
Chapter 14
Introduction to Functional
Programming

14.1 Introduction

There has been much hype around Functional Programming in recent years.
However, Functional Programming is not a new idea and indeed goes right back to
the 1950s and the programming language LISP. However, many people are not
clear as to what Functional Programming is and instead jump into code examples
and never really understand some of the key ideas associated with Functional
Programming such as Referential Transparency.

This chapter introduces Functional Programming (also known as FP) and the key
concept of Referential Transparency (or RT).

One idea to be aware of is that Functional Programming is a software coding
style or approach and is separate from the concept of a function in Python.

Python Functions can be used to write Functional Programs but can also be used
to write procedural style programs; so do not get too hung up on the syntax that
might be used or the fact that Python has functions just yet. Instead explore the idea
of defining a functional approach to your software design.

14.2 What Is Functional Programming?

Wikipedia describes Functional Programming as:

… a programming paradigm, a style of building the structure and elements of computer
programs, that treats computation as the evaluation of mathematical functions and
avoids state and mutable data.

There are a number of points to note about this definition. The first is that it is
focussed on the computational side of computer programming. This might seem
obvious but most of what we have looked at so far in Python would be considered
procedural in nature.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_14

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_14

Another thing to note is that the way in which the computations are represented
emphasises functions that generate results based purely on the data provided to
them. That is these functions only rely on their inputs to generate a new output.
They do not generate on any side effects and do not depend on the current state of
the program. As an example of a side effect, if a function stored a running total in a
global variable and another function used that total to perform some calculation;
then the first function has a side effect of modifying a global variable and the second
relies on some global state for its result.

Taking each of these in turn:

1. Functional Programming aims to avoid side effects. A function should be
replaceable by taking the data it receives and in lining the result generated (this
is referred to as referential transparency). This means that there should be no
hidden side effects of the function. Hidden side effects make it harder to
understand what a program is doing and thus make comprehension, develop-
ment and maintenance harder. Pure functions have the following attributes:

• the only observable output is the return value.
• the only output dependency are the arguments.
• arguments are fully determined before any output is generated.

2. Functional Programming avoids concepts such as state. If some operation is
dependent upon the (potentially hidden) state of the program or some element of
a program, then its behaviour may differ depending upon that state. This may
make it harder to comprehend, implement, test and debug. As all of these impact
on the stability and probably reliability of a system, state-based operations may
result in less reliable software being developed. As functions do not (should not)
rely on any given state (only upon the data they are given) they should as a
result be easier to understand, implement, test and debug.

3. Functional Programming promotes immutable data. Functional
Programming also tends to avoid concepts such as mutable data. Mutable data is
data that can change its state. By contrast Immutability indicates that once
created, data cannot be changed. In Python Strings are immutable. Once you
create a new string you cannot modify it. Any functions that apply to a string
that might conceptually alter the contents of the string, result in a new String
being generated. Many developers take this further by having a presumption of
immutability in their code; that means that by default all data holding types are
implemented as immutable. This ensures that functions cannot have hidden side
effects and thus simplifies programming in general.

4. Functional Programming promotes declarative programming which means
that programming is oriented around expressions that describe the solution
rather than focus on the imperative approach of most procedural programming
languages. Imperative languages emphasise aspects of how the solution is
derived. For example, an imperative approach to looping through some con-
tainer and printing out each result in turn would look like this:

150 14 Introduction to Functional Programming

Whereas a functional programming approach would look like:

Functional Programming has its roots in the lambda calculus, originally devel-
oped in the 1930s to explore computability. Many Functional Programming lan-
guages can thus be considered as elaborations on this lambda calculus. There have
been numerous pure Functional Programming languages including Common Lisp,
Clojure and Haskell. Python provides some support for writing in the functional
style; particularly where the benefits of it are particularly strong (such as in pro-
cessing various different types of data).

Indeed, when used judiciously, functional programming can be a huge benefit
for, and an enhancement to, the toolkit available to developers.

To summarise then:

• Imperative Programming is what is currently perceived as traditional pro-
gramming. That is, it is the style of programming used in languages such as C,
C++, Java and C# etc. In these languages a programmer tells the computer what
to do. It is thus oriented around control statements, looping constructs and
assignments.

• Functional Programming aims to describe the solution, that is what the pro-
gram needs to do (rather than how it should be done).

14.3 Advantages to Functional Programming

There are a number of significant advantages to functional programming compared
to imperative programming. These include:

1. Less code. Typically, a functional programming solution will require less code
to write than an equivalent imperative solution. As there is less code to write,
there is also less code to understand and to maintain. It is therefore possible that
functional programs are not only more elegant to read but easier to update and
maintain. This can also lead to enhanced programmer productivity as they spend
less time writing reams of code as well as less time reading those reams of code.

2. Lack of (hidden) side effects (Referential Transparency). Programming
without side effects is good as it makes it easier to reason about functions (that is

int sizeOfContainer = container.length
for (int i = 1 to sizeOfContainer) do
 element = container.get(i)
 print(element)
enddo

container.foreach(print)

14.2 What Is Functional Programming? 151

a function is completely described by the data that goes in and the results that
come back). This also means that it is safe to reuse these functions in different
situations (as they do not have unexpected side effects). It should also be easier
to develop, test and maintain such functions.

3. Recursion is a natural control structure. Functional languages tend to
emphasis recursion as a way of processing structures that would use some form
of looping constructs in an imperative language. Although you can typically
implement recursion in imperative languages, it is often easier to do in func-
tional languages. It is also worth noting that although recursion is very
expressive and a great way for a programmer to write a solution to a problem, it
is not as efficient at run time as iteration. However, any expression that can be
written as a recursive routine can also be written using looping constructs.
Functional programming languages often incorporate tail end recursive opti-
misations to convert recursive routines into iterative ones at runtime. A util end
recursive function is one in which the last thing a function does before it returns
is to call itself. This means that rather than actually invoking the function and
having to set up the context for that function, it should be possible to reuse the
current context and to treat it in an iterative manner as a loop around that
routine. Thus the programmer benefits from the expressive recursive construct
and the runtime benefits of an iterative solution using the same source code. This
option is typically not available in imperative languages.

4. Good for prototyping solutions. Solutions can be created very quickly for
algorithmic or behaviour problems in a functional language. Thus, allowing
ideas and concepts to be explored in a rapid application development style.

5. Modular Functionality. Functional Programming is modular in terms of
functionality (where Object Oriented languages are modular in the dimension of
components). They are thus well suited to situations where it is natural to want
to reuse or componentise the behaviour of a system.

6. The avoidance of state-based behaviour. As functions only rely on their
inputs and outputs (and avoid accessing any other stored state) they exhibit a
cleaner and simpler style of programming. This avoidance of state-based
behaviour makes many difficult or challenging areas of programming simpler
(such as those in concurrent applications).

7. Additional control structures. A strong emphasis on additional control
structures such as pattern matching, managing variable scope, tail recursion
optimisations etc.

8. Concurrency and immutable data. As functional programming systems
advocate immutable data structures it is simpler to construct concurrent systems.
This is because the data being exchanged and accessed is immutable. Therefore,
multiple executing thread or processes cannot affect each other adversely. The
Akka Actor model builds on this approach to provide a very clean model for
multiple interacting concurrent systems.

9. Partial Evaluation. Since functions do not have side effects, it also becomes
practical to bind one or more parameters to a function at compile time and to reuse
these functions with bound values as new functions that take fewer parameters.

152 14 Introduction to Functional Programming

14.4 Disadvantages of Functional Programming

If functional programming has all the advantages previously described, why isn’t it
the mainstream force that imperative programming languages are? The reality is
that functional programming is not without its disadvantages, including:

• Input-Output is harder in a purely functional language. Input-Output flows
naturally align with stream style processing, which does not neatly fit into the
data in, results out, nature of functional systems.

• Interactive applications are harder to develop. Interactive applications are
constructed via request response cycles initiated by a user action. Again, these
do not naturally sit within the purely functional paradigm.

• Continuously running programs such as services or controllers may be more
difficult to develop, as they are naturally based upon the idea of a continuous loop.

• Functional programming languages have tended to be less efficient on
current hardware platforms. This is partly because current hardware plat-
forms are not designed with functional programming in mind and also because
many of the systems previously available were focussed on the academic
community where out and out performance was not the primary focus.
However, this has changed to a large extent with modern functional languages
such as Scala and Heskell.

• Not data oriented. A pure Functional Language does not really align with the
needs of the primarily data-oriented nature of many of today’s systems. Many
(most) commercial systems are oriented around the need to retrieve data from a
database, manipulate it in some way and store that data back into a database. Such
data can be naturally represented via objects in an Object-Oriented language.

• Programmers are less familiar with functional programming concepts and
thus find it harder to pick up function-oriented languages.

• Functional Programming idioms are often less intuitive to (traditional) proce-
dural programmers than imperative idioms which can make debugging and main-
tenance harder. Although with the use of a functional approach in many other
languages nowbecomingmore popular (including in Python) this trend is changing.

• Many Functional Programming languages have been viewed as Ivory tower
languages that are only used by academics. This has been true of some older
functional languages but is increasingly changing with the advent of languages
such as Scala and with the facilities provided in more mainstream programming
languages such as Python.

14.5 Referential Transparency

An important concept within the world of functional programming is that of
Referential Transparency.

14.4 Disadvantages of Functional Programming 153

An operation is said to be Referentially Transparent if it can be replaced with its
corresponding value, without changing the programs behaviour, for a given set of
parameters.

For example, let us assume that we have defined the function increment as
shown below.

If we use this simple example in an application to increment the value 5:

We can say that the function is Referentially Transparent (or RT) if it always returns
the same result for the same value (i.e. that increment(5) always returns 6):

Any function that references a value which has been captured from its sur-
rounding context and which can be modified cannot be guaranteed to be RT. This
can have significant consequences for the maintainability of the resulting code. This
can happen if for example the increment function did not add 1 to the parameter but
added a global value. If this global value is changed then the function would
suddenly start to return different values for the previously entered parameters. For
example, the following code is no longer Referentially Transparent:

The output from this code is 6 and 7—as the value of amount has changed
between calls to the increment() function.

A closely related idea is that of No Side Effects. That is, a function should not
have any side effects, it should base its operation purely on the values it receives,

def increment(num):
return num + 1

print(increment(5))
print(increment(5))

amount = 1
def increment(num):

return num + amount

print(increment(5))
amount = 2
print(increment(5))

154 14 Introduction to Functional Programming

and its only impact should be the result returned. Any hidden side effects again
make software harder to maintain.

Of course, within most applications there is a significant need for side effects, for
example any logging of the actions performed by a program has a side effect of
updating some logged information somewhere (typically in a file), any database
updates will have some side effect (i.e. that of updating the database). In addition
some behaviour is inherently non RT, for example a function which returns the
current time can never be Referentially Transparent.

However, for pure functions it is a useful consideration to follow.

14.6 Further Reading

There is a large amount of material on the web that can help you learn more about
Functional Programming including:

• https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-
4f69aa109569 intended as a friendly introduction to Functional programming.

• https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-
functional-programming-a2c2a15c84 which provides an introduction to the
basic principles of Functional programming.

• https://www.tutorialspoint.com/functional_programming which provides a good
grounding in the basic concepts of Functional Programming.

• https://docs.python.org/3/howto/functional.html which is the Python standard
library tutorial on Functional Programming.

14.5 Referential Transparency 155

https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://medium.freecodecamp.org/an-introduction-to-the-basic-principles-of-functional-programming-a2c2a15c84
https://www.tutorialspoint.com/functional_programming
https://docs.python.org/3/howto/functional.html

	14 Introduction to Functional Programming
	14.1 Introduction
	14.2 What Is Functional Programming?
	14.3 Advantages to Functional Programming
	14.4 Disadvantages of Functional Programming
	14.5 Referential Transparency
	14.6 Further Reading

