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6.1 Introduction

Majority logic allows the creation of nanoelectronic circuits for several different
technologies, which justifies the search for majority based algorithms that generates
optimized circuits. Among the first works that deal with majority logic are Lin-
daman [11], Cohn [8], and Akers [1]. Lindaman [11] proposed the first theorem
for applying majority logic in binary decision problems, introducing the majority
operator to classical Boolean algebra. The theorem, shown in Eq. (6.1), proposes a
Boolean function equivalent to a majority operation.

M(A,B,C) = A · B + A · C + B · C (6.1)

Subsequently, a set of axioms that defines the majority algebra independently of
the classical Boolean algebra was presented in [8], creating the basis for current
majority algebra axiomatization (Ω).

Moreover, the authors in [21] presented a method that performs the mapping
of all 3-input Boolean functions into a 3-dimensional cube, generating 13 possible
patterns, where each pattern has a different formula to convert a classical Boolean
function into a majority equivalent.

Similarly, the authors in [19] presented a method that uses a 4-dimensional cube
to map 4-input functions, generating a total of 143 representation patterns. All 143
patterns also have a specific formula to find their equivalent majority functions.
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In majority algebra, simplification algorithms based on primitive functions are
widely used. Primitive functions are functions with at most one majority gate in their
optimized form. An algorithm that maps each of the primitive functions and uses
the obtained maps to generate more complex functions was proposed in [18]. The
mapping of functions is realized with Karnaugh maps, a graphical method proposed
by Maurice Karnaugh in 1953, which aims to simplify a classic Boolean function
by mapping its truth table [10].

In [12] a similar algorithm was developed, the B2M (Boolean to Majority). The
B2M receives a Boolean function as input and generates a majority function that
covers the same set of minterms. The generation of an output function is also done
with the combination of primitives, selected by their MLD (Modified Levenshtein
Distance).

The authors in [22] developed the program denominated as MALS (Majority
Logic Synthesizer). It was the first program to minimize majority functions with
more than three inputs. The MALS receives an algebraically minimized Boolean
function as input and returns an equivalent majority function. The algorithm starts
by preprocessing the input function, this process aims to decompose the input
function in a way that no node has more than three input variables. To do this process
the program SIST OOL is used [14].

After the preprocessing, the algorithm converts each node in a reduced majority
function. This is done by the method presented in [18]. But this method was not
able to find minimal solutions for all functions given that the algorithm works
individually on each node instead of the function as a whole.

The authors in [20] proposed a methodology that combines lower level majority
functions, starting from primitives, to form higher level majority functions. The goal
of this method is to build a majority expressions Look-Up Table (MLUT ) that
stores the majority equivalent for all possible 4-input Boolean functions. Using the
MLUT , the algorithm will then search the equivalent majority expression for every
node in the input network, generating a majority network as output.

The authors in [16] proposed the exact_mig algorithm, which is considered state
of the art. As input, the algorithm receives a truth table or a Majority Inverter Graph
(MIG) [3], with a maximum of six input variables, and returns a majority function
that covers the same set of minterms. A MIG is a graph that represents a majority
function. The most important characteristic of this algorithm is the proposal of an
exact synthesis for majority functions. The function is built from a set of constraints
(K) that shape a given problem accordingly to the definitions of the majority
Boolean algebra. The majority output function is generated with the application
of K to an SMT (Satisfiability Module Theory) solver [9]. As cost criteria the
exact_mig takes into consideration the number of levels and gates in the output
function, making it possible to choose which of these criteria will be prioritized.

In [7] the authors developed a decomposition methodology that uses XOR

and majority operators as a base. The input function is converted into a XOR-
Majority Graph (XMG), a MIG with the addition of the XOR operator, and
decomposed into simplified sub-functions. To perform the decomposition, the



6 Synthesis of Majority Expressions Through Primitive Function Manipulation 137

algorithm combines theories of majority algebra, Shannon decomposition [15], and
disjoint-support decomposition (DSD)[5].

In [17] the authors proposed adaptations of the exact synthesis used in the
exact_mig, applied to normal Boolean functions. New technologies based on
constraints and SMT solvers are also presented and compared.

In this work the MPC algorithm is proposed. Similar to the methodology
proposed in [20], the algorithm checks all possible combinations among primitive
functions and creates a table to store them. For each function, the covered set
of minterms is also stored. If there are two functions that cover the same set of
minterms, the lowest cost function is kept and the other function is discarded. As
a result, we have a table (M2) that lists all the sets covered by majority functions
with two levels. As cost criteria the algorithm considers the depth, followed by the
number of gates, the number of inverters, and the number of gate inputs in the output
function.

The MPC can be used to synthesize Boolean functions with a maximum of
5-input variables. For 3-input variables the algorithm returns an optimal solution
for all possible functions. For 4 and 5-input variables the algorithm guarantees an
optimal solution for functions covered by M2 or by a primitive, and uses a specific
synthesis to cover functions with a higher number of levels. For five variables
however, functions with four or more levels are generated by the application of the
Shannon theorem.

This article is organized as follows: In Sect. 6.2, we present an explanation about
majority algebra, including its axiomatization and the concept of primitive majority
functions. Section 6.3 presents the MPC algorithm, explaining how it works for
3, 4, and 5-input variables. Section 6.4 presents the results obtained comparing the
MPC and the exact_mig. Section 6.5 presents the conclusion of what was realized
in the paper.

6.2 Majority Boolean Algebra

The majority Boolean algebra is composed by the set {B,¬,M}. The elements B

and ¬, as in classical Boolean algebra, represent the binary values {0, 1} and the
inversion operator, respectively, and M represents the majority operator [6].

A majority function returns as output the most present binary value among its
inputs. Therefore, an operator M that has a total of three input variables will return
a true value only if two or more inputs are true. The truth table presented in Table 6.1
exemplifies a majority operation for the variables X, Y , and Z.

From a majority operation it’s also possible to obtain AND and OR functions,
performed by fixing one of the input variables to a constant binary value.

As an example, the function M(A,B,C) is considered. Setting the value of A to
0, we have an AND function between B and C. Setting the value of A to 1, we have
an OR function between B and C. This example is shown in Table 6.2.
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Table 6.1 Example of a
majority operation

X Y Z M(X, Y,Z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 6.2 Generation of
functions AND and OR

B C B · C M(0, B, C) B + C M(1, B, C)

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 0 1 1

1 1 1 1 1 1

Table 6.3 Equivalence
between M(A,B,C) and its
dual form

A B C M(A,B,C) M(A,B,C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Majority functions are also self-dual functions, meaning that a majority function
is always equivalent to its dual form. A function’s dual form can be obtained by
complementing all input variables and gates [13]. For example, the function (X ·
Y ) + (X · Z) is equal to its dual form (X + Y ) · (X + Z).

Table 6.3 shows the equivalence between a majority function M(A,B,C) and
its dual form M(A,B,C).

6.2.1 Axiomatization of Majority Functions (Ω)

The set of axioms that defines the majority algebra is represented by Ω and
can be divided into axioms of Commutativity, Associativity, Distribution, Inverter
Propagation, and Majority [4]. Every axiom in Ω can be proved by perfect
induction.
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Table 6.4 Proof of Ω.C by
perfect induction

A B C M(A,B,C) M(A,C,B) M(C,B,A)

0 0 0 M(0,0,0) = 0 M(0,0,0) = 0 M(0,0,0) = 0

0 0 1 M(0,0,1) = 0 M(0,1,0) = 0 M(1,0,0) = 0

0 1 0 M(0,1,0) = 0 M(0,0,1) = 0 M(0,1,0) = 0

0 1 1 M(0,1,1) = 1 M(0,1,1) = 1 M(1,1,0) = 1

1 0 0 M(1,0,0) = 0 M(1,0,0) = 0 M(0,0,1) = 0

1 0 1 M(1,0,1) = 1 M(1,1,0) = 1 M(1,0,1) = 1

1 1 0 M(1,1,0) = 1 M(1,0,1) = 1 M(0,1,1) = 1

1 1 1 M(1,1,1) = 1 M(1,1,1) = 1 M(1,1,1) = 1

The Commutativity axiom (Ω.C), represented in Eq. (6.2), determines that the
input order doesn’t change the output value.

M(A,B,C) = M(A,C,B) = M(C,B,A) (6.2)

Table 6.4 proves Ω.C by perfect induction.
The Associativity axiom (Ω.A) states that the exchange of variables between two

functions is possible, as long as they are at subsequent levels and have one variable
in common. An example of an Ω.A application is presented in Eq. (6.3).

M(A,D,M(B,D,C)) = M(C,D,M(B,D,A)) (6.3)

Note that the variable shared between levels is D. Therefore, it’s possible to
substitute the remaining variable in the upper level for one in the subsequent level.
In the presented example, we had an exchange between the variables A and C.

Table 6.5 proves Ω.A by perfect induction.
The Distribution axiom (Ω.D) determines that it’s possible to distribute a set of

variables to gates in subsequent levels. In Eq. (6.4) an example of this theorem is
given, where the distributed set is {A,B}.

M(A,B,M(D,E,C)) = M(M(A,B,D),M(A,B,E),M(A,B,C)) (6.4)

Table 6.6 proves Ω.D by perfect induction.
The Inverter Propagation axiom (Ω.I ), represented in Eq. (6.5), determines that

a majority function is self-dual [2].

M(A,B,C) = M(A,B,C) (6.5)

Table 6.7 proves Ω.I by perfect induction.
The Majority (Ω.M) can be divided in two equations. Equation (6.6) shows that

the output of a majority gate is equal to the most common value among its inputs.
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Table 6.5 Proof of Ω.A by perfect induction

A B C D M(A,D,M(B,D,C)) M(C,D,M(B,D,A))

0 0 0 0 M(0,0,M(0,0,0)) = 0 M(0,0,M(0,0,0)) = 0

0 0 0 1 M(0,1,M(0,1,0)) = 0 M(0,1,M(0,1,0)) = 0

0 0 1 0 M(0,0,M(0,0,1)) = 0 M(1,0,M(0,0,0)) = 0

0 0 1 1 M(0,1,M(0,1,1)) = 1 M(1,1,M(0,1,0)) = 1

0 1 0 0 M(0,0,M(1,0,0)) = 0 M(0,0,M(1,0,0)) = 0

0 1 0 1 M(0,1,M(1,1,0)) = 1 M(0,1,M(1,1,0)) = 1

0 1 1 0 M(0,0,M(1,0,1)) = 0 M(1,0,M(1,0,0)) = 0

0 1 1 1 M(0,1,M(1,1,1)) = 1 M(1,1,M(1,1,0)) = 1

1 0 0 0 M(1,0,M(0,0,0)) = 0 M(0,0,M(0,0,1)) = 0

1 0 0 1 M(1,0,M(0,0,1)) = 0 M(1,1,M(0,1,0)) = 0

1 0 1 0 M(1,0,M(0,1,0)) = 0 M(1,0,M(1,0,1)) = 0

1 0 1 1 M(1,1,M(0,1,1)) = 1 M(1,1,M(0,1,1)) = 1

1 1 0 0 M(1,0,M(1,0,0)) = 0 M(0,0,M(1,0,1)) = 0

1 1 0 1 M(1,1,M(1,1,0)) = 1 M(0,1,M(1,1,1)) = 1

1 1 1 0 M(1,0,M(1,0,1)) = 1 M(1,0,M(1,0,1)) = 1

1 1 1 1 M(1,1,M(1,1,1)) = 1 M(1,1,M(1,1,1)) = 1

Equation (6.7) shows that the output value will be equal to the tie-breaking variable
in functions with the same number of true and false values.

M(A,A,B) = A (6.6)

M(A,A,B) = B (6.7)

Table 6.8 proves Ω.M by perfect induction.

6.2.2 Primitive Majority Functions

Primitive functions can be obtained by a single gate. In the majority algebra,
primitive functions (also called primitives) can be used as a base for the construction
of more complex functions. All primitives can be obtained from the sets C, V , G,
and T , where each set corresponds to functions with a specific number of inputs.
The total number of primitives is obtained by summing the functions in C, V , G,
and T [20].

The set C represents functions with no input variables, covering the constants 0
and 1. Therefore, |C| = 2.
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Table 6.6 Proof of Ω.D by perfect induction

A B C D E M(A,B,M(D,E,C)) M(M(A,B,D),M(A,B,E),M(A,B,C))

0 0 0 0 0 M(0,0,M(0,0,0)) = 0 M(M(0,0,0), M(0,0,0), M(0,0,0)) = 0

0 0 0 0 1 M(0,0,M(0,1,0)) = 0 M(M(0,0,0), M(0,0,1), M(0,0,0)) = 0

0 0 0 1 0 M(0,0,M(1,0,0)) = 0 M(M(0,0,1), M(0,0,0), M(0,0,0)) = 0

0 0 0 1 1 M(0,0,M(1,1,0)) = 0 M(M(0,0,1), M(0,0,1), M(0,0,0)) = 0

0 0 1 0 0 M(0,0,M(0,0,1)) = 0 M(M(0,0,0), M(0,0,0), M(0,0,1)) = 0

0 0 1 0 1 M(0,0,M(0,1,1)) = 0 M(M(0,0,0), M(0,0,1), M(0,0,1)) = 0

0 0 1 1 0 M(0,0,M(1,0,1)) = 0 M(M(0,0,1), M(0,0,0), M(0,0,1)) = 0

0 0 1 1 1 M(0,0,M(1,1,1)) = 0 M(M(0,0,1), M(0,0,1), M(0,0,1)) = 0

0 1 0 0 0 M(0,1,M(0,0,0)) = 0 M(M(0,1,0), M(0,1,0), M(0,1,0)) = 0

0 1 0 0 1 M(0,1,M(0,1,0)) = 0 M(M(0,1,0), M(0,1,1), M(0,1,0)) = 0

0 1 0 1 0 M(0,1,M(1,0,0)) = 0 M(M(0,1,1), M(0,1,0), M(0,0,0)) = 0

0 1 0 1 1 M(0,1,M(1,1,0)) = 1 M(M(0,1,1), M(0,1,1), M(0,1,0)) = 1

0 1 1 0 0 M(0,1,M(0,0,1)) = 0 M(M(0,1,0), M(0,1,0), M(0,1,1)) = 0

0 1 1 0 1 M(0,1,M(0,1,1)) = 1 M(M(0,1,0), M(0,1,1), M(0,1,1)) = 1

0 1 1 1 0 M(0,1,M(1,0,1)) = 1 M(M(0,1,1), M(0,1,0), M(0,1,1)) = 1

0 1 1 1 1 M(0,1,M(1,1,1)) = 1 M(M(0,1,1), M(0,1,1), M(0,1,1)) = 1

1 0 0 0 0 M(1,0,M(0,0,0)) = 0 M(M(1,0,0), M(1,0,0), M(1,0,0)) = 0

1 0 0 0 1 M(1,0,M(0,1,0)) = 0 M(M(1,0,0), M(1,0,1), M(1,0,0)) = 0

1 0 0 1 0 M(1,0,M(1,0,0)) = 0 M(M(1,0,0), M(1,0,0), M(1,0,0)) = 0

1 0 0 1 1 M(1,0,M(1,1,0)) = 1 M(M(1,0,1), M(1,0,1), M(1,0,0)) = 1

1 0 1 0 0 M(1,0,M(0,0,1)) = 0 M(M(1,0,0), M(1,0,0), M(1,0,1)) = 0

1 0 1 0 1 M(1,0,M(0,1,1)) = 1 M(M(1,0,0), M(1,0,1), M(1,0,1)) = 1

1 0 1 1 0 M(1,0,M(1,0,1)) = 1 M(M(1,0,1), M(1,0,0), M(1,0,1)) = 1

1 0 1 1 1 M(1,0,M(1,1,1)) = 1 M(M(1,0,1), M(1,0,1), M(1,0,1)) = 1

1 1 0 0 0 M(1,1,M(0,0,0)) = 1 M(M(1,1,0), M(1,1,0), M(1,1,0)) = 1

1 1 0 0 1 M(1,1,M(0,1,0)) = 1 M(M(1,1,0), M(1,1,1), M(1,1,0)) = 1

1 1 0 1 0 M(1,1,M(1,0,0)) = 1 M(M(1,1,1), M(1,1,0), M(1,1,0)) = 1

1 1 0 1 1 M(1,1,M(1,1,0)) = 1 M(M(1,1,1), M(1,1,1), M(1,1,0)) = 1

1 1 1 0 0 M(1,1,M(0,0,1)) = 1 M(M(1,1,0), M(1,1,0), M(1,1,1)) = 1

1 1 1 0 1 M(1,1,M(0,1,1)) = 1 M(M(1,1,0), M(1,1,1), M(1,1,1)) = 1

1 1 1 1 0 M(1,1,M(1,0,1)) = 1 M(M(1,1,1), M(1,1,0), M(1,1,1)) = 1

1 1 1 1 1 M(1,1,M(1,1,1)) = 1 M(M(1,1,1), M(1,1,1), M(1,1,1)) = 1

The set V represents all functions formed by a single input variable, in its
complemented form or not. Equation (6.8) shows how to calculate the number of
functions in V .

|V | = 2 · n (6.8)

In Table 6.9, we can observe the listing of V for three input variables. The number
of input variables are represented by n. Note that the classical functions and their
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Table 6.7 Proof of Ω.I by
perfect induction

A B C M(A,B,C) M(A,B,C)

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 0

1 1 1 0 0

Table 6.8 Proof of Ω.M by
perfect induction

A B M(A,A,B) = A M(A,A,B) = B

0 0 M(0,0,0) = 0 M(0,1,0) = 0

0 1 M(0,0,1) = 0 M(0,1,1) = 1

1 0 M(1,1,0) = 1 M(1,0,0) = 0

1 1 M(1,1,1) = 1 M(1,0,1) = 1

Table 6.9 List of set V for
n = 3

Classic function Majority function

A A

B B

C C

A A

B B

C C

corresponding majority forms are equal because the V set is composed only by
functions without operators.

The set G is formed by functions with a single AND or OR operator, having
a total of 2 input variables. The number of functions in G can be calculated
by Eq. (6.9). The variables E and O represent the possible combinations of
inputs, for AND and OR operations, respectively. For n = 3, we have E =
{A · B,A · C,B · C} and O = {A + B,A + C,B + C}. Each combination has
4 inversion variations, the combination A + B, for example, has the variations{
A + B,A + B,A + B,A + B

}
.

|G| = (4 · |E|) + (4 · |O|) (6.9)

In Table 6.10, we present the functions in G for n = 3.
The set T represents functions with a single majority gate, no constant value and

no repeated variable as input. Equation (6.10) calculates the number of functions in
T . The variable t represents the number of possible combinations among the input
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Table 6.10 List of set G for
n = 3

Classic function Majority function

A · B M(A,B, 0)

A · B M(A,B, 0)

A · B M(A,B, 0)

A · B M(A,B, 1)

A · C M(A, 0, C)

A · C M(A, 0, C)

A · C M(A, 0, C)

A · C M(A, 1, C)

B · C M(0, B, C)

B · C M(0, B, C)

B · C M(0, B, C)

B · C M(1, B, C)

A + B M(A,B, 1)

A + B M(A,B, 1)

A + B M(A,B, 1)

A + B M(A,B, 0)

A + C M(A, 1, C)

A + C M(A, 1, C)

A + C M(A, 1, C)

A + C M(A, 0, C)

B + C M(1, B, C)

B + C M(1, B, C)

B + C M(1, B, C)

B + C M(0, B, C)

Table 6.11 List of set T for
n = 3

Classic function Majority function

AB + AC + BC M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

A · B + A · C + B · C M(A,B,C)

variables, considering three inputs per combination. Note that each combination has
eight variations of inverters and, for n = 3, there is only one possible combination.

|T | = t · 8 (6.10)

Table 6.11 shows the list of functions in T , for n = 3.
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Table 6.12 Complete list of primitives for n = 3

N Classic function Majority function N Classic function Majority function

1 0 0 21 A + B M(A,B, 1)

2 1 1 22 A + B M(A,B, 1)

3 A A 23 A + B M(A,B, 1)

4 B B 24 A + B M(A,B, 0)

5 C C 25 A + C M(A, 0, C)

6 A A 26 A + C M(A, 1, C)

7 B B 27 A + C M(A, 1, C)

8 C C 28 A + C M(A, 0, C)

9 A · B M(A,B, 0) 29 B + C M(1, B, C)

10 A · B M(A,B, 0) 30 B + C M(1, B, C)

11 A · B M(A,B, 0) 31 B + C M(1, B, C)

12 A · B M(A,B, 1) 32 B + C M(0, B, C)

13 A · C M(A, 0, C) 33 AB + AC + BC M(A,B,C)

14 A · C M(A, 0, C) 34 A · B + A · C + B · C M(A,B,C)

15 A · C M(A, 0, C) 35 A · B + A · C + B · C M(A,B,C)

16 A · C M(A, 1, C) 36 A · B + A · C + B · C M(A,B,C)

17 B · C M(0, B, C) 37 A · B + A · C + B · C M(A,B,C)

18 B · C M(0, B, C) 38 A · B + A · C + B · C M(A,B,C)

19 B · C M(0, B, C) 39 A · B + A · C + B · C M(A,B,C)

20 B · C M(1, B, C) 40 A · B + A · C + B · C M(A,B,C)

Table 6.12 shows the complete primitives table for n = 3. Note that |C| + |V | +
|G| + |T | = 40.

6.3 The MPC Algorithm

In this section we propose the MPC algorithm. The MPC receives a truth table
f as input and returns a majority function that covers the same set of minterms.
To generate a valid output function we use the expression M(X1, X2, X3). Each
variable Xc, where 1 ≤ c ≤ 3, represents a majority primitive or a 2-level majority
function.

6.3.1 Tables Formulation

The first step of MPC is the tables formulation phase, where the functions used to
build M(X1, X2, X3) are formulated. The algorithm receives an input truth table
f , identifies the number of input variables, represented by n, and generates the
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primitives table based on the sets C, V , G, and T . We also store the set of minterms
covered by every primitive function. Note that each primitive function is the optimal
solution of its respective set of minterms.

The second table built by the MPC is the M2 table, formed by the appli-
cation of all possible combinations among primitive functions in the expression
M(X1, X2, X3), without considering repeated primitives. For each generated func-
tion the set of covered minterms is also stored. If a set is covered by two or
more functions, the one with the lowest cost is kept and the others are discarded.
Therefore, the table M2 lists all sets of minterms that can be covered by a 2-level
majority function and, since they are obtained exhaustively, M2 functions are also
an optimal solution for their respective set of minterms. It is also important to point
out that, for computational performance optimization, the M2 is stored as a LUT

(Look-Up Table) in the MPC code.
As an example of a M2 function, we have M(X1, X2, X3) = M(A,M(A,B, 0),

M(A,B,C)), where X1 = A, X2 = M(A,B, 0), and X3 = M(A,B,C).
The cost criteria used by the MPC is primarily the number of levels and gates in

the output function, followed by the number of inverters and gate inputs.
To ensure the minimization of inverters, the single gate primitives follow four

possible patterns:

– M(A,B,C), no inverters;
– M(A,B,C), a single complemented input;
– M(A,B,C), a single inverter applied to the output value;
– M(A,B,C), a single input and the output complemented.

Note that in cases where the gate has two inverters, even though the number of
inverters stay the same, it’s better to complement the output and only one input,
since M(X, Y,Z) = M(X, Y ,Z). This allows the application of Ω.I to minimize
the number of inverters when the primitives are being used to build functions with
two or more levels.

To exemplify this application we consider: M(M(A,B,C),D, 0), which has 2
levels, 2 gates, and 3 inverters. By applying Ω.I we have M(M(A,B,C),D, 0) =
M(M(A,B,C),D, 1), which has the same number of levels and gates, but has one
less inverter.

It’s also important to point out that repeated gates are not considered in
the cost calculation. In the function M(M(0, A,C),M(1, A,M(B,C,D)),

M(1, C,M(B,C,D))), for example, given that the gate M(B,C,D) appears
twice, we count a total of five gates in the function cost.

The total of possible functions for a specific number of inputs is represented by
the variable S, and can be calculated by 2m. Note that m = 2n, and represents the
number of minterms in the input truth table f .

For n = 3, S = 256. The primitives table covers 40 of these functions. The
216 left are covered by the M2 table. Therefore, S can be completely covered by
majority expressions with at most two levels, which makes the table formulation
phase enough for obtaining all optimal solutions for n = 3.
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For n = 4, S = 65,536 and 90 of these functions are primitives, with at most
one majority gate. In the formulation of M2, only 10,260 functions can be covered.
For the remaining 55,186, 55,184 can be covered by majority expressions with three
levels. The remaining two functions need a majority expression with four levels to
be covered.

6.3.2 MPC Synthesis for 4-Input Functions

This section presents the synthesis used in MPC for the construction of major-
ity functions where n = 4. The objective of this synthesis is to formulate
M(X1, X2, X3) with the combination of primitives and M2 functions, generating
a majority function that covers the same minterms of f . Note that this synthesis
is only applied if f can’t be covered by any function in the M2 table or by any
primitive.

The synthesis is composed by two different loops, each one having their own
characteristics. If an output function couldn’t be found in the first loop the second
starts.

The first loop is composed by the following steps:

1. Any primitive or M2 function that doesn’t cover at least one minterm of f is
discarded from its respective table.

2. Build a new table P , selecting every pair of primitives (p1 + p2), where:

– Every minterm covered by f is also covered at least once by p1 + p2;
– The pair p1 + p2 only covers minterms covered by f .

3. Select a pair of primitives from P , as X1 and X2.
4. Create a vector v with 2n elements that will be used to build the truth table for

X3. Every element in v represents a minterm in f . The vector v is updated
according to the set of minterms covered by X1 and X2. If a minterm i is
covered by both functions, vi = 2. If it’s covered by only one function,
vi = 1. And if it isn’t covered by any function, vi = 0. For example, given
f = {0, 1, 5, 8}, X1 = {0, 1, 4, 5} and X2 = {0, 1, 2, 8, 10}. Then v has the
values shown in Table 6.13.

5. Create the truth table for X3, represented by the vector X3f . Positions where
vi = 2 or vi = 0 are considered as don’t care states (represented by x). For
positions where vi = 1 and i is also covered by f , we have X3fi = 1. If
vi = 1 and i isn’t covered by f , we have X3fi = 0. Therefore, for the example
presented in Table 6.13, we have X3f = [xx0x01xx1x0xxxxx].

6. Generate every possible truth table manipulating the don’t care states in X3f .
Each possibility is searched in the M2 table. From the functions, a new table,
P3, is constructed.



6 Synthesis of Majority Expressions Through Primitive Function Manipulation 147

Table 6.13 Generation of vector v

Minterms f = {0, 1, 5, 8} X1 = {0, 1, 4, 5} X2 = {0, 1, 2, 8, 10} v

0 1 1 1 2

1 1 1 1 2

2 0 0 1 1

3 0 0 0 0

4 0 1 0 1

5 1 1 0 1

6 0 0 0 0

7 0 0 0 0

8 1 0 1 1

9 0 0 0 0

10 0 0 1 1

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

7. For every function in P3 composed by a gate that also composes X1 or X2, we
reduce its cost by 1. This rule exists because each gate is counted only once in
the calculation of a majority function size.

8. Select the lowest cost function in P3, that hasn’t been selected yet, as X3. If
there’s no valid X3, we go back to step 3 and find a new primitive pair.

9. With the selection of X3 we now have a valid output M(X1, X2, X3). To
minimize inverters, Ω.I is applied to every level of the function built. If
the function post Ω.I application has a lower cost, the previous function is
substituted.

10. The loop ends when every possible pair in P has been combined with a function
from M2, and every M(X1, X2, X3) found is stored in table Z.

11. By the end of the loop, the algorithm returns the function with the lowest cost
in Z. If no function could be found the second loop starts.

To exemplify an iteration of the first loop, consider n = 4 and f =
{4, 5, 6, 9, 15}. A valid output function can be found in the iteration where
X1 = M(A,D, 0) and X2 = M(A,B,C), X1 covering the minterms {9, 11, 13, 15}
and X2 covering {2, 3, 4, 5, 6, 7, 14, 15}. Table 6.14 shows vector v updated from
X1 and X2.

The minterms considered don’t care states, where vi = 2 or vi = 0, are
{0, 1, 8, 10, 12, 15}. The minterms where vi = 1 and fi = 1 are {4, 5, 6, 9},
and the minterms where vi = 1 and fi = 0 are {2, 3, 7, 11, 13, 14}. Therefore,
X3f = xx001110x1x0x00x.

We select as X3, from the M2 table, the lowest cost function that fits the truth
table pattern formed by X3f . We select X3 = M(C,M(B,D, 1),M(A,B, 0))
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Table 6.14 Vector v updated
from X1 and X2, for the first
loop example

Minterms f X1 X2 v

0 0 0 0 0

1 0 0 0 0

2 0 0 1 1

3 0 0 1 1

4 1 0 1 1

5 1 0 1 1

6 1 0 1 1

7 0 0 1 1

8 0 0 0 0

9 1 1 0 1

10 0 0 0 0

11 0 1 0 1

12 0 0 0 0

13 0 1 0 1

14 0 0 1 1

15 1 1 1 2

that covers the minterms {0, 1, 4, 5, 6, 8, 9, 12}, and has 1100111011001000 as
truth table. Accordingly, we have M(X1, X2, X3) = M(M(A,D, 0),M(A,B,C),

M(C,M(B,D, 1),M(A,B, 0))).
The dual form of M(M(A,D, 0),M(A,B,C),M(C,M(B,D, 1),M(A,B, 0)))

is equal to M(M(A,D, 1),M(A,B,C),M(C,M(B,D, 0),M(A,B, 1))), which
has a higher amount of inverters. Therefore, for f = {4, 5, 6, 9, 15}, the MPC

algorithm adds M(M(A,D, 0),M(A,B,C),M(C,M(B,D, 1),M(A,B, 0))) to
its table of possible outputs Z. The loop ends when every pair of functions in P

are selected and combined with a function from M2, and returns the lowest cost
function in Z as output.

From all 55,184 sets of minterms that can be covered by a 3-level function,
50,016 can be covered by functions where two elements of Xc are primitives. Those
functions are found by the first loop.

Among the 5168 remaining sets, 5056 can be covered by functions where only
one element of Xc is a primitive. The 112 remaining sets can only be covered by
functions where all elements of Xc are 2-level functions from M2. Those functions
are found by the second loop.

The second loop is composed by the following steps:

1. Select X1 from the primitives table. If every primitive function has been
selected as X1 and a valid output function could not be found, X1 is selected
from a group of functions R. The group R is formed by every M2 function with
size r , where r represents the number of gates in a M2 function. Therefore, r

starts at 2, the lowest number of gates that a 2-level majority function can have,
and is incremented if a group R with higher size functions must be defined.
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2. Create two new vectors, v0 and v−1. The vector v0 contains the positions of f

that haven’t been covered yet; therefore, v0 = f − X1. The vector v−1 has the
positions of v that can’t be covered one more time; therefore, v−1 = X1 − f .

3. From v0 and v−1 the truth tables for X2, represented by the variable X2f are
generated. X2f represents a truth table, with the same size of f , that can have
binary values or don’t care states. For the minterms stored in v0, X2fi = 1.
For minterms stored in v−1, X2f i = 0. The other minterms are all considered
don’t care states.

4. Every possible truth table manipulating the don’t care states in X2f is
generated. Each possibility is searched in the M2 table. From these functions a
new table, P2, is created.

5. For every function in P2 that is composed by a gate that also composes X1, its
cost is reduced by one.

6. Select the lowest cost function in P2, that was not selected yet, as X2. If there’s
no valid X2, go back to the first step and select a new X1.

7. To find X3 create X3f based on v−1 and a new vector v1. The vector v1 stores
the minterms of f covered only once by Xc. Therefore, the minterms in v1 must
be covered by X3. For the minterms stored in v−1, X3f = 0. For the minterms
stored in v1, X3f = 1.

8. To find all possibilities for X3f , search the respective functions in the M2 table
and build P3 from them.

9. Again, update the cost of the functions in P3 based on the gates in X1 and X2.
10. Select the lowest cost function in P3, that hasn’t been selected yet, as X3. If

there’s no valid X3, go back to step 6 and select a new X2.
11. With the selection of X3 we now have a valid output M(X1, X2, X3). For the

minimization of inverters we also apply Ω.I to every level of the function built
and we substitute it if the function post Ω.I application has a lower cost.

12. Every M(X1, X2, X3) found is stored in table Z and the loop stops when
all primitive functions are selected as X1. If no function could be found, the
algorithm goes back to the first step and restarts selecting X1 from a group R,
stopping when all functions in R were selected as X1. If yet no function could
be found, the algorithm increments r and restarts the loop with a new group R.
The algorithm returns the lowest cost function stored in Z as output.

For the two sets that need a function with four levels to be covered, we first select
X1 from the primitives table, then we build X2 and X3 as 3-level functions using
the explained synthesis.

6.3.3 MPC Synthesis for 5-Input Functions

The synthesis for 5-input (n = 5) functions also uses the primitives and the M2 table
as a base to build functions with a higher number of levels.
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For n = 5, S = 4,294,967,296 and 172 of these sets can be covered by primitives,
with at most one majority gate. The M2 table stores the 253,560 sets that can be
covered by majority functions with 2 levels. The remaining sets need more than 2
levels to be covered.

To build 3-level functions the algorithm also uses the expression M(X1, X2, X3),
realizing the combination of primitives and M2 functions, selected by their lowest
cost.

The complete synthesis for 3-level functions is composed by the following
steps:

1. Order by cost every function from the primitives and M2 tables.
2. Select the function with the lowest cost as X1.
3. Reduce the cost by one for every primitive or M2 function that is composed by a

gate that also composes X1.
4. Create v0 and v−1, where v0 = f − X1 and v−1 = X1 − f .
5. Select X2, firstly from the primitives, as the lowest cost function that:

– Covers all minterms in v0.
– Doesn’t cover any minterm in v−1.

If no valid X2 could be found among the primitives, select X2 from the M2
table. If still no valid X2 could be found, go back to step 2 and select a new X1.

6. Again, update the cost of the primitives and M2 functions based on the gates in
X1 and X2.

7. Create v1, where v1 stores the minterms covered by f and only once by Xc.
8. Select X3, firstly from the primitives, the lowest cost function that:

– Covers all minterms in v1.
– Doesn’t cover any minterm in v−1.

If no valid X3 could be found among the primitives, select X3 from the M2
table. If still no valid X3 could be found, go back to step 5 and select a new X2.

9. With the selection of X3 we now have a valid output. Next apply Ω.I to every
level of M(X1, X2, X3) and return the lowest cost version as output.

To exemplify the second loop, consider n = 5 and f = {2, 4, 6, 7, 8, 11, 13,
14, 15}. A valid output function can be found in the iteration where X1 = C,
covering the minterms {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}.

Updating the vector v based on X1, we have v0 = {2, 8, 11} and v−1 =
{5, 12, 20, 21, 22, 23, 28, 29, 30, 31}. Table 6.15 shows v after the selection of X1.

As X2, we select the lowest cost function from M2 that covers every minterm in
v0 but doesn’t cover any of the minterms in v−1.

We select X2 = M(M(C,D, 1),M(B,E, 0),M(A,B,E)) that covers
{0, 1, 2, 4, 6, 8, 9, 11, 13, 15, 16, 17, 24, 25}. From X2, we update v again, gener-
ating v1 = {2, 7, 8, 11, 14} and v−1 = {0, 1, 5, 9, 12, 16, 17, 20, 21, 22, 23, 24, 25,

28, 29, 30, 31}. Table 6.16 shows v updated after X2’s selection.
As X3, we select the lowest cost function from M2 that doesn’t cover any

minterms in v−1 and covers all minterms in v1.
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Table 6.15 Vector v updated
from X1, for the second loop
example

Minterms f X1 v

0 0 0 0

1 0 0 0

2 1 0 0

3 0 0 0

4 1 1 1

5 0 1 −1

6 1 1 1

7 1 1 1

8 1 0 0

9 0 0 0

10 0 0 0

11 1 0 0

12 0 1 −1

13 1 1 1

14 1 1 1

15 1 1 1

16 0 0 0

17 0 0 0

18 0 0 0

19 0 0 0

20 0 1 −1

21 0 1 −1

22 0 1 −1

23 0 1 −1

24 0 0 0

25 0 0 0

26 0 0 0

27 0 0 0

28 0 1 −1

29 0 1 −1

30 0 1 −1

31 0 1 −1

We have X3 = M(M(A,D, 0),M(B,C, 0),M(A,B,E)), covering the
minterms {2, 3, 6, 7, 8, 10, 11, 14}.

With the selection of X3, MPC returns M(X1, X2, X3) = M(C,M(M(C,D, 1),

M(B,E, 0),M(A,B,E)),M(M(A,D, 0),M(B,C, 0),M(A,B,E))) as output,
which has less inverters than its dual form.
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Table 6.16 Vector v updated
from X2, for the second loop
example

Minterms f X2 v

0 0 1 −1

1 0 1 −1

2 1 1 1

3 0 0 0

4 1 1 2

5 0 0 −1

6 1 1 2

7 1 0 1

8 1 1 1

9 0 1 −1

10 0 0 0

11 1 1 1

12 0 0 −1

13 1 1 2

14 1 0 1

15 1 1 2

16 0 1 −1

17 0 1 −1

18 0 0 0

19 0 0 0

20 0 0 −1

21 0 0 −1

22 0 0 −1

23 0 0 −1

24 0 1 −1

25 0 1 −1

26 0 0 0

27 0 0 0

28 0 0 −1

29 0 0 −1

30 0 0 −1

31 0 0 −1

For functions that need more than three levels to be covered we apply the reduc-
tion of fan-ins by Shannon expansion. Equation (6.11) shows the equivalent majority
version of the Shannon theorem, applied to the set of inputs {A,B,C,D,E}.

M(A,B,C,D,E) = M(M(F1, 0, A),M(F2, 0, A), 1) (6.11)

The variable A represents the isolated variable and F1 and F2 represent functions
built with the remaining inputs {B,C,D,E}.
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Table 6.17 Example of f1’s
and f2’s generation by
Shannon theorem

Minterms B C D E f1 f2

0 0 0 0 0 0 0

1 0 0 0 1 1 0

2 0 0 1 0 1 0

3 0 0 1 1 1 0

4 0 1 0 0 0 1

5 0 1 0 1 0 1

6 0 1 1 0 0 1

7 0 1 1 1 1 0

8 1 0 0 0 1 0

9 1 0 0 1 0 1

10 1 0 1 0 0 0

11 1 0 1 1 0 1

12 1 1 0 0 1 0

13 1 1 0 1 0 1

14 1 1 1 0 1 0

15 1 1 1 1 0 1

The first step to apply this equation in the MPC algorithm is to isolate the first
input (A). Then split the input truth table f in two pieces to form 2 new truth tables,
f1 and f2.

Table 6.17 shows an example of f1’s and f2’s generation. For this example, f =
[01110001100010100000111001010101] and the set of inputs are {A,B,C,D,E}
(n = 5).

Note that, by splitting f in 2 equal size tables, we have f1 = [0111000110001010]
and f2 = [0000111001010101], where the set of inputs became {B,C,D,E}
(n = 4) and the variable A is isolated.

To find F1 and F2 we apply the MPC synthesis for n = 4, explained in the
previous section, to f1 and f2, respectively.

Note that the functions built by the Shannon Theorem aren’t an optimal solution
for f , since Eq. (6.11) adds two levels and three gates by itself.

6.4 Results

In this section results obtained from the comparison of the algorithms MPC and
exact_mig are presented. For n = 4 both algorithms were executed for all 65,536
possible functions. The obtained results were then compared based on the cost
criteria used by the MPC that prioritizes first the number of levels in the output
function, followed by the number of gates, the number of inverters, and the number
of gate inputs. In Table 6.18 each column corresponds to a group Si , where 0 ≤ i ≤
2n. Each Si represents a total of functions that covers a specific number of minterms.
S4, for example, represents every function that covers 4 minterms among the 65,536
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Table 6.18 Cost comparison between MPC and exact_mig

i Si MPC < exactmig MPC < exactmig MPC < exactmig

0 1 0 0 1

1 16 16 0 0

2 120 41 8 71

3 560 324 60 176

4 1820 808 708 304

5 4368 2906 583 879

6 8008 4493 2276 1239

7 11,440 7188 3300 952

8 12,870 8108 3474 1288

9 11,440 7536 3022 882

10 8008 6273 1121 614

11 4368 3334 512 522

12 1820 1373 279 168

13 560 482 0 78

14 120 93 8 19

15 16 12 0 4

16 1 0 0 1

Total 65,536 42,987 15,351 7198

possibilities. Equation (6.12) shows the calculation of Si . Note that m = 2n, and
represents the total of minterms for a specific number of inputs. For n = 4, m = 16.

Si = m!
i! · (m − i)! (6.12)

For each Si the table shows the quantity of functions where MPC generated
results with a lower, higher, and equal cost than exact_mig.

The MPC generates lower cost results for 42,987 (66%) functions, generates
results with equal cost for 7198 (11%) functions, and generates results with higher
cost for the remaining 15,351 (23%).

Note that MPC is able to generate better results because exact_mig aims for
the exact synthesis of only depth and size, while MPC considers also the number
of inverters and the number of gate inputs as cost criteria. In this comparison, the
exact_mig functions were generated with the prioritization of depth, followed by the
function size, differing from MPC only by the addition of the number of inverters
and gate inputs as third and fourth criteria, respectively.

Functions where the MPC returns a higher cost than exact_mig exist because
the MPC builds M(X1, X2, X3) prioritizing X1 and X2 as primitives, only using
functions from M2 if needed. This rule is essential for the formation of optimized
functions in the majority of the cases, but there are cases where the prioritization of
2-level functions would generate a lower cost result.
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As an example consider f = 1000000000000001. The MPC returns the
function M(M(B,C, 1),M(B,D, 0),M(1,M(A,C, 0), M(A,D, 1))) as output
that has 3 levels and 6 gates. The exact_mig algorithm returns M(M(0, C,D),

M(1,D,M(A,B,D)), M(0, C,M(A,B,D))), which has 3 levels and 5 gates.
In the presented case, the MPC generated a result prioritizing the use of two

primitive functions (X1 = M(B,C, 1) and X2 = M(B,D, 0)), and a single 2-
level function (X3 = M(1,M(A,C, 0),M(A,D, 1))), while exact_mig was able
to generate better results with a single primitive and 2-level functions, since the
combination of both functions uses the gate M(A,B,D) twice and the cost of
repeated gates is disconsidered.

As example of a function where the MPC generated better results, we have
f = 0000001001000100, where the MPC generated the function M(M(A,C, 0),

M(C,D, 1),M(0, B,M(A,D, 1))) as output that has 3 levels, 5 gates, and 2
inverters. The exact_mig generated the function M(M(0, B,C),M(0,D,M(A,C,

D)),M(D,M(A,C,D),M(0, B,C))) for the same truth table f that has 3 levels,
5 gates, and 5 inverters. Note that the MPC generates a function with the same
number of levels and gates, but with less inverters.

In Tables 6.19 and 6.20, comparisons about the runtime of both algorithms are
presented. Table 6.19 shows the total and average runtime for every Si . Table 6.20
shows the total and average runtime for all functions with a specific depth. The
comparisons were made in a computer with 8 GB RAM and a 1.7 GHZ CPU.

Table 6.19 Runtime comparison between MPC and exact_mig by Si

MPC exactmig

i Si Total runtime Avg. runtime Total runtime Avg. runtime

0 1 0.01 s 0.01 s 0.01 s 0.01 s

1 16 1.10 s 0.06 s 1.65 s 0.10 s

2 120 30.02 s 0.25 s 17.85 s 0.14 s

3 560 8.29 min 0.88 s 4.57 min 0.49 s

4 1820 23.41 min 0.77 s 21.44 min 0.70 s

5 4368 3.10 h 2.55 s 2.09 h 1.72 s

6 8008 11.39 h 5.12 s 3.84 h 1.73 s

7 11,440 24.76 h 7.79 s 21.74 h 6.84 s

8 12,870 19.64 h 5.49 s 9.36 h 2.61 s

9 11,440 24.85 h 7.82 s 20.76 h 6.53 s

10 8008 11.69 h 5.25 s 3.54 h 1.59 s

11 4368 3.67 h 3.03 s 2.27 h 1.89 s

12 1820 29.81 min 0.98 s 22.12 min 0.73 s

13 560 7.42 min 0.79 s 4.81 min 0.51 s

14 120 31.56 s 0.26 s 18.68 s 0.15 s

15 16 0.99 s 0.06 s 2.24 s 0.14 s

16 1 0.01 s 0.01 s 0.01 s 0.01 s

Total 65, 536 100.26 h 5.50 s 64.49 h 3.54 s
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Table 6.20 Runtime comparison between MPC and exact_mig by Depth

MPC exactmig

Depth Total functions Total runtime Avg. runtime Total runtime Avg. runtime

0 10 0.12 s 0.01 s 0.23 s 0.02 s

1 80 1.07 s 0.01 s 1.62 s 0.02 sec

2 10,260 103.81 s 0.01 s 318.34 s 0.03 s

3 55,184 91.80 h 5.98 s 50.26 h 3.27 s

4 2 8.46 h 4.23 h 14.22 h 7.11 h

Table 6.21 Comparison of
average memory usage for
n = 4

i Si MPC exactmig

0 1 3.36 MB 0.01 MB

1 16 4.38 MB 3.00 MB

2 120 4.72 MB 3.01 MB

3 560 5.06 MB 3.28 MB

4 1.820 5.27 MB 3.26 MB

5 4.368 5.34 MB 3.55 MB

6 8.008 5.51 MB 3.39 MB

7 11.440 5.64 MB 3.61 MB

8 12.870 5.87 MB 3.63 MB

9 11.440 5.61 MB 3.61 MB

10 8.008 5.53 MB 3.38 MB

11 4.368 5.32 MB 3.55 MB

12 1.820 5.21 MB 3.27 MB

13 560 5.23 MB 3.28 MB

14 120 4.67 MB 3.02 MB

15 16 4.41 MB 3.00 MB

16 1 3.39 MB 0.01 MB

Total 65,536 5.56 MB 3.52 MB

Note that even though the MPC can generate faster results for functions with 0,
1, 2, or 4 levels, in most cases it is still slower than exact_mig.

In Table 6.21, we present the average memory usage in the synthesis of every
group Si , in megabytes (MB).

Note that the MPC has an average memory usage of 5.36 MB, while the
exact_mig has an average memory usage of 3.52 MB.

For n = 5 a sample of 1000 randomly generated functions was used and the
MPC algorithm was able to achieve lower cost results for 477 (48%) functions,
and equal cost results for 112 (11%).

The MPC’s total runtime for the generated sample was 11.62 h, with an average
runtime of 41.63 s. The exact_mig’s total runtime was 19.33 h, with an average
runtime of 1.15 min.
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Therefore, the MPC was able to generate results 66% faster than exact_mig.
The MPC’s average memory usage was 40.32 MB, while the exact_mig’s was only
5.05 MB.

Note that results for n = 3 are not presented because both algorithms return
optimal solutions for all 256 possible functions.

6.5 Conclusions

In this paper we present the MPC algorithm, which aims to generate majority
functions based on an input truth table. We also present a study on the main concepts
of majority Boolean algebra and primitive functions. With the proposed cost criteria
the MPC presented, in the most part, results better or equal to exact_mig. It’s
important to point out that the MPC is able to find better results only considering
two additional cost criteria: the number of inverters and gate inputs.

For functions with n = 4, from a total of 65,536 possible functions, the MPC

generated functions with lower cost in 42,987 (66%) cases and functions with equal
cost in 7198 (11%) cases, reaching a total of 50,185 (77%) functions with equal or
lower cost than exact_mig. The MPC had an average computational time of 5.50 s
and an average memory usage of 5.56 MB, while the exact_mig had an average
computational time of 3.54 s and an average memory usage of 3.52 MB.

For functions with n = 5, from a sample of 1000 functions, the MPC found
better or equal results for a total of 589 (59%) functions, where 477 (48%) had
lower cost and 112 (11%) had equal cost. The MPC’s average computational
time and memory usage were 41.63 s and 40.32 MB, while exact_mig’s average
computational time and memory usage were 1.15 min and 5.05 MB, respectively.

The MPC’s code is available at: https://github.com/EvandroFerraz/mpc. The list
of functions used to compare MPC and exact_mig for 5-input functions can also be
find in the link.
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