
Chapter 18
Python Classes

18.1 Introduction

In Python everything is an object and as such is an example of a type or class of
things. For example, integers are an example of the int class, real numbers are
examples of the float class etc. This is illustrated below for a number of different
types within Python:

This prints out a list of classes that define what it is to be an int, or a float or a
bool etc. in Python:

However, you are not just restricted to the built-in types (aka classes); it is also
possible to define user defined types (classes). These can be used to create your own
data structures, your own data types, your own applications etc.

This chapter considers the constructs in Python used to create user defined
classes.

print(type(4))
print(type(5.6))
print(type(True))
print(type('Ewan'))
print(type([1, 2, 3, 4]))

<class 'int'>
<class 'float'>
<class 'bool'>
<class 'str'>
<class 'list'>

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_18

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_18

18.2 Class Definitions

In Python, a class definition has the following format

Although you should note that you can mix the order of the definition of attri-
butes, and methods as required within a single class.

The following code is an example of a class definition:

Although this is not a hard and fast rule, it is common to define a class in a file
named after that class. For example, the above code would be stored in a file called
Person.py; this makes it easier to find the code associated with a class. This is
shown below using the PyCharm IDE:

class nameOfClass(SuperClass):
__init__
attributes
methods

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

190 18 Python Classes

The Person class possesses two attributes (or instance variables) called name
and age.

There is also a special method defined called __init__. This is an initialiser
(also known as a constructor) for the class. It indicates what data must be supplied
when an instance of thePerson class is created and how that data is stored internally.

In this case a name and an age must be supplied when an instance of the
Person class is created.

The values supplied will then be stored within an instance of the class (represented
by the special variable self) in instance variables/attributes self.name and
self.age. Note that the parameters to the __init__ method are local variables
andwill disappearwhen themethod terminates, butself.name andself.age are
instance variables and will exist for as long as the object is available.

Let us look for a moment at the special variable self. This is the first parameter
passed into any method. However, when a method is called we do not pass a value
for this parameter ourselves; Python does. It is used to represent the object within
which the method is executing. This provides the context within which the method
runs and allows the method to access the data held by the object. Thus self is the
object itself.

You may also be wondering about that term method. A method is the name
given to behaviour that is linked directly to the Person class; it is not a
free-standing function rather it is part of the definition of the class Person.

Historically, it comes from the language Smalltalk; this language was first used
to simulate a production plant and a method represented some behaviour that could
be used to simulate a change in the production line; it therefore represented a
method for making a change.

18.3 Creating Examples of the Class Person

New instances/objects (examples) of the class Person can be created by using the
name of the class and passing in the values to be used for the parameters of the
initialisation method (with the exception of the first parameter self which is pro-
vided automatically by Python).

For example, the following creates two instances of the class Person:

The variable p1 holds a reference to the instance or object of the class Person
whose attributes hold the values 'John' (for the name attribute) and 36 (for the age
attribute). In turn the variable p2 references an instance of the class Person whose
name and age attributes hold the values 'Phoebe' and 21. Thus in memory we have:

p1 = Person('John', 36)
p2 = Person('Phoebe', 21)

18.2 Class Definitions 191

The two variables reference separate instances or examples of the class
Person. They therefore respond to the same set of methods/operations and have
the same set of attributes (such as name and age); however, they have their own
values for those attributes (such as 'John' and 'Phoebe').

Each instance also has its own unique identifier—that shows that even if the
attribute values happen to be the same between two objects (for example there
happen to be two people called John who are both 36); they are still separate
instances of the given class. This identifier can be accessed using the id()
function, for example:

When this code is run p1 and p2 will generate different identifiers, for example:

Note that actual number generated may vary from that above but should still be
unique (within your program).

18.4 Be Careful with Assignment

Given that in the above example, p1 and p2 reference different instances of the
class Person; what happens when p1 or p2 are assigned to another variable? That
is, what happens in this case:

print('id(p1):', id(p1))
print('id(p2):', id(p2))

id(p1): 4547191808
id(p2): 4547191864

p1 = Person('John', 36)
px = p1

192 18 Python Classes

What does px reference? Actually, it makes a complete copy of the value held
by p1; however, p1 does not hold the instance of the class Person; it holds the
address of the object. It thus copies the address held in p1 into the variable px. This
means that both p1 and px now reference (point at) the same instance in memory;
we there have this:

This may not be obvious when you print p1 and px:

As this could just imply that the object has been copied:

However, if we print the unique identifier for what is referenced by p1 and px
then it becomes clear that it is the same instance of class Person:

which prints out

As can be seen the unique identifier is the same.
Of course, if p1 is subsequently assigned a different object (for example if we

ran p1 = p2) then this would have no effect on the value held in px; indeed, we
would now have:

print(p1)
print(px)

John is 36
John is 36

print('id(p1):', id(p1))
print('id(px):', id(px))

id(p1): 4326491864
id(px): 4326491864

18.4 Be Careful with Assignment 193

18.5 Printing Out Objects

If we now use the print() function to print the objects held by p1 and p2, we
will get what might at first glance appear to be a slightly odd result:

The output generated is

What this is showing is the name of the class (in this case Person) and a
hexadecimal number indicates where it is held in memory. Neither of which is
particularly useful and certainly doesn’t help us in knowing what information p1
and p2 are holding.

18.5.1 Accessing Object Attributes

We can access the attributes held by p1 and p2 using what is known as the dot
notation. This notation allows us to follow the variable holding the object with a dot
('.') and the attribute we are interested in access. For example, to access the name of
a person object we can use p1.name or for their age we can use p1.age:

print(p1)
print(p2)

<__main__.Person object at 0x10f08a400>
<__main__.Person object at 0x10f08a438>

print(p1.name, 'is', p1.age)
print(p2.name, 'is', p2.age)

194 18 Python Classes

The result of this is that we output

Which is rather more meaningful.
In fact, we can also update the attributes of an object directly, for example we

can write:

If we now run

then we will get

We will see in a later chapter (Python Properties) that we can restrict access to
these attributes by making them into properties.

18.5.2 Defining a Default String Representation

In the previous section we printed out information from the instances of class
Person by accessing the attributes name and age.

However, we now needed to know the internal structure of the class Person to
print out its details. That is, we need to know that there are attributes called name
and age available on this class.

It would be much more convenient if the object itself knew how to convert its
self into a string to be printed out!

In fact we can make the class Person do this by defining a method that can be
used to convert an object into a string for printing purposes.

This method is the __str__ method. The method is expected to return a string
which can be used to represent appropriate information about a class.

The signature of the method is

Methods that start with a double underbar ('__') are by convention considered
special in Python and we will see several of these methods later on in the book. For
the moment we will focus only on the __str__() method.

John is 36
Phoebe is 21

p1.name = 'Bob'
p1.age = 54

print(p1.name, 'is', p1.age)

Bob is 54

def __str__(self)

18.5 Printing Out Objects 195

We can add this method to our class Person and see how that affects the output
generated when using the print() function.

We will return a string from the __str__ method that provides and the name
and age of the person:

Note that in the __str__ method we access the name and age attributes using
the self parameter passed into the method by Python. Also note that it is nec-
essary to convert the age number attribute into a string. This is because the '+'
operator will do string concatenation unless one of the operands (one of the sides of
the '+') is a number; in which case it will try and do arithmetic addition which of
course will not work if the other operand is a string!

If we now try to print out p1 and p2:

The output generated is:

Which is much more useful.

18.6 Providing a Class Comment

It is common to provide a comment for a class defining what that class does, its
purpose and any important points to note about the class.

This can be done by providing a docstring for the class just after the class
declaration header; you can use the triple quotes string ('' '' ''…'' '' '') to
create multiple line docstrings, for example:

class Person:
def __init__(self, name, age):

self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

print(p1)
print(p2)

John is 36
Phoebe is 21

196 18 Python Classes

The docstring is accessible through the __doc__ attribute of the class. The
intention is to make information available to users of the class, even at runtime. It
can also be used by IDEs to provide information on a class.

18.7 Adding a Birthday Method

Let us now add some behaviour to the class Person. In the following example, we
define a method called birthday() that takes no parameters and increments the
age attribute by 1:

Note that again the first parameter passed into the method birthday is self.
This represents the instance (the example of the class Person) that this method
will be used with.

If we now create an instance of the class Person and call birthday() on it,
the age will be incremented by 1, for example:

class Person:
""" An example class to hold a

persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

def birthday(self):
Happy birthday you were', self.age) '
+= 1

print (
self.age
print('You are now', self.age)

p3 = Person('Adam', 19)
print(p3)
p3.birthday()
print(p3)

18.6 Providing a Class Comment 197

When we run this code, we get

As you can see Adam is initially 19; but after his birthday he is now 20.

18.8 Defining Instance Methods

The birthday() method presented above is an example of what is known as an
instance method; that is, it is tied to an instance of the class. In that case the method
did not take any parameters, nor did it return any parameters; however, instance
methods can do both.

For example, let us assume that the Person class will also be used to calculate
how much someone should be paid. Let us also assume that the rate is £7.50 if you
are under 21 but that there is a supplement of 2.50 if you are 21 or over.

We could define an instance method that will take as input the number of hours
worked and return the amount someone should be paid:

We can invoke this method again using the dot notation, for example:

Running this shows that Phoebe (who is 21) will be paid £400 while Adam who
is only 19 will be paid only £300:

Adam is 19
Happy birthday you were 19
You are now 20
Adam is 20

class Person:
""" An example class to hold a persons name and age"""
...
def calculate_pay(self, hours_worked):

rate_of_pay = 7.50
if self.age >= 21:

 rate_of_pay += 2.50
return hours_worked * rate_of_pay

pay = p2.calculate_pay(40)
print('Pay', p2.name, pay)
pay = p3.calculate_pay(40)
print('Pay', p3.name, pay)

Pay Phoebe 400.0
Pay Adam 300.0

198 18 Python Classes

Another example of an instance method defined on the class Person is the
is_teenager() method. This method does not take a parameter, but it does
return a Boolean value depending upon the age attribute:

Note that the implicitly provided parameter 'self' is still provided even when
a method does not take a parameter.

18.9 Person Class Recap

Let us bring together the concepts that we have looked at so far in the final version
of the class Person.

This class exhibits several features we have seen already and expands a few
others:

class Person:
""" An example class to hold a persons name and age"""
#...
def is_teenager(self):

return self.age < 20

class Person:
""" An example class to hold a persons name and age"""

def __init__(self, name, age):
self.name = name
self.age = age

def __str__(self):
return self.name + ' is ' + str(self.age)

def birthday(self):
Happy birthday you were', self.age) print ('

self.age += 1
print('You are now', self.age)

def calculate_pay(self, hours_worked):
rate_of_pay = 7.50
if self.age >= 21:

 rate_of_pay += 2.50
return hours_worked * rate_of_pay

def is_teenager(self):
return self.age < 20

18.8 Defining Instance Methods 199

• The class has a two parameter initialiser that takes a String and an Integer.
• It defines two attributes held by each of the instances of the class; name and age.
• It defines a __str__ method so that the details of the Person object can be

easily printed.
• It defines three methods birthday(), calculate_pay() and

is_teenager().
• The method birthday() does not return anything (i.e. it does not return a value)

and is comprised of three statements, two print statements and an assignment.
• is_teenager() returns aBoolean value (i.e. one that returnsTrue orFalse).

An example application using this class is given below:

This application creates an instance of the Person class using the values 'John'
and 36. It then prints out p1 using print (which will automatically call the
__str__() method on the instances passed to it). It then accesses the values of
name and age properties and prints these. Following this it calls the
is_teenager() method and prints the result returned. It then calls
the birthday() method. Finally, it assigns a new value to the age attribute. The
output from this application is given below:

18.10 The del Keyword

Having at one point created an object of some type (whether that is a bool, an int
or a user defined type such as Person) it may later be necessary to delete that
object. This can be done using the keyword del. This keyword is used to delete
objects which allows the memory they are using to be reclaimed and used by other
parts of your program.

p1 = Person('John', 36)
print(p1)
print (p1.name, 'is', p1.age)
print('p1.is_teenager', p1.is_teenager())
p1.birthday()
print(p1)
p1.age = 18
print(p1)

John is 36
John is 36
p1.is_teenager False
Happy birthday you were 36
You are now 37
John is 37
John is 18

200 18 Python Classes

For example, we can write

After the del statement the object held by p1 will no longer be available and
any attempt to reference it will generate an error.

You do not need to use del as setting p1 above to the None value (representing
nothingness) will have the same effect. In addition, if the above code was defined
within a function or a method then p1 will cease to exist once the function or
method terminates and this will again have the same effect as deleting the object
and freeing up the memory.

18.11 Automatic Memory Management

The creation and deletion of objects (and their associated memory) is managed by
the Python Memory Manager. Indeed, the provision of a memory manager (also
known as automatic memory management) is one of Python’s advantages when
compared to languages such as C and C++. It is not uncommon to hear C++
programmers complaining about spending many hours attempting to track down a
particularly awkward bug only to find it was a problem associated with memory
allocation or pointer manipulation. Similarly, a regular problem for C++ developers
is that of memory creep, which occurs when memory is allocated but is not freed
up. The application either uses all available memory or runs out of space and
produces a run time error.

Most of the problems associated with memory allocation in languages such as C
++ occur because programmers must not only concentrate on the (often complex)
application logic but also on memory management. They must ensure that they
allocate only the memory which is required and deallocate it when it is no longer
required. This may sound simple, but it is no mean feat in a large complex
application.

An interesting question to ask is “why do programmers have to manage memory
allocation?”. There are few programmers today who would expect to have to
manage the registers being used by their programs, although 30 or 40 years ago the
situation was very different. One answer to the memory management question,
often cited by those who like to manage their own memory, is that “it is more
efficient, you have more control, it is faster and leads to more compact code”. Of
course, if you wish to take these comments to their extreme, then we should all be
programming in assembler. This would enable us all to produce faster, more effi-
cient and more compact code than that produced by Python or languages such as
Java.

The point about high level languages, however, is that they are more productive,
introduce fewer errors, are more expressive and are efficient enough (given modern
computers and compiler technology). The memory management issue is somewhat

p1 = Person('John', 36)
print(p1)
del p1

18.10 The del Keyword 201

similar. If the system automatically handles the allocation and deallocation of
memory, then the programmer can concentrate on the application logic. This makes
the programmer more productive, removes problems due to poor memory man-
agement and, when implemented efficiently, can still provide acceptable
performance.

Python therefore provides automatic memory management. Essentially, it allo-
cates a portion of memory as and when required. When memory is short, it looks
for areas which are no longer referenced. These areas of memory are then freed up
(deallocated) so that they can be reallocated. This process is often referred to as
Garbage Collection.

18.12 Intrinsic Attributes

Every class (and every object) in Python has a set of intrinsic attributes set up by
the Python runtime system. Some of these intrinsic attributes are given below for
classes and objects.

Classes have the following intrinsic attributes:

• __name__ the name of the class
• __module__ the module (or library) from which it was loaded
• __bases__ a collection of its base classes (see inheritance later in this book)
• __dict__ a dictionary (a set of key-value pairs) containing all the attributes

(including methods)
• __doc__ the documentation string.

For objects:

• __class__ the name of the class of the object
• __dict__ a dictionary containing all the object’s attributes.

Notice that these intrinsic attributes all start and end with a double underbar—
this indicates their special status within Python.

An example of printing these attributes out for the class Person and a instance
of the class are shown below:

print('Class attributes')
print(Person.__name__)
print(Person.__module__)
print(Person.__doc__)
print(Person.__dict__)
print('Object attributes')
print(p1.__class__)
print(p1.__dict__)

202 18 Python Classes

The output from this is:

18.13 Online Resources

See the following for further information on Python classes:

• https://docs.python.org/3/tutorial/classes.html The Python Standard library
Class tutorial.

• https://www.tutorialspoint.com/python3/python_classes_objects.htm The tuto-
rials point tutorial on Python 3 classes.

18.14 Exercises

The aim of this exercise is to create a new class called Account.

1. Define a new class to represent a type of bank account.
2. When the class is instantiated you should provide the account number, the name

of the account holder, an opening balance and the type of account (which can be
a string representing 'current', 'deposit' or 'investment' etc.). This means that
there must be an __init__ method and you will need to store the data within
the object.

Class attributes
Person
__main__
 An example class to hold a persons name and age
{'__module__': '__main__', '__doc__': ' An example class to
hold a persons name and age', 'instance_count': 4,
'increment_instance_count': <classmethod object at
0x105955588>, 'static_function': <staticmethod object at
0x1059555c0>, '__init__': <function Person.__init__ at
0x10595d268>, '__str__': <function Person.__str__ at
0x10595d2f0>, 'birthday': <function Person.birthday at
0x10595d378>, 'calculate_pay': <function Person.calculate_pay
at 0x10595d400>, 'is_teenager': <function Person.is_teenager at
0x10595d488>, '__dict__': <attribute '__dict__' of 'Person'
objects>, '__weakref__': <attribute '__weakref__' of 'Person'
objects>}
Object attributes
<class '__main__.Person'>
{'name': 'John', 'age': 36}

18.12 Intrinsic Attributes 203

https://docs.python.org/3/tutorial/classes.html
https://www.tutorialspoint.com/python3/python_classes_objects.htm

3. Provide three instance methods for the Account; deposit(amount),
withdraw(amount) and get_balance(). The behaviour of these
methods should be as expected, deposit will increase the balance, withdraw will
decrease the balance and get_balance() returns the current balance.

4. Define a simple test application to verify the behaviour of your Account class.

It can be helpful to see how your class Account is expected to be used. For this
reason a simple test application for the Account is given below:

The following output illustrates what the result of running this test application
might look like:

acc1 = Account('123', 'John', 10.05, 'current')
acc2 = Account('345', 'John', 23.55, 'savings')
acc3 = Account('567', 'Phoebe', 12.45, 'investment')

print(acc1)
print(acc2)
print(acc3)

acc1.deposit(23.45)
acc1.withdraw(12.33)
print('balance:', acc1.get_balance())

Account[123] - John, current account = 10.05
Account[345] - John, savings account = 23.55
Account[567] - Phoebe, investment account = 12.45
balance: 21.17

204 18 Python Classes

	18 Python Classes
	18.1 Introduction
	18.2 Class Definitions
	18.3 Creating Examples of the Class Person
	18.4 Be Careful with Assignment
	18.5 Printing Out Objects
	18.5.1 Accessing Object Attributes
	18.5.2 Defining a Default String Representation

	18.6 Providing a Class Comment
	18.7 Adding a Birthday Method
	18.8 Defining Instance Methods
	18.9 Person Class Recap
	18.10 The del Keyword
	18.11 Automatic Memory Management
	18.12 Intrinsic Attributes
	18.13 Online Resources
	18.14 Exercises

