Chapter 1)
Introduction Check or

1.1 What Is Python?

Python is a general-purpose programming language in a similar vein to other
programming languages that you might have heard of such as C++, JavaScript or
Microsoft’s C# and Oracle’s Java.

It has been around for some considerable time having been originally conceived
back in the 1980s by Guido van Rossum at Centrum Wiskunde & Informatica
(CWI) in the Netherlands. The language is named after one of Guido’s favourite
programs “Monty Pythons Flying Circus”, a classic and somewhat anarchic British
comedy sketch show originally running from 1969 to 1974 (but which has been
rerun on various stations ever since) and with several film spin offs. You will even
find various references to this show in the documentation available with Python.

As a language it has gained in interest over recent years, particularly within the
commercial world, with many people wanting to learn the language. This increased
interest in Python is driven by several different factors:

1. Its flexibility and simplicity which makes it easy to learn.

2. Its use by the Data Science community where it provides a more standard
programming language than some rivals such as R.

3. Its suitability as a scripting language for those working in the DevOps field
where it provides a higher level of abstraction than alternative languages tra-
ditionally used.

4. Its ability to run on (almost) any operating system, but particularly the big three
operating systems Windows, MacOS and Linux.

5. The availability of a wide range of libraries (modules) that can be used to extend
the basic features of the language.

6. It is free!

© Springer Nature Switzerland AG 2019 1
J. Hunt, A Beginners Guide to Python 3 Programming,

Undergraduate Topics in Computer Science,

https://doi.org/10.1007/978-3-030-20290-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20290-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-20290-3_1

2 1 Introduction

Python itself is now managed by the not-for-profit Python Software Foundation
(see https://en.wikipedia.org/wiki/Python_Software_Foundation) which was laun-
ched in March 2001. The mission of the foundation is to foster development of the
Python community; it is also responsible for various processes within the Python
community, including developing the core Python distribution, managing intel-
lectual rights and supporting developer conferences including PyCon.

1.2 Python Versions

Currently there are two main versions of Python called Python 2 and Python 3.

e Python 2 was launched in October 2000 and has been, and still is, very widely
used.

e Python 3 was launched in December 2008 and is a major revision to the lan-
guage that is not backward compatible.

The issue between the two versions can be highlighted by the simple print
facility:

e In Python 2 this is written as print 'Hello World'
e In Python 3 this is written as print ('Hello World"')

It may not look like much of a difference but the inclusion of the ' () ' marks a
major change and means that any code written for one version of Python will
probably not run on the other version. There are tools available, such as the 2-3
utility, that will (partially) automate translation from Python 2 to Python 3 but in
general you are still left with significant work to do.

This then raises the question which version to use?

Although interest in Python 3 is steadily increasing there are many organisations
that are still using Python 2. Choosing which version to use is a constant concern
for many companies.

However, the Python 2 end of life plan was initially announced back in 2015 and
although it has been postponed to 2020 out of concern that a large body of existing
code could not easily be forward-ported to Python 3, it is still living on borrowed
time. Python 3 is the future of the Python language and it is this version that has
introduced many of the new and improved language and library features (that have
admittedly been back ported to Python 2 in many cases). This book is solely
focussed on Python 3.

In the remainder of this book when we refer to Python we will always be
referring to Python 3.

https://en.wikipedia.org/wiki/Python_Software_Foundation

1.3 Python Programming 3

1.3 Python Programming

There are several different programming paradigms that a programming language
may allow developers to code in, these are:

Procedural Programming in which a program is represented as a sequence of
instructions that tell the computer what it should do explicitly. Procedures and/
or functions are used to provide structure to the program; with control structures
such as if statements and loop constructs to manage which steps are executed
and how many times. Languages typifying this approach include C and Pascal.
Declarative Programming languages, such as Prolog, that allow developers to
describe how a problem should be solved, with the language/environment
determining how the solution should be implemented. SQL (a database query
language) is one of the most common declarative languages that you are likely
to encounter.

Object Oriented Programming approaches that represent a system in terms of
the objects that form that system. Each object can hold its own data (also known
as state) as well as define behaviour that defines what the object can do.
A computer program is formed from a set of these objects co-operating together.
Languages such as Java and C# typify the object oriented approach.
Functional Programming languages decompose a problem into a set of
functions. Each function is independent of any external state, operating only on
the inputs they received to generate their outputs. The programming language
Haskell is an example of a functional programming language.

Some programming languages are considered to be hybrid languages; that is

they allow developers to utilise a combination of difference approaches within the
same program. Python is an example of a hybrid programming language as it allows
you to write very procedural code, to use objects in an object oriented manner and
to write functional programs. Each of these approaches is covered in this book.

1.4 Python Libraries

As well as the core language, there are very many libraries available for Python.
These libraries extend the functionality of the language and make it much easier to
develop applications. These libraries cover

web frameworks such as Django/Flask,

email clients such as smtplib (a SMTP email client) and imaplib (an IMAP4
email client),

content management operations such as the Zope library,

lightweight concurrency (running multiple operations at the same time) using
the Stackless library,

the Generation of Microsoft Excel files using the Python Excel library,
graphics libraries such as Matplotlib and PyOpenGL,

machine learning using libraries such as SKLearn and TensorFlow.

4 1 Introduction

A very useful resource to look at, which introduces many of these libraries (also
known as modules), is the ‘Python 3 module of the Week’ web site which can be
found at https://pymotw.com/3. This lists many of the libraries/modules available
and provides a short introduction to what they do and how to use them.

1.5 Python Execution Model

Python is not a precompiled language in the way that some other languages you
may have come across are (such as C++). Instead it is what is known as an
interpreted language (although even this is not quite accurate). An interpreted
language is one that does not require a separate compilation phase to convert the
human readable format into something that can be executed by a computer. Instead
the plain text version is fed into another program (generally referred to as the
interpreter) which then executes the program for you.

Python actually uses an intermediate model in that it actually converts the plain
text English style Python program into an intermediate 'pseudo’ machine code
format and it is this intermediate format that is executed. This is illustrated below:

1. Check the
program is valid
and well formed

Python 2. (Dynamically) Compile
Interpreter into the intermediate language

\ 3. Run the Intermediate

version of the program

hello.py

The way in which the Python interpreter processes a Python program is broken
down into several steps. The steps shown here are illustrative (and simplified) but
the general idea is correct.

1. First the program is checked to make sure that it is valid Python. That is a check
is made that the program follows all the rules of the language and that each of
the commands and operations etc. is understood by the Python environment.

2. It then translates the plain text, English like commands, into a more concise
intermediate format that is easier to execute on a computer. Python can store this
intermediate version in a file which is named after the original file but with a '.
pyc' extension instead of a '. py' extension (the 'c' in the extension indicates it
contains the compiled version of the code).

3. The compiled intermediate version is then executed by the interpreter.

When this program is rerun, the Python interpreter checks to see if a '. pyc' file
is present. If no changes have been made to the source file since the '.pyc' was

https://pymotw.com/3

1.5 Python Execution Model 5

created, then the interpreter can skip steps 1 and 2 and immediately run the '. pyc'
version of the program.

One interesting aspect of Python’s usage is that it can be (and often is) used in an
interactive fashion (via the REPL), with individual commands being entered and
executed one at a time, with context information being built up. This can be useful
in debugging situations.

1.6 Running Python Programs

There are several ways in which you can run a Python program, including

Interactively using the Python interpreter

Stored in a file and run using the Python command

Run as a script file specifying the Python interpreter to use within the script file
From within a Python IDE (Integrated Development Environment) such as
PyCharm.

1.6.1 Interactively Using the Python Interpreter

It is quite common to find that people will use Python in interactive mode. This uses
the Python REPL (named after Read Evaluate Print Loop style of operation).

Using the REPL, Python statements and expressions can be typed into the
Python prompt and will then be executed directly. The values of variables will be
remembered and may be used later in the session.

To run the Python REPL, Python must have been installed onto the computer
system you are using. Once installed you can open a Command Prompt window
(Windows) or a Terminal window (Mac) and type python into the prompt. This is
shown for a Windows machine below:

6 1 Introduction

In the above example, we interactively typed in several Python commands and
the Python interpreter 'Read' what we have typed in, 'Evaluated' it (worked out what
it should do), 'Printed’ the result and then 'Looped' back ready for further input. In
this case we

Printed out the string 'Hello World'.

Added 5 and 4 together and got the result 9.
Stored the string 'John' in a variable called name.
Printed out the contents of the variable name.

To leave the interactive shell (the REPL) and go back to the console (the system
shell), press Ctrl-Z and then Enter on Windows, or Ctrl-D on OS X or Linux.
Alternatively, you could also run the Python command exit () or quit ().

1.6.2 Running a Python File

We can of course store the Python commands into a file. This creates a program file
that can then be run as an argument to the python command.

For example, given a file containing the following file (called hello .py) with
the 4 commands in it:

] hello.py UNREGISTERED

4» hello.py

print('Hello World')
print(5s 1)

name = 'John'
print(name)

| & Line1, Column 1 Tab Size: 4 Python

To run the hello.py program on a PC using Windows we can use the python
command followed by the name of the file:

C:\Users\john>python hello.py
Hello World
q

John

C:\Users\john>

We can also run the same program on an Apple Mac using MacOS via the
python interpreter. For example on a Mac we can do the following:

1.6 Running Python Programs 7

[C] temp — -bash — 52x5

Johns-iMac:temp jeh$ python hello.py =]
Hello World

9

John
| Johns-iMac:temp jehs [

This makes it very easy to create Python programs that can be stored in files and
run when needed on whatever platform is required (Windows, Linux or Mac). This
illustrates the cross platform nature of Python and is just one of the reasons why
Python is so popular.

1.6.3 Executing a Python Script

It is also possible to transform a file containing a stored Python program into a
Script. A script is a stand-alone file that can be run directly without the need to
(explicitly) use the python command.

This is done by adding a special line to the start of the Python file that indicates
the Python command (or interpreter) to use with the rest of the file. This line must
start with '#! ' and must come at the start of the file.

To convert the previous section’s file into a Script we would need to add the
path to the python interpreter. Here path refers to the route that the computer
must take to find the specified Python interpreter (or executable).

The exact location of the Python interpreter on your computer depends on what
options were selected when you (or whoever installed Python) set it up. Typically
on a Windows PC Python will be found in the 'Program Files' directory or it might
be installed in its own 'Python' directory.

Whatever the location of the Python interpreter, to create a script we will need to
add a first line to our hello.py file. This line must start with a #!. This combination
of characters is known as a shebang and indicates to Linux and other Unix like
operating systems (such as MacOS) how the remainder of the file should be
executed.

For example, on a Apple Mac we might add:

/Library/Frameworks/Python. framework/Versions/3.7/bin/python3

When added to the hello.py file we now have:

8 1 Introduction

=]
=]

hello.py

hello.py

print('Hello World')

print(1)
name 'John"*
print(name)

= Line 7, Column 1 Tab Size: 4

However, we cannot just run the file as it stands. If we tried to run the file
without any changes then we will get an error indicating that the permission to
execute the file has been denied:

S ./hello.py
-bash: ./hello.py: Permission denied

$

This is because by default you can’t just run a file. We need to mark it as
executable. There are several ways to do this, however one of the easiest on a Mac
or Linux box is to use the chmod command (which can be used to modify the
permissions associated with the file). To make the file executable we can change the
file permissions to allow the file to be run by using the following command from a
terminal window when we are in the same directory as the hello.py file:

$ chmod +x hello.py

Where +x indicates that we want to add the executable permission to the file.
Now if we try to run the file directly it executes and the results of the commands
within the file are printed out:

@®)] temp — -bash — 58x6

| Johns-iMac:temp jeh$ chmod +x hello.py 8
Johns—iMac:temp jeh$./hello.py

Helle World

9

John

Johns-iMac: temp jehs [

Note the use of the ./ preceding the file name in the above; this is used on Linux
and Magcs to tell the operating system to look in the current directory for the file to
execute.

Different systems will store Python in different locations and thus might need
different first lines, for example on a Linux we might write:

1.6 Running Python Programs 9

#!/usr/local /bin/python3
print ('Hello, world')
print (5 + 4)

name = 'John'

print (name)

By default Windows does not have the same concept. However, to promote
cross platform portability, the Python Launcher for Windows can also support this
style of operation. It allows scripts to indicate a preference for a specific Python
version using the same #! (Shebang) format as Unix style operating systems. We
can now indicate that the rest of the file should be interpreted as a Python script; if
multiple versions of Python are installed this may require Python 3 to be explicitly
specified. The launcher also understands how to translate the Unix version into
Windows versions so that /user/local/bin/python3 will be interpreted as
indicating that python3 is required.

An example of the hello.py script for a Windows or Linux machine is given
below using Notepad++ on a Windows box.

File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window X
[+] ¥ =1 ° .. (=] Q.@ 5 .__‘ﬂ | &4 ﬂ bﬂ %% g ES :T! il :E __. Hiﬂ i
| helio.py E3

#! /usr/local/bin/python3

print (' W)
print (5 + 4)
name = '

print (name)

lengtln:1 Col:26 Sel:0|0 Windows (CR. LF) UTF-8 IN

When the launcher was installed it should have been associated with Python files
(i.e. files that have a '. py' extension). This means that if you double-click on one of
these files from the Windows Explorer, then the Python launcher will be used to run
the file.

1.6.4 Using Python in an IDE

We can also use an IDE such as PyCharm to writing and execute our Python
program. The same program is shown using PyCharm below:

10 1 Introduction

@ @ . pythonintro [[Users/ i/ y /pythonintro] - .../t .py [py
pythonintro helloworid } (& hello.py helle [2 - ; Q

Project ~ B = & — jahsopy

helloworld print{'Hello World')
print{5 « 4}
N foerssmplecpy name = 'John'

= hello.py print{nane)
= helloword.py

= ifsample.py

whilesample.py

inherit

I 1 Project

1. 7 Structure

iterators
modules
multiple
numericpython
objects
polymorphism
qty

regex

testing

Run: hello o -
JLibrary/Franeworks,/Python. framework/Versions/3.7/bin/python3.7 /Users/Shared /workspa:
Hello World

9

John

Process finished with exit code @

L MR

»

w 2: Favorites

= §: TODO [Terminal & Python Conscle () Event Log
81 LF: UTF-8: W B

In the above figure, the simple set of commands are again listed in a file called
hello.py. However, the program has been run from within the IDE and the
output is shown in an output console at the bottom of the display.

1.7 Useful Resources

There are a wide range of resources on the web for Python; we will highlight a few
here that you should bookmark. We will not keep referring to these to avoid
repetition but you can refer back to this section whenever you need to:

e https://en.wikipedia.org/wiki/Python_Software_Foundation Python Software
Foundation.

e https://docs.python.org/3/ The main Python 3 documentation site. It contains
tutorials, library references, set up and installation guides as well as Python
how-tos.

e https://docs.python.org/3/library/index.html A list of all the builtin features for
the Python language—this is where you can find online documentation for the
various class and functions that we will be using throughout this book.

e https://pymotw.com/3/ the Python 3 Module of the week site. This site contains
many, many Python modules with short examples and explanations of what the
modules do. A python module is a library of features that build on and expand

https://en.wikipedia.org/wiki/Python_Software_Foundation
https://docs.python.org/3/
https://docs.python.org/3/library/index.html
https://pymotw.com/3/

1.7 Useful Resources 11

the core Python language. For example, if you are interested in building games
using Python then pyjama is a module specifically designed to make this easier.
e https://www.fullstackpython.com/email.html is a monthly newsletter that
focusses on a single Python topic each month, such as a new library or module.
e http://www.pythonweekly.com/ is a free weekly summary of the latest Python
articles, projects, videos and upcoming events.

https://www.fullstackpython.com/email.html
http://www.pythonweekly.com/

	1 Introduction
	1.1 What Is Python?
	1.2 Python Versions
	1.3 Python Programming
	1.4 Python Libraries
	1.5 Python Execution Model
	1.6 Running Python Programs
	1.6.1 Interactively Using the Python Interpreter
	1.6.2 Running a Python File
	1.6.3 Executing a Python Script
	1.6.4 Using Python in an IDE

	1.7 Useful Resources

