the (local scale) displacement of hr
and g00 is the rigid body displacement. Then we can formulate the corresponding
(local-scale contact mechanics) complementarity problem

hd = 0, pd > 0, (6.141a)

hd > 0, pd = 0, (6.141b)

subject to the force balance constraint

F −
∫
Y

pddy = 0. (6.142)

Solving (6.141)–(6.142) for a given load F returns the dependent variables pd , u
and g00. Recall that (6.140) describes the relation between hd , u and g00. Moreover,
by solving (6.141)–(6.142) for a whole range of loads gives us the input required to
solve the local problems (6.102) for a range of α-values. To this end, we supplement
the α-parametrised film thickness equation defined for full-film conditions with an
expression valid for mixed lubrication conditions. This is accomplished by forcing h
to take exactly the values of hd that was computedwhile solving the complementarity
problem (6.141) for the specified range of loads Fk . This means that h for mixed
lubrication conditions reads

hα(y, τ ) = α + hr (y, τ ) + u(y, τ ) + ε, α = −g00 (6.143)

where ε is a (small) auxiliary parameter that makes sure that hα > 0. Note now that
there are two different specifications of the local scale film thickness, i.e. (i) the
expression (6.138), for full-film conditions and (ii) the expression (6.143), for mixed
lubrication conditions, which require solving the contact mechanics problem for a
range of loads.

To summarise the, the procedure described above to obtain a widely applicable
set of coefficient functions ai j and bi is composed of the following steps:

1. Specify a range of separations α > h̄r and a range of loads F .
2. Solve the complementarity contact mechanics problem (6.141) for the specified

range of loads F .
3. Solve the local problems (6.102) for the auxiliary film thickness descriptions

(6.138) and (6.143) for the specifiedα-values (including the values of g00 obtained
from the contact mechanics model).

4. Compute the coefficient functions ai j and bi for all the local problems obtained
in the previous steps.
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It is important to realise that the procedure here outlined requires that the selected
local-scale domain is representative of the considered surface roughness. This means
that having selected any other domain of the same size, the computed coefficient func-
tions ai j and bi would have been the same. In practice, this means that the coefficient
functions should be computed for several such domains and the results compared.
If these are sufficiently close, any of them (or possibly an average) can be used as
representative of the whole surface roughness. If the results are far apart however, not
even their average can be seen as representative for the surface roughness. Instead, a
larger local-scale domain is to be chosen. A more thorough discussion of this issue
in a similar context can be found in Pérez-Ràfols et al. (2016), where an alternative
approach to be taken when the local-scale domain cannot be made larger is proposed.

Modelling Mixed Lubrication

Amixed lubricationmodel can be established by a combination of amodel governing
the hydrodynamic contribution and a model that accounts for contact mechanics.
One of the first examples of such a model was presented by Patir and Cheng (1978,
1979). They derived an averaged form of the Reynolds equation, in which the surface
roughness was accounted for by means of what we know today as ‘flow factors’.
Then, in order to simulate partial contact they include the effect of surface roughness
by comparing the average interfacial separation h̄ with the combined variance, σ =√
Rq1

2 + Rq2
2, of any two digitalised surface roughness height descriptions, which

full fill the assumptions for Reynolds equation to be valid on the local scale. Since
the effect of roughness diminishes for large values of h̄/σ they focus their analysis
to situations where h̄/σ < 3 and their work has formed the starting point for a large
number of similar contributions.

Obviously, Patir and Cheng did not include a contact mechanics model to account
for local deformation of the contacting surfaces. This can, e.g. be achieved by incor-
porating an asperity-based contact model, which was also done by Rodhe et al.
(1980). More precisely, they combined the averaged Reynolds equation that Patir
and Cheng derived, with the model by Greenwood and Tripp (1970) and considered
cavitation by means of the half-Sommerfeld boundary condition. Bolander et al.
(2005) took this concept further by replacing the half-Sommerfeld condition with
cavitation algorithm proposed by Elrod and Adams (1975).

Amixed lubricationmodel based on the homogenisedReynolds equationwas later
presented by Sahlin et al. (2010a, b). Indeed, this model combines half-space theory
based contact mechanics of rough surfaces with the homogenised Reynolds equation
in which the flow factors has been obtained in the way described in the last subsection
of section ‘Homogenisation of the Reynolds Equation’. In addition, to make the
methodology even more versatile one can always generalise by transforming hα into
dimensionless form, i.e.

Hα = hα/hre f , (6.144)
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where hre f is an appropriate reference parameter. The local problems (6.102b) and
(6.102c) are invariant under this transformation, meaning that the solutions χ1 and
χ1 will be the same for any choice of hre f . The local problem (6.102a) is, however,
not invariant and becomes

0 = ∇y ·
(
Ãα∇yχ̃0

)
− ∇y · B̃α in Y, (6.145)

where Ãα and B̃α indicate that they are transformed and where χ̃0 = h2re f χ0. More-
over, the subscript also indicates that they are parametrised in α. This means that the
homogenised matrix A0 and vector B0 transforms and their transformed correspon-
dences should be computed from

Ãα
0 =

∫∫
Y

[
ãα
11 ã

α
12

ãα
21 ã

α
22

] (
ei + ∇yχi

)
dy (6.146a)

B̃α
0 =

∫∫
Y
B̃αe1 + Ãα∇yχ̃0dy (6.146b)

Before thehomogenised solutionu0 canbeobtained, theα-parametrisedhomogenised
matrix Ãα

0 and vector B̃α
0 must be mapped onto �. This is achieved by interpolating

Ã
hg(x1,x2)
0 and B̃

hg(x1,x2)
0 for each point (x1, x2) in the global-scale grid point. Thus,

∇x ·
(
Ã0(x)∇x ũ0

)
− ∇x · B̃0(x) = 0, (6.147)

where ũ0 = h2re f u0.

Summary

Lubrication theory including the derivation of the classical Reynolds equation, by
means of scaling and asymptotic analysis of the Navier–Stokes equations has been
presented to the reader. The concept of cavitation modelling, starting with the con-
tribution from Elrod and Adams (1975) and ending with strictly formulated comple-
mentarity problems, i.e. Giacopini et al. (2010), Bertocchi et al. (2013), Almqvist
et al. (2014), Almqvist and Wall (2016), was presented. Together with a complete
description on a finite difference scheme, the reader should be equipped with the
means to simulate hydrodynamic cavitation in various forms of lubricated contacts.

An effort to give the reader the basics of homogenisation and how it can be
applied to efficiently average the effect of surface roughness is also provided. It
shows the versatility and that the homogenised coefficients obtained for the flow
of incompressible fluids as well as for compressible fluids, obeying the constant
bulk modulus compressibility and even for ideal gases are the same. Thus, once
obtained, they can be applied to study the influence of roughness in a wide range of
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applications. The relation between the homogenised coefficients and the Patir and
Cheng flow factors is also presented. This shows why the homogenised coefficients
are always representative and when and why the Patir and Cheng flow factors could
be used. The concept of homogenised coefficients is also extended to incorporate
partially lubricated situations.

Finally, a section suggesting how to model mixed lubrication situations occurring
whenever the hydrodynamic action is not strong enough to generate the load carrying
capacity to produce a fully separating film.

With this, we close the chapter and the authors thanks the reader for the attention.
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Chapter 7
Contact Mechanics of Rubber
and Soft Matter

Carmine Putignano and Daniele Dini

Abstract This chapter reviews recent advances made in the treatment of contact
problems involving soft materials often characterized by non-linearly elasticmaterial
properties, such as rubber and soft biological tissues. Starting from the fundamen-
tal formulation developed to solve viscoelastic contact mechanics, the treatment of
complex problems involving surface roughness, layered materials, and reciprocating
contacts in dry contacts is presented in increased order of complexity. The reader is
then introduced to the study of lubricated contacts, with a discussion of the interplay
between viscoelastic effects in the solids and the viscosity marking the lubricant
behavior. Experimental validations that cover various aspects of the work are also
presented.

Introduction

Rubber and rubber-based composites are receiving widespread attention as engi-
neering solutions that combine good mechanical and chemical properties in terms
of resilience, elasticity, and durability. Tires, belts, rollers, and seals are only exam-
ples of mechanical devices where these materials are considered as the first choice.
The viscoelastic mechanical response of such materials must be properly considered
during the optimization process of engineering components, whose design needs,
inter alia, the full comprehension of phenomena involving viscoelastic energy dis-
sipation. Examples are: (i) rolling contacts (Hunter 1961; Persson 2010; Panek and
Kalker 1980; Harrass et al. 2010; Dumitru 2009; Yoneyama et al. 2010) (ii) sliding
contacts (Carbone and Mangialardi 2004; Persson 2001, 2006b; Grosch 1963), (iii)
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crack propagation (Carbone and Persson 2005a, b; Persson et al. 2005; Persson and
Brener 2005; D’Amico et al. 2012), (iv) seals (Bottiglione et al. 2009a, b; Lorenz
and Persson 2010a, b, c), and (v) adhesives and biomimetic adhesives (Carbone et al.
2011; Carbone and Pierro 2012a, b; Martina et al. 2012). In this Chapter, our aim is
to assess the role played by a non-purely elastic behavior in determining the peculiar-
ities of soft contact mechanics. Particular attention is paid to linear viscoelasticity,
which is the rheological constitutive model commonly adopted when dealing with
soft matter.

With regard to these issues, a very large number of scientific contributions have
been dedicated to develop theories (Persson 2001, 2006b, 2010; Hunter 1961; Panek
and Kalker 1980) and numerical methodologies (Le Tallec and Rahler 1994; Volle-
bregt 2009; Padovan and Paramadilok 1984; Padovan 1987; Padovan et al. 1992;
Nackenhorst 2004; Nasdala et al. 1998) to investigate rolling and sliding contacts
of viscoelastic materials. In this book, we provide a review of the main numerical
and experimental methodologies to investigate viscoelastic contacts, and in partic-
ular to predict the viscoelastic contribution to the friction coefficient and its depen-
dence on sliding/rolling velocity. Such a viscoelastic contribution to friction has
been pioneeringly treated in an analytical manner by Hunter (1961) for the case
of two-dimensional (2D) contacts, specifically for a rigid cylinder in contact with
a viscoelastic half-space. Hunter’s approach has been then extended to the three-
dimensional case by enforcing the so-called line contact approximation (Panek and
Kalker 1980). However, in many cases, e.g., a sphere rolling or sliding on a vis-
coelastic foundation, this assumption represents a very strong approximation, and
cannot be employed to fully assess contact problems.

Moreover, it should be noted that these fully analytical models present a further
limitation as they are only able to handle ideal viscoelastic materials with one sin-
gle relaxation time, i.e., materials described by the so-called standard viscoelastic
model (see Fig. 7.1a). Real materials, instead, present a very wide spectrum of relax-
ation times, and the most general form of their linear viscoelastic response is the
Maxwell–Wiechert model (see the next section). As a matter of fact, all the classes
of theories, which are able to treat only idealised one relaxation time material, can-
not be employed to analyze and optimize the design of real engineering components.
Moving from this context, in the last decade, Persson (2001, 2006b, 2010) has pro-
posed a new theory of contact mechanics to calculate, among the other quantities, the
contact area and the sliding and rolling friction of a linear viscoelastic materials mov-
ing on rigid smooth or rough surface. His calculations are based on some reasonable
assumptions which allow to strongly simplify the problem, but these assumptions
needed to be tested against experiments or compared to reliable numerical calcula-
tions (see alsoCarbone et al. 2009; Putignano et al. 2012a, b; Campana et al. 2008) for
a final verification and tuning of his models. Among the numerical approaches, we
have finite element methods (FEM) (Le Tallec and Rahler 1994; Padovan and Para-
madilok 1984; Padovan 1987; Padovan et al. 1992; Nackenhorst 2004; Nasdala et al.
1998) that are able to treat real viscoelastic materials, but have been conceived for
structural modeling (e.g., tire modeling) and are not accurate enough when exploited
to calculate the pressure, displacement, strain distributions and friction at the inter-
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Fig. 7.1 The standard linear viscoelastic solid constituted by a spring in series with a Voigt element
(the latter consists of a Hookean spring in parallel with a Newtonian dashpot) (a); the generalized
linear viscoelastic model (b)

(a) (b)

Fig. 7.2 A rough rigid indenter sliding on a viscoelastic solid (a); a rigid sphere rolling on a
viscoelastic solid (b)

face. The reason of such a limitation is that the sliding or rolling contact between
rough surfaces involves a very large number of length and time scales (covering
more than six orders of magnitudes) that cause an exponential increase in computa-
tional complexity of the problem and make such techniques unfeasible for these type
of investigations. In this book, we focus on some boundary element formulations
which, as we will see in detail in the next Sections, reduce the full viscoelastic prob-
lem formulated in the space and the time domains to an equivalent one to be solved
only in the space domain. This enables, for the generic contact problem, the study of
complex geometrical domains as it is indeed the case of rough surfaces. Ultimately,
these formulations allow the numerical study of the rolling/sliding contact between
a rigid (smooth or rough) indenter over a linear viscoelastic layer (see Fig. 7.2).
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Time-Dependent Material Effects: Viscoelastic
Rheological Models

Here, we briefly recall the main point of linear viscoelastic theory. Real viscoelastic
materials present a very wide spectrum of relaxation times, and the most general
form of their linear viscoelastic response is

ε (t) =
∫ t

−∞
dτJ (t − τ ) σ̇ (τ ) (7.1)

where the ε (t) is the time-dependent strain, σ̇ (t) is the stress [the symbol “·” stands
for the time derivative], and the function J (t) is the creep function [we recall that
J (t)must satisfy causality, i.e.,J (t < 0) = 0]. One can show that the most general
form of J (t) is (Christensen 1982; Ferry 1980):

J (t) = H (t)

[
1

E0
−

∫ +∞

0
dτC (τ ) exp (−t/τ )

]
(7.2)

where H (t) is the Heaviside step function, the real quantity E0 is the elastic mod-
ulus of the material at zero frequency, C (τ ) is a positive function usually referred
to as the creep (or retardation) spectrum (Christensen 1982), and τ is the relaxation
time continuously distributed on the real axis. We recall that J (t = +∞) = E−1

0

and J (t = 0) = E−1
0 − ∫ +∞

0 dτC (τ ) = E−1∞ , where the real quantity E∞ is the
high-frequency elastic modulus of the material. Usually, a discrete version of
Eq. (7.2) is employed to characterize linear viscoelastic solids, i.e., one writes
C (τ ) = ∑

k Ckδ (τ − τk) to get

J (t) = H (t)

[
1

E0
−

n∑
k=1

Ck exp (−t/τk)

]
(7.3)

This latter representation ofJ (t) corresponds to the general linear viscoelasticmodel
represented in Fig. 7.1b, where the quantities Ck represent the elastic compliances
of the springs. Equivalently, we can introduce the viscoelastic moduli Ek and write:

J (t) = H (t)

[
1

E0
−

n∑
k=1

1

Ek
exp (−t/τk)

]
(7.4)

Now, taking the Fourier transform of Eq. (7.1) one obtains ε (ω) = σ (ω) /E (ω)

with E (ω) = [iωJ (ω)]−1 being the viscoelastic modulus of the material. We have
defined J (ω) = ∫

dtJ (t) exp (−iωt), σ (ω) = ∫
dtσ (t) exp (−iωt) and ε (ω) =∫

dtε (t) exp (−iωt). Using Eq. (7.2) one can also show that
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1

E(ω)
= 1

E0
−

∫ ∞

0
dτ

iωτC (τ )

1 + iωτ
= 1

E∞
+

∫ ∞

0
dτ

C (τ )

1 + iωτ
(7.5)

and using (7.5) one can easily prove the sum rule:

1

E0
− 1

E∞
= 2

π

∫ ∞

0
dω

1

ω
Im

1

E(ω)
(7.6)

The general structure of the viscoelastic modulus E (ω) is shown in Fig. 7.3. At
“low” frequencies the material is in the “rubbery” region where E1 = ReE (ω) is
relatively small and approximately constant, and viscoelastic dissipations related to
the imaginary part E2 = ImE (ω) of the viscoelastic modulus becomes negligible.
At very high frequencies, the material is elastically very stiff (brittle-like). In this
“glassy” region E1 (ω) is again nearly constant but much larger (generally by 3–4
orders of magnitude) than in the rubbery region. In the intermediate frequency range
(the so-called transition region), the loss tangent ImE (ω) /ReE (ω) is very large
(see Fig. 7.3b), and it is mainly this region which determines the energy dissipation
during sliding or rolling motion.

We observe that, as we see also in next Sections, for real viscoelastic solids the
spectrum of relaxation times may cover more than 8–10 decades so that the number
n of Voigt element to be arranged in series as in Fig. 7.1b to correctly describe the
entire response of the material may be relatively large and usually, 10–30 elements,
i.e., 10–30 relaxation times, are needed for a full characterization of the constitutive

Fig. 7.3 The real
E1 = Re [E (ω)] and the
imaginary E2 = Im [E (ω)]
parts of the viscoelastic
modulus E (ω) of a typical
rubber-like material (a); the
loss tangent E2 (ω) /E1 (ω)

(b)
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equation. Therefore, for any approach to viscoelastic problems, it is of outstanding
importance to try to account for real multi-relaxation-time materials.

Viscoelastic Steady-State Sliding and Rolling Contact
Mechanics: Numerical Formulations and Experiments

Boundary Element Method: Mathematical Formulation

By following the Green function approach developed in (Carbone et al. 2009; Putig-
nano et al. 2012a, b; Carbone and Mangialardi 2008b) and recalling the translational
invariance and the elastic–viscoelastic correspondence principle (Christensen 1982),
we may formulate the general linear viscoelastic contact problem between a rigid
indenter and a viscoelastic slab as

u (x, t) =
∫ t

−∞
dτ

∫
d2xJ (t − τ )G

(
x − x′) σ̇

(
x′, τ

)
(7.7)

where x is the in-plane position vector, t is the time, u (x, t) is the normal surface
displacement of the viscoelastic solid, σ (x, t) is the normal interfacial stress, J (t)
is given in Eq. (7.2) and the quantity G (x) is (see Carbone and Mangialardi 2004,
2008b)

G (x) = −2
(
1 − ν2

)
(2π)2

∫
d2q

S (qh)

q
eiq·x (7.8)

where q = |q| is the modulus of the wave vector q = (
qx , qy

)
, r = |x|, and S (qh)

is a correction factor which accounts for different constraint or boundary conditions.
For an elastic slab of thickness h sandwiched between a flat rigid plate and a rigid
body, as shown in Fig. 7.2 the correction factor S (qh) (Carbone and Mangialardi
2004; Carbone and Mangialardi 2008b) is:

S (qh) = (3 − 4ν) sinh (2qh) − 2qh

5 + 2 (qh)2 − 4ν (3 − 2ν) + (3 − 4ν) cosh (2qh)
(7.9)
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Fig. 7.4 The correction
factor � (r/h) as a function
of the ratio r/h in a
log-linear diagram. As
expected, for relatively small
values of r/h, the correction
factor is equal to 1, whereas
for large values of r/h, it
vanishes
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For a semi-infinite solid (i.e., h → ∞) the corrective factor is S (|q| h) = 1, and one
recovers the classical Boussinesq solution

Gh→∞ (x) = −1 − ν2

πr
(7.10)

Equation (7.8) can be rephrased as

G (x) = −1 − ν2

π

∫ +∞

0
dqS (qh) J0 (qr) = −1 − ν2

πr
�(r/h) (7.11)

with

�(r/h) =
∫ +∞

0
dwS (wh/r) J0 (w) (7.12)

where J0 (w) is the zeroth-order Bessel function. Figure 7.4 shows the quantity
�(r/h) as a function of the ratio r/h in a log-linear diagram. It is worth noticing
that�(r/h) is a very well behaved function which, as expected, approaches the unit
value at relatively low values of r/h, and rapidly vanishes as r/h → ∞.

Now, let us observe that tackling directly Eq. (7.8) may be extremely complicated
as it requires, for a full solution, to discretize both the time and the space domain.
This may be often unfeasible as, for example, in the case of rough interfaces with
a large number of space and time scales. However, given the steady-state properties
of the system, and, thus, observing that the sliding/rolling motion occurs at constant
velocity v, we can simplify Eq. (7.8). Indeed, we have σ (x, t) = σ (x − vt) and
u (x, t) = u (x − vt). Therefore, applying the transformation rule X = x − vt , and
recalling linearity and translational invariance one can also write Eq. (7.8) as

u (X, v) =
∫

d2X ′G
(
X − X′, v

)
σ

(
X′) (7.13)
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where the velocity-dependent function G (X, v) is a “viscoelastic” Green’s function,
which can be easily determined assuming that the stress distribution at the interface is
represented byDirac delta moving at constant velocity v. So, let us assume σ (x, t) =
δ (x − vt), substituting into Eq. (7.13) recalling that X = x − vt we obtain

G (X, v) = J (0)G (X) +
∫ ∞

0+
dtG (X + vt) J̇ (t) (7.14)

By recalling that J (0) = 1/E∞, we may rephrase the equation above as

G (X, v) = −1 − ν2

π

{
1

E∞
1

|X|�
( |X|

h

)
(7.15)

+
∫ +∞

0
dτC (τ )

∫ +∞

0+
dz

1

|X + vτ z|�
( |X + vτ z|

h

)
exp (−z)

}

It is worth noticing that in the limit case of very small sliding velocities, i.e., |v| → 0
we recover the classical elastic solution

G (X, 0) = −1 − ν2

πE0

1

|X|�
( |X|

h

)
(7.16)

where E0 is the zero frequency elastic modulus of the material. On the other hand,
for |v| → ∞ we obtain

G (X,∞) = 1 − ν2

πE∞
1

|X|�
( |X|

h

)
(7.17)

which again is the standard elastic solution but for a stiffer material of Young’s
modulus E∞. In the midrange of velocities, the viscoelastic response appears as a
retardation effect embedded in the term vτ z. However, we observe that the main
analytical properties of G (X, v) remain exactly the same as in the case of elastic
materials: in particular, its singular behavior is always of the type r−1. This allows to
tackle the problem of inverting Eq. (7.13) by following the same approach already
developed by the authors for elastic materials (Putignano et al. 2012a, b). Here we
briefly summarize the numerical strategy we exploit to solve the problem. First we
discretize the contact domain in N square cells (we actually use an adaptive mesh
(Putignano et al. 2012a, b); then, assuming that in each square cell the normal stress
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σ is constant and equal to σk = σ (Xk) where Xk is the position vector of the center
of the square cell Dk , the normal displacement ui = u (Xi) at the center of the ith
square cell is

ui = −1 − ν2

π

N∑
k=1

σk

{
�

(∣∣Xi−X′
k

∣∣
h

)
1

E∞

∫
Dk

d2X ′ 1∣∣Xi−X′∣∣ (7.18)

+
∫ +∞

0
dτC (τ )

∫ +∞

0+
dz exp (−z) �

(∣∣Xi+vτ z−X′
k

∣∣
h

) ∫
Dk

d2X ′ 1∣∣Xi+vτ z−X′∣∣
}

InEq. (7.18) the term
∫
Dk

d2X ′ ∣∣Xi−X′∣∣−1
and thequantity

∫
Dk

d2X ′ ∣∣Xi+vτ z−X′∣∣−1

can be easily calculated by exploiting Love’s solution for elastic materials (Johnson
1985), as shown in (Putignano et al. 2012b). Proceeding in this way the problem is
converted into a system of linear equations of the type

ui = L ik (v) σk (7.19)

where the responsematrix L ik (v) parametrically depends on the velocity v. Equation
(7.19) can be easily solved, together with the determination of the real contact area,
by employing the iterative scheme based on a nonuniform adaptive mesh already
presented by the authors for the case of elastic materials (Putignano et al. 2012a, b).

As mentioned before, one of the aims of our study is related to the calculation
of the viscoelastic contribution to friction. To this end, we observe that the friction
force is easily determined recalling that the energy per unit time W provided by the
external tangential applied force FT must balance the energy per unit time dissipated
as a consequence of viscoelastic response of the material. Hence, in steady-state
conditions, we write

W = FT v = −
∫

d2xσ(x − vt)
∂u(x − vt)

∂t
=

∫
�

d2Xσ(X)v · ∇u (X) (7.20)

where � is the contact domain. Because of isotropy, we may assume without any
loss of generality v = vi, where i is the unit vector of the X -axis, and write the final
relation as

FT =
∫

�

d2Xσ(X)
∂u

∂X
(7.21)

The friction coefficient is then calculated as μ = FT /FN where FN is the external
applied load.
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Numerical Results

Now, to show the main feature of viscoelastic contacts and to compare our numerical
predictions with available analytical solutions, let us focus on the rolling contact
of a rigid sphere of radius R = 1 cm moving at constant velocity on a viscoelastic
half-space (h → +∞) characterized by only one relaxation time. Thus, we write
C (t) = 1/E1δ (t − τ ) to obtain:

J (t) = H (t)

[
1

E0
− 1

E1
exp (−t/τ )

]
= H (t)

{
1

E∞
+ 1

E1

[
1 − exp (−t/τ )

]}

(7.22)
Specifically, let us employ the following numerical values: E∞ = 107 Pa, E∞/E0 =
10, and τ = 0.01 s. In Fig. 7.5 for a fixed value of the indentation (i.e., rigid displace-
ment) δ = 0.1mm of the sphere into the half-space, and for increasing values of the
dimensionless velocity vτ/a0 with a0 = √

Rδ being the classical Hertzian value of
the contact radius, the interfacial pressure p (X) = −σ (X) distribution along plane
of symmetry Y = 0 and the shape of the contact area are shown.

It is interesting to point out that, given the value of the penetration δ = 0.1mm,
coherently with the physical nature of the problem, the Hertzian solution is recovered
both at very low speed, when the material enters the so-called rubbery region and
behaves as a soft elastic solid, and at very high speed when the material enters the
glassy region and is again elastic but much stiffer. Recalling that we have fixed the
penetration δ, the aforementioned limiting cases are characterized by the same dis-
placement distributions and contact areas but different interfacial pressure values. In
particular, given a ratio E∞/E0 = 10, the value of interfacial pressure in the limiting
case of very high rolling speed is expected to be 10 times larger than in the case of
zero rolling velocity. This is, indeed, confirmed in Fig. 7.5. For intermediate values
of the dimensionless speed vτ/a0, the pressure distribution shows an asymmetric
profile with a peak closer to the leading edge, and a pressure center (red spot in
Fig. 7.5) displaced toward the leading edge of the contact. Moreover, the contact
area shrinks in the direction of the rolling speed. For low-speed values, these effects
increase in magnitude as the speed v increases. However, when the excitation fre-
quency fc ≈ v/ (2a0) approaches the value τ−1, viscoelastic effects must reach their
maximum level (see Fig. 7.5 for vτ/a0 = 1.7) and start to decrease as v is further
increased. Figure 7.6 shows the 3D interfacial pressure distributions at vτ/a0 = 1.7,
i.e., at the maximum of contact area shrinkage.

Figure 7.7 compares the viscoelastic displacement (solid line) with the elastic
one (dashed line) and shows that the former presents, as expected, a pronounced
“detachment” at the trailing edge of the contact.

Now, using Eq. (7.21), we can calculate the rolling friction coefficientμ = FT /FN

as a function of vτ/a0. Figure 7.8 reports the results of our calculations at fixed
δ = 0.1mm.As expected the friction coefficient shows a bell-shaped curve (in agree-
ment with Hunter 1961; Persson 2010; Panek and Kalker 1980), which confirms the
strong dependence of the friction coefficient on the viscoelastic response spectrum
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Fig. 7.5 The interfacial pressure distribution p (X, Y = 0) (on the left), and contact area (on the
right), for a viscoelastic material with one relaxation time τ = 0.01 s, and E∞ = 107 Pa, E∞/E0 =
10. Results are reported for penetration δ = 0.1mm and different values of the dimensionless speed
vτ/a0. The red spot in the figure represents the center of pressure distribution
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Fig. 7.6 The interfacial pressure distribution for a viscoelastic material with E∞ = 107 Pa,
E∞/E0 = 10, and one single relaxation time τ = 0.01 s. Calculations are reported at fixed pene-
tration δ = 0.1mm. The dimensionless speed is vτ/a0 = 1.7
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Fig. 7.7 The interfacial displacement distributions for a viscoelastic material with one relax-
ation time τ = 0.01 s, E∞ = 107 Pa, and E∞/E0 = 10 (solid line), the corresponding elastic—
Hertzian— solution (dashed line). Results are shown for δ = 0.1mm and vτ0/a0 = 1.7. Observe
the strong shrinkage of the contact area at the trailing edge

of the materials. Indeed, dimensional arguments show that μ must depend on the
viscoelastic modulus of the material through the relation

μ ≈ δ√
A (ω)

Im [E (ω)]

|E (ω)| = − δ√
A (ω)

Im [1/E (ω)]

|1/E (ω)| (7.23)
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Fig. 7.8 The friction coefficient μ = FT /FN as a function of the dimensionless speed vτ/a0, for a
viscoelastic material with one relaxation time τ = 0.01 s, E∞ = 107 Pa, and E∞/E0 = 10. Results
are shown for fixed penetration δ = 0.1mm

Now, considering that the linear size
√
A of the contact area A is always of the

same order of magnitude of a0, one concludes that the maximum value of friction
is obtained when the radian frequency ω ≈ πv/a0 takes a value close to the one
which maximizes Im [E (ω)] / |E (ω)|. This indeed occurs when ωτ = √

E∞/E0,
i.e., vτ/a0 = π−1√E∞/E0. In the calculations presented in this book, we have cho-
sen E∞/E0 = 10, so that one obtains that the maximum friction value is obtained
when vτ/a0 ≈ 1 in very good agreement with Fig. 7.8. Moreover, from Eq. (7.23),
one should expect that at very low and very high speeds when the material enters the
rubbery and glassy regions, respectively, the friction coefficient μmust disappear as,
indeed, shown in Fig. 7.8.

One of the main advantages of the numerical boundary approach presented above
is the possibility ofmanaging awide spectrum for the surface roughness. As proposed
in Carbone and Putignano (2014), let us focus on the paradigmatic case of the contact
of a rigid rough fractal surface sliding over a viscoelastic half-space (h → +∞)
characterized by one relaxation time. In particular, we employ for the viscoelastic
material the values of E∞ = 107 Pa, E∞/E0 = 3, and τ = 0.01 s. As for the rough
surface, here self-affine fractal surfaces, numerically generated by means of the
spectral method described in Putignano et al. (2012b), are employed. These surfaces
have spectral components in the range q0 < q < q1, where q0 = 2π/L , the side of
the square computational cell is L = 0.01 m, q1 = Nq0 and N number of scales
(or wavelengths). In particular, the results shown in this section are obtained with
N = 64.

In Fig. 7.9, we analyze the viscoelastic friction as a function of the dimensionless
speed ξ = vτ0/L for a fixed normal load FN = 0.30 N. As expected, we have again
a bell-shaped curve that vanishes for very low and very high speeds, i.e., when the
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Fig. 7.9 Viscoelastic friction coefficient as a function of the dimensionless sliding speed ξ for a
constant normal load P = 0.30 N
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Fig. 7.10 Dimensionless contact area A/Av0 as a function of the dimensionless sliding speed ξ
for a constant normal load P = 0.30 N

solid behaves as an elastic material. The maximum of the curve corresponds, instead,
to maximum of the imaginary modulus Im [(E(ω)].

We can, now, focus on other aspects dealing with the sliding contacts of rough
surfaces and, in particular, with the contact area. Specifically, our analysis starts
from a quantitative analysis of the real contact area A. In Fig. 7.10, for a nominal
contact pressure σ0 = FN/L2 = 3 kPa, we study, as a function of the dimensionless
speed ξ, the ratio A/Av0 between the real contact area A and the real contact area in
stationary conditions Av0 = A(ξ = 0). As expected, due to the viscoelastic stiffen-
ing, the contact area decreases as the dimensionless sliding velocity ξ is increased.
Interestingly, if we focus our attention on the ratio A (ξ) /Av0 , we expect that this
quantity approaches the value E0/E∞ = 1/3 at large sliding velocity. This is clearly
shown in Fig. 7.10 and is a consequence of the direct proportionality of the intimate
contact area on the ratio between the nominal applied pressure and the composite
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Fig. 7.11 Real contact area for ξ = 0 (on the left) and ξ = 4.5 10−3 (on the right), given a constant
normal load P = 0.30 N. The same region is extracted to enlighten anisotropic effects

elastic modulus (see Persson 2001; Greenwood and Williamson 1966; Putignano
et al. 2012a), i.e.,

A

A0
= κ√

〈∇h〉2
σ0

E∗ (7.24)

where A0 is the nominal contact area, E∗ is the composite Young’s modulus E∗ =
E/

(
1 − ν2

)
and κ is a constant proportionality coefficient proved to be very close

to 2 (Putignano et al. 2012a).
For intermediate values of ξ, viscoelastic effects have a prominent importance.

Figure 7.11 shows that, besides the decrease in contact area, increasing ξ leads a
marked shrinkage of the contact area at the trailing edge. This is particularly evident in
the magnified views (Fig. 7.11). Therefore, despite the isotropy of the rigid randomly
rough surface, the interfacial displacement field of the viscoelastic solid (i.e., the
shape of the deformed surfaces) will show a certain degree of anisotropy.
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To quantify the degree of anisotropy of the deformed surface in a certain range
of wave vectors ζ1q0 < |q| < ζ2q0, one can use the (symmetric) anisotropy tensor
defined as

M (ζ1, ζ2) =
∫

ζ1q0<|q|<ζ2q0

d2qq ⊗ qC (q) (7.25)

where C (q) = (2π)−2
∫
d2x 〈u (0; ζ1, ζ2) u (x; ζ1, ζ2)〉 exp (−iq · x) is the power

spectral density of the filtered deformed surface u (x; ζ1, ζ2) (the symbol 〈〉 stands for
the ensemble average). Observe that the quantity Mi j = ∫

ζ1q0<|q|<ζ2q0
d2qqiq jC (q),

with i and j = 1, 2, corresponds to the second-order moments of the power spec-
tral density of the filtered surface, i.e., M11 = m20 = 〈

u2x
〉
, M22 = m20 = 〈

u2y
〉
,

M12 = m11 = 〈
uxuy

〉
, where ux = ∂u/∂x , uy = ∂u/∂y. Incidentally, we observe

that if the range [ζ1, ζ2] is too wide, in order to balance the dominant contribution of
large wave vectors, it would be preferable to define the anisotropic tensor as

M (ζ1, ζ2) =
∫

ζ1q0<|q|<ζ2q0

d2q
q ⊗ q
|q|2 C (q) (7.26)

However, in our case, the two definitions do not lead to significantly qualitative differ-
ences and we will use formulation (7.25). Furthermore, associated to the symmetric
tensor M one can conveniently use the quadratic form Q (x) = Mi j xix j . Assuming
x = r cos θ and y = r sin θ, one easily obtains

Q (x) = r2 |∇h · e (θ)|2 = r2m2 (θ)

where e (θ) is the unit vector (cos θ, sin θ) and

m2(θ) = m20 cos
2(θ) + 2m11 sin(θ) cos(θ) + m02 sin

2(θ) (7.27)

is simply the average square slope of the a profile obtained by cutting the deformed
surface u (x; ζ1, ζ2) along the direction θ. The quantitym2(θ) can be represented in a
polar diagram: a circumference means isotropy; otherwise, the surface is anisotropic.

To characterize the anisotropy of the deformed surface, one can define the degree
of anisotropy as the ratio γ = m2min/m2max between the minimum m2min and
the maximum m2max eigenvalues of the tensor M, and the principal directions of
anisotropy through the eigenvectors of the tensor M, e.g., by the value of the angle
θP which maximize m2 (θ), i.e., m2 (θP) = m2max. In this analysis, we use ζ1 = 1
and ζ2 = N = 64 to obtain the polar diagram shown in Fig. 7.12. We notice that,
unlike what occurs at zero sliding speed, where the deformed surface is almost per-
fectly isotropic (a circular polar diagram is shown in Fig. 7.12 with γ = 0.93, very
close to 1), at nonzero sliding velocity, e.g., for ξ equal to 1.17 × 10−2, which cor-
respond to the maximum degree of anisotropy, γ = 0.70. Interestingly, the speed
ξ = 1.17 × 10−2, for which we find the greatest anisotropy, is the value where the
maximum viscoelastic friction is found. This confirms that anisotropy and friction
are strictly connected and both related to the loss modulus Im [(E(ω)], i.e., to the
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Fig. 7.12 Polar plots of
m2(θ) for ξ = 0 and
ξ = 1.17 10−2, given a
constant normal load
P = 0.30 N
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parameter governing the viscoelastic friction. Furthermore, the principal direction
θP is almost perfectly parallel to the sliding speed (i.e., to x-axis). This is fully con-
sistent with results shown in Fig. 7.11, where the contact area looks stretched along
the y-axis.

Beyond the Half-Space Assumption: Effects of Contacting
Layers of Finite Thickness

When contact areas have a characteristic length comparable with the bodies’ thick-
ness, the half-space assumption adopted in the previous analysis has to be removed.
Indeed, as shown in the literature (see, e.g., Carbone and Putignano 2014; Putig-
nano et al. 2015) there occurs a significant modification in the contact stiffness and,
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Fig. 7.13 Viscoelastic friction coefficient μ as a function of the dimensionless sliding speed ξ =
vτ/L for the constant thickness h/L = 0.06 and different values of the normal load σ0/E∗:
σ0/E∗ = 10−2 (black curve),σ0/E∗ = 410−3 (greendotted curve), and σ0/E∗ = 10−2 (red dotted
curve). Note that h and L denote the thickness of the thin layer and the size of the computational
domain, respectively. (color figure online)

therefore, in all the quantities marking the contact solution, including contact areas,
separation, and friction. The nature of these changes may be different and depends
on the boundary conditions imposed on the system: for example, a rigid foundation
supporting the deformable layer entails a system stiffening, whereas a free layer sup-
ported by a constant pressure has a larger compliance in comparisonwith a half-space.
In the case of thin layers, what is independent on the several boundary conditions
is the reduction in the amount of material potentially capable of dissipating energy
due to viscoelastic hysteresis. Fig. 7.13 from example shows the friction coefficient
as a function of the dimensionless speed for a fixed thickness value and for different
normal loads. We observe that the friction coefficient curve has the usual bell-shaped
behavior only for the lowest normal load, whereas for largest load value a completely
different trend, with two peaks, is observed. It is also surprising to observe that the
friction coefficient decreases with the normal load as more dissipation is expected
when the deformed volume increases due to viscoelastic losses. To fully understand
such an effect, we should focus on the physics governing viscoelastic friction: this is
due to the dissipation happening in the material volume deformed during the sliding
motion. Now, when the contact layer has a finite thickness, the amount of material,
which can be deformed and, consequently, can dissipate, is finite: once the region
available for the dissipation to take place is saturated, no further increase in the
friction force can be obtained by increasing the normal force. This is clarified in
Fig. 7.14, where a schematic shows that in the layered case the region capable of
dissipating is saturated and the saturation depends on the relative sliding speed for
the viscoelastic case.

In order to explore this behavior, it is necessary to introduce a characteristic
length, leq , which qualitatively captures the extent of the dissipative region; this
allows a direct comparison with the other key length scale of the problem, namely
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Fig. 7.14 Schematic of the viscoelastic friction for half-space and for a thin layer

the thickness, h, of the viscoelastic layer. This characteristic length should be ideally
defined so that it can capture the saturation of the material’s capability to dissipate.
In particular, if leq is thought as a mono-dimensional measure of the volume over
which dissipation takes place, when the ratio leq/h is smaller than 1 there is still
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material capable of dissipating; conversely, as soon as leq/h becomes greater than 1,
the dissipative region gets saturated. In contact problems characterized by regular or
smooth surfaces, it would be straightforward to define leq as the contact characteristic
wavelength or contact width, respectively; however, it is less easy to define a unique
wavelength for a specific contact problem when dealing with multiscale rough sur-
faces. In Carbone and Putignano (2014); Putignano et al. 2015 leq is defined as
leq = √

Am, where Am is the mean value of each individual contact cluster. Such
a dimensionless quantity can be employed as a measure of the influence of finite
thickness on rough contact mechanics.

Experimental Testing

The last Section has shown the peculiarities of viscoelastic contact and, to this aim,we
have focused on an ideal one relaxation timematerial. However, it is well-known that
realmaterials are characterizedby a large spectrumof relaxation times. In this section,
we study viscoelastic rubbers and compare results with numerical predictions. We
present the particular experimental setups and then we proceed to the results.

Materials To this aim, the first step to carry out is to characterize, by means of
a dynamic mechanical analysis (DMA), the viscoelastic materials experimentally
tested. Such a mechanical characterization is carried out over a set range of frequen-
cies and temperatures. Let us provide some examples.

The first one is a styrene butadiene rubber copolymer (SBR), whose dynamic
analysis can be found in Putignano et al. (2013). Therefore, the real part E1 (ω) =
Re [E (ω)] and the imaginary part E2 (ω) = Im [E (ω)] of the measured viscoelastic
modulus E (ω) at environmental temperature of 12 ◦C are shown in Fig. 7.15 (see
points in the figure). The solid line is the fit obtained with Eq. (7.3). The best fit is
obtained with 34 relaxation times in geometric progression with Euler’s number as
common ratio, i.e., τk+1/τk = e.

Fig. 7.15 The real part
E1 = Re [E (ω)] (black line)
and the imaginary part
E2 = Im (blue line) of the
viscoelastic modulus E (ω)

of the SBR rubber samples at
the room temperature of 12
◦C. Points represent the
measured values, and the
solid lines represent the fit
with Eq. (7.3)
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Fig. 7.16 The real part E1 = Re [E (ω)] (red line) and the imaginary part E2 = Im (blue line)
of the complex modulus E (ω) at 30◦C. Points represent the measured values, and the solid lines
represent the fit obtained by using Eq. (7.3) (color figure online)

The second material is a nitrile rubber (provided by The Precision Plastic Ball
Co Ltd.). In this case, we have directly carried out by means of a Q800 Dynamic
Mechanical Analyzer (DMA)manufactured byTA Instruments. In detail, the test was
carried on rubber strips with cross section 2mm × 5.5 mm and length 30 mm. The
preload at which the measurements are carried out is 7.5N. The range of frequency is
from 0.01 to 25 Hz and temperature varies from 0 to 100 ◦Cwith 10 ◦C step. In order
to extend the data to the very low frequencies needed to represent the test conditions,
as described in Christensen (1982), Ferry (1980), the well-known WLS relations
were employed to shift the data measured at different temperatures and obtain the
viscoelastic spectrum of the rubber, shown in Fig. 7.16. Here, the experimental data,
obtained in such a way, are fitted with Eq. (7.3). We observe that, as suggested in
literature Kessler (2004), the discrepancy between measured and fitted data at high
frequency can possibly be attributed to slippage occurring in the sample grip of the
DMA equipment.

A final example deals with a thermoplastic and, in particular, with the poly(methyl
methacrylate) (PMMA). This test is again carried out in tensile conditions to obtain
data over a set interval of frequencies and temperatures. The characterization is
performed on rubber strips, having a cross section of 2 mm × 5.5 mm and a length
of 35 mm, over a frequency interval between 0.1 and 10 Hz and temperature varying
from−50 to 150 ◦Cwith 10 ◦C step. Thus, as we have seen, it is possible to build up a
master curve for the complex viscoelastic modulus over a much extended frequency
range. This is what is shown in Fig. 7.17, where the experimental data are plotted
in blue—the squares and the circles refer, respectively, to the imaginary and the real
part of the viscoelastic modulus. In the same figure, we fit the experimental data
using the discretized version of Eq. (7.2) with a spectrum of relaxation times being
assumed to be in geometric progression with ratio equal to τk+1/τk = 1.5 e. A good
agreement is found over the entire frequency range between the experiment and the
theoretical fitting.
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Fig. 7.17 The real part
E1 = Re [E (ω)] (squares)
and the imaginary part
E2 = Im (circles) of the
complex modulus E (ω) at
30 ◦C. The blue color refers
to the measured values, and
the red is used for the fit
obtained by using Eq. (7.3)
(color figure online)
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Penetration and contact area Among the main quantities to measure experimen-
tally, we have penetration and contact area. To this end, in Putignano et al. (2013), a
conventional EHD ball and disk rig (PCS Instruments Ltd., Acton, UK) is employed:
on this rig, a 19.05mmdiameter nitrile rubber ball (provided by The Precision Plastic
Ball Co Ltd.), is loaded against a glass disk, as shown in Fig. 7.18. The ball specimen
has no shaft and is located on a roller carriage, so that when loaded, the disk rotation
drives under pure rolling contact conditions.

Additional components have been incorporated in the conventional EHL rig setup
to enable the accurate measurement of the displacements. In particular, a T-shaped
stem is attached to the ball loading system supporting the ball roller carriage. This
enables a laser displacement sensor (LK-G32 produced by Keyence Ltd.) to measure
the vertical displacement corresponding to the penetration of the ball specimen. This
approach is reasonable since the loading system is considerably much stiffer than the
rubber ball specimen. Furthermore, the high resolution of the displacement sensor
(0.05 µm) enables the small variations in penetration that occur due to changes in
rolling speed to be measured.

Contact area measurements are obtained from images taken with a camera located
above the glass disk (see Fig. 7.18). Due to the very low modulus of the rubber ball,
contact area diameters are likely to be sizeable—i.e., several millimeters large—even
under low loads. To capture such areas, an SLR camera (a Canon EOS 500D) and
lens (a 7 Tamron AF 28–75 mm f/2.8 XR Di LD) are used.

Once the images are collected, a suitable MATLAB algorithm is employed to
digitize the contact area and extract its dimensions as they evolved due to viscoelas-
tic effects. After importing the black-and-white snapshots, each picture, managed
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Fig. 7.18 EHL test rig: a
photograph of the
experimental configuration;
b schematic of the original
setup and additional features
used to accurately measure
surface displacements

as a matrix in the MATLAB environment, is Fourier-transformed and undergoes a
filtering process, aimed at detecting the contact borders. The transition zone (i.e., the
border between contacting and non-contacting regions) could then be found. Finally,
the contact area was calculated knowing pixel size of the images (the latter being
obtained from an image of a specimen of known dimensions, positioned at the contact
interface).

Now, oncewe have defined the experimental setup, we can carry out themeasures.
The first part of our experimental investigation involves measuring the variation in
penetration as a function of the rolling speed. As in previous researches (Carbone
and Putignano 2013), we observe that an increase in rolling speed causes a signifi-
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Fig. 7.19 Contact
penetration versus rolling
speed for a constant normal
load of FN = 20 N and a
temperature T = 30 ◦C. Red
squares refer to experimental
results, and blue circles to
numerical predictions (color
figure online)
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cant stiffening of the viscoelastic specimen. Therefore, if the applied normal load is
kept constant (e.g., equal to FN = 20 N), the penetration should show a decreasing
trend with the speed. This is confirmed in Fig. 7.19, which shows the measured and
predicted penetrations with varying speed. Here, each experimental data point (red
square in Fig. 7.19) represents an average of 15 measurements, with a scatter of
less than 5%.1 These results not only confirm the expected trend but also show very
good agreement with the numerical predictions (blue circle in Fig. 7.19), over a very
large speed range. Indeed, such a strong correlation is observed up to 100 mm/s;
however, for greater speeds, experimental values tend to diverge from the numerical
predictions. It is suggested that this divergence may be due to thermal heating effects
that occur at high speed and cause a softening of the polymer and hence higher than
predicted penetration values. Additionally, at such speeds, wear of the polymer ball
may be affecting displacement measurements.

The importance of thermal effects can be confirmed by performing thermal
microscopy in the contact. As described in Putignano et al. (2014), by means of
such an experimental procedure, it is possible to obtain a detailed thermal map of
the contact region. As shown in Fig. 7.20, obtained for a normal load P = 2 N and a
constant rolling speed v = 54 mm/s, the temperature in the contact is higher than the
room temperature (Troom = 30 C). In the contact region, the presence of hot spots,
which are due to the surface roughness and correspond to asperities in the contact.
This phenomenon of frictional heating is well-known in sliding contacts but is also
present in rolling contacts.

It is interesting to consider how the temperature influences the contact solution
and, specifically, when temperature heating can be neglected or, on the contrary, must
be accounted for. The simplest way to approach this problem is to focus on the mean
temperature in the contact area since this may enable us to understand when thermal
effects become prominent. For instance, Fig. 7.21 shows the mean temperature in
the contact area as a function of the rolling speed for fixed a normal load P = 20 N.
Here, two regimes are clearly distinguished: for low-speed values (v < 100 mm/s),
temperature increase is negligible, but for higher speeds, there is a rapid growth in
the temperature curve. This is coherent with the results obtained in Fig. 7.19, where

1 Here, scatter is defined as σ/μ, i.e., the ratio between the standard deviation σ and the mean
measured value μ.
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Fig. 7.20 Temperature map for a constant normal load of FN = 2 N, a speed v = 54 mm/s and a
room temperature T = 30 ◦C
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Fig. 7.21 Mean temperature in the contact area as a function of the rolling speed v for a constant
normal load of FN = 20 N and a room temperature T = 30 ◦C

the deviation from the athermal numerical model occurs for speeds larger than 100
mm/s.

We can now focus on the analysis of the contact area. In Fig. 7.22, the contact area
is shown as a function of the rolling speed: a decreasing trend, due to the stiffening of
the material, is evident. It is noteworthy to observe that, despite the simplicity of the
proposed setup, it is possible to study a large speed range covering more than four
orders of magnitude. Indeed, the test brings to light the viscoelastic effect, which
in previous investigations (see, e.g., Johnson 1985; Krick et al. 2012; Lorenz et al.
2011) was partially obscured by, or was inseparable from, other phenomena. This is
mainly due to the fact that these other studies either used only pure sliding conditions
or were focused on the role of the roughness at low speeds. Actually, the approach
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Fig. 7.22 Contact area as a function of the rolling speed v for a constant normal load of FN = 20 N
and a room temperature T = 30 ◦C. Red squares refer to experimental outcomes, blue circle to
numerical results obtained without any thermal corrections, and green rhomboids to numerical
simulations carried out with the viscoelastic response corrected with the temperature (color figure
online)

taken in the present work, i.e., measuring contact area under pure rolling conditions,
allows the heating and wear effects—that play a critical role also at very low sliding
speeds—to be neglected over a larger rolling speed range. As a result, the significant
decrease in contact area due to viscoelasticity can be clearly appreciated.

Turning now to the comparison with the numerical simulations, a good agreement
is found for rolling speeds up to 100 mm/s, whereas, at higher speeds, numerical out-
puts are lower than experimental values. This can be explained by heating effects
described in the preceding discussion regarding penetration. For this set of measure-
ments, the scatter is less than 8%, which is quite low considering the convoluted
nature of the acquisition and images processing procedures.

Viscoelastic Contacts Under Non-Steady-State Conditions:
The Case of Reciprocating Motion

In the previous section, we have focused our attention on the case of steady-state
relative motion between the viscoelastic solids. However, there may exist conditions
more complicated,where contacts occur in viscoelastic regions that have been already
deformed and are still relaxing. A case of particular practical interest is the case
of reciprocating contact, where a punch oscillates periodically over a viscoelastic
foundation. This Section focuses indeed on the Boundary Element formulation and
the main results dealing with such loading and motion conditions.



7 Contact Mechanics of Rubber and Soft Matter 305

Mathematical Formulation

The proposed formulation builds on the strengths of the boundary element method
(BEM) in terms of accurately capturing interfacial stresses and displacements, and,
as such, requires the determination of a viscoelastic reciprocating Green’s function
G (x, t).

To this end, let us first assume that the interfacial normal stress distribution obeys
the law σ (x, t) = σ [x − ξ0 sin (ωt)], i.e., that the shape of normal stress distri-
bution is fixed but moves on the viscoelastic half-space with a sinusoidal law of
amplitude |ξ0| and angular frequency ω. The vector ξ0 also identifies the direction of
the reciprocating motion. Because of linearity and translational invariance, replac-
ing x → x + ξ0 sin (ωt) allows to write the relation between interfacial stresses and
displacement as

u (x, t) =
∫

d2x ′G
(
x − x′, t

)
σ

(
x′) (7.28)

In order to determine G (x, t), we recall that the general relation between stress and
displacement fields is (Carbone and Putignano 2013):

u (x, t) = J (0)
∫

d2x ′G
(
x − x′) σ

(
x′, t

)

+
∫ t

−∞
dτ J̇ (t − τ )

∫
d2x ′G

(
x − x′)σ

(
x′, τ

)
(7.29)

whereG (x) andJ (t) are the elasticGreen’s function and the creepmaterial function,
respectively. The symbol “·” stands for the time derivative. The creep function is eas-
ily linked to the viscoelastic modulus E(ω) of the material by means of the relation
1/E(ω) = iωJ (ω) (Christensen 1982), where i is the imaginary unit and the Fourier
transformof a function f (t) is f (ω) = ∫

dt exp (−iωt) f (t). The viscoelasticmod-
ulus has the general expression 1/E(ω) = 1/E∞ + ∫ ∞

0 dτC (τ ) / (1 + iωτ ), where
E∞ is a real quantity corresponding to the elastic modulus of the material at very
large excitation frequencies. C (τ ) > 0 is usually defined as the creep spectrum, and τ
is the relaxation time (Christensen 1982). In order to find G (x, t) we choose σ (x, t)
= δ [x − ξ0 sin (ωt)] and, after substituting in Eq. (7.29), we obtain

G (x, t) = J (0)G [x − ξ0 sin (ωτ )]

+
∫ t

−∞
dτ J̇ (t − τ )G [x − ξ0 sin (ωτ )] . (7.30)
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The term G [x − ξ0 sin (ωt)] can be rewritten as

G [x − ξ0 sin (ωt)] = (2π)−2
∫

d2qG (q) e−iq·[x−ξ0 sin(ωt)], (7.31)

where G (q) is the Fourier transform of the function‘ G (x). Now, let us observe that∫
dθeir sin θe−iαθ is equal to

∫
dθeir sin θe−iαθ = 2π

+∞∑
k=−∞

δ (α − k) Jk (r) (7.32)

where Jk (r) is the kth-order Bessel function of the first kind. Consequently, Eq.
(7.31) can be cast as

G [x − ξ0 sin (ωt)] =
+∞∑

k=−∞
Ak (x) eikωt , (7.33)

In Eq. (7.33), Ak (x) can be written as

Ak (x) = (2π)−1
∫ 1

−1
dsG (x−sξ0) Bk (s) (7.34)

with Bk (s) being equal to Bk (s) = (−i)k Tk (s) B0 (s). Tk (s) is the Chebyshev poly-
nomial of the first kind and B0 (s) = 2

(
1 − s2

)−1/2
, for |s| ≤ 1 and 0 otherwise.

Substituting (7.33) in ( 7.30) we obtain:

G (x, t) =
+∞∑

k=−∞

Ak (x)
E (kω)

eikωt (7.35)

As mentioned above, the function G (x, t) has been obtained under the assump-
tion that the shape of the stress field at the interface, whose general form is
σ (x, t) = σ [x − ξ0 sin (ωt) , t], does not change during the reciprocating motion,
i.e., σ (x, t) = σ [x − ξ0 sin (ωt)]. Such a condition holds true whenever a0/ |ξ0| �
1, where a0 the characteristic dimension of the contact region, and is equivalent
to require that |∂σ/∂t | /(|ξ0 · ∇σ|ω) � 1 (see Appendix A for more details). This
assumption is justified in the majority of cases of reciprocating contact and is satis-
fied point-wise almost everywhere within the contact area in the analyses presented
in this work. Now, to invert the linear operator in Eq. (7.28) we need a numerical
approachwhich consists in discretizing the contact domain inM square cells. Indeed,
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assuming that in each boundary element the normal stress σ is constant and equal to
σ j , the normal displacement ui = u (xi, t) at the center xi of the ith square can be
written as

ui = 1

N

M∑
j=1

σ j

N∑
r=1

L

[
xi−x j− cos

(
2r − 1

2N
π

)
ξ0

] +∞∑
k=−∞

eikωt (−i)k

E (kω)
cos

[
k

(
2r − 1

2N
π

)]
(7.36)

where L (x) is related to the Love’s solution (Johnson 1961). It should be observed
that Eq. (7.36) is obtained by applying the Chebyshev–Gauss quadrature rule to the

integral term
∫ 1
−1 dsTk (s) L

[
xi−x′

j−sξ0
] (

1 − s2
)−1/2

at M nodes, thus making it

easier to achieve the numerical convergence of the problem.
Equation (7.29) can be solved by using the iterative technique developed in

Putignano et al. (2012b) for elastic contacts, thus providing contact areas, stresses,
and strains. It should be noticed that the method does not require any discretization
of the time domain as the time t is treated as a parameter.

Once the solution is known in terms of stresses and strains, following the approach
stated in Carbone and Putignano (2013), it is straightforward to calculate the vis-
coelastic friction force as

FT =
∫
D
d2xσ(x)

∂u

∂x
(7.37)

The friction coefficient is then obtained as μ = FT /FN where FN is the external
applied load.

Finally, we conclude noticing that the formulation, in the current form, does not
explicitly account for the role of the tangential tractions at the contact interface.
Indeed, this is out of the scope of our work. The purpose here is to determine the
normal stresses and the normal displacements distribution, and, on this basis, calcu-
late the viscoelastic friction that is proportional to the volume of deformed material.
It is well-known that the normal and tangential contact problems have only a very
weak coupling, which is normally neglected. Furthermore, in the case of a rigid body
in contact with a soft layer—which can be usually assumed incompressible—it is
absolutely rigorous to assert that tractions have no influence on normal pressure and
displacements, and, consequently, on the viscoelastic dissipation.

Numerical Results

We study the contact of a rigid sphere of radius R undergoing reciprocating sliding
against a viscoelastic material characterized by one relaxation time (being the ratio
between the high-frequency modulus and the low-frequency E∞/E0 = 11 and the
Poisson ratio ν = 0.5). We assume that the center x(t) of the sphere moves on the
viscoelastic half-space following the law x(t) = [ξ0 sin (ωt) , 0]. The dimensionless
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Fig. 7.23 The dimensionless
normal displacements
u(x, y = 0)/R as a function
of the dimensionless abscissa
x/ξ0 for a constant
dimensionless normal force
Fn/R2E∗

0 = 0.014, for an
amplitude ξ0/R = 1, and for
several values of the
dimensionless time
ωt ∈ [−π/2,π/2]
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angular frequency of the reciprocating motion is ωτ = 5, being τ the relaxation time
of the viscoelastic material.

Figure 7.23 shows the evolution of the dimensionless displacements, u(x)/R,
at the center of the contact as a function of x/ξ0 and for a specific dimensionless
applied normal load Fn/R2E∗

0 = 0.014, and ξ0/R = 1. Results are shown for dif-
ferent values of ωt ∈ [−π/2,π/2]. An arrow refers, in each case, to the current
position of the sphere. At ωt = −π/2 the sphere has just reached the left dead-point
and starts moving from left to right. Upon reversal of the sliding direction, and for
ωt ≤ −0.36π, a marked increase in the dimensionless penetration at the center of
the sphere is observed. This is due to the fact that, although the speed is increasing, it
is still too low to cause a significant stiffening of the material, and the sphere is also
moving over a portion of the viscoelastic half-space that has not yet had the time to
relax after the previous contact of the rigid body. As the sliding speed increases, a
non-negligible stiffening of the material and a marked decrease in the penetration are
observed (see displacement in correspondence to the arrow). This is clearly shown by
curves at ωt = −0.19π,−0.11π,−0.02π, which also show additional deformation
peaks, one at the left and one to the right of the arrow: this is the result of the interplay
between the deformations, induced by the indenter as it moves to the right, and the
original not yet fully relaxed footprints left by the sphere at preceding times. For
0 < ωt < π/2, the sliding speed begins to decrease and the material softens again,
thus leading to an increase in penetration. It is now possible to justify the occurrence
of three different deformations peaks within the track when the sphere is moving
between the two dead-ends: one corresponds to the current position of the sphere
and the other two are located close to the left and right dead-points, respectively,
and are the result of the material inability to fully recover the viscoelastic deforma-
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tions during a period of time comparable to the period T = 2π/ω = 6.28 s of the
reciprocating motion (recall that the relaxation time is τ = 5 s).

The merging or separation of the previous and current sphere footprints, which
takes place close to the dead-points of the reciprocating motion, has a significant
effect on the interfacial normal stress distribution. This is clearly shown in Fig. 7.24,
which depicts the evolution of the pressure distribution and shows the shape of the
contact area. Let us first observe that at ωt = −π/2, i.e., when the sliding speed
goes to zero, the contact area as well as the interfacial normal stress distribution is
characterized by an asymmetric shape. The observed asymmetry and, in particular,
the presence of a peak on the left of the contact patch is a consequence of the
viscoelastic time delay which prevents the material to relax immediately when the
sliding speed vanishes. As the sphere starts moving to the right, such a peak cannot
disappear suddenly but has to show a gradual decrease. At the same time, since the
punch is traveling toward the right, as already observed in steady-state viscoelastic
contacts moving at constant velocity (Carbone and Putignano 2013), a peak in the
pressure distribution has to be originated also at the leading edge. Finally, at the
center of the distribution, where we have the maximum of the displacement field
in the contact area, the pressure must still resemble the classical elastic Hertzian
solution. All this process strongly affects the evolution of the pressure distribution
at the interface with the presence of multiple pressure peaks shown by the snapshots
taken at ωt = −0.40π,−0.38π,−0.36π (the reader may refer to Appendix B to
appreciate the difference with steady-state conditions). A single peaked pressure
distribution is later recovered: indeed, an asymmetric pressure profile marked by a
peak closer to the contact leading edge is visible at ωt = −0.28π.

We may observe that, for a single relaxation time material, in addition to the
ratio E∞/E0, the behavior of the reciprocating contact is also governed by other two
dimensionless parameters. The first dimensionless group is � = τ/t0, where t0 =
a0/ωξ0 and a0 is the Hertzian contact radius. This parameter can be also interpreted
as a dimensionless sliding speed (Carbone and Putignano 2013) and compares the
relaxation time τ with the time t0 needed by the sphere to cover a distance a0. The
second group, � = a0/ξ0 = ωt0 = 2πt0/T , compares, instead, the time t0 with the
period T = 2π/ω of the reciprocating motion. Since we have earlier assumed that in
our problem � = a0/ξ0 � 1, we can focus on observing how the solution is affected
by�. For extremely small or extremely high values of�, the response of the system
is elastic (governed by either the high- or the low-frequency elastic limit of the
material), and no tangential contact force will be generated. At intermediate values
of �, viscoelasticity will affect the solution leading to asymmetric contact areas and
pressure distributions, and to the generation of tangential contact forces. In such a
case, given the dimensionless parameter � = � � = ωτ = 2πτ/T , if � < 1, the
reciprocating motion will occur on time scales longer than the relaxation time τ of
the material and the system will resemble the steady-state behavior of the contact
between a sphere moving on a viscoelastic half-space at constant speed (Carbone
and Putignano 2013). If � ≈ 1, as in the case of Fig. 7.24, a strong interaction will
be observed between different viscoelastic regions of the path covered by the sphere
during the reciprocating motion. Note that, under the assumption small a0/ξ0 values
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Fig. 7.24 The shape of the
contact area and the contour
plots of the normalized
contact pressure
distributions, p/E∗
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Fig. 7.25 The ratio between
the tangential and the normal
force Ft/Fn as a function of
the dimensionless abscissa
x/ξ0 for different values of
�. Arrows refer to the
hysteresis cycle direction
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(always adopted in this Chapter), the condition � � 1 implies � � 1, and, in this
case, the elastic response of the material will be recovered: the sphere will be just
performing very fast oscillations, leading to a local stiffening and, ultimately, to a
high-frequency elastic behavior.

In Fig. 7.25, the reduced tangential force, Ft/Fn , easily calculated once pressures
and displacements are known (Carbone and Putignano 2013), is plotted as a function
of the dimensionless abscissa x/ξ0, which identifies the position of the sphere along
the path, for different values of �. For � = 0.1 the material has the possibility to
relax before a single reciprocating cycle is completed. In this case, as the solution
resembles the steady-state viscoelastic sliding contact, the tangential force Ft/Fn

always opposes the sphere speed at each point along the path. However, as � is
increased (see, e.g., results for � = 5 presented in Fig. 7.25) the relaxation of the
material involves time scales comparable to the time period of the reciprocating
motion; in this case, there exist regions on the sphere track, specifically those close
to the dead-points, where Ft/Fn has the same direction as the sliding speed. This is
perfectly consistent with the results presented in Fig. 7.24.

Lubrication of Viscoelastic Solids: Fluid–Solid Interaction

Particularly interesting is the case of the lubrication between viscoelastic solids:
in such a case, as shown in detail (Putignano and Dini 2017), a specific coupling
between the solid viscoelasticity and the fluid viscosity is encountered and attention
needs to be placed on the treatment of such problems using numerical tools. In this
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Fig. 7.26 Schematic of the model implemented in the numerical methodology. The spheres roll
over a viscoelastic layer with a speed ub = � × R with � and R being, respectively, the constant
angular velocity and the position vector. The viscoelastic layer slides with a constant speed ud

Section, we show the mathematical formulation and the numerical results, together
with validation performed by employing ad hoc numerical procedures.

Mathematical Formulation

In order to deal with the lubrication in the presence of deformable bodies, as schemat-
ically reproduced in Fig. 7.26, let us focus on a scheme typical in tribology. A rigid
spherical punch clamped in its center rolls, with a velocity ub equal to ub = � × R
with � and R being, respectively, the angular velocity and the position vector, over
a viscoelastic layer sliding with a constant speed ud . We can assume that ub and ud
are constant and have the same direction, i.e., ub = ubi and ud = ud i with i being
the unit vector, identifying the common motion direction (corresponding to the hor-
izontal direction in the figure). It is noteworthy to underline that the mathematical
approach developed below is absolutely general and can be employed for any contact
configuration, once the geometry of the contact and ub and ud are defined.

Now, the complete solution of the lubrication problem requires to determine two
unknown distributions, i.e., the film thickness in the contact region and the normal
interfacial stress. To this aim, it is necessary to couple a solver for the steady-state
hydrodynamic lubrication equations with a methodology that, given the pressure
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distribution, provides the elastic (or viscoelastic) deformation experienced by the
interacting pair. Indeed, the two aspects of the problem are coupled since the dis-
placement of the solid surface influences the lubricating film and, consequently, the
solution of the flow equations. Such coupling is particularly strong in soft materials
since deformations can be significant when compared to the fluid film thickness.

As we have seen before, the solid problem can be formulated in terms of the
following integral relation:

u (x) =
∫

d2x ′G
(
x − x′,ud

)
σ

(
x′) (7.38)

This can be properly discretized in the form of the following linear system:

ui = L ik (ud)σk (7.39)

where the response matrix L ik (ud) parametrically depends on the velocity ud . We
observe that the total load acting on the system Fn is equal to Fn = Dk

N
k=1 σk with

the Dk being the area of each square cell.
Now, we can focus on the second equation, which is related to the fluid dynam-

ics of the problem. We can assume valid all the assumptions commonly employed
when dealing with soft lubrication and, in particular, we assume no-slip boundary
conditions at both solids interface. We can, then, introduce the Reynolds equations,
whose general form can be written as (see Hamrock et al. 2004; Venner and Lubrecht
2000):

∂ρh

∂t
+ ∇ · (ρhU) = ∇ ·

(
ρh3

12η
∇σ

)
(7.40)

where U is the entrainment speed, i.e., the mean surface velocity that for the system
depicted in Fig. 7.26 is equal to U = (ub + ud) /2, ρ is the density (which here
is considered constant), η is the fluid viscosity and h is the film thickness. The
latter quantity can be easily related to the normal displacement of the deformable
surface u and, specifically, h(x, y) = h0 + s(x, y) + u(x, y) with h0 and s(x, y)
being, respectively, a rigid motion constant and the separation due to the undeformed
geometry of the contacting surfaces. For the tribo-system sketched in Fig. 7.26,
s(x, y) is equal to s(x, y) = R − (

R − x2 − y2
)1/2

with R being the radius of the
sphere.

Given the steady-state conditions of our study, Eq. (7.40) simplifies since the time
derivative vanishes and is, then, solved bymeans of a finite difference scheme,whose
nodes are equally spaced in the computational domain and correspond to the centers
of the boundary elements previously defined for the solid problem. Indeed, such a
procedure, where the differential terms in Eq. (7.40) are discretizedwith central finite
differences (Hamrock et al. 2004; Venner and Lubrecht 2000), allows us to reduce
Eq. (7.40) to the following linear system:

hi = Rik (U,μ)σk (7.41)
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Ultimately, the problem consists in coupling the solidmechanics and fluid dynam-
ics (Hamrock et al. 2004; Venner and Lubrecht 2000; Snoeijer et al. 2013) and, con-
sequently, in finding the pressure distribution that satisfies, at the same time, both
Eqs. (7.39) and (7.41). An iterative scheme is adopted to solve the system formed by
these two equations provided in vector form. Basically, at each iteration, given the
estimation of the film thickness h̃i computed at the previous iteration, Eq. (7.41) is
inverted to calculate an estimated stress field σ̃k , which then is inputted in Eq. (7.39)
to obtain the new viscoelastic deformation field ũi and, consequently, the film thick-
ness to employ at the next iteration. The iterative procedure, properly underrelaxed
by means of the Aitken acceleration approach (see, e.g., Venner and Lubrecht 2000),
continues until film thickness and pressure distributions numerically converge in
two consecutive iterations. Furthermore, with regard to the inversion of Eq. (7.39),
in order to speed up the solving procedure, we may observe that the matrix Rik

is pentadiagonal thanks to the central finite differences discretization, and, conse-
quently, we may implement a direct solver which requires to store only the nonzero
elements of the matrix Rik (Schenk and Gärtnerc 2004). The main advantage is the
possibility of implementing a fine mesh and, at the same time, obtaining fast com-
putational times. Once the problem is fully solved in terms of pressure distribution
and deformations, it is straightforward to calculate the total friction as the sum of
the viscoelastic hysteretic term (Carbone and Putignano 2013) and the contribution
coming from the fluid losses (Hamrock et al. 2004).

Incidentally, we observe that, as usually done when dealing with numerical meth-
ods and, in particular, in lubrication problems, the outcomes of the methodology are
reported in dimensionless form. To this aim, we note that the characteristic length
of the problem is the radius R: consequently, when considering the film thickness h
(and all deformations and quantities defined using units of length), wewill look at the
ratio h/R. Furthermore, when we have to analyze the stress distribution σ, it is con-
venient to make such a quantity dimensionless and write it as σ/E0, by introducing
the rubbery elastic modulus E0 (Carbone and Putignano 2013). Such a modulus is,
then, employed the reference for quantities characterized by units of stress. As a con-
sequence, the normal dimensionless load will be Fn/

(
R2E0

)
. Finally, to introduce

a dimensionless speed ξ, we compare two time scales: the first one is a character-
istic relaxation time τ of the material and the second one is the time employed by
the fluid to cover the length R with the speed U (Carbone and Putignano 2013).
Then, ξ is equal to ξ = Uτ/R. Finally, to deal with the viscosity η, we employ the
dimensionless group ηUR/Fn , that is the so-called Hersey number.

Film Thickness and Interfacial Pressure Distribution

We focus on the description of the physics governing the lubrication of a rigid sphere
in pure rolling over a viscoelastic half-space. Consequently, the slide-roll ratio SRR,
defined as SRR = (ub − ud) / ((ub + ud) /2) with ub and ud being the speed of the
sphere and of the disk, respectively, is set to zero.
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Although these two conditions, i.e., the layer assumed as an half-space and the
SRR being equal to zero, can be seen as simplification with respect to the general
formulation, they are only used here to reduce the number of parameters and show the
effect of viscoelasticity in one of the simplest possible configurations. Furthermore,
as a starting point and again in order to show the main peculiarities of lubricated
viscoelastic response using a simplified material model, we employ a simple one
relaxation time material with a ratio E∞/E0 equal to E∞/E0 = 100 and several
different values of the relaxation time τ .Without loss of generality and for illustration
purposes, all the calculations are carried out for a constant dimensionless normal load
Fn/

(
R2E0

) = 8.5 102.
Now, by employing the numericalmethodology described above, we can calculate

how the pressure distribution and the film thickness depends on the dimensionless
speed ξ = Uτ/R, where the fluid entrainment speed equal U , in pure rolling condi-
tions, to ud . As shown in Fig. 7.27, for very low values of ξ, the deformable solid
is in the elastic rubbery region and behaves, consequently, as a soft elastic body: no
viscoelastic effect is present. When looking at the lubricating film, as expected (see,
e.g., Hamrock et al. 2004; Bowden and Tabor 2001), we observe an almost perfectly
circular shape and, due to the flow conservation, a minimum at the fluid outlet can
be observed. This is particularly evident in Fig. 7.28, where both the fluid meatus
and the normal stress distribution are plotted at the centerline of the contact depicted
in Fig. 7.27. Indeed, for ξ = 0.005, we notice a Hertzian-like pressure distribution,
typical of low-pressure contacts and iso-viscous fluids (Hamrock et al. 2004).

However, a very different story has to be told when the speed is increased. Indeed
the contact zone (i.e., the region delimited by low film and high pressure) gradually
decreases its size and, most importantly, evolves toward a shape that is increasingly
far from a circle and is affected by a sharp shrinkage at the fluid outlet. In Fig. 7.27, the
contour plots of the pressure clearly show this trend; as emphasized when focusing
on the centerline in Fig. 7.28, there exists a stress peak that increases with the speed
and produces, ultimately, a strong asymmetry toward the contact inlet. Interestingly,
such changes produce an additional local minimum in the fluid film: by increasing
the speed, this effect becomes predominant and the absolute film thickness minimum
moves from the flow outlet to the inlet. This is in agreement with recent experimental
evidence (Marx et al. 2016; Hutt and Persson 2016); however, this is certainly not
intuitive andmight come as a surprise for researchers familiar with classic lubrication
models (Hamrock et al. 2004) and would be inadmissible if the rheology of the
contacting solids were not to be considered. Hence, further considerations must be
made to corroborate and explain these trends.

First of all, let us observe what happens in dry conditions when a rigid ball moves
in rolling or sliding contact over a viscoelastic half-space. As shown in Carbone and
Putignano (2013), the contact pressure has a peak at the leading edge, where the
material is completely undeformed, and is smaller at the trailing edge, where the
viscoelastic solid has been deformed and has not yet fully relaxed. Such a pressure
field produces a contact area that is asymmetric and has a marked shrinkage at the
trailing edge. When a fluid is inserted between the rigid punch and the viscoelastic
layer, there occurs a similar mechanism: at the flow inlet, i.e., where the lubricant
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Fig. 7.27 Contour plots of
the film thickness (left) and
the pressure distribution
(right) predicted for a simple
viscoelastic material
subjected to a normal load of
Fn/

(
R2E0

) = 8.5 102and
different values of the
dimensionless speed ξ.
Calculations are carried out
with a glass modulus
E∞ = 108 Pa, a ratio
E∞/E0 = 100, a relaxation
time τ = 0.01 s, a radius
R = 0.02 m, and a viscosity
equal to η = 1 Pa·s
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Fig. 7.28 Film thickness
(top) and pressure
distribution (bottom)
measured at the centerline of
the contact (y/R = 0) for a
normal load of
Fn/

(
R2E0

) = 8.5 102and
different values of the
dimensionless speed ξ
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is “sucked in”, the viscoelastic material is still undeformed; on the contrary, at the
outlet, where the lubricant exits the contact region, the solid is still relaxing. This
can be seen very clearly in Fig. 7.29, where the viscoelastic displacement u (x, y) is
plotted for different values of the dimensionless speed ξ. As a consequence, similarly
to what happens in dry conditions, larger pressure values have to be expected toward
the inlet rather than at the flow outlet. To such a pressure distribution corresponds a
shrunk nonsymmetric film thickness and a minimum value at the inlet.

Furthermore, experimental comparisons with numerical results can be carried out
by employing the same experimental setup shown inMarx et al. (2016). This is based
on the optical interferometry. Such a technique is normally used to detect the fluid
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Fig. 7.29 Displacement distribution u (x, y) for different values of the dimensionless speed ξ.
Dotted lines refer to the position of the rigid punch

film between two lubricated bodies: fundamentally, light is shone into the lubricated
contact through a transparent body that is usually glass or sapphire. Some of this light
is reflected from the lower surface of the transparent disk while some passes through
the lubricating film and is reflected on its turn from the reflective ball surface, which
is usually steel. When the two light beams recombine, they interfere in a way that
depends on the path difference between them and, consequently, on the lubricant film
thickness. Such an experimental setup has been applied successfully to transparent
polymethylmethacrylate (PMMA) disks by applying a semi-reflective chromium
coating on the polymeric material. As for the lubricant, an additive-free base fluid,
of a gas-to-liquid origin and corresponding broadly to API Group IIIÃ, is employed.
More details, including the viscometric properties of the fluid, can be found in Marx
et al. (2016). With regard to the disk material, PMMA is a viscoelastic polymer
whose properties have been obtained by means of dynamic mechanical analysis
performed on the Q800 DynamicMechanical Analyzer (DMA)manufactured by TA
Instruments (the reader is referred to Appendix A for more details). In Fig. 7.30,
results show a good qualitative and quantitative agreement between the contour map
of the film thickness experimentally measured at the temperature of T = 40 ◦C
and the equivalent contour plot obtained numerically. A marked deviation from the
circular shape of the contact zone, which cannot be captured using classical elasto-
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Fig. 7.30 Interferometermap (top right) and numerical contour plot (bottom right) of film thickness
for a normal PMMA sample subjected to a normal load of Fn = 15N and an entrainment speedU =
1.17 m/s. Comparison between numerical predictions and experimental outcomes at the centerline
(y/R = 0) for different values of the entrainment speed (left)

hydrodynamic lubrication and neglecting the effect of the solid rheology, is clearly
shown. As shown also in Marx et al. (2016), and coherently with the theoretical
framework so far developed, such an effect and, in particular, the shrinkage at the
flow inlet are strongly dependent on the entrainment speed.

Amore direct quantitative analysis of the film at the contact centerline, carried out
for different values of entrainment speed and for a normal load of Fn = 15 N, shows
a good agreement with the numerical outcomes with discrepancies always below
8%. The observation of the pronounced shrinkage of the lubricating film and the
accuracy of the quantitative comparison between experimental and numerical results
highlights the role that might be played by solid viscoelasticity. However, at the same
time, in the current experimental setup, viscoelastic effects are not as strong as those
observed, for example, in Figs. 7.27 and 7.28. Indeed, the experimental evidence and
the numerical results presented so far suggest that viscoelastic effects can be more or
less pronounced depending on the fluid viscosity and the frequency/speed range in
which solid viscoelasticity is prominent for the specific material under investigation.
In other words, the rheology of the fluid and of the solid undergo a complex interplay,
with different levels of coupling between the fluid film and the deformation of the
solid bodies, which leads to different lubrication scenarios and frictional response.
Such interplay is discussed next.
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Solid Viscoelasticity and Fluid Viscosity: A Coupling Criterion

To quantify the coupling and the interaction between viscoelastic deformations in
the solid and fluid film, let us primarily focus on the two parameters that govern
the phenomenon. Starting from the aspects linked to the dynamics of the fluid, all
the properties and, in particular, friction, which will be used as a measure of the
effect that the coupling has on dissipation, are determined by the Hersey number,
ηUR/Fn (Hamrock et al. 2004). With regard to the solid, we have a frequency where
viscoelastic losses and, specifically, the loss tangent reaches a maximum: in the very
simple case of a one relaxation time material, such a frequency, which maximizes
the ratio Im[E (ω) ]/|E (ω) |, can be estimated analytically and is equal to ωcr ≈
π−1√E∞/E0 (Carbone and Putignano 2013). The critical disk speed associated to
this frequency is equal to ud |cr ≈ ωcr R/τ and, therefore, since in rolling conditions
U = ud , the critical entrainment speed can be estimated asUcr = (R/πτ )

√
E∞/E0.

Now, it is straightforward to observe that, given a constant normal load, when
we increase the speed, the minimum and the mean film thickness increase and,
as expected from classical lubrication theory, once we pass from the elasto-
hydrodynamic to the hydrodynamic regime, any deformation in the contacting solids
tends to decrease. As shown also in Fig. 7.29, when the deformable layer is viscoelas-
tic, the situation is similar with the only difference that, by increasing the speed, the
solid becomes stiffer until we reach the elastic glassy regime where E(ω) is equal
to E∞. Therefore, the transition between a deformable regime that we could now
define as visco-elasto-hydrodynamic (VEHL), to the hydrodynamic behavior can be
even faster. Now, given a viscoelastic solid, we may wonder what happens if, for a
given load, Ucr falls into the hydrodynamic region and, consequently, no deforma-
tion occurs at the critical speed: simply, no viscoelastic effect will be observed. We
have an elasto-hydrodynamic regime—the solid behaves elastically with a rubber
modulus E0—followed by a hydrodynamic regime at larger speeds. It emerges that
viscoelasticity is a necessary, but not a sufficient condition to see a marked deviation
from classical EHL conditions. To observe the visco-elasto-hydrodynamic regime,
the solid deformation at the critical speedUcr has to be large and comparable with the
film thickness. This observation leads to the introduction of the following coupling
parameter:

� = hhydro
δcr

(7.42)

with hhydro and δcr being, respectively, the minimum film thickness in hydrostatic
conditions and the solid penetration at the critical speed. To have a VEHL regime,
� ≈ 1. The minimum hydrostatic film thickness can be found solving the Reynolds
equations and, for our configuration, as shown in Esfahanian and Hamrock (1991),
is equal to hhydro = RHhydro with Hhydro being a dimensionless quantity equal to
Hhydro = α (ηUcr R/Fn)

2 with α a constant numerically found equal to α ≈ 1.3 ·
102. The penetration δcr can be approximately estimated using the Hertzian relations
as δcr ≈ (

9F2
n /16R (E∗ (ωcr ))

2).
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This is a powerful tool, as evaluating � allows, given the viscoelastic modulus
E(ω) and the fluid viscosity η, to determine if a visco-elasto-hydrodynamic behavior
has to be expected in first-order approximation for materials governed by linear
viscoelasticity. To show the effects induced by the VEHL regime, let us focus on
the friction force, which is the sum of the fluid contribution and the viscoelastic
dissipation in the solid. Incidentally, we observe that the role of the roughness may
play a significant role in the so-called boundary and mixed regimes and may not
influence the regimes in which the fluid film is fully formed, which are the subject of
our investigation. Now, if viscoelastic effects are not significant we have a transition
between EHL and hydrodynamic (HD) regimes regulated by the Stribeck curve: at
the very low speed, the friction tends to zero, whereas, at larger speeds, we have a
linear dependence between the friction and the logarithmof the speed. The situation is
differentwhen viscoelasticity is significant since viscoelastic hysteresis adds a source
of dissipation and modifies the friction curve. This appears very clearly in Fig. 7.31
where the coefficient of friction is plotted for a material whose viscoelasticity is
characterized by one relaxation time material, with a ratio E∞/E0 = 100, and four
different values of relaxation time. By changing the relaxation time, we are shifting
the viscoelastic spectrum, thus obtaining four different values of �: �a = 0.065,
�b = 0.65, �c = 6.5 and �d = 65. As shown in Fig. 7.31, when � is small, we have
a deviation from the Stribeck curve with a marked “bump” due to the viscoelastic
hysteretic contribution; for larger values of τ and, consequently, of �, the viscoelastic
friction peak moves toward larger speeds and, then, as explained before, decreases
its intensity until it disappears. Indeed, for � = �d , we have a standard Stribeck
curve: specifically, for low speeds, we have an EHL region, where the body deforms
elasticallywith amodulus equal to the rubbermodulus E0, and, then, for larger values

Fig. 7.31 Friction
coefficient f as a function of
the speed for a dimensionless
load equal to
Fn/

(
R2E0

) = 8.5 102 and
different values of the
parameter �: �a = 0.065,
�b = 0.65, �c = 6.5 and
�d = 65. They have been
obtained by employing the
following four different
values of τ : τa = 10−2 s,
τb = 3.5 10−2 s, τc = 10−3

s, and τd = 10−4 s
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of the speed, there is the HD regime where the solid would be potentially able to
show viscoelastic effects, but, since the pressure is not large enough to significantly
deform the material, no energy dissipation occurs.

As expected and consistent with the proposed theoretical framework, all the four
curves tend to collapse at low speed (low Hersey number) to a soft-EHL behavior
and at large speeds (high Hersey number) we find the same hydrodynamic regime,
which is dictated only by the ball geometry and the fluid viscosity.

Adhesion and Soft Contacts

Another important aspect to consider when dealing with soft materials in contact is
that they can also be affected by strong adhesive interactions, something that must
be carefully considered when tackling such problems. Although an extensive review
of methods to deal with adhesion is outside the scope of this chapter, an overview
of the main available methodologies is provided. For a more in-depth description of
methodologies available to solve adhesive contacts and a historical summary of their
development, the reader should refer to Vakis et al. (2018), Muser et al. (2017). The
most frequently adopted adhesive models are the two analytical ones developed in
the 1970s, the JKRmodel (Johnson et al. 1971) and the DMTmodel (Derjaguin et al.
1975). These considered adhesive contact between a smooth sphere and a flat body,
but with different approaches and making significantly different assumptions. They
were shown to apply equally well to different contact conditions by Tabor (1977),
who identified a characteristic parameter, now known as the Tabor parameter, which
can be systematically used to identify whether short-range or long-range adhesion
dominates the contact interactions; in particular, the JKR model captures mainly
short-range interactions, representative only for contacts with a large value for the
Tabor parameter (>2, soft solids, small curvature, large adhesion), while the DMT
model is valid for contacts with a small value (<0.01, rigid solids, large curvature,
weak adhesion). Various later attempts were made later to bridge the two models and
to achieve a higher level of accuracy using semi-analytical methodologies (see, e.g.,
Muller et al. 1980; Greenwood 1997; Maugis 1992). More recently, finite element
models for adhesive contact problems have also been developed, where the contact
description obtained using theLennard-Jones potential is incorporated into the frame-
work of nonlinear continuummechanics (Sauer andWriggers 2009; Eid et al. 2011).
Alternative approaches have also been developed based on the BEM, which incor-
porates adhesion through energy minimization (Carbone and Mangialardi 2008a).
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Most of the models discussed above were developed for or applied to smooth surface
contact, nominally between a sphere and a flat. A common justification for neglecting
adhesive forces is the existence of surface roughness and, starting from this point,
an early and significant analysis was carried out by Fuller and Tabor (1975), who
showed that the adhesive influence could be described by an adhesion parameter,
which is, in effect, a ratio of the adhesive force of lower asperities to the elastic push
of higher asperities. The theory was found to show reasonable agreement when fitted
to experimental results. Fuller andTabor had used the JKRmodel on an asperity level;
Maugis repeated the analysis using the DMTmodel and found that an additional load
would be caused by adhesive forces around each asperity (Maugis 1996). Looking
at other theoretical and nondeterministic models of multi-asperity contacts, in some
of the early contributions, Persson and Tosatti considered adhesion through a fractal
representation of surface roughness and showed that adhesion dropped significantly
at higher fractal dimensions (Persson and Tosatti 2001). More recently, Persson and
Scaraggi (2014) used Persson’s theory and a power spectrum representation of the
contact roughness to introduce a Tabor number that depends on the length scale or
magnification, and which gives information about the nature of the adhesion at dif-
ferent length scales. It was shown that adhesion problems that are JKR-like for large
length scales andDMT-like for short length scales can be approximately treated using
the theory with different levels of approximations, which depend on how quickly the
behavior transitions between the two limits across the scales. While these rough sur-
facemodels (or asperitymodels) are limited to a stochastic description of the surfaces
and thus cannot provide a complete contact mechanics solution for all surfaces, they
may constitute a good approximation and provide a useful design tool, especially
when numerical simulations may struggle or fail to produce fast and reliable results.
Deterministic adhesionmodels of contact in the presence of roughness are expected to
provide an accurate representation of the response of real bodies in contact. Given the
advent of new and improved numerical methodologies and increased computational
power, there has been a recent resurgence in the development of contact mechanics
models able to address contact between surfaces of arbitrary shape and roughness,
of small and large scale, and capable of providing accurate information for con-
tact forces, surface displacements and hysteretic effects (where present) throughout
the contact. Many of these methodologies can be seen as boundary elements meth-
ods (BEM) relying on different discretization schemes and numerical techniques to
solve the contact problem using brute force (Mser et al. 2017), and include GFMD
(Pastewka and Robbins 2014), FFT-based (e.g., Bazrafshan et al. 2017), and Multi-
level multi-integration (MLMI)-based techniques (Medina and Dini 2014). These
methods have been shown to capture the response of rough contact surfaces in the
presence of adhesion in a number of configurations and can be used successfully
to predict the scales and regimes at which roughness will play a significant role in
adhesive contacts, as well as computing hysteretic losses. An interesting extension
of these methods would be to study the effects of adhesion in rough viscoelastic
contacts.
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Conclusion

In this chapter, we have reviewed and discussed recent advances in methodologies
develop to study dry and lubricated contacts involving softmaterials. Particular atten-
tion was focused on the treatment of viscoelastic solids and the effect that viscoelas-
tic dissipation has on the frictional response of the components under investigation.
Starting from the pioneeringwork byHunter (1961), various formulations that can be
used to model linear viscoelastic material have been presented in increased order of
complexity. The effect of viscoelastic layer thickness as well as surface roughness is
incorporated in the formulation and key findings are shown in terms of how the mate-
rial properties as well as the loading conditions (sliding and reciprocating) affect the
material response. An overview of how to extend the formulation to treat lubricated
contacts has also been provided, together with examples of experimental validation
conducted for a number of problems. These include the study of the evolution of
contact area, thermal response, film thickness, and friction in various configurations.
Interesting phenomena have been observed that can only be explained by invoking
the specific material characteristics the availability of new modeling tools in this
area of tribology opens new avenues to explore the mechanisms governing inter-
actions between soft solids, which have become increasingly relevant for industrial
applications.
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