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Chapter 6
Breast Cancer Heterogeneity in Primary 
and Metastatic Disease
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Abstract Breast cancer encompasses a heterogeneous collection of neoplasms 
with diverse morphologies, molecular phenotypes, responses to therapy, probabili-
ties of relapse and overall survival. Traditional histopathological classification aims 
to categorise tumours into subgroups to inform clinical management decisions, but 
the diversity within these subgroups remains considerable. Application of massively 
parallel sequencing technologies in breast cancer research has revealed the true 
depth of variability in terms of the genetic, phenotypic, cellular and microenviron-
mental constitution of individual tumours, with the realisation that each tumour is 
exquisitely unique. This poses great challenges in predicting the development of 
drug resistance, and treating metastatic disease. Central to achieving fully person-
alised clinical management is translating new insights on breast cancer heterogene-
ity into the clinical setting, to evolve the taxonomy of breast cancer and improve 
risk stratification.
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6.1  Introduction

Complexity pervades breast tumours at every level – from (epi)genomic, 
 transcriptomic and proteomic landscapes, through to cellular composition and clin-
ical behaviour. This lack of compositional uniformity is referred to as heterogene-
ity. In breast cancer, this has been historically categorised as intertumoural 
heterogeneity (diversity between separate tumours) and intratumoural heterogene-
ity (diversity within a tumour). However, the distinction is becoming increasingly 
blurred as we understand more about the pathobiology of breast cancer progression. 
While a single cell acquires the somatic mutations sufficient to launch oncogenic 
transformation, the cells that eventually comprise clinically detectable deposits 
arise from clonal selection and expansion as a consequence of a range of different 
selection pressures, and this has important implications for diagnosis, treatment and 
drug resistance.

Molecular confirmation of breast cancer heterogeneity has been driven by 
unparalleled expansion of next generation sequencing technologies over the last 
decade, with advances in tumour profiling also evolving the traditional taxonomy. 
Categorising breast tumours into diagnostic and prognostic groups has always 
been the basis for clinical management, but the fully personalised model we are 
striving for will feature an unprecedented level of precision, matching each patient 
with the best possible treatments according to specific molecular alterations under-
pinning their disease. Navigating and rationalising the exponentially growing 
wealth of new molecular information remains a major challenge to clinical 
translation.

This chapter will consider the traditional histopathologic classification of breast 
cancer, broadly examine the molecular basis of genetic, cellular and microenviron-
ment heterogeneity and the ways in which new knowledge is being integrated to 
complement the existing taxonomy. Finally, we examine the impact of breast cancer 
heterogeneity on clinical management and translation of emerging research.

6.2  Current Histopathologic Classification of Breast Cancer

6.2.1  Histological Subtypes

Breast carcinoma encompasses a large group of tumours with different morphologi-
cal, phenotypic and molecular characteristics, and the current classification includes 
a spectrum of in situ (pre-invasive) to invasive disease. This chapter focuses on inva-
sive disease, where tumour cells breach the basement membrane and invade sur-
rounding tissue, although there is increasing recognition of heterogeneity within in 
situ carcinoma [1]. The World Health Organisation (WHO) maintains a diagnostic 
framework that provides practical information to guide tumour diagnosis and patient 
management (Table 6.1) [2, 3]. Invasive cancers are initially stratified according to 
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cellular and architectural growth patterns, into histological ‘special types’ with dis-
tinct morphology (25–30% of cases, including 5–15% lobular carcinomas; for 
examples see Fig. 6.1a, b). As a diagnosis of exclusion, tumours without discrimi-
nating morphological features are classified as invasive carcinoma of no special type 
(IC-NST; 40–75% of cases) [3]. Whilst this distinction appears straightforward, 

Table 6.1 WHO classification of breast carcinoma (2012)

Histological type Frequency

1 Invasive carcinoma of no special type (IC-NST)
Includes: pleomorphic carcinoma, carcinoma with osteoclast-like stromal 
giant cells, carcinoma with choriocarcinomatous features, carcinoma with 
melanotic features

40–75%

2 Invasive lobular carcinoma (ILC)
Includes: classic, solid, alveolar, pleomorphic, tubulolobular, mixed subtypes

5–15%

3 Tubular carcinoma 2%
4 Cribriform carcinoma 0.3–0.8% 

(up to 4%)
5 Mucinous carcinoma 2%
6 Carcinoma with medullary features <1%

Includes: medullary carcinoma, atypical medullary carcinoma, IC-NST with 
medullary features

7 Carcinoma with apocrine differentiation 4%
8 Carcinoma with signet ring cell differentiation <1%
9 Invasive micropapillary carcinoma 0.9–2%

10 Metaplastic carcinoma of no special type
Includes: low-grade adenosquamous carcinoma, fibromatosis-like 
metasplastic carcinoma, squamous cell carcinoma, spindle cell carcinoma, 
metasplastic carcinoma with mesenchymal differentiation (chondroid, 
osseuous, other types), mixed metaplastic carcinoma, myoepithelial 
carcinoma

0.2–5%

11 Carcinoma with neuroendocrine features
Includes: well differentiated neuroendocrine tumour, poorly differentiated 
neuroendocrine tumour (small cell carcinoma), carcinoma with 
neuroendocrine differentiation

<1%

12 Secretory carcinoma <0.15%
13 Invasive papillary carcinoma <1%
14 Acinic cell carcinoma <1%
15 Mucoepidermoid carinoma 0.3%
16 Polymorphous carcinoma <1%
17 Oncocytic carcinoma <1%
18 Lipid-rich carcinoma <1–1.6%
19 Glycogen rich clear cell carcinoma 1–3%
20 Sebaceous carcinoma <1%
21 Adenomyoepithelioma with carcinoma <1%
22 Adenoid cystic carcinoma <0.1%
23 Encapsulated papillary carcinoma <2%
24 Invasive solid papillary carcinoma <1%
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Fig. 6.1 (a) Breast cancer heterogeneity exemplified by histological subtypes. Haematoxylin and 
eosin-stained breast cancer tissues visualised by light microscopy. (b) Morphological variation 
within one histological type, invasive lobular carcinoma (ILC). FNA, fine needle aspiration cytol-
ogy. (c) Mixed histological subtypes: (i) Invasive carcinoma (no special type) mixed with invasive 
mucinous carcinoma; (ii) metaplastic carcinoma exhibiting marked variability in both epithelial 
and stromal compartments; (iii) intratumoural heterogeneity for HER2 shown by silver in situ 
hybridisation (SISH) – a nest of cells exhibits ERBB2 gene amplification (circled), while others 
remain diploid (arrows)
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many tumours comprise mixed histology (Fig.  6.1c)  – thresholds are used to 
 definitively categorise individual cases, though these are somewhat arbitrary. For 
example, a pure ‘special type’ diagnosis is applied if >90% of the tumour area com-
prises the special morphology, but in ‘mixed’ cases, separate areas within the same 
tumour exhibit both ‘non-special’ and ‘special’ morphology (10–49% [2]).

In some instances, tumours with distinct morphological features share underly-
ing genetic mutations [4]. Secretory carcinomas are associated with a t(12;15)
(p13;q25) translocation and the resulting ETV6-NTRK3 fusion gene [5]; and, like 
their counterpart in the salivary gland, adenoid cystic breast carcinomas consis-
tently harbour the t(6;9)(q22–23;p23–24) translocation, leading to MYB-NFIB gene 
fusion and over-expression of the MYB oncogene [6]. Genotype-phenotype correla-
tion is epitomised by E-cadherin, which is genomically ‘lost’ or dysregulated in 
lobular carcinomas, and tends to occur concomitantly with specific mutations in 
PTEN, TBX3 and FOXA1 [7, 8]. However, even subtypes with shared morphologi-
cal features and mutations exhibit substantial inter-tumoural diversity. For example, 
within lobular carcinoma, the largest group of special types, genomic and transcrip-
tomic analysis highlighted the existence of distinct prognostic subtypes [8]. Thus 
overall, histological subtyping alone provides imperfect prognostic information – 
its value comes from integration with other histopathologic information, namely 
grade, stage and biomarker status.

6.2.2  Prognostic and Predictive Subgroups

Histopathologic assessment routinely involves quantification of prognostic factors, 
which predict the natural history of disease irrespective of therapy, and predictive 
factors, which indicate the likely response to a specific treatment. The disease stage, 
histological grade and tumour expression of receptors for oestrogen, progesterone 
and human epidermal growth factor (ER, PR and HER2) are the cornerstones of 
current prognostic and predictive algorithms. The American Joint Committee on 
Cancer TNM (tumour/node/metastasis) staging system stratifies broadly based on 
the burden of the disease by measuring the tumour size, the number of lymph nodes 
involved, and the extent of distant metastatic disease; stage IV is the most advanced 
disease, while stage I is the least advanced.

Histological grade is a powerful prognostic indicator [9, 10] and correlates with 
morphology and molecular features [11]. It is calculated from the degree of nuclear 
pleomorphism, ‘tubule’ formation (resemblance to normal ducto-lobular gland 
structure) and the number of mitoses per ten high power microscope fields [12]. 
Grading reflects a collective morphological assessment of the biological character-
istics of a tumour and therefore encompasses intra-tumoural heterogeneity. It is 
highly reproducible, and remains a component of widely used prognostic algo-
rithms (e.g. Nottingham and Kalmar Prognostic Indices [13–15]), as well as predic-
tive algorithms used to guide the prescription of chemotherapy [16, 17]. Pathologists 
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have been describing heterogeneity for decades, but given that clinical behaviour is 
still diverse within these three broad categories, so there is much scope for grading 
to be complemented by molecular information.

Breast cancers are routinely analysed for ER, PR and HER2 using IHC-based 
assessment of protein expression levels and frequency. This information is both 
prognostic and predictive, reflecting critical growth factor signalling dependen-
cies that can be targeted for therapeutic benefit. PR is induced by oestrogen sig-
nalling (thus is a surrogate for ER activity), and adds value to the power of ER for 
predicting response to therapy [18, 19]. ER/PR-positive tumours tend to be lower 
grade and associated with better outcomes than ER/PR-negative cases, and are 
candidates for endocrine therapy (e.g. tamoxifen, fulvestrant, aromatase inhibi-
tors). The gene encoding HER2 (ERBB2) is amplified and/or over-expressed in 
15–20% of invasive breast cancers, and correlates with poor prognosis but is also 
a marker of sensitivity to HER2-targeted therapy (standardly trastuzumab and per-
tuzumab with chemotherapy) [20–24]. Tumours that are negative for ER/PR and 
HER2 are currently classified as triple negative breast cancers (TNBC), where 
there are intensive research efforts ongoing to substratify molecularly distinct 
subgroups that could be suitable for new therapeutic approaches targeting anti-
tumour host immunity, DNA repair and/or specific signalling pathways [25] (see 
Sect. 6.4.2).

Importantly, the expression of ER/PR and HER2 is not always uniform, implying 
that not all tumour cells are dependent on their growth factor ligands. ER/
PR-positivity is currently defined by a diagnostic threshold of only 1% [26]. Testing 
to define HER2 status is based on either protein over-expression as demonstrated by 
IHC and/or testing for gene amplification. Criteria for gene amplification are based 
on ERBB2 copy number or ERBB2:CEP17 ratio, determined using in situ hybridisa-
tion (ISH). If the results are equivocal, orthogonal testing is recommended [27]. 
Whilst conservative cut-offs ensure patients are eligible for treatments that may 
confer marginal benefit, heterogeneity undoubtedly impacts the clinical response. 
For example, HER2 heterogeneity is related to low levels of gene amplification, 
which is more common in ER/PR-positive tumours and associated with shorter 
disease-free survival [28–30] (Fig. 6.1c).

6.3  Molecular Basis for Heterogeneity in Breast Cancer

The molecular basis for heterogeneity can be divided into tumour cell-intrinsic fac-
tors, such as genomic alterations, and their impact on pre-existing differentiation 
programs in the cell-of-origin; as well as extrinsic factors in the tumour microenvi-
ronment. However this division is purely for academic purposes  – in reality the 
tumour and nontumour components are admixed and constantly engaged in feed-
back signalling [31, 32].
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6.3.1  Genetic Heterogeneity

Tumourigenesis occurs by inappropriate expansion of genetically altered clones 
(groups of isogenic tumour cells derived from a common ancestor; Fig. 6.2, inset) 
via branching evolution, where the acquisition of a new genetic alteration in a mul-
tipotent cell capable of self-renewal represents an evolutionary branching point, and 
the initiation of a new ‘subclone’ (Fig.  6.2). Mutations that confer a selective 

Fig. 6.2 The branching phylogenetic tree analogy of clonal progression, where major branch- 
points represent the acquisition of each new driver, and distance from the ground is proportional to 
divergence from the original founding clone. Coloured bunches of leaves represent major sub-
clones with the same driver combinations, with individual leaves as minor subclones harbouring 
additional genomic alterations and phenotypic differences (see Fig. 6.3). Evidence suggests that 
clonal evolution occurs intermittently, with essential fitness advantages acquired at the earliest 
stages of tumourigenesis in short mutational bursts (often copy-number alterations), followed by 
stable clonal expansions that form the bulk of the tumour. Selective clonal ‘sweeps’ may also occur 
in response to new extrinsic selection pressure (e.g. systemic agents that prune particular sub-
clones). Circulating tumour cell seeds are shed into the blood and lymphatics – those with the 
requisite capabilities may colonise suitable soil in distant organs, where the branching evolution 
process continues. (inset) Classic clonal expansion, where genetic diversity arises through iterative 
rounds of somatic mutation (coloured dots) and cell division (arrows), and heritable alterations are 
passed to daughter cells. Curved arrow = self-renewal of a cancer stem cell at the top of the clonal 
hierarchy

6 Breast Cancer Heterogeneity in Primary and Metastatic Disease



82

advantage to a clone in its particular microenvironment are referred to as ‘drivers’, 
while those that do not immediately confer a selective advantage are ‘passengers’. 
They can be distinguished using algorithms that calculate the rates of non- 
synonymous vs synonymous mutation in each gene, non-random clustering of 
mutations and/or gene amplification combined with over-expression, which imply 
positive evolutionary selection [33–35].

Historically, heterogeneity has been considered a byproduct of classical 
Darwinian evolution, where de novo mutations conferring a fitness advantage result 
in rapid expansion and positive selection of the new clone at the expense of others, 
resulting in its mutation profile dominating a whole region of the tumour (a so- 
called ‘clonal sweep’) [36]. This model implies that tumour cells sustain mutations 
at a fairly constant tempo, but recent studies suggest that tumourigenesis can be 
driven by just a few major expansion events followed by long periods of relative 
evolutionary stasis, challenging gradualistic clonal expansion dogma [37–42]. By 
sequencing multiple single cells from a tumour, several groups have now found 
evidence for so-called ‘big-bang’ dynamics in breast cancer, where critical copy- 
number alterations are thought to occur as early ‘bursts’, superimposed with cumu-
lative point mutations that contribute to the genetic diversity observed in tumour 
biopsies [41, 43]. These detailed studies have given weight to the more progressive 
‘punctuated’ model of evolution – a hybrid of the big-bang and classic clonal expan-
sion paradigms where evolutionary tempos are sporadic.

Large international consortia (The Cancer Genome Atlas (TCGA [44]) and the 
International Cancer Genome Consortium (ICGC [45, 46])) have made significant 
inroads characterising the genomic diversity of breast cancer using next-generation 
sequencing of RNA and DNA from human clinical samples (Table 6.2). An initial 
survey of 100 tumours identified at least 40 different genes harbouring driver muta-
tions, but these were present in over 70 different combinations [46], with each 
occurring in less than 10% of tumours [47, 48]. Due to the low overall frequencies 
of driver mutations, larger cohorts have been required to confirm recurrent altera-
tions. More recently, a landmark whole genome sequencing study using the largest 
cohort to date (n = 560), identified 93 protein-coding genes as probable drivers, 
including five with no previously described link to breast cancer (MED23, FOXP1, 
MLLT4, XBP1, ZFP36L1) [49]. Whilst almost all the tumours harboured at least one 
driver, no two tumours out of 560 shared the same combination. Some of the more 
frequent changes identified include ERRB2, CCND1, AKT1 (amplified and over- 
expressed), PIK3CA, GATA3 (amplified and overexpressed and/or activating muta-
tion), TP53, PTEN and CDH1 (copy-number loss or inactivating mutation leading 
to functional insufficiency) [44, 46, 48, 50, 51]. It is thought that breast cancer 
driver mutations occurring with a frequency of greater than 2% are now known, but 
it is expected that additional, low frequency drivers are still likely to be found in 
minor subgroups (e.g. male breast cancer, histological special types) [52]. The par-
ticular combination of driver alterations, together with thousands of passenger 
mutations and structural rearrangements make each breast cancer unique [49, 53, 
54]. In general, high levels of genomic heterogeneity tend to be associated with 
worse clinical outcomes [55].
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Table 6.2 Landmark next generation sequencing studies in breast cancer

Study Year
Cohort 
size Approach Key findings

Shah [156] 2009 1 WGS, RNASeq First to apply WGS to a matched pair of 
primary and metastasis
5/32 somatic non-synonymous coding 
mtuations identified in the metastasis were 
detected in the primary lobular breast tumour 
diagnosed 9 years earlier, 6/32 were at low 
frequency in the primary

Curtis, 
METABRIC 
[50]

2012 1992 CNA, GEX Integration of CNA and GEX data derived 10 
molecular subgroups called ‘integrative 
clusters’ with distinct clinical outcomes
Groups include a high-risk, ER-positive 
11q13/14 subgroup and a favourable prognosis 
subgroup devoid of CNAs
Identified PPP2R2A, MTAP and MAP2K4 as 
putative cancer genes

Shah [51] 2012 104 aCGH, WES, 
WGS, 
RNASeq,

Basal-like tumours show greater variation in 
mutations than non-basal TNBC
TP53, PIK3CA and PTEN somatic mutations 
are clonally fominant but in some cases are 
inconsistent with founder status
Mutations in cell shape, cytoskeleton and 
motitilty genes tend to occur later in tumour 
progression

TCGA [44] 2012 466 CNA, GEX, 
methylation, 
microRNAseq, 
RPPA, WES

Only TP53, PIK3CA and PTEN somatic 
mutations occurred in >10% of samples
Enrichment of GATA3, PIK3CA and MAP3K1 
mtuations in luminal tumours
Identified two novel protein expression defined 
subgroups related to microenvironment
Molecular commonalities between basal-like 
tumours and serous ovarian cancers

Stephens 
[46]

2012 100 CNA, WES Correlations between number of mutations, age 
of cancer diagnosis and histological grade
Somatic driver point mutations and/or copy 
number changes were identified in over 40 
cancer genes in 73 combinations
Maximum of 6 mutated driver genes in a single 
tumour; 28 tumours showed only 1 driver 
mutation
TP53, PIK3CA, ERRB2, MYC, FGFR1/
ZNF703, GATA3 and CCND1 were mutated in 
>10% of cancers (58% of the driver mutations); 
remaining 33 mutated cancer genes contributed 
to the other 42% of driving genetic events
9 new candidate driver genes: AKT2, ARIDIB, 
CASP8, CDKN1B, MAP3K1, MAP3K13, 
NCOR1, SMARCD1, and TBX3.

(continued)

6 Breast Cancer Heterogeneity in Primary and Metastatic Disease



84

Table 6.2 (continued)

Study Year
Cohort 
size Approach Key findings

Banerji [48] 2012 103 + 22 WES (103),
WGS (22)

Confirmed recurrent mutations PIK3CA, TP53, 
AKT1, GATA3, and MAP3K1 driver mutations
Novel mutation in CBFB and deletions in 
RUNX1
Recurrent MAGI3-AKT3 fusion enriched in 
TNBC; leads to activation of AKT kinase

Ellis [172] 2012 77 WES (31),
WGS (46)

Biopsies of ER+ tumours from two neo-
adjuvant aromatase inhibitor trials were 
assessed to elucidate biomarkers of response
Distinct phenotypes in ER-positive tumours are 
driven by specific patterns of somatic 
alteration: GATA3 – luminal A, low grade, low 
prolif.; TP53 – non- luminal A, high grade, high 
prolif
GATA3 mutations correlated with a treatment-
related suppression of proliferation

Wang [41] 2014 2 cases CNA, nucSeq, 
WGS, WES

Developed nucSeq approach for single cell 
sequencing
Population and single nuclei sequencing 
approach in an ER positive tumour and a 
TNBC
No 2 single tumour cells are genetically 
identical
Large numbers of subclonal and de novo 
mutations

Yates [36] 2015 303 
tumours, 
50 
patients

Targeted 
sequencing 
WGS

12 treatment-naive tumours with spatially 
heterogeneous subclones; all tumours showed 
at least one clonal driver
4 multi-focal cancers with 2–5 foci; individual 
foci clonally related but had private mutations 
suggestive of clonal sweeps
Created ‘index of heterogeneity’, which 
correlated with age at diagnosis and larger 
tumour size; no correlation with histology, 
grade, ER status, intra-tumoral lymphocytes or 
Ki67
No specific temporal pattern observed – 
mutations in common breast cancer genes 
(PIK3CA, TP53, PTEN, BRACA2 and MYC) 
occurred early in some tumours and late in 
others

Ciriello [8] 2015 817 CNA, 
methylation, 
RPPA, WES

E-cadherin loss and mutations in PTEN, TBX3 
and FOXA1 in ILC; conversely luminal A 
IC-NST had mutations in GATA3
Identified 3 mRNA derived prognostic 
subgroups of ILC: immune-related, 
proliferation and reactive-like
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Table 6.2 (continued)

Study Year
Cohort 
size Approach Key findings

Nik-Zainal 
[49]

2016 560 WGS; 
mutational 
signature 
analysis

Defined 93 protein-coding genes with probable 
driver mutations (31 dominant, 60 recessive, 2 
uncertain)
5 new cancer genes described (MED23, 
FOXP1, MLLT4, XBP1, ZFP36L1)
At least 1 driver mutation in >95% of cancers
10 most frequently mutated (62% of drivers): 
TP53, PIK3CA, MYC, CCND1, PTEN, ERBB2, 
ZNF703/FGFR1, GATA3, RB1, MAP3KI
Characterised mutational signatures: 12 base 
substitutions and 6 rearrangement signatures
Specific mutational signatures associated with 
BRCA1/2 alterations

Smid [60] 2016 266 RNASeq, 
meta-analysis 
of WGS

In luminal tumours, mutation burden correlates 
directly with adverse outcome
Signatures 3 and 13 associated with immune 
response, increased TILs and better outcomes
Specific substitutions more effective in eliciting 
an immune response than sheer number

Periera [55] 2016 2433 CNA, GEX, 
targeted 
sequencing, 
WES

Assessed intra-tumorual heterogeneity using 
mutant-allel fractions
40 mutation-driver genes (6/40 oncogenes; 
8/40 tumour suppressor genes); most common 
PIK3CA (40.1%) and TP53 (35.4%)
Five genes with coding mutations in >10% 
samples: MUC16 (16%), AHNAK2 (16.2%), 
SYNE1 (12%), KMT2C (11.4%), GATA3 
(11.1%)
PIK3CA in lower grade ER+ tumours 
(associated with reduced survival in 3 
subgroups); TP53 in higher grade tumours, and 
only associated with worse outcome in ER+ 
tumours
Difference in mutation frequency based on 
HER status: TP53 ER-/HER2+ (67.5%) vs 
ER+/HER2+ (42.6%)
42.5% of tumours had a mutation in the Akt 
pathway (PIKC3A, AKT1, PIK3R1, PTEN, 
FOXO3)
Mutations associated with longer (ER+ 
MAP3K1, GATA3) vs shorter (SMAD4, 
USP9X) survival

aCGH array comparative genomic hybridisation, CNA copy number aberration, usually SNP- 
based, GEX gene expression profiling, array-based, METABRIC Molecular Taxonomy of Breast 
Cancer International Consortium, RNASeq RNA sequencing, RPPA reverse phase protein assays, 
SNP single nucleotide polymorphism, TCGA The Cancer Genome Atlas, WES whole exome 
sequencing, WGS whole genome sequencing
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Focusing on driver mutations has helped to understand the hallmark processes 
underpinning breast cancer development and define possible drug targets, but 
there is also increasing interest in passenger mutations – not only in terms of their 
influence on progression in the context of exposure to extrinsic selection pres-
sures, but as a genomic record of the mutational processes that occurred through-
out the development of each tumour. Mutational process signatures are dynamic, 
varying spatially and temporally depending on both exogenous and endogenous 
factors (e.g. carcinogen exposure, age-related change or DNA repair defects) 
[53]. Complex mathematical analysis has identified 21 substitution signatures 
with different clinicopathologic associations and underlying aetiologies. Like 
individual mutations, signatures are clonal and coexist at variable frequencies 
within cancer deposits of each patient. Some are common to different cancers 
(e.g. age-related), while others are tumour type-specific (e.g. C·G ➔ T·A transi-
tions are a feature of signature 7, associated with UV-induced DNA damage in 
cutaneous cancers) [56, 57].

Breast cancer genomes are characterised by 12 substitution signatures, with six 
consistently detected in at least 20% of cases [49, 53, 57, 58]. Amongst these, sig-
natures 1 and 5 (which are similar and often classified together as 1B) are associated 
with age, while signatures 2 and 13 are associated with APOBEC cytidine deami-
nases, which are normally involved in antiviral immunity and RNA editing, but can 
also act on long stretches of single-stranded DNA thought to arise during abnormal 
DNA replication [49]. Signatures 3 and 8 are associated with BRCA1/BRCA2 defi-
ciency, defective homologous recombination repair, and short (<10 kb) deletions/
tandem duplications [49]. Of the rarer signatures (<20% cases), 6, 20, and 26 are 
associated with mismatch repair deficiency, while 17, 18, and 30 are of unknown 
aetiology. The potential implications and clinical applications of mutational signa-
ture composition are currently under investigation [58]. For example, they may be 
useful for characterising cancers with unknown primary origin at diagnosis [59]. 
Also, signatures 3 and 13 are associated with increased lymphocytic infiltrate and 
better clinical outcomes, raising the possibility that free DNA and/or mutant pep-
tides associated with this pattern are more immunogenic compared with other muta-
tional processes [60] (see Sect. 6.3.3). Finally, there are possibilities for developing 
signature-based predictive models, such the ‘HRDetect’ algorithm that quantifies 
somatic BRCA1/2 deficiency, a candidate biomarker of response to polyADP-ribose 
polymerase (PARP) inhibitors [61, 62].

Sequencing the genomes and transcriptomes of single breast tumour cells is now 
offering additional insights into heterogeneity. For example, single-cell genome 
analysis has been applied to understand the dynamics of clonal selection across 
cohorts of patient-derived tumour xenografts [63]. Also, in an elegant and clinically 
relevant application of RNA-sequencing, Lee and colleagues compared breast can-
cer cell subpopulations exhibiting resistance to the microtubule poison paclitaxel in 
vitro [64]. Residual cells that persisted after treatment expressed variants involved a 
variety of cellular processes logically connected to drug resistance, including micro-
tubule stabilization and stress. But critically, individual cells expressed different 
combinations of variant transcripts, suggesting that transcriptional heterogeneity 
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can ultimately generate equivalent phenotypes. The expression profiles of  individual 
cells were not apparent in a pooled analysis of the bulk population, or even as few 
as five cells. Thus single-cell sequencing has the potential to illuminate aspects of 
plasticity and clonal evolution that would not be apparent from analysis of tissue 
homogenates.

6.3.2  Cellular Heterogeneity

Gene expression studies comparing breast tumours with normal breast tissue iden-
tified groups of tumours exhibiting transcriptomic similarity to particular mam-
mary epithelial compartments. For example, ‘luminal-like’ tumours are most 
similar to the specialised luminal epithelia that line ducts and lobules of the breast 
(Sect. 6.4.1), while the expression profile of ‘basal-like’ tumours resembles lumi-
nal progenitor cells (Sect. 6.4.2) [65]. Functional evidence supporting the idea that 
global tumour gene expression profiles could reflect the cell type of origin came 
from transgenic mouse experiments, where oncogenic mutations were introduced 
into specific compartments of the mouse mammary gland, resulting in formation of 
tumours that phenocopied metaplastic or BRCA1-mutant breast cancer [66, 67]. 
Thus, heterogeneity reflects the consequences of superimposing the mutational 
landscape over pre-programmed phenotypic determinants. The cells comprising a 
tumour exhibit restricted versions of the normal mammary epithelial lineage hier-
archy, depending on which cell type sustained the founding oncogenic hits, and 
how the unique spectrum of alterations impacted lineage differentiation program-
ming in its daughters (for example, de-differentiation and phenotypic plasticity). 
Diversification is also achieved through phenotypic drift (stochastic heterogeneity 
[31, 68]; Fig.  6.3a). The significance of this is highlighted by the association 
between stem-like phenotypes and poor outcomes in breast and other cancers [69–
71], though it is worth considering that primitive, stem-like cells may be associated 
with metastasis and treatment resistance simply because they have more potential 
for generating clonal complexity (i.e. better substrates for natural selection) [31], 
not necessarily because they possess equivalent normal stem cell functions like 
efficient drug efflux and slow cell cycling.

6.3.3  Microenvironment Heterogeneity

Non-tumour elements contributing to breast cancer heterogeneity include soluble 
and extracellular matrix proteins, fibroblasts, endothelia, adipocytes, macro-
phages and other leukocytes [72] (Fig. 6.3b). A large effort has been directed at 
investigating clinical implications of the breast cancer microenvironment [73–
75]. One area in which there have been key recent developments is in understand-
ing how vascular perfusion dynamics impacts tumour progression and treatment 

6 Breast Cancer Heterogeneity in Primary and Metastatic Disease



88

efficacy. Ongoing proliferation in solid tumours fuels cycles of hypoxia and neo-
angiogenesis, and this in turn creates a chaotic, dysfunctional microvascular bed, 
with (paradoxically) areas of sluggish blood flow in an otherwise hypervascular 
environment [76–78]. It is thought that inefficient perfusion directly reduce the 
delivery of systemic therapeutics, but that drug efficacy is also reduced indirectly 
in poorly oxygenated tissues. This is because radiotherapy and some chemothera-
peutics act by damaging tumour DNA, but breaks are more readily repairable in 
hypoxic conditions, allowing cells to escape fatal chromosome aberrations, and 
instead, erroneously repair DNA to increase genetic diversity [79]. Hypoxia is 
also associated with mesenchymal/stem-cell phenotypes, inflammation, fibrosis, 
poor drug uptake and immune suppression [80]. This knowledge has driven 
attempts to improve efficacy and reduce the likelihood of relapse using combina-
tion therapies that increase oxygenation by ‘normalising’ the vascular bed. 

Fig. 6.3 Heterogeneity represents the collective consequences of superimposing the mutational 
landscape over pre-existing phenotypic programs and interaction with the microenvironment. (a) 
Breast tumour cells exhibit restricted versions of the normal mammary epithelial lineage hierarchy, 
depending on which cell type sustained the founding oncogenic hits, and how the unique spectrum 
of alterations impacted lineage differentiation programming in its daughters. The differentiation 
states (different colours) of stem-like (black nuclei), committed progenitor and daughter cells con-
tribute to phenotypic diversity (deterministic heterogeneity). Phenotypic flux due to cell-specific 
biochemical processes (patterning in daughter cells) also contributes to phenotypic diversity (sto-
chastic heterogeneity). Daughter cells may acquire stem-cell activity through genetic alteration 
(dashed arrow) or de-differentiation (blue arrow), acquiring stem cell activity and initiating new 
clones. (b) Stromal elements influence tumour cell phenotypes and clonal selection, and are in turn 
altered by their interactions with tumour cells, contributing to intratumoural heterogeneity. The 
figure shows various stromal cell types: cancer-associated adipocytes and fibroblasts (CAAs/
CAFs), tumour-infiltrating lymphocytes (TILs), tumour-associated macrophages (TAMs) and cir-
culating tumour cells (CTCs) liberated into surrounding blood vessels. Ongoing tumour cell pro-
liferation fuels pro-tumourigenic cycles of local hypoxia and neoangiogenesis, resulting in chaotic 
microvascular networks that cannot adequately deliver systemic therapy
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Ironically, this strategy uses agents that target vascular endothelial growth factor 
and its receptor (VEGF/VEGFR), originally intended to starve tumours of nutri-
ents and oxygen (e.g. bevacizumab).

Tumour-infiltrating lymphocytes (TILs) have also been intensively studied in 
the last 5 years, with evidence rapidly accumulating to support a role in clinical 
management. A fundamental function of host immunity is to detect and eradicate 
abnormalities arising from neoplastic transformation (immune-surveillance). 
Considering that breast tumours are diagnosed once they are detectable by mam-
mography and/or palpation, they are already successfully evading elimination at 
diagnosis, but chemotherapy and radiotherapy can produce neoantigens that effec-
tively kick-start the immune response, and new therapies that reactivate anticancer 
immune responses are currently being assessed in clinical trials (e.g. immune-
checkpoint inhibitors, personalised cancer vaccines and adoptive T-cell therapy 
[81, 82]). TILs are most frequent in HER2+ and TN disease, where the overall 
degree of infiltrate is associated with better outcome, even amongst TNBC patients 
with residual disease following neoadjuvant chemotherapy, an otherwise poor 
prognostic group [83].

The breast cancer immune microenvironment is a complex mixture of different 
functional subsets – mostly T-cells, with smaller proportions of B-cells, dendritic 
cells, neutrophils, macrophages and natural killer (NK)-cells; with different effects 
on tumour progression. For example, NK and CD4+ Th1-cells are generally asso-
ciated with favourable outcomes, whilst myeloid-derived suppressor cells (MDSC) 
and gamma-delta regulatory T-cells (γδ-Treg) suppress anti-tumour immunity and 
are associated with poor response to chemotherapy [84–87]. Ultimately, the par-
ticular constitution of lymphocytic infiltrate (ratios of different TIL subsets and 
effectors/modifiers they produce) reaches equilibrium with the tumour compart-
ment, and shapes the microenvironment along a spectrum from an immuno-stimu-
latory, anti- tumour milieu, to a pro-tumourigenic environment geared toward 
wound-healing. Despite this complexity, TILs are routinely enumerated en masse 
by examination of haematoxylin and eosin (H&E)-stained tissue sections. Special 
IHC stains are used occasionally, but at this stage this is purely to help discrimi-
nate intratumoural TILs from tumour cells, rather than identify different func-
tional subpopulations [88]. Apart from the fact that the full clinical implications of 
functional TILs heterogeneity are still being elucidated, there are challenges with 
standardisation in the diagnostic laboratory, as TILs reside mostly in the stromal 
compartment, which varies with tumour architecture, and enumeration on two-
dimensional tissue sections is difficult because they are heterogeneously distrib-
uted in three dimensions. But even without universal standardisation, and 
somewhat crude histopathologic assessment of overall infiltrate density, there is 
already strong evidence from multiple prospective clinical trials supporting the 
prognostic and predictive significance of TILs in HER2+ and TN disease [81]. 
Thus, improvements in the precision of TIL-based biomarker development and 
companion therapies will likely play favourably into personalised clinical man-
agement models.
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6.4  Molecular Classification of Breast Cancer

Molecular profiling has shifted the ways that breast cancer development and 
 heterogeneity are considered. Transcriptomic studies began more than 15 years ago, 
with the segregation of 38 invasive breast carcinomas by unsupervised hierarchical 
clustering of gene expression profiles [89, 90]. These ‘intrinsic subtypes’ have since 
been extensively confirmed in the field as robust biological entities with distinct 
mutation profiles and clinical outcomes [70, 91–93] (Table 6.3). In some instances, 
underlying expression profiles provide a molecular explanation for well-known 
clinical or morphological features. For example, the clinical behaviour of ER-positive 
tumours depends largely on histologic grade, and in the intrinsic subtype taxonomy 
they segregate into luminal-A and -B groups, distinguished by expression of prolif-
eration gene networks [89, 90, 93–95].

Subsequent technological advances have increased the breadth and resolution of 
the transcriptomic taxonomy (more tumours, more extensive coverage and more 
accurate RNA quantification), providing a deeper understanding of the underlying 
biology and potential clinical implications. For example, a subgroup of ER-negative 
IC-NST that frequently exhibits medullary and metaplastic features is enriched with 
a ‘claudin-low’ gene cluster [71, 96]. Another is the ‘molecular apocrine’ (mApo) 
group, which is largely triple-negative, yet paradoxically expresses ER-responsive, 
luminal genes due to expression of the androgen receptor (AR; Table 6.3) [97, 98]. In 
smaller cohorts with less statistical power, mApo tumours would be classed as basal-
like or HER2-enriched [94, 97, 99]. The Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) took expression profile analysis to a different 
level by integrating expression with copy-number data to stratify 2000 breast tumours 
on the basis of cancer driver profiles [50]. The ten ‘integrative subgroups’ overlap 
variably with intrinsic subtypes and are associated with distinct survival trends.

6.4.1  Heterogeneity in Luminal/ER+ Breast Cancer

The largest subgroup of breast cancers is defined by expression of ER in at least 1% 
of tumour cells, a conservative cut-off that qualifies around 70% of breast cancer 
patients for endocrine therapy; though ER+ disease still exhibits marked clinical 
variability, particularly with respect to late recurrences [50, 100]. While endocrine 
therapy significantly increases relapse-free survival overall, almost a quarter of 
patients still relapse within 10 years of diagnosis, with some evidence that muta-
tions in the gene itself (ESR1), or ER signalling regulators (e.g. SMRT) could con-
tribute [101–103]. In terms of predictive molecular features, luminal-B tumours 
tend to respond less well to endocrine therapy but better to chemotherapy than 
luminal-A tumours, with the exception of ‘atypical’ luminal-A cases, which har-
bour more TP53 mutations and copy-number aberrations [101, 104]. Deep molecu-
lar analyses have also identified unique differences between luminal-A ILC and 
IC-NST, with ILCs featuring loss of CDH1, AKT signalling activation and FOXA1 
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mutations, while IC-NST showed intact cellular adhesion and GATA3 mutations [8]. 
Analysing ILCs as a separate group stratified them into reactive-like, immune- 
related and proliferative subgroups [8]. It is also worth highlighting that there are 
two different ligand-activated oestrogen receptors, encoded by separate genes: ERα 
(ESR1) and ERβ (ESR2) [105]. ERα is the dominant isoform and the best predictor 
of response to hormone therapy, but a possible role for ERβ in regulating the immune 
microenvironment is also now emerging [106], and may provide further insights 
into luminal breast cancer heterogeneity in the future.

6.4.2  Heterogeneity in Triple-Negative Breast Cancer

TNBC is arguably the most heterogeneous of the major breast cancer subgroups. It 
is more frequent in individuals with inherited mutations in BRCA1 and other DNA 
repair genes and carries a poor prognosis overall, although some patients have com-
plete, durable responses to treatment. TNBCs are usually highly proliferative and of 
higher histological grade, though there are low-grade variants with a more pro-
tracted natural history (namely, adenoid cystic and secretory carcinomas) [70, 90, 
91, 107–115]. A defining characteristic of TNBC is its paradoxically impressive 
initial response to neoadjuvant chemotherapy, yet poor 5-year survival rate. The 
discrepancy is due to a chemotherapy-resistant subgroup found to have residual 
disease at the time of breast surgery, which is associated with brain and liver metas-
tasis [116]. TNBC patients who do not relapse within 3  years have a prognosis 
comparable to ER+ disease [109].

Despite high overall mutation loads, the most common variants are in TP53 
(around 80% of cases, with more frequent nonsense and frameshift mutations than 
ER/HER2+ disease) and PI3K in around 10% of cases [117]. On the other hand, 
TNBCs harbour characteristic chromosomal alterations, categorised as ‘simple’, 
‘amplifier/firestorm’ or ‘complex/sawtooth’ depending on the complexity of causal 
rearrangements [118]. Integrating CNA with expression data in basal-like TNBC 
revealed that alterations tend to converge on two major oncogenic signalling path-
ways: EGFR-ras-MEK and PI3K-mTOR.  Common alterations include loss of 
PTEN and INPP4B and amplification of CDK1, MYC and AKT3. Interestingly, this 
profile confers more similarity to serous ovarian cancer than other breast cancers, 
providing a genomic link between two malignancies associated with germline 
BRCA1 mutation [117, 119]. mTOR/MEK inhibitors are promising as combination 
agents with neoadjuvant chemotherapy, however they are associated with signifi-
cant toxicity and dosing schedules are still being optimised [120].

Together, these studies have produced critical information on somatic events 
underpinning TNBC development, however the tumour microenvironment receives 
little weight in genome-focused approaches. The percentage of ‘contaminating’ 
non-tumour cell types is considered a limitation in genomics, but given that immu-
nogenicity is a strong determinant of clinical outcome in TNBC, with TILs at the 
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forefront of personalised therapy for this patient group, there is a valid argument for 
stratifying TNBCs in a way that encompasses the complexity in tissue homoge-
nates, rather than filtering it out. Two landmark studies attempted to classify TNBC 
on the basis of unsupervised clustering of gene expression data from large tumour 
cohorts [121, 122]. They identified four to six major clusters associated with distinct 
functional gene networks, genomic alterations and clinical outcomes. Independent 
analyses incorporating laser capture-micro-dissected tumour samples, patient- 
derived xenografts and cell lines (which lack human non-tumour elements) subse-
quently showed that tumour cellularity is a critical determinant of clustering [123, 
124], and the field is not yet united on a robust classifier that mathematically 
accounts for this. But overall, the data suggest that basal-like TNBCs (70–80% of 
cases) can be further segregated according to the degree of active immune infiltrate 
and tumour-specific immunity, while non-basal TNBCs (20–30%) can be defined 
by whether they engage ER-independent hormone signalling or exhibit mesenchy-
mal and stem-like features (previously identified as ‘claudin-low’ as an extension of 
the intrinsic subtype classifier) [71, 121, 124]. Interest is also gathering around epi-
genetic dysregulation, and whether differentially methylated regions of the TNBC 
genome could underpin some of this biological variability [125].

6.5  Clinical Implications of Breast Cancer Heterogeneity

6.5.1  Molecular Diagnostic Tools

As molecular subtypes have emerged, the clinical corollary has been to develop risk 
stratification signatures. However, many offer no significant benefit beyond current 
practice standards. In order to be useful, risk stratification signatures must add value 
to existing histopathological data, accurately classify individual cases (so-called 
‘single sample predictor’) and be readily implemented in the diagnostic laboratory. 
From a clinical perspective, the most important contribution of molecular subtyping 
has been the recognition of the luminal A/B subdivision in ER-positive disease, 
which has informed the development of MammaPrint® [126–130], Oncotype DX® 
[131–133], EndoPredict® [134] and Prosigna® [94, 131–133]. These tests quanti-
tatively assign the risk of recurrence in ER-positive, node-negative patients, and 
have implications for sparing a proportion of low-stage patients from receiving che-
motherapy. The ‘Nottingham Prognostic Index Plus’ is another good example of 
early transitioning to precision medicine – it attempts to blend traditional parame-
ters with a broader IHC panel to better define molecular subtypes and improve 
stratification [135]. The topic of molecular signatures in breast cancer prognostica-
tion has been recently reviewed [136].

Precision medicine is predicated on employing genomics and gene expression 
profiling to personally tailor a treatment regimen. Theoretically, this is optimal as it 
allows targeting of appropriate pathways while minimising treatment with agents 
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that may have limited or no benefit. Yet, identifying a targetable mutation does not 
guarantee that the matching treatment will be effective (for example, one study 
reported that only 36% of somatic variants were actually expressed [51]). With the 
exception of ERRB2, no single genomic alteration is a clinically useful predictor of 
therapeutic efficacy [137]. This was exemplified recently in the PALOMA-1 trial 
where CDK4/6 amplification was not a reliable predictor of response to a CDK4/6 
inhibitor [138]. Predictive tools that incorporate multiple alterations or that comple-
ment existing algorithms such as the Nottingham Prognostic Index, are the ideal 
way to move forward.

It is clear that molecular profiling has a role in breast cancer management, but 
incorporating the technology and knowledge into routine clinical practice is a major 
challenge. In the public health setting, there are considerable logistic and economic 
barriers related to standardization, accreditation and reliable service delivery. The 
requirements will include infrastructure that is cost-effective and can adapt to evolv-
ing technologies; dynamic, curated databases of clinically actionable variants/sig-
natures; major changes to pathology and oncology training programs, and possibly 
an entirely new precision oncology specialization stream that incorporates genetic 
counselling, as there are important ethical issues around synthesizing and commu-
nicating complex diagnostic results to the clinician and patient in a meaningful way. 
Finally, how should mutations which are of as-yet-unknown clinical significance be 
dealt with? Sequencing of close to 1000 breast cancers has identified 128 genes with 
putative targetable alterations [139]. For the vast majority, genotype-drug efficacy 
relationships are still being elucidated in preclinical and clinical studies, and the 
cost-effectiveness and overall benefit of matching treatments are unknown [140].

A tumour biopsy is a static representation of a small fraction of a larger mass 
taken at a single point in time. Given that diagnostic tests used today are still rela-
tively low-resolution with conservative thresholds, tumour under-sampling is not 
currently a major consideration in clinical practice. However given that precision 
medicine aims to select rational combinations of targeted agents according to an 
individual tumour’s profile, and yet drug resistant, metastatic clones may represent 
a minor component of the tumour, the risk of under-sampling will be magnified in a 
precision oncology context [141, 142]. The potential consequences of basing clini-
cal management on small tumour biopsies has been exemplified by spatial and tem-
poral heterogeneity in amplification and over-expression of HER2 during disease 
progression [30]. In the case of HER2+ breast cancer, trastuzumab therapy does not 
preclude later development of metastatic disease; in fact distant recurrence is com-
mon and can be HER2-negative [70, 143].

6.5.2  Heterogeneity in Metastatic Breast Cancer

Historically, metastasis was viewed as a complication of end-stage disease with the 
assumption that distant cancer deposits were virtually the same as the primary 
tumour from which they arose (linear progression) [144]. However, we have known 
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for some time that the expression of clinically relevant biomarkers can differ 
between primary and metastatic tumours from the same patient (e.g. Fig. 6.4; [145–
152]), and American Society of Clinical Oncology (ASCO) practice guidelines now 
recommend direct biopsy of accessible metastases for repeat HER2/ER/PR testing 
[153]. More recently, sequencing studies have provided compelling evidence for 
parallel evolution in regional metastases [154–158]. By applying whole genome 
sequencing to a large cohort of breast and matching metastatic tumours, Yates and 
colleagues found that at the time of initial diagnosis, primary tumour genomes are 
suitable proxies for subclinical metastatic deposits (very encouraging in terms of 
guiding adjuvant therapy for early breast cancer), but resistant deposits undergo 
clonal expansion and further diversification, acquiring additional driver alterations 
before becoming clinically detectable [158] (Fig. 6.2). These findings suggest that 
early detection of therapeutic resistance will be crucial for optimising therapy, and 
that re-biopsy will be critical for the success of molecular-targeted therapies in the 
metastatic setting.

Single-cell genomics can be used to track genomic and transcriptional changes 
in individual cells, and track clonal evolution over time. There has also been great 
enthusiasm around applying this technology to circulating tumour cells (CTCs), 
shed from solid tumours into the circulation or lymphatics and detectable as a 
source of genetic material [159–161]. CTCs predict survival, disease-related mor-
tality, response to treatment and early disease recurrence [162–164], and it has 
been argued that the ‘liquid biopsy’ could represent the entire tumour genome, and 
provide a means for sensitively monitoring response to treatment over time [165]. 

Fig. 6.4 Metastatic breast cancer heterogeneity exemplified by variable expression of progester-
one receptor (PR). Approximately 1% of tumour cells in the primary breast tumour are positive for 
PR, whereas the liver metastasis is negative, and the dural lesion is virually 100% positive. IHC, 
immunohistochemistry
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However, there are major logistic barriers to realising this goal, not least of which 
are the low and variable concentrations of CTCs in peripheral blood (1–10 CTC 
per 10  mL [166]). On the other hand, multiple proof-of-principle studies have 
 underscored the utility of circulating tumour (ct)DNA as an early indicator of ther-
apeutic resistance and the presence of residual disease [165, 167, 168], and sug-
gested value as a collective representation of the tumour genome [169], helping to 
overcome issues related to tissue sampling bias [170]. As ctDNA profiling is 
 incorporated into more clinical trials, significant developments are expected in the 
forseeable future [171].

6.6  Concluding Remarks

New knowledge about the extent of heterogeneity in breast cancer and how this 
relates to clonal evolution is changing the way we think about research, diagnosis 
and treatment. From a clinical standpoint, the most dire complication of breast can-
cer heterogeneity is therapeutic resistance. To tackle this, the field has taken a three- 
pronged approach: (1) reduce the likelihood of relapse in the first place by using 
more effective agents (and likewise, use agents more effectively) for early breast 
cancer; (2) detect therapeutic resistance early so that treatment regimens can be 
optimised; and (3) expand the arsenal of second- and subsequent- line agents so that 
metastatic disease can be stabilised for as long as possible (though a future goal will 
be to treat metastatic disease with curative intent).

Achieving these expectations will require continued investment in research and 
development to identify new therapeutic targets; including druggable alterations, 
synthetic lethal vulnerabilities, and innovative strategies that combine therapies for 
maximal efficacy and/or to simultaneously target minor subclones that cause resis-
tance. In parallel, we will need to implement high-resolution companion molecular 
diagnostic assays that are scalable, adaptive and cost-effective in the public health 
setting. Implicit in this will be algorithms that accurately predict risk profiles and 
rank suitable therapeutic regimens according to each tumour’s molecular profile, 
potentially highlighting clinical trial suitability. Clinical training programs will 
need to evolve to meet precision oncology demands, as oncologists of the future 
will be expected to synthesise complex diagnostic information, assess optimal ther-
apeutic strategies and deliver complicated diagnostic results and recommendations 
to their patients. Finally, we need public investment and innovation in clinical trials, 
including measures to drastically increase access to patients outside major metro-
politan centres. Apart from improving equity, conducting trials on a broader scale 
will be necessary to determine dosing regimens, timing and drug interactions, and 
to achieve adequate recruitment as the numbers of new targets and agents coming 
online increases.
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