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Abstract. The smart metering infrastructure has changed how electricity is
measured in both residential and industrial application. The large amount of data
collected by smart meter per day provides a huge potential for analytics to
support the operation of a smart grid, an example of which is energy demand
forecasting. Short term energy forecasting can be used by utilities to assess if
any forecasted peak energy demand would have an adverse effect on the power
system transmission and distribution infrastructure. It can also help in load
scheduling and demand side management. Many techniques have been proposed
to forecast time series including Support Vector Machine, Artificial Neural
Network and Deep Learning. In this work we use Long Short Term Memory
architecture to forecast 3-day ahead energy demand across each month in the
year. The results show that 3-day ahead demand can be accurately forecasted
with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper
proposes way to quantify the time as a feature to be used in the training phase
which is shown to affect the network performance.
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1 Introduction

The introduction of smart meters technology in recent years have shaped the metering
infrastructure industry providing a smart, efficient and regular monitoring of energy
consumption. Smart meters have been deployed in almost all residential and industrial
applications around the world and in Australia giving the potential for metering
intelligence and analytics [1, 2]. The smart meter usually captures aggregate of energy
consumption in either a 15 or 30 min window creating a historic profile of energy
consumption for each user.

Energy consumption is mainly driven by the energy consumer actions and beha-
viours which are affected by the consumer preferences. Since consumers’ preferences
are likely to change over time, this introduces uncertainties in the daily energy con-
sumption pattern. Other factors influencing energy consumption include economic
situations, climate change, holidays, working days, time periods and social and
behavioural aspect [3]. In addition to that electricity demand is on the rise with
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increased population and introduction of many appliances such as dish washer and
cloth dryer into the household. Another contributor to the increase in energy con-
sumption is climate change which contributes to a spike in energy consumption for
approximately 40 h a year or 0.5% according to a report by Powercor Australia [4].
The supply side may or may not be able to handle the spike in demand if it has not been
properly planned. One way to manage the spike in demand is to increase electrical
assets such as generation, distribution and transmission infrastructure to accommodate
the increase in energy consumption. However this increase in asset is not suitable as the
cost of installing the electrical infrastructure far outweigh the benefits of meeting the
spike in demand as it only happens about 0.5% of the year. Another way of managing
the sudden increase in energy consumption is through energy management strategies
applied at the demand side [5, 6]. In order to properly and effectively manage peak
energy consumption in the short term, an accurate load forecasting is required.

Load forecasting is one of the most important analytics for the smart grid as it
provides a prediction of what would be the likely energy demand in the future with a
margin of error allowing for a timely decision making [7]. The purpose of demand
forecasting depends on the prediction period such as short, medium or long term. Short,
medium and long term forecasting are defined as being less than 1 week, between 1
week to one year and more than one year respectively [8]. Short term forecasting can be
used as an input into demand side management framework to help better addressing
high peak consumption due to specific events such as heat wave or blizzard depending
on the season. Medium term forecasting is mostly used for load scheduling and
maximizing power distribution and transmission asset utilization. Whereas long term
forecasting focuses on identifying time period where the demand will be the lowest to
plan for maintenance or shut down for upgrade. Long term is also used to plan for
upgrading the power network due to a constant and permanent increase in demand that
is not prone to seasonal or daily fluctuations [9].

There are many applications for load forecasting based on statistical and machine
learning technologies that have been developed in the literature [10]; time series and
artificial neural networks are most common techniques for short term and medium term
forecasting [11–13]. Other short term forecasting are based on deep learning Long
Short-Term Memory (LSTM) approach which has been proven in [14, 15] to be
effective compared to traditional approach. LSTM has also been widely used and
proven to be effective in short and medium term forecasting [16, 17].

A recent study by [18] to develop a high precision ANN for load forecasting
(DeepEnergy) conclude that the proposed technique exceeds the traditional LSTM
network in terms of the Mean Absolute Percentage Error (MAPE) for a 3-day ahead
forecast. However in their implementation of LSTM, they did not consider other
features to effectively train the LSTM network. Moreover they used data from two
different months for training and data from a third month for forecasting. This may
affect the prediction accuracy of LSTM as consumption can be different from one
month to another. In another study conducted by [2] using dynamic neural network to
load forecast which seems to be giving a good accuracy, however similar to the work
by [18], the experiment does not consider other features to improve the accuracy of the
model rather depend solely on the historic energy consumption.
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In this paper we propose a LSTM deep learning to forecast energy demand for
clusters of energy users in the short and medium term. The difference between our
work and the work in the literature is in the way we pre-process the raw data for
training and the use of two more features in addition to the historic energy consumption
to improve the forecasting process. In terms of training the LSTM, most works in the
literature uses past history of time series to forecast future ones, however in this work
we propose a time feature curve to define unique time instance across the week. IN
doing this the data during training can be shuffled to avoid over fitting. The first trial is
to forecast 3-day ahead energy consumption in each month and the second trial is to
forecast 15 days ahead energy consumption in a year. This work is anticipated to be an
important step toward developing a LSTM model to accurately forecast peak energy
consumption in the short and medium term. The model can be used by utilities to
prepare for spike in energy and hence power demand during a heat wave.

2 Research Approach

The approach aims at forecasting a 3-day ahead energy consumption of clusters of
energy users and accurately predicts peak consumption occurring during the 3 days
prediction window. This will allow utilities to take actions to manage the spike in
demand if the forecasted demand is higher than the capacity of the supply side. In
addition to the 3-day ahead prediction, we attempt to forecast 15 days ahead energy
consumption by training the LSTM on larger data. The LSTM we used has the
architecture defined in [3] which consists of 3 gate units namely, input, output and
forget gate to form one memory cell. Gates control the flow of the energy consumption
time series inside the LSTM unit whereas the cell record dependencies between values
of the time series. Each gate uses a sigmoid activation function ФS whereas the cell
state uses hyperbolic tangent activation function ФT.

Given an input time series yt the LSTM has to learn the input weights I, the
recurrent weights R and the bias b where I, R and b are 4-by-1 column vectors with
elements correspond to input, output and forget gate and the cell state. The input i,
forget f and output o gates at time step t are written as:

it ¼ USðIixt þRiht�1 þ biÞ ð1Þ

ft ¼ USðIf xt þRf ht�1 þ bf Þ ð2Þ

ot ¼ USðIoxt þRoht�1 þ boÞ ð3Þ

Where ht−1 is the output of the LSTM cell at the previous time step. Similarly, the
cell state c is written as:

ct ¼ UTðIcxt þRcht�1 þ bcÞ ð4Þ
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At each time step, the LSTM uses the time series to compute ct and ht which are
then fed into a regression layer to predict the time series value. We used the root mean
square error as a metric performance during training.

3 Data Processing

3.1 The Data

The energy consumption of 609 anonymous households in Victoria Australia have
been collected by Power Distribution Company using smart meters every 30 min for a
full year starting from 9 March 2015 and ending on 8 March 2016. The raw dataset
came in 9 files and each file comprised of the energy consumption of all energy
consumers in each period of time. Table 1 presents information on the raw dataset used
for the research.

Combining all data files into one produces a 3-by-10,698,912 matrix where the
first, second and third column corresponds to consumer label, consumption time and
energy consumption respectively. The next step is to pre-process the raw data into a
feature vector for clustering and then forecasting.

3.2 Data Pre-processing and Analysis

We then reorganize the data into an energy consumption matrix A 17520-by-609 where
columns are energy consumptions in ascending order and rows are the energy con-
sumers identification from the dataset. In addition, we create a time column vector
B 17520-by-1 to preserve the time instances corresponding to energy consumption.

Few time instances were missing for some of the energy consumers due to either
collecting the data days earlier compared to other consumers or after. These time
instances were removed from the energy consumption matrix to avoid dealing with
empty cells when training the neural network hence reducing the size of Matrix A to
17496-by-609.

Table 1. Smart meter energy consumption raw data

Data file no. Start date End date Total no. of sample points

9 9-Mar-15 19-Apr-15 1,227,744
1 20-Apr-15 31-May-15 1,227,744
2 1-Jun-15 11-Jul-15 1,198,512
3 12-Jul-15 22-Aug-15 1,227,744
4 23-Aug-15 2-Oct-15 1,198,512
5 3-Oct-15 14-Nov-15 1,256,976
6 15-Nov-15 27-Dec-15 1,256,976
8 28-Dec-15 6-Feb-16 1,198,512
7 7-Feb-16 8-Mar-16 906,192
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3.3 Clustering

Forecasting the load of individual energy consumer is often impracticable in residential
sector as each consumer contributes a small proportion to the loading of the transformer
or the connection point unless the consumer is a large industrial load which can be
treated separately. As a result we employ a metric to cluster the dataset into optimal
number of clustering thus reducing the number of loads into manageable time series for
forecasting. The metric is based on the eigenvalues of the correlation matrix between
the clusters. We use self-organizing maps to group energy consumers from 2 to n
clusters and deduce a cluster’s representative profile by taking the mean of all energy
consumption profiles within the cluster. We then use the metric to decide whether the
number of clusters is optimal or not. We found that the optimal number of clusters for
this dataset is 4 clusters which are plotted in Fig. 1. The clustering technique is dis-
cussed in another paper and is outside the scope of this work.

3.4 Features Definition

We have identified three features that affect the forecast error and improve predications
namely; historic energy consumption, daily temperature and time of day. Historic
energy consumption provides insight into how much energy is being used in a day in
each month at specific time of the days. This allows the forecast model to learn from
historic consumption to predict future ones.

Fig. 1. Representative cluster consumption profile of 609 energy consumers within the dataset
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The daily temperature affects the consumer behavior to use less or more energy
depending on how hot or cold the weather is at a specific time instance. Temperatures
in the range of 19 to 25 °C are comfortable temperature that would unlikely to influ-
ence the energy consumption; however any temperature higher or lower than the
comfortable temperature range would likely to influence the energy consumption.
Figure 2a shows a typical plot of a temperature profile across the day and Fig. 3 shows
how the clusters energy consumption change during a hot day when the temperature is
higher than the comfortable temperature compared to a normal day. This is evident
from the energy consumption range of 0.1 to 1.2 kWh in Fig. 3a during a hot day
compared to the energy consumption range of 0.1 to 0.35 kWh during a normal day in
Fig. 3c.

Time affects energy consumer as it represents the instance when a specific energy is
consumed. This is usually different for each consumer as the consumption will be
affected by daily behavior such as scheduling of regular loads such laundry, dish
washing, TV and other electronics devices. Another factor that impact consumption on
different is whether the house become non-occupant during a certain time of the day
where parent are at work and children at school. This can change from one family to
another. The day of the week is also important as the consumer behavior is likely to be
different on weekdays compared to weekends. As a result it is vital to propose a time
feature where each time instances in a 7 day is unique and each day in a week is unique
as week. We construct the feature vector from the time instances where each day is
given a number from 1 to 7, where 2–6 represent weekdays and 1 and 7 represent
weekends, and each 30-min interval in the day is given a number from 1 to 48 where
corresponds to 00:00 and 48 corresponds to 23:00. The time instance then becomes a
factor of day and time by appending the time number to the end of the day number. For
example, 8:00 am on Tuesday is written as 318 where 3 corresponds to Tuesday and 18
corresponds to 8:00am. We then divide this number by the highest value which is 748
corresponding to Saturday at 23:00 or 11:30 pm to get a time feature value between 0
and 1. Figure 2b is a plot of the time feature profile across the week.

Fig. 2. (a) Temperature profile in °C across the day for 0 March 2015; (b) Time feature profile
to across the week giving each 30-min time instance a unique number
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4 Experimental Results

We conducted the simulation over three experiments where each experiment tests
different hypothesis. The first experiment tests the effectiveness of LSTM short-term
forecasting capabilities by comparing performance error of 3-day ahead forecasts for
cluster 1 across different months of the year using the historic energy consumption
along with either the temperature or the time feature and by using all three features
together. The second experiment uses both time and temperature features to forecast
energy consumption for clusters 2, 3 and 4 and third experiment aims to forecast 15
days ahead in a year. In all cases the dataset is divided into a ratio of 70, 10 and 10 for
training, validation and testing respectively. In the case of 3-day ahead forecasts the

Fig. 3. (a) Clusters energy consumption on a hot day; (b) The temperature across the day for 13
January 2016; (c) Clusters energy consumption on a normal day; (d) The temperature across the
day for 16 October 2015 unique number
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dataset corresponds to daily consumptions in each month, however in the case of 15
days ahead forecast the dataset corresponds to the daily consumption for the entire
year.

4.1 Experiment 1–3-Day Ahead Forecast (2/3 Features)

We use both the MAPE and the RMSE in testing the performance of the LSTM which
is depicted in Fig. 4. It can be seen from the figure that the lowest error in terms of
MAPE is achieved by the 3 features forecast in October (Fig. 4a) and the lowest error
in terms of RMSE is achieved by the 2 features (temperature feature) forecast in April
(Fig. 4b). On average the 3 features forecast across all months is about 5% in terms of
MAPE and 5.2% in terms of RMSE. While the average RMSE for 2 features forecast
scored slightly lower (less than 0.5%) than the 3 features however the average MAPE
for the 3 features is considerably lower (2%) than 2 features.

Figure 5 shows the 3-day ahead energy consumption forecasts for April, June,
March and November. It can be observed from March forecasts that none of the
features used for training were able to accurately predict the second and the third peak
consumption. This can be attributed to March raw data being from two different years
as shown in Table 1. However the intensities of the peak consumptions in April, June
and November are forecasted with acceptable accuracy. Overall the forecasts using the
three features are more accurate compared with two features.

Fig. 4. The mean absolute percentage error (a) and the root mean square error (b) for 3-day
ahead prediction for LSTM in each month and the average MAPE across all months for 2 and 3
features
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4.2 Experiment 2–3-Day Ahead Forecast (3 Features on 3 Remaining
Clusters)

In this experiment we use the monthly energy consumption from the dataset to train the
LSTM to forecast 3-day ahead for the remaining three clusters and using the 3 features
defined in previous section. Figure 6 shows the forecast energy consumption compared
with the actual. It can be observed from the figure that the September peak con-
sumption forecast for cluster 4 is the most accurate compared with other clusters in the
same month. This may be attributed to fewer variations in the energy consumption
across the day for cluster 4. In comparison cluster 2 has more variations across the day
and has almost two recorded peak consumptions across the day resulting in higher
forecasting error. Overall, the proposed methodology, features and LSTM architecture
can be used to accurately forecast 3-day ahead energy consumption of various pattern
or shape.

Fig. 5. 3-day ahead forecasts for 2 and 3 features in the months of March (a), April (b), June
(c) and November (d)
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4.3 Experiment 3–15-Day Ahead Forecast (3 Features)

In this experiment we use the energy consumption for the whole year to train the LSTM
to forecast 15-day ahead energy demand. Figure 7 depicts the forecast energy con-
sumption compared with the actual consumption for cluster 4. It can be noted from the

Fig. 6. 3-day ahead forecasts using 3 features in the months of February and September for
cluster 2 (a) and (b), cluster 3 (c) and (d) and cluster 4 (e) and (f)
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figure that the energy consumption is forecasted with acceptable forecasting error of
3.7624% and 3.61% in terms of MAPE and RMSE respectively. A 15 days ahead
prediction can very useful for utilities to determine whether peak consumption is likely
to occur during the 15 days so they can plan for it accordingly.

5 Conclusion and Future Work

This work focuses at the potential of using deep learning LSTM to forecast 3 and 15
days ahead energy demand of different load profiles. The outcome of the research
suggests that LSTM is a strong architecture for both short and medium term fore-
casting. We have also shown that defining effective features improve the forecasting
model. As load and energy demand is critical for demand side management, this work
can provide utilities with the needed information to make decision on how to better
manage peak energy demand with an error of 3.15%. As future works, we plan to
improve the LSTM forecasting in short term and accurately forecast 3-month ahead by
tweaking the existing architecture as well as develop LSTM deep learning network for
long term forecasting.

Fig. 7. 15 days ahead energy consumption forecast for cluster 4 with MAPE of 3.7624% and
RMSE of 3.61%
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