
Chapter 15
Higher Order Functions

15.1 Introduction

In this chapter we will explore the concept of high-order functions. These are
functions that take as a parameter, or return (or both), a function. To do this we will
first look into how Python represents functions in memory and explore what
actually happens when we execute a Python function.

15.2 Recap on Functions in Python

Let us first recap a few things regarding functions in Python:
Functions (mostly) have a name and when invoked (or executed) the body of

code associated with the function name is run.
There are some important ideas to remember when considering functions:

• functions can be viewed as named blocks of code and are one of the main ways
in which we can organise our programs in Python,

• functions are defined using the keyword def and constitute a function header
(the function name and the parameters, if any, defined for that function) and the
function body (what is executed when the function is run),

• functions are invoked or executed using their name followed by round brackets
'()' with or without parameters depending on how the function has been defined.

This means we can write a function such as the following get_msg function:

def get_msg():
return 'Hello Python World!'

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_15

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_15

We can then call it by specifying its name and the round brackets:

This of course prints out the string 'Hello Python World!' which is what
you should expect by now.

15.3 Functions as Objects

A few chapters back we threw in something stating that if you forgot to include the
round brackets then you were referencing the function itself rather than trying to
execute it!

What exactly does that mean? Let’s see what happens if we forgot to include the
round brackets:

The output generated now is:

which might look very confusing at first sight.
What this is actually telling you is that you have referenced a function called

get_msg that is located at a (hexidecimal) address in memory.
It is interesting to note that just as data has to be located in memory so does

program code (so that it can be found and run); although typically data and code are
located in separate areas of memory (as data tends to be short lived).

Another interesting thing to do is to find out what the type of get_msg is—hey
it’s a function—but what does that mean?

If we issue this statement and run it in Python:

Then we will get the following:

This means that it is of the class of things that are functions just as 1 is of the
class of things called integers, 'John' is of the class of things called strings and
42.6 is of the class of things called floating point numbers.

message = get_msg()
print(message)

message = get_msg
print(message)

print(type(get_msg))

<function get_msg at 0x10ad961e0>

<class 'function'>

158 15 Higher Order Functions

Taking this further it actually means that the thing being referenced by
get_msg is a function object (an example or instance of the Function class). This
get_msg is really a type of variable that references (or points at) at the function
object in memory which we can execute using the round brackets.

This is illustrated by the following diagram:

This means that when we run get_msg() what actually happens is we go to
the get_msg variable and following the reference (or pointer) there to the function
and then because we have the round brackets we run that function.

This has two implications:

1. we can pass the reference to a function around,
2. we can make get_msg reference (point) at a different function

Let us look at the first of these implications. If we assign the reference repre-
sented by get_msg to something else, then in effect we have an alias for this
function. This is because another variable now also references the same function.
For example, if we write:

Then the result is that the string 'Hello Python World!' is again printed out.
What this has done is to copy the reference held in get_msg into

another_reference (but it is a copy of that reference and that is the address of
the function in memory). Thus, we now have in memory:

So just to emphasise this—we did not make a copy of the function; only its
address in memory. Thus the same value is held in both get_msg and
another_reference and both these values are references to the same function object
in memory.

What does this mean and why should we care? Well it means that we can pass
references to functions around within our program which can be a very useful
feature that we will look at later in this chapter.

Now let us go back to the second implication mentioned above; we can reassign
another function to get_msg.

another_reference = get_msg
print(another_reference())

15.3 Functions as Objects 159

For example, let’s say we wrote this next:

Now get_msg no longer references the original functions; it now references the
new function defined by get_some_other_msg. It means that in memory we
now have

Which means the result of calling print(get_msg()) will be that the string
'Some other message!!!' is returned and printed out (rather than the
'Hello Python World!').

However, notice that we did not overwrite the original function; it is still being
referenced by the another_reference variable and indeed can still be called
via this variable. For example, the code:

now generates the output:

This illustrates some of the power but also the potential confusion that comes
from how functions are represented and can be manipulated in Python.

15.4 Higher Order Function Concepts

Given that we can assign a reference into a function to a variable; then this might
imply that we can also use the same approach to pass a reference to a function as an
argument to another function.

print(get_msg())
print(another_reference())

Some other message!!!
Hello Python World!

def get_some_other_msg():
return 'Some other message!!!'

get_msg = get_some_other_msg
print(get_msg())

160 15 Higher Order Functions

This means that one function can take another function as a parameter. Such
functions are known as higher-order functions and are one of the key constructs in
Functional Programming.

That is, a function that takes another function as a parameter is known as a
higher order function.

In fact, in Python, Higher-Order Functions are functions that do at least one of
the following (and may do both):

• Take one or more functions as a parameter,
• Return as a result a function.

All other functions in Python are first-order functions.
Many of the functions found in the Python libraries are higher order functions. It

is a common enough pattern that once you are aware of it you will recognise it in
many different libraries.

15.4.1 Higher Order Function Example

As an abstract example, consider the following higher order function apply. This
function (written in pseudo code—not a real programming language) takes an
integer and a function. Within the body of the function being defined, the function
passed in as a parameter is applied to the integer parameter. The result of the
function being defined is then returned:

The function apply is a higher order function because its behaviour (and its
result) will depend on the behaviour defined by another function—the one passed
into it.

We could also define a function that multiplies a number by 10.0, for example:

Now we can use the function mult with the function apply, for example:

This would return the value 50.0

def apply(x, function):
result = function(x)
return result

def mult(y):
return y * 10.0

apply(5, mult)

15.4 Higher Order Function Concepts 161

15.5 Python Higher Order Functions

As we have already seen when we define a function it actually creates a function
object that is referenced by the name of the function. For example, if we create the
function mult_by_two:

Then this has created a function object referenced by the name multi_by_two
that we can invoke (execute) using the round brackets '()'.

It is also a one parameter function that takes a number and returns a value which
is twice that number

Thus, a parameter that expects to be given a reference to a function that takes a
number and returns a number can be given a reference to any function that meets
this (implied) contract. This includes our mult_by_two function but also any of
the following:

All of the above could be used with the following higher order function:

For example:

The output from this code is:

The following listing provides a complete set of the earlier sample functions and
how they may be used with the apply function:

def mult_by_two(num):
return num * 2

def mult_by_five(num):
return num * 5

def square(num):
return num * num

def add_one(num):
return num + 1

def apply(num, func):
return func(num)

result = apply(10, mult_by_two)
print(result)

20

print(apply(10, mult_by_five))
print(apply(10, square))
print(apply(10, add_one))
print(apply(10, mult_by_two))

162 15 Higher Order Functions

The output from this is:

15.5.1 Using Higher Order Functions

Looking at the previous section you may be wondering why you would want to use
a higher-order function or indeed why define one. After all, could you not have
called one of the functions (multi_by_five, square, add_one or
mult_by_two) directly by passing in the integer to used? Yes, we could have, for
example we could have done:

And this would have exactly the same effect as calling:

The first approach would seem to be both simpler and more efficient.
The key to why higher-order functions are so powerful is to consider what would

happen if we know that some function should be applied to the value 10 but we do
not yet know what it is. The actual function will be provided at some point in the
future. Now we are creating a reusable piece of code that will be able to apply an
appropriate function to the data we have when that function is known.

For example, let us assume that we want to calculate the amount of tax
someone should pay based on their salary. However, we do not know how to
calculate the tax that this person must pay as it is dependent on external factors.
The calculate_tax function could take an appropriate function that performs
that calculation and provides the appropriate tax value.

The following listing implements this approach. The function calculate_tax
does not know how to calculate the actual tax to be paid, instead a function must be
provided as a parameter to the calculate_tax function. The function passed in
takes a number and returns the result of performing the calculation. It is used with
the salary parameter also passed into the calculate_tax function.

50
100
11
20

square(10)

apply(10, square)

import math

def simple_tax_calculator(amount):
return math.ceil(amount * 0.3)

def calculate_tax(salary, func):
return func(salary)

print(calculate_tax(45000.0, simple_tax_calculator))

15.5 Python Higher Order Functions 163

The simple_tax_calculator function defines a function that takes a
number and multiplies it by 0.3 and then uses the math.ceil function (imported
from the math library/module) to round it up to a whole number. A call is then
made to the calculate_tax function passing in the float 45000.0 as the salary
and a reference to the simple_tax_calculator function. Finally, it prints out
the tax calculated. The result of running this program is:

Thus, the function calculate_tax is a reusable function that can have
different tax calculation strategies defined for it.

15.5.2 Functions Returning Functions

In Python as well as passing a function into another function; functions can be
returned from a function. This can be used to select amongst a number of different
options or to create a new function based on the parameters.

For example, the following code creates a function that can be used to check
whether a number is even, odd or negative based on the string passed into it:

Note the use of the raise Value Error; for the moment we will just say that
this is a way of showing that there is a problem in the code which may occur if this
function is called with an in appropriate parameter value for 's'.

This function is a factory for functions that can be created to perform specific
operations. It is used below to create three functions that can be used to validate
what type a number is:

def make_checker(s):
if s == 'even':

return lambda n: n%2 == 0
elif s == 'positive':

return lambda n: n >= 0
elif s == 'negative':

return lambda n: n < 0
else:

raise ValueError('Unknown request')

f1 = make_checker('even')
f2 = make_checker('positive')
f3 = make_checker('negative')
print(f1(3))
print(f2(3))
print(f3(3))

164 15 Higher Order Functions

Of course, it is not only anonymous functions that can be returned from a
function; it is also possible to return a named function. This is done by returning
just the name of the function (i.e. without the round brackets).

In the following example, a named function is defined within an outer function
(although it could have been defined elsewhere in the code). It is then returned from
the function:

We can then use this make_function to create the adder function and store
it into another variable. We can now use this function in our code, for example:

Which produces the output

def make_function():
def adder(x, y):

return x + y

return adder

f1 = make_function()
print(f1(3, 2))
print(f1(3, 3))
print(f1(3, 1))

5
6
4

15.6 Online Resources

Further information on higher order functions in Python can be found using the
following online resources:

• https://en.wikipedia.org/wiki/Higher-order_function Wikipedia page on Higher
Order functions.

• https://docs.python.org/3.1/library/functools.html a module to support the cre-
ation and use of higher order functions.

• https://www.tutorialspoint.com/functional_programming/functional_
programming_higher_order_functions.htm A tutorial on higher order functions.

15.7 Exercises

The aim of this exercise is to explore higher order functions.
You should write a higher order function function called

my_higher_order_function(i, func). This function takes a parameter
and a second function to apply to the parameter.

15.5 Python Higher Order Functions 165

https://en.wikipedia.org/wiki/Higher-order_function
https://docs.python.org/3.1/library/functools.html
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_higher_order_functions.htm

Now you should write a sample program that uses the higher order function you
just created to perform. An example of the sort of thing you might implement is
given below:

If you are using the above code as your test application then you should write
each of the supporting functions; each should take a single parameter.

Sample output from this code snippet is:

Note a simple way to find the square root of a number is to use the exponent (or
power of) operator and multiply by 0.5.

print(my_higher_order_function(2, double))
print(my_higher_order_function(2, triple))
print(my_higher_order_function(16, square_root))
print(my_higher_order_function(2, is_prime))
print(my_higher_order_function(4, is_prime))
print(my_higher_order_function('2', is_integer))
print(my_higher_order_function('A', is_integer))
print(my_higher_order_function('A', is_letter))
print(my_higher_order_function('1', is_letter))

4
8
4.0
True
False
True
False
True
False

166 15 Higher Order Functions

	15 Higher Order Functions
	15.1 Introduction
	15.2 Recap on Functions in Python
	15.3 Functions as Objects
	15.4 Higher Order Function Concepts
	15.4.1 Higher Order Function Example

	15.5 Python Higher Order Functions
	15.5.1 Using Higher Order Functions
	15.5.2 Functions Returning Functions

	15.6 Online Resources
	15.7 Exercises

