
Chapter 2
Secure Implementation of Lattice-Based
Encryption Schemes

Tobias Oder, Tobias Schneider, and Tim Güneysu

2.1 Introduction

Cryptographic key-exchange mechanisms (KEMs) are essential to secure confiden-
tial information that gets transmitted over an insecure channel. By using a KEM, the
communicating parties can agree on a shared secret key that they can use to encrypt
data without an eavesdropper being able to derive any information about that key.
The majority of KEMs that are in use today base their cryptographic security on
either the prime factorization problem or the discrete logarithm problem. However,
given a fairly powerful quantum computer, one can break cryptographic schemes
based on these mathematical problems using Shor’s algorithm [52]. The ubiquitous
threat posed by recent advances in quantum computing to currently employed KEMs
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has therefore caused a massive rise in research activities in the area of post-quantum
cryptography (PQC) in the last couple of years. These research efforts culminated
in the NIST requesting candidates for quantum-secure cryptographic algorithms in
December 2016 [36] and releasing the list of submissions in December 2017.

The KEMs submitted to NIST base their security on entirely different security
assumptions that (by the current state of knowledge) cannot be attacked by quantum
algorithms. The majority of submitted KEMs is either based on linear codes,
multivariate quadratics, or lattices. Lattice-based schemes constitute the largest
group with 20 submitted KEMs in the first round of the standardization process
and still nine schemes in the second round. There are a couple of reasons for the
popularity of lattice-based cryptosystems. They offer reasonable parameter sizes,
high efficiency, and flexibility regarding their potential applications. The most
commonly used mathematical problem to build lattice-based KEMs is the learning
with errors (LWE) problem or its variant ring-LWE that works with polynomial
rings over finite fields and leads to even more efficient parameters.

With the advent of a Smart World and the Internet of Things, billions of devices
are becoming connected, exchanging massive amounts of data, often combined with
high demand on data security. Embedded applications of cryptography are therefore
of major relevance for today’s world. At the same time, these embedded targets
that require the application of security solutions often have access to only limited
resources. Implementations on embedded and constrained devices therefore have
the requirement to be efficient in terms of performance and memory. Furthermore,
in many embedded use cases an attacker has physical access to a device that contains
a secret key. This physical access can then be used to extract information about
intermediate values that appear during the execution of a cryptographic operation
by observing physical properties of the device. For instance, the dynamic power
consumption of the device can leak sensitive information about the secret key that
is used in the cryptographic operation. By collecting a large number of power traces
and analyzing them by statistical means, an attacker might be able to break a KEM
even if it is mathematically sound. Implementations targeting embedded devices
therefore also have to take into account side-channel attacks and apply appropriate
countermeasures.

Because of the high efficiency, schemes based on ring-LWE can be easily imple-
mented on embedded devices as shown by many publications, like [1, 27, 29, 30, 50].
Most of the aforementioned implementations are only protected against timing
side-channels, i.e., the execution time of the implementation is independent from
any secret data. In this chapter, we show how to further on protect KEMs based
on ring-LWE against power analysis. To do so, we utilize masking, a common
countermeasures against power attacks. Masking schemes for ring-LWE KEMs
have already been investigated by Reparaz, Roy, Vercauteren, and Verbauwhede
in [43, 46] and Reparaz, de Clercq, Roy, Vercauteren, and Verbauwhede in [45].
Our solution significantly improves the proposed masking schemes in terms of
performance and failure rate and is also provably secure. To show the practicality
of our approach, we also present an implementation on an ARM Cortex-M4 and
conduct practical measurements that support our claims.
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2.2 Background

2.2.1 Notation

Unless explicitly stated, we denote addition (resp. subtraction) modulo q with +
(resp. −). We denote multiplication by · and point-wise multiplication by ◦. We
use ⊕ as operator for addition modulo 2. Polynomials in Rq = Zq [x]/〈xn + 1〉
are labeled by bold lowercase letters. Polynomials in NTT domain are additionally
marked with a tilde (ã). When we access a single bit of a bit vector, we use an index
in square brackets to identify the respective bit.

2.2.2 Cryptographic Background

In the following, we introduce the necessary cryptographic concepts.

Key Encapsulation Mechanisms Encrypted communication can either be con-
ducted using symmetric or asymmetric cryptography. In symmetric cryptography
both parties share the same secret key that they use to encrypt their communication
with. In asymmetric cryptography on the other hand, each party has a pair of keys
consisting of one private key that is only known to the owner of the key and one
public key that is also known to potential communication partners. Symmetric
cryptography is much more efficient and therefore the primary choice to realize
encrypted communication. The major drawback however is that both parties have
to agree on a secret key in such a way that an eavesdropper does not get any
information about that key. Therefore asymmetric cryptography is usually used to
agree on a shared, symmetric key and all further communication is then encrypted
symmetrically. The asymmetric primitives used to exchange a symmetric key are
called Key Encapsulation Mechanisms (KEMs).

Hash Functions A cryptographic hash function is a one-way function that maps
data of arbitrary size to data of fixed size. The most important properties of
cryptographic hash functions are pre-image resistance, second pre-image resistance,
and collision resistance. Pre-image resistance describes the one-way property of a
hash functions, i.e., the difficulty to find an input that if hashed matches a given
output. Second pre-image resistance on the other hand means that given a certain
input, it is difficult to find another (different) input that generates the same hash
value. Collision resistance means that it is hard to find any pair of different inputs
that generate the same hash value. If the output is not fixed but variable, the
algorithm is called an extendable-output function (XOF). Hash functions are also
often used to instantiate random oracles in cryptographic schemes.

Security Model The security of encryption schemes (or KEMs) can be analyzed
regarding different attacker models. The simplest attacker model is to assume
that the attacker has access to some plaintext–ciphertext pair and tries to deduce
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information about the secret key from the given pair. The difference to a chosen-
plaintext attack (CPA) setting is that in this case the attacker has access to a
plaintext–ciphertext pair that was generated from a plaintext that the attacker
was able to choose. An even stronger assumption is the chosen-ciphertext (CCA)
setting. In this case, the attacker has access to a decryption oracle and can generate
plaintext–ciphertext pairs by performing a decryption operation on a ciphertext of
his choice. In an adaptive chosen-ciphertext attack (CCA2), the attacker can even
adapt his queries to the decryption oracle.

Number-Theoretic Transform The number-theoretic transform (NTT) is a dis-
crete Fourier transform over a finite field. An interesting property of the discrete
Fourier transform, which is also highly interesting for lattice-based cryptography,
is the ability to reduce the overall complexity of (polynomial) multiplication to
O(n · log n). To allow efficient computation of the NTT the coefficient ring has
to contain primitive roots of unity.

Definition 2.1 (Primitive Roof of Unity [57]) Let R be a ring, n ∈ N≥1, and
ω ∈ R. The value ω is an n-th root of unity if ωn = 1. The value ω is a primitive
n-th root of unity (or root of unity of order n) if it is an n-th root of unity, n ∈ R is
a unit in R, and ωn/t − 1 is not a zero divisor for any prime divisor t of n.

For a given primitive n-th root of unity ω in Zq , the NTT of a vector a =
(an−1, . . . , a0) is the vector ã = (ãn−1, . . . , ã0) that is computed as

ãi = ∑
0≤j<n ajω

ij mod q, i = 0, 1, . . . , n − 1.

The idea is to transform two polynomials a = an−1 · xn−1 + · · · + a0 and b =
bn−1 · xn−1 + · · · + b0 into their NTT representations ã = ãn−1 · xn−1 + · · · + ã0
and b̃ = b̃n−1 · xn−1 + · · · + b̃0 and computing the coefficient-wise multiplication
as c̃ = ∑

0≤i<n ãi · b̃i · xi . The result c = a · b is obtained after applying the inverse
transform to c̃. For q = 1 mod 2n the way the result has to be interpreted depends
on the input.

– Assuming one expanded a and b to vectors of length 2n by padding n zeros, the
result c equals the schoolbook multiplication of a and b without reduction.

– Without padding, the result c is already reduced modulo f = xn − 1. This is
called the positive wrapped convolution. In contrast to the first case, the resulting
polynomial is only of degree n.

This reduction for free is beneficial concerning the computation time, but in schemes
based on ring-LWE arithmetic is performed in Z[x]/〈xn+1〉. Thus, the input and
output have to be modified so that the negative wrapped convolution gets computed
to exploit the reduction property. Let ψ be the square root of ω. Now one computes
a′ = ∑

0≤i<n ai · ψi · xi and b′ = ∑
0≤i<n bi · ψi · xi before the polynomials are

transformed into their NTT representation. To obtain c = a · b mod xn + 1, one also
has to multiply c′, the output of the inverse transform (INTT) of c̃, by powers of the
inverse of ψ .
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Learning with Errors In 2005, Oded Regev introduced the learning with errors
problem [42]. The idea behind the LWE problem is to find a secret vector s given
a public matrix A and a vector b = As + e, where e is a noise vector with small
coefficients. In [33], Lyubashevsky et al. present a ring variant of the LWE problem
over finite fields, called ring-LWE. The (ring-)LWE problem can be used to create
encryption schemes as shown in [32, 34, 35]. Several variants of the scheme exist
and the concrete instantiation we are using is defined as follows:

– RLWE.CPA gen
NTT(): Sample the binomial noise r̃1

$←NTT(SampleNoisePoly()),

r̃2
$←NTT(SampleNoisePoly()), sample uniform ã

$← SampleUniformPoly(),
and compute p̃ = r̃1 − ã◦r̃2. Output the secret key r̃2 and the public key (p̃, ã).

– RLWE.CPA enc
NTT(ã, p̃,mcpa∈{0, 1}n): Sample ẽ1=NTT(SampleNoisePoly()),

ẽ2 = NTT(SampleNoisePoly()), and c̃1 = ã◦ẽ1 + ẽ2 and compute h̃2 = p̃◦ẽ1,
e3 ← SampleNoisePoly(), and c2 = INTT(h̃2)+e3+LWEEncode(mcpa).
Output the ciphertext (c̃1, c2).

– RLWE.CPA dec
NTT(r̃2, c̃1, c2): Output LWEDecode(INTT(c̃1◦r̃2)+c2) ∈ {0, 1}n.

In the scheme all elements are polynomials over Rq = Zq [x]/〈xn + 1〉 where
we always assume implicit reduction modulo q and reduction modulo xn + 1
and only allow parameters for which it holds that 1 ≡ q mod 2n for q being
a prime and n being a power of two. For efficiency, we make explicit use of
the NTT in a way that has been previously described in [38, 47]. For efficiency
we transmit and store keys and some ciphertexts in the NTT domain. Note that
for the discussion of the masking scheme it is sometimes not relevant whether
polynomials are stored in NTT format or whether the NTT is used at all (other
options would be schoolbook or Karatsuba) and thus we sometimes omit the NTT
notations to simplify the presentation. The public key (p = r1 − ar2, a) is an
ring-LWE sample and an attacker trying to extract the secret key basically has to
solve the search version of the ring-LWE problem [33]. In earlier works [11, 24]
RLWE.CPA , or derived key-exchange schemes, was usually instantiated with a
(high-precision) discrete Gaussian distribution with parameter σ . However, newer
results show that security can also be achieved with distributions that are close
to a discrete Gaussian. Examples are the binomial distribution [3, 13], a fixed
distribution [12], a binary distribution [15], or a uniform distribution [4, 26]. We
define SampleNoisePoly() to be a function that samples a polynomial in Rq

with coefficients coming from a binomial distribution with parameter k where each
coefficient is sampled independently as

∑k−1
i=0 bi − b′

i , where the bi, b
′
i ∈ {0, 1} are

uniform independent bits.1 The binomial distribution is centered with a zero mean,
has variance k/2, and gives a standard deviation of ς = √

k/2. For distributions
that roughly follow a discrete Gaussian the standard deviation ς can be considered
as the most important measure when describing and comparing security levels for

1In [3] the definition of the binomial distribution contains a typo in which the sum goes from zero
to k.

algo:dense_poly_mup:iterative_NTT
algo:dense_poly_mup:iterative_NTT
algo:dense_poly_mup:iterative_NTT
algo:dense_poly_mup:iterative_NTT
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ring-LWE. A uniformly random polynomial is sampled by SampleUniformPoly()
and we decided to include ã in the public key for simplification. Note that it would
be possible to generate the secret key or ã from a seed of 256-bits (or to choose ã
as a global constant; see [3] for a discussion). Additionally, the secret key r̃2 could
be generated from a seed or stored in normal domain and efficiently encoded as it is
not distributed uniformly but roughly follows a discrete Gaussian (see [39, 49]).
However, for comparability and maintainability, we leave these straightforward
optimizations and trade-offs as future work as they are not essential for our use-case.
For successful decryption knowledge of the secret key r2 is required. Otherwise, the
large term ae1r2 cannot be eliminated when computing c1r2+c2. An encoding of the
n-bit message m is necessary as some small noise (i.e., e = e1r1 + e2r2 + e3) is still
present after calculating c1r2 + c2 and would prohibit the retrieval of the message
after decryption. This also shows why the noise distribution is chosen to be rather
small—a too big noise level would make reliable decoding impossible. Thus, to
allow the extraction of the message despite the noise during decryption RLWE.CPA
requires (as a minimum) a simple message encoding. We replace the standard
threshold encoding and decoding functions with a variant that encodes one message
bit into four coefficients [38]. The encoding function used in RLWE.CPA enc

NTT

is defined as Encode(m ∈ {0, 1}n/4) = ∑n−1
i=0 m[i/4�] · q

2 · xi (where m[i]
denotes the i-th bit of m). The decoding function used in RLWE.CPA dec

NTT takes
four coefficients z1, z2, z3, z4 ∈ [−q/2�, q/2�] as input that carry one bit of the
message. Decode(z1, z2, z3, z4) is defined to return 1 if |z1|+ |z2|+ |z3|+ |z4| < q

and 0 otherwise.

2.2.3 Side-Channel Attacks and Countermeasures

In this section we review side-channel attacks and countermeasures.

Timing Attacks When implementing cryptographic algorithms, the developer has
to make sure that the execution time is independent of the secret data that is
processed. Otherwise an attacker might be able to exploit the information about the
execution time. Such attacks should not only be considered for embedded devices
for which the attacker has physical access to, but also remote timing attacks are
a threat that must be considered as shown by Brumley and Boneh [14]. Timing
information can be leaked by conditional branches, instructions with non-constant
execution time, and memory accesses that trigger cache hits or misses [8].

Differential Power Analysis Introduced in 1998 by Kocher et al. [31], DPA needs
many power traces and one analyzes the set of traces with statistical methods. When
performing DPA an attacker does not attack the whole key at once, but only a part,
e.g., one byte. A DPA is divided in an online phase and an offline phase. During
the online phase, the attacker runs a vast amount of executions of the algorithm
to be attacked with different inputs and measures the power consumption of the
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target device during each run. DPA requires a leakage model that is a prediction of
the power consumption. Some leakage models are rather simple. For example, the
Hamming weight model is based on the observation that the Hamming weight of a
value that is stored in a register influences the power consumption. During the offline
phase, the attacker guesses the key byte and computes the intermediate value that he
considers suitable to apply the power model to. Depending on the power model and
the intermediate value, she assigns the corresponding power trace to one of the two
sets where one contains power traces with high predicted power consumption and
one set contains traces with low prediction power consumption. For all power traces,
the attacker stores the difference of the means of the sets. If the attack worked, the
correct key guess has a much higher difference of means than the other guesses.

Hiding Hiding countermeasures are applied to raise the difficulty for an attacker
to detect sensitive information in a set of power traces. This can be achieved
by introducing additional noise or by trying to equalize the power consumption
of all operations. The first approach can be achieved by other computations that
are executed in parallel or by shuffling the order of operations. For hardware
implementations one can even instantiate dedicated noise generators to randomize
the power consumption. If shuffling is applied an attacker needs to perform an
extra alignment step before analyzing the power traces. Otherwise the number of
required power traces drastically increases. The second approach is more suitable
for hardware implementations as in microcontrollers the developer has only limited
influence on the power consumption of an instruction and only one instruction can
be executed in parallel (except the microcontroller features SIMD instructions).

Masking The idea behind masking is to split a secret value into several shares.
The secret value can only be reconstructed with the knowledge of all shares. The
splitting of the secret value can be performed in a Boolean way or in an arithmetic
way. Boolean masking means that the XOR-sum of all shares results in the secret
value and arithmetic masking means that the arithmetic sum or difference of the
shares results in the secret value. There are conversion approaches to switch between
arithmetic and Boolean masking [18]. The major advantage of masking schemes is
that they allow to prove the side-channel security of an algorithm. Nevertheless,
there are still implementation challenges that have to be taken care of. Otherwise,
a provably secure algorithm might still have a side-channel leakage. To achieve
higher-order security, it is necessary to split the secret value into more shares.

2.3 CCA2 Conversion and Masking

In this section we describe how ring-LWE can be made resilient to CCA and side-
channel attacks using the Targhi–Unruh variant of the Fujisaki–Okamoto [22, 54]
(FO) transformation and our masking scheme.
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2.3.1 CCA2 Conversion for RLWE.CPA

In this work we use the Fujisaki–Okamoto [22] transformation to enable a semanti-
cally secured encryption with respect to adaptive chosen-ciphertext attack (CCA2).
For this transformation, Peikert came to the conclusion [37] that a passively
secured encryption scheme should be converted into an actively secured one (based
on the random oracle model; assuming adaptive attacks for CCA2). For this
transformation, two random oracles G : {0, 1}L → {0, 1}l and H : {0, 1}L+l →
{0, 1}λ are required. Targhi and Unruh pointed out that a third random oracle H ′ :
{0, 1}L → {0, 1}l is necessary for the quantum security of the transformation [54].
The parameter L determines the size of the message to be encrypted, l the length
of the input to ring-LWE encryption, and λ the length of the seed for the pseudo-
random number generator (PRNG). In our implementation, the parameters L, l, and
λ are set to 256 and we define RLWE.CCAenc

NTT and RLWE.CCAdec
NTT as follows:

– RLWE.CCAenc
NTT(ã, p̃,mcca ∈ {0, 1}L):

Let (c̃1, c2)= RLWE.CPA enc
NTT(ã, p̃, ν;H(ν||mcca)), where ν ∈ {0, 1}L is a

nonce and H(ν||mcca) seeds the PRNG of RLWE.CPA enc
NTT. Compute c3 =

G(ν) ⊕ mcca as well as c4 = H ′(ν) and output (c̃1, c2, c3, c4).
– RLWE.CCAdec

NTT(r̃2, ã, p̃, c̃1, c2, c3, c4):
Compute ν′=mcpa = RLWE.CPA dec

NTT(r̃2, c̃1, c2), mcca = G(ν′) ⊕ c3,
(c̃∗

1, c∗
2) = RLWE.CPA enc

NTT(ã, p̃, ν′;H(ν′||mcca)), and c∗
4 = H(ν′). Check if

(c̃1, c2)
?= (c̃∗

1, c∗
2) and c4

?= c∗
4. If so, output mcca , otherwise output f ail.

Using this transformation and our chosen parameters we obtain a theoretical
public-key size of |(ã, p̃)| = 2n�log2(q)� = 2 ·1024 ·14 = 28,672 bits (3584 bytes)
and a theoretical ciphertext size of |(c̃1, c2, c3, c4)| = 2n�log2(q)� + 2l = 29,184
bits (3648 bytes). The secret key is |r̃2| = n�log2(q)� = 14,336 bits (1792 bytes).

2.3.2 Masked CCA2-Secured Ring-LWE Decryption

To achieve side-channel resistance, it is necessary to mask all vulnerable modules
of the CCA2-secured decryption. As depicted in Fig. 2.1 in bold notation, these
modules are RLWE.CPA dec

NTT, G, H , H ′, and RLWE.CPA enc
NTT, and the two

comparisons. Note that it is not sufficient to only protect RLWE.CPA dec
NTT, because

in a chosen-ciphertext setting an adversary can target the unmasked output of
RLWE.CPA dec

NTT (see Appendix B of [44]) to recover the secret key. This attack
trivially extends to any other intermediate variable which depends on mcpa . A DPA-
adversary would keep c1, c2 constant while varying c3 and c4. This way it is possible
to derive hypothetical values for every other module following RLWE.CPA dec

NTT

depending on a guess for mcpa (which only depends on one coefficient of r2
in a chosen-ciphertext setting). Therefore, even the final comparison needs to be
protected against a side-channel adversary.
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Fig. 2.1 CCA2-secured decryption

r̃′
2 ∈ Rq

r̃′′
2 ∈ Rq

c̃1 ∈ Rq

c̃1 ∈ Rq

c2 ∈ Rq

×

×

+

INTT

INTT

m′′
cpa ∈ {0, 1}256

m′
cpa ∈ {0, 1}256z′ ∈ Rq

z′′ ∈ Rq

Fig. 2.2 Proposed masking scheme for ring-LWE decryption

In the following, we analyze the first-order security of each module separately
in the common probing model [28]. To this end, we show that an attacker, who
can probe one intermediate variable of the computation, cannot derive any secret
information. This notion is equivalent to showing that each intermediate variable
follows a distribution independent of any sensitive variable, i.e., the secret key r2.
For one probe it is indeed sufficient to analyze each module separately, if the input
and output distributions between the modules are consistent. Therefore, 1-probing
security with correct input distributions for each module implies 1-probing security
of the complete masked CCA2-secured decryption. However, for more probes (i.e.,
2-probing security) this approach would not cover every possible attack vector and
a more sophisticated analysis has to be utilized [7].

Ring-LWE Decryption As mentioned in Sect. 2.1, the masking schemes of the
ring-LWE decryption from works like [43, 46] and [45] suffer from a higher failure
probability and slower performance. Therefore, we present a new approach which
avoids the aforementioned problems and still provides side-channel protection.
Figure 2.2 shows the basic structure of our masked ring-LWE decryption. For
the initial multiplications, additions, and INTTs we rely on a simple random-

ized sharing of r2 = r′
2 + r′′

2 with r′
2

$←Rq similar to [43, 46]. Given the
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linearity of the operations, it is easily possible to perform these computations
on each share separately. However, this approach does not work for the final
Decode. In [43, 46], the authors proposed to use a rather complex decoder for
the arithmetically masked shares instead. To increase efficiency, we rely on a
new approach MDecode which first transforms the arithmetic shares to Boolean
shares and then performs the decoding. With this approach, we can avoid the
costly arithmetically masked decoder and the additional error of the scheme
from [45].

Correctness To show the correctness of this scheme, we first denote the outputs
of the INTT operations as z′ and z′′ with z = z′ + z′′. Showing that this relation
holds is trivial, since the INTT is linear and the scheme is identical to [43, 46] up
to this point. Instead, we show that MDecode(z′, z′′) = (m′

cpa,m
′′
cpa) with mcpa =

m′
cpa ⊕ m′′

cpa . To this end, we start by describing how an arithmetic-to-Boolean
(A2B) transformation [17, 19, 21, 25, 56] can be used to easily decode one shared
coefficient of z. Then we demonstrate a solution to efficiently adjust the approach
to our encoding scheme, i.e., four coefficients of z for one bit of mcpa .

In our basic example, we assume the arithmetic shares (x1, x2) with

x1 + x2 (mod q) = x = m · q

2
� + e

for some error e and want to recover (m1,m2) with m1 ⊕ m2 = m without leaking
sensitive information. Our solution to this problem is based on the observation that a
sharing of the most significant bit can be easily extracted from Boolean shares, while
it is hard for arithmetic shares. However, we cannot straightforwardly apply an A2B
transformation to (x1, x2) as all A2B algorithms work with arithmetic shares which
are computed modulo a power of two.

Therefore, we propose to first transform (x1, x2) to the shares (y1, y2) with y1 +
y2 mod 215 = x given that 215 is the second-next-larger power of two for q =
12,289. This process is shown in Algorithm 1 where every operation is done mod
2bits , A2B denotes an arithmetic-to-Boolean transformation, and MSB returns the
most significant bit of the input. In the algorithm, we first sample a random 15-bit
value y1 and reshare the input shares mod 2bits . However, in some cases this does
not result in a correct sharing as in Line 3 the shares are

y1 + y2 mod 2bits = x + q · carry,

where the carry is set if x1 + x2 ≥ q. To adjust this, we compute carry and
subtract q · carry from (y1, y2) in a secured fashion. First, we compute z1 ← y1 −
q mod 2bits . By doing this, we create the following relation for the most significant
bit of z1 + y2 mod 2bits :

MSB(z1 + y2 mod 2bits) =
{

0 x1 + x2 ≥ q

1 x1 + x2 < q
,
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if bits ≥ log2(2q). Therefore, we have MSB(z1 +y2 mod 2bits)⊕1 = carry. Then
we use the A2B algorithm by Debraize [21], so that we can apply MSB to each of
the output shares separately. The only remaining step now is to subtract q · carry

from (y1, y2). This is achieved using the shares k1 ⊕ k2 = carry and the relation
k1 ⊕ k2 = k1 + k2 − 2k1k2 as follows:

y1 − (k1 ⊕ k2)q = y1 − k1q − k2q + 2k1k2q

= y1 − k1q − k2q + 2(k′
1 + k′′

1 )(k′
2 + k′′

2 )q

= y1 − k1q − k2q + 2k′
1k

′
2q + 2k′

1k
′′
2q + 2k′′

1k′
2q + 2k′′

1k′′
2q.

Since (k1, k2) is not completely independent of (y1, y2) for some A2B, we include
a random value r in the computation of the sum in Algorithm 1.

Although the output (y1, y2) of TransformPower2 fulfills the desired prop-
erty of y1 + y2 mod 215 = x and could be easily transformed to (y′

1, y
′
2) with

y1 ⊕ y2 = x, this is not sufficient to recover m. Some additional steps are necessary
to perform a successful decoding. These steps are depicted in Fig. 2.3. Each circle
shows the distributions of the unshared values for a specific value of m (m = 0 is
thick, m = 1 is dashed) after each step, e.g., the first circle in the upper-left corner
shows the distributions for the original x where the values of x for m = 0 (resp.
m = 1) are grouped around the mean of zero (resp. q

2 ). In the first step, we subtract
q
4 from (x1, x2). This way no distribution is spread over the modulo border, which
would cause problems for the transformation to 15 bits. After the transformation
is done, we subtract q

2 from the result to create the following relation for the new
shares (y1, y2):

Algorithm 1 TransformPower2
Input: x1, x2, bits

Output: y1, y2

1: y1
$←{0, 1}bits

2: y2 ← x1 − y1
3: y2 ← y2 + x2
4: z1 ← y1 − q

5: [z1, z2] ← A2B(z1, y2)

6: k1 ← MSB(z1) ⊕ 1
7: k2 ← MSB(z2)

8: k′
1

$←{0, 1}bits

9: k′′
1 ← k1 − k′

1

10: k′
2

$←{0, 1}bits

11: k′′
2 ← k2 − k′

2

12: r
$←{0, 1}bits

13: y1 = (((((((r + y1) − k1q) − k2q) + 2k′
1k

′
2q) + 2k′

1k
′′
2q) + 2k′′

1k′
2q) + 2k′′

1k′′
2q)

14: y2 = y2 − r
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Fig. 2.3 First three steps when decoding one coefficient

MSB(y1 + y2 mod 2bits) =
{

0 m = 0

1 m = 1
,

as the distributions are equally distant to zero which prevents an increase in the
error probability of the decoding. In the last step, we again perform an A2B
transformation A2B(y1, y2) = (y′

1, y
′
2) to easily extract a sharing of m with

MSB(y′
1) ⊕ MSB(y′

2) = m1 ⊕ m2 = m.
For four related coefficients, one possible approach is to perform the aforemen-

tioned masked decoding for each coefficient separately and then combine them
via a masked majority function. However, a more efficient solution is described in
Algorithm 2, where (a1, a2), (b1, b2), (c1, c2), and (d1, d2) are four related shared
coefficients (i.e., encode the same m). Our main idea is to combine the coefficients
before the final A2B. To perform this combination without losing information and
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Algorithm 2 MDecode
Input: a1, a2, b1, b2, c1, c2, d1, d2
Output: m1,m2
1: a1 ← a1 −  q

4 �
2: b1 ← b1 −  q

4 �
3: c1 ← c1 −  q

4 �
4: d1 ← d1 −  q

4 �
5: [a1, a2] ← TransformPower2(a1, a2, 16)

6: [b1, b2] ← TransformPower2(b1, b2, 16)

7: [c1, c2] ← TransformPower2(c1, c2, 16)

8: [d1, d2] ← TransformPower2(d1, d2, 16)

9: e1 ← a1 + b1 + c1 + d1
10: e2 ← a2 + b2 + c2 + d2
11: e1 ← e1 − 2q

12: [e1, e2] ← A2B(e1, e2)

13: m1 = MSB(e1)

14: m2 = MSB(e2)

keeping the same error probability, we have to increase the number of bits for
TransformPower2 to bits ≥ log2(2 · 4 · q

2 ), i.e., 16 for q = 12,289. After
the transformation, we can easily sum the coefficients sharewise. We also have to
adjust the last subtraction to 2q. If no error has occurred (i.e., all coefficients encode
the same m), there are two distributions with means 216 − q and +q and (m1,m2)

can be easily recovered with a final A2B. In this way, we save three calls to A2B
compared to the naive majority approach.

Security Analysis We analyze the security of Algorithms 1 and 2 by showing
that each intermediate variable follows a distribution independent of any sensitive
variable. For TransformPower2 this is formalized in the following lemma.

Lemma 2.1 When x1, x2 ∈ Zq are a uniform sharing of x = x1 + x2 (mod q)

and y1, k
′
1, k

′
2, r ∈ {0, 1}bits are uniformly and independently distributed in

their respective value spaces, all intermediate variables in Algorithm 1 have a
distribution independent of the sensitive variable x.

Proof For the proof, we analyze the distributions of the variables of each line
from Algorithm 1 and show that their distributions are independent of the sensitive
variable x.

– Lines 2, 3: Since y1 is a random value in {0, 1}bits , (x1 − y1) is also a random
variable following a distribution independent of x. The same applies to (x1 −
y1) + x2 = x − y1.

– Line 4: A constant value is subtracted from a random value in {0, 1}bits which
does not leak about x.

– Line 5: The security strongly depends on the chosen transformation algorithm.
In our implementation, we use the algorithm from [21] and refer the interested
reader to their proof of security.
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– Lines 6, 7, 9, 11: Each of these lines operates on only one of the shares. Therefore,
each of them follows a distribution independent of x assuming A2B to be secured.

– Line 13: The first operand of the sum is the random value r ∈ {0, 1}bits .
Therefore, all following operations are perfectly masked by r and follow a
distribution independent of x.

– Line 14: A random value is subtracted from only one share. Therefore, the result
does not leak about x.

As shown above, the distribution of every intermediate variable of Algorithm 1 is
independent of the sensitive variable x. The output shares y1 and y2 with x = y1 +
y2 mod 2bits are both uniformly distributed in {0, 1}bits .

For MDecode, the security properties are formalized in the following lemma.

Lemma 2.2 When a1, a2, b1, b2, c1, c2, d1, d2 ∈ Zq are uniform shares a = a1 +
a2 (mod q), b = b1 + b2 (mod q), c = c1 + c2 (mod q), d = d1 + d2 (mod q)

which are independent of each other, all intermediate variables in Algorithm 2 have
a distribution independent of the sensitive variables a, b, c, d, and m.

Proof For the proof, we analyze the distributions of the variables of each line
from Algorithm 2 and show that their distributions are independent of the sensitive
variables.

– Lines 1–4: A constant value is subtracted from only one share. If the input
sharings are uniform, the result is still a uniform sharing independent of the
sensitive variables.

– Lines 5–8: The security depends on the security of TransformPower2 which
is analyzed in the previous lemma.

– Lines 9, 10: Assuming the output sharings of the four calls to Transform
Power2 are still uniform and independent, processing only one share of each
sharing is always independent of the sensitive variables.

– Line 11: (e1, e2) are a uniform sharing of e = a + b + c + d. Since only one
share is processed, the result is independent of the sensitive variables.

– Line 12: Again the security depends on the chosen algorithm for A2B.
– Lines 13, 14: Each of these lines operates on only one of the shares. Therefore,

each of them follows a distribution independent of the sensitive variables
assuming A2B to be secured.

As shown above, the distribution of every intermediate variable of Algorithm 2 is
independent of the sensitive variables a, b, c, d, and m. The output shares m1 and
m2 with m = m1 ⊕ m2 are both uniformly distributed in {0, 1}.
G, H, and H′ (SHAKE) We choose to instantiate G, H , and H ′ with the
commonly used extendable-output function SHAKE that is based on the KECCAK

algorithm [10] and apply the masking scheme presented in [9]. Therefore, we do
not include the security analysis of this module and instead refer the reader to the
original publications. We use a different initialization vector for each instantiation
of the random oracles to make G, H , and H ′ distinct from each other.
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Ring-LWE Encryption For the masked RLWE.CPA enc
NTT (i.e., the re-encryption

in RLWE.CCAdec
NTT), every input or internally PRNG-generated variable is sensitive

(i.e., mcpa , e1, e2, e3) since they can be used to recover the secret key r2 as detailed in
the beginning of this section. Therefore, the computation of c1 and c2 is done in the
shared domain. For the former this is trivial, since it only requires linear operations
which can be performed on each input share separately as

c′
1 = a · e′

1 + e′
2,

c′′
1 = a · e′′

1 + e′′
2.

Due to the simplicity of this computation we omit the security analysis.
For c2, however, we have to consider the rounding error from Encode to obtain

the correct result, i.e., it is not sufficient to compute

c′
2 = p · e′

1 + e′
3 + Encode(m′

cpa),

c′′
2 = p · e′′

1 + e′′
3 + Encode(m′′

cpa).

In this equation, m′
cpa ⊕ m′′

cpa = mcpa . Since our modulus q is odd and therefore
2 q

2 � �= q, we have to adjust this operation so that the correct result is computed, i.e.,
the result of the re-encryption has to be exactly the same as the result of the original
encryption. The naive approach would be to multiply one of the intermediate results,
e.g., c′

2 (without the message), by 2, encode the shares of mcpa as {0, q}, perform
two additions modulo 2q, and divide the result by 2. While this approach indeed
yields the correct result, it introduces an easily detectable side-channel leakage as
the last bit of the intermediate results before the division is always set to 1 if and only
if the unshared message bit is 1, i.e., q has been added exactly one time. Similarly,
the last bit is always set to 0 if and only if the unshared message bit is 0. We cannot
apply the technique described in [37] as adding a random bit yields a different result
if the value that bit is added to is odd. In the CCA2 setting, it is required that both
the original encryption and the re-encryption output exactly the same result and thus
even a single bit error is not tolerable.

We thus decided to only return a false result in case both shares, m′
cpa and m′′

cpa ,

have the value 1. In this case, the floor operation cuts off 1
2 two times and thus

the result is off by one. To get the correct result, we have to add m′
cpa AND m′′

cpa .
Obviously, we cannot compute this multiplication of the shares directly without
leakage. Thus, we split the shares into subshares.

m′
cpa = m′

cpa,1 + m′
cpa,2

m′′
cpa = m′′

cpa,1 + m′′
cpa,2

Notice that for this calculation m′
cpa and m′′

cpa are implicitly treated as polyno-
mials in Rq and not as bit vectors. For simplicity, we assume in this description
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that one bit is encoded into one coefficient but this approach trivially generalizes to
multi-coefficient encodings as well. As a consequence of the splitting into shares,
we have to compute (m′

cpa,1+m′
cpa,2)◦(m′′

cpa,1+m′′
cpa,2) instead of m′

cpa ANDm′′
cpa .

To obtain the correct result, we compute

c′
2 = (p · e′

1 + e′
3 + Encode(m′

cpa))

+ m′
cpa,1m′′

cpa,1 + m′
cpa,1m′′

cpa,2 + m′
cpa,2m′′

cpa,1 + m′
cpa,2m′′

cpa,2

Note that the term p · e′
1 + e′

3 provides the randomness to protect the masked AND
computation akin to Trichina’s masked AND [55]. Therefore, the order of operations
in the computation of c′

2 is important for the security. Our complete masked re-
encryption is shown in Algorithm 3.

Lemma 2.3 When e′
1 + e′′

1 = e1 ∈ Rq , e′
3 + e′′

3 = e3 ∈ Rq , m′
cpa + m′′

cpa =
mcpa ∈ {0, 1}n/4 are uniform, independent shared representations of the sensitive
input variables and m′

cpa,1, m′′
cpa,1 ∈ Rq are uniform and independent random

variables, all intermediate variables in Algorithm 3 have a distribution independent
of the sensitive variables mcpa , e1, and e3.

Proof For the proof, we analyze the distributions of the variables of each line from
Algorithm 3 and show that they are independent of the sensitive variables mcpa , e1,
and , e3.

– Lines 1, 2: Each of these lines only uses one of the shares and is therefore
independent of the sensitive variables. The shared representation of the error
vectors is independent of the shared representation of mcpa due to the mask
refresh inside the shared sampler.

– Lines 3, 4: m′
cpa,1 (resp. m′′

cpa,1) are new random masks that are used to mask the
shares of mcpa . Since only one share of mcpa is involved in each line, the result
is still independent of mcpa .

Algorithm 3 Masked ring-LWE encryption
Input: p, e′

1, e′
3, e′′

1, e′′
3,m′

cpa,m
′′
cpa, m′

cpa, 1, m′′
cpa, 1

Output: c′
2, c′′

2
1: c′

2 ← p · e′
1 + e′

3 + Encode(m′
cpa)

2: c′′
2 ← p · e′′

1 + e′′
3 + Encode(m′′

cpa)

3: m′
cpa, 2 ← m′

cpa − m′
cpa, 1

4: m′′
cpa, 2 ← m′′

cpa − m′′
cpa, 1

5: t11 ← m′
cpa, 1◦m′′

cpa, 1
6: t12 ← m′

cpa, 1◦m′′
cpa, 2

7: t21 ← m′
cpa, 2◦m′′

cpa, 1
8: t22 ← m′

cpa, 2◦m′′
cpa, 2

9: c′
2 ← ((((c′

2 + t11) + t12) + t21) + t22)
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– Lines 5, 6, 7, 8: Both terms of each line are uniformly and independently
distributed in Rq . Therefore, the multiplication of these terms does not create
a new dependency on mcpa and the results can be easily simulated.

– Line 9: The term (p · e′
1 + e′

3) is independent of mcpa and therefore provides
sufficient fresh randomness to protect the masked AND. Each intermediate
variable of this line follows a uniform distribution in Rq independent of the
sensitive variables mcpa , e1, and e3.

As shown above, the distribution of every intermediate variable of Algorithm 3
is independent of the sensitive variables mcpa , e1, and e3. Therefore, the aforemen-
tioned chosen-ciphertext attack is not possible.

Masked Binomial Sampler As detailed in the beginning of this section, the error
vectors can be target for a chosen-ciphertext adversary in the side-channel setting.
Therefore, we have to perform the sampling in a shared domain. We are using a
binomial sampler that computes the Hamming weight of two bit vectors α and β

and outputs the difference out of those Hamming weights. If we split α and β into
two Boolean shares each, we can compute the output of the sampler as follows:

out =
k−1∑

i=0

(α1[i] + α2[i] − 2α1[i]α2[i]) −
k−1∑

i=0

(β1[i] + β2[i] − 2β1[i]β2[i])

=
k−1∑

i=0

(α1[i] − β1[i]) +
k−1∑

i=0

(α2[i] − β2[i]) − 2
k−1∑

i=0

(α1[i]α2[i])

+ 2
k−1∑

i=0

(β1[i]β2[i]).

Obviously, we cannot compute α1[i]α2[i] and β1[i]β2[i] directly. Instead, we
compute them securely with the help of three random values X, Y,Z ∈ [0, q − 1]
as shown in Algorithm 4.

Lemma 2.4 When α2 ∈ {0, 1}k with α1 ⊕ α2 = α, β2 ∈ {0, 1}k with β1 ⊕ β2 = β,
X ∈ [0, q − 1], Y ∈ [0, q − 1], and Z ∈ [0, q − 1] are uniformly and independently
distributed in their respective value space, all intermediate variables in Algorithm 4
have a distribution independent of the sensitive unshared input variables α and β.

Proof For the proof, we analyze the distributions of the variables of each line
from Algorithm 4 and show that their distributions are independent of the sensitive
variables α and β.

– Lines 5, 6: Only one share is used in each of the two operations. Therefore, the
result is independent of the unshared values α and β.

– Lines 8–13: The proof works analogous to the proof for Lines 5–9 of Lemma 2.3.
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Algorithm 4 Masked binomial sampler

Input: α1, α2, β1, β2 ∈ {0, 1}k with α1 ⊕ α2 = α and β1 ⊕ β2 = β

Output: out1, out2 with (out1 + out2) mod q binomial distributed
1: i ← 0
2: out1 ← 0
3: out2 ← 0
4: for i < k do
5: out1 = out1 + (α1[i] − β1[i])
6: out2 = out2 + (α2[i] − β2[i])
7: X

$←[0, q − 1], Y $←[0, q − 1], Z $←[0, q − 1]
8: α1

′′ = α1 − X

9: α2
′′ = α2 − Y

10: out1 = out1 − 2((((Z + XY) + Xα2
′′) + α1

′′Y ) + α1
′′α2

′′)
11: β1

′′ = β1 − X

12: β2
′′ = β2 − Y

13: out2 = out2 + 2((((Z + XY) + Xβ2
′′) + β1

′′Y ) + β1
′′β2

′′)
14: i ← i + 1
15: end for

As shown above, the distribution of every intermediate variable of Algorithm 4
is independent of the sensitive variables α and β. Therefore, it is not possible for
an attacker, which can probe one value, to derive sensitive information. The output
shares out1 and out2 with out = out1 + out2 are both uniformly distributed in
[0, q − 1].
Masked PRNG The PRNG is also a possible target for a chosen-ciphertext
adversary as noted before. Therefore, we used the already implemented masked
version of SHAKE-128 to generate random numbers with a fixed seed.

2.3.3 Masked Comparison

It is further necessary to protect all comparisons against a side-channel adversary,
since even c̃∗

1, c∗
2, and c∗

4 can be used to distinguish r̃2. Since these values are shared,
it is necessary to compute a function of both shares to compare them to the public
and possibly adversary controlled values c̃1, c2, and c4. To prevent leakage of the
sensitive variables we introduce an additional hashing-step before the comparison.
Using c̃1 as an example, we perform the comparison of c̃1 with the shared c̃∗

1 =
c̃∗′

1 + c̃∗′′
1 as provided in Algorithm 5. The correctness of our approach is easy to

verify as

H ′′(c̃∗
1 − c̃∗′′

1 )
?= H ′′(c̃∗′

1 )

⇔ H ′′(c̃∗
1 − c̃1 + c̃∗′

1 )
?= H ′′(c̃∗′

1 ).
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Algorithm 5 Masked comparison of public c̃1 with internal c̃∗
1

Input: c̃1, c̃∗′
1 , c̃∗′′

1
Output: eq

1: c̃∗′
1 ← c̃1 − c̃∗′

1
2: c̃∗′

1 ← H ′′(c̃∗′
1 )

3: c̃∗′′
1 ← H ′′(c̃∗′′

1 )

4: eq ← c̃∗′
1 ⊕ c̃∗′′

1
5: eq ← (eq == 0)

Relying on the collision resistance of H ′′, this comparison is only true if the
ciphertext is valid and thus c̃∗′

1 = c1.

Lemma 2.5 When c̃∗′
1 + c̃∗′′

1 = c̃∗
1 ∈ Rq is a uniform, independent shared

representation of the sensitive input variable c̃∗
1 and H ′′ is a cryptographic hash

function, every intermediate variable of Algorithm 5 is independent of the sensitive
variable c̃∗

1.

Proof For the proof, we analyze the distributions of the variables of each line from
Algorithm 5 and show that they are independent of the sensitive variable.

– Lines 1–3: Each line uses only one share of c̃∗
1 and, therefore, the computation is

independent of c̃∗
1.

– Line 4: The adversary can probe H ′′(c̃∗
1 − c̃1 + c̃∗′

1 ) ⊕ H ′′(c̃∗′
1 ) which depends on

both shares. However, we rely on the properties of H ′′ to break the linear relation
between the shares and make a direct recovery of c̃∗

1 impossible. Nevertheless, a
computationally unbounded adversary would be able to distinguish the sensitive
variable c̃∗

1 by iterating over all possible c̃∗′
1 . Since c̃∗′

1 ∈ Rq this task is more
complex than directly iterating over the whole key space of r̃2. Therefore, we do
not consider this attack vector a viable threat. Furthermore, in the special case of
c̃∗

1 = c̃1 the variable c̃∗
1 is not sensitive.

However, it is only secure to have a function of both shares, because the
comparison is always negative, i.e., eq is false, in a chosen-ciphertext setting.
Therefore, the attacker does not gain additional knowledge from the output of the
comparison. This does not apply to the comparison of c2 and c4. In this case, the
adversary can adaptively change c2 or c4 without removing the sensitivity from
mcpa (which is not possible for c̃1) and use the output of compare(c∗′

2 , c∗′′
2 ) (resp.

compare(c∗′
4 , c∗′′

4 )) to distinguish mcpa . This problem can be solved by performing
the other comparison (i.e., c̃1) beforehand and only if it returns true the other two
comparisons (i.e., c2, c4) are conducted. A timing-constant solution would be to
perform dummy comparisons for c2 and c4 in case the prior comparison failed.
Furthermore, for these comparisons it is not even necessary to perform a masked
comparison, since they are only ever done for valid c̃1 and in this setting mcpa is not
sensitive.
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2.4 Implementation

To evaluate the performance of the CCA2-conversion and our masking scheme, we
implemented the constructions on an ARM Cortex-M4F. Our evaluation platform
is an STM32F4 DISCOVERY board with 1 Mbyte of flash memory, 192 kbyte of
RAM, a floating-point unit (FPU), and a true random number generator (TRNG). In
order to keep the running time constant and independent, we implemented critical
components in assembly language. Furthermore, to prevent cache timing attacks we
disabled the cache of the on-board flash memory by setting the DCEN bit of the
FLASH_ACR register to zero.

We use SHAKE-128 as instantiation for all random oracles H , G, H ′, and
H ′′ and use a different initialization vector for each of them. As the hashing
plays a minor role in terms of performance, we selected the readable KECCAK

implementation by Saarinen [48] as basis for our implementation as it allowed us
to easily implement side-channel countermeasures. To achieve a constant running
time we decided to implement the binomial sampler from [3] with k = 8. To sample
the necessary randomness, we implemented a PRNG that is initialized with a 256-
bit seed. For encryption, we generate this secret seed from the on-board TRNG and
then use a PRNG to generate Gaussian noise. As we have to perform a re-encryption
during the decryption that must sample the exact same values, we cannot use the
TRNG for this purpose but have to initialize the PRNG with the same seed. We also
use SHAKE-128 as PRNG.

For the implementation of polynomial arithmetic we need a high-performance
and constant-time modular reduction to prevent remote timing attacks [40]. As a
consequence, the implementation of the NTT and especially the three-instruction
modular reduction from [20] is not suitable. It uses the DIV instruction, which has
a data-dependent variable execution time that can reach from 2 to 12 clock cycles.
Therefore, we implemented a Barrett reduction [6] using the FPU of the Cortex-
M4F that takes 6 clock cycles and is timing-independent. De Clercq et al. [20]
also present an optimized implementation of the NTT. They implement the NTT in
assembly and also proposed an optimized memory access scheme. Their idea is to
store two coefficients in one data word and being able to load/store both coefficients
with the same instruction. Alkim et al. implemented the NTT as well as reported
in [2]. By combining a Montgomery reduction with Barrett reduction, their NTT is
considerably faster than the one from [20] and most importantly also has a constant
execution time. We therefore embedded the NTT from [2] into our implementation.

A theoretically secure masking scheme can still show leakage in an actual
implementation due to unconsidered effects inside the microarchitecture of the
microcontroller. For instance, overriding a register that holds one share with the
content of another register storing the other share will inevitably leak information.
Similarly, one must avoid to load or store both shares from or to memory in
consecutive instructions (or even the same instruction, e.g., load multiple LDM).
Furthermore, carry bits can be a source of leakage. We carefully designed our
implementation to not suffer from these problems. For operations that can be
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performed on both shares independently (e.g., point-wise multiplication), this
is easily achieved by executing the operations on all coefficients of one share
first and only then do the operations for the coefficients of the other share. For
operations that require both shares (i.e., Decode) hand-crafted assembly code is
necessary.

2.5 Side-Channel Evaluation

Even though we provide proofs for most of our modules against one probe,
practical first-order side-channel security is not automatically implied by that.
Implementation errors can still negatively affect the resistance due to effects that are
not included in the model [5]. Therefore, to extensively evaluate the security of our
masked implementation, we performed basic side-channel experiments. Since our
aim is to show first-order resistance, we rely on the commonly used t-test leakage
detection methodology initially proposed in [16, 23]. We performed the test at first
and second order. For bivariate second-order evaluation, we relied on the optimal
centered product [41, 53] as the combination function.

We use a PicoScope 5203 with a sample rate of 125 MS/s to measure the
power consumption at our STM32F4 Discovery board. To increase the measurement
quality, we reduce the internal clock to 12 MHz and remove some capacitors from
the PCB. The communication with the board is done over USART as the on-
board USB interface causes additional noise in the power traces. Since the entirely
masked decryption requires an extremely high number of clock cycles, we cannot
easily perform a bivariate evaluation with our proposed method. Instead, we split
the practical evaluation into the modules similar to the theoretical evaluation of
Sect. 2.3.2. For first-order evaluation this is appropriate as noted in Sect. 2.3.2.
However, for the bivariate second-order test we do not cover the scenario of
two probes in different modules. Nevertheless, our goal is to show the existence
of second-order leakage to verify our measurement setup and we found this
for every module separately. For each module we took 100,000 measurements
and performed the aforementioned tests. To further speed up the second-order
evaluation, we adjusted the module to only process a small number of coeffi-
cients.

In our experiments, we perform the non-specific fixed vs. random t-test. To this
end, we take two types of measurements. One with fixed input and one with random
input. The t-statistic t is computed as

t = μF − μR
√

σ 2
F

nF
+ σ 2

R

nR

,
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where μF , σ 2
F , and nF (resp. μR , σ 2

R , and nR) denote the mean, variance, and
number of measurements set with fixed input (resp. random input). If the value
exceeds the threshold |t | > 4.5, the test has detected leakage. For more information,
we refer the interested reader to further literature related to this side-channel
evaluation methodology [51].

We measured the computation of the butterfly during the NTT for two coeffi-
cients, the addition of the two shares during the masked re-encryption as described
in Sect. 2.3.2 for one coefficient, the remasking and decoding as described in
Sect. 2.3.2 for four coefficients (that encode one bit), the masked χ -step of KECCAK

for five bytes, point-wise multiplication and addition for two coefficients, two
bits for the sampler, and 12 bytes for the comparison. To reduce the number of
measured sample points per trace, we split the decoding into one measurement of the
modulus transformation (Algorithm 1) and one measurement of the final operations
as described in Algorithm 2. Figure 2.4 depicts the results for each module. The
lower (resp. upper) curve shows the maximum absolute value of the first-order (resp.
second-order) test as a function of the total number of measurements considered in
the evaluation. It is noticeable that indeed no first-order leakage could be measured
up to 100,000 traces. There is also no obvious increase of the t-values. Thus, the
implementation showed first-order protection as expected. Additionally, the second-
order evaluation shows leakage early on for every module and displays an upward
trend with higher number of measurements. This is also expected given that we
implemented first-order masking.

2.6 Results and Comparison

We evaluate the performance of our implementation using Keil μVision V5.17
and use -O3 optimization for compiling. We took special care to prevent effects
that the compiler optimization itself could induce side-channel leakage, e.g., by
overwriting one shared value in a register with the second share. Cycle counts are
measured using the on-board cycle count register (DWT_CYCCNT). To measure the
dynamic memory consumption we used the callgraph feature of the Keil IDE. We
present the cycle counts of our implementation in Table 2.1. The CCA2-secured
encryption takes 4,176,684 cycles which translates to 25 ms when operating at a
clock frequency of 168 MHz. The key generation takes 16 ms at 168 MHz.

Applying the CCA2-conversion to the decryption causes a much higher overhead
due to the necessary re-encryption. In the unmasked case, it requires 27 times
more cycles and in the masked case 46 times more cycles. Thus, the masked
CCA2-decryption takes 25,334,493 cycles which is an overhead factor of 5.7
compared to the CCA2-secured decryption without masking. The overhead cost for
the masking of the CCA2-secured decryption is mainly due to the high cost of the
sampling. The sampling in turn heavily depends on the performance of the PRNG.
A suitable replacement for SHAKE-128 would therefore drastically improve the
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Fig. 2.4 Absolute maximum t-values for different modules of our masking scheme. The solid
blue line marks the first-order t-values and the dashed red line marks the second-order t-values.
(a) Butterfly. (b) Encryption. (c) Modulus transformation. (d) Final decoding operations. (e) Point-
wise multiplication and addition. (f) Comparison. (g) Sampling. (h) Hash function



44 T. Oder et al.

Table 2.1 Cycle counts of our implementation on an ARM Cortex-M4F

Cycle counts

Operation Unmasked Masked

Key generation (RLWE.CPA gen
NTT) 2,669,559 –

CCA2-secured encryption (RLWE.CCAenc
NTT) 4,176,684 –

CCA2-secured decryption (RLWE.CCAdec
NTT) 4,416,918 25,334,493

CPA-RLWE encryption (RLWE.CPA enc
NTT) 3,910,871 19,315,432

CPA-RLWE decryption (RLWE.CPA dec
NTT) 163,887 550,038

Shake-128 87,738 201,997

NTT 83,906 –

INTT 104,010 –

Uniform sampling (TRNG) 60,014 –

SampleNoisePoly (PRNG) 1,142,448 6,031,463

PRNG (64 bytes) 88,778 202,454

Cycle counts for sampling are given for a whole polynomial. Our parameters are n = 1024, q =
12,289, and k = 8

performance of the scheme. An insecure approach with an unmasked re-encryption
would require around 2 million cycles only. However, as noted in Sect. 2.3.2 such
an implementation would not provide sufficient protection against a side-channel
adversary in a chosen-ciphertext scenario.

2.6.1 Comparison

Notice that the masked implementation in [43] is a hardware implementation and
that [45] does not provide performance numbers. Thus we cannot directly compare
our results to the existing work and decided to re-implement the previous proposals
in combination with a CCA2-conversion to allow a fair comparison. Our results
are given in Table 2.2. This also demonstrates the individual overhead of all
schemes independent of the performance of the NTT. According to our findings, our
CCA2-secured decryption needs one million cycles less than the masked decoder
approach from [43] and 3.5 million cycles less than additively homomorphic
masking [45]. It is also worth mentioning that encoding one message bit into four
coefficients is much more complex when using the masked decoder approach as
we no longer have 42 = 16 possible combinations of values to match quadrants
but 42·4 = 256 combinations. Thus, for the evaluation of the masked decoding
approach, we decode each coefficient separately and use masked majority voting
to combine them. The additively homomorphic masking inherently increases the
failure probability and may thus impact parameter choices and the acceptable noise
levels.
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Table 2.2 Cycle counts and dynamic memory consumption of our CCA2-secured decryption

Masking scheme Cycle counts Dynamic memory

Our scheme 25,334,493 25,696 bytes

Masked decoder [43] 26,250,420 25,696 bytes

Additively homomorphic masking [45] 28,899,058 29,984 bytes

2.7 Conclusion

In this chapter we presented the advanced Boolean and arithmetic techniques for
masked decoding of cryptographic schemes in lattice-based encryption and KEMs.
Besides our achievement of a reduced decryption failure probability, we also applied
a CCA2-transform to the ring-LWE encryption scheme. This requires a masked
sampling of the error polynomials. The implementation of our construction revealed
that a side-channel and CCA2-secured implementation of ring-LWE comes with
a significant overhead. We identified a target of further optimization within the
masked implementation of the PRNG (SHAKE-128 in our case) for that further
acceleration would result in a significantly increased overall performance.
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