
Chapter 6
Flow of Control Using If Statements

6.1 Introduction

In this chapter we are going to look at the if statement in Python. This statement is
used to control the flow of execution within a program based on some condition.
These conditions represent some choice point that will be evaluated to True or
False. To perform this evaluation it is common to use a comparison operator (for
example to check to see if the temperature is greater than some threshold). In many
cases these comparisons need to take into account several values and in these
situations logical operators can be used to combine two or more comparison
expressions together.

This chapter first introduces comparison and logical operators before discussing
the if statement itself.

6.2 Comparison Operators

Before exploring if statements we need to discuss comparison operators. These
are operators that return Boolean values. They are key to the conditional elements
of flow of control statements such as if.

A comparison operator is an operator that performs some form of test and returns
True of False.

These are operators that we use in everyday life all the time. For example, do I
have enough money to buy lunch, or is this shoe in my size etc.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_6


In Python there are a range of comparison operators represented by typically one
or two characters. These are:

Operator Description Example

== Tests if two values are equal 3 == 3

!= Tests that two values are not equal to each other 2 != 3

< Tests to see if the left-hand value is less than the right-hand value 2 < 3

> Tests if the left-hand value is greater than the right-hand value 3 > 2

<= Tests if the left-hand value is less than or equal to the right-hand value 3 <= 4

>= Tests if the left-hand value is greater than or equal to the right-hand value 5 >= 4

6.3 Logical Operators

In addition to comparison operators, Python also has logical operators.
Logical operators can be used to combined Boolean expressions together.

Typically, they are used with comparison operators to create more complex con-
ditions. Again, we use these every day for example we might consider whether we
can afford an ice cream and whether we will be having our dinner soon etc.

There are three logical operators in Python these are listed below:

Operator Description Example

and Returns True if both left and right are true (3 < 4) and (5 > 4)

or Returns two if either the left or the right is truce (3 < 4) or (3 > 5)

not Returns true if the value being tested is False not 3 < 2

6.4 The If Statement

An if statement is used as a form of conditional programming; something you
probably do every day in the real world. That is, you need to decide whether you
are going to have tea or coffee or to decide if you will have toast or a muffin for
breakfast etc. In each of these cases you are making a choice, usually based on
some information such as I had coffee yesterday, so I will have tea today.

In Python such choices are represented programmatically by the if condition
statement.

In this construct if some condition is true some action is performed, optionally if
it is not true some other action may be performed instead.

66 6 Flow of Control Using If Statements



6.4.1 Working with an If Statement

In its most basic from, the if statement is

if <condition-evaluating-to-boolean>:
statement

Note that the condition must evaluate to True or False (or an equivalent
value—see later in this chapter). If the condition is True then we will execute the
indented statement.

Note that indentation, this is very important in Python; indeed, layout of the code
is very, very important in Python. Indentation is used to determine how one piece of
code should be associated with another piece of the code.

Let us look at a simple example,

num = int(input('Enter a number: '))
if num < 0:
    print(num, 'is negative')

In this example, the user has input a number; if it is less than zero a message
noting this will be printed to the user. If the number is positive; then nothing will be
output.

For example,

Enter a number: -1
-1  is negative

If we wish to execute multiple statements when our condition is True we can
indent several lines; in fact all lines indented to the same level after the if
statement will automatically be part of the if statement. For example;

num = int(input('Enter another number: '))
if num > 0:
    print(num, 'is positive')
    print(num, 'squared is ', num * num)

print('Bye')

If we now run this program and input 2 then we will see

Enter another number: 2
2  is positive
2  squared is  4
Bye

6.4 The If Statement 67



However, if we enter the value −1 then we get

Enter another number: -1
Bye

Note that neither of the indented lines was executed.
This is because the two indented lines are associated with the if statement and

will only be executed if the Boolean condition evaluates (returns) True. However,
the statement print('Bye') is not part of the if statement; it is merely the next
statement to executed after the if statement (and its associated print() state-
ments) have finished.

6.4.2 Else in an If Statement

We can also define an else part of an if statement; this is an optional element that
can be run if the conditional part of the if statement returns False. For example:

num = int(input('Enter yet another number: '))
if num < 0:
    print('Its negative')
else:
    print('Its not negative')

Now when this code is executed, if the number entered is less than zero then the
first print() statement will be run otherwise (else) the second print() state-
ment will be run. However, we are guaranteed that at least one (and at most one) of
the print() statements will execute.

For example, in run 1 if we enter the value 1:

Enter yet another number: 1
Its not negative

And in run 2 if we enter the value −1:

Enter yet another number: -1
Its negative

6.4.3 The Use of elif

In some cases there may be several conditions you want to test, with each condition
being tested if the previous one failed. This else-if scenario is supported in Python
by the elif element of an if statement.

68 6 Flow of Control Using If Statements



The elif element of an if statement follows the if part and comes before any
(optional) else part. It has the format:

elif <condition-evaluating-to-boolean>:
statement

For example

savings = float(input("Enter how much you have in savings: "))
if savings == 0:
    print("Sorry no savings")
elif savings < 500:
    print('Well done')
elif savings < 1000:
    print('Thats a tidy sum')
elif savings < 10000:
    print('Welcome Sir!')
else:
    print('Thank you')

If we run this:

Enter how much you have in savings: 500
Thats a tidy sum

Here we can see that the first if condition failed (as savings is not equal to 0).
However, the next elif also must have returned False as savings were greater
than 500. In fact it was the second elif statement that returned True and thus the
associated print('Thats a tidy sum') statement was executed. Having
executed this statement the if statement then terminated (the remaining elif and
else parts were ignored).

6.5 Nesting If Statements

It is possible to nest one if statement inside another. This term nesting indicates
that one if statement is located within part of the another if statement and can be
used to refine the conditional behaviour of the program.

An example is given below. Note that it allows some behaviour to be performed
before and after the nested if statement is executed/run. Also note that indentation is
key here as it is how Python works out whether the if statements are nested or not.

6.4 The If Statement 69



snowing = True
temp = -1
if temp < 0:
    print('It is freezing')
    if snowing:
        print('Put on boots')
    print('Time for Hot Chocolate')
print('Bye')

In this example, if the temperature if less than Zero then we will enter the if
block of code. If it is not less than zero we will skip the whole if statement and
jump to the print('Bye') statement which is after both If statements.

In this case the temperature is set to −1 and so we will enter the If statement. We
will then print out the 'It is freezing' string. At this point another if statement is
nested within the first if statement. A check will now be made to see if it is
snowing. Notice that snowing is already a Boolean value and so will be either
True or False and illustrates that a Boolean value on its own can be used here.

As it is snowing, we will print out 'Put on boots'.
However, the statement printing out 'Time for Hot Chocolate' is not part of the

nested if. It is part of the outer if (this is where indentation is important). If you
wanted it to only be printed out if it was snowing then it must be indented to the
same level as the first statement in the nested if block, for example:

snowing = True
temp = -1
if temp < 0:
    print('It is freezing')
    if snowing:
        print('Put on boots')
        print('Time for Hot Chocolate')
print('Bye')

This now changes the inner (or nested) if to have two print statements
associated with it.

This may seem subtle, but it is key to how Python uses layout to link together
individual statements.

6.6 If Expressions

An if expression is a short hand form of an if statement that returns a value. In
fact, the difference between an expression and a statement in a programming lan-
guage is just that; expressions return a value; statements do not.

70 6 Flow of Control Using If Statements



It is quite common to want to assign a specific value to a variable dependent on
some condition. For example, if we wish to decide if someone is a teenager or not
then we might check to see if they are over 12 and under 20. We could write this as:

age = 15
status = None
if (age > 12) and age < 20:
    status = 'teenager'
else:
    status = 'not teenager'
print(status)
If we run this, we get the string 'teenager' printed out.
However, this is quite long and it may not be obvious that the real intent of this

code was to assign an appropriate value to status.
An alternative is an if expression. The format of an if expression is

<result1> if <condition-is-met> else <result2>

That is the result returned from the if expression is the first value unless the
condition fails in which case the result returned will be the value after the else. It
may seem confusing at first, but it becomes easier when you see an example.

For example, using the if expression we can perform a test to determine the value
to assign to status and return it as the result of the if expression. For example:

status = ('teenager' if age > 12 and age < 20 else 'not 
teenager')
print(status)

Again, the result printed out is 'teenager' however now the code is much more
concise, and it is clear that the purpose of the test is to determine the result to assign
to status.

6.7 A Note on True and False

Python is actually quite flexible when it comes to what actually is used to represent
True and False, in fact the following rules apply

• 0, '' (empty strings), None equate to False
• Non zero, non empty strings, any object equate to True.

However, we would recommend sticking to just True and False as it is often
a cleaner and safer approach.

6.6 If Expressions 71



6.8 Hints

One thing to be very careful of in Python is layout.
Unlike language such as Java and C# the layout of your program is part of your

program. It determines how statements are associated together and how flow of
control elements such as if statements effect which statements are executed.

Also, be careful with the if statement and its use of the ':' character. This
character is key in separating out the conditional part of the if statement from the
statements that will be executed depending upon whether the condition is True or
False.

6.9 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
Boolean Operations.

• https://docs.python.org/3/library/stdtypes.html#comparisons Comparison
operators.

• https://docs.python.org/3/tutorial/controlflow.html the online Python flow of
control tutorial.

6.10 Exercises

There are three different exercises in this section, you can select which you are
interested in or do all three.

6.10.1 Check Input Is Positive or Negative

The aim of this exercise is to write a small program to test if an integer is positive or
negative.

Your program should:

1. Prompt the user to input a number (use the input() function). You can assume
that the input will be some sort of number.

2. Convert the string into an integer using the int() function.
3. Now check whether the integer is a positive number or a negative number.
4. You could also add a test to see if the number is Zero.

72 6 Flow of Control Using If Statements

https://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
https://docs.python.org/3/library/stdtypes.html#comparisons
https://docs.python.org/3/tutorial/controlflow.html


6.10.2 Test if a Number Is Odd or Even

The exercises requires you to write a program to take input from the user and
determine if the number is odd or even. Again you can assume that the user will
enter a valid integer number.

Print out a message to the user to let them know the result.
To test if a number is even you can use

(num % 2) == 0

Which will return True if the number is even (note the brackets are optional but
make it easier to read).

6.10.3 Kilometres to Miles Converter

In this exercise you should return to the kilometres to miles converter you wrote in
the last chapter.

We will add several new tests to your program:

1. Modify your program such that it verify that the user has entered a positive
distance (i.e. they cannot enter a negative number).

2. Now modify your program to verify that the input is a number; if it is not a
number then do nothing; otherwise convert the distance to miles.

To check to see if a string contains only digits use the method isnumeric()
for example '42'.isnumeric(); which returns True if the string only con-
tains numbers. Note this method only works for positive integers; but this is suf-
ficient for this example.

6.10 Exercises 73


	6 Flow of Control Using If Statements
	6.1 Introduction
	6.2 Comparison Operators
	6.3 Logical Operators
	6.4 The If Statement
	6.4.1 Working with an If Statement
	6.4.2 Else in an If Statement
	6.4.3 The Use of elif

	6.5 Nesting If Statements
	6.6 If Expressions
	6.7 A Note on True and False
	6.8 Hints
	6.9 Online Resources
	6.10 Exercises
	6.10.1 Check Input Is Positive or Negative
	6.10.2 Test if a Number Is Odd or Even
	6.10.3 Kilometres to Miles Converter





