
Chapter 12
Scope and Lifetime of Variables

12.1 Introduction

We have already defined several variables in the examples we have being working
with in this book. In practice, most of these variables have been what are known as
global variables. That is there are (potentially) accessible anywhere (or globally) in
our programs.

In this chapter we will look at local variables as defined within a function, at
global variables and how they can be referenced within a function and finally we
will consider nonlocal variables.

12.2 Local Variables

In practice developers usually try to limit the number of global variables in their
programs as global variables can be accessed anywhere and can be modified
anywhere and this can result in unexpected behaviours (and has been the cause of
many, many bugs in all sorts of programs over the years).

However, not all variables are global. When we define a function, we can create
variables which are scoped only to that function and are not accessible or visible
outside of the function. These variables are referred to as local variables (as they are
local to the function).

This is a great help in developing more modular code which has been proven to
be easier to maintain and in fact develop and test.

In the following function local variable called a_variable has been created
and initialised to hold the value 100.

© Springer Nature Switzerland AG 2019
J. Hunt, A Beginners Guide to Python 3 Programming,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-20290-3_12

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_12

When this function is called a_variable will be initialised to 100 and will
then be printed out to the console:

100

Thus when we ran the my_function() it successfully printed out the value
100 which was held in the local (to the function) variable a_variable.

However if we attempt to access a_variable outside the function, then it will
not be defined and we will generate an error, for example:

When we run this code, we get the number 100 printed out from the call the
my_function(). However, an error is then reported by Python:

This indicates that a_variable is undefined at the top level (which is the
global scope). Thus, we can say that a_variable is not globally defined.

This is because a_variable only exists and only has meaning inside
my_function; outside of that function it cannot be seen.

In fact, each time the function is called, a_variable comes back into exis-
tence as a new variable, so the value in a_variable is not even seen from one
invocation of the function to another.

This raises the question what happens if a global variable called a_variable
is defined? For example, if we have the following:

Actually, this is fine and is supported by Python. There are now two versions of
a_variable in the program; one of which is defined globally and one of which is
defined within the context of the function.

Python does not get confused between these and treats then as completely
separately. This is just like having two people called John in the same class in
school. If they were only called John this might cause some confusion, but if they
have different surnames then it is easy to distinguish between them via their full
names such as John Jones and John Smith.

a_variable = 25
my_function()
print(a_variable)

100
Traceback (most recent call last):
 File "localvars.py", line 7, in <module>
 print(a_variable)
NameError: name 'a_variable' is not defined

my_function()
print(a_variable)

def my_function():
a_variable = 100
print(a_variable)

my_function()

134 12 Scope and Lifetime of Variables

In this case we have global a_variable and my_function a_variable.
Thus if we run the above code we get

The value 100 does not overwrite the value 25 as they are completely different
variables.

12.3 The Global Keyword

But what happens if what you want is to reference the global variable within a
function.

As long as Python does not think you have defined a local variable then all will
be fine. For example

This prints out the value 100.
However, things go a bit astray if you try to modify the global variable inside the

function. At this point Python thinks you are creating a local variable. If as part of
the assignment you try to reference the current value of that (now) local variable
you will get an error indicating that it currently does not have a value. For example,
if we write:

And then run this example, we will get

Indicating that we have referenced max before it was assigned a value—even
though it was assigned a value globally before the function was called!

100
25

max = 100
def print_max():

print(max)
print_max()

def print_max():
max = max + 1
print(max)

print_max()

Traceback (most recent call last):
 File "localvars.py", line 17, in <module>
 print_max()
 File "localvars.py", line 14, in print_max
 max = max + 1
UnboundLocalError: local variable 'max' referenced before
assignment

12.2 Local Variables 135

Why does it do this? To protect us from ourselves—Python is really saying ‘Do you
really want to modify a global variable here?’. Instead it is treating max as a
local variable and as such it is being referenced before a value has been assigned to it.

To tell Python that we know what we are doing and that we want to reference the
global variable at this point we need to use the keyword global with the name of
the variable. For example:

Now when we try to update the variable max inside the function print_max(),
Python knowswemean the global version of the variable and uses that one. The result
is that we now print out the value 101 and max is updated to 101 for everyone
everywhere!

12.4 Nonlocal Variables

It is possible to define functions inside other functions, and this can be very useful
when we are working with collections of data and operations such as map()
(which maps a function to all the elements of a collection of data).

However, local variables are local to a specific function; even functions defined
within another function cannot modify the outer functions local variables (as the
inner function is a separate function). They can reference it, just as we could
reference the global variable earlier; the issue is again modification.

The global keyword is no help here as the outer function’s variables are not
global, they are local to a function.

For example, if we define a nested function (inner) inside the parent outer function
(outer) and want the inner function to modify the local field we have a problem:

max = 100

def print_max():
global max
max = max + 1
print(max)

print_max()
print(max)

def outer():
 title = 'original title'

def inner():
 title = 'another title'
 print('inner:', title)

 inner()
 print('outer:', title)

outer()

136 12 Scope and Lifetime of Variables

In this example both outer() and inner() functions modify the title vari-
able. However, they are not the same title variable and as long as this is what we
need then that is fine; both functions have their own version of a title local variable.

This can be seen in the output where the outer function maintains its own value
for title:

However, if what we want is for the inner() function to modify the outer()
function’s title variable then we have a problem.

This problem can be solved using the nonlocal keyword. This indicates that a
variable is not global but is also not local to the current function and Python should
look within the scope in which the function is defined to fund a local variable with
the same name:

If we now declare title as nonlocal in the inner() function, then it will
use the outer() functions version of title (it will be shared between them) and
thus when the inner() function changes the title it will change the it for both
functions:

The result of running this is

12.5 Hints

Points to note about the scope and lifetime of variables

1. The scope of a variable is the part of a program where the variable is known.
Parameters and variables defined inside a function are not visible from outside.
Hence, they have a local scope.

2. The lifetime of a variable is the period throughout which the variable exits in the
memory of your Python program. The lifetime of variables inside a function is
as long as the function executes. These local variables are destroyed as soon as
the function returns or terminates. This means that the function does not store
the values in a variable from one invocation to another.

def outer():
 title = 'original title'

def inner():
nonlocal title

 title = 'another title'
 print('inner:', title)
 inner()
 print('outer:', title)

outer()

inner: another title
outer: another title

inner: another title
outer: original title

12.4 Nonlocal Variables 137

12.6 Online Resources

See the Python Standard Library documentation for:

• https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-
and-global-variables-in-python which provides further information on the
Python rules for local and global variables.

12.7 Exercise

Return to the number guess game—did you have to make any compromises with
the variables to overcome the global variable issue? If so can you resolve them now
with the use of the global?

138 12 Scope and Lifetime of Variables

https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python
https://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python

	12 Scope and Lifetime of Variables
	12.1 Introduction
	12.2 Local Variables
	12.3 The Global Keyword
	12.4 Nonlocal Variables
	12.5 Hints
	12.6 Online Resources
	12.7 Exercise

