
Chapter 6
Run-Time Exploitation of Application
Dynamism for Energy-Efficient Exascale
Computing

Per Gunnar Kjeldsberg, Robert Schöne, Michael Gerndt, Lubomir Riha,
Venkatesh Kannan, Kai Diethelm, Marie-Christine Sawley, Jan Zapletal,
Andreas Gocht, Nico Reissmann, Ondrej Vysocky, Madhura Kumaraswamy,
and Wolfgang E. Nagel

1 Introduction and Context

In the embedded systems domain, energy efficiency has been a main design
constraint for more than two decades. More recently, this has also become a major
concern in high performance computing (HPC). Even though these two domains

P. G. Kjeldsberg (�) · N. Reissmann
Norwegian University of Science and Technology, NTNU, Trondheim, Norway
e-mail: pgk@ntnu.no; nico.reissmann@ntnu.no

R. Schöne · A. Gocht · W. E. Nagel
Technische Universität Dresden, Dresden, Germany
e-mail: robert.schoene@tu-dresden.de; andreas.gocht@tu-dresden.de;
wolfgang.nagel@tu-dresden.de

M. Gerndt · M. Kumaraswamy
Technische Universität München, München, Germany
e-mail: gerndt@in.tum.de; kumarasw@in.tum.de

L. Riha · J. Zapletal · O. Vysocky
VSB - Technical University of Ostrava, Ostrava, Czech Republic
e-mail: lubomir.riha@vsb.cz; jan.zapletal@vsb.cz; ondrej.vysocky@vsb.cz

V. Kannan
Irish Center for High-End Computing, Galway, Ireland
e-mail: venkatesh.kannan@ichec.ie

K. Diethelm
Gesellschaft für numerische Simulation, Braunschweig, Germany

University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
e-mail: diethelm@gns-mbh.com

M.-C. Sawley
Intel ExaScale Labs, Paris, France
e-mail: marie-christine.sawley@intel.com

© Springer Nature Switzerland AG 2020
F. Catthoor et al. (eds.), System-Scenario-based Design Principles
and Applications, https://doi.org/10.1007/978-3-030-20343-6_6

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20343-6_6&domain=pdf
mailto:pgk@ntnu.no
mailto:nico.reissmann@ntnu.no
mailto:robert.schoene@tu-dresden.de
mailto:andreas.gocht@tu-dresden.de
mailto:wolfgang.nagel@tu-dresden.de
mailto:gerndt@in.tum.de
mailto:kumarasw@in.tum.de
mailto:lubomir.riha@vsb.cz
mailto:jan.zapletal@vsb.cz
mailto:ondrej.vysocky@vsb.cz
mailto:venkatesh.kannan@ichec.ie
mailto:diethelm@gns-mbh.com
mailto:marie-christine.sawley@intel.com
https://doi.org/10.1007/978-3-030-20343-6_6

114 P. G. Kjeldsberg et al.

are different in many respects, techniques that have proven to be efficient in one
may also be beneficial in the other. The split design-time and run-time approach
of system-scenario-based design, which is described in this book, is being applied
successfully in embedded systems, both to increase performance and to reduce
power and energy consumption [7, 8, 12]. In the HPC domain, auto-tuning is
used either at design-time to statically tune the system configuration or at run-
time through compute intensive estimation of the dynamic requirements [2, 15].
Combining these approaches from embedded systems and HPC has the potential of
giving substantial synergies in both domains.

A constantly growing demand for data center computing performance leads to the
installation of increasingly powerful and complex systems, characterized by a rising
number of CPU cores as well as increasing heterogeneity. This makes optimization
of HPC applications a complex task, which demands significant programming effort
and high levels of expertise. With a growing computational performance, there
is typically also an increase in a system’s energy consumption, which in turn
is a major driver for the total cost of ownership of HPC systems. Furthermore,
limitations to chip temperature and cooling capabilities can make the performance
of Exascale HPC systems power-bound. However, developers commonly focus
on the implementation and improvement of algorithms with regard to accuracy
and performance, neglecting possible improvements to energy efficiency. Often,
programmers lack the platform and hardware knowledge required to exploit these
measures, which is an important obstacle for their use both in the embedded and
HPC domains.

The European Union Horizon 2020 project READEX [6] (Run-time Exploitation
of Application Dynamism for Energy-efficient eXascale computing) tackles these
challenges by embracing the significant potential for improvements to performance
and energy efficiency that result from dynamic resource requirements of HPC
applications similar to those seen in embedded systems. Examples are alternating
application regions and load-changes at application run-time. Such dynamism can
be found in current HPC applications, including weather forecasting, molecular
dynamics, or adaptive mesh-refinement applications.

These applications often operate in an iterative manner, e.g., using a time step
loop as the main control flow. Each iteration of such a program loop can be regarded
as a phase of the application execution. In this context, intra-phase dynamism
describes the changes in resource requirements and computational characteristics
between different code regions executed by a single iteration, e.g., the change
between memory- and compute-bound kernels. Intra-phase dynamism can be
exploited by adjusting the system to the resource requirements of the current code
region. Alternatively, inter-phase dynamism describes the changes in application
behavior between iterations or phases. As the execution progresses, the required
computation can vary, either on single processes—causing imbalances—or on all
processes with a homogeneous rise in computational complexity on all processing
elements.

As discussed in Chap. 1, it is expected that applications running on future
embedded systems platforms will exhibit even higher levels of dynamism. This will

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 115

be mainly due to the increased demand for data movement performance between
processing elements, both on intra- and inter-node levels, and more complex multi-
level memory hierarchies. Furthermore, the rise of many-core co-processors and
accelerators introduces new degrees of freedom such as offloading and scheduling.
For extreme-scale HPC systems, this trend will be even more critical.

The READEX project has developed and implemented a tools-aided method-
ology that enables HPC application developers to exploit dynamic application
behavior when run on current and future extreme parallel and heterogeneous multi-
processor platforms. READEX combines and extends state-of-the-art technologies
in performance and energy efficiency tuning for HPC with dynamic energy opti-
mization techniques for embedded systems. Many of the techniques developed for
HPC systems can also be fed back to the embedded systems domain, in particular
with the increasing performance seen in embedded multi-processor system-on-
chip [10].

The general concept of the READEX project is to handle application energy
efficiency and performance tuning by taking the complete application life-cycle
approach. This is in contrast to other HPC approaches that regard performance and
energy tuning as a static activity, which takes place in the application development
phase. With inspiration from system-scenario-based design, READEX has devel-
oped a (semi-)automatic dynamic tuning methodology spanning the development
(design-time) and production/maintenance (run-time) phases of the application life-
cycle. Furthermore, a novel programming paradigm for application dynamism was
developed that enables domain experts to pinpoint parts of the application and/or
external events that influence the dynamic behavior. This can reduce the energy
consumption even further, compared to a purely automatic approach.

The rest of this chapter is organized as follows: After a review of related work
and project background in Sect. 2, a description of the READEX concepts is given
in Sect. 3. This is followed by results from experiments with a realistic industrial
HPC application in Sect. 4. Section 5 concludes this chapter with a summary.

2 Auto-tuning of HPC Systems

Given that system-scenario-based design is fully covered in other chapters of this
book, this section focuses on how dynamic behavior is handled in HPC systems.

While a small number of dynamic auto-tuning methodologies and tools existed
for run-time optimizations [3, 20], there is currently no single standalone dynamic
auto-tuning framework with the capability to target the full breadth of large-scale
HPC applications being used in academia and industry, both now and on the road to
Exascale.

Still, several EU research projects are approaching the challenge of tuning for
performance and energy efficiency by either introducing entirely new programming
models or leveraging existing prototype languages. An example of the latter is the
ENabling technologies for a programmable many-CORE (ENCORE) project [5],

116 P. G. Kjeldsberg et al.

which aims to achieve massive parallelism relying on tasks and efficient task
scheduling using the OmpSs programming model [19]. The READEX project takes
a different approach by developing a new generic programming paradigm, which
allows to express and to utilize dynamism of applications in the automatic tuning
process.

The Performance Portability and Programmability for Heterogeneous Many-core
Architectures PEPPHER project [1] has developed a methodology and framework
for programming and optimizing applications for single-node heterogeneous many-
core processors to ensure performance portability. With Intel as a key partner in the
project, READEX goes one step further and provides a framework that supports
the heterogeneity of the system in the form of tuning parameters, which enable
large-scale heterogeneous applications to dynamically (and automatically) adapt
heterogeneous resources according to run-time requirements.

The ANTAREX project [18] creates a domain specific language (DSL), which
distributes the code between multi-core CPUs and accelerators. An extra compila-
tion step is introduced to translate the DSL into the intended programming language.
While our work targets conventional HPC clusters, the ANTAREX project focuses
on ARM-based systems.

Nowadays, most performance engineering tools focus on collecting and pre-
senting information to the users, while only a few focus on the automation of
the performance optimization process (auto-tuning). One example of the latter is
the periscope tuning framework (PTF) developed in the EU FP7 ICT AutoTune
project [2, 15]. PTF automatically finds optimized system configurations for whole
application runs, effectively averaging the benefits of system adaptation over the
whole run-time of the application (static tuning). With these static auto-tuning
techniques, improvements in energy efficiency of up to 10% for application runs
have been achieved while keeping the performance degradation to a few percent [4].

PTF’s main principles are the use of formalized expert knowledge and strategies,
an extensible and modular architecture based on tuning plugins, automatic execution
of experiments, and distributed, scalable processing. PTF provides a number of
predefined tuning plugins, including:

• Dynamic voltage and frequency scaling (DVFS)
• Compiler flags selection
• MPI run-time environment settings
• Parallelism capping in OpenMP
• MPI master–worker pattern settings

PTF also provides an interface for the development of new plugins. It builds on
the common performance measurement tools infrastructure Score-P [11], which has
proven to be scalable on current petascale systems.

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 117

3 The READEX Concept

The READEX concept combines the system scenarios methodology with automatic
energy and performance tuning into a holistic tools-aided methodology, spanning
major parts of the HPC application life-cycle, i.e., application development (design-
time) and production runs (run-time). Figure 6.1 provides a high-level overview of
the methodology.

3.1 Application Instrumentation and Analysis Preparation

During the first step of the methodology, the application is instrumented by inserting
probe functions around different regions in the application code. A region can be any
arbitrary part of the code, for instance, a function or a loop nest. The instrumentation
itself can be done automatically or by letting the user provide application domain
knowledge using a new programming paradigm.

The programming paradigm enables users to expose parameters, which describe
the dynamic behavior of the application to the READEX tool suite. These applica-

Fig. 6.1 Overview of the READEX methodology

118 P. G. Kjeldsberg et al.

tion domain parameters enhance the identification of different system scenarios and
hence extend the adaptation of system configurations in order to improve overall
application performance and energy characteristics.

One example of these parameters is the definition of different input data sets.
Exposing such information to READEX enables the tools to attribute different
compute characteristics to the varying input. The paradigm also enables developers
to expose additional application-level tuning parameters to the tuning process, e.g.,
alternative code-paths that will be chosen based on the provided identifiers.

In addition to the optional information provided by the user, probe functions
are automatically inserted around user code regions and by linking instrumented
versions of relevant programming libraries using existing technologies from the
Score-P infrastructure. This allows for fine-grained analysis and tuning.

3.2 Application Pre-analysis

The READEX analysis strategy is based on the performance dynamics analysis
capabilities of PTF, which automatically characterizes present dynamism and
indicates the optimization potential. The latter gives the user an estimate of the
performance and energy efficiency gains that can be realized using the READEX
methodology.

In the pre-analysis step, the application is run once with a representative data set.
During this run, relevant timing information is recorded. The gathered performance
data reveals application regions with run-times above a certain threshold. The
instrumentation of fine-grained regions with run-time below the threshold is then
removed, e.g., through the definition of an instrumentation filter, to reduce the
perturbation of the application. This step prepares the application for all following
steps of the methodology.

In a second iteration, the application is run again with the same, or extended,
data set and relevant performance and energy metrics are collected. This results
in time-series of measurements representing temporal evolution of each region’s
computational characteristics over multiple application phases. Similarly to what is
described in the use-case scenario section of Chap. 2, each region’s execution, which
is represented by a point in this space, corresponds to a run-time situation (RTS).
A first analysis reveals whether relevant code regions exist that exhibit enough
dynamism to make the following tuning steps worthwhile. The dynamism can result
from differences in compute- and memory-bound operation, either between regions
or between different runs of a given region. Regions found to have such dynamism
are defined to be significant, and will be tuned in the following design steps. If
no such dynamism is detected the tuning should be aborted due to homogeneous
application behavior. Since the run-time tuning necessarily causes an overhead, a
minimum dynamism threshold is defined to ensure a satisfactory overall gain.

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 119

3.3 Derivation of the Tuning Model

In order to build a tuning model that guides the adaptation of the system (both
application and platform) to the dynamically changing requirements, PTF, Score-P,
and the later described READEX Run-time Library are used to perform an auto-
matic search for optimal system configurations for the significant regions identified
in the previous step. To configure the platform according to each experiment, the
READEX Run-time Library (RRL) is used. Details regarding the RRL are given in
Sect. 3.4.

Exploration of the space of possible tuning configurations is controlled by PTF
tuning plugins. Each tuning plugin is responsible to tune a specific aspect, which
can include one or multiple related tuning parameters. READEX has developed
and supports a number of plugins for hardware, system software, and application
aspects.

The architecture of the design-time tools required to explore optimal system
configurations is depicted in Fig. 6.2. To determine the optimal platform configu-
rations, PTF runs and measures the instrumented application. Here, various system
configurations are evaluated in terms of the requested objective functions for the
identified RTSs. Afterwards, the results are stored in the RTS database.

Since the search space for optimal configurations is potentially large, a number
of possible search strategies were identified as part of the project. This includes
heuristics based parameter selection, inter-phase comparisons with an underlying

Fig. 6.2 Architecture of the design-time part of the READEX tool suite

120 P. G. Kjeldsberg et al.

approximation of the expected objective function, or a simple comparison with the
objective function values taken during a baseline run.

After all relevant system configurations are evaluated for all RTSs, a scenario
identification module groups RTSs into a limited number of scenarios, e.g., up to
20. Each scenario is represented with a common system configuration. The bound
on the number of scenarios limits the frequency and associated overhead from
configuration switching at run-time. As in all system scenario approaches, it is
necessary to predict upcoming scenarios at run-time. This is done using the provided
identifiers. An RTS is mapped to a scenario based on its signature, i.e., the current
identifier values. An example of such an identifier is the call-path that has been
followed to reach the current region. A configuration selector is also generated. In its
simplest form, this is a function returning a set of tuning parameter values according
to a one-to-one mapping between scenario and configuration. A given scenario can,
for example, directly be used to specify the voltage and frequency setting to apply.
The set of scenarios, the RTS signatures pointing to the scenarios, and the system
configuration of each scenario, are stored in the form of a serialized text file as an
application tuning model (ATM), to be loaded and applied during production runs
at run-time.

3.4 Run-Time Application Tuning

Once the analysis is finished and the ATM is created, the application can be
optimized in production. For this, the READEX Run-time Library (RRL) is used.
It connects to the performance measurement infrastructure Score-P via a plugin
interface [17], and reuses the existing code instrumentation from design-time tuning.
The RRL reads the previously obtained knowledge about application dynamism,
stored in the ATM, to optimize the application’s energy consumption. For already
seen RTSs, the optimal configuration is directly extracted from the tuning model.
For unseen RTSs a calibration mechanism is used.

The architecture of the RRL is depicted in Fig. 6.3. Note that even though it is
included in the figure, PTF is not used during production runs. As mentioned in
Sect. 3.3, the RRL is used at design time to set the system configuration during
the search PTF performs for optimal configurations. At run-time, the RRL obtains
the scenarios with configurations from the ATM, which were generated by PTF at
design-time.

A production run of an application starts with loading the ATM into the tuning
model manager (TMM). When a new region is entered during the application
execution, Score-P notifies the control center, which passes the information to
the RTS Handler. The RTS Handler then checks if the region is significant and
gets the best configuration for the current region from the TMM. Finally, the
RTS Handler passes this configuration down to the parameter controller, which
configures the different parameter control plugins (PCPs). PCPs are responsible
for setting different system configurations like the CPU frequency or the number

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 121

Fig. 6.3 Architecture of the READEX Run-time Library (RRL)

of OpenMP threads. They are employed both during the derivation of the tuning
model at design-time and during a production run.

During the application run, a calibration mechanism can handle unseen RTSs
and changes to the environment. The calibration is based on established machine
learning approaches, the details of which are outside the scope of this chapter. Once
the calibration detects a new optimal configuration for a certain scenario, the tuning
model is updated. This leads to a constantly improving tuning model.

4 Experiments

The READEX project considers two different metrics for evaluation of the project
success: the achieved improvement in energy efficiency compared to the default
system configuration, measured in energy-to-solution, and the time and effort
required to achieve this improvement compared to performing manual tuning.

For evaluation and validation of the project results, READEX has employed a
co-design process in which the auto-tuning methodology and the tool suite have

122 P. G. Kjeldsberg et al.

1 int main(int argc, char ** argv) {
2

3 // Initialize application
4

5 // insignificant region
6 read_mesh(...);
7 // significant region, compute intensive
8 assemble_Vh(...);
9 // significant region, compute intensive

10 assemble_Kh(...);
11 // significant region, memory bound, MKL NUMA effects
12 gmres_solve(...);
13 // significant region, I/O bound
14 print_output(...);
15

16 // Finalize application
17

18 return 0;
19 }

Listing 6.1 BEM4I sketch

been developed in parallel with a manual tuning effort of selected applications and
computational libraries. The information exchange that resulted from this strategy
has benefited both, the creation of the tools-aided methodology, and the manual
tuning efforts.

The goal of this case study is to show how application dynamism can be exploited
to improve energy efficiency. The evaluation was done on the taurus system installed
at Technische Universität Dresden. The system is equipped with more than 1400
power-instrumented nodes with two 12-core Intel Xeon E5-2680v3 (Haswell-EP)
processors each. The power-instrumentation allows for scalable and accurate energy
measurements with a fine spatial and temporal granularity (CPU, memory, and
whole node with up to 1000 Samples/s) [9]. The tests were performed on a single
compute node. Hence, overall interconnect and distribution of processes in the
network do not influence the results. To further validate the READEX methodology
in the HPC environment the tool suite has also been tested on massively parallel
applications. Scalability experiments with the ESPRESO library developed at
IT4Innovations are provided in [16] but are outside the scope of this chapter.

Partial differential equations (PDEs) are often used to describe phenomena such
as sheet metal forming, fluid flow, and climate modeling. One of the numerical
approaches to solve PDEs is the boundary element method (BEM) as implemented,
for example, in the BEM4I library [13]. In contrast to volume based methods,
such as the finite element/differences/volume methods, BEM gives dense matrices
whose assembly (Vh, Kh) results in compute bound code. This fact is even more
pronounced when the assembly kernels are parallelized and vectorized as in the case
of BEM4I [14, 21]. However, as shown in Listing 6.1, BEM4I also uses the iterative
GMRES solver. This solver is based on the matrix–vector product as implemented

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 123

in the Intel Math Kernel Library (MKL), which tends to be less compute intensive
and results in memory bound computation. Furthermore, printing the results for
visualization leads to an I/O bound region. This dynamic behavior makes the
BEM4I library suitable for testing the READEX methodology. The application was
compiled with the Intel 2017 compiler with -O3 -xcore-avx2 flags to enable
the AVX2 vector instruction set available in the Haswell CPUs. The environment
variable KMP_AFFINITY was set to compact,granularity=core.

For the experiment, both manual and READEX assisted tuning were performed.
Listing 6.1 shows the relevant regions to be the assembly of two system matrices
Vh, Kh, the iterative GMRES solver, and the I/O region, all included in a single non-
iterative phase region. The HW and run-time parameters that were analyzed include
the core/uncore frequency (ranging between 1.3 and 2.5 GHz/1.2 and 3.0 GHz,
respectively) and the number of OpenMP threads (ranging from 4 to 24). The results
that were obtained by automatic instrumentation with the READEX tool suite,
i.e., application pre-analysis to detect significant regions, PTF (generation of the
tuning model), and RRL (dynamic run-time switching), are compared with results
obtained using the MERIC tool (tuning model and dynamic switching) developed at
IT4Innovations for the purposes of manual application tuning. Note that READEX
automatically identified all regions previously annotated manually for MERIC. With
such an automatic instrumentation, tuning effort is decreased significantly.

Table 6.1 presents the HW and run-time configurations obtained by MERIC,
namely the default configuration, the static optimum applied for the whole phase,
and the optimal setting for each annotated region. It can be seen that the analysis
leads to expected results with high core frequency, low uncore frequency, and a high
number of threads for the compute bound assembly (Vh and Kh). For the memory
bound solver (GMRES), the manual tuning results in a low core frequency, high
uncore frequency, and the use of eight threads. The latter overcomes non-uniform
memory access (NUMA) effects of the dual socket computational node. While
static savings reach 15.7%, the dynamic switching among individual configurations
increases the savings to 34.1%.

The results obtained by the READEX tools are given in Table 6.2. In comparison
to the default, the READEX approach was able to achieve 34.0% energy savings.

Table 6.1 Optimal frequencies and energy saving for the BEM4I solver (MERIC)

HW conf. Region Core freq. Uncore freq. Threads Energy saving Time saving
unit – GHz GHz – % %

Default Phase 2.5 3.0 24 – –

Static Phase 2.5 2.2 16 15.7 −6.2

Dynamic Vh 2.5 1.4 24 – –

Kh 2.1 1.4 24 – –

GMRES 1.7 2.2 8 – –

I/O 2.5 2.2 4 – –

All – – – 34.1 10.9

124 P. G. Kjeldsberg et al.

Table 6.2 Optimal frequencies and energy saving for the BEM4I solver (PTF + RRL)

HW conf. Region Core freq. Uncore freq. Threads Energy saving Time saving
unit – GHz GHz – % %

Default Phase 2.5 3.0 24 – –

Dynamic Vh 2.5 1.4 24 – –

Kh 2.1 1.4 24 – –

GMRES 1.7 2.2 8 – –

I/O 2.5 3.0 8 – –

All – – – 34.0 10.9

Note that the fully automatic READEX tool suite is able to reproduce the optimal
settings from the manually tuned application.

Although this is not common for a general application, the tuning of energy also
leads to the decrease in run-time in the case of BEM4I. This is caused by NUMA
effects of the MKL solver—the tuned version runs on eight threads and due to the
compact affinity all threads run on a single socket.

5 Conclusions

Energy efficiency and extreme parallelism are the major challenges on the road
to Exascale computing. The European Union Horizon 2020 project READEX has
addressed these by providing application developers with a tools-aided methodology
for a combined design-time/run-time approach for dynamic adaptation to changing
resource requirements. This will significantly improve energy efficiency and perfor-
mance by exploiting the resources available to the application while reducing the
programming effort through the automation.

In order to achieve its ambitious goals, the project has been based on two proven
technologies: the system scenarios methodology as presented in this book and the
static auto-tuning known from the HPC community. This chapter has presented the
main concepts being used in the READEX project, as well as experimental results
demonstrating the type of dynamic behavior the project will exploit.

Contemporary and future embedded systems experience continuously increas-
ing computational capacities, e.g., through the use of heterogeneous many-core
platforms. Therefore, techniques developed in the READEX project, e.g., for auto-
tuning, parallel decision making, and run-time calibration, can be transferred back
into this domain.

Acknowledgements The research leading to these results has received funding from the European
Union’s Horizon 2020 Programme under grant agreement number 671657.

6 Run-Time Exploitation of Application Dynamism for Energy-Efficient. . . 125

References

1. S. Benkner et al., PEPPHER: efficient and productive usage of hybrid computing systems.
IEEE Micro 31(5), 28–41 (2011)

2. S. Benkner, F. Franchetti, H.M. Gerndt, J.K. Hollingsworth, Automatic application tuning for
HPC architectures (Dagstuhl Seminar 13401), in Dagstuhl Reports, vol. 3, no. 9, pp. 214–244,
2014, http://drops.dagstuhl.de/opus/volltexte/2014/4423

3. E. César, A. Moreno, J. Sorribes, E. Luque, Modeling master/worker applications for automatic
performance tuning. Parallel Comput. 32(7), 568–589 (2006)

4. European Union FP7 project 248481, Automatic online tuning (AutoTune), http://www.
autotune-project.eu/. Accessed 25 Nov 2016

5. European Union FP7 project 248647, ENabling technologies for a programmable many-CORE
(ENCORE), http://cordis.europa.eu/project/rcn/94045_en.html. Accessed 26 Mar 2018

6. European Union Horizon 2020 project 671657, Run-time exploitation of application dynamism
for energy-efficient exascale computing (READEX), http://www.readex.eu. Accessed 11 Feb
2019

7. I. Filippopoulos, F. Catthoor, P.G. Kjeldsberg, Exploration of energy efficient memory organ-
isations for dynamic multimedia applications using system scenarios. Des. Autom. Embed.
Syst. 17(34), 669692 (2013)

8. V. Gheorghita, M. Palkovic, J. Hamers, A. Vandecappelle, S. Mamagkakis, T. Basten, L.
Eeckhout, H. Corporaal, F. Catthoor, F. Vandeputte, K. De Bosschere, System scenario based
design of dynamic embedded systems. ACM Trans. Des. Autom. Embed. Syst. 14(1), article 3
(2009)

9. D. Hackenberg et al., HDEEM: high definition energy efficiency monitoring, in Energy
Efficient Supercomputing Workshop, E2SC, New Orleans, USA, 2014

10. P.G. Kjeldsberg, A. Gocht, M. Gerndt, L. Riha, J. Schuchart, U.S. Mian, READEX: Linking
two ends of the computing continuum to improve energy efficiency in dynamic applications,
in Design Automation and Test in Europe Conference & Exhibition, DATE 2017, Lausanne,
Switzerland, March 2017

11. A. Knüpfer et al., Score-p: a joint performance measurement run-time infrastructure for
Periscope, Scalasca, TAU, and Vampir, in Tools for High Performance Computing 2011, ed.
by H. Brunst, M. Müller, W.E. Nagel, M.M. Resch (Springer, Berlin, 2012), pp. 79–91

12. Z. Ma et al., Systematic Methodology for Real-Time Cost-Effective Mapping of Dynamic
Concurrent Task-Based Systems on Heterogenous Platforms (Springer, Dordrecht, 2007).
ISBN 978-1-4020-6328-2

13. M. Merta, J. Zapletal, BEM4I, in IT4Innovations National Supercomputing Center, 2013,
http://bem4i.it4i.cz/

14. M. Merta, J. Zapletal, J. Jaros, Many core acceleration of the boundary element method, in
High Performance Computing in Science and Engineering: Second International Conference,
HPCSE 2015, Soláň, Czech Republic, May 25–28, 2015, Revised Selected Papers (Springer,
New York, 2016), pp. 116–125

15. R. Miceli et al., Autotune: a plugin-driven approach to the automatic tuning of parallel
applications, in Applied Parallel and Scientific Computing. Lecture Notes in Computer
Science, ed. by P. Manninen, P. Öster, vol. 7782, pp. 328–342 (Springer, Berlin, 2013)

16. L. Riha, M. Merta, R. Vavrik, T. Brzobohaty, A. Markopoulos, O. Meca, O. Vysoocky, T.
Kozubek, V. Vondrak, A massively parallel and memory-efficient FEM toolbox with a hybrid
total FETI solver with accelerator support. Int. J. High Perform. Comput. Appl. 33(4), 660–677
(2019)

17. R. Schöne et al., Extending the functionality of score-p through plugins: interfaces and use
cases, in Tools for High Performance Computing 2016, ed. by C. Niethammer et al. (Springer,
Berlin, 2017), pp. 59–82

http://drops.dagstuhl.de/opus/volltexte/2014/4423
http://www.autotune-project.eu/
http://www.autotune-project.eu/
http://cordis.europa.eu/project/rcn/94045_en.html
http://www.readex.eu
http://bem4i.it4i.cz/

126 P. G. Kjeldsberg et al.

18. C. Silvano et al., The ANTAREX approach to autotuning and adaptivity for energy efficient
HPC systems, in Proceedings of the ACM International Conference on Computing Frontiers,
CF ’16 (ACM, New York, 2016), pp. 288–293

19. The OmpSs Programming Model, https://pm.bsc.es/ompss. Accessed 25 Nov 2016
20. A. Tiwari, C. Chen, J. Chame, M. Hall, J.K. Hollingsworth, A scalable auto-tuning framework

for compiler optimization, in IEEE International Parallel & Distributed Processing Sympo-
sium. IPDPS 2009, pp. 1–12, 2009

21. J. Zapletal, M. Merta, L. Maly, Boundary element quadrature schemes for multi- and many-
core architectures. Comput. Math. Appl. 74(1), 157–173 (2016)

https://pm.bsc.es/ompss

	6 Run-Time Exploitation of Application Dynamism for Energy-Efficient Exascale Computing
	1 Introduction and Context
	2 Auto-tuning of HPC Systems
	3 The READEX Concept
	3.1 Application Instrumentation and Analysis Preparation
	3.2 Application Pre-analysis
	3.3 Derivation of the Tuning Model
	3.4 Run-Time Application Tuning

	4 Experiments
	5 Conclusions
	References

