
Chapter 8
Exact Synthesis of ESOP Forms

Heinz Riener, Rüdiger Ehlers, Bruno de O. Schmitt, and Giovanni De Micheli

8.1 Introduction

In the design of Very Large-Scale Integration (VLSI) systems, two-level logic
representations are classically used to represent and manipulate Boolean functions.
Exclusive-or Sum-of-Products (ESOP) is a two-level normal form representation of
a Boolean function that consists of one level of multi-input AND gates followed on
the next level by one multi-input XOR gate. ESOP forms play an important role in
logic synthesis due to their improved compactness for arithmetic or communication
circuits with respect to other two-level representations [26] and their excellent testa-
bility properties [13]. The inherent reversibility of the XOR operation, moreover,
makes ESOP forms particularly suitable in applications such as security [16, 21] or
quantum computation [8].

The ESOP representation of a Boolean function is not unique, i.e., the same
Boolean function can be expressed as multiple structurally different, but semanti-
cally equivalent ESOP forms. In practice, it is important to find a small represen-
tation of an ESOP form to reduce the overall costs for realizing it in hardware or
implementing it in software. The problem of synthesizing an ESOP form for a given
Boolean function is to identify a set of product terms over the Boolean variables of
the function such that each minterm in the OFF-set of the function is covered by
the product terms an even number of times and each minterm in the ON-set of the
Boolean function is covered an odd number of times.

H. Riener (�) · B. d. O. Schmitt · G. De Micheli
EPFL, Lausanne, Switzerland
e-mail: heinz.riener@epfl.ch

R. Ehlers
University of Bremen, Bremen, Germany

© Springer Nature Switzerland AG 2020
R. Drechsler, M. Soeken (eds.), Advanced Boolean Techniques,
https://doi.org/10.1007/978-3-030-20323-8_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20323-8_8&domain=pdf
mailto:heinz.riener@epfl.ch
https://doi.org/10.1007/978-3-030-20323-8_8

178 H. Riener et al.

Finding ESOP forms with a small or a minimal number of product terms is hard
and numerous exact and heuristic synthesis methods [11, 19, 22, 23, 25, 30] for
solving this problem have been proposed. Heuristic methods focus on finding small
(but not necessarily minimal) ESOP forms; they are fast, but only examine a subset
of the possible search space. Heuristic methods, e.g., the Exorcism approach [19],
usually operate in two phases. In the first phase, an ESOP form with a sub-
optimal number of product terms is derived from the Boolean function, e.g.,
by translating each minterm of the Boolean function into one product term or
translating the function into special cases of ESOP forms such as Pseudo-Kronecker
Expressions [6]. In the second phase, the ESOP form is iteratively optimized and
reshaped using cube transformations with the overall goal of merging as many
product terms as possible. The cube transformations are applied to each pair of
product terms that potentially lead to merging them or with other product terms
of the ESOP form. The second phase terminates when, after several iterations, no
further size reduction is achieved. Heuristic methods produce small ESOP forms in
reasonable time, but suffer from local minima that cannot easily be escaped. In
contrast, exact methods find an “exact” ESOP form, i.e., an ESOP form with a
minimal number of product terms, but either require to store large tables of pre-
computed information [22, 25] or suffer from long runtimes [23]. For instance,
the tabular-based methods described by Gaidukov [11] or Papakonstantinou [22]
require pre-computed tables of all exact ESOP forms for Boolean functions over
n − 1 Boolean variables to derive an exact ESOP form for a Boolean function
over n Boolean variables. Due to the exponential growth of the number of Boolean
functions in the number of Boolean variables, these methods become too time
and memory consuming when n > 6. Alternative exact synthesis approaches
such as a recent formulation of the ESOP synthesis problem using non-linear
programming [23] can take several minutes for synthesizing a single exact ESOP
form.

Until today, a large gap between the number of product terms optimized with
heuristic methods and exact methods remains. Where exact methods hardly can deal
with more than 8 Boolean variables and a few product terms, heuristic methods
nowadays, e.g., in the quantum domain, have to deal with the optimization of ESOP
forms with 105 or 106 products terms over 16 and more Boolean variables [27].
Our experiments with large-scale ESOP forms showed that heuristic optimization
method can often achieve a reduction of 50−80% in the number of ESOP terms with
respect to the size of the initial ESOP form. Due to the large combinational search
space of the ESOP synthesis problem, lower bounds on the number of required
product terms are only known for Boolean functions with a few Boolean variables,
such that the capabilities of ESOP optimization techniques remain unclear.

In this paper, we investigate the exact synthesis of ESOP forms using Boolean
satisfiability (SAT). SAT-based approaches are very successful on a variety of differ-
ent verification and synthesis problems. We present an exact synthesis approach for
computing ESOP forms with a minimal number of product terms. Starting from a
specification in form of a possibly incompletely specified Boolean function, our
approach iteratively constructs a Boolean constraint satisfaction problem that is

8 Exact Synthesis of ESOP Forms 179

satisfiable if and only if an ESOP form with k (initially k = 1) product terms
that implements the specification exists. The problem is then solved utilizing a SAT-
solver and, if satisfiable, an ESOP form with k product terms is returned. Otherwise,
if unsatisfiable, k is increased and the synthesis process is restarted. The synthesis
approach is hardly affected by the number of Boolean variables and particularly fast
if the Boolean function can be expressed by using only a few product terms. We
argue that such a SAT-based exact synthesis procedure can be a backbone of a new
generation of heuristic ESOP optimization methods that, instead of relying on cube
transformations applied to a pair of product terms, are capable of optimizing small
subsets (windows) of product terms.

The proposed approach is the first ESOP synthesis technique based on Boolean
satisfiability. We further present a relaxation of the technique to compute ESOP
forms with size close to minimal leveraging the SAT-solver’s conflict limit. We
have implemented SAT-based exact synthesis for ESOPs and the relaxation of the
approach using an off-the-shelf SAT-solver and show in the experiments that SAT-
based ESOP synthesis can be readily used to synthesize ESOP forms with up to 8
Boolean variables and up to 100 terms. As benchmarks, we use completely specified
Boolean functions that are used as representatives of the NPN4 equivalence
classes [12] as well as completely specified Boolean functions that appeared in
technology mapping using look-up tables (LUTs) with at most 8 inputs (8-LUT
mapping). Moreover, we use a set of randomly generated incompletely specified
Boolean functions with up to 8 Boolean variables.

8.2 Background

Exclusive-or Sum-of-Products (ESOP) Let B = {0, 1} and B3 = {0, 1,−} with
the third element “−” which denotes don’t care. An ESOP form in n Boolean
variables x1, . . . , xn is a Boolean expression

k⊕

j=1

(
n∧

i=1

x
li,j
i

)
, (8.1)

where the operators ⊕ and ∧ denote standard addition (XOR) and multiplication
(AND) in the Galois field with two-elements, respectively, each li,j ∈ B3 is a
constant and each expression

x
li,j
i =

⎧
⎪⎪⎨

⎪⎪⎩

x̄i , if li,j = 0

xi, if li,j = 1

1, if li,j = −
(8.2)

180 H. Riener et al.

for 1 ≤ i ≤ n and 1 ≤ j ≤ k. We say that k is the size of the ESOP form and call

each conjunction x
l1,j

1 · · · xln,j
n , 1 ≤ j ≤ k, that appears in the ESOP form a product

term. The Boolean expression in (8.1) is often compactly notated as a list of words

l1,1 · · · ln,1 l1,2 · · · ln,2 . . . l1,k · · · ln,k, (8.3)

where each word l1,j · · · ln,j is of fixed length n.

Distance of Product Terms Suppose that

u = x
l1,p

1 · · · xln,p
n and v = x

l1,q

1 · · · xln,q
n (8.4)

are two product terms in n Boolean variables. We define the distance d(u, v) of u

and v as the number of different li,j for 1 ≤ i ≤ n and j ∈ {p, q}, i.e.,

d(u, v) =
n∑

i=1

[li,p �= li,q], (8.5)

where [.] denote the Iverson brackets. We say if d(u, v) = m, then u and v have
distance m or are m-distant.

ESOPs Describing Boolean Functions An ESOP form semantically describes
a (single-output) Boolean function f : B

n → B, which maps assignments of
the Boolean variables x1, . . . , xn ∈ B to truth values f (x1, . . . , xn) ∈ B. Each
assignment to all Boolean variables x1, . . . , xn is called a minterm and can be
interpreted as the decimal number

∑n
i=1 xi2i−1 when read as (xn · · · x1)2.

A completely specified Boolean function f : Bn → B over n Boolean variables
can be uniquely represented as a truth table, i.e., a word b2nS · · · b1 of length 2n,
where bj = f (j − 1) for 1 ≤ j ≤ 2n. An incompletely specified Boolean function
g : Bn → B3 can be represented by two completely specified Boolean functions
f : Bn → B and c : Bn → B, where f (x) = [g(x) = 1] and c(x) = [g(x) �= −].
We call c the care function of g.

Two ESOP forms are semantically equivalent if they describe the same Boolean
function. An ESOP form with size k is minimal if and only if no semantically
equivalent ESOP form with fewer product terms exists. Minimal ESOP forms are in
general not unique.

8.3 SAT-Based Exact ESOP Synthesis

8.3.1 Exact Synthesis of ESOP Forms

Objective We aim for synthesizing minimal ESOP forms in n Boolean variables
when a completely specified Boolean function or incompletely specified Boolean

8 Exact Synthesis of ESOP Forms 181

function is provided as specification. In case of completely specified Boolean
functions, this objective can be formally described as follows: given a single-output
Boolean function f : Bn → B over n Boolean variables x1, . . . , xn, find an integer
k and constants li,j ∈ B3 for 1 ≤ i ≤ n and 1 ≤ j ≤ k such that

k⊕

j=1

(
n∧

i=1

x
li,j
i

)
= f (x1, . . . , xn) for all x1, . . . , xn ∈ B

n (8.6)

and k is minimal. The case of incompletely specified Boolean functions can be
addressed similarly to (8.6).

Example 8.1 As an introductory example, consider the incompletely specified
Boolean function described by the truth table 0x688C8020282222221 over 6
Boolean variables with care function 0x6AAEFF3FFEBFEAA6. A minimal ESOP
form, for instance, is

x̄1x3x̄4x̄5x6 ⊕ x̄1x2x̄3x5x̄6 ⊕ x̄1x̄3x̄4x̄6 ⊕ x̄2x̄5x̄6 ⊕ x̄1x2x6, (8.7)

which requires 5 product terms and can be equivalently written as

0-1001 0-00-0 -0--00 010-10 01---1. (8.8)

In general, minimal ESOPs are not unique. The same Boolean function may also
be represented as the ESOP form

0-1001 0100-0 -0--00 0-0-10 01---1 (8.9)

or

0-1001 0-00-0 ----00 011-10 01----. (8.10)

Finding minimal ESOP forms is, due to the large combinational search space, a
challenging problem. In [23], a minimal ESOP form for the Boolean function in the
previous example was found on average in roughly 668.22 s using integer non-linear
programming using different starting points and Matlab as a solving engine. The
authors, moreover, point out that decomposition-based ESOP synthesis approaches,
e.g., [25], require up to 4 h for synthesizing minimal ESOP forms for incompletely
specified Boolean functions over 6 Boolean variables.

1We use hexadecimal notation to shorten the string representation of the (binary) truth tables of
Boolean functions.

182 H. Riener et al.

8.3.2 SAT-Based Exact Synthesis Procedure

In this section, we propose a SAT-based exact synthesis approach for ESOP
forms. The approach is based on ideas from Knuth [15] (originally proposed by
Kamath et al. [14]) and our previous work on learning two-level patches to correct
combinational Boolean circuits [24]. Our approach synthesizes an ESOP form for
the Boolean function in Example 8.1 in less than a second. We formalize the search
problem as a series of Boolean constraint satisfaction problems—one for each
possible ESOP size k (starting with k = 1) and employ a decision procedure for
Boolean satisfiability to decide the satisfiability of the constraints. The constraints
are constructed in such a way that they are satisfiable if and only if an ESOP form
with k product terms exists and each satisfying assignment corresponds to an ESOP
form with k product terms. If the constraints are unsatisfiable, then no ESOP form
restricted to k product terms, that is equivalent to the provided Boolean function,
exists. By systematically solving the constraint satisfaction problem for increasing
values of the size parameter k, a minimal ESOP form is guaranteed to be found.

Formulation of the Constraint Satisfaction Problem Suppose that f : B
n
3 →

B is a (single-output) Boolean function over n Boolean variables. We formulate
the problem of finding an ESOP form equivalent to f with k product terms as a
constraint satisfaction problem in propositional logic using 2nk Boolean variables,
p = p1,1, . . . , pk,n and q = q1,1, . . . , qk,n, where n is the number of Boolean
variables of f , k is the size of the ESOP form, and

pj,l = [xl in product term j] and qj,l = [x̄l in product term j] (8.11)

for 1 ≤ j ≤ k and 1 ≤ l ≤ n.
For each assignment x1 · · · xn ∈ B

n
3 of the Boolean function f with the

corresponding output value f (x1, . . . , xn) = b, we introduce k auxiliary Boolean
variables z = z1, . . . , zk and add k · n + k clauses

k∧

j=1

n∧

l=1

(
z̄j ∨ ITE(xi, q̄j,l , p̄j,l)

)
and

k∧

j=1

(
zj ∨

n∨

l=1

ITE(xi, qj,l , pj,l)

)
,

(8.12)

which ensure that if and only if zj = 1, then the j -th product term evaluates to 1 for
assignment x1 · · · xn. The if-then-else-operator is defined as

ITE(xi, vj,l , uj,l) =

⎧
⎪⎪⎨

⎪⎪⎩

vj,l, if xi = 1

uj,l, if xi = 0

f alse, otherwise

(8.13)

8 Exact Synthesis of ESOP Forms 183

with vj,l ∈ {qj,l, q̄j,l} and uj,l ∈ {pj,l, p̄j,l}, respectively. One additional XOR-
constraint

⎛

⎝
k⊕

j=1

zj

⎞

⎠ = b (8.14)

per assignment guarantees that an odd number of zj s evaluates to 1 if b = 1 and an
even number if b = 0.

This constraint satisfaction problem is satisfiable if and only if an ESOP form
of size k exists and each satisfying assignment p̂1,1, . . . , p̂k,n and q̂1,1, . . . , q̂k,n

corresponds to one possible implementation.

Translating XOR-Constraints to CNF All XOR-constraints in the constraint
satisfaction problem are, by construction, formulated over disjoint sets of Boolean
variables such that techniques like Gaussian elimination are not effective. Instead,
we translate each XOR-constraint first into an equivalent XOR-clause by flipping
one of the Boolean variables if and only if b = 0, i.e.,

(z1 ⊕ · · · ⊕ zk) = b =⇒
{

z1 ⊕ · · · ⊕ zk, if b = 1

z1 ⊕ · · · ⊕ z̄k, if b = 0.
(8.15)

Then, we select two literals la, lb from the XOR-clause and apply the Tseitin
transformation to generate four clauses (z̄a ∨ z̄b ∨ ū), (za ∨ zb ∨ ū), (za ∨ z̄b ∨ u),
(z̄a ∨ zb ∨ u) with the newly introduced Boolean variable u and repeat this process
until only one literal is left which is added as a unit clause.

SAT-Based Exact ESOP Synthesis The overall exact synthesis procedure is
sketched in Algorithm 3. The function MakeCSP constructs the constraint satis-
faction problem ϕ in the Boolean variables p, q, z for a given Boolean function f

and size parameter k as described above. The function SAT refers to the invocation
of a decision procedure for the Boolean satisfiability problem, usually called a
SAT-solver, and is assumed to decide the satisfiability of ϕ and, if satisfiable,
to also provide a satisfying assignment p̂ and q̂ for variables p and q. The

Algorithm 3 SAT-based exact ESOP synthesis
input : a (possibly incompletely-specified) Boolean function f

output: a minimal ESOP functionally equivalent to f

for k ← 1, 2, . . . do
ϕ(p, q, z) ← MakeCSP(k,f);
if p̂, q̂ |= SAT(∃z : ϕ(p, q, z)) then

return MakeESOP(p̂,q̂);
end

end

184 H. Riener et al.

Algorithm 4 SAT-based exact synthesis guided by counterexamples
input : a (possibly incompletely-specified) Boolean function f

output: a minimal ESOP r functionally equivalent to f

r ← ε;
k ← 1;
ϕ(p, q, z) ← true;
while m ← NotEquivalent(f ,r) do

ϕ ← AddConstraints(ϕ,m);
if p̂, q̂ |= SAT(∃z : ϕ(p, q, z)) then

r ← MakeESOP(p̂,q̂);
else

r ← ε;
k ← k + 1;
ϕ(p, q, z) ← true;

end
end
return r;

assignment to the intermediate Boolean variables z is for the construction of no
further interest and not returned. Finally, the function MakeESOP constructs an
ESOP form from the assignment p̂ and q̂ according to the rules described in (8.11).
Note that Algorithm 3 always terminates, but may run out of resources (memory or
time) if the minimal ESOP requires many product terms. Thus in practice usually
an additional termination criterion in form of an upper bound for the size parameter
k or maximum number of conflicts examined by the SAT-solver is provided.

Counterexample-Guided Abstraction-Refinement Algorithm 3 synthesizes
an ESOP form in one step. Alternatively, counterexample-guided abstraction-
refinement can be employed as shown in Algorithm 4. The idea of the
abstraction-refinement loop is to iteratively update a candidate ESOP form r

(starting from the empty ESOP form ε) until it eventually becomes semantically
equivalent to the Boolean function f to be synthesized. In each iteration, the
constraints of one assignment x = x1 · · · xn for which r and f evaluate differently
(r(x) �= f (x)) are added (AddConstraints) to the constraint satisfaction
problem and r is resynthesized. If ϕ becomes unsatisfiable, then the constraints
cannot be solved within the current restriction to k product terms and k needs to be
relaxed. If f and r are equivalent, i.e., no counterexample x = x1 · · · xn is found
by NotEquivalent, then r is returned as an ESOP form semantically equivalent
to f . The main advantage of Algorithms 4 over 3 lies in its ability to abstract
from unnecessary constraints which keeps the constraint satisfaction problem as
small as possible. The algorithm is fast mainly because modern backtrack search-
based SAT-solvers support incremental solving [7] and are able to maintain learned
information when new constraints are added to a satisfiability problem. The oracle
NotEquivalent has to be capable of verifying whether a candidate ESOP form
r is functionally equivalent to the Boolean function f . For Boolean functions with
up to 16 Boolean variables, simulation using explicit representations such as truth

8 Exact Synthesis of ESOP Forms 185

tables can be done very quickly. For Boolean functions with more than 16 Boolean
variables, a BDD- or SAT-based procedure can be employed.

8.3.3 Extensions and Variations

Downward vs. Upward Search Algorithm 4 describes an upward search proce-
dure to find a minimal ESOP form starting with 1 term. This approach can be easily
modified into a downward search by starting from a maximum number of terms k̂

and iteratively decreasing the number of terms by 1 as long as the constraint system
is satisfiable. If the constraint system becomes unsatisfiable for a certain number k

of terms, the previous k + 1 terms correspond to a minimal ESOP form. In practice
downward and upward search procedures are useful. An upward search procedure
is fast if the expected minimal k is small. Otherwise, proving unsatisfiability with a
SAT-solver becomes too time consuming. A downward search procedure is fast if
the expected minimal k is close to the initially provided term limit k̂.

Conflict Limit For a SAT-solver proving unsatisfiability of a set of constraints,
i.e., showing that no assignment exists that satisfies the constraints, often requires
labor-intensive analysis. If the search space is sufficiently large, these proofs are
often not completed within reasonable time. Most modern SAT-solver provides a
conflict limit to allow a user to specify a maximum number of possible solving
attempts. If the SAT-solver is unable to find a satisfying assignment within the given
conflict limit, the solver reports “unknown” as solution. In this case, the synthesis
algorithm can choose to increase or decrease the current k, hoping that the next
k is easier to solve because the corresponding constraint system is less or more
constrained, respectively. When a conflict limit is employed in Algorithm 4, due
to the possible “unknown” solutions, a minimal ESOP form may not be found.
However, in case of a downward search, which systematically decreases k, an
intermediate “unknown” solution for k1 can be safely ignored if the constraint
system is later proved satisfiable for k2 < k1, whereas in case of an upward search,
an intermediate “unknown” solution for k1 can be ignored if the constraint system
is proved unsatisfiable for a later k2 > k1.

8.4 ESOP Synthesis for Quantum Computation

ESOP-based logic synthesis and optimization techniques have recently attracted
interest due to their application for quantum computing, where ESOP forms are
used as an intermediate representation to map Boolean functions into quantum
circuits [20]. The appeal of the idea stems from the fact that, in contrast to other
mapping approaches, ESOP-based synthesis does not introduce additional garbage

186 H. Riener et al.

ESOP
synthesis

Reversible
logic.

synthesis

Mapping
(Cliff.+T)

Boolean
function

ESOP
form

Reverisble
circuit

Quantum
circuit

Fig. 8.1 ESOP-based synthesis flow from a Boolean function to a quantum circuit

outputs (often called ancillæ) and, consequently, can be realized with fewer qubits—
a highly critical resource on today’s quantum computers.

In this section, we survey ESOP-based synthesis for quantum circuits. We
describe how an ESOP form can be mapped to a quantum circuit and show by
example that optimizing ESOP forms has a positive effect on the cost functions
for realizing them.

Reversible Logic Synthesis for Quantum Computing Figure 8.1 illustrates an
ESOP-based synthesis flow that stepwisely transforms a Boolean function into a
quantum circuit leveraging ESOP forms and reversible logic circuits as intermediate
representations. The so-called ESOP-based reversible logic synthesis [20] has
proven effective while keeping the number of extra qubits required for transforming
the ESOP form as low as possible. In fact, for translating an ESOP form with n

Boolean variables, we present a construction that requires at most n + 2 qubits.

We describe reversible logic circuits in terms of reversible gates using
a formalism introduced by Toffoli and Fredkin [10]. Given a fixed set
X = x1, . . . , xn of Boolean variables, a (mixed-polarity multiple-controlled)
Toffoli gate is a pair (C, xt) of control lines C ⊂ {x, x̄ | x ∈ X} and a target line
xt ∈ X with

{x, x̄} �⊂ C for all x ∈ X and {xt , x̄t } ∪ C = ∅. (8.16)

Each Toffoli gate defines a bijective Boolean function g : Bn → B
n

(x1, . . . , xn) �→ (x1, . . . , xt−1, xt ⊕ f (x1, . . . , xn), xt+1, . . . , xn), (8.17)

with control function f : Bn−1 → B

(x1, . . . , xt−1, xt+1, . . . , xn) �→
∧

c∈C

c. (8.18)

The reversible gate flips the Boolean value on the target line if the control function f

evaluates to true for the values observed on the control lines.
A reversible logic circuit is a cascade of Toffoli gates and the function defined

by the reversible logic circuit is the composition function of the individual functions
defined by its reversible gates. We use a graphical notation based on Feynman [9] to
denote reversible circuits as diagrams. Figure 8.2 illustrates the graphical notation:
on the top-left, the figure shows one reversible single-target gate with an arbitrary

8 Exact Synthesis of ESOP Forms 187

x1
...

xt−1

xt+1
...

xn

xt

f

x1
...
xt−1

xt+1
...
xn

xt ⊕ f(x1, . . . , xt−1, xt+1, xn)

(a)

x1

x2

x3

y

x1

x2

x3

y ⊕ h(x1, x2, x3)

(b)

x1

x2

x3

y H T T T† T†

T†

H H

T

T†

T† T T† T

T†

H

T

T

x1

x2

x3

y ⊕ h

(c)

Fig. 8.2 Graphical notation of reversible logic circuits and quantum circuits. (a) Toffoli gate. (b)
Reversible circuit. (c) Quantum circuit

control function f ; on the top-right, a concrete example of a reversible circuit
is given consisting of the cascade of the two Toffoli gates ({x1, x̄2}, x5) and
({x2, x3}, x5), where the composition function h(x1, x2, x3) = x1x̄2 ⊕ x2x3 of the
two gates can be observed on line y. In this notation, the line with the ⊕ denotes the
target line, whereas black and white dots denote positive and negative control lines,
respectively. On the bottom, a quantum circuit is shown for the same example. We
show this example for completeness, but will not discuss the graphical notation of
quantum circuits (see, e.g., Soeken et al. [27] for details).

Mapping ESOP forms into reversible circuits is straightforward. An ESOP form
c1 ⊕· · ·⊕ck with k product terms and n Boolean variables is functionally equivalent
to a reversible circuit with at most n + 2 lines and k Toffoli gates, where the control
function of each gate is exactly one ci for 1 ≤ i ≤ k. Since each Toffoli gate is
reversible, the concrete order of the Toffoli gates does not matter.

Next, Toffoli gates are mapped into a quantum gate library [18]. In this paper,
we focus on the universal fault-tolerant quantum gate library Clifford+T [17] and
use the number of T -gates as cost function. This simple cost model is based on
the assumption that T -gates are far more expensive to realize than all other gates
in the Clifford+T library [1]. Based on concrete mappings for Toffoli gates with
small number of control lines [18] and a decomposition schemata [3] for larger
Toffoli gates, an overapproximation for the number of T -gates necessary to realize
an ESOP form c1 ⊕ · · · ⊕ ck can be computed as

T (c1 ⊕ · · · ⊕ ck) =
k∑

i=1

Tcube(|ci |) (8.19)

188 H. Riener et al.

with

Tcube(l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, l ≤ 1

7, l = 2

16, l = 3

8(l − 1), l > 3 ∧ n ≥ 3l+1
2

16(l − 1), else.

(8.20)

8.5 Experimental Evaluation

We have implemented Algorithm 4 in easy, an open-source toolkit for manipulating
ESOP forms2 using the prominent state-of-the-art SAT-solver Glucose 4.1 [2] as
decision procedure for Boolean satisfiability.
We have evaluated the SAT-based synthesis approach in four experiments3:

1. NPN4: We synthesized all ESOP forms of minimal size for the representatives
of the NPN4 equivalence class.

2. LUT mapping: We synthesized one ESOP form of fixed-size and one of minimal
size for each of the Boolean functions that occurred during LUT mapping of
Boolean networks.

3. Random: We synthesized one ESOP form of fixed-size and one of minimal size
for randomly generated Boolean functions.

4. Reversible logic synthesis: We generate Pseudo-Kronecker Expressions
(PKRMs)—a special case of ESOPs—and ESOP using our exact method and
analyze the effect of ESOP size minimization on the size of the corresponding
quantum circuits. For evaluation, we use the T -metric presented in Sect. 8.4.

All experiments have been conducted on an Intel® Core™ i7-7567U CPU @
3.50 GHz with 16 GB RAM.

Correctness All computed ESOP forms have been verified against their specifica-
tions, i.e., we simulated all ESOP forms for all possible values and compared the
results of simulation with the initial truth tables of the provided Boolean functions.
Note that it is not possible to verify the minimality of the ESOP forms.

NPN4 We synthesized all ESOP forms of minimum size for all 222 representatives
of the NPN4 equivalence classes [12]. Computing one minimal ESOP form for
each representatives takes 1.6 s, computing all minimal ESOP forms for each
representatives takes 9.2 s. Figure 8.3 shows the histogram of the size of the minimal

2Easy, https://github.com/hriener/easy.
3The benchmarks and a detailed evaluation of the synthesis results can be found at https://hriener.
github.io/misc/2018_easy.html.

https://github.com/hriener/easy
https://hriener.github.io/misc/2018_easy.html
https://hriener.github.io/misc/2018_easy.html

8 Exact Synthesis of ESOP Forms 189

0 1 2 3 4 5
0

20

40

60

80

100

Minimal size of ESOP

0 50 100 150
0

50

100

Number of ESOPs per function

Fig. 8.3 Synthesis of minimal ESOP forms for NPN4

Fig. 8.4 Karnaugh map of 0x166A

ESOP forms for the representatives (on the left) and the number of ESOP forms
of minimal size per representative (on the right). On average a representative has
12 structurally different minimal ESOP forms. Some representatives can have 100
or more ESOP forms of minimal size. The Boolean function 0x166A (shown in
Fig. 8.4) has the most minimal ESOP forms (in total 126) within the NPN4 classes.

LUT Mapping We synthesized one ESOP form for a fixed number of ESOP
terms and one ESOP form of minimal size using downward and upward search,
respectively, for each Boolean function that occurred in LUT mapping of the EPFL
benchmark suite. For LUT mapping, we used the ABC command if -K 8 [4].
After LUT mapping, we applied exactmine [28] to extract all Boolean functions
from the benchmarks. We obtained 4001 different Boolean functions with up to 8
Boolean variables and used SAT-based ESOP synthesis to compute ESOP forms.
For this experiment, we consider a fixed conflict limit of 10,000. The synthesis
results are presented in Table 8.1: the first column (Terms) is a user-specified
upper limit on the number of terms. The rest of the table is organized in three

190 H. Riener et al.

Table 8.1 Synthesis of ESOP forms for LUT mapping

Fixed-size Downward search Upward search
Terms R C k T R C k T R C k T

8 3735 266 5.19 49.65 s 3854 147 3.60 300.44 s 3857 3854 3.60 248.07 s

16 3806 195 7.10 50.56 s 3965 36 3.82 695.08 s 3965 36 3.82 338.72 s

32 3966 35 8.45 42.67s 4001 0 3.94 1430.41s 4001 0 3.94 355.49 s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

101

102

103

104

105

Fig. 8.5 SAT-solver results for different k for 0xF550311031100000

parts. The first part (fixed-size) is dedicated to synthesis of an ESOP form for
the given term limit (without minimizing the number of terms). In this case, the
SAT-solver’s heuristics decides whether unnecessary terms are canceled or kept.
The second part (downward search) is dedicated to a synthesis procedure that
iteratively synthesizes ESOP forms starting from the upper term limit and decreases
the number of terms until the constraint system becomes unsatisfiable (as described
in Algorithm 4). The satisfying assignment with the smallest number of terms
is used for deriving an ESOP form. The last part (upward search) is similar to
the second part, but starts with 1 term and increases the number if the constraint
system is unsatisfiable. The satisfying assignment with the largest number of terms
is used to derive an ESOP form. For each part, we list the number of Boolean
functions successfully realized (R), the number of Boolean functions that could
not be synthesized because the SAT-solver’s conflict limit (C) was exceeded, the
average number of terms (k) for all realizable Boolean functions, and the total
runtime (T) for synthesizing all Boolean functions. The runtime includes the time
for synthesizing the realizable Boolean function and the time spent in unsuccessful
synthesis attempts.

Example 8.2 We illustrate the effect of the conflict limit on upward and downward
search with a simple example. Consider the completely specified Boolean function
0xF550311031100000. We attempt to synthesize an ESOP form of minimal
size with at most 16 terms and a conflict limit of 10,000 using the upward and
downward search procedures, respectively. Figure 8.5 shows the number of conflicts
explored by the SAT-solver in logarithmic scale parameterized by the number of

8 Exact Synthesis of ESOP Forms 191

terms (k). The colors encode the decision results: green denotes satisfiable, blue
denotes unsatisfiable, and gray denotes unknown. For those k for which the conflict
limit of 10,000 was reached, we repeated synthesis with a much higher conflict limit
of 500,000 to understand what conflict limit would allow us to conclude the correct
result. The results for k = 7 and k = 8, however, remain unknown, i.e., we do not
know whether the constraints are satisfiable, because the conflict limit of 500,000
was also exceeded.

The downward search starts with 16 terms and systematically decreases the
number of terms. During the search, the conflict limit is reached with k = 13
for the first; the search procedure interprets this as potentially satisfiable, such that
the procedure proceeds until finally k = 4 is reached. For k = 4, the procedure
concludes unsatisfiability, terminates, and returns the smallest constructed ESOP
form with 9 terms determined during the search process.

The upward search procedure solves the constraint system with increasing
number of terms starting with 1. For k ≤ 4, the SAT-solver proves unsatisfiability
of the constraint system. For 5 ≤ k ≤ 8, the SAT-solver reaches the conflict limit,
which is interpreted as potentially unsatisfiable by our search procedure, such that
the search proceeds until k = 9. For k = 9 terms, the constraint system becomes for
the first time satisfiable and the corresponding ESOP form with 9 terms is returned.

Random We synthesized ESOP forms for randomly generated, incompletely
specified Boolean functions over 5, 6, 7, and 8 Boolean variables. Each bit in the
Boolean function and its care function was chosen by flipping a fair coin. In total, we
generated 100 Boolean functions for each number of Boolean variables. Table 8.2
summarizes the results for synthesizing ESOP forms. The first two columns list
the number of Boolean variables (Var.) and a fixed bound on the number of terms
(Terms). The rest of the table is organized as Table 8.1. Due to the symmetric
design of downward and upward search, they reached exactly the same minimal
ESOP forms. Overall downward search is slower due to the fact that unsatisfiability
is typically harder to prove and can only be concluded by the SAT-solver for
sufficiently small k. Consequently, the downward search procedure on average
analyzes many more cases before unsatisfiability is reached. In contrast, upward
search keeps searching until satisfiability is reached for the first time, which can
occur early in the search process.

Table 8.2 Synthesis of ESOP forms for randomly generated Boolean functions

Fixed-size Downward search Upward search
Var. Terms R C k T R C k T R C k T

5 16 100 0 8.58 0.11 s 100 0 3.34 1.35 s 100 0 3.34 0.12 s

6 16 99 1 11.32 0.42 s 100 0 5.62 24.70 s 100 0 5.62 15.99 s

7 32 86 14 24.91 3.71 s 100 0 17.96 276.70 s 100 0 17.96 210.02 s

8 96 79 21 54.35 19.64 s 100 0 45.41 2156.96 s 100 0 45.41 1151.75 s

192 H. Riener et al.

Table 8.3 Synthesis of ESOP forms for Boolean functions from DBS

PKRM Exact
Benchmark k Time [s] T -gates k Time [s] T -gates

1 0x50455400 18 0.00 355 4 0.01 128

2 0x0880 2 0.00 64 2 0.02 64

3 0x00f07800 4 0.00 78 3 0.11 80

4 0x00070000 8 0.00 174 2 0.01 80

5 0x0007f000 8 0.00 165 3 0.01 96

7 0x0000ff80 6 0.00 151 2 0.01 39

8 0x06170360 12 0.00 188 5 0.03 135

9 0x4770ce38 18 0.00 298 6 0.28 151

9 0x6a0a4b6e 18 0.00 339 6 0.25 167

10 0x4727724a 18 0.00 335 7 0.33 167

� 112 0.00 2147 40 1.06 1107

Reversible Logic Synthesis We synthesized ESOP forms for Boolean functions
obtained from decomposition-based synthesis (DBS), a recent approach to map
permutations into quantum circuits [5, 29]. We extracted the Boolean functions from
the DBS approach and synthesized for each Boolean function, a Pseudo-Kronecker
Expressions (PKRM)—a special case of ESOP forms—using the approach proposed
by Drechsler [6], and an exact ESOP form using our proposed method with
downward search.

Table 8.3 shows experimental results for 10 Boolean functions; each of them cor-
responds to one Toffoli gate in the quantum circuit. For both synthesis techniques,
the table lists the number of product terms (k), the required runtime (Time), and the
number of T -gates computed using Eq. (8.19). The example illustrates the positive
effect of ESOP optimization for reducing the cost of realizing a quantum circuits. By
using our exact ESOP synthesis method, the over-approximated number of T -gates
could be reduced by 48.44%, while the additional runtime can be almost neglected.

8.6 Conclusion

We have presented an exact synthesis approach for computing ESOP forms
using Boolean satisfiability. The approach needs no pre-computed information,
synthesizes one or multiple ESOP forms of minimal size, and can take completely
specified or incompletely specified Boolean functions as specifications. We have
implemented the approach using an off-the-shelf SAT-solver and have further
presented a relaxation that leverages the SAT-solver’s conflict limit to find ESOP
forms with almost minimal size. We have also presented evidence that the synthesis
procedure can deal with small-scale ESOP forms with up to 8 Boolean variables
and up to 100 terms. As benchmarks, we have used Boolean functions in the

8 Exact Synthesis of ESOP Forms 193

NPN4 equivalence class, Boolean functions that appeared during 8-LUT mapping,
and randomly generated Boolean functions. Moreover, we show how the proposed
techniques can be used to reduce the costs for implemented quantum circuits. We
envision that the proposed SAT-based synthesis technique can be integrated with
large-scale ESOP optimization procedures, e.g., by selecting windows of terms and
resynthesizing them.

Acknowledgements This research was supported by H2020-ERC-2014-ADG 669354 CyberCare
(200021-146600) and the Institutional Strategy of the University of Bremen, funded by the German
Excellence Initiative.

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast
synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr. Circuits Syst. 32(6),
818–830 (2013)

2. Audemard, G., Simon, L.: On the glucose SAT solver. Int. J. Artif. Intell. Tools 27(1), 1–25
(2018)

3. Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A: At.
Mol. Opt. Phys. 52(5), 3457–3467 (1995)

4. Brayton, R.K., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In:
Proceedings of Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, July 15–19, 2010, pp. 24–40

5. De Vos, A., Van Rentergem, Y.: Young subgroups for reversible computers. Adv. Math.
Commun. 2(2), 183–200 (2008)

6. Drechsler, R.: Preudo-Kronecker expressions for symmetric functions. IEEE Trans. Comput.
48(9), 987–990 (1999)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Theory and Applications of Satisfiability
Testing, 6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5–8,
2003 Selected Revised Papers, pp. 502–518

8. Fazel, K., Thornton, M.A., Rice, J.E.: ESOP-based Toffoli gate cascade generation. In: Pacific
Rim Conference on Communications, Computers and Signal Processing (2007)

9. Feynman, R.P.: Quantum mechanical computers. Opt. News 11, 11–20 (1985)
10. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21(3–4), 219–253 (1982)
11. Gaidukov, A.: Algorithm to derive minimum ESOP for 6-variable function. In: International

Workshop on Boolean Problems, pp. 141–148 (2002)
12. Goto, E., Takahasi, H.: Some theorems useful in threshold logic for enumerating Boolean

functions. In: IFIP Congress, pp. 747–752 (1962)
13. Kalay, U., Hall, D.V., Perkowski, M.A.: A minimal universal test set for self-test of EXOR-

sum-of-products circuits. IEEE Trans. Comput. 49(3), 267–276 (2000)
14. Kamath, A.P., Karmarkar, N., Ramakrishnan, K.G., and Resende, M.G.C.: A continuous

approach to inductive inference. Math. Program. 57, 215–238 (1992)
15. Knuth, D.E.: The Art of Computer Programming, vol. 4. Fascicle 6: Satisfiability, 1st edn.

Addison-Wesley Professional, Boston (2015)
16. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In:

Proceedings Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, July 7–11, 2008, pp. 486–498

194 H. Riener et al.

17. Linke, N.M., Maslov, D., Rötteler, M., Debnath, S., Figgatt, C., Landsman, K.A., Wright,
K., Monroe, C.R.: Experimental comparison of two quantum computing architectures. Quant.
Phys. Comput. Sci. Emer. Technol. (2017). abs/1702.01852

18. Maslov, D.: Advantages of using relative-phase Toffoli gates with an application to multiple
control Toffoli optimization. Phys. Rev. A 93(2), 022311 (2016)

19. Mishchenko, A., Perkowski, M.A.: Fast heuristic minimization of exclusive-sums-of-products.
In: Reed-Muller Workshop (2001)

20. Mishchenko, A., Perkowski, M.A.: Logic synthesis of reversible wave cascades. In: Interna-
tional Workshop on Logic Synthesis, pp. 197–202 (2002)

21. Mizuki, T., Otagiri, T., Sone, H.: An application of ESOP expressions to secure computations.
J. Circuits Syst. Comput. 16(2), 191–198 (2007)

22. Papakonstantinou, G.K.: A parallel algorithm for minimizing ESOP expressions. J. Circuits
Syst. Comput. 23(1), 1450015 (2014)

23. Papakonstantinou, K.G., Papakonstantinou, G.: A nonlinear integer programming approach for
the minimization of Boolean expressions. J. Circuits Syst. Comput. 29(10), 1850163 (2018)

24. Riener, H., Ehlers, R., Fey, G.: CEGAR-based EF synthesis of Boolean functions with
an application to circuit rectification. In: 22nd Asia and South Pacific Design Automation
Conference, ASP-DAC 2017, Chiba, January 16–19, 2017, pp. 251–256

25. Sampson, M., Kalathas, M., Voudouris, D., Papakonstantinou, G.K.: Exact ESOP expressions
for incompletely specified functions. Integration 45(2), 197–204 (2012)

26. Sasao, T., Fujita, M. (eds.): Representations of Logic Functions Using EXOR Operators, pp.
29–54. Springer, New York (1996)

27. Soeken, M., Roetteler, M., Wiebe, N., De Micheli, G.: Design automation and design space
exploration for quantum computers. In: Design, Automation and Test in Europe, pp. 470–475
(2017)

28. Soeken, M., Riener, H., Haaswijk, W., De Micheli, G.: The EPFL logic synthesis libraries
(2018). arXiv e-prints 1805.05121

29. Soeken, M., Mozafari, F., Schmitt, B., De Micheli, G.: Compiling permutations for supercon-
ducting QPUs. In: Design Automation Conference (2019)

30. Stergiou, S., Papakonstantinou, G.K.: Exact minimization of ESOP expressions with less than
eight product terms. J. Circuits Syst. Comput. 13(1), 1–15 (2004)

	8 Exact Synthesis of ESOP Forms
	8.1 Introduction
	8.2 Background
	8.3 SAT-Based Exact ESOP Synthesis
	8.3.1 Exact Synthesis of ESOP Forms
	8.3.2 SAT-Based Exact Synthesis Procedure
	8.3.3 Extensions and Variations

	8.4 ESOP Synthesis for Quantum Computation
	8.5 Experimental Evaluation
	8.6 Conclusion
	References

