
Chapter 13
Implementing a Calculator Using
Functions

13.1 Introduction

In this chapter we will step through the development of another Python program;
this time the program will be to provide a simple calculator which can be used to
add, subtract, multiple and divide numbers. The implementation of the calculator is
base on the Function Decomposition performed earlier in the book in the
Introduction to Structured Analysis chapter.

The calculator will be implemented using Python functions to help modularise
the code.

13.2 What the Calculator Will Do

This will be a purely command driven application that will allow the user to specify

• the operation to perform and
• the two numbers to use with that operation.

When the program starts up it can use a loop to keep processing operations until
the user indicates that they wish to terminate the application.

We can also use an if statement to select the operation to perform etc.
As such it will also build on several other features in Python that we have

already been working with.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_13

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_13

13.3 Getting Started

The first step will be to create a new Python file. If you are using the PyCharm IDE
you can do it using the New>PythonFile menu option (look back at the number
guess game chapter if you can’t remember how to do this). The file can be called
anything you like, but calculator seems like a reasonable name.

In the newly created (and empty) calculator.py file type in a welcome print
message such as:

print('Simple Calculator App')

Now run the calculator.py program (again if you don’t remember how to
do that look back at the Number Guess Game chapter).

You should see the message printed out in the Python console. This verifies that
the file has been created properly and that you can run the Python code you will
define in it.

13.4 The Calculator Operations

We are going to start by defining a set of functions that will implement the add,
subtract, multiply and divide operations.

All of these functions take two numbers and return another number. We have
also given each function a docstring to illustrate their use, although in practice the
functions are so simple and self-describing that the docstring is probably redundant.

The functions are listed below; you can now add them to thecalculator.pyfile:

def add(x, y):
 """" Adds two numbers """

return x + y

def subtract(x, y):
 """ Subtracts two numbers """

return x - y

def multiply(x, y):
 """ Multiples two numbers """

return x * y

def divide(x, y):
 """Divides two numbers"""

return x / y

We now have the basic functions needed by the calculator.

140 13 Implementing a Calculator Using Functions

13.5 Behaviour of the Calculator

We can no explore what the operation of the calculator program should be.
Essentially, we want to allow the user to be able to select the operation they want

to perform, provide the two numbers to use with the operation and then for the
program to call the appropriate function. The result of the operation should then be
presented to the user.

We then want to ask the user whether they want to continue to use the calculator
or to exit the program. This is illustrated below in flow chart form:

Based on this flowchart we can put in place the skeleton of the logic for the
calculator’s processing cycle.

We will need a while loop to determine whether the user has finished or not
and a variable to hold the result and print it out.

The following code provides this skeleton.

finished = False
while not finished:
 result = 0
 # Get the operation from the user
 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 # Determine if the user has finished

print('Bye')

13.5 Behaviour of the Calculator 141

If you try to run this right now then you will find that this code will loop forever
as the user is not yet prompted to say if they wish to continue or not. However, it
does provide the basic framework; we have

• a variable,finished, with a Boolean flag in it to indicate if the user has finished or
not. This is referred to as a flag because it is a Boolean value and because it is being
used to determine whether to terminate the main processing loop or not.

• a variable to hold the result of the operation and the two numbers.
• the while loop representing the main processing loop of the calculator.

13.6 Identifying Whether the User Has Finished

We could address several of the remaining areas next; however, we will select the
last step—that of determining if the user has finished or not. This will allow us to
start to run the application so that we can test out the behaviour.

To do this we need to prompt the user to ask them if they want to continue using
the calculator.

At one level this is very straight forward; we could ask the user to input 'y' or 'n'
to indicates yes I have finished or no I want to keep going.

We could therefore use the input function as follows:

user_input = input('Do you want to finish (y/n): ')

We could then check to see if they have entered a 'y' character and terminate the
loop.

However, anytime we take any input from something outside of our program
(such as the user) we should verify the input. For example, what should the program
do if the user enters 'x' or the number '1'? One option is to treat anything that is not a
'y' as being—I want to keep going. However, this is opening up our simple program
to bad practices and (in a much larger system) to potential security issues and
certainly to potential hacker attacks.

It is a much better idea to verify that the input is what is expected and to reject
any input until it is either a 'y' or an 'n'.

This means that the code is more complex than a single input statement; there is
for example an implied loop here and as well as some idea of input validation.

This means that this is an ideal candidate for a function that will encapsulate this
behaviour into a separate operation. We can then test this function which is always
a good idea. It also means that where we use the function, we have a level of
abstraction. That is we can name the function appropriately which will make it
easier to see what we intended, instead of having a mass of code in one place.

We will call the function check_if_user_has_finished; this name makes
it very clear what the purpose of the function is. It also means that when we use it in
our main processing loop its role in that loop will be obvious.

142 13 Implementing a Calculator Using Functions

The function is given below:

def check_if_user_has_finished():
"""

 Checks that the user wants to finish or not.
 Performs some verification of the input."""

ok_to_finish = True
user_input_accepted = False

 while not user_input_accepted:
 user_input = input('Do you want to finish (y/n): ')

if user_input == 'y':
 user_input_accepted = True

 elif user_input == 'n':
 ok_to_finish = False

user_input_accepted = True
 else:
 print('Response must be (y/n), please try again')

return ok_to_finish

Notice the use of two variables that are local to the function:

• the first variable (ok_to_finish) holds the result of the function; whether it is
OK to finish or not. It is given a default value of True; this follows the fail
closed approach—which suggests that it is always better to fail by closing down
an application or connection. In this case it means that if something goes wrong
with the code (if it contains a software bug or logic error) the user will not keep
looping forever.

• the second variable (user_input_accepted) is used to indicate whether
the user has provided an acceptable input or not (i.e. have they entered 'y' or 'n')
until they do the loop inside the function will repeat.

The loop itself is interesting as we are looping while the user input has not been
accepted; note that we can (almost) read the while loop as plain English text. This is
both a feature of Python (it is intended to be easily readable) and also of the use of a
meaningful name for the variable itself.

Within the loop we obtain the input from the user; check to see if it is 'y' or 'n'. If
it is either of these options, we set the user_input_accepted flag to True.
Otherwise the code will print out a message indicating that the only acceptable
input is a 'y' or 'n'.

Notice that we only set the ok_to_finish variable to False if the user inputs
a 'n'; this is because the ok_to_finish variable by default has a value of True
and thus there is no need to reassign True to it if the user select 'n'.

We can now add this function into our main processing loop in place of the last
comment:

13.6 Identifying Whether the User Has Finished 143

finished = False
while not finished:
 result = 0
 # Get the operation from the user
 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

We can now run the application.
You may wonder why we would do this at this point as it does not yet do any

calculations for us; the answer is that we can verify that the overall behaviour of the
main loop works and that the check_if_user_has_finished() function
operates correctly.

13.7 Selecting the Operation

Next let us implement the function used to obtain the operation to perform.
Again, we want to name this function in such a way as to help with the com-

prehensibility of our program. In this case we are asking the user to select which
operation they want to perform, so let’s call the function
get_operation_choice.

This time we need to present a list of options to the user and then ask them to
make a selection. Again, we want to write our function defensively, so that it makes
sure the user only inputs a valid option; if they do not then the function prompts
them for another input. This means our function will have a loop and some vali-
dation code.

There are four options available to the user: Add, Subtract, Multiply and Divide.
We will therefore number then 1 to 4 and ask the user to select an option between 1
and 4.

There are several ways in which we can verify that they have entered a number
in this range, including

• converting the string entered into a number and using numerical comparison
(but then we need to check that they entered an integer),

• having multiple if and elif statements (but that seems a bit long winded) or
• by checking that the entered character is one of a set of values (which is the

approach we will use).

144 13 Implementing a Calculator Using Functions

To check that a value is in a set of other value (that it is one of the values in the
set) you can use the ‘in’ operator, for example:

user_selection in ('1', '2', '3', '4')

This will return True if (and only if) user_selection contains one of the
strings '1', '2', '3' or '4'.

We can therefore use it in our function to verify that the user entered a valid
input.

The get_operation_choice function is shown below:

def get_operation_choice():
 input_ok = False

while not input_ok:
 print('Menu Options are:')
 print('\t1. Add')
 print('\t2. Subtract')
 print('\t3. Multiply')
 print('\t4. Divide')
 print('-----------------')
 user_selection = input('Please make a selection: ')

if user_selection in ('1', '2', '3', '4'):
 input_ok = True

else:
 print('Invalid Input (must be 1 - 4)')
 print('-----------------')

return user_selection

Work through this function and make sure you are comfortable with all its
elements. The ‘\t’ character is a special character denoting a Tab.

We can now update our main calculator loop with this function:

finished = False

while not finished:
 result = 0
 menu_choice = get_operation_choice()

 # Get the numbers from the user
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

13.7 Selecting the Operation 145

13.8 Obtaining the Input Numbers

Next we need to obtain two numbers from the user to use with the selected
operation.

In our introduction to Functions in Python chapter we looked at a function (the
get_integer_input() function) that could be used to take input from the user
and convert it (safely) into an integer; if the user entered a non-number then this
functionwould prompt them to enter an actual number.We can reuse the function here.

However, we need to ask the user for two numbers; we will therefore create a
function which uses the get_integer_input() function to prompt the user for
two numbers and then return both numbers. Both functions are shown here:

def get_numbers_from_user():
 num1 = get_integer_input('Input the first number: ')
 num2 = get_integer_input('Input the second number: ')

return num1, num2

def get_integer_input(message):
 value_as_string = input(message)

while not value_as_string.isnumeric():
 print('The input must be an integer')
 value_as_string = input(message)

return int(value_as_string)

Having one function call another function is very common and indeed we have
already been doing this; the input() function has been used several times, the
only difference here is that we have written the get_integer_input()
function ourselves.

When we can the get_numbers_from_user() function we can store the
results returned into two variables; one for each result; for example:

n1, n2 = get_numbers_from_user()

We can now add this statement to the main calculator loop:

finished = False
while not finished:
 result = 0
 menu_choice = get_operation_choice()
 n1, n2 = get_numbers_from_user()
 # Select the operation
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

146 13 Implementing a Calculator Using Functions

13.9 Determining the Operation to Execute

We are now almost there and can update our main calculation loop with some logic to
determine the actual operation to invoke. To do this we will use an if statement with
the optionalelif parts. Theif statement will be conditional on the operation selected
and will then call the appropriate function (such as add, subtract etc.) as shown here:

if menu_choice == '1':
 result = add(n1, n2)
elif menu_choice == '2':
 result = subtract(n1, n2)
elif menu_choice == '3':
 result - multiply(n1, n2)
elif menu_choice == '4':
 result = divide(n1, n2)

Each part of the if statement calls a different function; but they all store the
value returned into the result variable.

We can now add this to the calculation loop to create our fully functional
calculator loop:

finished = False
while not finished:
 result = 0
 menu_choice = get_operation_choice()
 n1, n2 = get_numbers_from_user()

if menu_choice == '1':
 result = add(n1, n2)

elif menu_choice == '2':
 result = subtract(n1, n2)

elif menu_choice == '3':
 result - multiply(n1, n2)

elif menu_choice == '4':
 result = divide(n1, n2)
 print('Result:', result)
 print('=================')
 finished = check_if_user_has_finished(()

print('Bye')

13.10 Running the Calculator

If you now run the calculator you will be prompted as appropriate for input. You
can try and break the calculator by entering characters when numbers are requested,
or values out of range for the operations etc. and it should be resilient enough to
handle these erroneous inputs, for example:

13.9 Determining the Operation to Execute 147

Simple Calculator App
Menu Options are:
 1. Add
 2. Subtract
 3. Multiply
 4. Divide

Please make a selection: 5
Invalid Input (must be 1 - 4)
Menu Options are:
 1. Add
 2. Subtract
 3. Multiply
 4. Divide

Please make a selection: 1

Input the first number: 5
Input the second number: 4
Result: 9
=================
Do you want to finish (y/n): y
Bye

13.11 Exercises

For this chapter the exercises relate to extensions to the calculator:

1. Add an option to apply the modulus (%) operator to the two numbers input by
the user. This will involve defining an appropriate function and adding this as an
option to the menu. You will also need to extend the main calculator control
loop to handle this option.

2. Add a power of (**) option to the calculator.
3. Modify the program to take floating point numbers instead of simple integers.
4. Allow the choice of division operator or integer division operator (this have both

'/' and '//' available.

148 13 Implementing a Calculator Using Functions

	13 Implementing a Calculator Using Functions
	13.1 Introduction
	13.2 What the Calculator Will Do
	13.3 Getting Started
	13.4 The Calculator Operations
	13.5 Behaviour of the Calculator
	13.6 Identifying Whether the User Has Finished
	13.7 Selecting the Operation
	13.8 Obtaining the Input Numbers
	13.9 Determining the Operation to Execute
	13.10 Running the Calculator
	13.11 Exercises

