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Preface

In the past decades, embedded systems have become much more complex due to
the introduction of a substantial amount of conditionally executed functionality in a
single application and due to running of several applications or parts of applications
concurrently. This substantially increases the dynamic nature of today’s applications
and systems, and it complicates dealing with their typically tight constraints in terms
of, e.g., task deadlines, throughput, and battery lifetime. Also, optimizing for their
cost functions like energy consumption and overall fabrication cost is much harder
under such dynamic operating conditions. State-of-the-art design methods usually
try to cope with these dynamic issues either by taking the corner cases, ending up in
the true worst-case design paradigm, or by identifying several most used cases (use-
case scenario paradigm) and dealing with them separately. Both of these approaches
clearly reduce the complexity introduced by the dynamism, at the cost of adding
large margins though.

In contrast, the material in this book encompasses a generic and systematic
design-time/run-time methodology for handling the dynamic nature of modern
embedded systems without adding such margins. It can be utilized in combina-
tion with most existing statically oriented realization methods to effectively deal
with dynamism and to drastically increase their performance and efficiency. The
presented method is based on the concept of system scenarios, which group system
behaviors that are similar from a multidimensional cost perspective, such as resource
requirements, delay, and energy consumption. This enables optimization per system
scenario. It thus takes a more global cost-oriented system perspective, which is
also the main distinction from the abovementioned use-case scenarios. One of the
main aims with this book is to disseminate the know-how behind this concept more
broadly.

Leuven, Belgium Francky Catthoor
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Chapter 1
Introduction and Organization of Book
Material

Francky Catthoor, Twan Basten, Nikolaos Zompakis, Marc C. W. Geilen,
and Per Gunnar Kjeldsberg

1 Motivation and Context

In the past decades, embedded systems have become much more complex due
to introducing a substantial amount of conditionally executed functionality in a
single application, and due to running several applications or parts of applications
concurrently. This substantially increases the dynamic nature of today’s applications
and systems, and it complicates dealing with their typically tight constraints in terms
of, e.g., task deadlines, throughput, and battery lifetime. Also optimizing for their
cost functions like energy consumption and overall fabrication cost is much harder
under such dynamic operating conditions.
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State-of-the-art design methods usually try to cope with these dynamic issues
either by taking the corner cases, ending up in the true worst-case design paradigm;
or by identifying several most used cases (use-case scenario paradigm) and dealing
with them separately. Both of these approaches clearly reduce the complexity
introduced by the dynamism, at the cost of adding large margins though. In contrast,
the material in this book encompasses a generic and systematic design-time/run-
time methodology for handling the dynamic nature of modern embedded systems
without adding such margins. It can be utilized in combination with most existing
statically oriented realization methods to effectively deal with dynamism and to
drastically increase their performance and efficiency. The presented method is based
on the concept of system scenarios, which group system behaviors that are similar
from a multi-dimensional cost perspective, such as resource requirements, delay,
energy consumption. This enables optimization per system scenario. It thus takes
a more global cost-oriented system perspective, which is also the main distinction
from the abovementioned use-case scenarios. One of the main aims with this book
is to disseminate the know-how behind this concept more broadly.

At design-time, these system scenarios are identified and then individually opti-
mized, typically in a parameterized way. Mechanisms for predicting and detecting
the current scenario at run-time and for switching between scenarios at the most
appropriate time slots are incorporated. This design trajectory is augmented with
a run-time calibration mechanism, which allows the system to learn on-the-fly
during its execution, and to adapt itself to the current input stimuli. This happens
by extending the scenario set and/or changing the scenario definitions, and it affects
both the prediction and switching mechanisms.

To show the generality of the system scenario methodology, we show how it
has been effectively applied on many very different real-life design problems in the
embedded system context. In all presented case studies substantial cost improve-
ments (e.g., energy reductions) were obtained by exploiting system scenarios. These
include several aspects of application to processor architecture mapping, e.g., based
on the popular DVFS control knobs, scenario-aware data flow analysis, dependable
system design, wireless baseband and protocol system design, biomedical systems
like neuroprobes, manufacturing systems, and even dynamic memory management
protocols, and photovoltaic system modeling and design.

2 Contributions of the Book and Target Audience

As mentioned, state-of-the-art design methods usually try to cope with the dynamic
system issues in two basic ways: with worst-case corner cases or through use-case
scenarios. Both of these approaches clearly alleviate part of the complexity problem,
but they come at the cost of adding large safety margins in the design. In contrast,
the system scenario approach discussed in this book avoids this.

The initial system scenario approach methodology was disclosed in [3]. The
formalized methodology has been presented in [1] and then generalized further for
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the control variable case in [2]. But since then, additional material has been provided
and the approach has been extended beyond control variables, and beyond the initial
application domains. Hence, we believe this book is a valuable way to provide a
systematic and complete view of the approach.
For the reader, we offer:

• an effective solution to deal with dynamic system design;
• a broad survey of the state-of-the-art approaches and results in this domain;
• a large set of illustrative industrial-strength case studies covering a broad set

of applications, substantiating the effectiveness and wide applicability of the
approach.

3 Structure of the Book

The rest of this book is organized as follows: First, the overall flow is outlined
and the different steps of the approach are summarized, including related work
discussion in Chap. 2. The method is illustrated there also using control variable

Motivation and context
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Dependable system design

Data flow analysis
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HPC applications
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Fig. 1.1 Dependencies between book chapters
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oriented techniques for system design optimization. Next, the extension to data
variable oriented techniques is presented in Chap. 3. The following chapters pro-
vide case studies and demonstrations of the techniques in different application
and system platform contexts. This includes application to processor architecture
mapping in Chap. 4; to machine learning in Chap. 5; to HPC server systems in
Chap. 6; to dependable system design in Chap. 7; to data flow analysis in Chap. 8;
to manufacturing system design in Chap. 9. Remaining case studies are reviewed at
the end of Chap. 2.

Figure 1.1 shows the main dependencies between these chapters. The initial
chapters are required for a good understanding of the application in different
domains. The control variable approach is mainly useful for the application domains
mentioned in the left-hand side column of the big box, and the data variable variant
is mainly needed in the right-hand side column.

4 Classification

Categories and Subject Descriptors [Computer Systems Organization]: Special-
Purpose and Application-Based Systems|Real-time and embedded systems; [Soft-
ware Engineering]: Design|Methodologies General Terms: Algorithms, Design,
Performance.

Additional Key Words and Phrases Design methodology, dynamic nature,
embedded systems, cost and energy reduction, real-time systems, scenario-based
design.
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Chapter 2
System Scenario Methodology Flow

Francky Catthoor

1 Introduction and Context

The main focus of this book is on embedded system realization, even though
the extension to high-performance computing (HPC) systems is partly addressed
in Chap. 4. Embedded systems usually consist of processors that execute domain-
specific applications. These systems are typically very software-intensive [37],
having much of their functionality implemented in application and middleware
software, which is running on one or multiple/many processors. As a result only the
(too) high-performance kernels are left to more custom hardware implementation.
Typical examples include cellular phones, wireless access points/gateways, multi-
media applications like TV sets or MP3 players, automotive in-car systems, IoT
sensor nodes, and body area networks (BANs).

All of these systems have complex workloads and stimuli sequences applied.
Thus, these applications are full of dynamism, i.e., their execution costs (e.g.,
number of processor cycles, memory usage, energy) are strongly environment-
dependent (e.g., input data, processor temperature). At the same time, many of these
systems are running multimedia and/or communication applications and support
multiple standards. And also for emerging domains like BAN systems, standards
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are gradually set up to govern part of the functionality. So still, a large part of
their behavior is predefined and it can be characterized quite well at design-time
by profiling frameworks.

The rest of this chapter is organized as follows. Section 2 shows the distinction
between more conventional use-case versus the system scenario concept which is
our focus here. Next, Sect. 3 gives a motivating example for our research objectives,
by showing how system scenario exploitation makes an H.264 video decoder
significantly more energy efficient. In Sect. 4, the basic concepts and terminology
behind the system scenario methodology are described. The overall system scenario
methodology for embedded system design is introduced in Sect. 5. The detailed
discussion of the main steps follows in Sects. 5.2, 5.3, 5.4, 5.5, and 5.6. In the
rest of the book, multiple case studies are incorporated which describe a diversity
of applications that fit within this methodology, illustrating its broad application
potential. A brief summary of this wide range of applicability is provided in Sect. 6.
However, in order to have an illustration of the main steps of the approach also
in this chapter, a running case study based on control variable system scenarios
is integrated here already in the above sections describing the main steps. The
extension to multi-processor platforms and multi-tasking is briefly covered in
Sect. 7. The most closely related work is presented in Sect. 8, and the conclusions
and our future plans are detailed in Sect. 9.

2 Use-Case Versus System Scenario Concept

Scenario-based design [6] has been used for some time already in both hardware
[38, 52] and software design [14] of embedded systems. In both of these cases,
scenarios concretely describe the use of a future system, in an early phase of
the development process. They appear like narrative descriptions of envisioned
usage episodes, or unified modeling language (UML) use-case diagrams [23] which
enumerate, from a functional and timing point of view, all possible user actions and
the system reactions that are required to meet a proposed system function. In this
book, this class of scenarios will be called use-case scenarios. They focus on the
application functional and timing behaviors and on their interaction with the users
and environment. In contrast to the objectives envisioned here, they abstract away
or ignore the resources required by a system to meet its specifications and boundary
constraints. Hence, these use-case scenarios are mostly usable as an input for design
approaches centered around the application context.

In this chapter, we concentrate on a different and complementary type of
scenarios, which we call system scenarios. These are derived from the combination
of the behavior of the application and its mapping on the system platform. These
scenarios are used to reduce the system cost by exploiting information about what
can happen at run-time to make better design decisions at design-time, and to
exploit the time-varying behavior at run-time. While use-case scenarios classify the
application’s behavior based on the different ways it can be used, system scenarios
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instead classify the behavior based on the multi-dimensional cost trade-offs during
the system mapping and implementation trajectory.

By optimizing the system per scenario and by making sure that the actual
system scenario can be predicted at run-time, a system setting can be derived
per scenario to optimally exploit the system scenario knowledge. To motivate the
system scenario usage in embedded system design, we start from the different run-
time situations (RTSs) in which a system may run. An RTS is a bounded part
of the system execution that can be treated as an integral unit. Each RTS has an
associated mapping cost, which usually consists of one or several primary costs,
like quality and resource usage (e.g., number of processor cycles, memory size).
The system execution is a sequence of RTSs, and the current RTS is known only at
the moment it occurs. However, at run-time, using various system parameters, so-
called RTS parameters, it can be predicted in advance in which RTS the system will
run next for a non-zero future time window. If the information about all possible
RTSs in which a system may run is known at design-time, and the RTSs are
considered in different steps of the embedded system design, a better optimized
(e.g., faster or more energy efficient) system can be built because specific and
aggressive design decisions can be made for each RTS. These intermediate per-
RTS optimizations lead to a smaller, cheaper, and more energy-efficient system that
can deliver the required quality. In general, any combination of N cost dimensions
may be targeted. However, the number of cost dimensions and all possible values of
the considered RTS parameters may lead to an exponential growth in the number of
RTSs.

This will degenerate to a long and overly complicated design process that does
not deliver the optimal system at all. Moreover, the run-time overhead of detecting
all these different RTSs will be too high compared to the expected gain over their
(quite) short time windows. To avoid this situation, in our work, the RTSs are clas-
sified and clustered from an N -dimensional cost perspective, into system scenarios,
such that the cost trade-off combinations within a scenario are always fairly similar,
the RTS parameter values allow an accurate prediction, and a system setting can
be defined that allows to exploit the scenario knowledge and optimizations. This
chapter presents a systematic way of detecting and exploiting both at design-time
and run-time the system scenarios of a given system setup. Generic solutions to
the various steps in the methodology are provided whenever possible. The method
combines design-time analyses and optimizations with information collected at run-
time about the environment in which the system is operating and the inputs being
received.

Figure 2.1 depicts a design trajectory using use-case and system scenarios. It
starts from a product idea, for which the stake-holders manually define the product’s
functionality as use-case scenarios. The stakeholders are persons, entities, or orga-
nizations who have a direct stake in the final system; they can be owners, regulators,
developers, users, or maintainers of the system. These scenarios characterize the
system from a user perspective and are used as an input to the design of an
embedded system. The latter will typically include both software and platform



10 F. Catthoor

Manual system definition
from initial idea

Use case scenarios
U,V extracted from 
user perspective

Application design
(e.g. source code)

System scenarios A,B
extracted to run
effectively on selected platform

Video decoder
platform hardware
design process

Content provider
(e.g. wirelessly
transmitted)

Encoded
video
frames

Macroblock
loop
(Video decoder
hardware)

Decoded content
viewer
(e.g. smartphone)

Fig. 2.1 Use-case vs system-scenario-based design flows for embedded systems

hardware components. In order to optimize the design of the system, the detection
and usage of system scenarios augments this trajectory, as shown in the bottom
gray box in the figure. The run-time behavior of the system is classified using
the proposed methodology into several system scenarios, with similar cost trade-
offs within each individual scenario. For each specific scenario, more customized
and aggressive design decisions can be made than what is feasible for the global
functional behavior. The sets of use-case scenarios and system scenarios are not
necessarily fully disjoint, and it is possible that one or more use-case scenarios
correspond to one system scenario. But still, usually they are not overlapping and it
is more likely that a given use-case scenario is split into several system scenarios,
or even that many system scenarios intersect several use-case scenarios.

3 Motivating Example

Figure 2.2 shows a typical system to which the system scenario design methodology
is applicable. In this system, a content provider sends H.264 encoded sequences of
video frames to a mobile device that decodes the content. The video decoder is often
implemented as a main loop which is executed repeatedly, reading encoded frames,
decoding them, and writing them to an output device (e.g., a screen). The application
has to deliver a prespecified throughput (e.g., 25 or 30 frames per second), which
imposes a time constraint on each loop iteration. Otherwise, the movie will stutter
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Fig. 2.2 Motivating example, no use of scenarios

and the user’s experience, i.e., the QoS, will degrade. When this kind of video
decoder is implemented in a mobile device that is battery-operated and thus energy-
constrained, the goal of using system scenarios during the design is to reduce
the energy consumption. That has to happen while retaining an acceptable QoS,
including the frame rate. While every frame must be decoded within a fixed period
of time, the actual time and energy needed to decode a frame on a processor with a
given speed will vary significantly due to the dynamism exhibited by the application.
Some frames require all the available decoding time while others demand only a
fraction and leave the processor idle for the remaining time. On a small set of video
sequences, we already noticed differences up to 450% in the required energy for
decoding a single frame.

One well-known approach for reducing energy consumption in this situation
(fixed deadline, varying decode time) is the dynamic voltage and frequency scaling
(DVFS) technique [39]. When scaling the voltage, the processor’s frequency
and therefore the execution time scales linearly (fCLK−̃VDD), while the energy
consumption scales approximately quadratically (E−̃V 2

DD). As such, DVFS gives
the system an effective configuration knob, namely a choice to work at a certain
frequency/voltage. That knob needs to be tuned at run-time. An important issue
when applying DVFS in this situation is the need of knowing how many cycles (the
cycle budget) are needed for decoding a frame, before actually decoding it. This is
necessary to choose the appropriate scaling factor, i.e., to choose in which position
to turn the DVFS system knob.

Existing DVFS systems work either fully dynamically based on run-time infor-
mation or fully statically based on design-time analysis. More information and
related work on this will be provided in Chap. 5. In the fully dynamic approach,
no information about the decoder is considered except the notion of consecutive
frames with different decode times that need to be decoded within a given
deadline (Fig. 2.2). Without any information on how the internals of the decoder
cause this variation in decode time, it is only possible to predict at run-time the
required cycle budget of the current frame based upon the cycle budget needed for
previously decoded frames [8, 36]. Another fully static approach considers complete
information about the program at design-time and uses static analysis to determine
the remaining worst-case cycle budget needed to complete execution at several
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Fig. 2.3 Motivating example, system scenarios

Fig. 2.4 Gray-box model of the H.264/AVC decoder processing a stream object

points in the execution and fixes the DVFS system to the corresponding voltage
and frequency [62].

When using our proposed system scenarios (Fig. 2.3), we consider both informa-
tion about the system at design-time and the occurrence of certain types of input
at run-time, which result in particular (groupings of) RTSs. Looking at the general
structure of the H.264 decoder (Fig. 2.4), we see that each frame is subdivided into
blocks of 16 by 16 pixels, called macro-blocks. The main loop, which is the frame
decoding loop, contains a second loop that iterates over the consecutive macro-
blocks. The read part of this loop takes an encoded macro-block object from the
input stream and separates it into a header and the object’s data. The write part places
the decoded macro-block in the frame. The decoding part consists of several kernels.
Each macro-block can be encoded using a different encoding scheme determining
which kernels are used. Depending on the exact breakup of how many macro-blocks
of each frame belong to each scheme for a given iteration of the main frame loop,
each of these kernels is executed for a certain number of times. This forms the run-
time situation (RTS) which can be characterized by the current RTS parameters, i.e.,
the macro-block breakup in this example. These parameters can be used to predict
in advance the multi-objective cost dimensions associated with the current RTS.

However, considering each possible breakup of a frame for tuning the system at
run-time would cause a too large run-time storage and execution overhead. When
decoding CIF images (352 by 288 pixels), consisting of 396 macro-blocks that
may belong to 21 different encoding schemes, up to 6.22 × 1033 possible RTSs
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would need to be considered, and for each RTS the receiver has to store the optimal
frequency/voltage. This is clearly impossible for any practical system realization.
Therefore, it is instead necessary to cluster frames with a similar breakup of macro-
block types over the encoding schemes and mapping on the target platform. So
frames that need similar cycle budgets can be safely merged into the same system
scenario. For each system scenario, we then determine the optimal knob setting
of the mapping scheme and the platform. For example, we can determine the
frequency/voltage setting of the DVFS scheme by using the cycle budget needed
for a single (worst-case) representative frame as the budget needed for all possible
frames belonging to this scenario. The above has to be generalized for the multi-
objective cost spaces which we typically have to deal with and that is feasible by
using Pareto curve trade-off concepts [51].

At run-time, whenever a client receives a video stream from a content provider,
it predicts for each frame the scenario it belongs to. Then, it scales the voltage and
frequency according to the values determined and stored at design-time, thereby
reducing the energy consumption while still safely meeting the deadlines. Clearly,
the more scenarios are considered, the higher the energy reduction that can be
obtained, but also the higher the complexity and overhead of the prediction step.
The prediction causes run-time overhead and it will, e.g., add to the energy usage.
The cost and gain of extra scenarios have to be traded off carefully to arrive at an
optimal system realization.

Another interesting issue is to what extent scenario prediction can be made or
needs to be made conservative in order to meet hard parametric constraints, e.g., on
timing. For complexity reasons, it will clearly not be possible to consider all possible
RTSs in the scenario definition. For the H.264 decoder, for example, there are too
many RTSs to take them all into account explicitly. When at run-time a frame arrives
with a previously unseen macro-block breakup, it needs to be decided what to do.
Hard guarantees on system performance can be given by predicting for these new
breakups the backup scenario, which is the scenario that requires the overall worst-
case number of cycles to execute. Obviously, if we have to fall back frequently to
this backup scenario, this will normally lead to (much) less energy reduction than
potentially possible. Fortunately, by definition, this fallback will have to be used
very rarely in our approach, making the average loss over the entire execution of the
application minimal.

In addition, we can go one step further. In particular, since for video decoding a
small percentage of missed frame deadlines is usually acceptable, one can aim for a
more aggressive prediction, introducing the risk that a frame may get miss-predicted
as belonging to a scenario which has a lower cycle budget than the frame really
needs, causing a missed deadline. This leads to a trade-off between overall system
quality and QoS in terms of missed deadlines and energy savings. For example,
in [31], the application of this additional flexibility has allowed to reduce energy
consumption of the H.264 decoder by 46% with less than 0.1% of the deadlines
missed, by using only 32 scenarios.

To exemplify the already introduced difference between use-case and system
scenarios (see Sect. 2, let us consider a mobile device running an H.264 decoder



14 F. Catthoor

that supports two different frame resolutions). From the user perspective, each
resolution may be considered as a use-case scenario, because the resolution affects
the perceived quality. Due to the different resolution, the two use-case scenarios
contain a different number of macro-blocks. Each of the two use-case scenarios can
be divided automatically into more system scenarios based on the frame’s macro-
block mapping breakup, as presented above. This breakup is of no direct interest
to the application designer or final product user, because it is a system-internal
artifact of the video encoding, but it can clearly be exploited to further reduce
energy consumption in the mapping. It may even be possible to integrate certain
macro-block breakups of the two different resolutions into a single system scenario.

4 Basic Concepts and Terminology

The goal of the system scenario method is, given a system, to exploit at design-time
its possible RTSs, without getting into an explosion of detail. If the environment,
the inputs, and the hardware architecture status would always be the same, then it
would be possible to optimally tune the system to that particular situation. However,
since most parameters are typically changing all the time, the system behaves
in a dynamic way. This implies that to meet the (at least partly) strict system-
level requirements which typically apply in our target application domains, it must
be designed to handle also the worst-case situation for the hard QoS restriction.
Still, it is possible to tune the system at run-time (e.g., change the processor
frequency/supply voltage), based on the actual RTS. Unfortunately, if this has to
be decided entirely at run-time, the overhead is most likely (way) too large. So,
a much better approach is that an optimal configuration for each of the possible
situations in the given system is selected up front, at design-time. However, if a
different configuration would be stored for every possible RTS, a too huge database
is required. Therefore, in our approach the RTSs similar from the resource usage
and mapping perspective are clustered together into a single scenario, for which we
store a single tuned configuration for the worst case of all RTSs included in that
scenario. The latter is the main motivation to keep the RTSs within a given system
scenario sufficiently close in the multi-dimensional cost space. For that purpose, a
multi-dimensional distance metric has to be defined (see below).

The system scenario methodology deals with two main challenges. First, scenar-
ios introduce various overheads due to switching between scenarios, storing code
for a set of scenarios instead of a single application instance, predicting the RTS,
etc. The decision of what constitutes a scenario has to take into account all these
overheads, which leads to a complicated problem. Therefore, we divide the scenario
approach into steps. Second, using a scenario method, the system requires extra
functionality: deciding which scenario to switch to (or not to switch), using the
scenario to change the system configuration, and updating the scenario set with new
information gathered at run-time.
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Many system parameters exist that can be tuned at run-time while the system
operates, in order to optimize the application behavior on the platform which it is
mapped on. We call these parameters system configuration knobs, in short system
knobs. A large variety of system knobs is typically available in practical system
applications and platforms. Section 3 has given the example of the DVFS knob;
entirely different examples of other possible system knobs include the version of
the code to run in case of an application that contains multiple versions of its source
code; different compiler optimizations being applied to each of them [50]; and the
configuration of processing elements (e.g., number and type of function units) in
a multi-processor system [60]. Anything that can be changed about the system
during operation and that sufficiently affects system cost (directly or indirectly)
can be considered a system knob. Note that these changes do not have to occur
at the hardware level; they can occur at the software or middleware levels as well.
A particular position or tuning of a system knob is called a knob position. If the
knob positions are fully fixed at design-time, then the system will always have the
same fixed, worst-case cost. By configuring knobs while the system is operating, the
system cost can be affected. In the DVFS example, the knob position is the choice
of a particular operating voltage, and its change directly affects the processor speed
and instantaneous power, and indirectly the total energy consumed to execute the
application. However, tuning knob positions at run-time also introduces overhead,
which should be taken into account when the net system cost gain is computed.

Instead of choosing a single knob position at design-time, it is possible to design
for several different knob positions, combined in a set. At different occurrences
during run-time, one of these knob positions is chosen from the available set,
depending on the actual RTS. When the RTS starts, the appropriate knob position
should be set. Moreover, the knob position is typically not changed during the RTS
execution to reduce the overhead. This means the RTS is the integral primitive
and hence it also implies the unit time division in our approach. Therefore, it is
necessary to determine which RTS is about to start. This prediction is based on
RTS parameters, which have to be observable and which are assumed to remain
sufficiently constant during the RTS execution. These parameters together with
their values in a given RTS form the RTS snapshot. In the H.264 example, the
RTS corresponds to the decoding of a frame, and the RTS parameter is the frame
breakup into the macro-block types. The number of distinguishable RTSs from a
system is exponential in the number of observable parameters. Therefore, to avoid
the complexity of handling all of them at run-time, several RTSs are clustered into a
single system scenario. A trade-off is present here between optimization quality
and run-time overhead of the scenario exploitation, as already illustrated in the
motivating example of Sect. 3.

At run-time, the RTS parameters are used to detect the current system scenario
rather than the current RTS. In principle, the same knob position is used for all the
RTSs in a scenario, so they all have the same cost value, as already indicated: the
worst case of all the RTSs in the scenario. Therefore, it is best to cluster RTSs which
have nearby cost values in the multi-objective trade-off space. Since at run-time any
RTS may be encountered, it is necessary to design not one scenario but rather a
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scenario set. A scenario set is a partitioning of all possible RTSs, i.e., each RTS
must belong to exactly one scenario.

The approach presented above is relatively easy to apply when the cost space is
one-dimensional, i.e., when one cost aspect dominates or when all the different cost
aspects have been combined in a normalized weighted sum. The latter is not always
easy and usually quite suboptimal in practice because comparing apples and oranges
in a single dimension usually leads to inconsistencies and suboptimal results. Hence,
N -dimensional Pareto sets can and should be used to specify the costs of a system
scenario consisting of different RTSs instead of a weighted one-dimensional cost
dimension. Such Pareto sets [24, 51] allow to work with a Pareto boundary between
all feasible and all non-feasible points in the N -dimensional cost space. The Pareto
boundary (the Pareto points) for all the possible RTSs that have been clustered into
a scenario (and that can potentially be encountered at run-time) characterizes the
scenario. Unfortunately, it becomes less obvious to deal with statements like nearby
cost values of RTSs or taking the worst case of all the RTSs in the scenario. So,
similarity between costs of different RTSs or in general sets of RTSs (scenarios) has
to be substituted by a new element, e.g., by defining the normalized, potentially
weighted distance between two N -dimensional Pareto sets as the size of an N -
dimensional volume that is present in between these two sets. Based on this distance
value, closeness of potential scenario options can be characterized, e.g., to decide
whether or not to distinguish scenarios. For more details, the reader is referred to
[48, 90, 91].

Another crucial characteristic of the system scenario approach lies in the usage
for applications dominated by RTS parameters governed by control variables or data
variables in the application source code. Initially we have focused our methodology
and techniques only on control variables [29]. These techniques assume that the
parameters are control variables and/or that they have a limited number (e.g., a
few tens up to maximally 100) of possible parameter values for each parameter
individually. They can then make use of enumeration and apply a bottom-up
approach to cluster these values into system scenarios [26, 28]. This implies some
form of conditional CASE statement can be used to represent the options and to
select the active case during execution. This is illustrated in Fig. 2.5 on the left.
Here 2 different control variable parameters ξi lead to in total 9 Cij run-time
situations. The latter have been clustered in 3 system scenarios Sj . The control
diagram represents both the way the detection and the switching can happen at run-
time. The discussion in most of this chapter uses this type of systems as a basis.
So we will expand in depth the theory for this case. As a main illustration in this
chapter, we will also use a running case study based on control variable system
scenarios, namely the H.264 decoder.

Later, after 2010, we have extended this approach further to data variables [33].
The main theory and illustrations are provided later in this book, in Chap. 3. But here
already a brief introduction is included. In particular, this data variable alternative
implies that systems have parameters with widely varying data-dependent values
coming from data-dependent loops or recursions. When the RTS parameters are
data-dependent in this way, they may have thousands or even millions of possible
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Fig. 2.5 Control vs data variable-based scenario identification

data values, making bottom-up clustering and enumeration-based prediction/detec-
tion totally impractical. That is also shown in Fig. 2.5 at the top right side. The same
figure at the bottom right illustrates the theoretical concepts of how to deal with
such data variables (see [33]). Let us start from k RTS parameters and N profiled
RTS signatures. The latter are defined for each RTS i in Eq. (2.1).

r(i) = ξ1(i), ξ2(i), . . . , ξk(i); c(i) (2.1)

If we assign one dimension to each RTS parameter, the resulting k-dimensional
space will define all theoretically possible values for the RTS parameters in the
application. We will again call such space an RTS parameter space. When static
max and min constraints on the values are added, the space reduces to one or several
k-dimensional domain(s). With the representation above, the scenario identification
task can be viewed as a distribution of points into S different groups, representing
system scenarios, according to which the overall configuration cost is minimized.
An RTS point i is assigned to scenario j whenever its cost c(i) falls into that
scenario’s cost range [C(j)min, C(j)max]. The scenario cost ranges are determined
by a balancing function that tries to achieve that all scenarios have a near-equal
probability to occur at run-time. In this way, rare system scenarios are avoided
since their storage cost will exceed the gains of adding them. We measure this
probability by the number of points, including the repeating ones, that each scenario



18 F. Catthoor

contains and call it scenario size. Given a list r of sorted cost RTS signatures (e.g.,
descending), the scenario cost ranges are then given by the indices corresponding to
the integral number of maximum and minimum scenario sizes N/S, as represented
in Eq. (2.2).

C(j)max = r((j−1) ∗ N/S + 1);C(j)min = r((j) ∗ N/S) (2.2)

The cost of scenario Cj is defined as the maximum cost of RTS signatures that
it includes: Cj = C(j)max. As illustrated in Fig. 2.5, the projection of scenarios
onto the RTS parameter space will produce M ≤ S regions that characterize the
system scenarios in terms of RTS parameter values. Each region can be described
as a polyhedron, and the run-time scenario prediction can be done by checking
which polyhedron contains the RTS parameter values of the next RTS. Since we
know which scenario the region belongs to, we can foresee that the next running
cost will be no more than the cost of that scenario. Checking if a point lies inside
a polyhedra is the classical data point location problem from the computational
geometry domain, and the advantage of using it for prediction is that it operates
on/stores only the vertices of polyhedral regions, not the whole RTS parameter
space. This is in contrast to the multi-valued decision diagram (MDD) concept
which is used for the control variable option (see Sect. 5.3).

This top-down data variable oriented approach can hence handle arbitrary large
domains, provided that the number of convex polyhedral regions stays reasonably
low. Otherwise prediction overhead will grow unacceptably. The number of regions
depends on the number of system scenarios and the underlying structure of the
system, i.e., the relationship between the cost locality of RTS points and the value
locality of their RTS parameters.

The desired number of system scenarios is best defined by the user according
to the characteristics of the application domain. Typically this is limited to a few
dozens because beyond that the potential gains in better following the system
dynamics are counterbalanced with the additional cost complexity of detecting
and exploiting the (too) large set of possible system scenarios. This can be easily
motivated by considering that if the scenario ranges are more or less equally spaced
(which is one of the aims anyway) in a one-dimensional cost space, a few dozen
scenarios already lead to less than 5% distinction in the associated cost function. For
cases where the number of dimensions grows to a large amount, it becomes more
complex and the required number of system scenario sets to cover this sufficiently
well could potentially grow to a huge amount. But when this would happen, then
the extension of so-called subscenarios which we have first introduced in [72] will
still provide a way out of this undesired explosion.

Another important extension to keep the number of system scenarios limited is
to explicitly allow some remaining parametrization in the position of the Pareto
curve in the cost function space. As indicated above, when the system knobs are
changing at run-time, we anyway do not want to store a different scenario execution
for each of these system knob instances. So we will allow a given “mapping” from
the functional system level up to the system implementation level (where the cost
functions are defined) to become parametrized in terms of system knob or RTS
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parameters. However, that should only be allowed for parameters which maintain
the good quality of the chosen mapping for all of the RTS parameter and system
knob settings covered by the scenario. This quality will be defined in terms of a
multi-dimensional distance function allowing to evaluate how “close” RTS instances
are positioned, as explained earlier. We have to be careful then that only parameters
are allowed which do not affect the optimal mapping choice and which maintain a
simple near-linear relation in defining the related cost function. For instance, when
you map a given one-dimensional loop nest of size N with the available control
variable options to a data-path or in general a digital SoC platform, the value of
N only needs to be fixed inside the control variable scenario when that way of
platform mapping is more than negligibly depending on the value of N. But in
many applications that is not the case, or at least not for all loop iterators inside
a multi-dimensional loop nest. So then the resulting system scenarios can share
the same internal mapping for each RTS instance and still have a cost function
(defined, e.g., in terms of performance, energy, or sometimes area) which can be
expressed as a simple parametrized formula directly depending on the value of N.
For instance, performance and energy for the execution of the entire loop can be
considered linear in N. Something similar can happen for data variable scenarios
when you consider control flow or other parameters that are not related directly to
the data variable dimension (which are usually loops or data sizes). This implies
that the distance function calculation for the Pareto curves in the cost space defined
above should also incorporating N as a parameter. Hence, the closeness of RTS
instances that are candidates for the system scenario clustering is evaluated for a
given value of N. To allow the easy extrapolation for the closeness for all other
values of N, it is now obvious why we strongly preferably want a linear relation of
the cost function axes. A clear demonstration of the power and the importance of
such parametrized formulas is present in the scenario methodology that has been
conceived for dealing with the mapping of dynamic wavelet-based video codecs on
L1 data caches (see [16, 17]). There, quite complex but run-time efficient equations
have been derived to combine many different Pareto curve working points and
positions in compact representations which are tightly characterizing the actual run-
time situations. The case of even more strongly dynamic video codecs has been dealt
with in [18], with a case study focused on motion compensated temporal filtering
(MCTF). In that application, the parameters are so strongly varying at run-time that
the combination of the Pareto-curves for the RTSs cannot happen only based on
equations. So an alternative has been proposed for such cases based on specializing
for the most promising localization schemes.

The following section details the systematic aspects of our methodology of
identifying and exploiting system scenarios to create more efficient embedded
systems, describing generic solution strategies for the various methodology steps
whenever possible.
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5 System Scenario Methodology

Although the concept of system scenarios has been applied before on top of concrete
design techniques both in an ad-hoc way [9, 34, 47, 60] and in a more systematic way
[25, 28, 31, 44, 50, 85], it is possible to generalize all those scenario approaches into
a common systematic methodology. The first paper where we have described this
is [29]. This section summarizes that general and still near-optimal methodology,
providing generic solutions whenever possible. But the main instantiation is worked
out for control variables, similar to what has been presented earlier in [29]. On top
of this, we have further extended the approach to cover data variables, as already
introduced in Sect. 4 and later in Chap. 3. The rest of this section is structured as
follows. The overall methodology overview is provided in Sect. 5.1. The remaining
subsections refine each of the steps of the general methodology. In the subsequent
subsections, we always refer to system scenarios also when we use the abbreviated
term scenario.

5.1 Methodology Overview

Even though the system scenario concept is applicable to many contexts, we have
devised a general methodology that can be instantiated in all of these contexts. This
system scenario methodology and the presented generic solutions for some of its
steps deal with issues that are common: choosing a good scenario set, deciding
which scenario to switch to (or not to switch), using the scenario to change the
system knobs, and updating the scenario set based on new information gathered at
run-time. This conceptually leads to a five-step methodology (Fig. 2.6), each of the
steps having a design-time and a run-time phase. The first step, identification, is
somewhat special in this respect, in the sense that its run-time phase is merged into
the run-time phase of the final step, calibration.

1. Identification of the scenario set: In this step, the relevant RTS parameters are
selected and the RTSs are clustered into scenarios. This clustering is based on
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the cost trade-offs of the RTSs, or an estimate thereof. The identification step
should take as much as possible into account the overhead costs introduced in
the system by the following steps of the methodology. As this is not easy to
achieve, an alternative solution is to refine the scenario identification (i.e., to
further cluster RTSs) during these steps. Section 5.2 discusses the identification
step in more detail.

2. Prediction of the scenario: At run-time, a scenario has to be selected from the
scenario set based on the actual parameter values. This selection process is
referred to as scenario prediction. In the general case, the parameter values will
not be known before the RTS starts, so they will have to be estimated. Prediction
is not a trivial task: both the number of parameters and the number of potential
scenarios may be relatively large, so a simple lookup in a list of scenarios may
not be feasible. Still, as already mentioned we do aim at a few dozen scenarios
in practice so this step will also not explode. The prediction incurs a certain run-
time overhead, which depends on the chosen scenario set. Therefore, the scenario
set may be refined based on the prediction overhead. Section 5.3 details the two
decisions made by this step at design-time: selection of the run-time prediction
algorithm and refinement of the scenario set.

3. Exploitation of the scenario set: At design-time, the exploitation step is essen-
tially based on some optimization that is applied when no scenario approach
is applied. A scenario approach can simply be put on top of this optimization
by applying the optimization to each scenario of the scenario set separately.
Using the additional scenario information enables better optimization. At run-
time, the exploitation is in fact the execution of the scenario. Section 5.4 details
the common problems that should be handled during the exploitation step.

4. Switching from one scenario to another: Switching is the act of changing the
system from one set of knob positions to another. This implies some overhead
(e.g., time and energy), which may be large (e.g., when migrating a task from one
processor to another). Therefore, even when a certain scenario (different from the
current one) is predicted, it is not always a good idea to switch to it, because the
overhead may be larger than the gain. The switching step, detailed in Sect. 5.5,
selects at design-time an algorithm that is used at run-time to decide whether to
switch or not. It also introduces into the application the way how to change the
knob positions, i.e., how to implement the switch, and refines the scenario set by
taking into account switching overhead.

5. Calibration: The previous steps of our methodology make different choices (e.g.,
scenario set, prediction algorithm) at design-time that depend very much on the
values that the RTS parameters typically have at run-time: it makes no sense to
support a certain scenario if in practice it (almost) never occurs. To determine
the typical values for the parameters, profiling augmented with static analysis
can be used. However, our ability to predict the actual run-time environment,
including the input data, is obviously limited. Therefore, we also foresee support
for infrequent calibration at run-time, which complements all the methodology
steps previously described. At design-time, information gathering mechanisms
are designed and added to the application. At run-time they collect information
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about actual values of the parameters and the quality of the resulting system (e.g.,
number of deadline misses). Besides this, a calibration mechanism is introduced
in the application. This is used to calibrate the cost estimates, the set of scenarios,
the values of the parameters used for scenario prediction, and the knob positions.
Calibration of the scenario set should not take place continuously during run-
time, but only sporadically, at appropriate well-selected calibration moments in
the application execution. Otherwise the overhead would obviously become too
large. Also note that calibration is not meaningful when all quality constraints
are hard. It can only be applied if at least some constraints are soft, or to
optimize average-case behavior in the absence of hard constraints (e.g., when
optimizing memory usage for energy reduction). Section 5.6 presents techniques
for calibration.

In the following paragraphs, we indicate intuitively why, in the design-time part
of the methodology, the steps have been ordered as proposed. In particular, the
reasoning behind this is based on a gradual pruning of the possible final scenario
decisions. First, during identification, RTS parameters are limited to the ones that
have a sufficient and observable cost impact on the final system. Then during
clustering, we select the parameters that are easiest to be controlled as the actual
system knobs and we cluster the corresponding RTSs based on similarity of cost
(and knob settings, if applicable). In this way, we ensure that the cost distance
between any two scenarios is maximized. This is needed because we have a clear
trade-off between the gains by introducing more scenarios and the cost it involves.

This trade-off leads to a further pruning of the search space for the most effective
final scenario decisions. In the prediction step, we have to limit the potentially most
usable scenarios to the ones that are also predictable at run-time with an affordable
overhead. Also here a global trade-off between gain and cost (run-time prediction
overhead) is present. We cannot perform this second step of our method prior to the
identification step because we cannot sufficiently accurately estimate the prediction
cost before we at least have some (good) idea about the clustering of RTSs in
scenarios. Note that the opposite is not true: the information of the prediction step
is not essential to decide on the clustering. This creates an asymmetrical relation
which is the basis for the split between the two steps (see also the constrained
orthogonalization approach in [7]).

Only when we have decided how to perform the prediction, we can start the
exploitation of the resulting scenarios in the particular application domain (step
3). Indeed, we could already start the exploitation after having the first clustering
step, but that is not always efficient: the knowledge of the prediction cost will
give us more potential for making suitable exploitation decisions. In contrast, the
knowledge of the exploitation itself is not yet needed to make a good pruning choice
on the prediction related selection.

Finally, in the proposed design trajectory, we only decide on the scenario
switching based on the actual overhead that is involved in the switching. The latter is
only known after we have decided how to exploit the scenarios. The calibration step
can be applied only when the rest of the steps are already decided, as information
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about the scenario set, and the prediction and switching algorithms are needed to
design the information gathering and calibration mechanism.

So every step of our design-time methodology is positioned at a location where it
has maximal impact but also where the required information to effectively decide on
it is already available as much as possible. The proposed split up in steps and order
prevents detrimental phase coupling to a very large extent. This avoids iteration on
any of the individual steps after completion of a subsequent step in the methodology,
which is a deliberate and important property of our generic design methodology. The
ordering of the steps at run-time follows the natural ordering of the various activities
as they are needed at run-time. The ordering is in line with the design-time ordering
with two exceptions. The first one was already mentioned: the identification and
calibration steps are integrated, because part of the run-time calibration step may be
to identify new scenarios, and no other means to identify new scenarios at run-time
are available. Secondly, the order of switching and exploitation is reversed when
compared to the design-time order, as the run-time switching prepares the system
for the given exploitation.

The next subsections detail the various steps of the methodology, outlining
generic solutions whenever such solutions are possible. All the presented solutions
for control variable-based system scenario exploitation have been largely auto-
mated, and are as much as possible applied in the various case studies presented
in the rest of this book. The wide range of applicable demonstrators is also briefly
summarized in Sect. 6.

5.2 Identification

Before gaining the advantages that a scenario approach gives, it is necessary to
identify the different scenarios that group all possible RTSs. This identification
process happens in two phases. First the interesting snapshot parameters are
discovered. As mentioned before, a snapshot contains all parameters as well as their
values that characterize a certain RTS. However, we are only interested in those
parameters which have an impact on the system’s behavior and execution cost. For
example, interesting RTS parameters for an audio-video system are the size of the
video frame, and whether the audio stream is mono or stereo. The values of the
selected parameters will be used to distinguish between the different RTSs, so two
RTSs with the same snapshot are considered identical. However, they may still have
different actual cost values in the multi-dimensional objective space, due to a choice
of the parameters that does not precisely capture all the unique system behaviors.
For example, two RTSs with a different data-dependent loop bound have a different
execution time, but we consider them the same RTS if we are not observing that
loop bound. When we are also observing that loop bound, each number of iterations
corresponds to a different RTS. In the general case, a parameter selection that does
not precisely capture all the individual behaviors of a system may lead to RTSs
with a set of Pareto points in the multi-dimensional cost space as their actual (worst
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case) cost values. Such a parameter selection may be present due to an imperfect
analysis or unavoidable for complexity reasons. However, it may also be deliberate,
e.g., with the intention to handle certain minor dynamic variations or configuration
options (i.e., a choice among different knob positions) entirely at run-time, or to
create a hierarchy of scenarios, where the variation within one scenario at a certain
hierarchical level is handled by another set of (sub-)scenarios.

Following the parameter discovery, all possible RTSs are clustered into system
scenarios based upon a multi-objective cost function. The multi-objective cost
function is dependent on the specific optimization and the system knobs we have
in mind for the exploitation step. For the H.264 decoder presented in Sect. 3, we
aim at reducing energy by applying DVFS and so we need accurate cycle-budget
estimations for decoding the frames. The objective function in this case is one-
dimensional and it is represented by the cycle budget needed for decoding each
frame. Note that the decoding of a frame was considered the RTS in this example.
The remaining part of this section details the two phases of the identification
process.

5.2.1 RTS Parameter Discovery

In related work done so far, usually, parameter discovery is performed in an ad-
hoc manual manner by the system designer, by analyzing the application and
profiting from domain knowledge. This is fine when all the important parameters
are immediately obvious, such as the frame size in a video decoder. However,
this process will in practice prove tedious and incomplete for complex systems,
as parameters that may have a large impact on the system behavior will easily go
unnoticed. Developing a fully general tool that discovers the interesting parameters
for all the design approaches where scenarios may be applied is very hard to realize
due to the diversity of cost functions and optimization objectives. Therefore, we
have developed a set of quite broadly applicable domain-specific approach that is
presented in the remaining part of this subsection. We will only illustrate this here
for the control variable case. More information on the data variable alternative is
provided in Chap. 3.

Our algorithm searches for control variables in the application source code
that have a certain impact on the application resource requirements (e.g., number
of cycles, memory utilization). These parameters fulfill the two requirements for
selection: they are observable and they influence the application’s behavior and cost
(i.e., the resource needs). A first version of this tool [25, 27] statically analyzes the
application source code to identify these variables. It is applicable for hard (real-
time) constraints, due to the conservative analysis. On top of this, in [28], a version
applicable for soft real-time systems has been presented. It profiles the application,
and it uses the collected information for eliminating those control variables whose
values do not have a real impact on system cost. This is illustrated in Fig. 2.7.

In each step of the design, and at each iteration, manual intervention is possible,
but not necessary, to steer the decision process. The final result of this automated



2 System Scenario Methodology Flow 25

Fig. 2.7 RTS parameter identification approach

analytical discovery is thus a list of relevant RTS parameters. During the profiling
step it is of course possible to collect additional information such as the met
RTSs identified by their snapshot, together with their cost. This information is
then used in the RTS clustering step. However, finding a representative training
bit-stream that covers most of the behaviors that may potentially appear during
the system lifetime, particularly including the most frequent ones, is in general a
hard problem. Hence, in contrast with analysis-based identification that covers all
possible RTSs, the profiling-based identification is not conservative. It can happen
that, at run-time, when the system runs, an RTS that was not considered during
identification is met. Therefore, a way of handling this situation should be added
in the final implementation of the system. The calibration step in our methodology
(see Sect. 5.6) has been included for this reason, among others. Experiments show
that the combination of profiling-based parameter discovery and calibration is quite
robust, alleviating the problem of finding representative training sets and reducing
the time needed for training.

5.2.2 RTS Clustering

Next, using the discovered RTS parameters, all identified RTSs are clustered into a
set of system scenarios. For each RTS, in the most general case, we have a multi-
dimensional Pareto surface of potential exploitation points in the multi-dimensional
exploration space. The clustering is done based upon a multi-objective cost function
which is related to the specific trade-off exploration we want to apply to the system.
Hence, the clustering searches for RTSs with similar Pareto surfaces. It starts
from RTS snapshots and generates a set of scenarios, each of the scenarios being
identified by a set of snapshots. The clustering takes into account the following
information:
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1. how often and for how long each RTS occurs at run-time,
2. the cost deviation that occurs when clustering multiple RTSs into a single

scenario,
3. how many switches occur between each pair of scenarios, and
4. the run-time scenario prediction, storage, and switching overhead.

Having a multi-dimensional cost function means that both the inherent scenario
costs and the switching cost become multi-dimensional also. Creating a good
scenario set under these constraints can be formulated as an N -dimensional
optimization problem. However, this optimization problem does not have a general
practically executable solution, so heuristics need to be developed.

When clustering different RTSs into a scenario, we determine the cost of the
scenario as the maximal cost of the RTSs that compose the scenario (which in a
multi-dimensional cost space results in a Pareto surface). The clustering process is
driven by two opposing forces. One force drives towards a large number of scenarios
that contain a few RTSs, the extreme being each scenario to contain only one RTS,
by only grouping RTSs with similar cost together, so that the estimated deviation
between the cost value of an RTS and the cost of the scenario remains small. It
uses the information from items (1) and (2) of the list above. The other force takes
into account the overheads (items (3) and (4) of the above list) introduced by the
existence of a large number of scenarios, and it aims at decreasing the number of
scenarios by increasing their size in the number of contained RTSs.

Since the application does not remain in the same scenario forever, the switching
overhead has to be taken into account also. This overhead usually has non-negligible
effects on the cost function (e.g., scaling frequency and voltage of the processor
costs both time and energy). So, depending on how large the switching overhead
is, the aim is to reduce the number of scenario switches that appear at run-time.
Taking this into account, the two forces identified above have to generate a trade-off
by clustering together into a scenario, not only RTSs with similar cost, but also the
ones between how many switches appear at run-time.

The storage overhead of scenarios is strongly dependent on the kind of optimiza-
tions that are applied in the exploitation step. For example, in the H.264 decoder
presented in Sect. 3, a table has to be kept which maps the different scenarios to the
optimal frequency-voltage pair. When the number of scenarios increases so does the
size of this table, but the overhead per scenario will be small. On the other hand, in
the case study presented in section x.y, when optimized code is generated for each
separate scenario, the overhead for storing this scenario-specific code is rather large.

Finally, since the scenarios need to be predicted at run-time, also the scenario
predictor should be considered. If the amount of scenarios increases, it will result
in a larger and perhaps slower predictor. Also, the probability of a faulty prediction
may increase with the number of possible scenarios.

To incorporate the potential effect of all these additional side effects and to avoid
phase coupling and expensive iterations in the flow, we have developed appropriate
estimates which can provide safe bounds upfront of the other steps, during the
identification/clustering step [86, 87].
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Fig. 2.8 Illustration of RTS clustering

Figure 2.8 depicts a clustering example with a two-dimensional cost function
for a generic multi-dimensional control or data variable context. Each RTS is
represented by a (two-dimensional) Pareto boundary which represents different
RTS knob configurations. Usually, the RTSs with similar Pareto boundaries are
clustered to one scenario at design-time. Thus, the distance between two Pareto
boundaries determines which ones to cluster. The cluster is then represented by its
worst-case Pareto boundary. As already mentioned, apart from the distance also the
frequency of occurrence is important. If a very frequent RTS is clustered with a
very rare one, which has a worse Pareto boundary, this scenario and all RTSs in
this scenario inherit the worse, rare Pareto boundary. In such a case, it is better to
cluster the frequent Pareto boundaries with better rare Pareto boundaries so that
the frequent Pareto boundary represents the created scenario. Based on these two
criteria, an illustration is provided in Fig. 2.8. There, boundaries “Green curve”
and “Red curve” are clustered in forming the first scenario, and boundaries “Grey
curve” and “Blue curve” from the second scenario cluster. This is so even though
the distance between “Green curve” and “Blue curve” is quite small; so it would
seem logical (without the frequency of occurrence info) to cluster them together.
This analysis and clustering are done at design-time. At run-time, the appropriate
scenario with its Pareto boundary is identified and a concrete Pareto point is selected
which is related to a specific knob configuration.

5.3 Prediction

This step aims at deriving a predictor, which can determine at run-time the appropri-
ate scenario in which the system executes. It starts from the information collected in
the identification step. Just as this parameter identification step, scenario prediction
can be solved in a rather generic way that is widely applicable, but only when we
clearly distinguish between the control and data variable case. The material in this
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generic flow chapter is reusable across both cases. But when we illustrate a concept,
we will now cover only the control variable option. The data variable alternative is
illustrated later in the book and basic information can also be found in [88].

The resulting predictor mainly bases its decision on the values of the RTS
parameters. Moreover, it has to be flexible (e.g., to have a structure that can be
easily modified during the calibration phase) and to add a small decision overhead
in the final system. We can define it as a prediction function in Eq. (2.3).

f : �1x�2x . . . x�n → {1; ..;m} (2.3)

where n is the number of RTS parameters, �k is the set of all possible values of
the parameter εk (including the undefined value), and m is the number of scenarios
in which the system was divided. The function f maps each RTS i, based on the
parameter values εk(i) associated with it, to the scenario to which the RTS belongs.
If at run-time an RTS occurs that was not considered during the identification phase
(e.g., because it was not met during profiling), it is mapped to the scenario that can
deal even with the worst-case situation, the so-called backup scenario (as defined in
Sect. 4).

A predictor based only on the prediction function approach can be applied
only after all the parameter values are known. If the identification was done in a
conservative mode, which covers all possible RTSs that may appear at run-time,
the prediction accuracy will be 100%, and we can speak about scenario detection.
Waiting until all the parameter values are known at run-time will postpone the
prediction moment unnecessarily long, and the scenario will predicted too late
to still profit maximally from the applied optimization. To handle this problem,
multiple approaches may be considered (not necessarily in isolation), like either
reducing or changing the set of considered parameters, or instead combining the
prediction function with pure probabilistic prediction. In the first approach, we
search for the set of parameters that can be used to identify the set of predictable
scenarios that gives the highest gain, taking into the account the moment when they
can be predicted at run-time. In the second case, the scenario prediction point may
be moved to an earlier point in time by augmenting the prediction function with a
mechanism that selects from the possible set of scenarios predicted by the function,
the one with the highest probability. For example, the mechanism may use advanced
branch predictors [12] or phase predictors [75].

Using the probabilistic approach, the miss-prediction rate may increase. That can
be due to two problems: either over-prediction, when a scenario with a larger (multi-
dimensional) cost is selected, or under-prediction, when a scenario with smaller
(multi-dimensional) cost is selected. The first type does not produce critical effects,
just leading to a less cost effective system; the second type often reduces the system
quality, e.g., by increasing the number of deadline misses for the H.264 decoder.

The place where the prediction function is introduced into the application is
called a scenario prediction point. From a structural point of view, considering the
number of times and the places where the prediction function is introduced into the
application, the predictors can be classified as follows:
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Fig. 2.9 Types of scenario prediction: (a) centralized predictor, (b) distributed predictor with
exclusive points, and (c) distributed predictor with refinement points

• Centralized: There is only one central point in the application where the current
scenario is predicted. It is inserted in the application code in a common place
that appears in all scenarios. For example, in the case of the application model
presented in Fig. 2.9a, it is introduced in the main loop, after the read part, when
all the information necessary to predict the current scenario is known.

• Distributed: There are multiple scenario prediction points, which may be:

– Exclusive points: An identical (or tuned) prediction function is introduced
multiple times into the application, in all the places where the RTS parameter
values are known. At run-time, only one point from the set is executed in each
RTS. This kind of predictor solves the problem that no common place may
exist in all scenarios, in order to insert a centralized predictor. Figure 2.9b
depicts a case where one of two prediction points is being executed for
different RTSs.

– Refinement points: Multiple points, which work as a hierarchy, are used to
predict the current scenario in a loop iteration; the first that is met at run-
time predicts a set of possible scenarios, and the following refine the set
until only one scenario remains. This extension can improve the efficiency
of optimizations as earlier switching between scenarios may be done, but it
increases the number of switches. Hence, a trade-off should be considered
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when using it, which depends on the problem at hand. This is actually a very
similar problem trade-off as the one for the RTS clustering substep. Hence,
we believe that also here a similar set of heuristic algorithms can be reused.
Usually, when switching between scenarios after a refinement predictor, the
new scenario may be the scenario with the worst-case cost from the remaining
set of scenarios. However, the probabilistic approach presented above could
also be used to select the scenario to which to switch.

Let us look into more detail at the example depicted in Fig. 2.9c. Consider-
ing the scenario that executes kernels two, three, and five, in the first scenario
prediction point, the set containing scenarios x and y is selected. Then, in the
second scenario prediction point, the set is refined to only one scenario, x.

To illustrate this, let us first look specifically at the control variable case. Then, a
generic implementation of a prediction function f, which incorporates requirements
like flexibility and small overhead, is a multi-valued decision diagram [80], which
consists of a directed acyclic graph G = (V ,E) and a labeling of the nodes and
edges. The sink nodes get labels from 1, .., m and the inner (non-sink) nodes get
labels from ξ1, . . . , ξn. Each inner node labeled with ξk has a number of outgoing
edges equal to the number of the different values ξk(i) that appear for RTS parameter
ξk during the identification phase plus an edge labeled with other that leads directly
to the backup scenario. Only one inner node without incoming edges exists in V ,
which is the source node of the diagram, and from which the diagram evaluation
always starts. On each path from the source node to a sink node each RTS parameter
ξk occurs at most once.

A simplified example of a decision diagram for the motion compensation kernel
from the H.264 video decoder is shown in Fig. 2.10. When a prediction function
is used, it introduces two overheads: first code size and second average run-time

Fig. 2.10 Illustration of a
decision diagram and its
implementation
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evaluation cost. Also this is similar to the RTS clustering substep. In the proposed
solution, both depend on the decision diagram size (number of nodes and edges).
Hence, reducing its size, the overheads decrease.

However, the applied reduction rules may affect the prediction quality, especially
for the RTSs that were not considered during the identification step (because for
these RTSs, a different scenario may be predicted instead of the backup scenario).
A few reduction rules are analyzed in [28]. Note that these reductions may render
certain RTS parameters redundant, which happens if they do no longer occur in the
final predictor. Also note that, conceptually, decision diagram transformations are
scenario refinements, because a transformation affects the parameter value ranges
characterizing a scenario. We propose to implement decision diagrams as a program
in a restricted programming language. More details are provided in [28].

For the data variable case, we need a partly different approach where we have
to incorporate the ranges for the widely varying data-dependent parameters, as
addressed in [87–89] and as further discussed in Chap. 3.

In conclusion, the above subsection has detailed a generic form and implemen-
tation of scenario predictors, that is flexible and well suited for calibration, as
explained in more detail in Sect. 5.6. We end this section by mentioning several
other aspects that may be addressed during the prediction step at design-time. The
prediction step may cover the following actions:

1. a further clustering of scenarios considering the prediction overhead and the
moment when the scenario may be predicted

2. possibly, a further pruning of the RTS parameters
3. clustering of previously unassigned RTSs (i.e., the ones that were not met during

the identification process) into scenarios
4. defining and placing the prediction mechanism into the application, by trading

off prediction accuracy versus overhead, which influence the final system cost
and quality.

5.4 Exploitation

The exploitation step in the scenario methodology is very dependent on the
application and system context in which scenarios are applied. Nevertheless,
some general aspects have to be kept in mind. Exploitation in the context of the
scenario methodology should be refined in two ways, to a large extent independent
of the type of exploitation. First, optimizing each scenario in isolation will be
inefficient. In practice, a strong correlation is present between the analysis and the
optimization choices of the different scenarios, so the optimization of a scenario can
be performed more efficiently by reusing information of other scenarios. Second,
separate optimization for each scenario leads to separate systems. Simply putting
all these next to each other will easily imply a huge overhead. Therefore, whatever
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Fig. 2.11 Scenario source code merging

is common between different scenarios should be merged together, e.g., by using
code compaction techniques [11, 13].

The remaining differences cause exploitation overhead, which should be taken
into account to further refine the scenario set. Some optimizations that are subop-
timal for an individual scenario may be optimal from the system cost perspective
when considering exploitation overhead. How difficult it is to simultaneously
optimize scenarios depends on the context. As an illustrative but easily generalizable
example, Fig. 2.11 depicts an application with two scenarios: scenario 1 for the case
where kernels 1 and 3 are executed, and scenario 2 for the case where kernels 2
and 3 are executed. To optimize the application for energy, a compiler may optimize
each scenario separately to reduce the number of computation cycles. Assume that
the energy-optimal exploitation of each scenario is, for scenario 1, to optimize both
kernels 1 and 3, and, for scenario 2, to optimize only kernel 2, kernel 3 already
being energy optimal for this scenario. Combining these two optimal scenario
exploitations, the application source code contains code for kernel 3 twice (once
optimized for scenario 1, and once untouched, as used in scenario 2). If the energy
overhead introduced by storing the two versions of kernel 3 is large, the energy-
optimal system can be obtained by using a suboptimal version of scenario 1, as
presented also in Fig. 2.11. This version uses the original implementation of kernel
3, so no code duplication for this kernel is needed in the final implementation of the
application.

Both mentioned exploitation refinements for scenarios are specific to the type of
optimization that is performed, so exploitation cannot really be fully generalized.
More examples are provided in the case study summary of Sect. 6 and in the
subsequent application chapters of this book.
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5.5 Switching

A system execution is a sequence of RTSs, and therefore a sequence of scenarios. At
the border between two scenarios during execution, switching occurs. For executing
this switch at run-time, at design-time a mechanism is derived and introduced into
the system. The switching decision and process (changing the knob positions) may
incur overhead, which is taken into account to further refine the scenario set.

Moreover, at run-time it should also be taken into account to decide whether
or not to switch to a different scenario, together with other information (i.e., the
sequence of previous and possible following RTSs). The expected gain times the
expected time window where the scenario is applicable has to be compared to the
exploitation cost, as already mentioned. The structure of this switching mechanism
should be flexible enough to allow it to be calibrated. Even if the switching overhead
is exploitation dependent, our methodology treats this overhead in a general way. It
uses the scenario cost versus overhead reports (e.g., energy, time) together with the
information about how often a switch between two given scenarios appears at run-
time, to avoid spending most of the system’s running time on switching between
scenarios, instead of on doing relevant work.

For our H.264 example from Sect. 3, the switching operation adjusts the supply
voltage and processor frequency. Its overhead in time and energy depends on the
implementation. Using the hardware circuit presented in [4] for switching, the
overhead measured in time is up to 70 μs and in energy up to 4 μJ. These overheads
affect both the final system cost (e.g., more energy consumption) and its run-time
properties (e.g., more deadline misses because of time overhead). It is important to
compare the time overhead with the minimum time the system stays in a scenario,
which is equal to the required period between two consecutive frames (or smaller
due to late scenario prediction). For a throughput of 30 frames per second, a
switch may be acceptable between each pair of consecutive frames, as the overhead
represents up to 0.2% of the time (70 μs out of 33 ms). On the other hand, for an
application with, for example, 2500 RTSs per second, the switch overhead per frame
represents 20% of the time, so the switches should be quite rare. Another illustration
of the very small overhead of the run-time controller is reported in [82].

The way how the exploitation step encodes the scenarios into the system
affects the switching cost. As we already mentioned, in the H.264 example, for
each scenario a frequency-voltage pair is stored. However, for other exploitation
examples, potentially a full copy of the source code for each scenario should be
stored. These copies introduce large supplementary costs into the final system
for each added scenario, and limit the total number of scenarios. The technique
presented in our work can find a scenario set which achieves the best data memory
optimization for the given instruction memory overhead. For a scenario that is rarely
activated, its source code may be kept in a compressed version to reduce the storage
cost, but as a decompression is done when the scenario is enabled, this increases the
switching overhead.
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Thus, the overhead for switching between two scenarios depends on what
the run-time switching implies, and the scenarios between which the application
switches. The switching overhead affects both the final system cost (e.g., more
energy consumption) and its run-time properties (e.g., more deadline misses because
of time overhead). In the design-time switching step, in parallel with deriving the
switching mechanism, the set of scenarios, and consequently the predictor, may
need to be adapted. This adaptation has to take into account the cost of each scenario,
how often the switch between each pair of scenarios appears at run-time and how
expensive it is. Two scenarios that were considered separately so far but which have
a relatively close cost, and between which the system switches very often at run-time
may need to be merged in a scenario with the worst-case cost among them.

The time overhead introduced by switching may cause undesired side-effects in
a system, such as deadline misses in an H.264 decoder. Besides system and context
dependent ways of handling such side-effects (e.g., an H.264 decoder may display
the previous frame again if the deadline for the current frame is missed), we have
looked at a general way for minimizing the side-effects that are caused by the time
overhead introduced by the switching mechanism. The most conservative way to
handle this overhead is to reserve time in each scenario, considering that the scenario
is always activated for only one RTS in a row and taking into account the largest
switching time that may appear. This approach can become very expensive, in which
case it is a viable solution only for systems that require hard guarantees.

For systems where more freedom is acceptable, in each scenario, we may reserve
time considering the switching time overhead averaged over the typical number of
subsequent RTSs spent in a scenario, and the possible over-estimation in timing
requirements that exist in the scenario. Such an over-estimation appears because for
all RTSs clustered into a scenario, their worst-case cost is always considered when
the scenario appears.

Moreover, some buffers are present already in almost all systems in our target
domain, such as an output buffer in a video decoding system, which potentially can
be used to compensate for the overhead variations that appear at run-time.

5.6 Calibration

The previous presented steps of our methodology make different design-time
choices (e.g., scenario set, prediction algorithm) that depend very much on the
possible values of RTS parameters, typically derived using profiling. This approach
is obviously limited by our ability to predict the actual run-time environment,
including the input data. For more dynamic systems, this will potentially lead to
suboptimal run-time issues, like encountering an RTS that was not considered in the
design-time choices, or an RTS with a higher cost than the one of the scenario to
which it is predicted to belong. The first case appears when an RTS occurs at run-
time of which the snapshot was not met during the identification step. In the second
case, its snapshot was considered during the identification step, but the worst-case
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cost observed for that snapshot is smaller than the actual cost of this RTS. This
is also related to a possibly imperfect choice of the parameters or simplification
of the predictor. Therefore, calibration can be used at run-time to complement the
methodology steps previously presented. And even if RTS parameters guarantee
correct prediction and costs are conservative, calibration can be useful to exploit,
for example, a situation in which low-cost RTSs occur for long periods of time in a
row.

To enable this, at run-time, information can be collected about actual values of
the RTS parameters, the predicted scenario, the decisions taken by the switching
mechanism, the measured cost for each scenario prediction, and the quality of the
resulting system (e.g., the number of deadline misses). Both the execution cycles of
the collecting process and the amount of stored information should be small as the
collection is executed for each RTS. To keep the overhead limited, the calibration
mechanism therefore should have access to only a limited amount of information.
Moreover, it should be implemented as a low complexity algorithm.

Periodically, sporadically (e.g., when time slack is found into the system), or
in critical exception situations (e.g., when the system quality is too low due to a
certain number of missed deadlines), the calibration mechanism is then enabled.
Based on the collected information, it may either change the ranges of parameter
values and knob positions that characterize each scenario or adapt the scenario set by
clustering existing scenarios or introducing new ones. In these cases, the prediction
and maybe the switching mechanism have to be adapted as well. However, during
the calibration, we have decided not to add new parameters or knobs, because this
would lead to a too complicated and expensive process. Indeed, then to exploit
the new parameters the predictor should be redesigned and for the new knobs the
scenario exploitation step should be performed again, which is prohibitive at run-
time.

Depending on the optimization applied in the exploitation step, the most common
operations in the two abovementioned categories that can be performed efficiently
considering the calibration’s limited processing and storage budgets are:

1. To consider new RTSs that were not considered at design-time, and to map
them to the scenario where they fit the best, based on the cost function, or to
a new scenario. In this case, the predictor and the switching mechanism are
also extended. As the complexity of the extension algorithm should be low, the
resulting predictor will in general not be as efficient as if a new predictor were
derived from scratch taking into account these new RTSs. Moreover, because
an explosion in scenario storage has to be avoided, not for each RTS a new
scenario can be created, but only for the ones which appear frequently enough to
be promising for our final objective or problematic in terms of system quality.

2. To increase the actual cost of a scenario, based on its RTSs observed at run-
time. This case may appear because the RTSs are defined using a limited
set of parameters, and it is possible that multiple equivalent RTSs exist with
different cost and only the cheaper ones were considered at design-time. The
same problem may occur also when prediction quality is low, if many RTSs are
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incorrectly predicted to belong to a scenario with a cost that is too low (under-
prediction).

3. To increase the cost of some or all scenarios, because the run-time overhead
introduced by related scenario mechanisms (e.g., prediction) is higher than
anticipated. The same problem appears when the run-time overhead variations
are too high and the buffering in the system cannot handle those variations. These
cases are related to the fact that the input data and the environment in which the
system runs is an extreme case (e.g., a lot of scenario switches), and the system
was dimensioned for the average case.

4. To decrease the cost of a scenario, when only the RTSs with a low cost from
that scenario actually appear at run-time. This improves our system cost (e.g.,
reducing energy), but potentially affects system quality negatively when RTSs
with a higher cost occur. To maintain system quality, the cost can be increased
again via the mechanism described in item two of this list. Alternatively, by
monitoring the scenario, the scenario cost may be reset to the value that it had
before calibration when one or a few of its RTSs with a higher measured cost
than the current scenario cost occur.

All the operations presented above have the role to control and to guarantee the
system quality, and to further improve our objective (i.e., to reduce the system cost)
by exploiting the information collected at run-time. Our proposed implementation
inserts in the final application some calibration code in line with the structure pre-
sented in Fig. 2.12. This code is executed immediately after each RTS was executed.
While the information gathering (line 1) and the small adaptations (line 2) are
executed for each RTS, the different calibration algorithms are executed periodically
(lines 3–11) to limit the introduced overhead and to give a chance to the system
to become stable between two consecutive calibrations. The small adaptations are
low complexity algorithms which are enabled usually when either severe quality
problems occur, and the adaptation cannot be delayed as the problems will really
bother the end user, or when collecting and storing the information for a later
calibration is more expensive than executing the calibration on the spot. Moreover,

Calibration (INT RTSCounter, ...)

1  InformationGathering()
2  SmallAdaptations()
3  for i= 1 to noCriticalCalibrations
4      do if ((RTSCounter - cCalib[i].LastActivation) > cCalib[i].Period)
5         then cCalib[i].FN()
6              cCalib[i].LastActivation - RTSCounter
7  for i=1 to noNonCriticalCalibrations
8      do if ((RTSCounter - nCalib[i].LastActivation) > nCalib[i].Period)
9         then if EnoughSlack(nCalib[i].WCEC)
10             then nCalib[i].FN()
11                  nCalib[i].LastActivation - RTSCounter

Fig. 2.12 Calibration structure
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these adaptation algorithms usually update the currently selected scenario, while the
calibration algorithms examine and calibrate all possible scenarios of the system.

To avoid introducing too much processing overhead in the processing of one
RTS, each calibration algorithm has a different activation period. Moreover, the
algorithms are divided into two categories, namely critical algorithms (lines 3–6)
and non-critical algorithms (lines 7–11). The critical ones usually deal with the
application constraints (e.g., deadlines or image quality), and are executed with an
exact period. The non-critical ones deal with run-time tuning for cost reduction, and
they can be postponed until enough slack remains after processing an RTS, such that
their execution will certainly not result in a quality degradation.

For our H.264 example from Sect. 3, a non-critical periodic calibration creates
new scenarios when so far unseen frame macro-block breakups appear at run-
time, and for each scenario sets the frequency-voltage pair based on the measured
computation cycles required to decode that frame. When a given maximum number
of scenarios has been reached, each time a new scenario needs to be introduced,
one of the earlier introduced scenarios is removed again (using some heuristic to
select that scenario). Moreover, another non-critical periodic calibration checks for
the case when a large difference in computation cycles appears between the amount
reserved for a scenario and the measured amount for all RTSs characterized to be in
that scenario, so the frequency-voltage pair is modified to reduce the system energy
consumption. However, when this adapted scenario introduces missed deadlines, the
pair is reset to its initial value by a small adaption that is run for each RTS.

Before we go to the case studies illustrating this generic approach, we will also
show the more generic flow for the data variable system scenario variant. That one
is illustrated in Fig. 2.13. The main differences are in the way the identification,
prediction/detection, and switching happen. They are partitioning based and not
clustering based as already indicated in Sect. 4. In this flow also the impact of
combining this with a task concurrency management methodology (see [43]) is
incorporated. That is especially important when mapping multiple threads on a
single processor or many tasks to a multi-processor platform (see also Sect. 7).

6 Case Study Summary

In this section, we present a summary of some major case studies we have performed
and which substantiate our claims on the broad applicability, the efficiency, and cost
saving potential of our system scenario approach. Several of these are also further
refined in the subsequent application chapters of this book. Besides the already
presented H.264 case study in Sect. 3, in our research groups other approaches
have been developed at various levels of design abstraction, which are relevant and
demonstrate the proposed scenario-based methodology from many different angles.

The scenario concept was first used in the context of multi-task applications in
[45, 85] to capture the data-dependent dynamic behavior inside a thread, and hence
to better schedule a multi-thread application on a heterogeneous multi-processor
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Fig. 2.13 Overall flow of data variable system scenario methodology

architecture, allowing the change of voltage level for each individual processor. That
work also includes a system-scenario-based DVFS hybrid design-time/run-time
scheduler technique. However, the scenario identification and run-time predictor are
done manually.

In [28], we have presented a general toolflow that can be applied to streaming
applications to reduce their energy consumption by taking advantage of the DVFS
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mechanism available in modern processors. In this work, we aim at applications that
are often implemented as a main loop, called the loop of interest, that is executed
over and over again, reading, processing, and writing out individual stream objects
(e.g., the H.264 video decoder presented in Fig. 2.4). Each iteration of the loop
of interest has a time constraint due to the throughput required by the system
(usually specified by a standard). To identify the RTS parameters, our toolflow
uses the techniques presented in Sect. 5.2. The scenarios are derived by clustering
the identified RTSs using as a cost function the required cycle budget (see also
Sect. 5.2). The flow has been applied both to the H.264 video decoder benchmark
which has already been discussed in this summary chapter (see Sect. 3 and to an
MP3 audio decoder. For the latter, the best obtained result contains 17 scenarios.
Then, the energy reduction obtained is 16% for stereo and 24% for a mixed set of
stereo and mono streams, respectively, for a miss ratio of up to one frame per 3 min
(0.013%).

In [49, 50], we have presented an instantiation of our scenario methodology in
the form of a general toolflow that can be applied to streaming applications to reduce
their energy consumption by applying the scenario concepts on top of the data
transfer and storage exploration (DTSE) methodology, particularly to enable more
loop transformations in the DTSE flow. The target application domain contains data-
dominated regular streaming applications. We can obtain a significant additional
gain (of nearly a factor 2) on top of the application of only the DTSE flow on the
MP3 audio decoder.

In [44], the scenario concept has been merged into a dynamic memory man-
agement methodology intended for embedded systems. It has been demonstrated
for optimizing dynamic memory allocation (i.e., malloc()/free()) for the IPv4 layer
in an IEEE 802.11b wireless network application. This has led to the design of a
customized dynamic memory allocator where we manage to achieve on average
reduction of 90% for the energy consumption, of 62% for memory footprint, and an
81% improvement of performance compared to the dynamic memory allocator used
in the Linux operating system.

In another study [76], we have used the scenario approach to adapt the hardware
configuration of high performance processors for energy efficiency. When a pro-
gram is being executed on a high performance processor, it typically does not need
all available processor resources at the same time. The amount of resources that
a program needs actually heavily depends on the code that is being executed and
typically varies over time [61]. By switching off the processor resources that are not
needed during the execution of a program, the energy consumption of the processor
can be reduced substantially without slowing down the execution of the program.

In [59], the energy and performance efficiency of memories is increased using
scenario-based methodologies that tackle process variability problems. The paper
shows that apart from the application RTSs, another significant source of unpre-
dictability is the platform itself when using technology scaling beyond the 90nm
technology node. This approach has been evaluated on an aggressive 8-issue out-
of-order superscalar processor microarchitecture with an adaptive branch predictor,
processor width, re-order buffer, fetch buffer, and caches. On average, our hardware
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adaptation approach achieves a 36% reduction in energy consumption with a
performance penalty of only 2.9% (instructions per cycle).

Another memory organization oriented body of work has focussed on dealing
with L1 data cache mapping of dynamic wavelet-based video codecs (see [16, 17]).
As already indicated in Sect. 4, quite complex but run-time efficient parametrized
equations have been derived to combine many different Pareto curve working points
and positions in compact representations which are tightly characterizing the actual
run-time situations. The case of even more strongly dynamic video codecs has been
dealt with in [18].

In [3], it is illustrated that the design of wireless protocol systems benefits
from the scenario concept by characterizing wireless channels and user conditions
as RTS parameters. The predicted scenarios are used to exploit cross-layer (in
the OSI model) trade-offs and switch between knob positions, adjusting the user
throughput and system power accordingly at run-time. Also in the same wireless
protocol domain, the work presented in [54] manages to reduce energy consumption
considerably by exploiting run-time controllable knobs of actual RF components
and the 802.11 medium access controller.

In [53], a methodology is introduced that identifies scenarios of wireless mobile
streams in multi-threaded applications. The RTSs consider the change in size among
packets in a wireless network stream. The identified scenarios are then used to
control at run-time a knob that switches DMA block transfers of heap data on and
off and thus it saves energy and execution cycles accordingly.

In [81, 83, 84], the scenario concept is used for energy-efficient scheduling of
tasks for heterogeneous MPSoC embedded platforms. The scenarios are extracted
from the task graph of the software applications and used to reduce energy through
the proposed DVFS methodology.

In [55], a method for estimating the execution time of stream-oriented applica-
tions mapped on a multi-processor on-chip is detailed. For this type of systems, the
pipelined decoding of sequential streaming objects has a high impact on achieving
the required throughput. The application is modeled as a homogenous synchronous
dataflow graph (HSDF). Within the application’s loop of interest the scenarios
are manually defined based on the different execution workloads of tasks. An
accurate execution time estimation method is proposed that supports parallel and
pipelined decoding of streaming objects, taking into account the transient and
periodic behavior of scenario executions and the effect of scenario transitions.

A more general model than HSDF that is still analyzable is the scenario-aware
dataflow model (SADF) [74]. It is a design-time analyzable stochastic generalization
of the synchronous dataflow (SDF) model, which can capture several dynamic
aspects of modern streaming applications by incorporating system scenarios. The
scenarios and the run-time predictor are explicitly described in the model. So no
further need is present for identification of scenarios for applications written using
this model. Moreover, analysis of long-run average and worst-case performance
are decidable. SADF combines both analyzability and explicit representation of
scenarios. The only current drawback is that not all possible forms of dynamism
(e.g., interactions with external events) can be represented with it.
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Chapter 8 provides a good overview of the current status of this work and the
extensions that have been added compared to the initial version of [74]. In particular,
parametrization of actor rates and execution times has been added to the SADFs,
leading to a broader applicability in more dynamic applications [64]. That has
enabled worst-case throughput analysis [65], worst-case latency analysis [67, 70],
and fully parametrized dataflow scenarios [66, 71]. For the important subdomain
of streaming applications, more efficient formalizations have been derived [63].
A further extension has included the link to timed automata [68], including the
translation from FSM-SADF models [69].

The DVFS knob used very often throughout our work usually assumes that
timing constraints are at least partly soft. As already mentioned, soft requirements
allow to trade off quality and cost. In [25], we illustrate a DVFS application that
provides hard guarantees. Scenario identification is based entirely on a conservative
static analysis. Also the method of [55] described above is suitable to provide hard
guarantees. In general, it may not always be easy to make all steps of the scenario
methodology conservative, but whenever this is possible our methodology applies,
omitting calibration which is not meaningful in a context requiring hard guarantees.
This has also been extended further for the data variable case in [86, 87, 89], using
especially the H264/AVC video codec application as main driver. The DVFS knob
has also been combined with a RTH (run-to-halt) platform knob to achieve even
larger gains [89]. Chapters 4 and 5 provide a good overview of the current status of
this DVFS related work and the extensions that have been added compared to the
initial version of [25].

At a higher design abstraction level, in [10], scenarios for memory management
of the heap data are defined by the user using the steady-state concept. The identified
scenarios are used to switch between dynamic data types according to the predicted
scenarios in multimedia software applications. In [73], the design abstraction level
is raised even higher and scenario-based optimizations are made at the modeling
level. In this last paper, scenarios are identified based on behavioral information
and different UML transformations are proposed for the abstract data types of
multimedia applications in order to achieve trade-offs between energy, memory
accesses, and memory footprint.

Also situated in this context of memory organization, a memory-aware system
scenario approach has been developed [20]. It has been applied for the energy-
efficient optimization of dynamic multi-media applications [21]. And it has also
been combined with a systematic approach to perform data interleaving [22].

A variant of the scenario concept with a much bigger number of RTSs to
accommodate even more dynamic situations has been used in [72] for 3D graphics
applications. It considers so-called sub-scenarios that exhibit specific correlated
behavior and that are characterized individually at design-time, but that are merged
only at run-time. This allows to break up very large systems where the number of
scenarios would otherwise explode. This is a very powerful extension which will
not be further covered in the scope of this book though.

To illustrate that the system scenario concept can also be expanded to domains
far beyond digital systems, we refer to the recent work we have produced in
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photovoltaics modules. In order to perform scalable modeling of the complex
electrical-thermal-optical effects affecting such modules, and this under the pres-
ence of non-uniform irradiation conditions such as due to static and dynamic
shading, the more conventional modeling approach has been extended with “spatial
system scenario’s” in [2]. And we are also studying “temporal system scenario’s”
as an extension of the data variable techniques, for renewable energy forecasting
purposes.

7 Extension to Multi-Tasking and Multi-Threading on
Multi-Processor Platforms

Although some of the surveyed applications of the system scenario concepts target
multi-task or multi-processor systems, the use of scenarios within a multi-processor
embedded system design trajectory has not been extensively explored yet. Given
the importance of multi-processor systems, we consider this as an interesting
direction for future research. A design flow like the one sketched in Fig. 2.14 can be
envisioned. The flow starts with extracting intra-task scenarios for each application
task, and based on them derives the inter-task application scenarios. The intra- and
inter-task scenarios are conceptually the same from a methodology perspective, so
that RTS parameter discovery techniques and scenario prediction techniques can be
reused. However, intra- and inter-task scenarios have a different impact on the intra-
and inter-task parts of the remaining design trajectory, their exploitation being in
general quite different.

Certain parts of the scenario methodology will be affected. Characterizing the
cost (e.g., the cycle budget) of an RTS, which is part of scenario identification,
has to be adapted to accommodate the specific problems that appear in multi-task
applications, like intra- and/or inter-processor scheduling, inter-task communication
costs and delays, pipelined execution. These problems make the resource estimation
for multi-task applications, especially in a multi-processor context, a challenging
research topic. The accuracy of resource estimation does not only affect scenario
identification, but also calibration. It may furthermore be necessary to distribute
calibration or to collect calibration information at a central location in the system.
After deriving inter-task system scenarios, they are used in decision making
along the design trajectory, like in task binding and scheduling. Depending on
the type of exploitation, various switching mechanisms may be needed, varying
from configuring simple settings to migrating tasks from one processor to another
one. Advanced switching mechanisms such as run-time task migration are another
interesting research direction. Finally, if multiple scenario-aware applications can
coexist in the same multi-application system, scenario-aware resource and quality
of service management across applications needs to be investigated.
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Fig. 2.14 Extended design flow for multi-task multi-processor systems

8 Related Work

This section consists of two parts. The first part compares our system-scenario-based
methodology with related approaches, while the second part presents exploitation
examples of scenarios found in the literature (not related to our own efforts, which
were already surveyed in the previous sections).

8.1 Related Design Approaches

In the past, embedded system design was significantly improved using the inspector-
executor technique, which has been developed at the University of Maryland in the
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early 1990s [58]. The basic idea behind it is to compile the application loops in
two phases, an inspector and an executor. The inspector examines the data access
pattern in the loop body and creates a schedule for fetching the values stored in
remote memories. The executor retrieves remote values according to the schedule
and executes the loop. The authors have studied run-time methods to automatically
parallelize and schedule iterations of a loop in certain cases when compile-time
information is inadequate. At compile-time, these methods set up the framework for
performing a loop dependency analysis. At run-time, wavefronts of concurrently
executable loop iterations are identified and the loop iterations are reordered for
increased parallelism.

A similar approach has been taken also in [1] where a loop with irregular
assignment computations contains loop-carried output data dependencies that can
only be detected at run-time. A load-balanced method based on the inspector-
executor model is proposed to parallelize this loop pattern. The basic idea lies in
splitting the iteration space of the sequential loop into sets of conflict-free iterations
that can be executed concurrently on different processors.

In [92], the authors propose a modified inspector-executor method for imple-
menting accesses to a distributed array. In the method, the compiler runs an inspector
during compile time to obtain the information of data dependencies among node
processors, and it uses that information to optimize communication code included
in the executor.

In [77], a novel strategy is discussed, which dynamically drives the communica-
tion between the processors by examining the content of the data at run-time in order
to reduce communication costs for numerical weather prediction modes. Compared
to the inspector-executor which is based on low-level data access patterns, this
strategy includes high-level application dependent information.

System workload characterization is another related field of research. It is
particularly relevant for the scenario identification step of our methodology. It
has gained interest already more than 30 years ago [19]. First, it has been used
for selecting the appropriate workload for doing meaningful measurements on
the performance of computer systems. Later, workload characterization has been
extended to wired [41] and wireless [40] networks. Moreover, it also was considered
as a base for traffic shaping which is used for adapting the workload to the expected
workload in the network/application [56].

A specific area in workload characterization is the identification of program
phases [61]. Programs usually consist of a number of repeating execution patterns,
which are identified. In the program phase detection, code-based phase detection
techniques [35] and interval-based phase detection techniques [61] are used. In
code-based phase detection, program phases are associated with functions and
loops. The interval-based phase detection techniques divide the execution of a
program into fixed-length instruction intervals and group intervals with similar
characteristics.

A detailed survey about workload characterization can be found in [5]. It
identifies five common steps followed by all workload characterization approaches,
including our scenario identification techniques: (1) choice of the set of parameters
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able to describe the behavior of the workload, (2) choice of the suitable instrumen-
tation, (3) experimental measurement collection, (4) analysis of the workload data,
and (5) construction of workload models.

Workload characterization and the inspector-executor technique perform most of
the analysis at run-time. This approach is beneficial when design-time analysis is
not available. The system scenario methodology for designing embedded systems
is more general in the sense that it can handle systems with unpredictable and
extremely varying workloads where the previous techniques cannot be used. The
system is made more predictable via design-time analysis. The actual behavior
of the system, obtained by combining static analysis and profiling approaches, is
split into distinct classes (scenarios) of typical workload behavior. System scenarios
allow optimization of the system mapping for each scenario, optimizations from
which the system profits when the scenario appears at run-time. This combination
of design-time analysis and classification of behaviors with run-time exploitation
and potentially calibration is the main novelty of the scenario-based approach.

Due to the presence of the run-time calibration step in our methodology, the
scenario approach is related to adaptive controllers [15]. However, the scenario
approach distinguishes itself via the design-time preparation and classification of
system behaviors, which guides the calibration into the most promising directions
(by pruning directions that are known to be of no interest). Furthermore, for cost
reasons, at run-time, our calibration technique is only active at certain designated
moments in time (calibration time) whereas a typical adaptive controller executes
continuously.

The system scenario concept was identified explicitly for the first time in [85],
where it was used to improve the mapping of dynamic applications onto a multi-
processor platform. Concepts closely related to the scenario idea already appear in
[45]. Our control variable oriented scenario methodology ideas were for the first
time briefly introduced in [26]. That paper does not detail any of the methodology
steps, and even entirely omits the switching and calibration steps.

8.2 Scenario Exploitation Examples in Literature

Scenario-like concepts were applied in an ad-hoc manner several times in the
literature, with an emphasis on exploiting scenarios, and not on systematically
identifying and predicting them.

In [9], the authors use in a systematic way the information about periodicity
of multimedia applications to present a new concept of DVFS. Each period in
the application shows a large variation in terms of execution time. The proposed
idea is to supply the information of the execution time variations in addition to the
content itself. This makes it possible to perform DVFS independent of worst-case
execution time estimation providing energy consumption reduction of client systems
compared to previous DVFS techniques. However, the authors do not specify how
the periods should be identified.
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In [60], for each manually identified scenario, the authors select the most energy
efficient architecture configuration that can be used to meet the timing constraints.
The architecture has a single processor with reconfigurable components (e.g.,
number and type of function units), and its supply voltage can be changed. It is
not clear how scenarios are predicted at run-time.

In [8], a reactive predictor is used to select the lowest supply voltage for which the
timing constraints of an MPEG decoder are met. An extension [57] considers two
simultaneous resources for scenario characterization. It looks for the most energy-
efficient configuration for encoding video on a mobile platform, exploring the trade-
off between computation and compression efficiency.

In the context of multi-task applications, in [46], scenarios are characterized
by different communication requirements (such as different bandwidth, latency
constraints) and traffic patterns. The paper presents a method to map an application
to a network on chip (NoC) architecture, satisfying the design constraints of each
individual scenario. This approach concentrates on the communication aspect of the
application mapping. It allows dynamic network reconfiguration across different
scenarios. As the over-estimation of the worst-case communication is very large,
this method performs poorly on systems where the traffic characteristics of scenarios
are very different or when the number of scenarios is large. In [47], the method has
been extended to work for these cases too.

In [42], a combination of a hierarchical finite state machine (FSM) with a
synchronous dataflow model (SDF) is used to capture scenarios within a multi-
task streaming application. The FSM represents the scenarios’ run-time detector.
The scenarios are identified by the designer and they are already described in the
model. The authors have shown that by writing the application in this model, the
scenario knowledge can be used to save energy when mapping the application on
one processor. The SADF model of computation of [74] generalizes this FSM-SDF
model of computation and it includes the formalization of using system scenarios.
As summarized in Sect. 6, this allows a systematic exploitation of system scenarios
in the SADF and HSDF contexts.

Another example of improving a multi-task application analysis approach using
application scenarios is [79]. This paper extends an existing method for perfor-
mance analysis of hard-real time systems based on real-time calculus, taking into
account correlations that appear between different components of the system. The
knowledge about these correlations is used to derive the system scenarios. The
authors present only how these scenarios could be modeled in their high-level
modeling/analytical approach, but no way to identify scenarios and no prediction
mechanism was considered.

As a final observation, quality of service (QoS) mechanisms may make use of
scenarios and related concepts. However, a detailed discussion of QoS techniques is
beyond the scope of this book. More information can be found in papers related to
QoS, like [30, 78].

In summary, compared to the previous work on workload characterization and
on the inspector-executor approach, which target a purely run-time approach, the
methodology advocated in this book targets a combined design-time and run-time
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approach with specific characteristics. The early work in system scenarios is either
quite ad-hoc, e.g., [9, 47, 60], or targets specific contexts, e.g., [28, 31, 50, 85]. Only
since our paper in [29], the systematic design flow has been consolidated for systems
based on control variables. And only more recently also the data variable option has
been added [33, 87].

9 Conclusions

In this chapter, we have introduced the basic concept and methodology steps of the
system scenario approach. This approach clusters the run-time situations (RTSs)
in which a system may run based on similarities from a multi-dimensional cost
trade-off perspective (e.g., resource utilization), in such a way that a system can be
optimized at design-time and configured at run-time to effectively exploit this cost
similarity.

Different from the well-known use-case scenarios, which are manually written
diagrams that represent the user perspective on future system usage, system
scenarios can be automatically derived, are transparent to the user, and focus on
system cost optimization.

A combined design-time/run-time methodology for using system scenarios to
improve the final system cost is detailed with 5 distinct steps which are each further
refined.

Furthermore, several case studies are briefly summarized to show how the
methodology can be applied to a broad range of real life design problems.
The diversity of these case studies, and the other given exploitation examples,
emphasizes the fact that, although the various design problems look different, they
can be covered by the same underlying methodology. The obtained reductions in the
final system costs prove that applying our methodology in the design process leads
to better products.
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Chapter 3
System-Scenario-based Design
Techniques in the Presence of Data
Variables

Elena Hammari, Yahya H. Yassin, Iason Filippopoulos, Francky Catthoor,
and Per Gunnar Kjeldsberg

1 Introduction and Context

So far in this book, the system scenario design methodology has been outlined for
use in cases where control variables decide the behavior and govern the changes
between scenarios. For applications where data variables influence the behavior,
these techniques are not fully sufficient. In this chapter, we will describe the
necessary adaptation needed for the system scenario approach to work in the
presence of data variables. Since the most important changes take place in the
scenario identification phase at design-time, the main part of this chapter deals with
this step of the methodology.

Figure 3.1 shows a simplified code snippet illustrating the difference between
a control variable and data variable dependency. The code to the left illustrates a
control variable dependency. The variable p in this case has a limited value range,
and it will be relatively easy to monitor the application behavior if p is later used,
for example, as a loop parameter.

The code snippet to the right of Fig. 3.1 shows a simple example of a data variable
dependent situation, where the value range of p equals the value range of a. If a is an
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Fig. 3.1 Control vs data variable dependency

input parameter, and p is used as a loop parameter in succeeding computations, the
loop size varies with the input parameter value range. Assuming the input parameter
is an integer value with word length WL, then the value range of a will be equal
to 2WL, e.g., 4.3 billion for WL = 32. This value range would simply produce too
much run-time overhead for the scenario prediction and switching mechanisms.

The rest of this chapter is organized as follows: Section 2 describes a general
mathematical approach based on polyhedral modeling for the scenario identification
process performed at design-time. This is followed by a section describing two
more specific examples of scenario identification (Sect. 3). Having covered this
design-time step in detail we turn to sections on techniques for run-time scenario
detection (Sect. 4) and switching (Sect. 5). Most of the application examples used in
these sections are relatively simple, in order to demonstrate the different concepts.
In Sect. 6 we demonstrate the full effect of the methodology through a real-
life application demonstrator. Finally, we present our conclusions related to data
variable system scenarios in Sect. 7.

2 Scenario Identification Through Polyhedral Partitioning
of the Parameter Space

The design-time scenario identification has to take into account the special require-
ments of data variable dependencies. In this section, we will show a mathematical
approach for scenario identification based on clustering of run-time situations
(RTSs) through polyhedral partitioning of the parameter space. We start with a
definition of the scenario cost, followed by an algorithm for polyhedral scenario
identification.
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2.1 Scenario Cost Definition for Use in Polyhedral Partitioning

As presented in Chap. 2, an RTS is defined through the values of a set of RTS
parameters. For each RTS i, its RTS signature is given by Eq. (3.1) below:

r(i) = ξ1(i), ξ2(i), . . . , ξk(i); c(i) (3.1)

containing parameter values ξ1(i), ξ2(i), . . ., ξk(i) and the corresponding task costs
c(i). That is, each run instance of each task will have its own RTS signature. The
number, N, of RTS signatures will hence be very large.

Figure 3.2 now illustrates the theoretical concepts of our polyhedral scenario
identification technique. Given k RTS parameters and N profiled RTS signatures
from Eq. (3.1). If we assign one dimension to each RTS parameter, the resulting
k-dimensional space will define all theoretically possible values for the RTS
parameters in the application. We will call this space an RTS parameter space. When
static max and min constraints on the values are added, the space reduces to one or
several k-dimensional domain(s).

Assuming a (k + 1)-dimensional cost representation for each RTS, all signatures
can then be plotted as points in a k +1 dimensional space. In the profiling sequence,
several identical signatures may exist, giving coinciding points in the space. The
number of times a point repeats itself is useful information as it quantifies the
probabilities of occurrence of each RTS.

With the representation above, the scenario identification task can be viewed
as a distribution of points into S different groups, representing system scenarios,
in such a way that the overall configuration cost is minimized. An RTS point
i is assigned to scenario j whenever its cost c(i) falls into that scenario’s cost

Fig. 3.2 RTS parameter
space with additional
configuration cost dimension
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range {C(j)min, C(j)max}. The scenario cost ranges are determined by a balancing
function that ensures that all scenarios have a sufficiently close probability to occur
at run-time. In this way, rare system scenarios are avoided since their storage cost
will exceed the gains of adding them. We measure this probability by the number of
points, including the repeating ones, that each scenario contains and call it scenario
size. Given a list r of RTS signatures sorted by descending cost, the scenario
cost ranges are given by the indices corresponding to the integral number of the
maximum scenario size N/S:

C(j)max = r

(
(j − 1) · N

S
+ 1

)
(3.2)

C(j)min = r

(
j · N

S

)
(3.3)

The cost of scenario Cj is defined as the maximum cost of any of the RTS signatures
that it includes: Cj = C(j)max.

The projection of scenarios onto the RTS parameter space (see Fig. 3.2) will
produce M ≥ S regions that characterize the system scenarios in terms of RTS
parameter values. Each region can be described as a polyhedron, and the run-time
scenario prediction can be done by checking which polyhedron contains the RTS
parameter values of the next RTS. Since we know which scenario the region belongs
to, we can foresee that the next running cost will be no more than the cost of
that scenario. Checking if a point lies inside a polyhedra is the classical data point
location problem from the computational geometry domain [5]. The advantage of
using it for prediction instead of a multi-valued decision diagram (MDD), typically
used for control variable dependencies, is that it operates on/stores only the vertices
of polyhedral regions, not the whole RTS parameter space.

This top-down approach can handle arbitrary large domains, provided that
the number of regions stays reasonably low. Otherwise prediction overhead will
grow. The number of regions depends on the number of system scenarios and the
underlying structure of the system—the relationship between the cost locality of
RTS points and the value locality of their RTS parameters.

As already mentioned in Chap. 2, the desired number of system scenarios is
best defined by the user according to the characteristics of the application domain.
Typically, this is limited to a few tens because beyond that the potential gains
in better following the system dynamics are counterbalanced with the additional
cost complexity of detecting and exploiting the (too) large set of possible system
scenarios.

For many applications, a strong correlation is present in the locality of the RTS
parameter values and the locality of the corresponding costs on the target DSP
platform, resulting in a single region per scenario (see Fig. 3.4). The locality of
parameters and the corresponding costs represents an important prerequisite for the
efficiency of the current scenario identification technique. Moreover, we currently
assume that there is a one-to-one correspondence between the cost of a scenario and
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the system configuration. The scenario thus represents the system mapping. This is
not a necessary assumption, however, and similar concepts of data variable scenarios
are being explored in domains outside the system mapping context [4].

2.2 Algorithm for Polyhedral Scenario Identification

Our scenario identification algorithm, GENERATESCENARIOSET, is presented in
Fig. 3.3. Line 2 is a preprocessing step, where profiled RTS signatures are sorted
by their costs starting from the maximum cost. In Line 4 the worst-case system
scenario is created. In Lines 6–8, the system scenario is filled with signatures having
the next costs in the sorted sequence. When the size of the system scenario exceeds
the maximum possible size, a new system scenario is created (Line 10).

The complexity of this algorithm can be calculated as given in Eq. (3.4), where
N is the number of RTS signatures and S is the number of system scenarios. It
depends on the complexity of the underlying geometric algorithms in the labeled
functions. For the fixed number d of RTS parameters, the function NEWSCENARIO

Fig. 3.3 Base system scenario identification algorithm
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has a constant complexity O(d) as it only copies the value of each parameter in a
single RTS signature to a scenario region.

Complexity = N · O(ADDSIGNATURE) +
S∑

i=1

O(NEWSCENARIO) (3.4)

The function ADDSIGNATURE performs a CONVEXHULL operation on the
existing border of the scenario and the projection point of the new RTS signature
onto the RTS parameter space. For a 2 or 3-dimensional RTS parameter space an
incremental convex hull algorithm has the complexity O(n log n) [11], where n is the
final number of processed points, which here equals to the scenario size, N/S in the
worst case. The convex hull of a polygon has the expected number of v = O(log n)
vertices and many of them may lie very close to each other. To limit the number of
vertices in the hull for faster run-time prediction, we modify the algorithm, such that
it calculates the distance between the points on the hull and removes those that are
closer than L/vmax, where L is the perimeter of the hull, and vmax is a user defined
constraint of the maximum number of vertices in the prediction polyhedra. For the
application that we investigate a reasonable value of this parameter could be 10 (see
Fig. 3.4).

Fig. 3.4 System scenarios for the application version I (top) and II (bottom). Numbers in the top
left corners are the execution times of scenarios in clock cycles
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The total complexity of the algorithm is O(N log N
S

)+O(S · d) = O(N log N),
considering that S, d � N . Recall that this scenario identification algorithm is run
only in the design phase of the embedded system. The run-time prediction of the
next scenario is equivalent to a point location problem in the polyhedral partitioning
of the parameter space. The time complexity of the point location problem is
O(log v), where v = S ·vmax is the total number of vertices in the partitioning, given
O(v log v) memory space. To compare, an MDD for d parameters with l distinct
values has ld states and a query time of O(d · l), where l � v.

For d > 3, i.e., for systems with more than 3 parameters, the complexity of
convex hull and Boolean set operations on polytopes increases exponentially in d

[2], similar to MDD. It remains an open research area to find an efficient repre-
sentation of polytopes in higher dimensions that will decrease the complexity of
the algorithms operating on them. The complexity does not increase exponentially
when the number of possible parameter values increases, however, the way it does
for MDD.

The function ADDSIGNATURE in Fig. 3.3 produces convex scenario projections
in the RTS parameter space. However, in some situations concave scenario projec-
tions are preferable, e.g., when the inherent correlation between the RTS parameter
values and the corresponding costs has a concave shape. However, large overhead
may incur since algorithms processing concave polyhedra are much more complex.
A possible solution is to split the concave projection into a set of convex polyhedra at
design-time and apply convex hull algorithms. The separate polyhedra still require
additional storage and processing time that should be kept low. To achieve that, a
restriction must be made on the number of reflex angles in the concave projection,
and also a careful consideration of the cost trade-offs must be made. The refinement
step is performed after a system scenario has been completed with signatures. At
this stage, the distribution of the points and the final convex hull are available and
are used in the refinement step. The other considerations are the goals of our future
work.

For system scenario prediction it is crucial that the identified system scenarios
are disjoint in the RTS parameter space. To satisfy this requirement, the designer
must select RTS parameters carefully and ensure that each scenario border tightly
follows the underlying distribution of the points through the refinement step. If
(small) overlaps still exist in the resulting system scenario set, they can be eliminated
by moving all signatures in the overlapping region to the higher cost system
scenario. This approach ensures that the predicted system scenario cost is never
underestimated. Overlap removal is described in detail in our work [7].
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2.3 Experimental Evaluation of Algorithm for Polyhedral
Scenario Identification

We have evaluated our scenario identification algorithm on several versions of a
Lyapunov exponent calculator used in an epileptic seizure predictor [9, 10]. We
now present results for execution time optimization using system scenarios. The
improved execution time can be exploited for reconfiguration in several ways. DVFS
can be applied, possibly in combination with rescheduling to allow other tasks to run
in the idle time. On run-time reconfigurable multi-processor platforms, remapping
of tasks is possible to achieve an overall optimized execution.

We have run tests on three different setups, displayed in Table 3.1. Throughout
the tests we have varied: (a) the version of the application, (b) the platform on
which the execution time was measured, and (c) the input database for application
profiling. This results in different characteristics, which represent distinct bench-
marks to test our algorithm performance. Figures 3.4 and 3.5 show the identified
system scenarios. The experiments in Fig. 3.4 are performed on the embedded
platform, CoolBio DSP [1], and two different application versions are used. In
both versions, the same two variables have the greatest impact on the application
execution time—Falsecount and Seqlength. They are therefore selected as RTS
parameters giving a two-dimensional RTS parameter space. The figures show that
there is a clear correlation between these parameters and the execution workload (in
clock cycles)—giving non-overlapping projections for each system scenario onto
the RTS parameter plane. The two application versions result in different sizes of the
RTS parameter domain for Experiment 1 and Experiment 2. The identified system
scenarios appear to be very similar, however, approximately a scaled version of each
other. As already indicated earlier, a number of 5–20 system scenarios are preferred
by users in scenario-based systems. In Fig. 3.4 we only show results for 5 and 10
scenarios. The trend is identical for 15 and 20.

Experiment 3 demonstrates the scenario refinement step. To get concave dis-
tributions of points in the scenario projections, we rerun scenario identification
in application version I on a general purpose desktop. Figure 3.5 presents the 5
identified system scenarios. The subfigures show each scenario projection separately
along with its respective RTS point distribution. Notice that the values on the axis

Table 3.1 Experimental setups

Experiment Application version Platform Database

1 I, settings: CoolBio 6 h continuous
nsize = 2048, dimm = 7, tau = 4, DSP EEG w/seizures
evolv = 12, idist = 20

2 II, settings: CoolBio 6 h continuous
nsize = 1000, dimm = 4, tau = 4, DSP EEG w/seizures
evolv = 6, idist = 12

3 I, settings: General 200 EEG samples
nsize = 2048, dimm = 7, tau = 4, purpose from epileptogenic
evolv = 12, idist = 20 zone, no seizures
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Fig. 3.5 Experiment 3. Convex scenario projections and their concave refinement. Numbers in
the top left corner are the execution times of scenario projections in μs

are different in the subfigures. Concave refinement is performed on scenarios 2–
5. Although a much smaller database is used for this experiment, the real scenario
borders from Fig. 3.4 can be discerned in the point distributions of Fig. 3.5. The
distortion in the scenario borders is caused by the noise from the nondeterministic
platform. While the convex hull is strongly affected by this noise, the concave hull
comes closer to the real scenario borders and can potentially improve the execution
time of this system-scenario-based design.
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Fig. 3.6 Total execution time of the largest Lyapunov exponent calculation (versions I and II)
with different number of system scenarios in the 6 h continuous EEG recording

Figure 3.6 compares execution workload for running the system with and without
system scenarios on CoolBio embedded platform. It also shows the execution
workload of the theoretically optimal workload-adaptive design, which is not
realizable in practice. The results are presented for both Experiments 1 and 2,
i.e., application versions I and II, respectively. Between 61% and 72% gain can be
achieved with 5–20 system scenarios. With 5 system scenarios the total execution
workload of the systems is still situated well above the theoretically best solution:
58% for system I and 67% for system II. When the number of scenarios is increased,
the total execution time of both systems reduces towards the theoretical limit and
becomes at 20 scenarios less than 13% and 15% above the theoretically best solution
for version I and version II, respectively. This is promising, and shows that near-
optimal solutions can be achieved with a limited number of scenarios.

The results presented here demonstrate the practical feasibility of the proposed
technique and show that it is possible to reach near-optimal execution time with a
limited number of scenarios. Future work includes optimization of scenario borders
to realize a trade-off between overestimation and run-time prediction/switching
complexity.

3 Scenario Identification Based on Specific Cost Parameters

In this subsection we will show examples of design-time scenario identification
based on two other important system cost parameters: memory requirement on the
hardware platform and image frame sizes in the application. The image size can
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also be generalized to sample resolution, and hence to quality of service of the
application.

3.1 RTS Clustering Based on Memory Size and Frequency
of Occurrence

The previous section gave an example of scenario identification based on using
execution time as the cost function. We will now show how another platform
characteristic can be used as cost function for data variable system scenarios, in
this case memory size. Similarly to execution time, memory size can also be related
to energy consumption, if unused memory blocks can be turned off dynamically at
run-time.

Figure 3.7 shows a motivational example with two image related multimedia
benchmarks and an input database consisting of a variety of images. The memory
requirements in each case are driven by the current input image size, which is
classified as a data variable due to the wide range of its possible values. Depending
on the application, the whole image or a region of interest is processed. The number
of possible sizes is too large to embed in a control variable, and must hence be
handled as a data variable scenario identification case. Other applications have other
input data variables deciding the memory requirement dynamism, e.g., the channel
signal-to-noise ratio in the case of an encoding/decoding application.

APPLICATION
Efficient Pyramid Image coder (EPIC)
while image.next != EndOfDatabase do

if currsize < image.size then
allocate (image.size – currsize)

else if currsize > image.size then
deallocate (currsize – image.size)

end if
currsize = image.size
perform EPIC processing …

end while
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Fig. 3.7 Profiling results based on application code and input data
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Fig. 3.8 Clustering of profiling results into three (a) or five (b) system scenarios

The system scenario identification now consists of a clustering of the profiled
memory sizes into groups with similar characteristics. Clustering is necessary,
because it will be extremely costly to have a different scenario for every possible
size, due to the number of memories needed. We have not applied the formal
polyhedral framework and the supporting tools of Sect. 2. This will be part of future
work. Instead we manually apply a similar approach to illustrate the concepts.

Clustering neighboring RTSs is a rational choice, since two instances with similar
memory need to have similar energy consumption. In Fig. 3.8 the clustering is based
both on their distance on the memory size axis and the frequency of their occurrence.
Consequently, the memory size is split unevenly with more frequent RTSs having a
shorter memory size range. In the case of a clustering to three system scenarios
the space is divided in the three differently colored areas depicted in Fig. 3.8a.
Due to the higher frequency of RTSs in the yellow area that system scenario has
a shorter range compared with its neighboring scenarios. Such clustering is better
than an even splitting because the energy cost of each system scenario is defined
by the upper size limit, as each scenario should support all RTSs within its range.
Consequently, the overhead for the RTSs in the yellow area is lower compared to
the overhead in the two other areas.

The same principle applies also when the number of system scenarios is
increased to five, as depicted in Fig. 3.8b. The frequency sensitive clustering
results in two short system scenarios that contain four RTSs each and three wider
system scenarios with fewer RTSs. The number of system scenarios should be
limited mainly due to two factors. First, implementation of a high number of
system scenarios in a memory platform is more difficult and complex. Second,
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the switching between the different scenarios involves an energy penalty that could
become significant when the switching takes place frequently.

The memory size and the frequency of each RTS are not the only two parameters
that should be taken into consideration during the system scenario identification.
The memory size of each RTS results in a different energy cost depending on the
way it is mapped into memory. The impact of the different assignment possibilities
is included into the clustering by introduction of energy as a cost metric. The energy
cost for each RTS is calculated using a reference platform with one to N memory
banks. Increasing the number of memory banks results in lower energy per access
since the most accessed elements can be assigned to smaller and more energy-
efficient banks. Unused banks can be switched off.

In the system scenario methodology, Pareto curves are used to capture alternative
system configurations within a scenario [13]. In our work, a Pareto space is used
for clustering that also includes the energy cost metric. For each RTS all different
assignment options on alternative platform configurations are studied. Memory
platform knobs are different sets of memory banks that are turned on and off. A
Pareto curve is constructed for each RTS that contains the optimal assignment for
each platform configuration. Hence, suboptimal assignments and assignments that
result in conflicts are not included in the Pareto curve. In Fig. 3.9 four Pareto curves,
each corresponding to a different RTS, are shown together with energy cost levels
corresponding to different platform configuration and data-to-memory assignment
decisions. Three non-optimal mappings are also shown in Fig. 3.9 for illustration.
They are not part of the Pareto curve and consequently not included in the generation
of scenarios. Pareto curves are clustered into three different system scenarios based
again both on their memory size differences and frequency of occurrence. Clustering
of RTSs using Pareto curves is more accurate compared to the clustering depicted
in Fig. 3.8, as it includes data-to-memory assignment options in the exploration.

The system scenario identification step includes the selection of the data variables
that determine the active system scenario. This can be achieved by careful study
of the application code, combined with the application’s data input. The variable
selection is done before clustering of RTSs into scenarios. For the choice of
identification variables, there is a trade-off between the complexity and the accuracy
of the scenario detection step. On one hand, if the identification is done using a
group of complex variables and their correlation, there is a number of calculations
needed in order to predict the active scenario. On the other hand, if the value of
a single variable is monitored for scenario identification, the scenario detection is
straightforward. In our case the gray-box model reveals only the code parts that will
influence memory usage, so that data variables deciding memory space changes can
be identified. An example of this is a non-static variable that influences the number
of iterations for a loop that performs one memory allocation at each iteration. In
the depicted example the system scenario detection data variable is the input image
height and width values.
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Fig. 3.9 Clustering of Pareto curves

3.2 Clustering of RTSs Based on Image Size and Set of
Available Platform Configuration Knobs

The final illustration of the power of data variable based scenario identification uses
streaming media applications. The behavior is again profiled with different input
data in order to detect different RTSs. Our scenario identification approach takes
into account available and relevant application domain parameters. This is typically
the stream of input data, the application code handling this data, long input sequence
which we profile in order to identify the dynamism in the workload, application
run-time due to while loops/conditions, data variable dependencies, and storage
requirements. Again, the number of options in the parameter settings is typically
too high to be incorporated effectively in a control variable approach.

We now use the large real-life H.264/AVC video encoder to demonstrate the
methodology. Its source code was obtained from the MediaBench II website [12].
It will be presented in more detail in Sect. 6. This model is profiled at design-time
in order to explore the dynamic range of loop iteration count variations for various
input frame sizes. The H.264/AVC encoder control structure is extracted from the
source code, and modeled under the assumption that all memory accesses take one
clock cycle. Listing 3.1 shows an example of a nested loop structure found in the
H.264/AVC encoder.
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1 // Nested loops in H264/AVC encoder control structure
2 ...
3 for (j = -img_pad_size; j < size_y + img_pad_size; j++)
4 ...
5 for (i = -img_pad_size; i < size_x + img_pad_size; i++)
6 ...
7 for (i = 0; i < (size_x + 2 * img_pad_size) * 2; i++)
8 ...
9 for (j = 2; j < maxy - 2; j++)
10 ...
11 for (j = maxy - 2; j < ypadded_size; j++)
12 ...
13 for (j = 0; j < je2 + 2; j += 2)
14 for (i = 0; i < ie2 - 2; i += 2)
15 ...
16 for (i = ie2 - 2; i < ie2 + 1; i += 2)
17 ...
18 for (i = 0; i < ie2 + 2; i++)
19 ...
20 for (j = 0; j < je2 - 2; j += 2)
21 ...
22 for (j = je2 - 2; j < je2 + 1; j += 2)
23 ...
24 for (j = 0; j < size_y/4; j++)
25 ...
26 for (i = 0; i < size_x/4; i++)
27 ...
28 ...

Listing 3.1 Part of control structure for H.264/AVC encoder

The H.264/AVC encoder is profiled for different voltage and frequency settings in
order to find optimal DVFS configurations in combination with race-to-halt (RTH).
A SAM4L board from Atmel [3] is used for the profiling, being a representative
example of a mobile platform containing an energy friendly CPU with limited
on-chip SRAM. One advantage of the SAM4L-board is the application control of
active voltage states, making it possible to dynamically tune the hardware for the
running application. Our profiled results show that the optimal energy consumption
is achieved if the maximum available frequency setting for each voltage level is
selected. This results in two scenarios, PS0 (1.8 V and 40 MHz) and PS1 (1.2 V and
12 MHz). Further details on the experimental setup can be found in Sect. 6.

Table 3.2 shows an evenly distributed selection of true 16:9 resolutions, which
our SAM4L board can process within a one second time frame using our extracted
model. It also shows the corresponding scenario selections and calculated run-
times, based on our available power modes on the SAM4L board. In Table 3.2,
the Scenario* column represents the scenario distribution for a platform with
more available voltage settings. This will typically give more potential for optimal
adaption, and thus further reductions in energy consumption. Details are, however,
outside the scope of this book. See [17] for additional details.

The largest frame size the platform can handle from our selection is measured
to be 816 × 459. The required run-time (in clock cycles) for each frame size
is estimated by counting all loop iterations and multiplying with all instructions
within each loop based on the program disassembly of the extracted model. These
numbers are compared to the measured run-time for each frame size. From the
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Table 3.2 Scenario
assignment based on run-time

Input Run-time
frame size (million cycles) Scenario Scenario*

816 × 459 34.70 0 0

752 × 423 29.54 0 0

688 × 387 24.79 0 1

624 × 351 20.46 0 2

560 × 315 16.54 0 2

496 × 279 13.04 0 3

432 × 243 9.96 1 4

368 × 207 7.29 1 4

288 × 162 4.54 1 5

224 × 126 2.80 1 5

measured results, we observed that the correct cycle count could be approximated by
multiplying the number of all loop iterations for any input frame size with a factor
of 4.22. This factor corresponds to the additional assembly instructions needed
to determine the loop length and initiate for-loops before they are executed. The
number of all loop iterations is calculated as shown in Lines 2–7 in Listing 3.2.
The total number of iterations are combined together with other parameters for all
the nested loops in the application, resulting in the loopcnt variable. This loopcnt
variable is multiplied by the approximated factor of 4.22. The separation of the
approximated factor allows for easy portability of the scenario mechanism to other
platforms, because other platforms might implement the loop handling instructions
differently. This difference would result in a higher or lower factor. The largest
frame processing time is therefore approximated to 34.7 million clock cycles in
an un-optimized setting where no pipelines are utilized. We use this frame size
processing time as our worst-case scenario, and we exploit it in combination with
DVFS and RTH for lower frame sizes. We benefit from DVFS if the processing time
of a smaller frame size with a lower frequency setting is less than the processing time
of our worst-case frame size. Therefore, we have to take our available system knobs
into consideration when we classify our system scenarios.

Our scenario selection will be dependent on the platform’s running frequency. In
PS1 the platform is processing a frame 70% slower than in PS0. Therefore, frame
sizes that need more than 30% of the run-time of our worst-case frame size are
processed with PS0 (Scenario 0), and smaller frame sizes are processed with the
PS1 configuration (Scenario 1).

Our arguments above are generalized in Eq. (3.5), where we set the Scenario 1
upper limit for the maximum frame processing time in PS1 to be equal to the frame
processing time of our largest frame (816 × 459) in PS0. The Scenario 1 upper
limit is calculated as shown in Eq. (3.6). In Eqs. (3.5) and (3.6), TWCf rame is the
execution time in seconds of the worst-case frame size. Tsc1 is the maximum allowed
execution time for Scenario 1 in seconds. LCsc0 and LCsc1 are the total number of
loop iterations for a specific frame in PS0 or PS1, respectively. β is the approximated
scale factor used to get the total number of clock cycles, and fsc0 is the platform’s
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1 // Monitoring of RTS parameters
2 long loopcnt1 = (size_y + img_pad_size + img_pad_size) * (2 + (3*(size_x +

img_pad_size + img_pad_size)));
3 long loopcnt2 = ((size_x + 2 * img_pad_size) * 2) * (5 + ((3*(maxy - 2 - 2)) +

(3*(ypadded_size - maxy + 2))));
4 long loopcnt3 = ((je2 + 2)/2) * (2 + (((ie2 - 2)/2) + 2));
5 long loopcnt4 = (ie2 + 2) * (((je2 - 2)/2) + 2);
6 long loopcnt5 = (size_y/4) * (1 + (6*(size_x/4)));
7 long loopcnt = loopcnt1 + loopcnt2 + loopcnt3 + loopcnt4 + loopcnt5;
8

9 // Update combined RTS parameter
10 (g_rts_data)[0] = loopcnt;
11

12 // Scenario detection/prediction
13 AMU_1(scenario_old, scenario, rts_data[], g_pareto_lc[]);
14

15 // Nested loops as shown in previous listing
16 ...

Listing 3.2 Functions combining data- dependent RTS parameters

main clock frequency when Scenario 0 is active. In other words, if the required
frame processing time is above 30% of our worst-case frame processing time, then
the platform switches from Scenario 1 to 0. Based on Eq. (3.5), we find the Scenario
1 limit in Eq. (3.6) without involving the β scale factor. This simplification makes
our method portable to other platforms with a different β scale factor. Equation (3.6)
shows the limit 2,466,807, which corresponds to 10.4 million clock cycles of actual
run-time (after multiplying with the 4.22 approximated scale factor β). That is, all
frame sizes with a run-time above 10.4 million clock cycles are assigned to Scenario
0 in Table 3.2.

TWCf rame = Tsc1 = β·LCsc0

fsc0

= β·LCsc1

0.3·fsc0

(3.5)

LCsc1 = 0.3·LCsc0 = 0.3·8, 222, 691 = 2, 466, 807 (3.6)

4 Scenario Detection

While scenario identification is a pure design-time step, scenario detection is split
between design-time and run-time. In this section we will show how data variables
influence both how the scenario detection mechanism is developed at design-time
and how it is used at run-time. According to the overall systems scenario design flow,
the boundaries of the scenario set have already been defined, in this case using the
data variable identification step presented in Sects. 2 and 3. Still we need to provide
a system framework for the actual run-time detection. This will be presented in the
following.
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Fig. 3.10 Proposed FSS framework with single-core solution to the left and multi-core to the right

4.1 Scenario Prediction Using Application Monitoring Unit

Figure 3.10 illustrates a generic framework for system scenarios (FSS) that enables
use of the system scenarios approach through an application monitoring unit
(AMU) and a platform adaption manager (PAM) for single-core and multi-core
architectures. The AMU part of this framework for system scenarios (FSS) will
be presented here, while the PAM will be presented in Sect. 5.1.

In single-core architectures, the AMU is implemented in software as lightweight
inline functions with minimal overhead. In homogeneous or heterogeneous multi-
core architectures, it could be implemented in hardware running in parallel with
the application, or as co-processors where parts of the AMU are implemented in
software. This makes the framework also applicable for customized single-core
architectures with the AMU implemented as customized units. The synchronization
checkpoints in Fig. 3.10 are locations in the application code where the RTS
parameters monitored by the prediction mechanisms are evaluated. Based on the
outcome of the evaluation, the switching mechanism triggers a platform reconfigu-
ration. Where the synchronization checkpoint is placed in the code depends on the
behavior of the application, and a trade-off must be made based on how often we
wish to reconfigure the platform versus the overhead cost of the monitoring and
reconfiguration mechanisms.

4.2 Scenario Prediction Through Precomputation

The AMU introduced in the previous subsection can use different techniques to
monitor RTS parameters and predict the upcoming scenario. The easiest way is
to directly use the equations that define the data variable scenario boundaries,
as derived in Sect. 2. However, in some applications the parameters present in
these equations are not yet known at the moment when the potentially active next
scenario needs to be detected. The parameters then need to be predicted upfront,
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1 // Application Monitoring Unit (AMU) called in previous listing
2 inline void AMU_1(scenario_old, scenario, rts_data[], g_pareto_lc[]) {
3 if (rts_data[0] > g_pareto_lc[0])
4 scenario = DVFS_40MHz_1_8V;
5 ...
6 else if (rts_data[0] > g_pareto_lc[2])
7 scenario = DVFS_12MHz_1_2V;
8

9 if (scenario_old != scenario ) // Only if change in scenario
10 DVFS_SAM4L(scenario);
11 }
12

13 // Platform Adaption Unit (PAM) called from AMU above
14 inline void DVFS_SAM4L(scenario){
15 switch (scenario)
16 case DVFS_40MHz_1_8V {
17 set_scenario_voltage(PS_0);
18 set_scenario_clk(CLK_40MHZ);
19 }
20 case DVFS_12MHz_1_2V {
21 set_scenario_clk(CLK_12MHZ);
22 set_scenario_voltage(PS_1);
23 }
24 }

Listing 3.3 Code for application monitoring unit and platform adaption manager for H.264/AVC
encoder on the SAM4L-board

requiring some form of precomputation. In this subsection we will illustrate this
precomputation approach for a realistic application context. Additional details of
this technique can be found in [8].

The input data variable dependency of the H.264/AVC introduced in Sect. 3.2
is shown in Listing 3.2, where inline application dependent equations are pre-
calculated (Lines 2–7), before a global lookup table is updated with the combined
RTS parameter (Line 10) as part of the overall AMU. This RTS parameter is
then read by the AMU_1 function, which detects the next scenario (Line 13). The
application dependent calculations in Lines 2–6 correspond to succeeding (nested)
for- and/or while-loops in the encoder control structure, which are combined
together in Line 7 to estimate the required frame processing time in terms of loop
iterations.

In our particular case it would have been enough to compare the loopcnt
variable with the threshold between Scenario 0 and 1 directly, and use the result
to determine the next scenario. However, we have generalized this comparison by
using the AMU_1 function shown in Listing 3.3. This lightweight inline function
compares the global RTS parameter lookup table values (rts_data[]) with global
scenario lookup table values (g_pareto_lc[]) in order to determine which scenario
the platform will adapt to. This generalization takes into account multiple scenario
parameters and RTS parameters. The use of lookup tables simplifies an extension
to multiple independent RTS parameters and/or scenarios. With the scenarios in
column Scenario* of Table 3.2, we would get five cells in the g_pareto_lc[]
lookup table. The values in the global scenario lookup table are found from our
identification step through Eq. (3.6). If the value of the global RTS lookup table is
greater than the value in the global scenario lookup table, then the platform changes
its configurations to PS0 if it is in PS1, and vice versa. The PAM function is then
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Fig. 3.11 Lookup table
memory content used by
AMU

called by the AMU and performs the platform reconfiguration using the DVFS
system knob as described in Sect. 5. Figure 3.11 shows the memory content for the
lookup tables used in Listing 3.3. rts_data contains the loopcnt value as calculated
in Listing 3.2, e.g., 3,919,775 if the input frame size is 560 × 315. This corresponds
to the values in Table 3.2 after multiplying the values with the β-factor.

5 Scenario Switching

The final run-time step, unless calibration is performed, is the actual switching of
the platform configuration. This subsection presents the PAM as well as an example
of the gain achieved performing the switching. It is here assumed that the upcoming
scenario is detected as described in Sect. 4 and that it is different from the current
scenario.

5.1 Scenario Switching Using Platform Adaptation Manager

Similar to the AMU described in Sect. 4.1 the PAM can be implemented either
as lightweight inline functions in software for single-core solutions or as parallel
hardware or in a co-processor for a multi-core solution. Figure 3.10 and Listing 3.3
give examples of both. As can be seen, the PAM is called from the AMU.

The PAM typically contains non-portable platform dependent functions, e.g.,
write to clock division registers, voltage regulation, and sleep mode activation. This
is the main reason why the PAM is kept separate from the AMU, which can be
made independent of the platform. In Listing 3.3 the switch case statements select
between two voltages and frequencies. With the scenarios in column Scenario* of
Table 3.2, the PAM would select between five voltages and frequencies.

5.2 Switching Gain Evaluation

If the platform switching has a substantial overhead, e.g., caused by slow voltage
regulators or the delay of switching the memories on and off, the PAM may
also include switching gain evaluation. In more detail, the switching mechanism
implemented by the run-time manager includes the following actions:
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Table 3.3 Relative dynamic energy for a range of memories with varying capacity and type

Dynamic energy [J] Switching to active from

Type Lines ×wordlength Read Write Deep [μJ] Light [μJ]

MM 32 × 8 4.18 × 10−8 3.24 × 10−8 0.223 0.031

MM 32 × 16 6.79 × 10−8 5.89 × 10−8 0.223 0.031

MM 32 × 128 4.33 × 10−7 4.31 × 10−7 1.42 0.168

MM 256 × 128 4.48 × 10−7 4.60 × 10−7 1.70 0.171

MM 1024 × 128 5.11 × 10−7 5.75 × 10−7 2.81 0.179

MM 4096 × 128 9.60 × 10−7 4.57 × 10−7 9.01 0.457

SCMEM 128 × 128 2.5 × 10−7 0.8 × 10−8 1.51 0.045

SCMEM 1024 × 8 1.7 × 10−8 0.6 × 10−8 0.325 0.021

1. Determining the set of input data for which the upcoming scenario will be run.
2. Calculation of the energy consumption by processing the next set of input data

on the currently active scenario (E1).
3. Calculation of the energy consumption by processing the next set of input data

on its most energy-efficient scenario (E2).
4. Calculation of the energy penalty for switching to the configuration of the most

efficient scenario (E3).
5. Evaluation of the expression: E1 > E2 + E3. If the energy cost of the current

configuration (E1) is greater than the combined cost of the new configuration
and the required switching (E2 + E3), then the decision is to switch. Otherwise,
the switching decision is negative and the system stays on the currently running
configuration.

6. Switching of the platform to its new configuration.

The PAM will in this case again mainly consist of comparisons of LUT values,
since the evaluation of cost and gain can be performed as a design-time. Tables 3.3
and 3.4 give examples of relative energy costs of accessing different memories and
of switching between sleep states [6].

The set of input data can typically be determined directly from the scenario
that has already been detected/predicted according to the methodology presented
in Sect. 4. At design-time, it is then only necessary to evaluate the energy costs of
an average RTS belonging to a scenario, on the optimal (E2) and all other (E1)
scenario configurations. This is doable since the number of scenarios is limited to a
few tens. If the RTSs within a scenario differ in energy consumption, for example,
because they have different run-time, the energy value found in the LUT for each
scenario can be adapted according to the RTS signature encountered. This will
require additional profiling at design time as well as evaluation of linear equations
at run-time. Details of this are part of future work.

Together with design-time profiling information, the values in Tables 3.3 and 3.4
can be used to calculate E1, E2, and E3 above. All the important transactions on
the platform that contribute to the overall energy are included in order to achieve as
accurate results as possible. In particular:
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Table 3.4 Relative static power for a range of memories with varying capacity and type

Static leakage power per mode [W]

Type Lines ×wordlength Active Light sleep Deep sleep Shut down

MM 32 × 8 0.132 0.125 0.063 0.0016

MM 32 × 16 0.134 0.127 0.064 0.0022

MM 32 × 128 0.171 0.160 0.083 0.0112

MM 256 × 128 0.207 0.184 0.104 0.0293

MM 1024 × 128 0.349 0.283 0.189 0.102

MM 4096 × 128 0.95 0.708 0.544 0.396

SCMEM 128 × 128 0.083 0.057 0.027 0.0022

SCMEM 1024 × 8 0.042 0.028 0.014 0.0011

• Nrd is the number of read accesses
• ERead is the energy per read
• Nwr is the number of write accesses
• EWrite is the energy per write
• T is the execution time of the application
• TLightSleep, TDeepSleep, and TShutDown are the times spent in light sleep, deep

sleep, and shut down states, respectively
• PleakActive

is the leakage power in active mode
• PleakLightSleep

, PleakDeepSleep
, and PleakShutdown

are the leakage power values in light
sleep, deep sleep, and shut down modes with different values corresponding to
each mode

• NSWLight , NSWDeep, and NSWShutDown are the number of transitions from each
retention state to active state

• ELightSleep to Active, EDeepSleep to Active, and EShutDown to Active are the energy
penalties for each transition, respectively.

E =
all∑

memories

(Nrd × ERead

+Nwr × EWrite

+ (T − TLightSleep − TDeepSleep − TShutDown) × PleakActive

+ TLightSleep × PleakLightSleep

+ TDeepSleep × PleakDeepSleep

+ TShutDown × PleakShutDown

+NSWLight × ELightSleep to Active

+NSWDeep × EDeepSleep to Active

+NSWShutDown × EShutDown to Active)

(3.7)
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With the energy values calculated at design-time stored in a LUT, the PAM only
needs to evaluate E1 > E2 + E3 to decide whether to switch or not.

6 Large-Scale Application Demonstrator

In Sect. 3.2 we briefly introduced the SAM4L board and the H.264/AVC video
encoder. We will now describe the experimental setup in more detail and compare
energy reduction results compared to a RTH approach without system scenarios.

6.1 Application, Platform, and Scenario System Settings

The SAM4L board from Atmel [3] is a representative example of a mobile platform
because it contains an energy friendly CPU with limited on-chip SRAM. One
advantage of the SAM4L-board is the application control of active voltage states,
making it possible to dynamically tune the hardware for the running application.

During our experiments we measure the live current consumption and core
voltage on the SAM4L board using a NI myDAQ measurement device [14]. The
processor core voltage is measured directly on the vcc_mcu_core pin of the SAM4L
microcontroller relative to the board ground, while the SAM4L microcontroller’s
total current consumption is measured through available measurement pins on the
board. Time stamped data is logged with a locally developed LabVIEW program,
and used together with our voltage and current measurements, to find the energy
consumption of the H.264/AVC encoder control structure. The single-core FSS
framework is used to implement the H.264/AVC encoder control structure with
system scenarios.

Our version of the SAM4L board contains the ATSAM4LC4CA microcontroller.
The microcontroller contains an ARM Cortex M4 processor, and supports two
different run modes. RUN0 operates with a core voltage of 1.8 V, while RUN1
operates at 1.2 V. Table 3.5 shows measured power consumption for the two run
modes under heavy load and in idle condition. The microcontroller also supports
various low-power states. Their possible use is described in the RTH (Run-to-Hold)
Section of Chap. 4.

For the scope of our research, we have selected the internal oscillators RCFAST
(12 MHz) and RC80M (80 MHz) as the main clock sources for our DVFS settings.

Table 3.5 Run modes in our
SAM4L-board from Atmel

Measured power
Mode consumption (μW)

RUN0 (heavy load) 29,865

RUN0 (idle) 25,340

RUN1 (heavy load) 5107

RUN1 (idle) 4013
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Since the ARM Cortex M4 processor only supports frequencies up to 48 MHz, the
RC80M oscillator is clock divided to 40 MHz when it is selected as the main clock
source. Hence, our DVFS settings are PS0 (1.8 V and 40 MHz) and PS1 (1.2 V and
12 MHz).

Based on the SAM4L board datasheet, the DVFS is triggered by a write to
configuration registers after a write to protective lock registers. In other words, a
switch is triggered after a few clock cycles. We have measured the switching time
between our two clock settings with an oscilloscope. The switch takes approxi-
mately 15 clock cycles (at 12 MHz) when both oscillators are on continuously,
and approximately 50 clock cycles (at 12 MHz) if the currently unused oscillator
is powered down. The added power consumption by having both oscillators enabled
is negligible because unused oscillators that are idling does not contribute to any
measurable power consumption. Therefore, both oscillators are kept enabled in our
measurements for a significantly reduced switching time.

We have measured the total static power to be less than 16% of the total power
consumption in PS0, and less than 29% in PS1. The static power consumption on the
SAM4L board is approximated by measuring the total power consumption for two
different frequencies in each power mode. With these four equations we estimate
the effective capacitance and static energies under the assumption that the activity
factor (α) is equal to 0.5 in Eq. (3.8).

PTotal = PStatic + PDynamic = PStatic + αCV 2f (3.8)

When performing dynamic voltage scaling on the SAM4L board, the main clock
frequency supported in the new voltage level has to be configured first. According
to the datasheet, the 1.2 V (PS1) configuration does not support frequencies larger
than 12 MHz. The frequency setting must therefore be switched from 40 MHz to
12 MHz before the voltage switch from 1.8 V (PS0) to 1.2 V (PS1). When changing
configuration from PS1 to PS0 the frequency must be scaled after the voltage switch
to maintain stability.

In addition, the output from the voltage regulator has to be stable after a voltage
switch before the CPU can continue processing. After a switch from PS1 to PS0 we
have to wait for a status flag, which signals that the voltage level has stabilized. The
CPU is therefore stalled while waiting for this flag to be set in the SAM4L board.
However, when a voltage switch is triggered from PS0 to PS1, then waiting for this
flag is not necessary before continuing the CPU execution. As described by Atmel
Support, when switching from a higher voltage level to a lower level, the voltage
regulator is stable and will regulate fast enough to continue execution in succeeding
cycles. The measured current consumption will gradually decrease after this switch
until the charge on the decoupling capacitor connected to the core voltage has been
consumed down to its PS1 level. The power delivered from the regulator on the
other hand is equal to the PS1 level immediately after the voltage switch.

Our SAM4L board came initially with a 22 μF decoupling capacitor connected
between the core voltage input and ground. The large decoupling capacitor resulted
in extremely long switching times. This was confirmed by Atmel Support, and they
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Table 3.6 DVFS switching
times between PS0 and PS1

Cycles Switching Overhead
From To @ 12 MHz time (μS) energy (μJ)

PS1 PS0 197 16.40 0.0623

PS0 PS1 15 1.25 0.0281

recommended a change to 4.7 μF to guarantee that all modules would function
properly. Since we are only interested in the CPU, we measured the DVFS switching
times with lower decoupling capacitors. Our experiments showed that the CPU
functioned correctly using a 1 μF decoupling capacitor, giving a DVFS switching
time comparable to state-of-the-art processors. Table 3.6 shows the switching times
and energy overhead when switching from PS0 to PS1 and vice versa. The energy
overhead is found by measuring the time between the last instruction before and the
first instruction after the DVFS switch, before multiplying this time with the power
consumption for the run mode before the switch. An oscilloscope was used for the
timing measurement.

In our experiments we simulate a realistic video sequence of 500 s, assuming
the video sequence can be processed with 25 ARM Cortex M4 cores in parallel
in order to meet the timing requirements for a frame rate of 25 frames per second
(fps). The parallel cores are assumed able to process each frame individually with
negligible synchronization overhead. This solution requires buffering and software
pipelining of the frames to maintain forward frame dependency requirements.
Other researchers have suggested similar approaches where their focus targets the
parallelization of the H.264/AVC encoder [15, 18]. We do not target general high
performance multi-core platforms. Instead, we aim at a subset of applications with
non-interacting concurrently operating tasks. Moreover, we target the embedded
multi-core domain, where cache coherence and complex bus protocols are avoided
by limiting the functionality of the cores. In particular, we limit ourselves to totally
independent cores working on tasks that do not have any interaction, where we
believe this extrapolation is valid.

Our scenario implementation is independent of this parallelization, and can be
used on a faster processor for a single-core solution. After each frame is processed,
we force the core into a low-power retention mode, where the measured energy
consumption is negligible. Before entering retention mode, a configurable timer is
set to wake up the system just before the next frame arrives.

Our video sequence is profiled through measurements on three different wireless
networks; a wireless local area network (WIFI), a mobile long-term evolution (LTE)
network, and a wideband code-division multiple-access (WCDMA) network, as
shown in Fig. 3.12 [16]. To process a frame, we specify a threshold requirement,
bw_th, for the available bandwidth to be equal to at least five times (5×) the required
bandwidth for a frame rate of 25 fps with a particular frame size. This threshold
allows other activity to continue on the network, and avoids using up all the
available bandwidth. With lower thresholds, the limited number of available voltage
levels in the SAM4L board would always force the system to use the most power
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Fig. 3.12 Available bandwidth measurement and moving average over WIFI, LTE, and WCDMA
[16]

consuming voltage setting. The 5× threshold thus enables us to demonstrate how
our methodology exploits the dynamism in the available bandwidth. Our simulated
500 s video sequence is created by combining different frame sizes from Table 3.2
in a sequence that fits with the available bandwidth of the measured networks in
Fig. 3.12, and our threshold requirements.

The application code is compiled in a conventional way with compiler opti-
mization parameter O3. When we optimize the application code with the O3
configuration, we assume it is a good enough optimization for the exploitation step
in the system scenario design methodology. The energy consumption is measured in
real time using our experimental setup, with and without the scenario mechanism.
The overhead energy consumption of our scenario mechanism is measured by
forcing the scenario mechanism to select PS0 each time a scenario switch takes
place. This approach would not reduce the energy, but would trigger the scenario
mechanisms in our AMU and PAM modules. The results are then compared to the
energy consumption without using the scenario mechanism. The difference equals
the scenario mechanism overhead.



3 System-Scenario-based Design Techniques in the Presence of Data Variables 79

Fig. 3.13 Energy
consumption relative to no
system scenarios

6.2 Discussion of Obtained Results

Figure 3.13 shows the energy reductions relative to the energy consumed by a
no scenario implementation utilizing a race-to-halt (RTH) setup in each of the
measured networks of Fig. 3.12. A retention mode is used when the system is halted,
which consumes 4.4μW. The average energy overhead of our scenario mechanisms
is measured to be 0.7%, which we consider to be negligible.

The lowest energy-consuming situation occurs when all frame sizes are suitable
for the PS1 configurations, such as for the WCDMA network. We obtain in this
situation up to 49% energy reduction as compared to a RTH solution without the use
of the scenario mechanism. These results include the average scenario mechanism
overhead of 0.7% energy increase for the 500 s sequence.

When the available bandwidth is higher than our threshold for our largest frame
size, then the scenario mechanism is not needed. It simulates our most energy-
consuming situation, where the system is running constantly in the PS0 platform
configuration. In this situation the energy consumption does not increase more than
the measured scenario overhead.

The LTE results are interesting because the energy reduction for this network is
determined by how long the system is in the PS1 configuration. In our measurement,
the platform runs with the PS1 configuration 93.8% of the time for this LTE network
measurement (with bw_th = 5×), and runs in the PS0 for the remaining sequence.
The energy savings would decrease if the platform runs in PS0 for longer time
periods.

7 Conclusions

In situations where many-valued data variables influence the dynamic behavior
of an application, techniques developed for control variables using multi-valued
decision diagrams explode with respect to run-time and memory complexity.
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Alternatives techniques, e.g., based on polyhedral parameter space partitioning and
RTS detection, need to be employed. In addition, efficient techniques for application
monitoring and platform adaption are required. When this is done, significant
improvements in performance and energy reduction can be achieved, compared to
implementations that do not take data variable based dynamism into account through
a system scenario methodology.
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Chapter 4
DVFS-Oriented Scenario Applications to
Processor Architectures

Nikolaos Zombakis, Yahya H. Yassin, Michail Noltsis, Dimitrios Soudris,
Per Gunnar Kjeldsberg, and Francky Catthoor

1 Software-Oriented Applications

As the control variable oriented scenario methodology is quite general [8], we
have exploited this approach in the context of DVFS mapping on instruction-
set programmable processors. As shown in [6, 7] an automatic trajectory which
has been developed by Valentin Gheorghita, e.g., for a specific design problem,
namely the identification, prediction, and exploitation of application scenarios to
reduce the energy consumed by a single task streaming application running on
a dynamic voltage and frequency scaling (DVFS) aware processor. DVFS is an
effective energy-saving technique that consists of varying the frequency and voltage
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of a processor at run-time according to processing needs. The exploited algorithms
are general and they may be used for different problems for both hard and soft real-
time constraints. It starts from an application written in C, as C is the most used
language to write embedded systems software, and generates the final energy-aware
implementation also in C. Promising results have been obtained for the hard and
soft real-time setups, both for an MP3 Decoder and a Motion Compensation Video
Kernel. For the latter kernel, under hard real-time constraints, a saving has been
achieved of up to 69% using a coarse-grain scheduler and up to 75% when using
a fine-grain scheduler, when comparing with the reference implementation. In the
soft real-time context, the savings were up to 16%, which represents about 50% of
the theoretically possible reduction.

The basic control variable scenario-based DVFS techniques have been further
exploited in the context of real-time wireless baseband systems. Also there promis-
ing results have been obtained as elaborated in [13].

2 DVFS-RTH Sleep Mode Extensions

Race-to-halt (RTH) [3] is a state-of-the-art technique for energy saving, speeding up
the execution of an application, thus increasing instantaneous power consumption,
in order to finish early and achieve longer idle times. The static power consumed
during idle times is reduced significantly due to the utilization of extremely low-
power states. A processor may have more than one low-power state, or sleep mode,
each having a different energy-saving potential but also a different cost related to
going to sleep and waking up. Selecting the optimal sleep mode is then a challenging
task, given that you typically have limited information about the length of the idle
period. In this section, we show how sleep modes can be efficiently combined with
DVFS and system scenarios in situations where we have a limited set of voltage and
frequency alternatives.

2.1 Sleep Mode Management

In [3] Awan et al. present a technique for sleep mode selection. It is based on an
offline and online approach, where the most efficient sleep modes are found offline
for a set of jobs based on the maximum time interval, t1, for which the processor may
be forced into a sleep state without causing any task to miss its deadline under worst-
case assumptions. The online algorithms compute the sleep time by calculating the
available slack present at run-time. The most efficient sleep state is then selected
online based on the sleep time calculated online and the pre-calculated t1 interval.

The system scenario approach enables us to simplify the solution in [3] signif-
icantly. Instead of computing the slack online, the total number of available cycles
for each scenario is calculated offline based on what we know about our system from
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Table 4.1 Run/sleep modes in our SAM4L-board from Atmel

Measured power Wakeup time
Run/sleep mode consumption (μW) (incl. setup time)

RUN0 (heavy load) 29,865 N/A

RUN0 (idle) 25,340 N/A

sleep00 14,010 83 clk @ 40 MHz

sleep01 10,370 659 clk @ 40 MHz

sleep02 5460 664 clk @ 40 MHz

sleep03 79 3907 clk @ 40 MHz

wait0 12 5669 clk @ 40 MHz

retention0 5.8 5997 clk @ 40 MHz

RUN1 (heavy load) 5107 N/A

RUN1 (idle) 4013 N/A

sleep10 2440 88 clk @ 12 MHz

sleep11 1830 390 clk @ 12 MHz

sleep12 1460 395 clk @ 12 MHz

sleep13 51 1057 clk @ 12 MHz

wait1 5.9 1728 clk @ 12 MHz

retention1 4.4 6703 clk @ 40 MHz

1786 clk @ 12 MHz

the scenario identification step described in Chaps. 2 and 3. For a given platform, we
also have stored system wakeup times from each of the possible sleep modes. The
SAM4L board described in Chap. 3, for instance, contains different sleep modes
as shown in Table 4.1. In Listing 4.1 the total number of available frame cycles
(TOTAL_FRAME_CYCLES) is pre-calculated offline for each scenario (PS0 and
PS1 in this case) based on information from the scenario identification step. The
stored wakeup time, including the setup time, is then summed with the calculated
loopcnt value (g_rth_lc and g_rts_data in Listing 4.1) and compared to the pre-
calculated total frame cycles available online. Our solution then selects the lowest
power consuming sleep mode if our estimated total execution time is less than
the slack time available. The different sleep power consumptions, setup times,
and wakeup times are measured on our SAM4L board, and included in Table 4.1.
All these wakeup time values (including the setup time) are stored in the grthlc

global lookup table. This lookup table is read by the AMU_2 mechanism shown in
Listing 4.1.

AMU_2 reduces the online overhead complexity from Awan et al. to an if-else
comparison. Starting with the lowest power consuming sleep mode, the AMU_2
compares the slack available with the sum of loopcnt and the corresponding sleep
wakeup time until it finds a solution. If no solution is found the system stays idle
until the arrival of the next frame. Chapter 3 contains two code listings that should
be seen in relation to Listing 4.1. The first one contains the AMU_1 inline function
that selects a DVFS voltage and frequency according to the detected scenario.
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1 static inline void AMU_2(volatile int *scenario){
2 if(*scenario == DVFS_40MHZ_1_8V){ // Current scenario = PS0
3 if( ((g_rts_data)[0] + (g_rth_lc)[5]) < TOTAL_FRAME_CYCLES_40MHZ )
4 (g_rts_data)[1] = (long) PS0_RET1; // loopcnt + RET1 wakeup < Slack
5 else if( ((g_rts_data)[0] + (g_rth_lc)[4]) < TOTAL_FRAME_CYCLES_40MHZ )
6 (g_rts_data)[1] = (long) PS0_RET0; // loopcnt + RET0 wakeup < Slack
7 //...
8 else if( ((g_rts_data)[0] + (g_rth_lc)[0]) < TOTAL_FRAME_CYCLES_40MHZ )
9 (g_rts_data)[1] = (long) PS0_SLEEP00; // loopcnt + SLEEP00 wakeup <

Slack
10 else
11 (g_rts_data)[1] = (long) PS0_RUN0; // No RTH
12 }else if(*scenario == DVFS_12MHZ_1_2V)\{ // Current scenario = PS1
13 if( ((g_rts_data)[0] + (g_rth_lc)[10]) < TOTAL_FRAME_CYCLES_12MHZ )
14 (g_rts_data)[1] = (long) PS1_RET1; // loopcnt + RET1 wakeup < Slack
15 //...
16 else if( ((g_rts_data)[0] + (g_rth_lc)[6]) < TOTAL_FRAME_CYCLES_12MHZ )
17 (g_rts_data)[1] = (long) PS1_SLEEP10; // loopcnt + SLEEP10 wakeup <

Slack
18 else
19 (g_rts_data)[1] = (long) PS1_RUN1; // No RTH
20 }
21 }

Listing 4.1 AMU_2 structure

Afterwards the the nested loops of the next listing are executed, which is then again
followed by the AMU_2 inline function in Listing 4.1.

2.2 Sleep Mode Experimental Results

The application section of Chap. 3 has shown experimental results for the
H.264/AVC video encoder [9] control structure run on an SAM4L board from
Atmel [2]. Profiles of three wireless networks (WIFI, LTE, and WCDMA) with
varying bandwidth were combined with a video stream, where the resolution
was dynamically adapted to the current bandwidth. The energy overhead of
our sleep mode enabled scenario mechanism is now measured using this stream
with and without the AMU_2 and its corresponding lookup tables for the system
scenario sleep mode management. The lookup tables for the scenario sleep mode
management are based on Tables 4.1 and 4.2. The added overhead of the AMU_2
is measured to be less than 0.1% and therefore we consider the added overhead
negligible. With our experimental setup all frames, even the largest one, are
processed and finished with enough slack time for our AMU_2 to select the lowest
power consuming sleep mode. The sleep mode scenario consequently does not give
any energy reduction. If, on the other hand, the slack time of different frame sizes
would be in the same range as wakeup times, we would benefit from selecting
the optimal sleep mode. To illustrate this claim, we have simulated our recorded
streams assuming the wakeup time of each sleep mode was a factor N slower, where
N equals 1×, 10×, 100×, 1.000×, 10.000×, 20.000×, and 66.973×. If we were
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Table 4.2 DVFS switching
times between PS0 and PS1

Cycles Switching Overhead
From To @ 12 MHz time (μS) energy (μJ)

PS1 PS0 197 16.40 0.0623

PS0 PS1 15 1.25 0.0281

Fig. 4.1 Potential sleep scenario improvements in energy consumption (in percent) with slower
wakeup times, compared to race-to-halt (RTH) scenario without sleep mode selection

actively using other types of memories (e.g., off-chip memories), then the wakeup
times for these memories are more likely to be at least 1.000 times slower, which
makes our assumptions realistic. If the slack time would be significantly shorter
than what we have in our experiment, such that our most power efficient sleep mode
could not be selected, then we also expect similar energy reductions. If the wakeup
time is too long, which is the case if N > 66.973×, the system would never be able
to go into a sleep mode. Based on this we see that our application benefits from the
AMU_2 if its task slack times dynamically change between different processing
intervals and between different sleep mode wakeup times.

Without AMU_2 the RTH mechanism cannot adapt the sleep mode selection
according to dynamically changing slack times. Instead the least power consuming
sleep mode that still is able to wake up in time after the largest frame size has
to be selected in all situations. This sleep mode will be increasingly more power
consuming when N increases, and for N > 66.973× the wakeup times of all sleep
modes will be too long. The AMU_2 mechanism exploits lower power consuming
sleep modes when smaller frames are processed, instead of only selecting the safest
sleep mode. The estimated energy reductions compared to not having the AMU_2
(and corresponding lookup tables) available are shown in Fig. 4.1. Figure 4.2 shows
the energy reductions compared to a race-to-idle (RTI) setup where the processor
does not go to sleep or halt after each processed frame.

Figures 4.1 and 4.2 clearly show that we would start to get significant energy
reductions if the wakeup times for our sleep modes were approximately 1.000 times
slower. In this case, our AMU_2 approach would result in up to 34.3% energy
reduction. The effect decreases when N increases since fewer sleep modes are within
the range of the slack times. In our simulation, we observe that if the wakeup times
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Fig. 4.2 Potential sleep scenario improvements in energy consumption (in percent) with slower
wakeup times, compared to scenario with race-to-idle (RTI)

were more than 66.973 times slower, then even the sleep mode with the shortest
wakeup time would become too slow. In this situation our processor would stay
idle until the next set of frames arrive. When the wakeup times are only 100 times
slower, we observe a slight increase in energy consumption. This effect is caused
by the fact that our AMU_2 mechanism selects sleep mode sleep03 over sleep02
because it has lower power consumption. On the other hand, the sleep03 wakeup
time is significantly larger than the sleep02 wakeup time as shown in Table 4.1, and
this large difference affects the total consumed energy consumption. If the wakeup
times would be more evenly scaled between the different sleep modes, then this
effect would not appear.

3 Reliability-Sensitive Hardware-Oriented Applications
and Gas-Pedal Extension

The target of this subsection is to present a DVFS extension using system scenarios
that mitigates performance variability through the use of a PID controller [11].
The timing guarantees are managed via the use of some gas-pedal, DVFS points
of elevated voltage and frequency from custom DVFS ones. These points are
generally “out-of-specs” and are verified through experiments of the pure hardware.
This way, the system can steal slack delay by operating for short periods in this
“speed-up” mode. Therefore, this extension is tightly tied to “any” dynamic DVFS
control approach, in particular when it is coupled with the use of system scenario
exploitation and prediction.

In fact, dependability has always been a major concern for the design of
digital systems. Modern computing has to meet reliability specifications, while the
dimensions of semiconductor devices reach tens of nanometers. This downscaling
trend brings about a variety of mechanisms that cause fluctuations of operating
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parameters of digital systems. To mitigate the numerous reliability threats, computer
engineers have developed a plethora of RAS (reliability, availability, and service-
ability) techniques focusing on different steps of the fabrication process, from
design to post-fabrication stages. We could classify these mechanisms between two
major groups: the ones targeting functional reliability violations while establishing
binary correctness and the ones focusing on parametric reliability, mitigating the
fluctuation of performance parameters that deviate from expected system behavior.

3.1 Performance Dependability

As a case study, the controller has been instantiated on the NXP IMX6Q board
[12] and developed on top of the Spectrum Sensing embedded application [4], a
realistic application with hard deadline constraints. To control performance, the PID
principle is to switch frequency and voltage of the processor based on a reactive
response to monitor timing delays. To this end, we have introduced the definition
of slack as the timing difference for specific code chunks, between their execution
under nominal conditions and their execution under timing violations.

Firstly, our scheme aims in managing functional reliability. Therefore, errors
need to be detected and recovered. Having an error-detection mechanism has been
part of our previous work [5]. Briefly, a signature-based strategy is used that alters
the signature trace progressively using internal application data. At regular time
intervals, the trace is compared against a golden signature that has been generated
offline at error-free conditions and in the case of a mismatch, the error is detected. It
should be underlined that through this configuration, error identification happens
at run-time, within 1 ms from their occurrence. It is also important to note that
signature-based detection cannot detect errors in all application data structures nor
can identify the source of the error in the processor circuitry.

Significant part of our work has been the development of an error-recovery
mechanism that ensures correct system functionality. Hence, we developed a
rollback technique to correct the detected errors. To elaborate in a more detailed
manner, after an error has been detected, the system is rolled back to a previous
known state, where the operation is repeated. It is evident that this procedure
introduces extra clock cycles and thus timing delay. It should also be highlighted
that with such a rollback event, the system can recover only from transient (or
recurring) errors; in the presence of permanent or semi-permanent errors, correct
system operation cannot be ensured as such. Then we have to add fault-tolerant
architecture features in order to start up/power up redundant architecture resources
when the initial ones become unusable due to the permanent faults. Figure 4.3
summarizes our developed RAS mechanism.

Core of the PID implementation is the monitor used to measure timing delay
and estimate slack along with the knobs used to switch to other DVFS points. For
monitoring purposes, we use the clock_gettime() function of the C library
that allows measuring time intervals between code chunks with a millisecond



90 N. Zombakis et al.

Fig. 4.3 The configuration of
our RAS mechanism. At
certain checkpoints of the
application, the system
computes the signature and
compares it against the
golden trace. In case of a
mismatch, a rollback event
occurs to recover correct
operation

accuracy. Another way to calculate function time is by reading cycle counters
(CCNT). By default, these counters are disabled so they have to be enabled from
kernel-mode. In our processor, this counter is accessible via CP15 instructions.
DVFS is supported on our target board, though default support is minimal. Three
DVFS points are present, corresponding to minimum, nominal, and maximum
frequency. This restriction however is a software limitation, and not a hardware
one.

To this end, we used a custom DVFS driver [4] that enables the use of numerous
operating points (up to 50). In this way we can achieve a fine-grain granularity of
the frequency and voltage space. After thorough experimentation with the board’s
cores, we have managed to link each frequency step to its relevant voltage, based on
the following mathematical formulation:

V = 9725 + 5 × (F − Fmin) (in 100 uV steps) (4.1)

where Fmin represents the minimum frequency of our board 396 MHz and voltage
is in 100 μV steps (9725 = 0.9725 V). It should also be stressed that frequency is
rounded to 12 MHz increments, while voltage is converted to 1 mV steps.

3.2 Introducing Gas-Pedal Points

We should highlight the use of one additional gas-pedal point—elevated both in
terms of voltage and frequency—from custom DVFS ones. This point has also been
verified through experimental tests. Specifically, we have observed that functional
stability is not harassed when the processor is operating at such an out-of-spec level
for a certain time window. Therefore, we select to use this “turbo” mode on our
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scheme and let the processor function at such levels for small periods of time. Of
course, in general, the introduction of gas-pedal points is not limited to the use of
solely one point. In other cases, more such points can be utilized nevertheless, for
our scheme we have identified only one.

3.3 Choosing the Operating Points

To decide the final number of DVFS points to use for our configuration we
experimented with the controller, instantiating different number of operating points,
equally placed between maximum and minimum frequency limits. Each time we
injected an error, provoking a rollback event and measured the settling time for all
different configurations, that is, the time needed for slack to converge to zero and
remain within a reasonable error band (in our case few milliseconds). Figure 4.4
sums up our experimental results.

As can be seen, increasing the DVFS points greatly reduces settling time at first.
After a certain point, however, a further increment barely reduces settling time. It
should also be noted that in practice, it is unusual for embedded processors to offer
a pool of numerous operating points. Lastly, avoiding the use of many different
DVFS points protects the controller output from jittering, along with the energy and
timing overhead stemming from excessive DVFS switches. For the above reasons,
we concluded to utilize nearly a dozen operating points for our configuration as
shown in Table 4.3. Notice the final “gas-pedal” point.
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Fig. 4.4 Graph showing the dependence of settling time on number of DVFS points. Settling time
per each configuration is the mean value as estimated after 10 iterations
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Table 4.3 Operating points
on our processor

Available DVFS levels

m f (MHz) Vdd (V)

0.50 396 0.975

0.56 444 1.00

0.62 492 1.025

0.68 540 1.050

0.74 588 1.075

0.80 636 1.100

0.88 696 1.125

0.94 744 1.150

1.00 792 1.175

1.06 840 1.200

1.12 888 1.225

1.20 946 1.250

1.26 996 1.275

1.32 1044 1.350

3.4 Case-Study Experiments

After instantiating the controller, we proceed with our case study to examine the
capabilities of our proposed scheme. We should underline that the NXP board
is fabricated at 40 nm technology nodes from TSMC [10] while the processor
consists of an ARM Cortex-A9 [1] quad core. Furthermore, our case study consists
of a commercial application that performs frequency band characterization and
allocation with heavy signal processing computations. Nevertheless, our proposed
scheme can seamlessly be integrated on top of any application which meets the
target application domain assumptions.

3.4.1 Dependability in the Presence of Rollback Interventions

For the experiments, we maintain the nominal frequency at 792 MHz and voltage
at 1.175 V of the chip. First, we collect the golden trace at nominal, error-free
conditions. For a qualitative realization of the controller’s power consumption
we refer to normalized power, assuming power scales quadratically with voltage
(P ∝ V 2

dd ). We should underline that our experiments are performed on a low-power
processor without heavily scaled nodes; therefore, leakage can still be neglected.
Hence, we have not incorporated that part in our energy calculations. However, our
approach can be ported also to such scaled nodes and leakage should of course
be included. By proper power gating our dynamically triggered rollback based
mitigation approach should not lead to issues linked to a large leakage overhead.

In Fig. 4.5 we can observe how the slack measurement is progressing over
time. In our case, time is viewed as sample count period, that is, the time for
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Fig. 4.5 Slack versus time in
the case of rollback
interventions

#Sample Count Period
0 50 100 150 200

S
la

ck
 (

in
 #

S
am

pl
e 

C
ou

nt
 P

er
io

ds
)

-1.5

-1

-0.5

0

0.5

1
MTBF = 60#Sample Count Periods

ErrorErrorError

MTBF

Critical
Time

Settling
Time

Fig. 4.6 Frequency decisions
versus time in the case of
rollback interventions
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the application to perform one basic data processing computation at nominal
frequency.1 When an error occurs, a signature mismatch is detected and almost
immediately a rollback event takes place. This introduces delay, leading slack to
drop to negative values. Afterwards, the controller takes action, boosting frequency
to absorb timing overheads and converge slack to zero.

In Fig. 4.6 we see the frequency decisions of the controller. As expected, the
controller drives frequency to its maximum level just after the rollback event
and when the settling time has passed, slack converges to zero—thus meeting
our deadlines—while frequency remains near its reference value. Notice that the
selection of the frequency steps is a function of the error rate, the controller gains,
and the granularity of the DVFS points. Different rates of errors or different tuning
of PID gains can activate different groups of DVFS points. Hence, the presented
results refer to an instance of the possible scenarios.

1Target board is low-power oriented; hence, this basic computational block is measured to last
significantly longer than in a high performance platform.
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3.4.2 Dependability in the Presence of Extra Load

We move forward by assessing the controller’s response to guarantee dependability
at the presence of workload variation while the board operates at nominal, error-
free conditions. In this case, workload variation occurs when another application is
running on the same core, competing for logic and memory resources. Hence, the
challenge for our controller is to compensate for the extra load by optimal DVFS
responses.

The imposed parametric reliability threat is visible at Fig. 4.7. We can identify
the timing instance where extra load is applied to the CPU when sudden slack drops
appear. Then, the controller boosts the processor’s frequency and converges slack
to zero. Positive slack is expected when the extra load is removed and in this case,
the processor slows down since meeting the timing deadlines can be achieved at
lower frequencies and power budgets. Figure 4.8 shows the frequency response of
the controller.

Fig. 4.7 Slack versus time in
the case of extra workload
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Fig. 4.8 Frequency decisions
versus time in the case of
extra workload
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3.5 Hardware-Related Limitations of Our Scheme

Although our scheme is able to provide dependability guarantees, it is important
to note the hardware-related limitations. These limitations are directly correlated
to the hardware’s maximum operating frequency; the reason is obvious: a higher
operating frequency is able to absorb timing overheads imposed by RAS events or
extra workload faster. Such an approach can be visible by focusing on Fig. 4.5 and
noticing critical time Tcrit . We define as Tcrit the time needed for the processor to
reach zero slack after a rollback event. This is in contrast to settling time Tset from
control theory, which represents time needed for slack to converge to zero (remain
in zero within a reasonable/small margin).

For our processor, the lowest MT BF rate the controller can handle is shown in
Fig. 4.9. For this error rate, controller’s decision is to force frequency to the highest
step as seen in Fig. 4.10. As expected, power is significantly higher compared to
previous cases because of the maximum voltage operation. For an error rate higher
than the aforementioned (MTBF < Tcrit ), timing deadlines cannot be met. An
example of such a case is shown in Fig. 4.11. This of course is a limitation of

Fig. 4.9 Slack versus time
for MT BF = Tcrit
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Fig. 4.11 Slack versus time
for MT BF < Tcrit
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the hardware and not the controller. Should a higher frequency step be available,
the controller could utilize it and absorb even more timing delays during the
operation.2

4 Conclusions

In this chapter, we have introduced our projections of the generic system scenario
methodology to the DVFS based scheduling context. First, we have exploited this
for DVFS-aware scheduling in both hard and soft real-time systems. Then, we
have added a novel sleep-mode extension which is especially useful for embedded
systems that have low duty cycles and that hence exhibit long periods of power
down. Finally, we have introduced a PID controller mechanism realized on top of
a DVFS scheduler that mitigates performance variability in the context of RAS
mechanisms. The basic techniques are discussed in Chap. 7. But the underlying
DVFS scheduler is summarized here already, including the extension with a gas-
pedal technique which is necessary to enable the timing dependability guarantees.
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Chapter 5
DVAFS—Dynamic-Voltage-Accuracy-
Frequency-Scaling Applied to Scalable
Convolutional Neural Network
Acceleration

Bert Moons and Marian Verhelst

Another extension to DVFS is DVAFS: dynamic-voltage-accuracy-frequency-
scaling, introduced in [17, 20, 24]. Here, voltage and frequency are not modulated
with different throughput requirements as is the case in DVFS, but in scenarios
requiring different levels of accuracy. This goes clearly beyond the way system
scenarios are exploited in the DVFS approaches of Chap. 4. This extension is
however also complementary and usable concurrently with the earlier system
scenario techniques. If a certain scenario only needs low internal computational
precision, the supply voltages and frequency of a full digital system can be
modulated, leading to significant energy savings compared to a high precision
scenario. As such DVAFS can be situated in the field of approximate computing
(AC) [4], a set of techniques that allow digital processing to approximate results
and hence enable hardware to trade-off energy for accuracy.

Multiple application domains have proven to be tolerant to inaccurate or low-
precision operations and to be able to gain from such a trade-off. Several works
propose automated ways to estimate the impact of inaccurate computations on
DSP applications. Either through using the statistics of the fixed-point quantization
process [2, 25], through Monte Carlo methods, or through analytical modeling of
error propagation [9]. A good overview of this field can be found in [1]. More
specifically, Moons and Verhelst [17] show the DCT computations in a JPEG
encoder can be performed at 4-bit accuracy with only 2 dB SNR-loss. In [5], various
machine learning algorithms ranging from support vector machines to K-means
clustering and specifically deep neural networks [15] are identified as fault-tolerant.
Neural networks are used in different scenarios, some requiring different levels of
internal computational precision. Depending on the complexity of the task of the
network and on the specific neural network that is used [19, 21], the necessary
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Fig. 5.1 Different tasks and networks require different internal computational precision while
losing less than 1% relative accuracy [19]. The used precision can even vary from layer to layer.
(a) 1 − 4b in LeNet-5 [13] on MNIST [14]. (b) 5-9b in AlexNet [10] on IMAGENET [23]

internal precision used in all filtering operations may vary. This is illustrated in
Fig. 5.1. In this figure, the red line shows the number of bits necessary in every
layer (fractional numbers are inputs/features, integer number are filter weights) if
each layer is allowed a different computational precision and the network achieves
99% relative accuracy compared to a floating point baseline. The black lines show
the number of bits if all features and weights are required to use the same number
of bits. Figure 5.1a shows only 1 − 6b quantization is necessary in LeNet5 [13]
operating on a simple handwritten digit recognition task (MNIST [14]). Figure 5.1b
shows the necessary number of bits varies from 5-9b in AlexNet [10] operating
on ImageNet [23]. Another example of such changing scenarios in visual face
recognition is given in Sect. 3, where the necessary number of bits varies from 2
to 7b. The DVAFS technique can be used to minimize energy depending on the
requirements of each of those scenarios.

The rest of this chapter discusses the basic concept of the DVAFS technique in
Sect. 1, its performance on the block and system level in Sect. 2, and finally a silicon
implementation and its typical scenarios in Sect. 3.

1 Exploiting Dynamic Precision Requirements in DVAFS

1.1 DAS: Dynamic-Accuracy-Scaling

An effective approach to dynamically scale the power consumption of digital
arithmetic at constant throughput in function of the required computational precision
is through truncation or rounding of a variable number of its input bits at run-
time [24], see Fig. 5.2a. This introduces deviations in output quality caused by
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Fig. 5.2 A naive carry-save multiplier in multiple accuracy scaling modes. (a) DAS example. (b)
DVAS example. (c) DVAFS example

Table 5.1 D(V)A(F)S
parameters for the multiplier
of Sect. 2.1

Parameter 4b 8b 12b 16b

k0 12.5 3.5 1.4 1

k1 12.5 3.5 1.4 1

k2 1.2 1.1 1.02 1

k3 3.2 1.82 1.45 1

k4 1.53 1.27 1.02 1

N 4 2 1 1

higher quantization errors on the inputs and thus decreases computational accuracy.
Simultaneously, it also reduces the circuit’s internal switching activity and hence
energy consumption. A good overview of these effects can be found in [1]. If
leakage power is neglected, the power of such a dynamic-accuracy-scaling (DAS)
system, PDAS , is split into an accuracy-scalable part (as), of which the activity is
modulated with scaled precision and a non-accuracy-scalable (nas) part which does
not modulate with scaled precision:

PDAS = αas

k0
Casf V 2 + αnasCnasf V 2 (5.1)

where α is the circuit’s switching activity, f is the operating frequency, C is the
technology dependent switching capacitance, and V is the supply voltage. k0 is a
precision, circuit, and architecture dependent scaling parameter. An example of k0
for a real multiplier is given in Table 5.1.

1.2 DVAS: Dynamic-Voltage-Accuracy-Scaling

A DAS data path element, capable of modulating the computational precision
of its input, will exhibit a different critical path length in function of the used
computational precision. This is illustrated in Fig. 5.2b for a simplified 1 − 4b
multiplier with two operating modes (2b and 4b). In the high precision mode
example of Fig. 5.2b all building blocks will be active, resulting in a high switching
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activity and a long critical path. However, in the low-precision case, only the
most significant bits (MSB) are used, resulting in a lower switching activity and
shorter critical path. The DVAS concept [17, 18] exploits this critical path scaling
by dynamically scaling voltage in function of the used number of bits, without
inducing timing errors. At a fixed frequency, this positive timing slack can then
be transformed into energy savings through a lower supply voltage.

These combined effects—(1) reduced switching activity and (2) shorter critical
paths allowing lower supply voltages—have a major impact on the system’s
dynamic power consumption. The power PDV AS of a DVAS-system is split into
a voltage-accuracy scalable vas, a non-voltage-accuracy scalable nvas, and a non-
accuracy-scalable nas part, given in Eq. (5.2).

PDV AS = αvas

k1
Cvasf

(
Vvas

k2

)2

+ αnvas

kx

Cnvasf (Vnvas)
2 + αnasCnasf V 2

nas

(5.2)
The critical path only scales in arithmetic building blocks, such as multipliers

and adders, which are considered vas. In nvas blocks such as memories, register
files, and multiplexers, only the switching activity drops at lower precision. Finally,
a considerable portion of the original power consumption in nas blocks, such as
control blocks and decoders, does not scale under reduced precision. As the vas,
nvas, and nas parts operate at different voltages, the design should be split into
separate power domains.

1.3 DVAFS: Dynamic-Voltage-Accuracy-Frequency-Scaling

Subword-parallel DVAFS [22] improves further upon the energy savings of DVAS
by reusing inactive arithmetic cells at reduced precision. The simplified example
in Fig. 5.2c shows a multiplier that can process two subword operations per cycle
if precision is scaled to 2b or lower. If computational throughput is kept constant,
this allows to drop the full system’s frequency and hence its voltage significantly
below DVAS values. As a result, DVAFS is the first dynamic AC technique
which simultaneously lowers all run-time adaptable parameters influencing power
consumption: activity α, frequency f , and voltage V . In contrast to DVAS, which
can only save energy in precision-scaled arithmetic blocks, DVAFS allows lowering
f and V of the full system, including control units and memory, hereby shrinking
nas energy overheads drastically at low precision.

These combined effects—(1) reduction of switching activity, (2) shorter critical
paths allowing lower supply voltages, (3) subword-parallel operation allowing lower
operating frequencies at constant computational throughput—have a major impact
on the system’s power consumption. The dynamic power PDV AFS of a DVAFS-
system is given in Eq. (5.3)
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PDV AFS = αvas

k3
Cvas

f

N

(
Vvas

k4

)2

+ αnvas

kz

Cnvas

f

N

(
Vnvas

ky

)2

+ αnasCnas

f

N

(
Vnas

k5

)2

(5.3)

where N is the subword parallelism, processing (16/N)b × N words per cycle.

2 DVAFS Performance Analysis

2.1 Performance of a DVAFS Multiplier

The performance and energy-accuracy trade-off of a DVAFS-equipped 16b Booth-
encoded Wallace-tree multiplier [20] is assessed through detailed simulations in a
40 nm LP LVT technology with a nominal supply voltage of 1.1 V. The multiplier
is synthesized with commercially available cells in a standard digital flow, using a
multi-mode optimization, ensuring the critical path indeed decreases when less bits
are used. Conservative wire models are used for synthesis and power estimations.
In these simulations, multiplier throughput is kept constant at T = 1 words/cycle ×
500 MHz = 2 words/cycle ×250 MHz = 4 words/cycle ×125 MHz = 500 MOPS,
as shown in Fig. 5.3a. However, the word size varies accordingly from 16b down to
4b. Figure 5.3b shows the effect of D(V)A(F)S on the positive circuit delay slack.
Without voltage scaling positive slack increases up to 1 ns if 4b words are processed
in the D(V)AS case and up to 7 ns due to the 125 MHz clock in the 4×4b D(V)AFS
case. Figure 5.3c shows this slack can be compensated for through lowering the
supply voltage at constant throughput. For DVAS, a reduction down to 0.9 V is
achievable. In DVAFS, the voltage can go down to 0.75 V, or an additional decrease
in energy of 55%. Figure 5.3a and d show the respective operating frequencies
and activity reduction of the multiplier computing at different levels of accuracy.
Switching activity drops 12.5× in the DVAS-case and 3.2× in the DVAFS-case
at 4b. However, in DVAFS the frequency is lowered to 125 MHz, while it remains

Fig. 5.3 Frequency, slack, voltage, and activity in a custom Booth-encoded Wallace-tree subword-
parallel DVAFS multiplier in DAS-, DVAS-, and DVAFS-modes. (a) Frequency. (b) Slack @ 1.1 V.
(c) Voltage at zero slack. (d) α
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Fig. 5.4 Comparison of energy gains in a custom Booth-encoded Wallace-tree DVAFS multiplier
to [6, 11, 12, 16] as a function of the used precision. (a) D(V)A(F)S. (b) DVAFS vs [6, 11, 12, 16]

constant at 500 MHz for all accuracies in DVAS. This analysis allows extracting
parameters ki and N for this multiplier, as given in Table 5.1.

The combination of these reductions in energy consumption leads to global
energy-accuracy curves shown in Fig. 5.4a. Here, the total energy consumption
per computed word of the multiplier (normalized to a non-reconfigurable 16b
multiplier) is compared. Note that processing at 16b in the DVAFS multiplier
comes at a slight energy penalty, as this reconfigurability leads to a 21% overhead
at full precision. At full 16b resolution the reconfigurable multiplier consumes
2.63 pJ/word compared to the 2.16 pJ/word baseline in this technology. The DAS
case illustrates the sole effect of the decrease in α due to accuracy scaling. Energy
drops more significantly in DVAS due to the added voltage scaling. DVAFS achieves
energy savings of more than 95% of the baseline at 4 × 4 DVAFS processing.

The energy-accuracy trade-off in DVAFS is superior to other AC techniques, both
in terms of energy reduction as well as in terms of energy-accuracy dynamic range.
Figure 5.4b compares the curve of the DVAFS multiplier with [6, 11, 12, 16], with
energy relative to the respective fully accurate implementation in each reference
and accuracy expressed in terms of root-mean-square-error (RMSE). Although [6]
consumes less energy at high accuracy, the energy consumption is higher at
accuracies lower than 1e − 4 RMSE. Liu et al. [16], Kulkarni et al. [11], and Kyaw
et al. [12] do not allow a run-time adaptable trade-off and consume more energy per
word at the same level of accuracy.

2.2 Performance of a DVAFS SIMD Processor

To show the advantages of DVAFS at the system level, a DVAFS-compatible SIMD
RISC vector processor is simulated and implemented in an application-specific
instruction set processor (ASIP) design tool [26], using the same 40 nm LP LVT
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Fig. 5.5 Comparison of energy gains in a DVAFS SIMD processors to [6, 11, 12, 16]. (a) DVAFS.
(b) DVAFS vs [6, 11, 12, 16]

technology as in Sect. 2.1. The processor has a parameterized SIMD width SW ,
denoting the number of data path units and memory banks. Every SIMD-unit can
scale its precision across 1 × 1 − 16b, 2 × 1 − 8b, 4 × 1 − 4b DVAFS modes.

In order to support DVAFS, the processor contains all necessary rounding
circuitry. All memories are in a separate power domain (VMEM ), at a fixed 1.1 V
to maintain reliable operation. All other parts of the processor are in two power
domains with variable supply voltage (Vas and Vnas). As a benchmark, a large
convolution kernel is run on the SIMD processor.

The performance of the SIMD processor is illustrated in Fig. 5.5, where the
energy of the complete processor per processed word is plotted against the used
computational accuracy at constant throughput for processor instantiations with
different SIMD widths SW . The SW−processor in the 1 × 16b mode at 500 MHZ
is used as a baseline. The maximal decrease in energy consumption is achieved
at the 4 × 4b DVAFS mode, with a reduction of 85% compared to the baseline.
Gains are more modest in the DAS and DVAS (60%) case as the contribution of
the as data path to the full processor’s energy consumption is smaller. The highly
parallel SW = 64 processor has a larger percentage of its energy consumption
in the arithmetic circuits and thus has a larger potential for energy reduction
than its SW = 8 counterpart. In a sole DVAS-system, the parallelism should be
large for significant energy gains. In DVAFS, energy scales down significantly
also at low levels of parallelism (low SW ), as the supply voltage is also lowered
in the non-accuracy-scalable (nas) parts. Figure 5.5b also compares the DVAFS
techniques with the references from [11, 12, 16], through extrapolating their block-
level performance to the simulated SIMD processor. As DVAFS allows system-wide
gains, not only in the computational units, it outperforms all of them in the energy-
accuracy space.

DVAFS-compatible silicon prototypes, with voltage- and critical path scaling
have been developed, as is discussed in Sect. 3.2.
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3 A DVAFS Prototype

Typically, inferring state-of-the-art neural networks comes at very high energy cost,
too high for embedded applications. However, because of the fault tolerance of these
algorithms, they can be executed using low or varying computational precision,
depending on the scenario they are used in. The DVAFS-compatible Envision
chip [22], introduced here, allows reducing energy consumption accordingly, see
Sect. 3.1. It can be used in a hierarchical face recognition cascade, see Sect. 3.2.

3.1 Envision: A DVAFS-Compatible CNN Processor

The Envision chip, implemented in a 28 nm FDSOI technology and illustrated in
Fig. 5.6 is a C-programmable processor, both exploiting algorithmic sparsity [18,
19] and the dynamic accuracy scaling discussed here. The chip contains around
1.95 M gates on an area of 1.87 mm2, split into three power domains (as indicated
in Fig. 5.6b) to support granular DVAFS. Figure 5.6a shows the chip contains a 2D-
SIMD array of 256 multiply accumulate units (MAC) for convolutional kernels,
vector and scalar units, a flexible memory architecture, and a DMA with IO
en/decoding. As discussed in Sect. 1.3, a DVAFS processor should support subword-
parallel N × 16/Nbits operating modes, with N the number of parallel subwords.
Hence, at 200 MHz, Envision’s 256 processing units achieve a peak 102 GOPS in
the 1 × 1 − 16b mode and up to 408 GOPS in the 4 × 1 − 4b mode. The chip
has 132 kB on-chip data memory and 16 kB on-chip program memory for its 16b
instruction set.

The energy efficiency of Envision is illustrated in Fig. 5.7, both at constant
200 MHZ frequency and at a 76 GOPS constant throughput. These measurements

Fig. 5.6 (a) High-level specifications of Envision. (b) Chip photograph of Envision. N is the level
of subword parallelism



5 DVAFS—Dynamic-Voltage-Accuracy-Frequency-Scaling Applied to. . . 107

Fig. 5.7 (a) Relative energy consumption of Envision at 200 MHz. These numbers are normalized
to the maximal power consumption of 300 mW at 16b. (b) Energy consumption per word at
76 GOPS. At constant throughput, frequency and supply voltage can be lowered further at lower
accuracy leading to higher efficiency gains

are done on a 5 × 5 CONV layer with a typical MAC-efficiency of 73% or 0.73 ×
256 × 2 × f operations per second. In DAS and DVAS, the energy gains at reduced
computational accuracy are limited, as the non-scalable parts of the processor such
as the instruction decoder and memories become dominant. Figure 5.7a shows the
processor consumes 2.4× and 3.8× less energy per 4b operation than for 16b full
precision, in the DAS and DVAS cases, respectively.

If frequency is kept constant at 200 MHz, the chip consumes 300 mW at full
16b precision and 76 real GOPS, leading to an efficiency of 250 GOPS/W. At the
nominal frequency of 200 MHz and in the N = 4, 4 × 4b mode, the chip consumes
104 mW and achieves 4 × 76 = 304 real GOPS or 2.8 TOPS/W.

Efficiency can be further improved at low computational accuracy through
exploiting the frequency-scaling capabilities of DVAFS. If frequency is scaled under
constant computational throughput, the supply voltage of the whole system can be
lowered further, leading to higher efficiency gains. This is illustrated in Fig. 5.7b,
where in the 4 × 4b full DVAFS mode, frequency is scaled down from 200 MHz to
50 MHz to maintain the 76GOPS throughput. In this case, power consumption scales
from 300 mW down to 18 mW or 4.2 TOPS/W, or a 6.9× and 4.1× improvement
over DAS and DVAS, respectively.

As indicated above, different scenarios require different levels of computational
precision. A simple handwritten digit classification task can be performed using 1−
6b fixed-point precision, while more complex classification on ImageNet [23] and
LFW [8] requires 4-9b operation. The DVAFS-based CNN processor thus allows
performing simple tasks at a much higher energy efficiency compared to more
complex tasks. This is illustrated in Table 5.2 showing the energy efficiency of the
different convolutional layers of VGG16 (3.3 fps), AlexNet (47 fps), and LeNet-5
(13 kfps) on Envision. Envision achieves 1.8 TOPS/W on AlexNet, significantly out-
performing non-scalable [3] (0.16 TOPS/W) and DVAS-only [18] (0.94 TOPS/W)
implementations. Switching between these operating modes can be performed in
software from CNN layer to layer by changing a single configuration register. In
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Table 5.2 Power consumption in VGG16, AlexNet, and LeNet-5 on Envision [22] due to
sparsity [18] and DVAFS

Layer Mode
f
[MHz] V [V]

Wght.
[b] In. [b]

Wght.
sp.[%]

In. sp.
[%]

MMACS/
frame

Power
[mW]

Eff.
[TOP-
S/W]

VGG1 2 × 8b 100 0.80 5 4 5 10 87 25 2.1

VGG2-13 2 × 8b 100 0.80 5 6 25–75 30–82 462–1850 19–35 1.5–2.8

Total – – – – – – – 15,346 26 2

AlexNet1 2 × 8b 100 0.80 7 4 21 29 104 37 2.7

AlexNet2 2 × 8b 100 0.80 7 7 19 89 224 20 3.8

AlexNet3 1 × 16b 200 1.03 8 9 11 82 150 52 1

AlexNet4-5 1 × 16b 200 1.03 9 8 4 72 112 58–62 0.8–0.9

Total – – – – – – – 666 44 1.8

LeNet1 4 × 4b 50 0.65 3 1 35 87 0.3 5.6 13.6

LeNet2 2 × 8b 100 0.80 4 6 26 55 1.6 29 2.6

Total – – – – – – – 1.9 25 3

the context of neural networks, the complexity and control of switching between
different scenarios is overall very limited. In different, less regular applications, with
larger code-bases and loop nests, the scenario-control and DVAFS-mode switches
should be implemented in a fully systematic and automated way.

3.2 Envision in a Face Recognition Hierarchy

Hierarchical cascaded processing [7] is a multi-stage generalization of wake-up
based detection and recognition. The technique outperforms classical wake-up
schemes, as a cascaded hierarchy optimally exploits the statistics of the input data.

An example of such a hierarchy in the context of face recognition is shown in
Fig. 5.8. Rather than using very complex and costly face recognizers in an always-
on manner, it is more efficient to build the same functionality out of a cascade of
cheaper, but increasingly complex scenarios. A first stage could be a very cheap face
detector that filters out backgrounds. A second stage can be an owner-detector, as a
detected face is most likely the device’s owner in the context of mobile phones.
If the detected face is not the owner, a third stage can classify ten most-likely
people before powering on the next stage. On average, this scenario-based adaptivity
strategy can save 4 orders of magnitude compared to a setup with only 1 complex
stage and 2 orders of magnitude compared to the classic wake-up scenario at the
same performance [7].

In such a hierarchy, not only the model size of the neural network and its number
of necessary computations vary from stage to stage, but also the number of bits used.
A simple task in an early stage typically requires less bits than a more complex
task in a later stage. The Envision processor is able to exploit this by dynamically
tuning its internal computational precision, hereby minimizing energy consumption
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Fig. 5.8 A 5-stage hierarchical face recognition example. The average energy/frame estimate is
when stages 1–5 are used on [100, 1,0.5, 0.1,0.01]% of the frames

Table 5.3 Different scenarios require different levels of computational precision for accurate
results

Task Input
#
Classes

Feature
[bits]

Weight
[bits]

CONV
size[kb]

CONV ops
[MMACs]

Eff.
[TOPS/W]

En./
Frame[J]

Acc.
[%]

Face vs
background

32 RGB 2 2–3 2–4 22 6 4.2 3u 94.3

Owner vs
all

32 RGB 3 3 3–4 42 12 4 6u 95.9

10 faces 32 RGB 12 4–6 4 112 30 1.8 35u 95.4

100 faces 224 RGB 104 4–6 5–6 742 500 1.8 552u 94

>5000
faces

224 RGB 5760 5–6 6–7 15k 15.4k 1.3 23.2m 95

Envision can trade this in for energy efficiency

in any stage of such a hierarchy. Table 5.3 shows the specifications of the different
stages in the hierarchy of Fig. 5.8. The first wake-up stage is very small and requires
only 2-4b of precision in order to get to a reliable result. Envision can then run
these small networks at an average efficiency of more than 4 tera-operations per
second per Watt (TOPS/W), due to the advanced precision, voltage, and frequency
scalability of DVAFS. The last stage is more complex and requires 5-6b operators
to achieve a high accuracy. Because of this, energy efficiency drops by almost 3×
at the same frequency to 1.3 TOPS/W. Each of the separate scenario’s in the face
recognition hierarchy can hence be individually optimized through DVAFS. Using
the hierarchical approach in Fig. 5.8, when stages 1–5 are used on [100, 1 ,0.5, 0.1,



110 B. Moons and M. Verhelst

0.01]% of the frames, the average energy consumption per mini-frame is brought
down from 23 mJ/frame to 6.2 μJ /frame at the same accuracy. Without DVAFS, if
all scenarios would run at an efficiency of 1.3 TOPS/W using 5-6b operators, this
average number would go up to at least 13 μJ /frame. Hence, here DVAFS leads
to more than a 2× advantage over an optimized hierarchy running at fixed 5-6b
precision. A fixed-point 16b non-DVAFS hierarchical solution would be 4× more
expensive.

4 DVAFS Overview

Dynamic-voltage-accuracy-frequency-scaling (DVAFS) is a generalization of
DVFS, in which voltage and frequency are modulated with the varying accuracy
requirements of a scenario rather than solely with its varying throughput
requirements. Hence, if a low internal computational precision is allowed, a digital
system can reduce its energy consumption dynamically through DVAFS. Typical
examples of applications where this is useful are in object recognition using neural
networks. Here simple applications, such as digit recognition, only need low-
precision computations, while more complex applications, such as 100-class object
recognition, require higher precision. The DVAFS technique outperforms other
similar techniques in the dynamic energy-vs-accuracy space. It consumes 3× less
energy on the block-level and up to 5× less energy on the system level compared
to the state-of-the-art. Envision, a silicon-implemented DVAFS-compatible CNN
processor, can scale its energy efficiency from 0.3 TOPW/S at 16b precision up to
4 TOPS/W at 4b through DVAFS and up to 10 TOPS/W for sparse 4b data flows. In
a hierarchical face recognition example, Envision’s DVAFS capabilities offer a 2×
advantage over a fixed low-precision implementation and an 8× advantage over a
fixed 16b implementation.
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Chapter 6
Run-Time Exploitation of Application
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Computing
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1 Introduction and Context

In the embedded systems domain, energy efficiency has been a main design
constraint for more than two decades. More recently, this has also become a major
concern in high performance computing (HPC). Even though these two domains
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are different in many respects, techniques that have proven to be efficient in one
may also be beneficial in the other. The split design-time and run-time approach
of system-scenario-based design, which is described in this book, is being applied
successfully in embedded systems, both to increase performance and to reduce
power and energy consumption [7, 8, 12]. In the HPC domain, auto-tuning is
used either at design-time to statically tune the system configuration or at run-
time through compute intensive estimation of the dynamic requirements [2, 15].
Combining these approaches from embedded systems and HPC has the potential of
giving substantial synergies in both domains.

A constantly growing demand for data center computing performance leads to the
installation of increasingly powerful and complex systems, characterized by a rising
number of CPU cores as well as increasing heterogeneity. This makes optimization
of HPC applications a complex task, which demands significant programming effort
and high levels of expertise. With a growing computational performance, there
is typically also an increase in a system’s energy consumption, which in turn
is a major driver for the total cost of ownership of HPC systems. Furthermore,
limitations to chip temperature and cooling capabilities can make the performance
of Exascale HPC systems power-bound. However, developers commonly focus
on the implementation and improvement of algorithms with regard to accuracy
and performance, neglecting possible improvements to energy efficiency. Often,
programmers lack the platform and hardware knowledge required to exploit these
measures, which is an important obstacle for their use both in the embedded and
HPC domains.

The European Union Horizon 2020 project READEX [6] (Run-time Exploitation
of Application Dynamism for Energy-efficient eXascale computing) tackles these
challenges by embracing the significant potential for improvements to performance
and energy efficiency that result from dynamic resource requirements of HPC
applications similar to those seen in embedded systems. Examples are alternating
application regions and load-changes at application run-time. Such dynamism can
be found in current HPC applications, including weather forecasting, molecular
dynamics, or adaptive mesh-refinement applications.

These applications often operate in an iterative manner, e.g., using a time step
loop as the main control flow. Each iteration of such a program loop can be regarded
as a phase of the application execution. In this context, intra-phase dynamism
describes the changes in resource requirements and computational characteristics
between different code regions executed by a single iteration, e.g., the change
between memory- and compute-bound kernels. Intra-phase dynamism can be
exploited by adjusting the system to the resource requirements of the current code
region. Alternatively, inter-phase dynamism describes the changes in application
behavior between iterations or phases. As the execution progresses, the required
computation can vary, either on single processes—causing imbalances—or on all
processes with a homogeneous rise in computational complexity on all processing
elements.

As discussed in Chap. 1, it is expected that applications running on future
embedded systems platforms will exhibit even higher levels of dynamism. This will
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be mainly due to the increased demand for data movement performance between
processing elements, both on intra- and inter-node levels, and more complex multi-
level memory hierarchies. Furthermore, the rise of many-core co-processors and
accelerators introduces new degrees of freedom such as offloading and scheduling.
For extreme-scale HPC systems, this trend will be even more critical.

The READEX project has developed and implemented a tools-aided method-
ology that enables HPC application developers to exploit dynamic application
behavior when run on current and future extreme parallel and heterogeneous multi-
processor platforms. READEX combines and extends state-of-the-art technologies
in performance and energy efficiency tuning for HPC with dynamic energy opti-
mization techniques for embedded systems. Many of the techniques developed for
HPC systems can also be fed back to the embedded systems domain, in particular
with the increasing performance seen in embedded multi-processor system-on-
chip [10].

The general concept of the READEX project is to handle application energy
efficiency and performance tuning by taking the complete application life-cycle
approach. This is in contrast to other HPC approaches that regard performance and
energy tuning as a static activity, which takes place in the application development
phase. With inspiration from system-scenario-based design, READEX has devel-
oped a (semi-)automatic dynamic tuning methodology spanning the development
(design-time) and production/maintenance (run-time) phases of the application life-
cycle. Furthermore, a novel programming paradigm for application dynamism was
developed that enables domain experts to pinpoint parts of the application and/or
external events that influence the dynamic behavior. This can reduce the energy
consumption even further, compared to a purely automatic approach.

The rest of this chapter is organized as follows: After a review of related work
and project background in Sect. 2, a description of the READEX concepts is given
in Sect. 3. This is followed by results from experiments with a realistic industrial
HPC application in Sect. 4. Section 5 concludes this chapter with a summary.

2 Auto-tuning of HPC Systems

Given that system-scenario-based design is fully covered in other chapters of this
book, this section focuses on how dynamic behavior is handled in HPC systems.

While a small number of dynamic auto-tuning methodologies and tools existed
for run-time optimizations [3, 20], there is currently no single standalone dynamic
auto-tuning framework with the capability to target the full breadth of large-scale
HPC applications being used in academia and industry, both now and on the road to
Exascale.

Still, several EU research projects are approaching the challenge of tuning for
performance and energy efficiency by either introducing entirely new programming
models or leveraging existing prototype languages. An example of the latter is the
ENabling technologies for a programmable many-CORE (ENCORE) project [5],
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which aims to achieve massive parallelism relying on tasks and efficient task
scheduling using the OmpSs programming model [19]. The READEX project takes
a different approach by developing a new generic programming paradigm, which
allows to express and to utilize dynamism of applications in the automatic tuning
process.

The Performance Portability and Programmability for Heterogeneous Many-core
Architectures PEPPHER project [1] has developed a methodology and framework
for programming and optimizing applications for single-node heterogeneous many-
core processors to ensure performance portability. With Intel as a key partner in the
project, READEX goes one step further and provides a framework that supports
the heterogeneity of the system in the form of tuning parameters, which enable
large-scale heterogeneous applications to dynamically (and automatically) adapt
heterogeneous resources according to run-time requirements.

The ANTAREX project [18] creates a domain specific language (DSL), which
distributes the code between multi-core CPUs and accelerators. An extra compila-
tion step is introduced to translate the DSL into the intended programming language.
While our work targets conventional HPC clusters, the ANTAREX project focuses
on ARM-based systems.

Nowadays, most performance engineering tools focus on collecting and pre-
senting information to the users, while only a few focus on the automation of
the performance optimization process (auto-tuning). One example of the latter is
the periscope tuning framework (PTF) developed in the EU FP7 ICT AutoTune
project [2, 15]. PTF automatically finds optimized system configurations for whole
application runs, effectively averaging the benefits of system adaptation over the
whole run-time of the application (static tuning). With these static auto-tuning
techniques, improvements in energy efficiency of up to 10% for application runs
have been achieved while keeping the performance degradation to a few percent [4].

PTF’s main principles are the use of formalized expert knowledge and strategies,
an extensible and modular architecture based on tuning plugins, automatic execution
of experiments, and distributed, scalable processing. PTF provides a number of
predefined tuning plugins, including:

• Dynamic voltage and frequency scaling (DVFS)
• Compiler flags selection
• MPI run-time environment settings
• Parallelism capping in OpenMP
• MPI master–worker pattern settings

PTF also provides an interface for the development of new plugins. It builds on
the common performance measurement tools infrastructure Score-P [11], which has
proven to be scalable on current petascale systems.
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3 The READEX Concept

The READEX concept combines the system scenarios methodology with automatic
energy and performance tuning into a holistic tools-aided methodology, spanning
major parts of the HPC application life-cycle, i.e., application development (design-
time) and production runs (run-time). Figure 6.1 provides a high-level overview of
the methodology.

3.1 Application Instrumentation and Analysis Preparation

During the first step of the methodology, the application is instrumented by inserting
probe functions around different regions in the application code. A region can be any
arbitrary part of the code, for instance, a function or a loop nest. The instrumentation
itself can be done automatically or by letting the user provide application domain
knowledge using a new programming paradigm.

The programming paradigm enables users to expose parameters, which describe
the dynamic behavior of the application to the READEX tool suite. These applica-

Fig. 6.1 Overview of the READEX methodology
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tion domain parameters enhance the identification of different system scenarios and
hence extend the adaptation of system configurations in order to improve overall
application performance and energy characteristics.

One example of these parameters is the definition of different input data sets.
Exposing such information to READEX enables the tools to attribute different
compute characteristics to the varying input. The paradigm also enables developers
to expose additional application-level tuning parameters to the tuning process, e.g.,
alternative code-paths that will be chosen based on the provided identifiers.

In addition to the optional information provided by the user, probe functions
are automatically inserted around user code regions and by linking instrumented
versions of relevant programming libraries using existing technologies from the
Score-P infrastructure. This allows for fine-grained analysis and tuning.

3.2 Application Pre-analysis

The READEX analysis strategy is based on the performance dynamics analysis
capabilities of PTF, which automatically characterizes present dynamism and
indicates the optimization potential. The latter gives the user an estimate of the
performance and energy efficiency gains that can be realized using the READEX
methodology.

In the pre-analysis step, the application is run once with a representative data set.
During this run, relevant timing information is recorded. The gathered performance
data reveals application regions with run-times above a certain threshold. The
instrumentation of fine-grained regions with run-time below the threshold is then
removed, e.g., through the definition of an instrumentation filter, to reduce the
perturbation of the application. This step prepares the application for all following
steps of the methodology.

In a second iteration, the application is run again with the same, or extended,
data set and relevant performance and energy metrics are collected. This results
in time-series of measurements representing temporal evolution of each region’s
computational characteristics over multiple application phases. Similarly to what is
described in the use-case scenario section of Chap. 2, each region’s execution, which
is represented by a point in this space, corresponds to a run-time situation (RTS).
A first analysis reveals whether relevant code regions exist that exhibit enough
dynamism to make the following tuning steps worthwhile. The dynamism can result
from differences in compute- and memory-bound operation, either between regions
or between different runs of a given region. Regions found to have such dynamism
are defined to be significant, and will be tuned in the following design steps. If
no such dynamism is detected the tuning should be aborted due to homogeneous
application behavior. Since the run-time tuning necessarily causes an overhead, a
minimum dynamism threshold is defined to ensure a satisfactory overall gain.
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3.3 Derivation of the Tuning Model

In order to build a tuning model that guides the adaptation of the system (both
application and platform) to the dynamically changing requirements, PTF, Score-P,
and the later described READEX Run-time Library are used to perform an auto-
matic search for optimal system configurations for the significant regions identified
in the previous step. To configure the platform according to each experiment, the
READEX Run-time Library (RRL) is used. Details regarding the RRL are given in
Sect. 3.4.

Exploration of the space of possible tuning configurations is controlled by PTF
tuning plugins. Each tuning plugin is responsible to tune a specific aspect, which
can include one or multiple related tuning parameters. READEX has developed
and supports a number of plugins for hardware, system software, and application
aspects.

The architecture of the design-time tools required to explore optimal system
configurations is depicted in Fig. 6.2. To determine the optimal platform configu-
rations, PTF runs and measures the instrumented application. Here, various system
configurations are evaluated in terms of the requested objective functions for the
identified RTSs. Afterwards, the results are stored in the RTS database.

Since the search space for optimal configurations is potentially large, a number
of possible search strategies were identified as part of the project. This includes
heuristics based parameter selection, inter-phase comparisons with an underlying

Fig. 6.2 Architecture of the design-time part of the READEX tool suite
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approximation of the expected objective function, or a simple comparison with the
objective function values taken during a baseline run.

After all relevant system configurations are evaluated for all RTSs, a scenario
identification module groups RTSs into a limited number of scenarios, e.g., up to
20. Each scenario is represented with a common system configuration. The bound
on the number of scenarios limits the frequency and associated overhead from
configuration switching at run-time. As in all system scenario approaches, it is
necessary to predict upcoming scenarios at run-time. This is done using the provided
identifiers. An RTS is mapped to a scenario based on its signature, i.e., the current
identifier values. An example of such an identifier is the call-path that has been
followed to reach the current region. A configuration selector is also generated. In its
simplest form, this is a function returning a set of tuning parameter values according
to a one-to-one mapping between scenario and configuration. A given scenario can,
for example, directly be used to specify the voltage and frequency setting to apply.
The set of scenarios, the RTS signatures pointing to the scenarios, and the system
configuration of each scenario, are stored in the form of a serialized text file as an
application tuning model (ATM), to be loaded and applied during production runs
at run-time.

3.4 Run-Time Application Tuning

Once the analysis is finished and the ATM is created, the application can be
optimized in production. For this, the READEX Run-time Library (RRL) is used.
It connects to the performance measurement infrastructure Score-P via a plugin
interface [17], and reuses the existing code instrumentation from design-time tuning.
The RRL reads the previously obtained knowledge about application dynamism,
stored in the ATM, to optimize the application’s energy consumption. For already
seen RTSs, the optimal configuration is directly extracted from the tuning model.
For unseen RTSs a calibration mechanism is used.

The architecture of the RRL is depicted in Fig. 6.3. Note that even though it is
included in the figure, PTF is not used during production runs. As mentioned in
Sect. 3.3, the RRL is used at design time to set the system configuration during
the search PTF performs for optimal configurations. At run-time, the RRL obtains
the scenarios with configurations from the ATM, which were generated by PTF at
design-time.

A production run of an application starts with loading the ATM into the tuning
model manager (TMM). When a new region is entered during the application
execution, Score-P notifies the control center, which passes the information to
the RTS Handler. The RTS Handler then checks if the region is significant and
gets the best configuration for the current region from the TMM. Finally, the
RTS Handler passes this configuration down to the parameter controller, which
configures the different parameter control plugins (PCPs). PCPs are responsible
for setting different system configurations like the CPU frequency or the number
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Fig. 6.3 Architecture of the READEX Run-time Library (RRL)

of OpenMP threads. They are employed both during the derivation of the tuning
model at design-time and during a production run.

During the application run, a calibration mechanism can handle unseen RTSs
and changes to the environment. The calibration is based on established machine
learning approaches, the details of which are outside the scope of this chapter. Once
the calibration detects a new optimal configuration for a certain scenario, the tuning
model is updated. This leads to a constantly improving tuning model.

4 Experiments

The READEX project considers two different metrics for evaluation of the project
success: the achieved improvement in energy efficiency compared to the default
system configuration, measured in energy-to-solution, and the time and effort
required to achieve this improvement compared to performing manual tuning.

For evaluation and validation of the project results, READEX has employed a
co-design process in which the auto-tuning methodology and the tool suite have
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1 int main( int argc, char ** argv ) {
2

3 // Initialize application
4

5 // insignificant region
6 read_mesh( ... );
7 // significant region, compute intensive
8 assemble_Vh( ... );
9 // significant region, compute intensive

10 assemble_Kh( ... );
11 // significant region, memory bound, MKL NUMA effects
12 gmres_solve( ... );
13 // significant region, I/O bound
14 print_output( ... );
15

16 // Finalize application
17

18 return 0;
19 }

Listing 6.1 BEM4I sketch

been developed in parallel with a manual tuning effort of selected applications and
computational libraries. The information exchange that resulted from this strategy
has benefited both, the creation of the tools-aided methodology, and the manual
tuning efforts.

The goal of this case study is to show how application dynamism can be exploited
to improve energy efficiency. The evaluation was done on the taurus system installed
at Technische Universität Dresden. The system is equipped with more than 1400
power-instrumented nodes with two 12-core Intel Xeon E5-2680v3 (Haswell-EP)
processors each. The power-instrumentation allows for scalable and accurate energy
measurements with a fine spatial and temporal granularity (CPU, memory, and
whole node with up to 1000 Samples/s) [9]. The tests were performed on a single
compute node. Hence, overall interconnect and distribution of processes in the
network do not influence the results. To further validate the READEX methodology
in the HPC environment the tool suite has also been tested on massively parallel
applications. Scalability experiments with the ESPRESO library developed at
IT4Innovations are provided in [16] but are outside the scope of this chapter.

Partial differential equations (PDEs) are often used to describe phenomena such
as sheet metal forming, fluid flow, and climate modeling. One of the numerical
approaches to solve PDEs is the boundary element method (BEM) as implemented,
for example, in the BEM4I library [13]. In contrast to volume based methods,
such as the finite element/differences/volume methods, BEM gives dense matrices
whose assembly (Vh, Kh) results in compute bound code. This fact is even more
pronounced when the assembly kernels are parallelized and vectorized as in the case
of BEM4I [14, 21]. However, as shown in Listing 6.1, BEM4I also uses the iterative
GMRES solver. This solver is based on the matrix–vector product as implemented
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in the Intel Math Kernel Library (MKL), which tends to be less compute intensive
and results in memory bound computation. Furthermore, printing the results for
visualization leads to an I/O bound region. This dynamic behavior makes the
BEM4I library suitable for testing the READEX methodology. The application was
compiled with the Intel 2017 compiler with -O3 -xcore-avx2 flags to enable
the AVX2 vector instruction set available in the Haswell CPUs. The environment
variable KMP_AFFINITY was set to compact,granularity=core.

For the experiment, both manual and READEX assisted tuning were performed.
Listing 6.1 shows the relevant regions to be the assembly of two system matrices
Vh, Kh, the iterative GMRES solver, and the I/O region, all included in a single non-
iterative phase region. The HW and run-time parameters that were analyzed include
the core/uncore frequency (ranging between 1.3 and 2.5 GHz/1.2 and 3.0 GHz,
respectively) and the number of OpenMP threads (ranging from 4 to 24). The results
that were obtained by automatic instrumentation with the READEX tool suite,
i.e., application pre-analysis to detect significant regions, PTF (generation of the
tuning model), and RRL (dynamic run-time switching), are compared with results
obtained using the MERIC tool (tuning model and dynamic switching) developed at
IT4Innovations for the purposes of manual application tuning. Note that READEX
automatically identified all regions previously annotated manually for MERIC. With
such an automatic instrumentation, tuning effort is decreased significantly.

Table 6.1 presents the HW and run-time configurations obtained by MERIC,
namely the default configuration, the static optimum applied for the whole phase,
and the optimal setting for each annotated region. It can be seen that the analysis
leads to expected results with high core frequency, low uncore frequency, and a high
number of threads for the compute bound assembly ( Vh and Kh). For the memory
bound solver (GMRES), the manual tuning results in a low core frequency, high
uncore frequency, and the use of eight threads. The latter overcomes non-uniform
memory access (NUMA) effects of the dual socket computational node. While
static savings reach 15.7%, the dynamic switching among individual configurations
increases the savings to 34.1%.

The results obtained by the READEX tools are given in Table 6.2. In comparison
to the default, the READEX approach was able to achieve 34.0% energy savings.

Table 6.1 Optimal frequencies and energy saving for the BEM4I solver (MERIC)

HW conf. Region Core freq. Uncore freq. Threads Energy saving Time saving
unit – GHz GHz – % %

Default Phase 2.5 3.0 24 – –

Static Phase 2.5 2.2 16 15.7 −6.2

Dynamic Vh 2.5 1.4 24 – –

Kh 2.1 1.4 24 – –

GMRES 1.7 2.2 8 – –

I/O 2.5 2.2 4 – –

All – – – 34.1 10.9
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Table 6.2 Optimal frequencies and energy saving for the BEM4I solver (PTF + RRL)

HW conf. Region Core freq. Uncore freq. Threads Energy saving Time saving
unit – GHz GHz – % %

Default Phase 2.5 3.0 24 – –

Dynamic Vh 2.5 1.4 24 – –

Kh 2.1 1.4 24 – –

GMRES 1.7 2.2 8 – –

I/O 2.5 3.0 8 – –

All – – – 34.0 10.9

Note that the fully automatic READEX tool suite is able to reproduce the optimal
settings from the manually tuned application.

Although this is not common for a general application, the tuning of energy also
leads to the decrease in run-time in the case of BEM4I. This is caused by NUMA
effects of the MKL solver—the tuned version runs on eight threads and due to the
compact affinity all threads run on a single socket.

5 Conclusions

Energy efficiency and extreme parallelism are the major challenges on the road
to Exascale computing. The European Union Horizon 2020 project READEX has
addressed these by providing application developers with a tools-aided methodology
for a combined design-time/run-time approach for dynamic adaptation to changing
resource requirements. This will significantly improve energy efficiency and perfor-
mance by exploiting the resources available to the application while reducing the
programming effort through the automation.

In order to achieve its ambitious goals, the project has been based on two proven
technologies: the system scenarios methodology as presented in this book and the
static auto-tuning known from the HPC community. This chapter has presented the
main concepts being used in the READEX project, as well as experimental results
demonstrating the type of dynamic behavior the project will exploit.

Contemporary and future embedded systems experience continuously increas-
ing computational capacities, e.g., through the use of heterogeneous many-core
platforms. Therefore, techniques developed in the READEX project, e.g., for auto-
tuning, parallel decision making, and run-time calibration, can be transferred back
into this domain.

Acknowledgements The research leading to these results has received funding from the European
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Chapter 7
System Scenario Application to
Dependable System Design

Nikolaos Zompakis, Dimitrios Rodopoulos, Michail Noltsis,
Francky Catthoor, and Dimitrios Soudris

1 Motivation and Related Work Comparison

Reliability is one of the most critical issues in digital design for ensuring functional-
ity in a least-intrusive way. Operational errors can be induced by stochastic factors
like random manufacturing defects, aging, and gate oxide break down effects or
temporary particle interference. The unpredictable nature of such events leads to
the deployment of reliability, availability, and serviceability (RAS) mechanisms
that automatically correct the potential errors, ensuring the system’s error-free
operation. For the first time, IBM introduces the acronym RAS as a term to describe
the robustness of a system in maintaining its availability and data integrity [15].
Considering that the shrinking of device dimensions has rendered the threat of
failure manifestation an essential design aspect of a system, several approaches have
proposed different RAS mechanisms, targeting either processor or memory failures.
In this direction, the exploration of error-correction codes (ECC) [10, 11] is widely
acceptable as an approach for recovering memory errors. Additionally, memory
sparing and mirroring [8] techniques are also popular solutions that exploit hardware
redundancy to ensure reliability. Respectively, transient errors on the processor
pipeline can be easily mitigated by restarting the CPU, activating an instruction
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rollback technique as mentioned in [13]. Each RAS instantiation has a timing impact
due to the required cycles needed to detect and recover the functionality errors which
depend on the failure type as well as the RAS mechanism itself. Related work [5] has
quantified this temporal overhead, introducing the term of performance vulnerability
factor (PVF).

Applications’ deadline restrictions demand the elimination of the PVF effects
apart from correcting functional errors. The definition of a frequency operation
guardband that ensures a positive slack that absorbs the timing overhead of
extra cycles due to such events is a straightforward solution that significantly
increases energy demands, but also prohibitive resource-consuming solution. Due
to performance fluctuations, the required guardband significantly increases the
energy cost. Though recent approaches [17] have improved the guardband mar-
gins, such solutions remain ineffective, especially for resource-restricted devices.
Hence, flexible approaches that detect the RAS interventions and take reactions
to mitigate the performance degradation should be studied. In this direction, the
exploitation of a dynamic voltage and frequency scaling (DVFS) technique to ensure
performance seems to be promising. Existing work [18] has developed a DVFS
energy-aware reliability technique investigating static and dynamic management
schemes, applying an earliest-deadline-first (EDF) scheduling. In fact, optimizing
performance while applying dynamic thermal management via task mapping in
many-core systems has been a thoroughly examined topic [3, 7]. In addition, studies
exist focusing on both thread-mapping methodologies and DVFS algorithms that
evaluate the use of the latter in real workload scenarios, targeting mostly low-power
concerns [6]. Other studies [2] combine DVFS and task mapping to provide trade-
offs between performance and reliability. In the domain of mixed criticality systems,
task migration is a popular technique [14] to develop fault-tolerant systems that react
based on the time criticality of the running task.

The majority of performance and resource-aware reliability approaches in
literature can be included in one of the previous indicative solutions, including the
guardband technique. The current study attempts to exploit the system scenario
concept and solve performance dependability issues. In addition, we present an
adaptive approach that imports innovative scheduling schemes, new to the system
scenario domain. The novelty in our implementation lies on identifying norms of
RAS performance interference based on the running application situations (RTSs),
enabling a partly proactive mitigation approach.

In a more elaborate comparison, we can distinguish some common characteristics
between the aforementioned approaches that are differentiated from our imple-
mentations, which provides improved design perspectives. The existing approaches
(1) activate system reactions in a task-level granularity, unable to exploit energy
and performance margins in the intra-task level, (2) follow a worst-case deadline
(WCET) approach in respect with the scheduling decision less in the study [2] that
exploits a selective task replication technique that adjusts the decision for each task
considering the input/output dependencies without avoiding WCET overestimations
in intra-task level, (3) utilize heuristics to dynamically manage system slack, and
(4) provide mostly reactive rather than proactive capabilities, expect from study [2]
that incorporates soft-error tolerance exploiting a genetic algorithm. Respectively,
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the current study: (1) schedules intra-task scenario-based [4] reactions, relying
on run-time system variability and thus exploiting resource trade-offs in a more
efficient manner, and being more efficient and broadly applicable, (2) based on the
scenario approach overcomes the constraints of a greedy WCET over-dimensioned
scheduling [4], achieving better resource exploitation, (3) instead of having heavy
computational heuristics to restrain system slack, a design-time analysis in RTS-
level permits a more accurate and cost-efficient identification of the operation
variability, and (4) incorporates proactive characteristics via the adjustment to the
estimated norms of the performance fluctuations, instead of relying on heuristic
algorithms (as in [2]). Additionally, we see that the former [14] is applied only on
multi-core architectures, a constraint that does not exist in our proposed scheme.
Lastly, compared to existing work in the system scenario scheduling [4], we add the
dependability context through substantial extensions.

2 A Scenario-Based Performance Dependent Solution

Considering the existence of error-correction mechanisms that intervene to fix errors
consuming extra cycles without warnings, the design of a reaction mechanism
that boosts the system operation to equalize the extra delay seems a reasonable
solution. The only way to speed up the operation of a digital system is to increase
the operation frequency. Thus, the exploiting of several DVFS schemes is the
only option. But an increase of the operation frequency can also increase the
power consumption and the thermal impact on the chip downgrading the energy
profile. So such actions have to be targeted and consistent for short time durations
corresponding to transient RAS events. In this direction, the system scenario can
organize the DVFS reactions.

The identification of several cases of RAS interfering cycles triggers correspond-
ing scenarios that apply respecting DVFS schemes. Considering the random nature
of the interfering cycles and the quantization of the scenario clustering, the existent
of a PID controller with a feedback loop ensures a smooth and consistent operation.
Thus, the PID controller cooperates with a scenario mechanism as follows. The
incoming RTSs that are identified from a scenario detector as pieces of system
execution are valued at a certain cycle budget through a scenario classification that is
used as reference for the expected operation cycles. Cycle noise being superimposed
on cycle budget introduces negative slack that pushes the PID controller to a new
DVFS boosting. The open issue is how the PID controller can act proactively. Due
to the RAS intervention randomness, the deployment of prediction mechanisms that
fully forecast the interfering noise at run-time is neither realistic nor cost-effective.
The key point is how to encapsulate in the reference cycle budget the gradual and
partly predictable performance of the platform. The goal is to provide a low-cost
run-time cycle budget mechanism that will provide opportunities for less slack
without eliminating it.

Outlining, the slack reclaiming mechanism exploits a system scenario detector
and the system scenarios provide the default cycle budget of the running RTSs.



130 N. Zompakis et al.

System scenarios are clusters of RTSs with similar cycle budgets based on the
principle of the cost similarity that is followed in any scenario application. The
hierarchy and the structure of the RTSs in the system scenarios is the key for an
efficient PID implementation. The effects of hardware degradation increase RAS
interventions so a static definition of system scenarios and an equally static cycle
noise formulation are not expected to yield dependable performance in an efficient
way. A more detailed description of the scenario-based PID controller follows at the
next subsection.

2.1 Scenario-Based PID Controller

A system scenario approach as refereed utilizes a PID controller with the mission
to mitigate performance degradation effects by applying suitable DVFS schemes.
The controller traces the time delay due to the RAS interventions, exploiting a
scenario detector. The latter provides the expected execution cycles for each run-
time situation (RTS) of the application, namely the cycle budgets (R̂ [n]). An excess
of a cycle budget is identified as a RAS intervention. The application RTSs have
been analyzed at design-time and have been clustered in a number of scenario cycle
budgets as later explained. During the application’s execution, the scenario detector
identifies the current RTS, monitoring specific application RTS-related variables
[4]. The PID controller recognizes the deviation from the scenario budget as a RAS
intervention and triggers a respective DVFS scheme that equalizes the produced
time slack. The slack for an RTS (s [n]) with a given cycle budget is the time
deviation between a reference frequency (mref ) operation and the current operating
frequency (mn). Figure 7.1 depicts the functionality of the proposed PID controller
which is thoroughly discussed in previous work [12] and although exploits cycle
budgets does not include the scenario concept. Table 7.1 explains the involved
variables. The aim of the PID controller in each identified scenario is to eliminate
either the negative slack (due to RAS intervention) or the positive slack (due to
frequency over-boosting).

The accurate identification of the running slack is critical to achieve optimal
PID responses and is directly correlated to the scenario definition. In this point,
it is important to examine in more details the meaning of the RTS and the system

Controller Knob Processor
m̂ [n] m [n]

Monitor

System Scenario Detection

x [n]
sref [n]

p [n]

e [n] C [n] ;s [n]
−

s [n−1]

R̂ [n]

Fig. 7.1 Block diagram of the PID controller [12]
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Table 7.1 Variables of the proposed controller [12]

sref [n]
Target slack specification (0 unless
else specified) x[n] Timing noise interfering with RTS

s[n − 1] Slack at the end of the previous RTS C[n] Actual budget of current RTS

e[n] Error signal sref [n − 1] − s[n − 1] s[n] Slack at the end of the current RTS

m̂[n] Proposed frequency multiplier R̂[n] Default timing budget for current
RTS

scenarios. An RTS is a deterministic piece of system execution with constant cost
dimensions that can be used as an execution unit [4]. The wealth of RTSs in a
real system is produced by any source of variation such as conditional branches
in functional level or workload fluctuations. In our analysis, each RTS respects a
timing deadline, as indicted by a default cycle budget and the applicable reference
frequency (mref ). Each system function corresponds to a sequence of RTSs. In
fact, we can easily expand our definition so that a sequence rather than one RTS
respects a timing deadline. However, this is outside the scope of our implementation
since we focus on working on RTS-level. The run-time identification of the RTSs
would provide accuracy to the estimation of the expected application’s execution
time in the PID controller (in Fig. 7.1). Nevertheless, the surplus of RTSs in real
applications renders their exploitation as cycle budget references prohibitive. The
system scenario approach [4] overcomes this issue by replacing the RTSs with
representative cases called system scenarios, paying a price in accuracy. Assuming
a workload of A different RTSs, each with cycle budget Ni , where i = 0, 1, . . . , A,

the goal of the methodology is to narrow down to B scenarios, each with cycle
budget estimators N̂j , where j = 0, 1, . . . , B and A >> B. The detection of the
cycle budgets can be implemented in a cost-efficient way in hardware or in software,
replacing RTSs with scenarios.

The key point in the definition of the scenarios is the efficient clustering of the
RTSs into groups based on their cost similarity. Considering that each RTS has
a constant cycle budget, several DVFS schemes provide different cost trade-offs.
Given a number of DVFS points on a processor, we can draw an energy vs delay
line for each RTS. Projection of a representative evolution of RTS instances on a
E-D Pareto space creates a hierarchy of RTSs based on their position in the cost
space, as shown in Fig. 7.2. RTSs closer to the start of the axes have more restricted
cycle budgets. The system scenarios cluster the metric space into scenario areas,
hiding the details of the individual RTSs. Each RTS in a scenario is represented by
the minimum RTS cycle budget (see Fig. 7.2, RTS3) to ensure the most restricted
deadline in the scenario. This is important considering that scenarios are used to
estimate the reference slack (sref ) in the PID controller. Moreover, this approach
creates an overestimated impression of negative slack for the other RTSs in the
scenario (RTS1 and RTS2) that leads to over-boosting frequencies with inefficient
energy results. Characterizing RTSs under the most restricted budget (MRB) of the
scenario inevitably introduces a clustering overhead (light gray and brown area,
see Fig. 7.2). As clustering overhead (ClRT S[i]) for each RTS is defined the cost
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Fig. 7.2 Pareto curve hierarchy into scenarios [20]

distances (D1 and D2) between the original position (OPRT S[i]) of the involved
RTSs (RTS1 and RTS2) from MRB (RTS3). Equation (7.1) formulates the problem.
This overhead manifests every time the RTS occurs at run-time. Thus, the total
clustering overhead (Cl_ovRT S[i]) will be proportional to the frequency of the RTS
appearance (Eq. (7.2)). Cl_ovRT S[i] represents the deviation between the reference
and the actual cycle budget and it is always negative since clustering tends to provide
more restricted deadlines compared to the optimal case where every RTS is treated
fully individually. The distance of each RTS Pareto curve expressed as clustering
overhead defines the scenario accuracy and represents the first clustering criterion
of RTSs into scenarios.

ClRT S[i] =
n∑

i=0

MRBRT S[i] − OPRT S[i] (7.1)

Cl_ovRT S[i] =
n∑

i=0

FrRT S[i] ∗ ClRT S[i] (7.2)

The second important aspect to decide is the scenario switching. We prefer
to keep scenarios stable as long as possible due to the transition cost between
the scenarios. This cost will normally depend heavily on the initial and final
state. Considering the average transition frequency (FrSen[i→j ]) from scenario j
to the next scenario j+1 and the respecting switching cost (SwitSen[j→j+1]), the
mathematical formulation of the total switching overhead (Swit_ovRT S[i]) is given
by the following equation:
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Swit_ovRT S[i] =
n∑

i=0

FrSen[j→j+1] ∗ SwitSen[j→j+1] (7.3)

Optimization approaches of the aforementioned overheads tend to be competitive
in respect to the targeted objectives. A decrease of the clustering overhead increases
the switching overhead and vice versa. A balance between them can be achieved
[20] by applying a suitable initial distribution of the RTSs into scenarios at design-
time.

Therefore, the exploitation of the scenario detector allows to the PID controller
to react at the presence of negative slack, enabling respective DVFS schemes.
However, the time to absorb the extra cycles can create transition effects with
temporary delays that can affect the stability of the application performance. The
next section examines how this instability can be avoided applying revisions of the
scenario sets at run-time.

2.2 Different Classes of Scenarios

Outlining the system scenario primitives, RTSs are discrete executions of TN
sequences, with a default cycle budget, while the most restricted deadline into a
scenario represents the fixed cycle budget for the entire RTSs. Due to variability of
the RTSs into the same scenario, overestimated constraints push the PID controller
to a frequency multiplier higher from what is required, thus partially mitigating
noise cycles and paying a price at energy consumption. A noise shift higher than
a limit creates negative slack and the PID controller is called to force to zero
with a frequency increase. On condition that the RTS positions into scenarios can
be updated at run-time the scenario detector can modify the RTS hierarchy by
re-clustering the existing scenario distribution. This process provides a run-time
adjustment of the RTS cycle budget estimations [4]. In the terminology defined in
Chap. 2, this implies that we incorporate the design- and run-time calibration steps
(see Fig. 2.6). This leads the PID controller to act partially proactively (see Fig. 7.3a)
considering RAS events that are gradually becoming a norm on the target processor.
To ensure a fully proactive operation [9] in a complete dynamic scenario approach,
a predictor has to provide a run-time trend of the incoming noise. Redistributing
the predicted slack across a future scheduling period in a globally optimized way
as pictured in Fig. 7.3b we will achieve an even better trade-off between delay and
energy. In the context of the current chapter, we focus on the scenario adaptivity
through re-clustering defining the conditions of the scenario modifications at run-
time. The incorporation of a predictor is not part of the current analysis and
represents an individual challenging issue that needs more elaborate research that
will be part of future work.
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Fig. 7.3 Flow charts (a) adaptive vs (b) dynamic scenarios

Fig. 7.4 Slack impact [19]
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2.3 Application of Adaptive System Scenarios

On the condition that RTS positions in the scenarios can be updated at run-time,
the scenario detector can modify the RTS hierarchy by re-clustering the existing
scenario distribution. This is related to the calibration step in the general system
scenario approach, as outlined in Chap. 2, Sect. 5.6. This process provides a run-
time adjustment of the RTS cycle budget estimations. If an RTS often appears with
a specific cycle noise, this RTS fits to a new scenario by removing cycles from its
budget equal to the noise. This new fit forces the PID controller to absorb the time
delay before its presence. Figure 7.4 presents the two trends. The RAS interventions
shift the RTS position far from the start of the axes. The re-clustering creates a
positive slack (see Fig. 7.4) that works as an offset of the expected negative slack
equalizing the time loss. The scope is to keep the RTS’s original position stable.
The RTS slack history is recorded and updated on fixed time windows, available
to be exploited at run-time. The re-clustering is applied with priority in RTSs with
the most intense cycle noise instances. This leads the PID controller to act partially
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proactive, considering that RAS events are gradually becoming a norm on the target
processor.

For each RTS re-positioning, an individual re-clustering decision aims to equal-
ize performance degradation as described in the following sub-chapter. Considering
the re-clustering decisions, the key point is to distinguish transient from (quasi-)
permanent cycle noise interference events. For example, a very brief cycle noise
burst that is never reoccurring should not be triggering a re-clustering process.
The hardware degradation effects that occur during operation lifetime cannot be
predicted in advance. Thus, an updated history trace of the slack per RTS is
needed to consider the error fluctuation during execution time. The current slack
(RT S_Slack[i]) for a moving average window of Kw RTS executions is given by
Eq. (7.4). After identifying a new trend in cycle noise manifestation, a re-clustering
of the RTSs into system scenarios follows:

SlackRT S[i] =

N∑
i=0

(RT S_Slack[N − kw + i])
kw

(7.4)

Algorithm 1 Re-clustering algorithm
1: sc_rts=detect_scenario(rts) 	 scenario identification
2: sl_rts = pid_controller(sc_rts) 	 slack identification
3: if sl_rts > 0 then
4: if rts_list(rts) then
5: update_rts_slack(rts, sl_rts) 	 update rts slack history
6: if check_slack_status(rts) then
7: Np=new_rts_pos(rts, sl_rts) 	 new rts position
8: Sc_fit=Find_scenario(Np) 	 best fitting to scenario
9: Merge (rts, Sc_fit) 	 merge rts to the new scenario

10: end if
11: else
12: store_rts_list(rts, sl) 	 new rts slack registration
13: end if
14: end if

Algorithm 1 provides a brief description of the re-clustering process. For each
RTS execution, its original scenario cycle budget (scrts) and cycle noise (slrts) are
recorded, while the traced RTS slack is registered to a list (rts_list (rts)). If the
RTS already exists in the list, its record is updated (update_rts_slack). A re-
clustering is triggered for a specific time window (check_slack_status(rts)) if
the status of the involved RTS shows a stable behavior. Also, information about
the distance from the neighboring scenarios (Find_scenario(Np)) is exploited to
recognize the optimal re-clustering decision, updating only the scenario data that
have changed. Each re-clustering (Merge(rts, Sc_f it)) is based on the new RTS
position (new_rts_pos(rts, sl_rts)) in the metric space after reviewing the noise
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updated data, ensuring that the RTS deadlines in the new scenario will be respected
with the minimum clustering overhead. The re-clustering is a parallel process that
does not interrupt the operation of the PID controller. In any case, the re-clustering
time can easily remain as fraction of the RTS operation time, due to the simplicity
of the RTS-reordering algorithm (Sect. 4). At the end of each re-clustering, the PID
controller triggers the suitable DVFS scheme, eliminating slack with the minimum
energy cost. A trade-off between slack and energy exists that will be explored in
Sect. 3 with simulation results.

2.4 Re-clustering Decisions

The re-clustering process changes the RTS hierarchy into scenarios by removing
from the default RTS reference budgets the cycle noise (Eq. (7.4)), artificially
creating positive slack by shifting the position of the RTSs into the scenarios
(see Fig. 7.4). This creates the impression of an extra delay to the PID controller
proportional to the removed cycles, triggering more aggressive DVFS schemes that
absolve the negative slack. Examining the re-clustering decisions that have to be
considered at run-time, we outline the following cases:

• In the first case, the scenario budget is restricted enough and no slack exists;
hence, there is no need for scenario change (see Fig. 7.5a). The added noise (red
shifted Pareto curve) activates a revision of the RTS budget (green Pareto curve)
that does not exceed the distance between the RTS and the scenario (Sc_2),
exploiting the clustering overhead as an offset. Thus, clustering overhead can be
utilized as a proxy of cycle noise tolerance. A high clustering overhead permits
wide RTS shifts, absorbing slack and paying the cost of overestimated DVFS
schemes. The next four cases cover situations where the slack cannot be avoided.

• In the second case (see Fig. 7.5b), in order to equalize the noise delay (red Pareto
curve), the revised RTS (green Pareto curve) is located just under the scenario
budget SC_1. Thus, Scenario #1 represents a new more restricted case due to the
RTS shifting that modifies the existing scenario budget.

• In the third case (see Fig. 7.5c), a new distinct scenario budget is created. Two
reasons lead to such a decision: (1) none of the existing scenario cycle budgets
cover the new RTS shift or (2) the creation of an individual scenario is more
cost-effective than merging with an existing scenario.

• In the fourth case (see Fig. 7.5d), the shifted RTS (green Pareto curve) is closer
to a neighboring scenario (SC_2) than to the original (SC_1). Thus, the RTS is
merged into the new scenario (SC_2) achieving a more optimal fit, considering
the distance.

• The fifth case (see Fig. 7.5e) is a combination of the second and the third
aforementioned cases. A neighboring scenario merges the revised RTS. However,
the position of the RTS in the new scenario is located just under the scenario
budget, changing the new scenario cycle budget as the most restricted case.
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Fig. 7.5 Re-clustering policies [19]

3 Experimental Results Based on Platform Simulations

The application under study is commercially used for spectrum sensing and band
allocation purposes [16], and constitutes an exploration space of about 800 RTSs,
clustered in 30 scenarios that achieve an efficient initial balance between scenario
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overheads [20]. We submit this workload to a simulator that has been presented
in the previous work [12], to study our proposed mitigation scheme. We will
focus on an implementation based on the system scenario approach with no re-
clustering mechanisms and also on an implementation that incorporates the scenario
adjustment concept and examine the efficiency of both configurations. For the sake
of completeness, we repeat the basic functionality of the simulator here. The PID
controller operates at RTS-granularity; thus, the scenario unit instantiates also the
cycle budget estimator N̂n in the same basis.

3.1 Platform and System Setup

Additionally, cycle noise is injected based on the values of Λ and M that represent,
respectively, the rate and amplitude of RAS events in terms of clock cycles. We
assume that cycle noise follows a bivariate Gaussian distribution with mean Λ

and M values (λ and μ) and σ (σ {Λ}, σ {M}). The timing and power models of
the simulator create traces from which DVF (deadline vulnerability factor) and
total energy can be deduced. Given the definition of cycle budget estimators in
Table 7.1 and their derivation, DVF expresses the per unit increase in execution
time required for an instruction stream, following the temporal overhead of invoked
RAS mechanisms. Respectively, PVF (performance vulnerability factor) expresses
the per unit increase in number of clock cycles required for a specific workload, as
a result of RAS technique invocation. It is noteworthy that all overheads of DVFS
actuations are included in both the timing and power models. Finally, at the end of
each RTS, the PID controller selects the frequency multiplier of the next iteration,
as detailed in Fig. 7.1.

The simulation results presented herein correspond to a set of random streams
of the target application RTS. The simulated workload assumes equally probable
RTSs. Cycle noise is injected by sweeping μ and λ values, while σ {M},σ {Λ} are
kept constant. The noise histogram for one stream of RTSs is shown in Fig. 7.6. In
fact, each measurement corresponds to a stream of RTSs and PID controller gains
are set following the tuning Ziegler Nichols method [1]. For each combination of μ

and λ, we present the average over 100 random measurements to provide insight
into the statistical variability of our simulation results. To highlight the benefits
of the scenario concept we will examine three test-cases: (1) a 30% frequency
guardband utilized to alleviate cycle noise, (2) a system scenario scheduling without
re-clustering capabilities, and (3) an adaptive scenario implementation that realizes
the aforementioned re-clustering schemes. A first conclusion of our experiments is
that apart from extreme noise cases (high μ and low λ values), the PID controller
manages to enable dependable performance, especially considering the increment
in PVF (see Fig. 7.7) which is the result of cycle noise injection.
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Fig. 7.6 Cycle noise for one
RTS stream

Fig. 7.7 Average PVF values
for 100 iterations [19]
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3.2 Dependability Results

From Fig. 7.8, we clearly distinguish the effectiveness of the adaptive scenario
configuration over the system scenario one. While in the system scenario imple-
mentation, DVF seems to balance to a fixed value close to zero, in the adaptive
scenarios implementation, DVF adjusts more accurately. The reader should keep in
mind that since DVF describes the increase in execution time due to cycle noise,
a DVF equal to zero implies that our configuration has successfully absorbed all
temporal overhead with no time penalty. In fact, the timing performance gain of the
adaptive scenario approach is 5% higher than that achieved by the system scenario,
while it is less effective than the guardband approach only for limited and extreme
noise cases.

For a transition period (0–2000 ms), the number of the adaptive scenarios is
fluctuating to reach to a stable state, as shown in Fig. 7.9. During this time, the
re-clustering process generates new scenarios, increasing gradually their number up
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Fig. 7.8 Average DVF values for 100 iterations [19]. (a) DVF adaptive scenarios. (b) DVF system
scenarios. (c) DVF guardband
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Fig. 7.10 Percentage energy deviations for 100 iterations. (a) Energy gain adaptive. (b) Energy
gain system. (c) Energy adaptive vs system scenarios

to 38 (1000 ms) and after this point some of the existing scenarios are merged to
finally reach the number of 33 (2000 ms). Thus, the adaptation process creates and
merges scenarios by applying the aforementioned re-clustering decisions (Sect. 4)
to find the optimum scenario hierarchy. When this is achieved (after 2000 ms), the
scenarios remain stable and the DVF comes close to zero.

3.3 Energy Results

The energy gain comparing (see Fig. 7.10a,b) the two scenario approaches with the
frequency guardband test-case is clearly beneficial and reaches up to 15%. The gain
is decreasing as the injected cycle noise profile becomes more aggressive (high μ

and low λ). This result is not unexpected, due to fact that the scenarios are stabilized
to a state similar to the guardbands for extreme noise cases. Hence, without
applying an over-boosting frequency policy with unnecessary energy consumption
results, both scenario approaches seem to ensure performance dependability. In fact,
considering the notional energy gain margins as highlighted by the energy deviation
between the guardband frequency as worst-case and the reference frequency as
basis, adaptive scenarios achieve an average exploitation of 83.9%, ensuring
performance dependability.

The energy consumption deviation between the system and adaptive scenario is
minor and does not exceed the 3% (see Fig. 7.10). This occurs due to the fact that
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the extra energy consumption from frequency boosting on the adaptive scenarios
is partially equalized by the less number of DVFS switches due to the adjustment.
Nevertheless, a fundamental trade-off exists between the achieved performance as
expressed by the DVF and the energy impact that will be examined in the next
subsection.

3.4 Design Trade-Offs

The key issue in the achievement of several trade-offs is the increase of the
reference cycle budgets both in system and adaptive scenarios. This is implemented
by applying homogeneously a percentage relaxation factor Frel to the MRB of
each scenario (Fig. 7.2), having an equal clustering overhead increase in each
scenario. Equation (7.5) formulates the new clustering overhead. This approach
provides better energy results due to less accurate slack estimations in the PID
controller and worst performance due to the increase of the clustering overhead.
Figure 7.11 presents the trade-offs between system and adaptive scenarios for
several relaxation factors (0–10%) and two noise instantiations. The Pareto curves of
the two approaches (adaptive vs system scenarios) seem to be very close, presenting
similar cost trade-offs (delay-energy) for a specific constraint area (0.04 < DV F <

0.08). The adaptive scenario appears just a little worse trend (longer distance from
the start of the metric axes) due to the extra implementation cost that they require.
We can observe that the adaptive scenario approach is of high value when strict
dependability constraints are demanded. In fact, it is clear that the system scenario
approach is unable to meet such demands. However, when timing constraints relax
(DV F > 0.04), the system scenario approach appears to be Pareto-optimal.

Cl′RT S[i] =
n∑

i=0

(1 + Frel) × MRBRT S[i] − OPRT S[i] (7.5)

Fig. 7.11 Performance (DVF) vs energy trade-offs. (a) Noise #1 (μ = 1 × 104, λ = 5 × 103). (b)
Noise #2 (μ = 5 × 104, λ = 5 × 103)
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4 Conclusion

In the context of the current chapter, we deployed an adaptive mechanism that
adjusts the system reactions in the presence of RAS interventions ensuring per-
formance dependability. The key point is the re-clustering of the existing system
scenarios with a flexible way absorbing the cycle noise that is gradually becoming
a norm during the observed application operation. The experimental results prove
the efficiency of the adaptive scenarios paying a low price in energy that does not
exceed the 3% compared to the static system scenarios. The simulation results prove
the efficiency of this approach, ensuring the system dependability constraints while
achieving an energy gain up to 15% compared to a guardbanding implementation
and exploiting in average 83.9% of the notional energy gain margins. Future work
consists of implementing a fully proactive mechanism that will further increase
performance dependability that will integrate the use of a predictor to prognosticate
future slack windows and further increase performance dependability.
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Chapter 8
Scenarios in Dataflow Modeling and
Analysis

Marc C. W. Geilen, Mladen Skelin, J. Reinier van Kampenhout,
Hadi Alizadeh Ara, Twan Basten, Sander Stuijk, and Kees G. W. Goossens

1 Introduction

In this chapter we illustrate the application of the scenario methodology to the timed
dataflow model of computation. Dataflow is an abstract mathematical model that
can be used to model streaming applications and the resources on which they are
realized. They are used, for instance, in the form of CSDF graphs in Chap. 4 to
model applications on DVFS enabled processor platforms. Moreover, they can be
effectively used to model flexible manufacturing systems, as discussed in detail in
Chap. 9.

Figure 8.1 shows a dataflow model of an H.263 decoder. The circles are
actors. They represent activities in the decoder. For example, the actor labeled vld
represents the activity of the variable-length decoder. Actors execute their activities
repeatedly. Actors have dependencies that determine their earliest activation times.
An activation of an actor is called a firing. The dependencies are shown as incoming
arrows, called edges, with tokens on them. There can be dependencies on firings
of other actors, but also on earlier firings of the same actor or on external events.
When an actor fires, it takes (consumes) tokens from its incoming dependencies. The
firing takes a certain amount of time, after which the firing completes and produces
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Fig. 8.1 A dataflow model of
an H.263 decoder

tokens on the outgoing dependencies, thus satisfying the firing dependencies of
other actors. It can also output tokens to the environment. Tokens in the model
represent dependencies between firings. In the concrete systems such dependencies
could be due to data dependencies between computations, but also due to resource
dependencies, for example, the order of scheduling on a processor.

Different complementary views exist on dataflow models. Sometimes the func-
tionality of actors is emphasized, where the model describes how actors compute
output tokens with values from its input tokens with values, for example, in Kahn
process networks [24]. Usually, actors represent functional, deterministic, and state-
less behavior in terms of their computations. Another view on dataflow models
emphasizes their timing and performance. This is the view we focus on in this
chapter. In this view tokens do not carry values, but are pure dependencies. Actors
have execution times that make that tokens are produced, or actors start, at certain
moments in time. The timing has implications for performance properties such as
throughput and latency. The models and their semantics are discussed in more detail
in Sect. 3.

Dataflow models have a number of important strengths. They make concurrency
very explicit. Actor firings that have no dependencies on one another are con-
current. The explicit concurrency can be exploited to optimize performance and
for scheduling purposes. Many dataflow models (though not all) are determinate.
In a determinate model, even though certain computations can be performed in
arbitrary orders because of concurrency, the final result is independent of that
order, which separates the concerns of correct functionality and scheduling. An
important strength for the timed view on dataflow models is that they are monotone:
if some input dependency is delayed (pushed into the future), then any event in
the model (actor firing, token production) cannot happen earlier than its original
time. Consequently, also, when an actor firing duration is shortened, no event in the
model can occur later than in the original model. This property allows one to make
simple, deterministic worst-case abstractions of systems, which can be analyzed
very efficiently. This is discussed in more detail in Sect. 2.

Dataflow models also have some weaknesses that need consideration. The
more expressive dataflow models are generally also more difficult to analyze.
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Kahn process networks (KPNs) [24], for example, allow general determinate data-
dependent behavior to be expressed, such as an actor that produces a different
number of output tokens depending on the value of an input token. Analysis of KPN
models, however, is very hard. The problem of finding minimal buffer sizes that
allow deadlock-free execution, for example, is undecidable [14, 32]. At the other
end of the spectrum we find dataflow models with limited expressiveness, such as
synchronous datalow (SDF) [25] in which the actors are deterministic and produce
and consume fixed numbers of tokens. They are much more amenable to analysis
and synthesis techniques, such as optimal scheduling [38] or buffer sizing [30, 40],
although these problems are still in higher complexity classes [30]. These more
static dataflow models do not suffice to model modern dynamic applications without
being overly pessimistic about their performance and resource usage. Because of
this trade-off between expressiveness and analyzability, many slightly different
dataflow models have appeared in literature [42]. In this chapter we show how
the scenario methodology can be applied to dataflow models to arrive at a model
that strikes a particularly useful balance between the expressiveness needed to
address the dynamic variation in modern applications and architectures, to limit
the overestimation of resources and to preserve significant analysis and synthesis
possibilities.

Dataflow models are suitable for applications that consist of fragments of
sequential behavior that are internally deterministic and static and that are composed
into parallel applications that may exhibit non-deterministic variation in execution
of those behaviors. The dataflow models are also mostly suitable for applications
that repetitively perform the same, or similar, behavior, possibly operating on or
transforming streams of data.

The H.263 application is an example of an application that exhibits significant
amounts of variation. In particular, the amount of data spent to encode the difference
between successive video frames strongly depends on the degree of difference
between the frames. This is expressed by the number of macro-blocks used to
encode the difference. In the model, this is the number of tokens exchanged between
the vld and the idct actors, indicated in Fig. 8.1 with the consumption rate of n,
tokens per firing, which may take different values for different frames. One can
prove that a static model with a fixed number of blocks (the maximum value that
n may take) is a conservative abstraction, but it is in many circumstances too
pessimistic. Alternatively, a model can be made that exactly defines the number
of macro-blocks and how it depends on the data input, but such a model would be
too complex for efficient analysis. The scenario methodology proposes to group the
run-time situations that occur in a limited number of scenarios in which the worst-
case resource usage overestimates the actual usage only by a moderate amount. We
do this by grouping the number n of macro-blocks into ranges within which we use
the maximum as a worst-case representative. For example, the run-time situations
in which there are 30–40 macro-blocks may be represented by a single scenario in
which the work load is assumed to correspond to 40 macro-blocks, the worst-case
of all run-situations covered by the scenario. Similarly, the actor execution times in
the model are selected to correspond to worst-case execution times of the software.
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Besides the scenarios due to varying number of macro-blocks, in H.263 variation
occurs due to the fact that some frames are encoded independently from previous
frames. We capture the behavior of that run-time behavior by a separate scenario as
well.

There are many examples where the same approach applies, for example, in
the channel equalizer model in [27]. In this system periodically one of every
eight symbols triggers a channel estimation computation with extra computational
requirements. In this case the dynamic variations exhibit deterministic periodic
patterns. Cyclo-static dataflow models can be used to represent this behavior.
The scenario-aware dataflow (SADF) model, discussed in this chapter, generalizes
cyclo-static dataflow (CSDF).

A last example to mention is a WLAN receiver [28]. Figure 8.2 shows the finite
state automaton that specifies the possible sequences of scenarios of this model. The
reception of a frame consists of a sequence of different activities: synchronization,
header processing, payload processing, and positive or negative acknowledgement
after error-detection. We use scenarios to capture the variations in the run-time
situations associated with these activities. Switches between activities (scenarios)
are non-deterministic. Synchronization with the sender may be lost at any time and
a frame may contain a different number of payload symbols. They can therefore
not be expressed by CSDF. However, their occurrences are constrained to particular
patterns. We want to be able to exploit this knowledge. The finite state automaton
of Fig. 8.2 encodes the possible sequences of scenarios. Loss of synchronization
causes a transition back to the synchronization state to be taken. The self-transition
on the payload state is used when another payload symbol follows in the frame.
When the frame ends, the scenario changes to the acknowledgement scenario. Note
that it is conservative in the sense that it still allows some sequences of scenarios
that cannot occur in reality. For instance, it allows for arbitrarily long sequences of
payload symbols, even though under the real protocol constraints there can be no
more than 256. This could be encoded in a finite state automaton, but it would have
a large number of states. Possibly more compact representations could be applied
such as the regular expressions used by Ara et al. [1] to obtain a compact and exact
representation.

The behavior in the individual scenarios is defined by dataflow graphs. Figure 8.3
shows the behavior of the sync scenario and Fig. 8.4 shows the behavior of the

Fig. 8.2 Specification of the possible scenario sequences
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Fig. 8.3 Dataflow graph of
the sync scenario

Fig. 8.4 Dataflow graph of the payload scenario

payload scenario. Other examples of applications modeled with SADF can be
found in literature [1, 27, 29, 43].

2 Scenarios in Dataflow Modeling

2.1 Relation to the Scenario Methodology

The essential property of the SADF model is that it maintains as much as possible
of the determinacy of dataflow behavior while introducing the possibility for non-
deterministic variation in the form of scenarios as elaborated on the H.263 decoder
of Fig. 8.1. Every scenario is represented by an SDF graph that represents the
worst-case from a multi-dimensional cost perspective within the cluster of run-time
situations it represents.

The concept of SADF lies perfectly within the general scenario methodology as
discussed in Chap. 2. In particular, the system scenario methodology is a five step
approach in which each step has a design-time and a run-time phase. The first step of
the methodology is identification, performed at design-time, in which identified run-
time situations are clustered into scenarios based on a particular multi-dimensional
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Fig. 8.5 Gantt chart of an execution of the WLAN model

cost perspective. In terms of SADF, the identification step entails the identification
of SDF-like regions in dynamic systems under consideration. The so-identified static
regions are called scenarios. An aspect that is particular to the dataflow approach
is that such regions can span activities in both time and space. For example, in
the Gantt chart of the WLAN example in Fig. 8.5 we observe that the scenarios
(differently colored parts) follow a pipelined structure and overlap in time. More
about methodologies that enable the identifications of these regions can be found
in [20, 33].

The second step of the system scenario methodology is known as prediction,
where a scenario has to be selected from a scenario set based on the parameters
of the run-time situation. In SADF the selection options can be constrained by
a model that defines the possible scenario occurrence patterns [42, 43]. In case a
finite state automaton is used, the automaton is generally non-deterministic where
the non-determinism may have one of the two following roles: a descriptive and
a constraining role [23]. Within the descriptive role, non-determinism captures an
aspect of the world that is not completely known and that behaves in an unpre-
dictable manner. Within the constraining purpose, the non-determinism designates
different possibilities for implementation. Within the system scenario methodology
the descriptive non-determinism is more pronounced in the sense that it arises
from the deliberated decision to ignore the facts which influence the selection [22].
In software, these facts are often values of certain control variables. In a cyber-
physical system, they could be uncontrollable events. Section 4 discusses how
the, in the former situation, run-time prediction activities can be made explicit if
SADF is used as a programming model. In addition to non-determinism, SADF
supports the specification of probability mechanisms that govern the choice between
scenarios [43]. Such quantitative information about the likelihood of scenario
transitions can be used for analysis purposes or to decide on scenario switching
activities when cost is involved with the switching itself.

The third step is called exploitation. At design-time, it involves optimization that
is applied based on the knowledge of the scenario structure and patterns and at run-
time it is the execution of the scenario. In the SADF context, the design-time phase
involves SDF-related transformations like multi-rate expansion, retiming, pipelin-
ing, and unfolding with the purpose of optimizing graph throughput, minimizing
code size, mapping to processors and memory, etc. [3, 38]. The run-time phase
entails scheduling and execution of the scenario SDF graph.

The fourth step of interest is called switching, which is the act of run-time
reconfiguration to enable the execution of another scenario. In the context of
SADF and software-intensive systems, each scenario in the SADF graph could,
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for example, use a different mapping to processors or memory. To implement
this, a run-time reconfiguration mechanism is employed that can transfer data
items (tokens) and code (actors) between different memories whenever a scenario
switch occurs [42]. Stuijk et al. [41] present a design flow that maps a throughput-
constrained application, modeled with an SADF to an MPSoC.

The final, fifth step is called calibration that collects information about values
of run-time parameters and further adjusts the system to optimize against a certain
cost function. Calibration is only meaningful when performance constraints are soft
constraints or to optimize average-case behavior in the absence of constraints. In the
context of SADF, this step may have counterparts, such as calibration of worst-case
executions times, but such approaches have not been worked out as yet.

2.2 Abstraction and Refinement in Timed Dataflow

We represent run-time situations in a scenario by worst-case behavior of the
scenario, or a tight upper bound on its worst-case behavior. In general systems it
may be difficult to identify the worst-case behavior due to complex interactions
between components or the environment, or due to resource arbitration. The longest
execution time of a single task may, for instance, not always lead to the longest
execution time of the overall application. Such an effect is often called a timing
anomaly [26].

Dataflow models are monotone (more generally, max-plus linear, see Sect. 3.2)
and do not exhibit such timing anomalies. This has the advantage that the worst-case
situation can be easily identified and corresponds to the actors taking their largest
execution times. This holds within a single dataflow graph, but also compositionally,
i.e., when they are placed in a context, for example, when dataflow graphs are built
hierarchically in a modular fashion. If a dataflow graph consumes inputs from its
environment and produces outputs to the environments, then it can be formally
shown that any run-time behavior represented by the scenario performs at least as
good as the scenario representative in the following sense. Each of the outputs are
produced at times, no later than they are produced in the representative behavior if
the inputs are provided no later than in the representative behavior. This establishes
a very precisely defined, formal abstraction–refinement relation between the run-
time situations in the scenario and the representative behavior [16], in which the
representative behavior is the abstraction and the concrete run-time situations are
refinements of that behavior.

An important property of the abstraction–refinement relation is that non-determi-
nistic systems (executions may vary non-deterministically under data or resource
dependencies) can have deterministic abstractions (a dataflow model with fixed,
deterministic, worst-case execution times). This has significant advantages for
performance analysis. Only a single, deterministic behavior (the abstraction) needs
to be verified and if it satisfies its performance requirements, then all the non-
deterministic refinements are guaranteed to also satisfy those performance con-
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straints. This avoids many of the state space explosion issues associated with the
verification of non-deterministic systems [46].

Within the scenario approach, the SADF model is used to define such an
abstraction of the actual behavior and concrete run-time situations of the system.
Moreover, the explicit goal is to define the scenarios such that the abstraction is not
overly pessimistic compared to the run-time situations that it represents.

3 Modeling and Analysis of Scenario-Aware Dataflow

3.1 The Scenario-Aware Dataflow Model

This section gives a detailed definition of the scenario-aware dataflow model. We
present a formal definition in which we abstract from the streams of data values that
are exchanged in the models as well as from the functions that the components
compute. We make this abstraction, because we primarily deal with the timing,
performance, and resource usage of the models to act as models of scenarios, for
which the data values are irrelevant. We do not deal with the functionality that the
dataflow graphs realize. An SADF graph consists of a finite set S of scenarios, a
mapping σ : S → G that maps each scenario to a static dataflow graph, i.e., an
SDF graph, for that scenario (G denotes the set of all static dataflow graphs), and a
language L ⊆ Sω that defines all the possible, infinitely long, scenario sequences.
We consider infinitely long scenarios sequences, because many applications we
consider are stream processing applications or continuous production machines. The
model and theory can, however, be similarly applied to finite scenario sequences.
In the WLAN example, S = {sync, header, payload, ack}. The definition of the
language of scenario sequences for the WLAN application is discussed later.

A static dataflow graph σ(s) of a scenario s ∈ S consists of a set A of actors and a
set D ⊆ A×A of dependencies between these actors. (For simplicity we assume that
at most one dependency exists between any pair of actors, although such a restriction
is not necessary, for instance, by defining D as a multiset.) Actors have an execution
time, given by the function τ : A → R

≥0. A dependency (a1, a2) ∈ D expresses that
the firings of actor a2 depend on the firings of actor a1. The graph associates with a
function i : D → N to every dependency d ∈ D a number, i(d), that determines the
precise dependency of firings as follows. In a so-called single-rate graph, it enforces
a dependency of firing n+ i(a1, a2) of actor a2 on the completion of firing n of actor
a1 for all n ∈ N. Operationally, we can think of actor a1 producing tokens (one for
each firing in a single-rate graph) that are subsequently consumed by firings of actor
a2 (also one for each firing in single-rate graph), with i(a1, a2) tokens being initially
present. Not all graphs are single-rate graphs, i.e., produce and consume exactly
one token with each firing and each dependency. Graphs that are not single-rate
are called multi-rate and some of their actors produce or consume larger, but fixed,
quantities of tokens with each firing. For example, the n tokens consumed by a firing
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of actor mc from the actor vld in the H.263 model of Fig. 8.1. We use π(a1, a2) to
denote the rate at which actor a1 produces tokens on the dependency (a1, a2) and
ψ(a1, a2) to denote the rate at which actor a2 consumes tokens. In general, firing k

of a2 depends on firing m of a1 if the ranges [k · ψ(a1, a2), (k + 1) · ψ(a1, a2) − 1]
and [m · π(a1, a2) + i(a1, a2), (m + 1) · π(a1, a2) + i(a1, a2) − 1] overlap, i.e., if
firing m of a1 produces a token that is consumed by firing k of a2.

Note that firings of an actor have a logical ordering (when we talk about firing k

of some actor a). Most of the time, the logical ordering coincides with the temporal
ordering in which the firings occur, but this is not necessarily the case. Firings of the
same actor can be concurrent (this is called auto-concurrency) and occasionally even
out of logical order (some firing k starts before firing m although k > m). In models
in which firings necessarily occur in the same order, logically and temporally, the
token dependencies exchanged between actors can be seen as a FIFO queue and are
also often implemented in that way. If firings can be out of order, then a more general
implementation is needed, such as a windowed cyclic buffer [4]. Many discussions
in literature assume that firings occur in temporal order and that dependencies are
FIFOs, but such a restriction is not necessary. When actors can complete their firings
out of order and the dependencies are realized in FIFO order, then the functionality
of the graph may be compromised.

In a single scenario instance, the actors in the dataflow graph of that scenario fire
a fixed number of times. Often, this is a minimal, non-empty collection of actor
firings after which the graph returns to its original state in terms of tokens and
dependencies. This collection of actor firings is called the repetition vector of the
graph [25, 38]. This kind of scenario is called a strongly consistent scenario [43].
In general, however, an arbitrary collection of firings may be defined, denoted with
a function ρ : A → N that assigns the number of firings to each actor. This may
leave the tokens on different edges in the graph than where they were at the start of
the scenario. An SADF graph that uses this is called a weakly consistent graph [17],
assuming that it is still consistent in the sense that in the long run, no matter which
scenario sequence it executes, the graph does not deadlock and the number of tokens
that can accumulate on any channel is bounded a priori. In general, we will associate
a scenario with an SDF graph and a corresponding repetition vector.

For performance analysis purposes, a reward specification r : S → R may be
additionally defined that associates with every scenario a real-valued quantity that
captures the amount of progress that is made by that scenario. For example, the
throughput requirement for the WLAN application is to process one OFDM symbol
every 4μs, but only the scenarios sync, header, and payload process one OFDM
symbol. The ack scenario does not. This is captured by assigning a reward of 1 to
the former scenarios and a reward of 0 to the latter.

Finally, an SADF model needs to define dependency relations across scenarios,
for instance, in the WLAN model the processing of a symbol updates the channel
estimation and synchronization parameters. Those results are inputs to the process-
ing of the following scenario. Tokens are used in the SADF model to represent such
dependencies. This is done by defining for every scenario a set of initial tokens,
tokens that are present in the graph in its initial state, that carry dependencies from
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earlier scenarios, and final tokens, tokens left in the graph at the completion of the
scenario, that can carry over dependencies to the following scenarios.

3.2 The Semantics of Scenario-Aware Dataflow

The behavior of an SADF graph is non-deterministic in terms of the sequence
of scenarios from the language L that it executes. This is in fact the only
non-deterministic element in the model, the scenario behaviors themselves are
deterministic. This non-deterministic behavior of the model can be due to, for
instance, data-dependent behavior in the actual system that the model abstracts from.
For instance, the number of macro-blocks in a video frame in the H.263 decoder is
encoded in the video bit stream, but the model abstracts from the values in that
stream. This abstraction is discussed in more detail in Sect. 4.

Figure 8.5 shows the behavior of the WLAN receiver that corresponds to a
scenario sequence starting with sync ·sync ·header ·payload ·payload ·payload ·
ack in the form of a Gantt chart. Different colors have been used in the figure to
represent different scenarios. The rows in the chart correspond to actors and show
the firings of those actors. Actors start their firings as soon as all dependencies
are satisfied and the firings take an amount of time that is fixed per scenario, but
may differ between scenarios. Some actors may fire only in some scenarios. In the
example, actors crc and ack fire only in the ack scenario (colored blue).

An important observation to make is that the executions of the scenarios overlap
in time. This happens because the different dependencies that carry over from one
scenario to the next are satisfied at different points in time and the actor firings in the
upcoming scenario start as soon as possible. This is an important advantage of the
SADF model, because despite this pipelined execution, it can deal with scenarios in
isolation in a compositional manner for all analysis and synthesis purposes.

The view of the behavior of an SADF presented above is called its operational
semantics and it is the most intuitive view to understand how the model operates.
However, it is not the most convenient for mathematical analysis. To understand the
mathematical properties of the model, from a temporal point of view, we observe
that actor firings wait until all of their dependencies are satisfied, after which they
fire for a constant duration. The completion of the firing, in turn, satisfies new
dependencies. The time of enabling of the firing can be computed as the maximum
of the times at which the individual dependencies are satisfied and the completion
time of the firing is computed by adding the execution time to that. We see that
the equations that determine how fast the graph executes are constructed from
the mathematical operators max and +. A lot is known about the algebra that
emerges from these two operators [2, 21], which is called max-plus algebra. In
particular, and very importantly, it is known to be a linear algebra and it enjoys
many of the properties of common linear algebra and has been extensively studied
in literature [2, 7, 11, 21].
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One of the properties of linear algebra that we use is the fact that a linear system
has a canonical representation as a matrix that computes the output and/or next
state from the inputs and/or starting state. In the case of a static dataflow graph we
consider the initial state of the graph as the time stamps (sometimes called daters)
of the initial tokens in the graph, the times at which the initial dependencies are
satisfied. Some graphs have open inputs consuming tokens from the environment.
In that case the time stamps of those tokens (not their values!) are considered the
inputs of the linear system. After completion of the collection of firings we model
by the matrix, the time stamps of the final tokens in the graph represent the next
state and any tokens produced on open outputs are the outputs of the system. This
leads to an equation of the following form [16, 35]:

[
x[k + 1]

y[k]
]

=
[

A B
C D

] [
x[k]
u[k]

]
(8.1)

In this equation, the vector u represents the inputs, vector x[k] the current state,
vector y the outputs, and vector x[k + 1] the next state. A, B, C, and D are
appropriately chosen matrices that precisely characterize the temporal behavior of
the scenario. Note that the matrix–vector multiplication in this equation is in max-
plus algebra, not classical linear algebra.

In case the model is closed, i.e., if it does not have inputs or outputs, then the
following simple equation remains:

x[k + 1] = Ax[k]

In an SADF graph, every scenario s can be individually characterized by a set of
matrices As , Bs , Cs , and Ds . As an execution follows a particular scenario sequence
from the language L , the behavior is determined by a sequence of multiplications
with matrices corresponding to the scenarios. In linear systems terminology, an
SADF graph is a switched linear system in the max-plus linear algebra [44].

We exemplify the max-plus representation using the example SADF of Fig. 8.6.
The scenarios are shown in the rightmost part of the figure. We initially assume that
the dashed arrows, representing open input and output channels, are not present. The
graph has two scenarios: a and b. Each scenario graph consists of three actors: A, B,

a b
B
a:2
b:3

A
a:1
b:1

C
a:2
b:1

Fig. 8.6 Example SADF graph
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and C. Operationally, a scenario consists of a single firing of each of the actors. The
difference between the scenarios is only in the firing delays of actors B and C. In
particular, in scenario a the firing of actors B and C will take 2 time units each, while
in scenario b the firings will take 3 and 1 time units, respectively. Consequently, the
scenario matrices differ. The matrices can be computed as explained in [15]. Here,
we present the outcomes:

Aa =
⎡
⎣ 1 −∞ 3

1 −∞ 3
−∞ 2 −∞

⎤
⎦ and Ab =

⎡
⎣ 1 −∞ 2

1 −∞ 2
−∞ 3 −∞

⎤
⎦

In the matrices, entry [A]i,j specifies the time distance between the time stamp of
initial token j and the time stamp of the final token i. In our example, the initial
tokens coincide with the final tokens with token indices increasing from left to right
w.r.t. the rightmost graph in Fig. 8.6. An entry −∞ indicates that the corresponding
tokens are independent.

We now turn our attention to the dashed input and output channels of the scenario
graphs of Fig. 8.6. Their behavior is included by also specifying the matrices B, C,
and D of Eq. 8.1. Matrix B captures the dependency of the final internal state on
the input token. In this case it is a column vector as there is only one input token
consumed. It is identical for both scenarios and has the value:

Ba = Bb =
⎡
⎣ 1

1
−∞

⎤
⎦

Only the left two tokens, x1 and x2, depend on the input and the timing distance
is the execution time of actor A. Matrix C represents the dependency of the output
token on the tokens of the initial internal state. In this case it is a row vector with
the following values for the scenarios:

Ca = [−∞ −∞ 2
]

and Cb = [−∞ −∞ 1
]

In both cases the output only depends on the rightmost token, x3, and the timing
distance is the execution time of actor C. The final part is the matrix D, which in
this case reduces to a scalar, because there is only one input and one output, with
the trivial value of −∞, because there is no direct dependency from the input to the
output.

Da = Db = −∞

The characteristic matrices completely define the timing of the scenarios. The
behavior of the SADF consists of sequences of scenarios in the language L .
The language of scenario sequences can be specified with formalisms to define
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languages over a finite alphabet (in this case the set of scenarios). Well-known
examples are finite state automata (FSAs) and regular expressions (both are in fact
equally expressive). In the example SADF of Fig. 8.6, the scenario sequences are
specified by the FSA on the left. It defines the language of all sequences of scenarios
a and b that start with the scenario a. In [1], the language of scenario sequences is
expressed with regular expressions including an explicit repetition construct, leading
to a compact representation with an efficient analysis.

One can optionally include information about the likelihood of the occurrence
of sequences of scenarios. For instance, by adding probabilities to the finite state
machine, resulting in a Markov Chain representation that defines a σ -algebra on the
language L . This gives the model well-defined notions of stochastic behavior, such
as expected throughput or variance in latency [43].

The semantics we have introduced can be used to define the explicit state space
of an SADF graph in which the scenario sequences are defined by an FSA. The
state of an SADF can be captured by a combination of the current state of the FSA
and the current time-stamp vector of the tokens. For example, the initial state of

the SADF graph in Fig. 8.6 is the pair
(
sa,

[
0 0 0

]T )
. After executing the scenario

a and the FSA non-deterministically moving to state sb, the state would become(
sb,

[
3 3 2

]T )
. Note that in many discrete as well as continuous and hybrid models,

the state of a state space refers to a snapshot of the integral system at some point
in the (physical or modeling) time domain. For SADF, and max-plus models in
general, this is not the case. It refers, instead, to the state before or after the execution
of certain scenarios, where the elements of the time-stamp vector of such a state refer
to possibly different time stamps in the time domain.

Every scenario execution leads to a discrete transition in the state space as the
FSA moves to a new state and the time-stamp vector changes accordingly. Naturally
such a state space would be infinite, as the time stamps increase and diverge towards
infinity. Such an infinite state space could not be constructed in practice and could
not be used for any analysis. We therefore apply a normalization strategy to keep the
state space finite. This strategy is based on the observation that the scale of a time-
stamp vector has no impact on the possible future behaviors of the SADF in a given
state. If an SADF, from a given state (s, x), can perform a sequence of scenarios
leading to a state (s′, x′), then the state (s, x + c) can perform the same sequence of
scenarios leading to the state (s′, x′+c) for any c ∈ R. Therefore, we only explicitly
record a state using its normalized time-stamp vector, i.e., as x − c for c ∈ R such

that |x−c| = 0. Hence, the state
(
sb,

[
3 3 2

]T )
is recorded as

(
sb,

[
0 0 −1

]T )
. This

way the relative differences of the time stamps are recorded, but not their absolute
values. To be able to account for the amount of time passing in the transition from
the initial state to this state, the normalization constant c (in the example c is equal to
3) is associated with the state transition. If we follow this approach for the example
of Fig. 8.6, we arrive at the finite state space that is shown in Fig. 8.7 (the bold and
dashed arrows and circles are explained in the following section). The transitions in
the state space are additionally decorated with the scenario that is executed.
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Fig. 8.7 State space of the SADF of Fig. 8.6

The precise definition of the state space of an SADF is as follows. The set � of
states of the state space are pairs:

� = {(q, x) ∈ Q × (R ∪ {−∞})n | |x| = 0}

where Q is the set of states of the FSA and n is the size of the state vector. The
transitions ((q1, x1), d, (q2, x2)) of the state space are triples from � × R × �,
such that (i) there is a transition from state q1 labeled with scenario s, to state q2
in the FSA, (ii) x2 + d = Asx1. We usually refer to the state space as only the set
of all states that are reachable from the initial state (q0, 0), where q0 is the initial
state of the FSA, and the corresponding transitions. Moreover, for convenience, we
may additionally label the transitions in the state space with the scenarios that they
correspond to and/or with the rewards corresponding to these scenarios, as we have
done in the state space in Fig. 8.7.
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The state space allows us to determine the state vector obtained after any finite
scenario sequence that is a prefix of a word in the scenario language as follows. We
follow a path labeled with the scenarios in the scenario sequence through the state
space, starting from the initial state. If the sum of the edge weights on the path is
d and the normalized time stamp vector of the final state is x, then the final state
vector after the scenario sequence is equal to x + d.

3.3 Performance Analysis of Scenario-Aware Dataflow

If the language of scenario sequences is a regular language, like in the example
of Fig. 8.6, and defined by an automaton without acceptance conditions, then the
structure is called a max-plus automaton [12]. There are known techniques to
compute from such a max-plus automaton the worst-case number of scenarios per
time unit [12], or, if the scenarios are annotated with rewards, the worst-case total
reward per time unit [15, 17]. Those methods can also report the critical scenario
sequence and the critical path of actor firings within the scenarios. If the automaton
does have acceptance conditions, then the same analysis can be applied, also with
exact results, by identifying and subsequently removing any states that can only
occur a finite number of times in any accepted word, using standard automata
analysis techniques.

The worst-case throughput analysis centers around the structure called max-plus
automaton graph (MPAG). In particular, given an SADF graph, the structure is
constructed as follows: a vertex is created for each initial token of a scenario of
an FSA state. If [As]i,j �= −∞ and there is a transition in the FSA from state m

labeled with scenario r to a state n labeled with scenario s, an edge is created from
node j in state m to node j in state n with weight [As]i,j . The MPAG of the SADF
of Fig. 8.6 is shown in Fig. 8.8. Maximum cycle mean (MCM) [10] analysis of
the MPAG structure will identify the critical scenario sequence, i.e., the sequence
with the worst-case average amount of time taken per scenario. The inverse of the
maximum cycle mean (MCM) equals the worst-case throughput of the graph, the
worst-case number of scenarios executed per time unit. For the running example
of Fig. 8.6, the critical scenario sequence is captured with bold arrows in Fig. 8.8.

Fig. 8.8 Max-plus
automaton graph of the
SADF of Fig. 8.6
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Fig. 8.9 Definition of
latency

This is the sequence (ab)ω. The corresponding MCM is equal to 3 defining the
greatest lower bound on throughput of any scenario sequence, which is equal to 1/3
scenarios per time unit. Note that in practice, a scenario often represents a coherent
set of computations, like decoding one audio/video frame. As explained earlier, in
some SADF models, the amount of progress differs per scenario, as in the WLAN
example. In such cases rewards are used to specify the progress. The MPAG is then
extended by annotating the edges additionally with the reward of the corresponding
scenario and a maximum cycle ratio (MCR) analysis is performed in place of the
MCM analysis [17]. The MCR gives us the worst-case (minimum) amount of reward
per time unit.

The linear model also facilitates the computation of latency. Latency is often
defined with respect to a periodic input that delivers inputs to the system starting
at time 0 and with some period μ > 0. This is illustrated in Fig. 8.9. We assume
a single input u[k] and a single output y[k], but the definition and the analysis are
easily generalized to multiple inputs and outputs. Latency is defined as the smallest
value λ ∈ R such that y[k] ≤ λ+k ·μ for all k ∈ N. For the example of Fig. 8.9, for
any smaller value of λ than indicated, y[1] > λ+1 ·μ. If such a value of λ is found,
then the system is a refinement, in the sense of Sect. 2.2, of a system that produces
outputs periodically with period μ after an initial delay of λ.

Note that there may be a trade-off between throughput and latency. For a higher
throughput (smaller value of the period μ), the latency may be larger. Their relation
is always monotone. Moreover, if 1

μ
is higher than the maximal throughput of the

graph, then such a value λ does not exist and the graph does not have a latency.
For multiple outputs, the definition is generalized as follows. The latency is the

smallest vector λ such that

y[k] ≤ λ + kμ forall k ∈ N

This vector can be computed as:

λ = max
k∈N

y[k] − kμ

In max-plus algebra it is common to use ⊕ as short-hand notation for the binary
max operator and

⊕
for the max quantifier. In this notation we get the following

equation:

λ =
⊕
k∈N

y[k] − kμ
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Following straightforward max-plus linear algebra computations we can derive
that the latency for a static dataflow graph with one scenario with matrices A, B, C,
and D is computed as follows [1]:

λ = C (A − μ)∗ (x[0] ⊕ (B0 − μ)) ⊕ D0 (8.2)

where the ∗-closure of a square matrix M is defined as

M∗ =
∞⊕

k=0

Mk

Note that this closure exists in the latency computation of Eq. 8.2 if and only if the
graph has a latency. It can be efficiently computed exactly. We observe further that
the latency also depends on the initial state, x[0] of the system.

We next show that the derivation of the latency of a max-plus linear system is a
straightforward exercise. The following equation can be shown to hold for the state
vector x[k] by induction on k and the fact that x[k + 1] = Ax[k] ⊕ Bu[k].

x[k] = Akx[0] ⊕
(

k−1⊕
m=0

AmBu[k − m − 1]
)

Then the output vector can be computed as

y[k] = Cx[k] ⊕ Du[k]

= C

(
Akx[0] ⊕

k−1⊕
m=0

AmBu[k − m − 1]
)

⊕ Du[k]

From this the latency can be computed using the periodic inputs u[k] = k · μ · 0

λ =
⊕
k∈N

y[k] − k · μ

=
⊕
k∈N

C

(
Akx[0] ⊕

k−1⊕
m=0

AmBu[k − m − 1]
)

⊕ Du[k] − k · μ

= C
⊕
k∈N

(A−μI)k x[0] ⊕
⊕
k∈N

(
C

k−1⊕
m=0

(
AmB · (k−m−1) · μ ·0

) ⊕ D ·k · μ ·0

)

− k · μ

= C(A−μ)∗ x[0] ⊕
⊕
k∈N

(
C

k−1⊕
m=0

AmB · (k−m−1) ·μ ·0−kμ

)
⊕

⊕
k∈N

D ·k · μ ·0

− k · μ
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= C (A − μ)∗ x[0] ⊕ C
⊕
k∈N

(
k−1⊕
m=0

(A − μ)m

)
B · (−1) · μ · 0 ⊕ D0

= C (A − μ)∗ x[0] ⊕ C

(⊕
k∈N

k−1⊕
m=0

(A − μ)m

)
(B0 − μ) ⊕ D0

= C (A − μ)∗ x[0] ⊕ C
(
A − μ∗) (B0 − μ) ⊕ D0

= C (A − μ)∗ (x[0] ⊕ (B0 − μ)) ⊕ D0

Note that although the definition is given for a periodic input, the definition is
not restricted to periodic sources and linearity allows it to be used to predict the
latency of other types of sources as well. A more elaborate discussion is given by
Moreira [28].

The latency computation can also be generalized to switching scenarios in SADF,
where given an SADF and an automaton defining the possible scenario sequences,
we can compute the exact worst-case latency. Details are beyond the scope of this
chapter and can be found in [1]. Acceptance conditions on the automaton can be
additionally taken into account by identifying and excluding from the analysis any
states of the automaton that cannot be reached in any accepting word.

Throughput analysis is also possible on the state space of an SADF. The worst-
case throughput can be determined from the worst-case, the maximum cycle mean,
of the delay values on the edges, or the maximum cycle ratio when rewards
are considered. In the state space of Fig. 8.7, this is the cycle indicated in bold,
corresponding to the alternating execution of scenarios a and b. Note that it has the
same cycle mean (3) as the MPAG in Fig. 8.8. Typically, one prefers the analysis on
the MPAG though, because the MPAG is usually, as in this example, smaller than
the state space. The state space does have the advantage that one can also determine
the best-case throughput, in the sense of the highest throughput one could guarantee
under the assumption that one has full control over the sequence of scenarios that
occur. This may be the case, for instance, when the scenarios represent decisions
made by a scheduler as in the work of Yang et al. [49], or a supervisory controller
as the work of Van der Sanden et al. [45, 46]; see also Sect. 4.3 in Chap. 9. This is
achieved by finding a cycle in the state space with a minimum cycle mean (or ratio).
One of the possible optimal scenario sequences is indicated in Fig. 8.7 with dashed
arrows and circles. Note that such an optimal-throughput scenario sequence cannot
be determined from the MPAG. In particular, the minimum cycle mean in the MPAG
equals 1, which does not correspond to the optimal-throughput cycle in the state
space, which has a cycle mean of 5/2. This can be explained as follows. The MPAG
represents all dependencies between individual tokens across different scenarios.
The worst-case cycle in this graph simultaneously identifies the worst-case scenario
sequence and the worst-case among all token dependencies. The best-case scenario
sequence in the state space still needs to consider the worst-case token dependencies
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for its throughput. This combination of best-case scenarios and worst-case token
dependencies cannot be identified in any cycles in the MPAG.

The optimal-throughput solution can also be generalized to the situation that the
transitions on the FSA can be partitioned into transitions that are controllable and
transitions that are uncontrollable. In that case, optimal attainable throughput can be
analyzed by finding optimal strategies in a two-player cycle mean game (or a cycle
ratio game in case of rewards) [45].

3.4 Modeling Switched Max-Plus Linear Systems

The scenario-aware dataflow model is an instance of a switched linear system in
the max-plus linear algebra, i.e., a system that switches between different linear
behaviors. Many other models fall in the same category and similar techniques
can be applied for their performance analysis. An example is the activity model
introduced in Chap. 9. To fit with the switched linear model, the systems need to
adhere to linear modes of operation.

Example 1 Consider a conveyor belt of length l that moves at a constant speed v as
shown in Fig. 8.10a. It can transport objects. For simplicity we ignore the physical
dimensions of the objects, so they can be arbitrarily close on the belt and can be
placed on the belt at any time. We model the belt as a system B that takes a (possibly
infinite) sequence of input events u[k], which are the points in time at which object
k is placed on the start of the belt. The outputs of the system B, y[k], are the time
points at which object number k reaches the end of the belt. It satisfies the following
equation:

y[k] = u[k] + l

v

For a system to be linear, it needs to have two properties. It should be additive and
it should be homogeneous. Both are to be interpreted in terms of max-plus algebra.

Fig. 8.10 Example of a conveyor belt and its dataflow linear model
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We assume a system S with a scalar input and a scalar output. The notation and
definitions generalize straightforwardly to systems with multiple inputs and outputs
and to sequences of inputs or outputs. We use S(x) to denote the time stamp of the
output event of system S in response to an input event with time stamp x. Max-plus
additivity means that a system satisfies the following rule for all x1 and x2:

S(max(x1, x2)) = max(S(x1), S(x2))

A more intuitive term for max-plus additivity is monotonicity as this is equivalent to
the following condition:

x1 ≤ x2 ⇒ S(x1) ≤ S(x2)

An important consequence of additivity / monotonicity is that it allows the
superposition principle to be applied [13]. This principle states that the response
due to the sum of a number of inputs (in our setting the maximum of inputs) can be
determined as the sum of the outputs that are due to each of the inputs individually.
An example of the principle is given later in this section.

It is easy to see that the belt of Example 1 is additive.

B(max(x1, x2)) = max(x1, x2)+ l

v
= max(x1 + l

v
, x2 + l

v
) = max(B(x1), B(x2))

The second property required for a system to be max-plus linear is homogeneity.
For a max-plus linear system this means that the following must hold for all x and
c.

S(c + x) = c + S(x)

A more intuitive term for max-plus homogeneity is shift-invariance, if the time
stamp of the input event is shifted by an amount c, then the time stamp of the output
event is shifted by the same amount.

The belt is also easily seen to be shift-invariant.

B(c + x) = (c + x) + l

v
= c + (x + l

v
) = c + B(x)

Hence, the belt is max-plus linear. It has no internal state, so its canonical
representation consists of only the D matrix, which, because there is only one input
and only one output, is just a scalar number with the value D = l/v. The belt also
has a, very simple, dataflow representation as a single actor, as shown in Fig. 8.10b.
Figure 8.10c additionally shows a dataflow model of a belt where we do take the
physical size of objects into account. We assume it is s. Now the system has internal
state x to remember how much space/time the previous object takes. The canonical
representation is as follows. Its derivation is left as an exercise for the reader.
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[
A B
C D

]
=

[
s/v s/v

l/v l/v

]

For this system with internal state it is interesting to consider using the
superposition principle to determine the output sequence that is the response to the
input sequence with u[0] = 4 and u[1] = 5. We assume that l/v = 10 and s/v = 2.
The input sequence u can be seen as u = u0 ⊕ u1, where u0 considers only the first
input, i.e., u0[0] = 4 and u0[1] = −∞, and u1 considers only the second input, i.e.,
u1[0] = −∞ and u1[1] = 5. The superposition principle predicts that if y is the
output corresponding to u and y0 and y1 are the outputs corresponding to u0 and u1,
respectively, then y = y0 ⊕ y1. Assuming x[0] = 0, we have according to Eq. 8.1:

[
x[1]
y0[0]

]
=

[
2 2

10 10

] [
x[0]
u0[0]

]
=

[
2 2

10 10

] [
0
4

]
=

[
6

14

]

[
x[2]
y0[1]

]
=

[
2 2

10 10

] [
x[1]
u0[1]

]
=

[
2 2

10 10

] [
6

−∞
]

=
[

8
16

]

Hence, y0[0] = 14 and y0[1] = 16. In the same way we can compute y1:

[
x[1]
y1[0]

]
=

[
2 2

10 10

] [
x[0]
u1[0]

]
=

[
2 2

10 10

] [
0

−∞
]

=
[

2
10

]

[
x[2]
y1[1]

]
=

[
2 2

10 10

] [
x[1]
u1[1]

]
=

[
2 2

10 10

] [
2
5

]
=

[
7

15

]

Therefore, y1[0] = 10 and y1[1] = 15. We combine both results to conclude that
y[0] = y0[0] ⊕ y1[0] = 14 and y[1] = y0[1] ⊕ y1[1] = 16. This can easily be
verified to be the correct result in which the first input takes exactly 10 time units
(the length of the belt, l/v) from input to output, but the second input on the belt is
delayed by the first, because they need to be two time units (s/v) apart. Despite the
fact that the two inputs “interact,” their responses can be computed individually and
then combined.

Note that the system implementation does not necessarily need to be linear, it
only needs to have a linear abstraction in terms of the abstraction relation discussed
in Sect. 2.2. An example is the response time of a job scheduled on a processor. If the
arrival time of the job is the input event and its completion time is the output event,
then the scheduler is often not shift-invariant. It may still have a linear abstraction.
For instance, when the scheduler has a worst-case response time for the job. In that
case, the model that adds the worst-case response time to the job arrival time is a
linear abstraction of the job scheduled on the processor.
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3.5 Parametric Analysis

For the worst-case throughput analysis technique explained above to be applicable,
the actor firing delays and rates characterizing SDF scenarios must be fixed and
known at design-time. If we deem actor firing delays and rates as parameters, then
assigning values to those parameters yields an SADF that is amenable to the analysis
described.

If we have a system with a number of possible values for each of the parameters,
to perform the analysis as described previously in this chapter, we will consequently
need to generate a scenario for every possible combination of assignments. Hence,
the number of scenarios may get to a point where it will experience compact-
ness [5] or succinctness-related [42] problems. On the analysis side, the product
set cardinality hampers the use of SADF in the analysis of systems exposing high
levels of data-dependent dynamics in a way that it will render the analysis run-time
prohibitive because of the shear number of scenarios that need to be considered.
The problem becomes even more intricate if parameters are dependent and not all
combinations of values can occur. The dependencies may be specified explicitly
in the construction of the model, e.g., one parameter is given as an expression
of another or implicitly, e.g., a dataflow scheduler synthesizes some parameter
values [31].

We can address these problems by combining the finite control of SADF with
parameterized dataflow into a construct we refer to as parameterized SADF. In
particular, we model each scenario using a parameterized dataflow graph.

Parameterization, as a syntactic construct, allows us to represent vast sets of
scenarios in a compact way (parameters help keep the size of the model manageable)
and to explicitly represent the dependencies between parameters as constraints. The
underlying parametric analysis enables us to avoid the enumeration of the parameter
product set. An example of a parameterized SADF graph is shown in Fig. 8.11. The
dataflow graph on the right-hand side of the figure reveals three parameters: p, q,
and r . Parameters p and q attain values from the set of non-negative integers and are

Fig. 8.11 Example of a parameterized SADF
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used to parameterize rates of actors A, B, and C, while parameter r attains values
from the set of non-negative real numbers and is used to parameterize the firing
delay of actor B. The FSA in the left part of the figure indicates that the structure
involves two scenarios a and b. Parameter dependencies and parameter bounds are
specified per scenario in terms of scenario domains described (in the most general
case) via:

• a system of non-linear inequalities

fai (p, q, r) ≤ 0

where i ∈ {1, . . . , I }, p ∈ Pa ⊂ N0, q ∈ Qa ⊂ N0, r ∈ Ra ⊂ R≥0, and

fbk(p, q, r) ≤ 0

where k ∈ {1, . . . , K}, p ∈ Pb ⊂ N0, q ∈ Qb ⊂ N0, r ∈ Rb ⊂ R≥0
• and a system of non-linear equalities

faj (p, q, r) = 0

where j ∈ {1, . . . , J }, p ∈ Pa, q ∈ Qa, r ∈ Ra, and

fbl (p, q, r) = 0

where l ∈ {1, . . . , L}, p ∈ Pb, q ∈ Qb, r ∈ Rb.

Each transition of the scenario FSA incurs the invocation of an arbitrary instance
of the parameterized scenario that the transition destination state corresponds to. An
instance of a parameterized scenario is a concrete scenario obtained by assigning
all parameters with values inside the parameterized scenario domain, i.e., values
that satisfy the constraints. The operational semantics of the model is illustrated
in Fig. 8.12. For illustrative purposes, scenario domains are depicted as 2-D planes
(recall that a domain can be non-linear too) in the p − q − r space. For example,
whenever a transition a → b is taken, a concrete scenario obtained by assigning
values from the b scenario domain to parameters p, q, and r is executed. Example
of such assignments is depicted by the points (pa, qa, ra) and (pb, qb, rb).

Throughput analysis for parameterized SADF is based on the max-plus switched
linear system semantics of SADF. In particular, starting from a set of parameterized
scenarios, for each of them, a single representative max-plus matrix is generated
that captures the worst-case system behavior per parameterized scenario. The matrix
is derived by solving a series of non-linear optimization problems. Thereafter, the
matrices are used, in the same way, to construct the corresponding MPAG the
MCM of which defines the inverse of the worst-case throughput. Experimental
results indicate that the approach is advantageous for both modeling and analysis
perspective for graphs with broad-ranging interdependent parameters. More detailed
explanations can be found in [36, 37].
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Fig. 8.12 Operational
semantics of the
parameterized SADF of
Fig. 8.11

S

P
P

Fig. 8.13 An SADF with parametric actor firing delays

The concept of parameterized SADF presented above treats the case where
parameters are not fixed during the execution of the systems. In particular, parame-
ters are allowed to change from one invocation of a scenario to the next invocation of
the same scenario. The analysis results in a greatest lower bound of the performance
of any possible scenario sequence and parameter valuations. However, we may often
encounter systems where parameters do not change during the system execution,
or change only infrequently. For such a parameterized SADF, instead of a single
worst-case performance result, we can find throughput expressions that present the
throughput as a function of the scenario parameter values (actor firing delays and
actor port rates). Calculation of throughput for a particular parameter valuation is
then merely an evaluation of this function for the specific parameter values, which
is much faster than the standard throughput analysis. This result may be particularly
important for run-time management, which we discuss at the end of the chapter.

We first consider the case where actor firing delays can be parameters. This
setting was first discussed in [18] for SDF and in [8] for SADF. Consider the
example SDF shown in Fig. 8.13. The scenario FSA is shown in the left part of the
figure, while the scenario graph is in the right part of the figure. By now a reader will



8 Scenarios in Dataflow Modeling and Analysis 169

Fig. 8.14 Throughput
regions of the parameterized
SADF of Fig. 8.13

be able to deduce that the model involves two scenarios: a and b. In each scenario,
actors A0, A1, and A2 perform one firing each. The firing delays are functions of
two parameters, p1 and p2, as specified in the table in the lower part of Fig. 8.13.

When the actor firing delays are given as linear expressions of parameters, it can
be shown that parts of the parameter space that share the same MCM expression
(recall that the inverse of the MCM defines the throughput) form convex polyhedra.
We call these convex polyhedra throughput regions.

For the example SDF of Fig. 8.13, the throughput regions are shown in Fig. 8.14.
Values of the parameter p1 span the x-axis, while the values of p2 span the y-axis.
The model has three throughput regions denoted r1, r2, and r3 with the following
expressions for the MCM μ:

• μ = 5.5p2 if 3p1 ≤ p2 for (p1, p2) ∈ r1;
• μ = 3p1 + 4.5p2 if p2 ≤ 3p1 ≤ 2p2 for (p1, p2) ∈ r2, and
• μ = 6p1 + 2.5p2 if 3p1 ≥ 2p2 for (p1, p2) ∈ r3.

The inverses of MCM expressions define the throughput expressions. For more
details we refer the reader to [8].

The approach we just presented is only applicable to graphs with parameterized
actor firing delays. Furthermore, these delays are constrained to be linear combi-
nations of parameters. Indeed, the key assumption in [8] is linearity. Introduction
of parameterized rates implies non-linearity as products of rates may appear in
MCM expressions. Therefore, the results of [8] were generalized in [34], which can
deal with graphs of certain structure involving both parameterized rates and actor
firing delays. The technique linearizes the problem by expanding it into a high-
dimensional space. Unfortunately, although theoretically relevant, the technique is
of limited usability (limited to a set of only a few critical parameters) because
manipulation of high-dimensional polytopes incurs a high penalty in performance.
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Listing 1 Pseudo-code of an abstract video decoder
1: frame = buffer_frame()
2: if detect_frame_type(frame) == full then
3: x = decode_full(frame)
4: sub = subtitle_overlay(x)
5: else
6: x = decode_delta(frame)
7: end if
8: output = construct_frame(x)
9: display(output, sub)

4 A Programming Model for SADF

SADF is a dataflow model that can represent scenarios of pipelined applications.
It can also be used as a programming paradigm for dynamic pipelined applications
in which the dynamic behavior can be expressed as different modes of operation.
An additional advantage of such an approach is that the application structure
can directly guide the process of design-time scenario identification. This section
describes such a programming model based on SADF and its realization on the
CompSOC platform [47, 48]. It explicitly addresses the challenge of run-time
scenario identification and the required switching and reconfiguration to execute
the corresponding behavior.

4.1 A Scenario-Aware Dataflow Application

We consider streaming real-time applications that process data when it is received.
The control flow of such applications often depends on the received data. Upon
receiving a video frame, for example, a decoder detects if it is a full frame or a delta
frame and invokes the appropriate decoding function. In a sequential language, a
programmer may solve such a dependency with a simple if-else construct as shown
in Listing 1. This likely leads to the identification of both cases as separate scenarios.

SADF is a natural way to describe the behavior of this application and captures
different input-dependent control flows in its scenarios. Every possible control flow
is captured in a scenario graph by the programmer, possibly based on existing
sequential code. The scenario graph for decoding a full video frame (Sfull) is
depicted in Fig. 8.15. When a delta frame is detected, the application behavior and
thus also the scenario graph are different, namely Sdelta in Fig. 8.16. Actor names
are abbreviations of the functions in Listing 1. The possible scenario sequences are
specified by the FSM in Fig. 8.17.

The SADF model allows tight analysis of applications with input-data dependent
control flow, it does not define an implementation model. Consider the video
decoder, where bf and dft are always executed first in either scenario. Only after
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Fig. 8.15 Scenario graph,
Sfull, for decoding a full video
frame

Fig. 8.16 Scenario graph,
Sdelta, for decoding a delta
video frame

Fig. 8.17 The FSM of the
video decoder with scenarios
full and delta

Fig. 8.18 Analysis graph,
Sdet, of the detector scenario
det

Fig. 8.19 Analysis graph,
Sfull, of the full frame
scenario

executing detect_frame_type (dft) the next scenario has been detected and
the control diverges between the scenarios. At run-time it is impossible to decide
which of the scenarios is being executed until after it has started. Thus, a causality
dilemma is encountered if we want to use the scenario model as an implementation
model or a programming paradigm.

Because scenario graphs capture different behaviors of the same application, we
argue that a given number of actors and tokens at the start of each scenario are
common to all scenarios. In the example, these are actors bf and dft and tokens t1
and t4. After executing this maximal prefix graph the current scenario is assumed
to be known. This prefix graph must be marked as such by the programmer after
which it is automatically split off in a detector scenario det, see Fig. 8.18 (the
additional actors, Seldet and Swdet, and additional tokens will be explained later).
After execution of Sdet the next scenario is known and can be executed, e.g., Sfull
depicted in Fig. 8.19. This solves the causality dilemma and is explained in detail in
Sect. 4.2.
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Fig. 8.20 The extended FSM
with detector scenario det

Fig. 8.21 Analysis graph,
Sdelta, of the delta frame
scenario

4.2 Sequence Analysis

In Sect. 4.1 we introduced a solution to the scenario detection causality dilemma by
splitting off the detector scenario det from the original scenarios, see Fig. 8.18. We
assume the identification of the detector subgraph is done by the programmer. All
the following steps are automated. First the FSM is transformed to execute scenario
det before each transformed original scenario, see Fig. 8.20.

To model the transport of tokens from and to the detector scenario, we use
switch and select actors borrowed from Boolean dataflow [5]. These are instantiated
on the outgoing channels (switch) and incoming channels (select) at which the
scenario graphs are split, and assigned a worst-case execution time (WCET) of
zero. See Figs. 8.19 and 8.21. The switch and select actors receive Boolean control
tokens from the dft frame detector. Each Sw and Sel receives a self-edge with a
synchronization token that has the same label in every scenario. Token t4 is a special
case. It is available for the next scenario only after the dis actor has finished its firing
and it is consumed by the bf actor of the following det scenario. Therefore t4 is
moved onto the self-edge of Sel actors of the scenario graphs, removing the need for
an additional synchronization token. Additionally, we need one initial control token
tctrl on the edge to the initial select actor of the detection scenario to make the graph
deadlock free. The analysis graphs thus generated are shown in Figs. 8.18, 8.19,
and 8.21. The Sw and Sel actors as well as newly inserted channels and tokens
actors are indicated in gray.

Temporal analysis of this video decoder with SDF3 [39] visits the scenarios as
indicated by the FSM, starting with scenario det. It can be shown that the throughput
of the modified graph is identical to the throughput of the original graph [48]. In
each new scenario graph it is known from the start of the execution what the current
scenario is, which allows the scenario graph to be directly implemented.

4.3 Scenario Execution

In this section we present an implementation for executing a sequence of scenarios
that solves the following practical aspects: (i) switch and select implementation;
(ii) extending static-order actor schedules on-the-fly.
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4.3.1 Switch and Select Implementation

During analysis the switch and select actors ensure synchronization but function as
regular SDF actors. While scenarios are analyzed separately, our implementation
glues Sdet to the graphs of the other scenarios. In practice the switch acts as
multiplexer and the select as de-multiplexer. For execution there is one detector
subgraph serving both Sfull and Sdelta with tokens, see Fig. 8.22. Actors Sw and
Sel are indicated in gray. Synchronization token tSw is not relevant for execution.

We propose a solution that exploits the libFIFO [19] library that implements
FIFO buffers that can be disconnected and reconnected without invalidating data.
A switch actor will have only a single output port, to which the proper channel
is connected depending on the detected scenario (see Fig. 8.23). This swapping of
FIFO channels is indicated with the symbol for an electrical switch, which connects
the single output port either to the channel to actor df or the channel to dd. The other
channel is left unconnected on one end, effectively giving it rate zero. The FIFO
swap must take place before Sw fires. Select actors are similar but demultiplex two
channels to one.

Fig. 8.22 The merged execution graph, the switch and select actors are indicated in gray

Fig. 8.23 The merged execution graph with implementation details, the switch/select and load
schedule (ls) actors for a one-processor mapping are indicated in gray. The swapping of FIFO
channels is indicated with the electrical symbol for a switch, also in gray. Note that this is not a
valid dataflow graph
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4.3.2 Extending Static-Order Schedules

We schedule actors on a processor with the libDataflow library [19] that
executes dataflow graphs by iterating over a given static-order (SO) schedule. Such
a schedule can be produced with SDF3 [39]. The schedule blocks if an actor is not
ready to fire. However, the SO schedule of our proposed solution changes depending
on the detected scenario. Therefore we use a new scheduling concept that we dub
the rolling static-order (RSO) scheduler [48].

Execution starts with Sdet, so if we were to map the decoder to a single processor
the SO schedule starts with [bf, dft, Sw]. After firing dft the next scenario is
known and the SO schedule can be extended. If scenario full is detected, then
the sequence [df, cff, cff, so, disf, Sel, bf, dft, Sw] is concatenated to the “rolling”
schedule. Note that Sel is the last actor in the schedule of Sfull, and we immediately
concatenate the next detector scenario. This ensures that the scheduler will never
run out of actors to schedule. A multi-processor mapping works similarly, the only
constraint we impose is that a switch must be mapped onto the same processor as
the actor preceding it.

The RSO scheduler has been implemented in libDataflow for the CompSOC
platform. We initialize it with a unique SO schedule for each scenario; the start is
set to Sdet. An additional load schedule (ls) actor is inserted right after dft on every
processor. See Fig. 8.23 for the single-processor example. These ls actors receive a
scenario token from dft and extend the schedule accordingly. The example schedule
of Sdet changes to [bf, dft, ls, Sw]. We furthermore exploit the ls actor to connect
all FIFOs correctly before the actors Sw or Sel fire. This dependency is visualized
with a gray channel in Fig. 8.23. Details on the implementation and an experimental
evaluation can be found in [48].

5 Run-Time Methods

This section briefly discusses some methods that can be applied for resource
management using the SADF model at run-time.

5.1 Run-Time Management

An execution platform may support for execution parameters to be changed or
selected at run-time, depending on run-time state, like resource availability or vari-
ations in deadlines or slack. Such settings can be considered as run-time situations
that can be characterized and represented by scenarios and correspondingly modeled
with dataflow models.

The selection of different settings may lead to run-time opportunities to optimize
multiple aspects of the running system. Run-time situations can be seen as partially
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Fig. 8.24 Dataflow graph of
the application scenario

Fig. 8.25 Dataflow graph of
the DVFS reconfiguration
scenario

determined by the environment, e.g., by load induced by different kinds of appli-
cation input, and partially by the system’s run-time management. Reference [49]
shows how the interplay between environment and run-time management can be
seen as a two-player game, where one player is the run-time management and the
opponent player is the environment. The moves in the game can be modeled as
dataflow scenarios. In this case known results from the theory of two-player games,
in particular, mean-payoff games and ratio games, can be exploited to determine
optimal positional strategies. This leads to an optimal run-time strategy under
environmental variations.

We consider a simple example taken from [9]. It considers an application shown
in Fig. 8.24. The dataflow graph of the application consists of three actors, a0, a1,
and a2 with data dependencies captured by the tokens t0 and t1. It is additionally
assumed that there are two processing elements, pe1 and pe2 and that pe1 executes
actor a0 and pe2 executes actors a1 and a2. The mapping of tasks to processing
elements is modeled with the tokens pe1 and pe2 that capture the availability time of
the processing resources pe1 and pe2, respectively. The processing elements support
DVFS [6] to exploit a trade-off between processing speed and power consumption.
We assume that there are two settings to consider, having a specific DVFS setting for
each of the processing elements. We represent these two settings by two scenarios,
s1 and s2. Both scenarios follow the application graph of Fig. 8.24, but with
different actor execution times. Run-time switching between s1 and s2 is possible,
but changing the DVFS setting for a processing element takes time and energy. The
switching process is therefore modeled by a dataflow scenario itself. The graph is
shown in Fig. 8.25. Note that the graph expresses that a DVFS change can only
start after the processing element is available (has finished the workload of previous
scenarios) and then takes some amount of time (the execution time of the actor),
after which the processing element is available for processing of new workload,
expressed by the production time of the token. Note that the scenario defines
that both processing elements need to reconfigure, but there are no dependencies
between them. They do not need to happen at the same moment, but can follow
the pipelined execution of the application. We assume the reconfigurations may
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Fig. 8.26 Automaton
defining the reconfiguration
scenario sequences

time

DVFS delay on 

DVFS delay on

Fig. 8.27 Gantt chart of the reconfiguration

take different amounts of time and therefore there are two switching scenarios
reconf1→2 and reconf2→1. The possible sequences of scenarios are defined by the
automaton in Fig. 8.26. It specifies that a change of DVFS mode needs to invoke the
corresponding reconfiguration scenario.

Figure 8.27 shows a Gantt chart of a fragment of the behavior including a DVFS
switch from scenario s1 to scenario s2 by the intermediate reconfiguration scenario
reconf1→2. The reconfiguration follows the pipelined execution of the application
and pe1 reconfigures before pe2.

The SADF model defines all the possible behaviors that a run-time manager can
choose to execute with this application. Those behaviors correspond to scenario
sequences of the SADF model. The model predicts the worst-case performance of
such a behavior. This can be used by an optimization strategy to find the optimal
behavior in terms of power consumption that satisfies the performance constraints,
for example, using model predictive control techniques.

Parametric analysis, as discussed in Sect. 3 can be particularly interesting for
run-time situations. Actor execution times may only be available at run-time, but
there may not be enough time or resources for a full dataflow analysis algorithm
to be executed at run-time. In such a case the parametric analysis results can be
applied to quickly obtain the analysis result in a particular run-time situation when
the parameter values have become known. Furthermore, the parametric analysis
can be utilized to achieve energy savings in a setting with varying throughput
requirement. Imagine a situation where one can quantify the Quality of Service
(QOS) via throughput. In most cases, the higher the throughput, the higher the
QOS and vice versa. On the other hand, achieving a higher or lower throughput,
in terms of dataflow, means that the actors will have to attain shorter or longer firing
delays, respectively. The question is, given a run-time change in QOS expressed as
a throughput constraint, how long is short enough to meet the throughput constraint.
Reference [9] discusses a heuristic strategy to find such optimal dynamic voltage
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and frequency scaling (DVFS) settings using the parametric throughput expression
of the model of the application. In Chap. 9 it is shown how this strategy can also be
applied to optimal controller synthesis problems for flexible manufacturing systems.

6 Conclusions

This chapter has discussed how the scenario methodology can be applied to and
combined with dataflow modeling and analysis. The resulting model SADF is an
expressive model that can express variation in functional behavior and consequently
diverse run-time situations. Dataflow models can also be used in the context of
real-time streaming applications as a formal abstraction of concrete realizations that
guarantees preservation of performance for its refinements.

We have detailed the model and its semantics and have described common
performance analysis methods for throughput and latency, including parametric
analysis techniques. Timed dataflow is a performance oriented model in a wider
class of max-plus linear systems. The properties of max-plus linear systems have
been discussed to better understand the essential properties of systems to be
amenable to being modeled with max-plus linear abstractions.

We have also shown how the SADF model can be applied as a programming
model to ensure a good match between an implementation on a multi-processor
platform and the abstract dataflow model. It was shown how to integrate the scenario
detection methods and derive an accurate model of a causal implementation of the
behavior. An online static-order scheduling technique is presented to realize the
implementation.

We have additionally illustrated how the dataflow model and the parametric
analysis can be combined to realize efficient run-time management strategies.
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Chapter 9
Scenarios in the Design of Flexible
Manufacturing Systems

Twan Basten, João Bastos, Róbinson Medina, Bram van der Sanden,
Marc C. W. Geilen, Dip Goswami, Michel A. Reniers, Sander Stuijk,
and Jeroen P. M. Voeten

1 Introduction

Today’s flexible manufacturing systems (FMS) are rapidly developing into complex
cyber-physical systems (CPS) that show a tight coupling between cyber aspects
(embedded software and electronics) and physical aspects (related to mechanics,
such as acceleration and deceleration of motors, and physical processes, such as
vibrations, heating, and cooling). An example of such a CPS is a professional
printer like the Océ VarioPrint i300 [28] that prints 150 duplex A4 color pages
per minute while guaranteeing that the paper is not damaged in the transport and
guaranteeing print quality by appropriate heating and cooling of the sheets of paper.
Other examples are lithography machines that expose patterns of electronic circuits
on wafers with very high positional accuracy, interventional X-ray machines for
minimally invasive surgery guided by X-ray images, or electron microscopes that
produce extremely detailed images with a granularity of individual atoms. Such
FMS should continuously operate to maximize production in terms of completed
products (sheets, wafers, images) per time unit. Productivity is limited by the
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physical design of the system (determining, for example, the time needed to move
(partial) products between locations), the control software operating the system
(determining, for example, the speed of heating objects in heaters or the speed of
moving robot arms manipulating objects), and the processing of large amounts of
data (for example, in image-based control loops). But FMS typically have stringent
productivity requirements, directly related to profitability. Optimizing productivity
during early design phases is important for system cost and engineering efficiency.
Therefore, it is key to have effective techniques to model, analyze, and optimize
system productivity.

We advocate that model-based design in combination with a V-model-based
performance engineering method [18] is suitable to address performance challenges
in early design phases. There are many interesting questions related to model-
based performance engineering of FMS. Some examples: Can we accurately predict
FMS productivity early in the design process? How do we identify productivity
bottlenecks and explore design alternatives? Can we develop supervisory control
software that not only guarantees correct behavior but also optimizes productivity?
And can we co-optimize the data-intensive control loops in terms of quality of
control and implementation efficiency? In this chapter, we present scenario-based
techniques addressing these challenges.

Section 2 introduces a motivating case study. Section 3 discusses related work
on FMS modeling and analysis. Section 4 introduces scenario-based models for
FMS. The operation of FMS can be broken down into deterministic activities (like
moving an object from one position to another one) that exhibit little or no timing
variation. Each activity may consist of multiple actions (like moving a robot arm in a
specific direction for a certain distance). Activity executions correspond to run-time
situations as introduced in Chap. 2. Activities thus form system scenarios. Activity
models can be naturally analyzed for performance using max-plus algebra [5, 13],
along the same lines as the dataflow analysis introduced in Chap. 8. This analysis
setup provides a basis for early design-space exploration. Section 5 discusses
supervisory controller synthesis and optimization based on activity models. Allowed
activity orderings can be specified by (extended) finite-state machines (FSM).
A safe, deadlock-free and maximally permissive supervisory controller can be
synthesized from a collection of such models, capturing different requirements on
permitted activity orderings. Such a supervisory controller can then be optimized for
performance by considering the timing information of scenarios. The performance
analysis and controller synthesis of Sects. 4 and 5 share a common scenario-based
modeling approach. Section 6 presents another, independent use of scenarios in
FMS optimization, namely scenario-based optimization of data-intensive control
loops through adaptive pipelined sensing. Data-intensive control loops may have
a long sensing latency. Parallelized pipelined sensing exploiting today’s multi-core
technology allows to increase the sampling rate of the controller despite this long
data processing latency, improving the achievable quality of control (QoC). Each
pipelining configuration corresponds to a system scenario in the framework of
Chap. 2. Interestingly, the impact of the improved QoC of a control loop in the FMS
on the system productivity can in turn be analyzed with appropriate activity models,
using the techniques of Sects. 4 and 5. Section 7 concludes the chapter.
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2 Motivating Case Study: xCPS

xCPS (eXplore CPS), see Fig. 9.1, is an assembly line emulator that can be used for
research and education in the CPS domain [1]. The machine processes two types of
cylindrical pieces, tops and bottoms, of different colors, see Fig. 9.2; the main use
case of xCPS is to compose tops and bottoms into composite products, like the ones
shown in the top left of Fig. 9.2.

Figure 9.3 shows a schematic view of the layout of xCPS. Pieces enter the
machine at the top right, on conveyer belt 1; composite products leave the machine at
the bottom right, via conveyer belt 5. xCPS consists of one storage area, six conveyor
belts, two indexing tables, two gantry arms, and several actuators and sensors. The
storage area is a grid where 25 objects (top or bottom pieces, or composites) can
be stored. Six stopper actuators in strategic positions along the conveyer belts can
stop the movement of objects, effectively creating buffers accumulating objects on
the conveyor belts. Switches enable route changes for individual objects. xCPS has

Fig. 9.1 xCPS—an assembly line emulator

Fig. 9.2 Assembly pieces in
xCPS
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a turner to flip pieces. Moreover, it has two actuators for assembly and disassembly
of pieces. The pick and place actuator can clamp a piece and combine it with
a complementary piece. The separator can disassemble a composite into its two
constituent pieces. xCPS has 15 sensors that can detect the presence of an object.
These sensors cannot distinguish the type of an object, its color, or its exact location.
To detect the type, color, and location of an object, a camera can be added to the
setup.

There are many possible use cases of the xCPS platform. Besides the already
mentioned main use case and other production use cases, the gantry arms and
storage area can be used as a sorting station, where the storage is sorted according
to selected criteria, but it can also be used for games such as tic-tac-toe and four-in-
a-row. Each use case comes with its own design challenges.

xCPS can be used to test and evaluate CPS performance engineering solutions for
such use cases, addressing questions like the ones already posed in the introduction.
Suitable models are needed to predict productivity of the xCPS assembly process
producing composites from bottom and top pieces and to detect performance
bottlenecks. Supervisory controllers should ensure safety of operation, avoiding,
for instance, gantry arm collisions, and avoid deadlocks, due to, for example, full
buffers. Productivity should be optimized by proper routing of the flows of pieces,
proper scheduling of the actions, and appropriate settings of the belt speeds and
control of the various actuators in the system. Image-based control may be used to
optimize settings online during operation.
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3 Related Work

Models of FMS, and CPS in general, may serve many different purposes and
take many different shapes. A recent book of Alur [2] provides a comprehensive
overview of specification, modeling, and analysis techniques that play a role in CPS
design.

When focusing on performance engineering of CPS, traditionally, performance
questions are addressed using discrete-event simulation or hybrid discrete/continu-
ous-time simulation, see, e.g., [6, 19, 20, 22, 27, 31, 34, 45]. Discrete-event simu-
lations capture all relevant events in the system. Hybrid discrete/continuous-time
simulations moreover capture the dynamics of relevant physical processes in
differential equations. For complex systems, such simulations are time consuming.
They are useful when investigating specific behaviors and timing aspects, like
average throughput or buffer occupancy under input variations, or the performance
of a specific controller; they are less suitable for exploring large design spaces.
The Petri-net formalism was one of the first formalisms proposed for discrete-
event simulation and analysis of FMS [27, 34, 45]. The combination of a graphical
representation with a sound mathematical basis made Petri nets very popular for a
wide range of domains. Chi [6] is a process-algebraic language for specifying and
analyzing hybrid systems. It has a rigorous mathematical semantics and focuses on
modular specification and analysis. In [19, 20], a refinement-based design method
based on the POOSL language and discrete-event simulator is proposed. The
method covers multiple model abstractions, ranging from high-level event models
without timing information to detailed models including timing. These detailed
timing models serve as a basis for synthesis of real-time software that is guaranteed
to adhere to the specified timing properties. Simulink [25] is the industrial state-
of-practice for discrete-event and hybrid simulation. Reference [31] describes a
Simulink/SimEvents modeling approach for evolvable production systems, based
on discrete-event agent models of system components like robot arms and conveyer
belts. A case study illustrates the analysis of the assembly time for a simple
assembly system. Potential integration with continuous-time models and code
generation are mentioned as strengths of the approach; high modeling effort and
poor scalability of required simulation time are mentioned as limitations.

When the goal of performance analysis is to explore the design space of possible
FMS configurations towards productivity optimization, simulation is often less
suitable. It is practically intractable to cover many design alternatives through
detailed simulations. Moreover, given non-deterministic elements in an FMS, such
as varying input or errors in sensing or actuation, it is hard to provide full coverage
over all possible behaviors of any given design alternative. This implies that it is
difficult, if not impossible, to decide on the best possible FMS design configuration
and to provide guarantees about the achieved productivity.

Model checking [30] is a class of techniques that essentially exhaustively
explores a model to prove or refute a property of interest. So model checking can
be used to provide performance guarantees for FMS. In [17], for example, model
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checking using the Uppaal tool is used to design controllers for a wafer scanner
that avoid deadlocks and optimize throughput (i.e., productivity). Timed automata
[3] and its derivatives like priced timed automata [9], supported by tools like
Uppaal [38], provide state-of-the-art model checking techniques for timed systems.
The already mentioned Simulink [25] and Chi [6] tool sets also support model
checking and other types of formal verification techniques providing guarantees.
However, model checking techniques do not scale well to complex systems with
many possible behaviors and large state spaces [44]. They are therefore also not
very well suited for exploring the design space of such systems.

For design-space exploration for performance optimization, compact, high-level
performance models that provide conservative, tight bounds on system productivity
are needed. Activity [42] and dataflow [11] models building on the foundations
of (max,+) algebra [5, 13] and scenario-aware dataflow (SADF) [7, 36] have been
developed for this purpose. In the remainder, we show how activity models can be
used for performance analysis and design-space exploration, and for the synthesis of
throughput-optimal supervisory controllers. Section 6 uses these models to illustrate
the impact of improved motor control on system-level productivity. The timing
information in the system-level activity models used for comparison of different
controllers is extracted from detailed Simulink simulations of the controllers.

4 Activity Modeling and Performance Analysis of FMS

System-level FMS behavior can be described compactly in activities [42] cap-
turing end-to-end deterministic system operations, such as the processing of a
piece in the xCPS case. An activity consists of atomic system actions such as
the activation/deactivation of an actuator and dependencies among those actions.
Multiple activities together capture more elaborate functional behaviors such as
the complete manufacturing of a product. Orderings among actions are enforced
through resource claims and releases. This allows concurrent execution of actions
of different activities that do not share resources. The different possible activity
orderings within the system can be captured in a finite-state machine (FSM).

The timing semantics of an activity is concisely described by a (max,+) matrix.
Such a matrix captures the (worst-case) timing behavior induced by action execution
inside an activity and the dependencies among those actions. A (max,+) automa-
ton [13] can then be derived to describe the timing semantics of the complete system.
This formalization enables system-level throughput analysis to find a lower-bound
guarantee on the system productivity within the set of possible activity orderings of
the system.

Activities capture behavioral fragments of an FMS with an end-to-end deter-
ministic (worst-case) timing. Activities thus correspond to system scenarios. An
activity-based specification can be converted to the FSM-SADF models [7] of the
previous chapter, by mapping each activity onto an SADF scenario. The underlying
(max,+) timing semantics and analyses are common to both modeling approaches.
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The above motivates a scenario-based design method in which designers of
FMS specify system-level behavior as activities and their possible orderings. This
allows early, model-based design-space exploration of the FMS design to study the
performance impact of different choices as well as identifying possible bottlenecks
in the manufacturing flow. This section describes the concepts of the modeling
approach, giving illustrative examples from the xCPS case study introduced in
Sect. 2.

4.1 Activities

An FMS is decomposed into a set of peripherals (P ), a set of actions (A), and a set
of resources (R). A peripheral can execute actions. An action describes an atomic
behavior of the system, e.g., the movement of a motor or the actuation of an on/off
peripheral such as a gripper. The complete set of actions describes all behavior that
the system can exhibit. Peripherals are aggregated into resources, which can be
claimed and released. As an example, consider the Turner resource of the xCPS
system shown in Fig. 9.1, which can flip the orientation of top and bottom pieces.
This resource is composed of three peripherals: a gripper (which holds the piece), a
motor (which is able to lift and flip the piece), and a position sensor (which provides
information on the position of the turner). Actions of these peripherals can be a
single motor translation, the gripping of a piece, or the indication that the turner is
up.

Using peripheral actions, deterministic functional behaviors of the system can be
constructed as activities. An activity is a directed acyclic graph (DAG) consisting
of a set N of nodes and a set → ⊆ N × N of (ordering) dependencies between
nodes. Nodes refer to either an action executed by a peripheral (associated with a
pair (a, p) with a ∈ A and p ∈ P ) or a claim (cl) or release (rl) of a resource
(associated with a pair (r, v) with r ∈ R and v ∈ {cl, rl}). Activities have to satisfy
a number of static consistency constraints. These ensure that proper claiming and
releasing of resources is respected within an activity.

• All nodes referring to the same peripheral are sequentially ordered by the
dependencies (to avoid self-concurrency which is physically not possible).

• Each resource is claimed no more than once; each resource is released no more
than once.

• Every action node is preceded by a claim on the corresponding resource and
succeeded by a release of the corresponding resource.

• Every release is preceded by a claim on the corresponding resource; every claim
is succeeded by a release of the corresponding resource.

xCPS Case Study 1 Figure 9.4 depicts the activity Bottom which captures the
processing of a bottom piece in xCPS. It has several parameters that are clarified in
the following. Actions are represented as nodes and dependencies as edges, where
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Fig. 9.4 Activity Bottom(i, d2, d3) capturing the processing of a bottom piece

green colored nodes refer to resource claims and releases. White and blue nodes
are action nodes, labeled with resource and action names inside the node. Resource
names are used instead of peripheral names, to ease readability. Action nodes are
further annotated with their (worst-case) execution times. Timing in activity models
is explained in detail in the next section. Blue actions have execution times that
may vary, depending on the pieces entering the system before and after the modeled
bottom piece. The variants are captured through parameters d2 and d3.

The goal of our models is to predict system-level productivity of xCPS. That
is, we want to know how many composite products are produced per second. The
activity model of Fig. 9.4 captures the input of a bottom piece and its route through
the system. For our analyses, we make the following assumptions1:

1The assumptions on the one hand simplify the actual xCPS case to allow its use as a running
example throughout the chapter; on the other hand, some assumptions (like the belt speeds and
certain sensor and motor functionality) deviate from the actual system so that it is possible to
illustrate all concepts introduced in this chapter.
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• All switches and stoppers of xCPS are initially disabled, except for Stopper 1
which is initially enabled. (Figure 9.3 shows switches and stoppers in enabled
state.)

• Pieces enter the system at Stopper 1;
• Belt 1 is providing pieces sufficiently fast and does not play a role in system-level

performance.
• An alternating sequence of bottom and top pieces flows through the system,

starting with a bottom. A new piece can enter the system only once the previous
piece passed the Turner unit. Bottoms are always properly oriented. Tops may
enter the system in inverted orientation; these are then flipped by the Turner.

• Bottoms move to the pick and place (PP) unit through indexing table 2 (IT2);
tops move to the pick and place unit over the belts.

• Rotation speed of IT2 and belt speeds are such that transportation of bottoms
via IT2 is much faster than transportation of tops via the belts. This allows us to
simplify the IT2 behavior, restricting it to 90◦ rotation actions.

• After assembly of a top and bottom, the composite piece leaves the system via
IT2 and Belts 4 and 5; the timing of this part does not play a role in system-level
performance.

• A maximum of three pieces are allowed on the combination of Belts 2 and 3
simultaneously.

• Belts run at a constant speed, except for Belt 2, which needs to run at a (constant)
lower speed when tops are being inverted or bottoms are moved onto the indexing
table. (In this setup, Stoppers 2 and 3 are not needed; a controller adapts the belt
speeds based on sensor signals.)

• Actions t1–t4 correspond to transporting pieces over Belts 2 and 3 through
Stopper 1, through the Turner section, towards Switch 2, and towards the pick
and place unit, respectively.

Considering again the bottom activity model in Fig. 9.4, we see that a bottom
piece first flows through Stopper 1 over Belt 2 to Switch 2. Stopper 1 is only disabled
to allow a next piece on Belt 2 after the bottom piece has been transported through
the Turner section, with the t2 action. In the actual system, actions that depend on
the arrival of pieces to certain belt locations are triggered by related sensor signals.
We model system dynamics such as sensor triggers, or other such events, with time
abstractions such as the t2 action. After arriving at Switch 2, via the t3 transport
action, the bottom piece is pushed onto indexing table IT2. IT2 is aligned with the
belt before the piece is pushed onto it; afterwards, it is aligned with the pick and
place (PP) unit where a top piece is placed on top of the bottom piece to assemble
a composite piece. The two align actions correspond to 90◦ rotations. Assembly
is a separate activity introduced below. After properly aligning IT2, the PP unit is
claimed and released to model the arrival of the bottom piece at the PP unit. The
belt capacity of three pieces is modeled through three resources Belt(i), with i ∈
{1, 2, 3}. A bottom activity needs any one of these three resources for its transport
over Belt 2. In Sect. 4.3, where the modeling and analysis of activity sequences is



190 T. Basten et al.

Activity:Top(i,d  ,d  ,d  )

Stopper1cl
Stopper1

Stopper1
disable

Stopper1
enable

rl
Stopper1

Belt(i)cl
Turner

rl
Turner

Belt(i) Belt(i) cl
PP

rl
PP

cl
Belt(i)

rl
Belt(i)

d
2

d
3

d
4

t1

t2

t3 t4

2 3 4

Activity:InvertedTop(i,d  ,d  ,d  )

Stopper1cl
Stopper1

Stopper1
disable

Stopper1
enable

rl
Stopper1

Belt(i) Turner
FlipBlock

cl
Turner

rl
Turner

Belt(i) Belt(i)

0.20 s 1.50 s 0.20 s

0.20 s 1.50 s 0.20 s

1.00 s

cl
PP

rl
PP

cl
Belt(i)

rl
Belt(i)

d
2

d
3

d
4

t1

t2

t3 t4

2 3 4

Activity:Assembly

PP
assemble

1.10 s

PP
extend

1.20 s

cl
PP

rl
PP
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discussed, it becomes clear that subsequent input pieces claim these three resources
in order in a cyclic manner.

Figure 9.5 shows Top, InvertedTop, and Assembly activities. Top pieces flow
through the machine over the belts until the pick and place unit PP. The only
difference between a Top and an InvertedTop activity is that an inverted piece is
flipped by the Turner. The arrival of a top piece at the PP unit is again signaled
by claiming and releasing the PP resource. The actual assembly is modeled by the
Assembly activity. The PP unit picks up a top and extends towards the indexing table,
before combining the top with the bottom piece on the indexing table.

As illustrated by the xCPS example, an activity represents a block of determinis-
tic functional behavior. It is a design choice how much behavior should be included
in a single activity. As an extreme case, an activity could be defined as a single
action (together with the corresponding associated resource claim and release). On
the other hand, a single activity could also be defined such that it encompasses all
the behavior in the system (as long as the behavior is functionally deterministic).
The most suitable activity design is system dependent, for instance, based on the
dynamics of the system or a desired system architecture.
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4.2 Temporal Semantics

Besides the functional specification of activities of an FMS, for productivity analysis
and optimization, we need a temporal specification in the form of action execution
times. A function Ta : A → R≥0 maps each action to its non-negative execution
time. In the activity graphs of Figs. 9.4 and 9.5, action execution times are shown
above the action nodes. In reality, action execution times often show (small)
variations. These variations are abstracted to a fixed execution time, typically
the worst-case execution time when the purpose of the modeling is to analyze
productivity guarantees. In system scenario terminology, run-time situations with
small timing variations are abstracted into scenarios.

Since actions are executed on resources, actions from different activities may
compete for those resources. Performance of an FMS therefore is determined by
the combination of action execution times and claims and releases of resources.
An action can execute if the activity of which it is a part has a claim on the
resource needed by the action and if all actions preceding it have executed. For
the purpose of performance analysis, system state can therefore be captured by
resource-availability times; progress is captured by the aggregated duration of action
executions in an activity.

xCPS Case Study 2 Consider again Fig. 9.4 depicting the bottom activity.
Consider for the purpose of this example activity Bottom(1, 4.24, 4.57), i.e., the
instance with i = 1, d2 = 4.24, and d3 = 4.57. Assume that resources Stopper1,
Switch2, IT2, PP, Turner, Belt(1), Belt(2), and Belt(3) are all available at time 0. This
is compactly represented by vector [0, 0, 0, 0, 0, 0, 0, 0]T , or 0 for short. (The other
resources in xCPS, like Switch 1, do not play a role in our performance analysis and
are abstracted away.) Assume that claims and releases of resources do not take time.

From Fig. 9.4, it can be seen that resource Stopper1 is released 0.20 + 1.50 +
0.20 + 4.24 = 6.14 time units after it has been claimed. Moreover, the release
of Switch2 takes place 4.57 + 0.52 + 0.68 = 5.77 time units after it has been
claimed. Given the assumption that all resources are available at time 0, Stopper1
is released at time 6.14. Since Switch2 can only be claimed after the release of
Stopper1, Switch2 is effectively claimed at time 6.14 and released at time 11.91.

Based on similar reasoning, Belt(1) is released at time 11.91 and IT2 is claimed
at time 6.14 and released at time 6.14 + 4.57 + 0.52 + 0.52 = 11.75. The latter is
obtained by taking the time Switch2 is claimed and adding the maximum duration
among the action sequences leading from this claim to the release of IT2. PP is
claimed and released at time 11.75.

Summarizing these analyses yields the resource-availability times after execu-
tion of activity Bottom(1, 4.24, 4.57): [6.14, 11.91, 11.75, 11.75, 0, 11.91, 0, 0]T in
vector form. The three resources that are not used by the bottom activity keep
their availability time of 0. Thus, executing activity Bottom(1, 4.24, 4.57) turns
initial state 0 into state [6.14, 11.91, 11.75, 11.75, 0, 11.91, 0, 0]T . Note that the
assumptions on activity models guarantee that all resources are properly released
after executing an activity, so all resources have a well-defined availability time after
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Fig. 9.6 Gantt charts for executing activity Bottom(1, 4.24, 4.57) of Fig. 9.4 from two initial states

execution. The maximal value in the resulting resource-availability vector gives the
completion time or the makespan of the activity execution, 11.91 time units in this
example, corresponding to the release of the Switch2 and Belt(1) resources.

If for some reason resource IT2 is not available at time 0 but only at time 12.00,
its claim in the bottom activity is delayed until that time. The release of PP and IT2
is then delayed till 13.04, resulting in a transition from [0, 0, 12.00, 0, 0, 0, 0, 0]T
into state [6.14, 11.91, 13.04, 13.04, 0, 11.91, 0, 0]T . The release of the Switch2
and Belt(1) resources is not affected.

Figure 9.6 illustrates the two execution scenarios of the bottom activity discussed
in this example. The charts are captured with a tool set under development for
specifying, simulating, and analyzing activity models. The rows show the resource
claims and action executions for the resource/peripheral pair shown on the y-axis.
The second row in the charts, for instance, shows the claims and actions for the
motor peripheral of indexing table IT2. Recall that peripherals were omitted from
the activity models given earlier for readability purposes. The specific instance of
the bottom activity considered in this example is referred to as Bottom_BT_TB_1
in the charts. The thin horizontal bars in the rows of the charts show the durations of
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the resource claims. The boxes on top of those bars illustrate the action executions.
Names are automatically included in those boxes if they fit and are omitted
otherwise. The Stopper1.stopper row, for example, shows three action executions,
corresponding to the disable, t1, and enable actions, respectively. Names follow
the format “action instance:action type.” In the activity models given earlier, for
simplicity, we did not distinguish between instances and types because none of
the action models has multiple instances of a single action. Arrows between action
executions in the Gantt charts correspond to precedence relations in the activity
models. The delayed availability of the IT2 resource in the bottom chart is modeled
by an extra activity claiming that resource until the mentioned availability time. It
can be seen from the charts that all timings are consistent with the numbers given
above. Note that the PP claim and release occur instantaneously, in line with the fact
that this claim/release pair only signals the arrival of a bottom piece at the PP unit.

A careful analysis of the timing of the two execution schemes discussed in this
example reveals an interesting aspect of the second execution in which availability
of indexing table IT2 is delayed. It can be seen that Switch2 is enabled before IT2
is properly aligned. This actually means that the bottom piece is pushed off the
belt while IT2 is not ready yet, implying that the piece drops from the machine.
This example illustrates that actions need to respect certain ordering and timing
constraints to ensure functionally correct behavior. Correct functional behavior
should be ensured by proper activity and control design. The analysis presented in
this section focuses on timing only. The combination of control design and timing
analysis can be used to ensure proper functionality while optimizing performance.
In the considered xCPS setup, the incorrect behavior observed in the above example
cannot occur given the assumptions on the input sequences.

The xCPS example shows two important points: (1) the completion time of an
action in an FMS can be derived by considering resource-availability times, taking
the maximum of the completion times of all preceding actions, and adding the
action execution time; (2) the aggregated execution of all actions in an activity can
be captured in terms of transitions between vectors of resource-availability times.
Timing analysis of activity models can thus be done naturally in (max,+) algebra
[5, 13]. The analysis framework is essentially the same as the framework discussed
in Chap. 8 for dataflow models. A resource time stamp vector γ R : R → R

−∞
represents the system state in terms of resource availability. For each r ∈ R,
γ R(r) ∈ R

−∞ is the availability time of resource r . Starting from resource vector
γ R , the execution of an activity Act leaves the system in a new state γ ′

R . This new
state is determined by computing the resource release times in the activity, taking
into account the dependencies and execution times of its actions, as illustrated in
the above xCPS example. The essential timing information of Act can be captured
in an |R| × |R| matrix MAct that for each entry [MAct ]i,j contains the duration
of the longest path from resource j to resource i (or −∞ if there is no path). In
terms of the system scenario framework, an activity is a scenario corresponding to
a set of similar run-time situations; the matrix captures the deterministic (worst-
case) timing aspects of the scenario. With such a timing matrix, the vector γ ′

R can
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be computed as γ ′
R = MAct ⊗ γ R , where ⊗ is the (max,+) matrix multiplication.

Given m×p matrix A and p×n matrix B, the elements of the resulting matrix A⊗B
are determined by: [A ⊗ B]ij = maxp

k=1([A]ik + [B]kj ). The completion time or
makespan of executing activity Act in state γ R is

∥∥γ ′
R

∥∥, where for any vector x,
‖x‖ = maxi x(i) denotes the (max,+) vector norm of x.

xCPS Case Study 3 Consider again the Bottom(i, d2, d3) activity of Fig. 9.4. For
each instantiation of the parameters, it has a (max,+) matrix that defines the timing
information. The following matrix characterizes Bottom(1, d2, d3), for any value of
the d2 and d3 parameters. The expressions in the matrix can be derived along the
lines sketched earlier in the previous xCPS example. They can be computed by a
(symbolic) traversal of the activity graph (see [14]).

Stopper1
Switch2

IT2
PP

Turner
Belt(1)

Belt(2)

Belt(3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Stopper1 Switch2 IT2 PP Turner Belt(1) Belt(2) Belt(3)

1.9 + d2 −∞ −∞ −∞ −∞ 1.9 + d2 −∞ −∞
3.1 + d2 + d3 d3 + 1.2 −∞ −∞ −∞ 3.1 + d2 + d3 −∞ −∞
2.94 + d2 + d3 d3 + 1.04 1.04 0 −∞ 2.94 + d2 + d3 −∞ −∞
2.94 + d2 + d3 d3 + 1.04 1.04 0 −∞ 2.94 + d2 + d3 −∞ −∞

−∞ −∞ −∞ −∞ 0 −∞ −∞ −∞
3.1 + d2 + d3 d3 + 1.2 −∞ −∞ −∞ 3.1 + d2 + d3 −∞ −∞

−∞ −∞ −∞ ∞ −∞ −∞ 0 −∞
−∞ −∞ −∞ ∞ −∞ −∞ −∞ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be verified that MBottom(1,4.24,4.57)⊗0 equals vector γ = [6.14, 11.91, 11.75,

11.75, 0, 11.91, 0, 0]T . For example, (MBottom(1,4.24,4.57)⊗0)(IT 2) = max(2.94+
4.24 + 4.57, 4.57 + 1.04, 1.04, 0, −∞, 2.94 + 4.24 + 4.57, −∞, −∞) = 11.75.
This is consistent with the previous example. The makespan of executing activity
Bottom(1, 4.24, 4.57) in initial state 0 is ‖γ ‖ = maxi γ (i) = 11.91.

xCPS Case Study 4 Similar matrices as the one presented in the previous xCPS
example can be created for the Bottom activities using belt resources Belt(2) and
Belt(3), and for the Top, InvertedTop, and Assembly activities. With these matrices,
resource release times and makespans for these activities can be computed. An
important point is to obtain the proper timing information for the actions in the
activity models. Recall that the goal of the analysis is to explore productivity, cov-
ering productivity lower bounds, maximal achievable productivity, and productivity
bottlenecks, during early design. For this purpose, we need tight worst-case bounds
on action timing behavior.

The timing information in the activity models of xCPS case study 1 and the
derived values in the matrix of xCPS case study 3 have been obtained from a set of
Simulink simulations. The Simulink model is a hybrid discrete-event, continuous-
time model that captures the detailed xCPS action behavior. For the purpose of
this case study, it suffices to capture the behavior of the part of xCPS related to
conveyer belt 2. This model includes all relevant aspects and details, such as the
behavior of the turner and the dynamic behavior of the Belt 2 controller. Such a
model allows to derive accurate action timing. It is important to carefully consider
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the assumptions introduced in xCPS case study 1 to obtain the proper model and the
correct simulations. It follows from the assumptions that the timing of processing
a specific piece may be influenced by (at most) the two next pieces in the input,
because three pieces share Belt 2. For instance, a bottom piece may be slowed
down on Belt 2 if it is followed by an inverted top piece that needs to be flipped
in the turner, whereas it is not slowed down if it is followed by a regular top. Also
at most two pieces preceding the modeled piece in the input may have an impact
on the timing. This is because those pieces may or may not have been flipped,
which leads to different Belt 2 controller timing at the moment the current piece
is being processed. Thus, the timing of processing a piece depends on a context
of two preceding and two following pieces. These timing variations are captured
in the parameters d2, d3, and d4. Figure 9.7 shows timing diagrams of some of
the performed simulations. The figure shows three time–displacement profiles for
pieces on Belt 2, in line with the assumption that three pieces can share this belt. The
simulated sequence starts with a bottom piece, followed by an inverted top, another
bottom, and a regular top. Precise timing and position information can be obtained
from those diagrams. A bottom piece, for instance, leaves Belt 2 at Switch 2 at
position 27; a top piece leaves at position 35. Both the fast and the slow movement

Fig. 9.7 Measurements for action timing information. The y-axis shows the displacement of
pieces on Belt 2. The x-axis shows progress of time
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are visible. It can be observed that the processing of a bottom depends on its context
of (inverted) top pieces.

The matrices for the xCPS activity models have been obtained from a sufficiently
large set of simulations. The action timings in the models are the measured worst-
case values. Note that this does not guarantee that the actual (theoretical) worst-case
behavior has been observed. The detailed dynamics of all the actions in a complex
machine like xCPS is difficult to analyze. Simulations suffice though to obtain
values suitable for early design phase analysis and exploration.

The introduced xCPS activity model is a (max,+) switched linear system, as
introduced in Sect. 3.4 of Chap. 8. It is straightforward to verify that it is both
additive/monotonic and homogeneous/shift-invariant, as illustrated also by the
examples in xCPS case study 2. So the analysis techniques and properties of (max,+)
linear systems discussed in the previous chapter apply to the model.

Besides requiring that the activity model satisfies the conditions of a linear
system, it needs to be ensured that the model is a sound abstraction of the detailed
behavior of the FMS under consideration in terms of the abstraction–refinement
relation discussed in Sect. 2.2 of Chap. 8. That is, the model should correctly capture
upper bounds on the completion times of actions, relative to the availability times
of the required resources. This is ensured when the measured worst-case action
execution times may be assumed to be proper conservative bounds on action timing,
as explained in xCPS case study 4. Note that the model encodes context information
about the sequence of pieces to allow for a tight abstraction of the behavior modeled
as an activity.

4.3 Analyzing Activity Sequences

We have seen how to model and analyze the timing behavior of a single activity exe-
cution. System-level timing behavior can now be analyzed by considering possible
sequences of activities. Figure 9.8 shows part of the Gantt chart corresponding to the
execution of an alternating sequence of bottom and top pieces in xCPS. We would
like to know timing aspects such as the makespan of a finite sequence of processed
pieces, or the guaranteed throughput that can be achieved by such a sequence in
steady state.

Using the (max,+) framework introduced in the previous subsection, the
resource-availability times of the execution of a sequence Act1Act2 · · · Actn of
activities starting from a vector γ R of resource-availability times is given by
expression MActn ⊗· · ·⊗MAct2 ⊗MAct1 ⊗γ R . The makespan can be obtained from
these resource-availability times, in the form of the maximum value in the vector.

xCPS Case Study 5 Let us consider execution of scenarios Bottom(i,4.24,4.57)
and Top(i,1.64,4.71,1.00) pieces followed by an Assembly activity, denoted B, T, and
A for short. Consider the sequence BTABTA starting from the initial state 0. This
sequence leads to resource-availability times [19.38, 21.61, 21.45, 27.38, 19.38,
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Fig. 9.8 Gantt chart of a steady-state repetitive BTA execution

Fig. 9.9 Gantt chart of a repetitive BTA execution from the initial state

25.08, 15.40, 21.61]T and makespan 27.38. Figure 9.9 shows the Gantt chart for
this sequence. The vector of resource-availability times is marked by a solid line,
labeled B. We see that the pieces iteratively claim the Belt(1), Belt(2), and Belt(3)
resources, conforming to the assumption that at most three pieces are on the belt
simultaneously.

Besides the makespan of activity sequences, we are also interested in steady-state
productivity of an FMS. Essentially, steady-state productivity can be determined in
the activity modeling framework by looking for a recurrent state in the resource
availability while executing activities. Since time increases, resource-availability
vectors need to be normalized to find recurrent states. For vector x, with ‖x‖ > −∞,
xnorm equals x − ‖x‖, the normalized vector, with ‖xnorm‖ = 0. That is, resource-
availability vectors are normalized by subtracting the maximum entry from all its
elements. Productivity, or throughput, of a sequence of activity executions can then
be computed by considering the activity subsequence repeating between recurrent
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states. The output produced by this repeating subsequence should be divided by the
makespan of this sequence. Such a recurrent state always exists, because executing a
finite number of activities allows only a finite number of normalized states [15, 42].
In practice, throughput of a repetitive activity sequence is not computed by exploring
the state space corresponding to the sequence. It can be computed more efficiently
by computing the largest eigenvalue of the product of the matrices of the repeated
activities. This eigenvalue corresponds to the period of the repetition, from which
the throughput can be derived straightforwardly.

xCPS Case Study 6 Consider again Fig. 9.9. The normalized resource-availability
vector after executing the initial Bottom(1,4.24,4.57) activity is [6.14, 11.91, 11.75,

11.75, 0, 11.91, 0, 0]T − 11.91 = [−5.77, 0, −0.16, −0.16, −11.91, 0, −11.91,

−11.91]T . The normalized state after executing the BTABTA sequence from the
initial state (see also xCPS case study 5) is [−5.76, 0, −0.16, −0.16, −11.91,

−6.21, 0, −9.68]T . This turns out to be a recurrent state, which repeats every time
sequence BTABTABTA is executed. The recurrent normalized resource-availability
vector after executing sequence (BTA)5 is marked with the solid line E in Fig. 9.9.
The repeated sequence BTABTABTA has a makespan of 29.13 s when starting from
this recurrent vector of resource availability and produces three composite pieces.
This makespan corresponds to the largest eigenvalue of the matrix for sequence
BTABTABTA. This leads to a throughput of approximately 0.103 composite pieces
per second, because three composite pieces are produced in one repetition.

This example considers the throughput of a single execution pattern. In general,
we would like to know the timing aspects of all possible behaviors. To this end,
all possible activity sequences need to be specified in a finite-state machine. Such
a state machine can then be translated to a state space of normalized resource-
availability vectors, essentially following the above example. Any cycle in this state
space corresponds to a possible steady-state behavior of the modeled system. Any
such cycle also corresponds to a throughput value. A lower bound on the throughput
of the system is given by the minimal throughput value among all cycles; this
throughput can always be guaranteed. The best achievable throughput is obtained
from the maximal throughput value among all cycles in the state space. Any cycle
with maximal throughput value also provides an activity ordering that realizes this
throughput. Such an ordering can be used as schedule or control strategy if the
occurrence of the activities can be controlled. The next section discusses this so-
called supervisory control in more detail. Note that the action execution times
underlying the (max,+) matrices of the activities are assumed to be worst-case
execution times. This implies that in reality an activity sequence with maximal
throughput may show an even higher throughput than the concrete value that the
best-case analysis shows. This concrete value, though, is the throughput that can be
guaranteed for such an activity sequence under all possible action execution times.
The details of the throughput analysis are beyond the scope of this chapter; the
interested reader is referred to [15, 16, 42] and the previous chapter. In practice, the
explicit construction of the normalized state space can be avoided for the throughput
lower bound. This lower bound can be computed on the often smaller (max,+)
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Fig. 9.10 A fragment of the FSM capturing all possible xCPS activity orderings

automaton graph, as explained in Sect. 3.3 of Chap. 8. The explicit computation of
the state space cannot be avoided for the best-case analysis.

xCPS Case Study 7 Figure 9.10 shows a fragment of the FSM that captures all
possible activity sequences of xCPS in line with the assumptions of xCPS case
study 1. Transition labels provide the executed activity and its context, as explained
in xCPS case study 4. For instance, transition Bottom-BT-TB from initial state s0
to state s1 corresponds to activity Bottom(1,4.24,4.57) that we have considered in
earlier examples; the context BT-TB specifies that the bottom piece is preceded by
a BT combination and followed by a TB combination (implying the value of the
transport delay values d2 = 4.24 and d3 = 4.57). The repetitive sequence of BT
combinations analyzed in the earlier examples corresponds to the state sequence
s0(s1s5s9s13s17s21s25s29s33)ω in the FSM, where xω denotes infinite repetition
of x.

The FSM of Fig. 9.10 together with the activity models completes the model for
xCPS. It can be analyzed for various timing properties using existing (max,+)-based
techniques for activity and dataflow models, as explained earlier. The repetitive
sequence of BTA activities corresponds to the best possible throughput of 0.103
composite pieces per second. As explained above, the actual throughput may be
higher if the actions in the activities do not run with their worst-case execution times,
but the 0.103 pieces per second can be guaranteed independent of the low-level
action timing. The throughput lower bound among all possible activity sequences
occurs when all tops in the input are inverted. The throughput is then 0.080 pieces
per second. Since this is a lower bound, it holds for all action timings. Since, for
now, the orientation of top pieces in the input is assumed to be uncontrollable, the
analysis shows that the productivity of xCPS is between 0.080 and 0.103 pieces per
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second, with potentially (small) positive outliers if actions do not show worst-case
timing.

The scenario-based analysis using activity models is fast. The throughput
analysis giving the mentioned best-case and worst-case throughput values, for
instance, takes 8.85 ms. This is much faster than traditional simulation would be.
The activity-based analysis is moreover exact, under the assumption that the action
execution time values are tight, worst-case values. All possible behaviors are taken
into account. This is typically infeasible, or very time consuming, with traditional
simulation. Note that, since action execution times are worst-case values, the
actually observed throughput might in reality be slightly higher than the mentioned
best-case throughput value of 0.103 composite pieces per second. However, the
lower-bound value of 0.080 is a guaranteed value below which the throughput will
never drop.

4.4 Bottleneck Identification

By analyzing the timing behavior of activity sequences, we can determine system-
level makespan and throughput guarantees. Performance improvements can be
achieved by resolving productivity bottlenecks. In the context of activity models,
these can be identified using the critical path method (CPM) [21]. The CPM
identifies the critical path(s) in a given activity sequence. A critical path is defined
as a longest path of peripheral actions in the activity sequence for which a delay
on their start or completion times would affect the overall makespan. Resolving the
bottlenecks, for instance, by improving the execution times of critical actions, leads
to an increase in the overall performance. In the context of design, this translates to
an upgrading or replacing of certain system peripherals or resources.

Fig. 9.11 Critical path of the BTABTABTABTA sequence
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xCPS Case Study 8 Figure 9.11 depicts a Gantt chart highlighting the critical
path of the xCPS activity sequence BTABTABTABTA. Critical actions are depicted
in red, while other actions are depicted in gray. We may conclude that resources
Stopper1 and Belt(1), Belt(2), and Belt(3) (which together model conveyer belts 2
and 3) are currently the productivity bottlenecks. Updating either of these resources
to make them faster would lead to better system performance. The speed of Stopper
1 is physically limited, since reducing the duration of t1 would make the stopper
hit passing pieces. Thus we are left with the option to improve the belt resource.
Section 6 explores the design of different controllers for conveyer belt 2, namely
a standard feedback controller running on a single processing core, a pipelined
controller running on multiple cores of a multi-core platform, and a scenario-based
pipelined controller that switches between different multi-core configurations. The
better a controller is, the faster the belt reaches its desired speed set point. This
has an impact on the duration of the transport actions t1–t4 in the activity models.
Thus, controller performance may have an impact on system-level performance.
The productivity numbers presented in xCPS case study 7 are obtained using the
pipelined multi-core controller. Using the best controller obtained in Sect. 6, i.e.,
the scenario-based controller, the guaranteed productivity can be improved to 0.111
pieces per second, which is an improvement of 7.2% compared to the 0.103 pieces
per second obtained with the non-reconfigurable pipelined controller. The analysis
uses adapted activity models with updated t1–t4 durations, and then goes along the
same lines as explained in this section. This analysis is fully automated and hence
very fast.

A different design exercise may focus on cost reduction instead of performance
improvements. The cost reduction should come without hindering system perfor-
mance. To this goal, we can play with resources that are not in the critical path,
for instance, indexing table IT2. Figure 9.12 depicts the critical path of the same
activity sequence as before, but with IT2 virtually replaced by a slower candidate
indexing table resource cIT2 with actions that take six times longer than those of
IT2. The identified bottlenecks remain the same and the makespan is unchanged.

Fig. 9.12 Critical path of the BTABTABTABTA sequence assuming a slower IT2 resources
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This shows that we can use slower (and in principle cheaper) resources to obtain the
same performance.

In conclusion, activity models enable efficient system-level performance analy-
sis, bottleneck identification, and design-space exploration for specific input/activity
sequences, captured in an FSM. The next section discusses techniques to create such
an FSM of acceptable behaviors and optimize it for performance. Combining these
techniques with bottleneck identification allows for a systematic approach to narrow
down design choices that improve the system performance, first by determining the
appropriate activity orderings and then by identifying the bottlenecks that can be
further improved.

5 Synthesis and Optimization of Supervisory Controllers

As illustrated in Fig. 9.10, a finite-state machine can be used to specify all allowed
activity sequences. Constructing such an FSM manually becomes infeasible when
the number of activities and activity ordering constraints gets large. An alternative
approach is to specify the possible behaviors in a modular fashion. Properties of
each part of the system can then be modeled in isolation, and the composition of the
models forms the complete system model. Restricting a system model to ensure that
only proper behavior is allowed is referred to as supervisory controller synthesis.
The resulting FSM is referred to as a (supervisory) controller, or supervisor. This
section presents a scenario-based controller synthesis approach based on activity
models, following [42]. The approach facilitates the specification and modeling
of complex FMS behavior. It moreover improves efficiency and scalability of
controller synthesis and leads to more compact controllers, when compared to an
approach that models FMS behavior in terms of low-level actions. Furthermore,
the approach allows performance optimization of the resulting controller. Finally,
the approach supports code generation, allowing to automatically obtain controller
implementations from the generated controller model. Section 5.1 presents our
modeling and controller synthesis approach in more detail. Section 5.2 discusses
makespan and throughput optimization. Section 5.3 explains code generation.

5.1 Modeling and Controller Synthesis

Our supervisory controller synthesis starts from a modular behavioral specification
of the targeted system [41]. The modular specification captures possible activity
orderings of the system, referred to as the plant models, and activity ordering
constraints, the requirement models. They are captured modularly and concisely
using a network of extended finite-state automata [35]. An extended finite-state
automaton is an augmentation of a finite-state automaton with state variables that
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can be used in guard formulas and can be updated on transitions. Each transition
captures the execution of an activity. The set of activities is partitioned into a set of
controllable activities and a set of uncontrollable activities. Controllable activities
can be enforced by the supervisor (e.g., actuator commands), while uncontrollable
activities cannot be activated or inhibited by the supervisor (e.g., changing sensor
values). The composition of plant and requirement automata is characterized
using multiparty synchronization [10], where execution of shared activities among
different automata is synchronous. This synchronization mechanism ensures that an
activity can only be executed if all involved automata are able to execute the activity
at the same time; activity execution then involves all automata in which the activity
is enabled, moving all of them to their specified next states.

Given the complete system behavior in the form of the composition of plant and
requirement models, the Ramadge–Wonham framework of supervisory controller
synthesis [32, 33], in particular its extension to extended finite-state automata [29],
can be used to obtain a supervisory controller. Such a controller enforces restrictions
in activity orderings upon the system to ensure safe behavior (e.g., avoiding
collisions between robot arms and preventing buffer overflows), and guarantees
deadlock-free behavior of the system. Furthermore, it is ensured that the controller
is controllable in the sense that it does not block uncontrollable activities that
can occur in the plant. Additionally, the controller is minimally restrictive, which
means that the controller does not restrict the behavior of the FMS more than
strictly necessary with respect to the requirements. Minimal restrictiveness allows
for controller optimization as a subsequent step. The timing information of each
activity, for example, can be used to find the performance-optimal control choice in
each system state, considering, e.g., makespan or productivity.

Our scenario-based supervisory controller synthesis approach combines a mod-
eling and composition step with the classical Ramadge–Wonham framework. This
facilitates modeling and improves scalability of the synthesis [42]. With proper
models at the abstraction level of activities, many unsafe behaviors can already
be excluded in the composition step and fine-grained action-level behaviors can
be avoided. This two-step synthesis approach scales better than traditional one-
step synthesis, because it reduces peak memory usage. Both the composition and
the post-composition synthesis typically require less memory than the one-step
synthesis on a fully expanded (action-level) model that may contain many fine-
grained, possibly unsafe behaviors. Peak memory usage, rather than run-time, is
often the bottleneck in classical synthesis. Moreover, the state space of the generated
supervisory controller is typically much smaller compared to a controller generated
from an action-level model.

xCPS Case Study 9 Recall the FSM of Fig. 9.10 that models all allowed activity
sequences in xCPS given the assumptions made in xCPS case study 1. Manually
designing such a controller is a tedious task, and prone to errors. Therefore, we
model the system using a network of plant and requirement automata, from which
this controller can be generated. In the modular specification, each automaton
captures a single aspect.
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Fig. 9.13 Plant that captures
the strict alternation between
bottom and top pieces,
starting with a bottom piece

(Bi,∗)

(Ti,∗), (Ii,∗)

Fig. 9.14 Plant that models
the cyclic ordering in
claiming the Belt(i) resources

(B1,∗), (T1,∗), (I1,∗) (B2,∗), (T2,∗), (I2,∗)

(B3,∗), (T3,∗), (I3,∗)

Fig. 9.15 ObserverTops:
observer to keep track of the
context related to the top
pieces type1 = ?

type2 = ?

(Ti,TBTBT) do type1 := T, type2 := T
(Ti,TBTBI) do type1 := T, type2 := I
(Ti,IBTBT) do type1 := T, type2 := T
(Ti,IBTBI) do type1 := T, type2 := I
(Ii,TBIBT) do type1 := I, type2 := T
(Ii,TBIBI) do type1 := I, type2 := I
(Ii,IBIBT) do type1 := I, type2 := T
(Ii,IBIBI) do type1 := I, type2 := I
(Bi,BTBTB) do type1 := T, type2 := T
(Bi,BTBIB) do type1 := T, type2 := I
(Bi,BIBIB) do type1 := I, type2 := I
(Bi,BIBTB) do type1 := I, type2 := T

Figure 9.13 shows the plant model that captures strict alternation between
bottom and top pieces, starting with a bottom piece. For conciseness, InvertedTop
is abbreviated to I. Transitions contain activity-context pairs, covering the same
information as the transitions in the FSM in Fig. 9.10, but in a more compact format.
Index i is used to capture which of the three resources Belt(i) is used. Each activity
instance in the automata with index i should be expanded to the three instances with
i = 1, i = 2, and i = 3. The model of Fig. 9.13 allows arbitrary contexts for the
bottom and top pieces, indicated by a ∗. For example, (B1,∗) should be expanded to
activity B1 with all possible contexts. Recall that the context determines the value
of the d2–d4 parameters in the activity models. The orientation of the top pieces
that arrive is uncontrollable, which means that (Ti,∗) and (Ii,∗) are uncontrollable
activities. Activities (Bi,∗) are controllable activities (although only the bottom
activity with the right context can be chosen, as explained below). Initial states of
automata are marked with an incoming arrow. States can be marked, indicated with a
gray node. Marked states can be used in modeling and synthesis to indicate system
states that should always be reachable, for example, to bring the system to a safe
state, or the completion of (sub-)tasks. The initial state of the automaton in Fig. 9.13
is marked to indicate that bottom and top pieces always need to be processed in
pairs.

As described before, the three belt resources are claimed in order in a cyclic
manner. This is captured in the plant model shown in Fig. 9.14. Figures 9.15
and 9.16 show the plant models that guarantee the correct context information
for each activity. The ObserverTops plant model shown in Fig. 9.15 stores the
information about the current type of top piece in variable type1, and the future



9 Scenarios in the Design of Flexible Manufacturing Systems 205

Fig. 9.16 Enforce the right
context based on the types of
top pieces observed by
observer ObserverTops

(Ii,TBIBT), (Ii,TBIBI), (Bi,BTBIB) ⇒
(ObserverTops.type1 = T ∨ ObserverTops.type1 = ?) ∧
(ObserverTops.type2 = I ∨ ObserverTops.type2 = ?)

(Ti,TBTBT), (Ti,TBTBI), (Bi,BTBTB) ⇒
(ObserverTops.type1 = T ∨ ObserverTops.type1 = ?) ∧
(ObserverTops.type2 = T ∨ ObserverTops.type2 = ?)

(Ii,IBIBT), (Ii,IBIBI), (Bi,BIBIB) ⇒
(ObserverTops.type1 = I ∨ ObserverTops.type1 = ?) ∧
(ObserverTops.type2 = I ∨ ObserverTops.type2 = ?)

(Ti,IBTBT), (Ti,IBTBI), (Bi,BIBTB) ⇒
(ObserverTops.type1 = I ∨ ObserverTops.type1 = ?) ∧
(ObserverTops.type2 = T ∨ ObserverTops.type2 = ?)

c = 0

(Bi,∗) when c < 1 do c := c + 1Assembly do c := c - 1

Fig. 9.17 Requirement IndexTableBuffer to avoid a buffer overflow on the indexing table

type of top piece in variable type2. Initially the context information about the top
pieces is not available, indicated by a question mark. Given this information, we
can formulate a plant model, shown in Fig. 9.16, that enforces that an activity can
only be executed with the correct context information. This model uses a state-
based expression [23] that states the condition under which activities are allowed
to occur; activity-context pairs (A1, C1), . . . , (An, Cn) are only allowed to occur
if condition c is satisfied, denoted as (A1, C1), . . . , (An, Cn) ⇒ c. Such a state-
based expression is simply a textual shorthand for an automaton with a self-loop
that contains the activities and the guards. It eases specification of behavior.

To ensure a correct and safe assembly process, we need to enforce various
requirements. First, we need to prevent overflowing the indexing table or the belt in
front of the pick and place unit with too many pieces. Considering that at most three
pieces are allowed on Belts 2 and 3, we restrict the number of top pieces in front of
the PP unit to three. We also limit the number of bottom pieces on IT2 to one. In line
with the assumptions in xCPS case study 1, the bottom activity first aligns IT2 with
Belt 2, and after the bottom piece is pushed onto IT2, IT2 is turned directly towards
the PP unit. This behavior effectively limits the capacity of IT2 to one. Turning
IT2 for another 90◦ before assembly would allow an unassembled bottom to be
moved towards the output, which is undesirable. Figure 9.17 shows the requirement
that at most one bottom can be inputted, and then first an assembly operation must
be performed before a next bottom piece can be inputted. Figure 9.18 shows the
buffering requirement for the belt capturing that at most three top pieces can be
inputted. To input a next piece, first an assembly operation should be performed.
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c = 0

(Ti,∗),(Ii,∗) when c < 3 do c := c + 1Assembly do c := c - 1

Fig. 9.18 Requirement BeltBuffer to avoid a buffer overflow on the belt

Assembly ⇒
IndexTableBuffer.c > 0 and BeltBuffer.c > 0

Fig. 9.19 Enforce that assembly can only happen if there are bottom and top pieces to be
assembled

As a final requirement, observe that an assembly can only be performed if
there is both a top and bottom piece available, shown in the model of Fig. 9.19.
The combination of the three requirements provides the boundaries for a correct
assembly within the given assumptions.

Our two-step supervisory controller synthesis can be applied to the set of plant
and requirement automata described above. The composition step already yields the
same controller as is shown in Fig. 9.10; the classical Ramadge–Wonham synthesis
step does not change the result anymore. Both the composition and the Ramadge–
Wonham synthesis complete in a few seconds.

5.2 Throughput and Makespan Optimization

Due to the minimal restrictiveness of generated controllers, there may be room
left for performance optimization. As already explained, an important metric for
FMS that continuously repeat the same process is productivity or throughput,
which quantifies the number of products that are finished per time unit. Finding
a throughput-optimal control strategy is not trivial, because in general not all
activities in the FMS are controllable. In the xCPS case study, for example, the
orientation of the top pieces is not controllable. The throughput optimization
problem for supervisory controllers with uncontrollable activities can be formalized
in a game-theoretic setting. The system controller is one player in the game, and the
environment (that determines uncontrollable activities) is its adversary. A controller
strategy is needed that maximizes the ratio of productivity divided by delay in
the resource-availability vector state space, given environmental influences on
uncontrollable activities. Such a controller strategy against uncontrollable activities
corresponds to finding an optimal strategy in a ratio game [40]. When the system
is fully controllable, i.e., when we have full control over all activity orderings, the
strategy reduces to a repeatable activity sequence in the controller that yields the
highest throughput. To find such a sequence, we can simply apply the technique
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explained in Sect. 4.3 and the previous chapter, using the state space of normalized
resource-availability vectors generated by the controller.

xCPS Case Study 10 Consider again the controller of Fig. 9.10. The worst- and
best-case guaranteed throughput of the system have already been described in xCPS
case study 7. A throughput lower bound of 0.080 composite pieces per second
occurs when all tops enter the system in inverted orientation. Since the controller
does not have different control options in response to an inverted top entering the
system, the mentioned game-theoretic analysis, trivially, confirms this result as the
best achievable lower bound on throughput with uncontrollable top orientation. If
we assume that all activities are controllable, i.e., if it is possible to control the
orientation of the tops, then the results of the throughput analysis presented in the
previous section yield that the repetitive sequence of BT A activities corresponds to
the best possible throughput of 0.103 composite pieces per second.

If we consider a variant of the xCPS case study in which also the input order
of pieces is controllable, then the controller has many more options. With the
given timing, however, the Belt(i) and Stopper 1 resources are the bottleneck (see
Sect. 4.4). A repetitive sequence of BTA activities is then still optimal.

However, let us consider an xCPS variant with a slower index table IT2 such that
IT2 becomes the bottleneck. Recall the assumption made in xCPS case study 1 that
IT2 rotations are restricted to 90◦ rotations, with the consequence already mentioned
in the previous subsection that the IT2 capacity is effectively limited to one. A more
fine-grained control of IT2, where we use multiples of 30◦ rotations (see also the
xCPS layout of Fig. 9.3), allows a more effective use of IT2, increasing its buffering
capacity to two. Throughput can then be optimized by ensuring that no buffer place
on IT2 is left empty.

To perform this analysis, we need adapted activity models. The IT2 align belt
and align pp actions are removed from the Bottom activity. Instead, we introduce
three new activities, with only a single action, to model 30◦, 60◦, and 90◦ IT2
rotations: Turn30, Turn60, and Turn90, abbreviated 30, 60, and 90 in activity
sequence expressions. We assume that these movements take 6.0s, 12.0s, and 18.0s,
respectively.

We also need updated and additional plant and requirement models. The plant
model of Fig. 9.13 capturing the strict alternation of bottom and top pieces needs to
be removed from the specification. The buffer capacity constraint in the automaton
of Fig. 9.17 is set to two. The alignment of IT2 with the belt of the PP unit is
observed using the plant model shown in Fig. 9.20. For pushing a bottom piece
onto IT2, and assembling a top and a bottom piece, the correct alignment is needed,
captured in the requirement automaton of Fig. 9.21. The requirement automaton in
Fig. 9.22 enforces that IT2 turns before a next bottom piece is inputted. Only one

Fig. 9.20 Plant that captures
the alignment of IT2 with the
belt or pick and place unit
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Fig. 9.21 Enforce a correct
alignment of IT2 for pushing
a bottom piece onto it, and for
assembly

Fig. 9.22 Enforce that IT2
turns before a next bottom
piece is inputted

Fig. 9.23 Enforce that an unassembled bottom piece does not pass the pick and place unit

turn operation is allowed, and we assume that initially the indexing table is aligned
with the belt. Finally, we need to guarantee that an unassembled bottom piece does
not pass the PP unit as shown in Fig. 9.23. Counter c denotes how far the one or
two bottom pieces on IT2 have moved, in number of 30◦ rotations. To ensure that
the PP unit is not passed, this value cannot become greater than 3. After assembly,
the counter is reset if there is no bottom remaining on IT2, and otherwise, the next
bottom to be assembled must still need a turn of 30◦, so c is set to 2.

From the set of models obtained, we can now generate a supervisory controller,
which contains 603 states and 1787 transitions. The mentioned game-theoretic
throughput analysis yields as optimal sequence the sequence B60(BT30A30)ω

with a throughput of 0.067 composite pieces per second, whereas (B90TA30)ω

corresponding to the alternating processing of bottom and top pieces, which was
optimal so far, has a throughput of 0.037 composite pieces per second.

Makespan optimization is used in batch-oriented FMS to find the activity
sequence allowed by a supervisory controller that minimizes the total production
time. Given an initial state and a set of final states in a controller, finding the
minimum makespan reduces to a shortest-path problem in the generated resource-
availability-vector state space, assuming transitions in this space are labeled with the
activity delay (captured by the vector norm used for normalizing the states). There
are efficient graph algorithms to solve this problem, under the assumption that the
considered graph has no negative-weight cycles. In our case, this assumption holds
since each activity delay is non-negative. One well-known algorithm for finding
shortest paths is Dijkstra’s algorithm [12], which has quadratic time complexity in
the number of states.
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Fig. 9.24 Plant models that capture that ten tops and ten bottoms are inputted

xCPS Case Study 11 Consider again the xCPS variant with a slow IT2, fine-
grained IT2 control, and controllable input order. To model the production of a batch
of ten composite pieces, the specifications given so far in this section for this variant
can simply be extended with the four plant models shown in Fig. 9.24 that express
that ten bottoms and ten tops, in any orientation, are inputted in arbitrary order.
A final state in the system is reached when each automaton has reached a marked
state, indicated with a gray colored node in the automata pictures. In the batch model
under consideration this happens when 10 tops and 10 bottoms have been inputted.

A supervisory controller containing 1403 states and 3943 transitions can be
obtained by applying synthesis on the resulting model. Note that this controller is
larger than the controller for continuous processing discussed in the previous xCPS
case study example, because no recurrent state exists when processing finite batches.
The makespan of the possible input sequences can be analyzed in the resource-
availability state space. A shortest-path algorithm yields the optimal sequence
B60(BT30A30)9T30A with a makespan value of 164.92 s, whereas the sequence
(B90TA30)10 has a makespan of 278.92. Note that the schedule makes use of the
optimal periodic strategy obtained earlier with appropriate pre- and postamble.

The timed resource-availability state space of a generated supervisory controller
may become very large, despite the modular, two-step, scenario-based approach.
Scalability of the performance optimization presented in this subsection may
improve if we can restrict this state space. The state space may in fact exhibit
redundant interleaving of activities with respect to functionality and performance
aspects like throughput. The relative ordering of activities that do not share resources
has no impact on timing behavior. This may lead to many controller execution paths
that are equivalent from a functionality and performance point of view. Using a
partial-order reduction technique [40, 43], we can compute a reduced controller
without redundant paths directly from the plant and requirement models. This
smaller timed state space allows faster performance analysis. In the xCPS models
developed in this chapter, all activities share resources or are dependent because
they occur in the same automaton, so the state space has no redundancy. However,
for other cases, depending on the amount of redundancy in the models, reductions
in state and transition counts up to 80.4% and 91.4% for a wafer logistics model of
a lithography scanner can be obtained [40].

An alternative approach to improve scalability is based on the so-called con-
straint automata [8] that capture constraints with respect to aspects such as input
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orderings, capacities, and safety. Using a dedicated constraint operator to compose
these constraint automata with (other) requirement and plant automata prunes the
resulting state space during composition.

5.3 Code Generation

A synthesized supervisory controller that has been optimized to find optimal control
choices in each system state still needs to be implemented in the actual system.
Such a controller typically needs to execute under real-time constraints to ensure
timely responses to events in the system. The generation of implementation code
for supervisory controllers can be automated if the control API of the target system
is known. An optimized controller has in each state either one controllable activity
or (possibly multiple) uncontrollable activities enabled. In a state with one or more
uncontrollable activities, the controller has to wait till an uncontrollable activity
occurs, resolving the choice in case multiple activities are enabled. The controller
maintains a schedule of all actions that have been executed, are currently executing,
or still have to be executed. This schedule is executed on-the-fly, and the actions of
new activities can be added to this schedule in real-time. Actions of activities that
have been fully executed can be removed from the schedule, to keep the run-time
memory usage limited.

xCPS Case Study 12 We have implemented code generation for xCPS. Each
action in an activity is mapped to a hardware function of the xCPS API. The worst-
case timing abstraction that is assumed in the activity models is replaced by fixed
timing delays or sensor feedback to indicate that an action has finished. For example,
consider Fig. 9.25, where we assume a fixed timing delay to open (disable) Stopper
1. Figure 9.26 shows a code fragment of the controller code. An uncontrollable
choice occurs for the type of top piece that is being inputted. In state s0, we schedule
activity Bottom, and then add a callback to Sensor 2 for state s0_type. When a top
piece arrives at Stopper 1, Sensor 2 is triggered (see Fig. 9.3), and the type of the next
piece can be retrieved in state s0_type. Based on the type, the activity is executed,
and the next state is reached.

bool Con t r o l l e r : : d i sab le s topper1 ( API &api , : : xCPS : : xCPS &xcps , const Vertex &v ){
xcps . get component<Stopper>( ” stopper1 ” ) . d i sab le ( ) ;
add ca l lback ( convertToCal lback ( this , &Con t r o l l e r : : not i fyReady , v ) , 1 ,

DISABLE DELAY ) ;
return fa lse ;

}

Fig. 9.25 xCPS action to disable Stopper 1. DISABLE_DELAY is the time delay needed before
Stopper 1 is fully opened
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enum Type = {T , I ,B} ;
bool Con t r o l l e r : : s0 ( ){

schedu l eAc t i v i t y ( ”B” ) ;
add sensor ca l lback ( ” sensor2 ” , createSensorCal lback ( this ,& Con t r o l l e r : : s0 type ) ) ;

}
bool Con t r o l l e r : s0 type ( ){

Type type = get sensor va lue ( ” sensor2 ” ) ;
i f ( type == Type . T ) {

schedu l eAc t i v i t y ( ”T ” ) ;
s1 ( ) ;

} else i f ( type == Type . I ) {
schedu l eAc t i v i t y ( ” I ” ) ;
s2 ( ) ;

}
}

Fig. 9.26 Part of the xCPS controller

6 Scenario-Based Data-Intensive Feedback Control

The previous sections focused on scenario-based performance optimization and
supervisory control of FMS. In this approach, scenarios correspond to activities.
Activities capture deterministic system functionality with tightly bounded action
timing. The implementation of actions and activities is typically achieved via
various types of feedforward and feedback control. With the increasing availability
of affordable, powerful multi-core embedded platforms, compute-intensive image-
based control (IBC) is gaining interest. In an IBC system, a camera and an image
processing algorithm are used in combination as a sensor. Processing images in
a control loop introduces a relatively long sensing delay in the loop due to the
processing latency. On a multi-core platform, however, the image processing can
be parallelized and/or pipelined. If subsequent images can be processed indepen-
dently, from an implementation perspective, pipelining is relatively straightforward.
Pipelining the sensing in IBC loops does not reduce the sampling latency, but it does
increase the sampling rate of the IBC system. This in turn may improve quality of
control (QoC). A static pipelining configuration that allocates a fixed number of
cores to the pipelined sensing may be expensive in terms of processing resource
usage though. A reconfigurable, scenario-based pipelining approach improves
resource efficiency when an embedded platform is shared with sporadic tasks (such
as a supervisory controller or other controllers needed to implement actions). A
pipelining configuration of the IBC system is then a system scenario of the IBC
system in the scenario terminology of Chap. 2. This use of the scenario approach is
independent of the scenario-based modeling explained in the earlier sections. It is
also applicable to other domains, like advanced driver assistance systems (ADAS).
In the FMS context, the scenario-based performance analysis can be used though to
analyze the effect of improved QoC of a scenario-based pipelined IBC system on
FMS productivity.
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This section first introduces IBC in Sect. 6.1. Section 6.2 explains how to define
system scenarios in IBC. Section 6.3 presents our scenario-based pipelined control
(SBPC) approach.

6.1 Image-Based Control

IBC is an example of data-intensive control, where large amounts of data are being
processed as part of a controller. The use of high-resolution images allows to
sense physical states of an FMS that are hard to measure by other technologies.
Traditional implementation of an IBC system performs sensing (sensing the system
states), computing (computation of the control signal), and actuating (application
of the control signal to the system) operations (or tasks) sequentially as shown
in Fig. 9.27a. Such sequential implementation results in a long sampling period
(i.e., the time interval between the end of two consecutive actuation tasks) and
consequently, a degraded control performance, or QoC (e.g., speed of the response)
[39].

Pipelined control is an implementation alternative to address this problem [26].
Pipelined control implements the sensing algorithm in a pipelined fashion using
parallel processing resources as illustrated in Fig. 9.27b. In essence, such pipelined
implementation reduces the sampling period by actuating more frequently than the
sensing period. This opens up the possibility for QoC improvement by appropriate
controller design techniques. Generally, a higher number of processing resources
leads to a shorter sampling period and a higher QoC. Processing resources, however,
may be shared with other tasks and may not be always available. Obviously, one may
statically allocate the processing resources to the various tasks including the IBC
considering the worst-case processing loads. In this worst-case load, all tasks are

Fig. 9.27 Implementation of data-intensive control systems. (a) Sequential implementation of an
IBC. (b) Pipelined implementation of an IBC
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executing together and the IBC demands for a high QoC. In reality, the worst-case
processing loads do not always occur and such static allocation leads to an under-
utilization of resources. The idea is to dynamically allocate resources to the tasks
based on both availability of resources and system state (e.g., demand for QoC,
number of active tasks). The combination of system state and resource allocation
determines the system scenarios in this context. At design-time, the individual
scenarios are optimized. For example, depending on the number of active tasks,
processing resources are allocated to an IBC. The pipelined IBC is modeled, an
optimized controller is designed for the pipelined system and implemented for a
given allocation. The system may at run-time switch from one scenario to another
to achieve system-level optimization. The dynamics resulting from scenario-based
optimization translates to switched (linear) control.

xCPS Case Study 13 Consider again the xCPS setup presented in Sect. 2. We
focus on the design of an IBC system for controlling Belt 2 speeds (see Fig. 9.3).
Recall from Sect. 4.4 that we assumed Belt 2 is the bottleneck component in the
system. Assume that four software tasks are implemented on a shared embedded
multi-core platform: a supervisory control task (SCT), a Turner task (TT), an
indexing table task (ITT), and an image-based control (IBC) divided in sensing,
control computation, and actuation. Whenever a piece arrives at Belt 2, SCT is
activated to schedule the appropriate actions in the FMS (as explained in Sect. 5.3).
This includes generating the reference belt speed signal for the IBC. The IBC
system implements the transport actions t1–t4. TT and ITT implement the control
of the turner and IT2. SCT also distributes the available processing resources of the
embedded platform among the four software tasks. Since the SCT is triggered by
the arrival of a new piece, its activation time cannot be predicted. SCT is therefore
dedicated to a single core. The activation time of ITT and TT is predictable because
the time elapsed between a piece entering the system and reaching the Turner or
indexing table IT2 is regulated by the IBC system. TT and ITT can be dynamically
assigned to execute on any of the available cores of the platform. Note that they may
need to execute concurrently. IBC regulates the speed of Belt 2 using a DC motor.
A camera and an image processing algorithm are used as a sensor to measure the
speed of the pieces on the belt. The speed of the pieces is kept low when a piece
is going through the Turner and Switch 2 actuators and high otherwise. The total
processing latency of the image processing algorithm is 400 ms, which potentially
limits the controller performance.

For the implementation of the four tasks, we assume a multi-core platform with
six cores. One core is dedicated for the control computation and actuation, to keep
the control data locally and guarantee the periodicity of the controller; another core
is dedicated to the SCT, such that it is activated whenever a new piece arrives; the
remaining four cores can be used by TT, ITT, and the image processing needed
for IBC. We have three categories of tasks in the system: reconfigurable, non-
reconfigurable, and sensing tasks. Non-reconfigurable tasks are statically allocated
to a given core, e.g., the SCT and the control computation and actuation tasks.
Reconfigurable tasks can be dynamically allocated to different cores, e.g., TT and
ITT. Sensing tasks correspond to the image processing algorithm of IBC.
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The throughput of the machine is directly affected by the settling time (S) of the
IBC system: a shorter S means that the pieces reach each stage of the assembly
process faster, increasing the number of assembled pieces per time unit, or the
throughput. Therefore, QoC is quantified using S, i.e., QoC = S−1.

An IBC system implemented on an N -core multi-core platform can be modeled
as follows. The platform runs M reconfigurable tasks, P non-reconfigurable tasks,
and an IBC task (as explained in the example). The IBC task itself is composed of
three tasks: Ts , sensing, Tc, control computation, and Ta , actuation. The dynamic
system is modeled as a linear time-invariant system

ẋ(t) = Gx(t) + Hu(t − τ), y(t) = Cx(t) (9.1)

where G, H , and C are state, input, and output matrices, u(t − τ) is the control
signal, x(t) is the system state vector, and y(t) is the output vector. τ is the sensor-
to-actuator delay given by

τ = τs + τc + τa (9.2)

where τs, τc, τa are the execution times for the sensing, computing, and actuating
tasks (taking into account overhead such as communication delays). For an IBC,
τs � τc + τa due to the high processing latency of the images.

The allocation of processing cores to the sensing tasks or the reconfigurable tasks
depends on system requirements. The sampling period h depends on the number of
processing cores allocated to the sensing task. Subsequently, the system model has
to be derived and the controller needs to be designed. Altogether, they define the
system scenarios.

6.2 Scenario Identification and Exploitation

Consider the model introduced in the previous subsection. Since P non-reconfigur-
able tasks are running on the processing platform, only N −P cores are available to
the M reconfigurable tasks and the sensing task. When none of the reconfigurable
tasks is active, the supervisory task SCT may allocate all the N − P cores to the
Ts task (that may then run N − P pipelined instances in parallel). When one or
more reconfigurable tasks are activated, SCT allocates a reduced number of cores
to the Ts task. In terms of the system scenario methodology of Chap. 2, all run-
time situations with a fixed, given number of cores allocated to the sensing task
are clustered in a scenario. We refer to the scenarios as the scenario with maximal
configuration smc, with Nmc = N − P cores allocated to the sensing task, and the
scenarios with reduced configuration src,α that allocate Nrc,α < Nmc cores to the
sensing task, with α an index to identify the reduced configuration. There may be
multiple reduced configurations depending on N and M .
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For every scenario, a controller needs to be designed (the exploitation step in
the system scenario terminology). The sampling period of the IBC depends on
the scenario the system is in. For a given sampling period, the discretized system
model is derived and the controller design is done. One of the configurations in
a pipelined IBC system, preferably the most frequently occurring one, can be
optimized for performance; the other configurations need to be designed considering
stability under scenario switching. In the xCPS case, the controller is optimized
for performance in the maximal configuration; in the reduced configurations, it is
designed to ensure stability. For modeling purposes, it suffices to distinguish only
the maximal configuration and an arbitrary reduced configuration.

• Scenario with maximal configuration smc—model and controller: Assume
Nmc cores are available to the sensing task Ts resulting in a sampling period

hmc = τ

Nmc

(9.3)

Discretizing Equation 9.1 with zero-order hold and sampling period hmc, we
obtain the system model of the form

x(k + 1) = αmcx(k) + βmc(τ
′)u(k − lmc) + γmc(τ

′)u(k − lmc + 1) (9.4)

where αmc, βmc, γmc are the discrete-time state and input matrices of the form

αmc = eGhmc ,

βmc(τ
′) =

∫ hmc−τ ′

0
eGsHds,

γmc(τ
′) =

∫ hmc

hmc−τ ′
eGsHds (9.5)

τ ′ = τ − (lmc − 1)hmc, lmc =
⌈

τ
hmc

⌉
, u(k − lmc), and u(k − lmc + 1) are the

delayed inputs. Defining the augmented system states

z(k) = [
xT (k) uT (k − lmc) uT (k − lmc + 1) · · · u(k − 1)

]T
(9.6)

we obtain the augmented system model in scenario smc as

z(k + 1) = φmcz(k) + Γmcu(k) (9.7)

where φmc and Γmc are the discrete-time state and input matrices of appropriate
dimension [4]. From Eq. 9.6, it can be noticed that the number of states (i.e.,
the size of z(k)) depends on lmc which further depends on the number of cores
allocated to the Ts task. The control law is chosen in the following form:
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u(k) = Kmcz(k) + Fmcr (9.8)

where Kmc is the feedback gain, Fmc is the static feedforward gain, and r is the
constant reference signal. Clearly, the control gains Kmc and Fmc depend on lmc

which further depends on Nmc. The combination of Nmc, Kmc, and Fmc defines
the scenario smc.

• Scenario(s) with reduced configuration src,α—model and controller: Assume
that the reduced configuration α has Nrc,α < Nmc cores are available to the
sensing task Ts resulting in a sampling period

hrc,α = τ

Nrc,α

(9.9)

Similar to the scenario smc, we define the augmented system states

z(k) = [
xT (k) uT (k − lrc,α) uT (k − lrc,α + 1) · · · u(k − 1)

]T
(9.10)

where lrc,α =
⌈

τ
hrc,α

⌉
. The number of states in Eq. 9.6 is higher than the number

of states in Eq. 9.10. Therefore, we define an extended augmented state vector to
make the dimension of the systems identical

z(k) =
[
xT (k) uT (k − lmc) · · · uT (k − lrc,α) uT (k − lrc,α + 1) · · · u(k − 1)

T
]
,

(9.11)
and we obtain the augmented system model in scenario src,α as

z(k + 1) = φrc,αz(k) + Γrc,αu(k) (9.12)

where φrc,α and Γrc,α are the discrete-time state and input matrices of appropriate
dimension [4]. The control law is chosen in the following form:

u(k) = Krc,αz(k) + Frc,αr (9.13)

where Krc,α is the feedback gain, Frc,α is the static feedforward gain, and r is
the constant reference signal. Similar to smc, the combination of Nrc,α , Krc,α ,
and Frc,α defines the scenario src,α .

The basic idea of the scenario-based control strategy is to switch between smc and
src,α depending on the presence of activated reconfigurable tasks, TT and ITT in the
xCPS case. When no reconfigurable task is active, the system runs in smc where all
the Nmc processing cores are used to compute the Ts task in pipeline. Figure 9.28a
shows an example smc with Nmc = 4 for the xCPS case. Given the processing
time of an image τs = 400 ms, the sampling period is hmc = τs

4 = 100 ms. The
controller gains Kmc and Fmc in this scenario are designed to optimize performance
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(a)

(b)

(c)

Fig. 9.28 Scenarios in SBPC: smc and src,2. (a) Scenario smc with Nmc = 4. (b) Scenario src,1 with
Nrc,1 = 3. (c) Scenario src,2 with Nrc,2 = 2

(i.e., minimize settling time). When ITT or TT is active, the corresponding scenario
is denoted as src,1 with Nrc,1 = 3. In this case, the sampling period is hrc,1 = τs

3 =
134 ms. Figure 9.28b shows an example of src,1. One core is freed to execute TT
or ITT. Likewise, when both ITT and TT are active, scenario src,2 with Nrc,2 = 2
becomes active. In src,2, the sampling period is hrc = τs

2 = 200 ms. Figure 9.28c
shows an example of src,2. Two cores are freed to execute TT and ITT. The controller
gains Krc,1, Krc,2, Frc,1, and Frc,2 in scenarios src,1 and src,2 are designed to
ensure stability of the entire switched linear system. That is, the switching between
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the scenarios smc, src,1, and src,2 implies switching between systems in Eqs. 9.12
and 9.7 which may potentially destabilize the overall system [37]. To ensure overall
stability, Krc,1, Krc,2 are designed such that a common quadratic Lyapunov function
exists between Eqs. 9.12 and 9.7 [24].

6.3 Scenario-Based Pipelined Control (SBPC)

We have seen how to design a scenario-based, pipelined IBC. It is important to note
that the activation times of the reconfigurable tasks in the system are assumed to be
known in time to allocate the required resources. In the xCPS case, the activation
times of TT and ITT are known as soon as an SCT instance is triggered by the
arrival of a new piece at Belt 2 (see xCPS case study 13). So the number of active
reconfigurable tasks can be used as a parameter to predict the correct scenario at
run-time. The switching strategy of our scenario-based pipelined controller (SBPC)
is illustrated in Fig. 9.29. In a static design, the system always stays in src,2 even
when there are no other active tasks than the IBC. In the presented scenario-based
approach, the system runs under scenario smc when there are no other tasks, allowing
the controller to run with a shorter sampling period hmc. This potentially improves
QoC compared to the worst-case given that the sporadic tasks are not always active.

xCPS Case Study 14 We apply SBPC to the xCPS example outlined in xCPS case
study 13. We compare our SBPC approach with two other IBC setups: A sequential
controller (SC) and a pipelined controller (PC). SC uses a single sensing core as
shown in Fig. 9.27a. PC uses a worst-case design with two static sensing cores as
shown in Fig. 9.27b. SBPC uses the aforementioned scenarios smc, src,1, and src,2.
We consider the case of an inverted top piece entering Belt 2. The belt speed is set
initially high (i.e., 8cm/s) such that the piece arrives quickly at the Turner. Then,
the speed has to be set low (i.e., 1cm/s) such that the Turner can flip the piece. At

Fig. 9.29 Scenario switching in SBPC
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Fig. 9.30 Comparison of IBC strategies

this point, the TT needs to be activated. The IBC then regulates the piece speed on
the belt.

The resulting controller performance of the three considered controllers is
compared in Fig. 9.30. The simulation shows that the three controllers follow the
indicated reference. However, SBPC reaches the reference faster than PC and than
SC, which potentially means a higher throughput (i.e., number of assembled pieces
per time unit) in xCPS. Note that SBPC runs most of the time in smc. It only switches
to src,1 when the speed is set to slow, so that the TT can be activated.

For FMS like xCPS, ultimately system-level performance metrics like throughput
and makespan are most important. It is therefore interesting to analyze the impact
of controller performance on system-level performance metrics. Controllers like the
ones considered in this section determine action timing in the activity models used
for performance analysis. It is therefore sufficient to adapt the timing matrices of
activities in order to analyze the impact of controller performance on system-level
performance metrics.

xCPS Case Study 15 To evaluate the impact of better QoC on the xCPS
throughput, we may use the activity model presented in Sect. 4. To do so, we need
to determine the timing information captured in parameters d2, d3, and d4. It has
already been explained in xCPS case study 4 how this is done, using Simulink
simulations. The timing information is used to compute the system throughput, as
presented in xCPS case study 8. This example already showed that SBPC has the
best system performance of the considered controllers. A better throughput of 0.111
pieces per second is obtained by a better control performance of SBPC, compared to
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Fig. 9.31 Movement of a bottom piece (B2,TIBTB) on Belt 2

Table 9.1 Example of
timing information for
(B2,TIBTB)

Timing information SC PC SBPC

d2 4.55 4.21 4.19

d3 5.62 4.57 3.89

d4 0 0 0

Total 10.17 8.78 8.08

All the provided numbers are in seconds

0.103 pieces per second for PC. The sequential setup SC only achieves a throughput
of 0.091 pieces per second.

Comparing d2, d3, and d4 in all the IBC setups provides insight in the perfor-
mance improvement. An example of the timing information of a bottom piece with
context (B2,TIBTB) (using the notations of Sect. 5) is shown in Fig. 9.31. This graph
is a zoomed in version of graphs as shown in Fig. 9.7. To ease the comparison, the
starting point of the piece is set to zero in all the IBC setups. The timing information
is summarized in Table 9.1. Note that d4 is zero because the bottom piece leaves the
belt at Switch 2. Clearly, the pieces travel faster when a controller with better QoC
is used. SC has the lowest performance among the IBC, with a total transport time
of 10.17s. When comparing PC and SBPC, note that the transport time of a piece
is almost the same up to the activation of Switch 2. However, at the beginning of
Switch 2, SBPC changes to low speed later than PC, which reduces the transport
time of the piece by 0.70. Such a late speed change is possible because of the higher
sampling rate and the more aggressive response of SBPC compared to PC.
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7 Conclusions

This chapter presents three system scenario use cases in FMS design. All the
techniques are illustrated on the xCPS assembly line emulator.

Functionally deterministic FMS activities with tightly bounded timing of low-
level actions can be represented in activity models of which timing is captured
in matrices. This enables fast and accurate system-level performance analysis for
metrics such as throughput (productivity) and makespan. System-level performance
analysis for the xCPS case study is possible in the order of milliseconds once the
activity models are available. This is much faster than the traditionally used fine-
grained discrete-event simulations. The approach moreover provides guaranteed
bounds on system performance and supports the identification of performance
bottlenecks.

The activity models can also be used for scenario-based supervisory controller
synthesis and performance optimization of such supervisory controllers. Supervi-
sory controllers ensure safe behavior of FMS, avoiding, e.g., collisions between
moving parts or deadlocks due to filled up buffers. Optimizing such supervisory con-
trollers for performance enables system-level performance optimization. Scenario-
based, modular modeling in combination with state-space reduction techniques and
performance optimization improves scalability of the synthesis, enabling the use of
supervisory controller synthesis for a much wider class of systems than traditional
synthesis.

Physical actions in FMS are typically implemented using various types of
feedforward and feedback control. As a third illustration of the use of scenarios
in FMS design, we presented a scenario-based design approach for data-intensive
control loops. The readily available multi-processor and multi-core technology
enables pipelined design of data-intensive controllers. The scenario-based approach
optimizes quality of control when resources are shared with other sporadic or
reconfigurable processing tasks. As opposed to worst-case design, the scenarios
capture frequent system behaviors and design is optimized for the individual
scenarios. By appropriate switching between the scenarios, quality of control is
improved. When applied to performance bottlenecks, overall system productivity
of the FMS can be improved. The scenario-based pipelined controller design is
independent of the scenario-based activity modeling and performance analysis. The
latter can be used though to analyze the productivity improvement for the FMS
due to an improved quality of control of the pipelined controller compared to a
traditional sequential controller.
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