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Abstract. This work presents a system achieving classification of res-
piratory sounds directly related to various diseases of the human respi-
ratory system, such as asthma, COPD, and pneumonia. We designed a
feature set based on wavelet packet analysis characterizing data com-
ing from four sound classes, i.e. crack, wheeze, normal, crack+wheeze.
Subsequently, the captured temporal patterns are learned by hidden
Markov models (HMMs). Finally, classification is achieved via a directed
acyclic graph scheme limiting the problem space while based on decisions
made by the available HMMs. Thorough experiments following a well-
established protocol demonstrate the efficacy of the proposed solution.

Keywords: Respiratory sound classification ·
Acoustic signal processing · Respiratory diseases

1 Introduction

It is widely accepted that diseases of the human respiratory system, such as
asthma, COPD, and pneumonia are associated with distinctive acoustic patterns
[13]. This is due to the abnormalities they cause in the airway path. Typically,
a medical expert is able to correctly identify such patterns (e.g. by means of a
stethoscope) and subsequently propose the corresponding treatment. However,
this process relies both on the availability of an expert as well as their degree of
expertise. Thus, the need to automatize the diagnosis process has arose in the
last years igniting the development of such algorithms.

Even though during the last decade there has been a significant amount of
research in this direction, a standardized way to compare the existing solutions is
yet to appear. Systematic reviews of the state of the art are available in [13,17]. A
great variety of temporal, spectral and wavelet features along with generative and
non-generative classifiers have been employed in the literature. Such a review is
beyond the scope of the present article; we rather focus on a recent standardized
attempt approaching this problem. More in detail, the challenge organized within
the International Conference on Biomedical Health Informatics in 2017 provides
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a dataset characterizing the properties of the classes of interest as well as an
experimental protocol allowing the extraction of comparable results.

So far, two solutions employing the challenge’s experimental protocol stand
out. The first one [4] uses hidden Markov models fed with mel-frequency cepstral
coefficients. The second [19] employs non-linear spectral features along with a
support vector machine with a radial basis function kernel.

This work builds on the existing findings and proposes the usage of fea-
tures derived from the wavelet domain, the distribution of which is learned by
a directed acyclic graph scheme composed of hidden Markov models. More pre-
cisely, we designed a three-level wavelet packet band-based analysis component
able to capture the behavior of the involved sound events within various spectral
bands. Subsequently, we construct a directed acyclic graph limiting the problem
space into a series of binary classifiers, each one relying on a pair of hidden
Markov models. On top of that, we provide a solution to the topological order-
ing of such a graph. Experimental results using the protocol of the ICBHI 2017
challenge demonstrate the efficacy of the proposed approach.

The rest of this work is organized as follows: Sect. 2 describes the wavelet
packet feature extraction module, while Sect. 3 explains the graph-based classi-
fication scheme. Section 4 details the employed dataset, the parameterization of
the proposed approach as well as the achieved results and how these compare to
existing solutions. Finally, in Sect. 5 we draw our conclusions.

2 The Feature Set

This section introduces the usage of band-based multiresolution analysis for
automated respiratory sound classification. Lately, digital signal processing using
wavelets has become a common tool in various research areas with heteroge-
neous needs. Such cases refer to enhancement of biological signals [11,15], geo-
physics applications like tropical convection, dispersion of ocean waves, etc. [21],
speech/music discrimination [12], emotion prediction [10], farm monitoring [7],
voice activity detection [2], moving vehicle classification [8], audio fingerprinting
[1], generalized sound recognition [6], to name but a few.

The fundamental property of the Fourier transform is the usage of sinusoids
with infinite duration. Whereas sinusoids functions are smooth and predictable,
wavelets tend to be irregular and asymmetric. The main advantage of the wavelet
transform is that it can analyze at many different frequencies time series charac-
terized by non-stationary power. They comprise a dynamic windowing technique
which can treat with different precision low and high frequency information. The
first step of the wavelet packet analysis is the choice of the original (or mother)
wavelet and by utilizing this function, the transformation breaks up the signal
into shifted and scaled versions of it. In this paper we utilized Daubechies 1 (or
Haar) function as the original wavelet while its optimal choice will be a subject of
our future work. Unlike discrete wavelet transform (DWT), when wavelet pack-
ets (WP) are employed both low and high frequencies coefficients are kept. In
our case the DWT is applied three subsequent times and consists of three-stage
filtering of the audio signals as we can see in Fig. 1.
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Fig. 1. The block diagram of proposed feature extraction module. Audio signals are
filtered and each spectral band is analyzed by a 3-level wavelet packet transform. After
segmenting and computing the area under the autocorrelation envelope, we obtain the
feature vector.

Table 1. The frequency limits used for perceptual wavelet packet integration analysis.

Band ID Lower (Hz) Center (Hz) Upper (Hz)

1 0 125 250

2 250 375 500

3 500 625 750

4 750 875 1000

5 1000 1125 1250

6 1250 1375 1500

7 1500 1625 1750

8 1750 1875 2000

9 2000 2250 2500

10 2500 2750 3000

11 3000 3250 3500

12 3500 3750 4000

The idea behind the specific set is the production of a vector that provides
a complete analysis of the audio signal across different spectral areas while they
are approximated by WP. We should also take into account that respiratory
signals do not distribute their energy across the spectrum in a homogeneous
way. Thus, a fine partitioning of the spectrum could offer relevant distinctive
information. Based on this observation, we designed a band-based signal analy-
sis with the frequency ranges denoted in Table 1. Such a division is achieved by
Gabor bandpass filters. Subsequently, three-level wavelet packets are extracted
out of each spectral band. The specific level is able to provide detailed infor-
mation regarding the signal characteristics at a specific band. Downsampling is
applied on each coefficient at each stage in order not to end up having the double
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amount of data, as Nyquist theorem requests. The wavelet coefficients are then
segmented and the autocorrelation envelope area is computed and normalized
by half the segment size. M normalized integration parameters are calculated
for each frame, where M is the total number of the frequency bands multiplied
by the number of the wavelet coefficients. This series of parameters comprises
the WP-Integration feature vector and the entire calculation process is depicted
in Fig. 1.

WP-Integration parameters reflect upon the degree of variability of a specific
wavelet coefficient within a frequency band. Since the audio signals we try to
classify exhibit great differences among these bands, we decided to utilize the
normalized autocorrelation envelope area.

3 The Classification Scheme

The proposed framework relies on the Directed Acyclic Graph (DAG) logic [9],
i.e. the classification scheme is a graph denoted as G = {N,L}, where N =
{n1, . . . , nm} represents the nodes and L = {l1, . . . , lp} the links associating the
nodes. Each node in N is responsible for a binary classification task conducted
via a set of HMMs which fit well the specifications of audio pattern recognition
tasks, thus the DAG-HMM notation.

The motivation behind creating such a graph-based classification system is
that in this way, one is able to limit the problem space and design classifi-
cation algorithms for two mutually-exclusive classes than having to deal with
the entirety of the different classes at the same time. Essentially, the proposed
methodology breaks down any m-class classification problem into a series of
2-class classification problems.

DAGs can be seen as a generalization of the class of Decision Trees, while
the redundancies and repetitions that may occur in different branches of the tree
can be observed more efficiently since different decision paths might be merged.
In addition, DAGs are able to collect and conduct a series of tasks in an ordered
manner, subject to constraints that certain tasks must be performed earlier than
others. The sequential execution of tasks is particularly important and directly
related to the efficacy with which the overall task is addressed [22].

The DAG-HMM architecture used in this paper includes m(m − 1)/2 nodes
(m being the total number of classes) each one associated with a two-class clas-
sification problem. The connections between the different nodes in G have only
one orientation without any kind of loop(s). As a result, each node of a such a
so-called rooted DAG has either 0 or 2 leaving arcs.

The principal issue associated with the design of every DAG is the topological
ordering, i.e. ordering the nodes in a way that the starting endpoints of every
edge occur earlier than the corresponding ending endpoints. In the following, we
describe how such a topological ordering is discovered based on the Kullback-
Leibler divergence.
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Fig. 2. Determination of the topological ordering.

3.1 Determining the Topological Ordering of the DAG-HMM

Naturally, one would expect that the performance of the DAG-HMM depends on
the order in which the different classification tasks are conducted. This was also
evident from early experiments. This observation motivated the construction
of the DAG-HMM so that “simple” tasks are executed earlier in the graph. In
other words, these are placed in the top nodes of the DAG-HMM, in a way that
classes responsible for a high amount of misclassifications are discarded early in
the graph operation. In order to get an early indication of the degree of difficulty
of a classification task, we employed the metric representing the distance of the
involved classes in the probabilistic space, i.e. the Kullback-Leibler Divergence
(KLD) between per-class GMMs in the feature space. The basic motivation is
to place early in the DAG-HMM tasks concerning the classification of classes
with large KLD, as they could be completed with high accuracy. The scheme
determining the topological ordering is illustrated in Fig. 2.

The KLD between two J-dimensional probability distributions A and B is
defined as [20]:

D(A||B) =
∫
RJ

p(X|A)log
p(X|A)
p(X|B)

dx (1)

KLD provides an indication of how distant two models are in the proba-
bilistic space. It is important to note that KLD as given in Eq. 1 comprises an
asymmetric quantity. The symmetrical form can be inferred by simply adding
the integrals in both directions, i.e.

Ds(A||B) = D(A||B) + D(B||A) (2)

In the special case where both A and B are Gaussian mixture models KLD
can be defined as follows:

KLD(A||B) =
∫

A(x)log
B(x)
A(x)

dx (3)
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Fig. 3. An example of a DAG-HMM addressing a problem with four classes.

Unfortunately, there is not a closed-form solution for Eq. 3, thus we employed
the empirical mean as follows

KLD(A||B) ≈ 1
n

n∑
i=1

log
B(xi)
A(xi)

(4)

given that the number of Monte Carlo draws is sufficiently large. During our
experiments we set n = 2000.

It should be noted the KLD between HMMs was not used since computing
distances between HMMs of unequal lengths, which might be common in this
work as HMMs representing different classes might have different number of
states, can be significantly more computationally demanding without a corre-
sponding gain in modeling accuracy [5,23].

After computing the KLD for the different pairs of classes, i.e. reach the
second stage depicted in Fig. 2, the KLD distances are sorted in a decreasing
manner. This way the topological ordering of the DAG-HMM is revealed, placing
the classification tasks of low difficulty on its top. Each node removes a class
from the candidate list until there is only one class left, which comprises the
DAG-HMM prediction. The distance matrix elements could be seen as early
performance indicators of the task carried out by the corresponding node. The
proposed topological ordering places tasks likely to produce misclassifications
at the bottom of the graph. This process outputs a unique solution for the
topological sorting problem, as it is usually met in the graph theory literature [3].

3.2 The DAG-HMM Operation

The operation of the proposed DAG-HMM scheme is the following: after extract-
ing the features of the unknown audio signal, the first/root node is activated.
More precisely, the feature sequence is fed to the HMMs, which produce two
log-likelihoods showing the degree of resemblance between the training data of
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each HMM and the unknown one. These are compared and the graph flow con-
tinues on the larger log-likelihood path. It should be stressed out that the HMMs
are optimized (in terms of number of states and Gaussian components) so that
they address the task of each node optimally. That said, it is possible that a
specific class is represented by HMMs with different parameters when it comes
to different nodes of the DAG-HMM.

An example of a DAG-HMM addressing a problem with four classes is illus-
trated in Fig. 3. The remaining classes for testing are mentioned beside each
node. Digging inside each node, Fig. 3 also shows the HMM-based sound classi-
fier responsible for activating the path of the maximum log-likelihood.

The operation of the DAG-HMM may be parallelized with that of investi-
gating a list of classes, where each level eliminates one class from the list. More
in detail, in the beginning the list includes all the potential audio classes. At
each node the feature sequence is matched against the respective HMMs and
the model with the lowest log-likelihood is erased from the list, while the DAG-
HMM proceeds to the part of the topology without the discarded class. This
process terminates when only one class remains in the list, which comprises the
system’s prediction. Hence, in case the problem deals with m different classes,
the DAG’s decision will be made after the evaluation of m − 1 nodes.

4 Experiments

This section explains (a) the dataset, (b) the parameterization of the proposed
solution for classification of respiratory sounds, and (c) finally presents and anal-
yses the achieved results.

4.1 Dataset

The respiratory sound database comes from the challenge organized within the
International Conference on Biomedical Health Informatics in 2017 and it is
publicly available1. The recordings span over several years. The database has a
total duration of 5.5 h and contains 6898 respiratory cycles, of which 1864 contain
crackles, 886 contain wheezes, and 506 contain both crackles and wheezes, in 920
annotated audio samples coming from 126 subjects.

The cycles were annotated by respiratory experts as including crackles,
wheezes, a combination of them, or no adventitious respiratory sounds. The
recordings were collected using heterogeneous equipment and their duration
ranges from 10 s to 90 s. In addition, noise levels in some respiration cycles is
high, representing very well, real life conditions. Finally, training and testing data
are already defined by the challenge organization committee. More information
regarding the dataset is available in [18].

1 https://bhichallenge.med.auth.gr/.

https://bhichallenge.med.auth.gr/
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Table 2. The recognition rates for the proposed and contrasted methods.

Approach Recognition rate (%)

HMMs+MFCCs [4] 39.5

Non-linear spectral features+SVM [19] 49.8

DAG-HMM + WP-Integration 50.1

4.2 System Parameterization

The low-level feature extraction window is 30 ms with 10 ms overlap between
subsequent windows, while the Daubechies mother wavelet was selected. The
HMMs of each node are optimized in terms of number of states and nodes
following the Expectation-Maximization and Baum Welch algorithms [14]. As
the considered sound events are characterized by a distinct time evolution, we
employed HMMs with left-right topology, i.e. only left to right states transitions
are permitted. Moreover, the distribution of each state is approximated by a
Gaussian mixture model of diagonal covariance, which may be equally effective
to a full one at a much lower computational cost [16].

The maximum number of k-means iterations for cluster initialization was set
to 50 while the Baum-Welch algorithm used to estimate the transition matrix
was bounded to 25 iterations with a threshold of 0.001 between subsequent
iterations. The number of explored states ranges from 3 to 7 while the number
of Gaussian components used to build the GMM belongs to the {2, 4, 8, 16,
32, 64, 128, 256, and 512} set. The final parameters were selected based on the
maximum recognition rate criterion. The machine learning package Torch2 was
used to construct and evaluate GMMs and HMMs.

4.3 Results

Table 2 depicts the rates achieved by two contrasted approaches as well as the
proposed one. We observe that the solution based on DAG-HMM fed with PWP-
Integration feature set achieved the highest recognition rate which is equal
to 50.1%. Interestingly the inferred topological order suggested the execution
of classification tasks with the following order: (a) crack+wheeze vs. normal,
(b) normal vs. wheeze, (c) crack vs. crack+wheeze, (d) crack vs. wheeze, (e)
crack+wheeze vs. wheeze, and (f) crack vs. normal.

Towards a more detailed picture of its classification capabilities, Table 3 tab-
ulates the confusion matrix. As we can see, the class identified with the highest
accuracy is the wheeze one with 64.5% and second is the normal one with 63%.
On the contrary, crack sound events were the most misclassified ones with the
respective rate being 36.7%.

Even though the achieved rate is the highest one reported in the litera-
ture, it is still far from satisfactory. Interestingly, when samples from crack,

2 Freely available at http://torch.ch/.

http://torch.ch/


Classification of Sounds Indicative of Respiratory Diseases 101

Table 3. The confusion matrix (in %) achieved by the proposed approach. The average
recognition rate is 50.1%.

Presented Responded

crack crack+wheeze normal wheeze

crack 36.7 3.1 58.5 1.6

crack+wheeze 3.1 38.4 57.9 0.6

normal 32.4 3.3 63 1.3

wheeze 0.5 3.2 31.8 64.5

crack+wheeze, and wheeze are misclassified, they are identified as normal at
most cases. This indicates that the patterns exhibited by the data coming form
the normal class are similar to all other classes. A potential solution to this
problem is collecting more data form the non-normal classes, such that the dif-
ferences are highlighted.

5 Conclusions

This work explained a graph-based classification scheme encompassing wavelet
analysis and temporal modeling. Such an approach was able to surpass solutions
existing in the literature. Nonetheless, the achieved classification rates highlight
the fact that automated respiratory sound analysis systems are not yet ready to
assist medical experts. Towards improving the current performance, in the future
we intent to pursue the following directions: (a) augment the non-normal part
of the dataset, (b) employ a combination of spectral and wavelet features, and
(c) include a discriminative classifier, possibly forming a synergistic framework.
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