
Chapter 5
Numbers, Booleans and None

5.1 Introduction

In this chapter we will explore the different ways that numbers can be represented
by the built-in types in Python. We will also introduce the Boolean type used to
represent True and False. As part of this discussion we will also look at both
numeric and assignment operators in Python. We will conclude by introducing the
special value known as None.

5.2 Types of Numbers

There are three types used to represent numbers in Python; these are integers (or
integral) types, floating point numbers and complex numbers.

This begs the question why? Why have different ways of representing numbers;
after all humans can easily work with the number 4 and the number 4.0 and don’t
need completely different approaches to writing them (apart from the '.' of course).

This actually comes down to efficiency in terms of both the amount of memory
needed to represent a number and the amount of processing power needed to work
with that number. In essence integers are simpler to work with and can take up less
memory than real numbers. Integers are whole numbers that do not need to have a
fractional element. When two integers are added, multiplied or subtracted they will
always generate another integer number.

In Python real numbers are represented as floating point numbers (or floats).
These can contain a fractional part (the bit after the decimal point). Computers can
best work with integers (actually of course only really 1s and 0s). They therefore
need a way to represent a floating point or real number. Typically this involves
representing the digits before and after the decimal point.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_5

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_5

The term floating point is derived from the fact that there is no fixed number of
digits before or after the decimal point; that is, the decimal point can float.

Operations on floating point numbers such as addition, subtract, multiplication
etc. will generate new real numbers which must also be represented. It is also much
harder to ensure that the results are correct as potentially very small and very large
fractional parts may be involved. Indeed, most floating-point numbers are actually
represented as approximations. This means that one of the challenges in handling
floating-point numbers is in ensuring that the approximations lead to reasonable
results. If this is not done appropriately, small discrepancies in the approximations
can snowball to the point where the final results become meaningless.

As a result, most computer programming languages treat integers such as 4 as
being different from real numbers such as 4.000000004.

Complex numbers are an extension of real numbers in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary numbers are real
multiples of the imaginary unit (the square root of −1), where the imaginary part is
often written in mathematics using an 'i' while in engineering it is often written
using a 'j'.

Python has built-in support for complex numbers, which are written using the
engineering notation; that is the imaginary part is written with a j suffix, e.g. 3 + 1j.

5.3 Integers

All integer values, no matter how big or small are represented by the integral (or int)
type in Python 3. For example:

x = 1
print(x)
print(type(x))
x =
1001
print(x)
print(type(x))

If this code is run then the output will show that both numbers are of type int:

1
<class 'int'>
1001
<class 'int'>

This makes it very easy to work with integer numbers in Python. Unlike some
programming languages such as C# and Java have different integer types depending
on the size of the number, small numbers having to be converted into larger types in
some situations.

52 5 Numbers, Booleans and None

5.3.1 Converting to Ints

It is possible to convert another type into an integer using the int() function. For
example, if we want to convert a string into an int (assuming the string contains a
integer number) then we can do this using the int() function. For example

total = int('100')

This can be useful when used with the input() function.
The input() function always returns a string. If we want to ask the user to input

an integer number, then we will need to convert the string returned from the
input() function into anint.We can do this by wrapping the call to theinput()
function in a call to the int() function, for example:

age = int(input('Please enter your age:'))
print(type(age))
print(age)

Running this gives:

Please enter your age: 21
<class 'int'>
21

The int() function can also be used to convert a floating point number into an
int, for example:

i = int(1.0)

5.4 Floating Point Numbers

Real numbers, or floating point numbers, are represented in Python using the IEEE
754 double-precision binary floating-point number format; for the most part you do
not need to know this but it is something you can look up and read about if you
wish.

The type used to represent a floating point number is called float.
Python represents floating point numbers using a decimal point to separate the

whole part from the fractional part of the number, for example:

exchange_rate = 1.83
print(exchange_rate)
print(type(exchange_rate))

5.3 Integers 53

This produces output indicating that we are storing the number 1.83 as a floating
point number:

1.83
<class 'float'>

5.4.1 Converting to Floats

As with integers it is possible to convert other types such as an int or a string into a
float. This is done using the float() function:

int_value = 1
string_value = '1.5'
float_value = float(int_value)
print('int value as a float:', float_value)
print(type(float_value))
float_value = float(string_value)
print('string value as a float:', float_value)
print(type(float_value))

The output from this code snippet is:

int value as a float: 1.0
<class 'float'>
string value as a float: 1.5
<class 'float'>

5.4.2 Converting an Input String into a Floating Point
Number

As we have seen the input() function returns a string; what happens if we want
the user to input a floating point (or real) number? As we have seen above, a string
can be converted into a floating point number using the float() function and
therefore we can use this approach to convert an input from the user into a float:

exchange_rate = float(input("Please enter the exchange rate to
use: "))
print(exchange_rate)
print(type(exchange_rate))

Using this we can input the string 1.83 and convert it to a floating-point number:

Please enter the exchange rate to use: 1.83
1.83
<class 'float'>

54 5 Numbers, Booleans and None

5.5 Complex Numbers

Complex numbers are Pythons third type of built-in numeric type. A complex
number is defined by a real part and an imaginary part and has the form
a + bi (where i is the imaginary part and a and b are real numbers):

The real part of the number (a) is the real number that is being added to the pure
imaginary number.

The imaginary part of the number, or b, is the real number coefficient of the pure
imaginary number.

The letter 'j' is used in Python to represent the imaginary part of the number, for
example:

c1 = 1j
c2 = 2j
print('c1:', c1, ', c2:', c2)
print(type(c1))
print(c1.real)
print(c1.imag)

We can run this code and the output will be:

c1: 1j , c2: 2j
<class 'complex'>
0.0
1.0

As you can see the type of the number is 'complex' and when the number is
printed directly it is done so by printing both the real and imaginary parts together.

Don’t worry if this is confusing; it is unlikely that you will need to use complex
numbers unless you are doing some very specific coding, for example within a
scientific field.

5.6 Boolean Values

Python supports another type called Boolean; a Boolean type can only be one of
True or False (and nothing else). Note that these values are True (with a capital
T) and False (with a capital F); true and false in Python are not the same thing and
have no meaning on their own.

5.5 Complex Numbers 55

The equivalent of the int or float class for Booleans is bool.
The following example illustrates storing the two Boolean values into a variable

all_ok:

all_ok = True
print(all_ok)
all_ok = False
print(all_ok)
print(type(all_ok))

The output of this is

True
False
<class 'bool'>

The Boolean type is actually a sub type of integer (but with only the values
True and False) so it is easy to translate between the two, using the functions
int() and bool() to convert from Booleans to Integers and vice versa. For
example:

print(int(True))
print(int(False))
print(bool(1))
print(bool(0))

Which produces

1
0
True
False

You can also convert strings into Booleans as long as the strings contain either
True or False (and nothing else). For example:

status = bool(input('OK to proceed: '))
print(status)
print(type(status))

When we run this

OK to proceed: True
True
<class 'bool'>

56 5 Numbers, Booleans and None

5.7 Arithmetic Operators

Arithmetic operators are used to perform some form of mathematical operation such
as addition, subtraction, multiplication and division etc. In Python they are repre-
sented by one or two characters. The following table summarises the Python
arithmetic operators:

Operator Description Example

+ Add the left and right values together 1 + 2

− Subtract the right value from the left value 3 − 2

* Multiple the left and right values 3 * 4

/ Divide the left value by the right value 12/3

// Integer division (ignore any remainder) 12//3

% Modulus (aka the remainder operator)—only return any remainder 13%3

** Exponent (or power of) operator—with the left value raised to the
power of the right

3 ** 4

5.7.1 Integer Operations

Two integers can be added together using +, for example 10 + 5. In turn two
integers can be subtracted (10 − 5) and multiplied (10 * 4). Operations such as +,
− and * between integers always produce integer results.

This is illustrated below:

home = 10
away = 15
print(home + away)
print(type(home + away))

print(10 * 4)
print(type(10*4))

goals_for = 10
goals_against = 7
print(goals_for - goals_against)
print(type(goals_for - goals_against))

The output from this is

25
<class 'int'>
40
<class 'int'>
3
<class 'int'>

5.7 Arithmetic Operators 57

However, you may notice that we have missed out division with respect to
integers, why is this? It is because it depends on which division operator you use as
to what the returned type actually is.

For example, if we divide the integer 100 by 20 then the result you might
reasonably expect to produce might be 5; but it is not, it is actually 5.0:

print(100 / 20)
print(type(100 / 20))

The output is

5.0
<class 'float'>

And as you can see from this the type of the result is float (that is a floating
point number). So why is this the case?

The answer is that division does not know whether the two integers involved
divide into one another exactly or not (i.e. is there a remainder). It therefore defaults
to producing a floating point (or real) number which can have a fractional part. This
is of course necessary in some situations, for example if we divide 3 by 2:

res1 = 3/2
print(res1)
print(type(res1))

In this case 3 cannot be exactly divided by 2, we might say that 2 goes into 3
once with a remainder. This is what is shown by Python:

1.5
<class 'float'>

The result is that 2 goes into 3, 1.5 times with the type of the result being a
float.

If you are only interested in the number of times 2 does go into 3 and are happy
to ignore the fractional part then there is an alternative version of the divide operator
//. This operator is referred to as the integer division operator:

res1 = 3//2
print(res1)
print(type(res1))

which produces

1
<class 'int'>

But what if you are only interested in the remainder part of a division, the integer
division operator has lost that? Well in that case you can use the modulus operation
('%'). This operator returns the remainder of a division operation: for example:

58 5 Numbers, Booleans and None

print('Modulus division 4 % 2:', 4 % 2)
print('Modulus division 3 % 2:', 3 % 2)

Which produces:

Modulus division 4 % 2: 0
Modulus division 3 % 2: 1

A final integer operator we will look at is the power operator that can be used to
raise an integer by a given power, for example 5 to the power of 3. The power
operator is '**', this is illustrated below:

a = 5
b = 3
print(a ** b)

Which generates the number 125.

5.7.2 Negative Number Integer Division

It is also worth just exploring what happens in integer and true division when
negative numbers are involved. For example,

print('True division 3/2:', 3 / 2)
print('True division 3//2:', -3 / 2)
print('Integer division 3//2:', 3 // 2)
print('Integer division 3//2:', -3 // 2)

The output from this is:

True division 3/2: 1.5
True division 3//2: -1.5
Integer division 3//2: 1
Integer division 3//2: -2

The first three of these might be exactly what you expect given our earlier
discussion; however, the output of the last example may seem a bit surprising, why
does 3//2 generate 1 but −3//2 generates −2?

The answer is that Python always rounds the result of integer division towards
minus infinity (which is the smallest negative number possible). This means it pulls
the result of the integer division to the smallest possible number, 1 is smaller than
1.5 but −2 is smaller than −1.5.

5.7 Arithmetic Operators 59

5.7.3 Floating Point Number Operators

We also have the multiple, subtract, add and divide operations available for floating
point numbers. All of these operators produce new floating point numbers:

print(2.3 + 1.5)
print(1.5 / 2.3)
print(1.5 * 2.3)
print(2.3 - 1.5)
print(1.5 - 2.3)

These statements produce the output given below:

3.8
0.6521739130434783
3.4499999999999997
0.7999999999999998
-0.7999999999999998

5.7.4 Integers and Floating Point Operations

Any operation that involves both integers and floating point numbers will always
produce a floating point number. That is, if one of the sides of an operation such as
add, subtract, divide or multiple is a floating point number then the result will be a
floating point number. For example, given the integer 3 and the floating point
number 0.1, if we multiple them together then we get a floating point number:

i = 3 * 0.1
print(i)

Executing this we get

0.30000000000000004

Which may or may not have been what you expected (you might have expected
0.3); however this highlights the comment at the start of this chapter relating to
floating point (or real) numbers being represented as an approximation within a
computer system. If this was part of a larger calculation (such as the calculation of
the amount of interest to be paid on a very large loan over a 10 year period) then the
end result might well be out by a significant amount.

It is possible to overcome this issue using one of Pythons modules (or libraries).
For example, the decimal module provides the Decimal class that will appro-
priately handle multiplying 3 and 0.1.

60 5 Numbers, Booleans and None

5.7.5 Complex Number Operators

Of course you can use operators such as multiply, add, subtract and divide with
complex numbers. For example:

c1 = 1j
c2 = 2j
c3 = c1 * c2
print(c3)

We can run this code and the output will be:

(-2+0j)

You can also convert another number or a string into a complex number using
the complex()function. For example:

complex(1) # generates (1+0j)

In addition the math module provides mathematical functions for complex
numbers.

5.8 Assignment Operators

In Chap. 3 we briefly introduced the assignment operator ('=') which was used to
assign a value to a variable. There are in fact several different assignment operators
that could be used with numeric values.

These assignment operators are actually referred to as compound operators as
they combine together a numeric operation (such as add) with the assignment
operator. For example, the += compound operator is a combination of the add
operator and the = operator such that

x = 0
x += 1 # has the same behaviour as x = x + 1

Some developers like to use these compound operators as they are more concise
to write and can be interpreted more efficiently by the Python interpreter.

The following table provides a list of the available compound operators

5.7 Arithmetic Operators 61

Operator Description Example Equivalent

+= Add the value to the left-hand variable x += 2 x = x + 2

−= Subtract the value from the left-hand variable x −= 2 x = x – 2

*= Multiple the left-hand variable by the value x *= 2 x = x * 2

/= Divide the variable value by the right-hand value x /= 2 x = x/2

//= Use integer division to divide the variable’s value by
the right-hand value

x //= 2 x = x//2

%= Use the modulus (remainder) operator to apply the
right-hand value to the variable

x %= 2 x = x % 2

**= Apply the power of operator to raise the variable’s
value by the value supplied

x **= 3 x = x **
3

5.9 None Value

Python has a special type, the NoneType, with a single value, None.
This is used to represent null values or nothingness.
It is not the same as False, or an empty string or 0; it is a non-value. It can be

used when you need to create a variable but don’t have an initial value for it. For
example:

winner = None

You can then test for the presence of None using 'is' and 'is not', for
example:

print(winner is None)

This will print out True if and only if the variable winner is currently set to
None.

Alternatively you can also write:

print(winner is not None)

Which will print out True only if the value of winner is not None.
Several example using the value None and the 'is' and is not' operators are given

below:

winner = None
print('winner:', winner)
print('winner is None:', winner is None)
print('winner is not None:', winner is not None)
print(type(winner))
print('Set winner to True')
winner = True
print('winner:', winner)
print('winner is None:', winner is None)
print('winner is not None:', winner is not None)
print(type(winner))

62 5 Numbers, Booleans and None

The output of this code snippet is:

winner: None
winner is None: True
winner is not None: False
<class 'NoneType'>
Set winner to True
winner: True
winner is None: False
winner is not None: True
<class 'bool'>

5.10 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
Numeric Types.

• https://docs.python.org/3/library/stdtypes.html#truth-value-testing Boolean val-
ues and boolean testing.

• https://docs.python.org/3/library/decimal.html which provides information on
the Python decimal module.

• https://docs.python.org/3/library/cmath.html which discusses mathematical
functions for complex numbers.

If you are interested in how floating point numbers are represented then a good
starting points are:

• https://en.wikipedia.org/wiki/Double-precision_floating-point_format which
provides an overview of floating point representation.

• https://en.wikipedia.org/wiki/IEEE_754 which is the Wikipedia page on the
IEEE 754 Double-precision floating-point number format.

5.11 Exercises

The aim of the exercises in this chapter is to explore the numeric types we have
been looking at.

5.9 None Value 63

https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
https://docs.python.org/3/library/stdtypes.html#truth-value-testing
https://docs.python.org/3/library/decimal.html
https://docs.python.org/3/library/cmath.html
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/IEEE_754

5.11.1 General Exercise

Try to explore the different number types available in Python.
You should try out the different numeric operators available and mix up the

numbers being used, for example, 1 and well as 1.0 etc.
Check to see the results you get are what you expect.

5.11.2 Convert Kilometres to Miles

The aim of this exercise is to write a program to convert a distance in Kilometres
into a distance in miles.

1. Take input from the user for a given distance in Kilometres. This can be done
using the input() function.

2. Convert the value returned by the input() function from a string into an
integer using the int() function.

3. Now convert this value into miles—this can be done by dividing the kilometres
by 0.6214

4. Print out a message telling the user what the kilometres are in miles.

64 5 Numbers, Booleans and None

	5 Numbers, Booleans and None
	5.1 Introduction
	5.2 Types of Numbers
	5.3 Integers
	5.3.1 Converting to Ints

	5.4 Floating Point Numbers
	5.4.1 Converting to Floats
	5.4.2 Converting an Input String into a Floating Point Number

	5.5 Complex Numbers
	5.6 Boolean Values
	5.7 Arithmetic Operators
	5.7.1 Integer Operations
	5.7.2 Negative Number Integer Division
	5.7.3 Floating Point Number Operators
	5.7.4 Integers and Floating Point Operations
	5.7.5 Complex Number Operators

	5.8 Assignment Operators
	5.9 None Value
	5.10 Online Resources
	5.11 Exercises
	5.11.1 General Exercise
	5.11.2 Convert Kilometres to Miles

