
Sorting by Reversals, Transpositions,
and Indels on Both Gene Order

and Intergenic Sizes

Klairton Lima Brito1(B) , Géraldine Jean2 , Guillaume Fertin2 ,
Andre Rodrigues Oliveira1 , Ulisses Dias3 , and Zanoni Dias1

1 Institute of Computing, University of Campinas, Campinas, Brazil
{klairton,andrero,zanoni}@ic.unicamp.br

2 LS2N, UMR CNRS 6004, University of Nantes, Nantes, France
{geraldine.jean,guillaume.fertin}@univ-nantes.fr

3 School of Technology, University of Campinas, Limeira, Brazil
ulisses@ft.unicamp.br

Abstract. During the evolutionary process, the genome is affected by
various genome rearrangements, which are events that modify large
stretches of the genetic material. In the literature, several models were
designed to estimate the number of events that occurred during the
evolution, but these models represent genomes as a sequence of genes,
overlooking the genetic material between consecutive genes. However,
recent studies show that taking into account the genetic material present
between consecutive genes can be more realistic. Reversal and transpo-
sition are genome rearrangements widely studied in the literature. A
reversal inverts a segment of the genome while a transposition swaps
the positions of two consecutive segments. Genomes also undergo non-
conservative events (events that alter the amount of genetic material)
such as insertion and deletion, which insert and remove genetic material
from intergenic regions of the genome, respectively. We study problems
considering both gene order and intergenic regions size. We investigate
the reversal distance between two genomes in two scenarios: with and
without non-conservative events. For both problems, we show that they
belong to NP-hard problems class and we present a 4-approximation
algorithm. We also study the reversal and transposition distance between
two genomes (and the variation with non-conservative events) and we
present a 6-approximation algorithm.

Keywords: Genome rearrangements · Intergenic regions ·
Approximation algorithms

1 Introduction

Genome rearrangements are events that insert, remove or change the position
and/or orientation of large stretches of the genetic material. When we compare
c© Springer Nature Switzerland AG 2019
Z. Cai et al. (Eds.): ISBRA 2019, LNBI 11490, pp. 28–39, 2019.
https://doi.org/10.1007/978-3-030-20242-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20242-2_3&domain=pdf
http://orcid.org/0000-0001-5287-2925
http://orcid.org/0000-0002-1534-2682
http://orcid.org/0000-0002-8251-2012
http://orcid.org/0000-0002-0568-1859
http://orcid.org/0000-0002-4763-3046
http://orcid.org/0000-0003-3333-6822
https://doi.org/10.1007/978-3-030-20242-2_3

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 29

the genomes of two individuals, one of the main goals is to estimate the sequence
of rearrangement events that transformed one genome into the other.

A model M determines the set of rearrangement events allowed to mod-
ify the genome. The size of the smallest sequence of rearrangement events in
a model M capable of transforming a genome into another is called rearrange-
ment distance. When we assume no duplicated gene, we can map every gene to a
unique number to represent genomes as permutations of integer elements. Usu-
ally, rearrangement problems are treated as sorting problems and the goal is to
turn any genome π into a specific genome ι = (1, . . . , n), which is called identity
permutation. If the orientation of the genes is known, a positive or negative sign
is assigned to each element. Otherwise, signs are omitted.

When the gene orientations are unknown, Caprara [6] proved that the Sorting
Permutations by Reversals problem belongs to NP-hard problems class. The best
algorithm has an approximation factor of 1.375 and was presented by Berman
et al. [1]. Sorting Permutations by Transpositions problem also belongs to NP-
hard problems class [4] and the best algorithm has an approximation factor of
1.375 [7]. When we consider a model allowing reversals and transpositions we
have the Sorting Permutations by Reversals and Transpositions problem. The
best algorithm for this problem has an approximation factor of 2.8334 + ε, for
any ε > 0 [10] and its complexity is unknown.

The representation of a genome only as a gene sequence is a technique very
useful, but all the information that is not present on the genes are discarded
that implies in loss of information. In particular, the intergenic regions between
consecutive genes are not taken into account by these representations. Recently,
authors have suggested that incorporating this information may improve the
distance estimate from an evolutionary point of view [2,3]. Thus, it is justi-
fied to perform investigations considering the order of the genes and the size of
the intergenic regions. Works considering gene order and intergenic sizes have
already been presented. A model allowing Double-Cut and Join (DCJ) opera-
tion was presented together with the NP-hard proof and a 4/3-approximation
algorithm [8]. The DCJ [11] is a rearrangement event that cuts the genome into
two points and the extremities of the resulting segments are reassembled fol-
lowing specific criteria. A model allowing DCJs, insertions, and deletions also
was investigated and an exact polynomial time algorithm was designed [5] when
insertions and deletions act only on intergenic regions. Besides, Oliveira et al. [9]
presented a model that allows the use of only super short reversals (reversals
that affect at most two genes) also considering intergenic regions size.

In this paper, we consider that gene orientations are unknown. We investigate
four problems to estimate the distance between genomes also taking into account
intergenic regions, two of them allowing just conservative events of reversal and
transposition: Sorting by Intergenic Reversals (SbIR) and Sorting by Intergenic
Reversals and Transpositions (SbIRT). We also investigate two other problems
that allow non-conservative events of insertion and deletion: Sorting by Inter-
genic Reversals, Insertions, and Deletions (SbIRID) and Sorting by Intergenic
Reversals, Transpositions, Insertions, and Deletions (SbIRTID).

30 K. L. Brito et al.

This manuscript is organized as follows. Section 2 provides definitions that are
used throughout the paper. Section 3 presents the complexity proofs for SbIR and
SbIRID problems and an approximation algorithm for each problem addressed
in this manuscript. Section 4 concludes the paper.

2 Basic Definitions

Given a genome G as a sequence of n genes g1, . . . , gn and a sequence of n + 1
intergenic regions r1, . . . , rn+1, each gene is surrounded by two intergenic regions
so that: G = (r1, g1, r2, g2, . . . , rn, gn, rn+1). Our model assumes that (i) genes
orientation is unknown, (ii) there are no duplicate genes, and (iii) the considered
genomes share the same set of genes. In this way, we can assign each gene a unique
value and map the gene sequence as a permutation π = (π1 π2 . . . πn), πi ∈ N,
1 ≤ πi ≤ n, and πi �= πj for all i �= j.

Rearrangement events can split intergenic regions, and each intergenic
region has a well-defined amount of nucleotides. Thus, we represent it by
the size (amount of nucleotides). The sequence of intergenic regions π̆ =
(π̆1 π̆2 . . . π̆n+1), π̆i ∈ N, represents the respective intergenic region sizes,
such that π̆i is on the left side of πi, whereas π̆i+1 is on the right side.

Since we represent genes as a permutation π, we can treat the problem as a
sorting problem in which the target permutation is the identity ι. This approach
is widely used and it means that if we are able to transform (π, π̆) into (ι, ῐ)
we can also transform (α, ᾰ) into (σ, σ̆). Therefore, an instance of our prob-
lem is composed by three elements (π, π̆, ῐ) and the rearrangement distance
considering a model M is represented as dM(π, π̆, ῐ).

Definition 1. An intergenic reversal ρ
(i,j)
(x,y), with 1 ≤ i ≤ j ≤ n, 0 ≤ x ≤ π̆i,

0 ≤ y ≤ π̆j+1, and {x, y} ⊂ N, splits the intergenic regions π̆i and π̆j+1 into
pieces with sizes (x, x′ = π̆i−x) and (y, y′ = π̆j+1−y), respectively. The sequence
(x′, πi, . . . , πj , y) is inverted and the pieces (x, y) and (x′, y′) form new intergenic
regions π̆i and π̆j+1, respectively.

Definition 2. An intergenic transposition τ
(i,j,k)
(x,y,z), with 1 ≤ i < j < k ≤ n + 1,

0 ≤ x ≤ π̆i, 0 ≤ y ≤ π̆j, 0 ≤ z ≤ π̆k, and {x, y, z} ⊂ N, splits the intergenic
regions π̆i, π̆j, and π̆k into pieces with sizes (x, x′ = π̆i − x), (y, y′ = π̆j − y),
and (z, z′ = π̆k − z), respectively. The sequences (x′, πi, . . . , y) and (y′, πj , . . . , z)
swap positions without changing orientation, and pieces (x, y′), (z, x′), and (y, z′)
form new intergenic regions π̆i, π̆k+i−j, and π̆k, respectively.

Figures 1(a) and (b) show a generic example of intergenic reversal and inter-
genic transposition, respectively.

Definition 3. An intergenic insertion φi
x, such that 1 ≤ i ≤ (n+1), x > 0, and

x ∈ N acts on the intergenic region π̆i inserting an amount x of nucleotides.

Definition 4. An intergenic deletion ψi
x, such that 1 ≤ i ≤ (n+1), 0 < x ≤ π̆i,

and x ∈ N acts on the intergenic region π̆i removing an amount x of nucleotides.

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 31

π̆1 · · · π̆i π̆j+1 · · · π̆n+1π1 πi−1 · · ·πi πj πj+1 πn

π̆1 · · · x |x′ y | y′ · · · π̆n+1π1 πi−1 · · ·πi πj πj+1 πn

π̆1 · · · x | y x′ | y′ · · · π̆n+1π1 πi−1 · · ·πj πi πj+1 πn

(a)

π̆1 · · · π̆i · · · π̆j · · · π̆k · · · π̆n+1π1 πi−1 πi πj−1 πj πk−1 πk πn

π̆1 · · · x |x′ · · · y | y′ · · · z | z′ · · · π̆n+1π1 πi−1 πi πj−1 πj πk−1 πk πn

π̆1 · · · x | y′ · · · z |x′ · · · y | z′ · · · π̆n+1π1 πi−1 πj πk−1 πi πj−1 πk πn

(b)

Fig. 1. The figure illustrates two intergenic genome rearrangement operations, the
reversal (a) and transposition (b).

From now on, we will refer to the operations simply as a reversal, transpo-
sition, insertion, and deletion. Since reversal and transposition do not insert or
remove genetic material, when dealing solely with conservative events the sum
of intergenic regions size in both genomes is the same.

Definition 5. Given a permutation π with n elements, the extended permuta-
tion π′ is a permutation with two new elements π′

0 = 0 and π′
n+1 = n + 1.

From now on, we use the term permutation to denote the extended permu-
tation. We say that an intergenic region is of (in)correct size if it occurs between
two elements consecutive both in π′ and ι′ and whose size is (not) the same in
π′ and ι′.

Definition 6. An intergenic breakpoint is a pair of elements π′
i and π′

i+1 of
the permutation π′, such that either they are not consecutive in the identity
permutation ι′, or they are consecutive and the intergenic region between them
has an incorrect size.

An intergenic breakpoint represents a region that at some point has to be
affected by some operation either to fix the gene order or the size of the intergenic
region. Figure 2 shows examples of intergenic breakpoints.

Definition 7. The number of intergenic breakpoints is denoted as ib(π′, π̆, ῐ).

Remark 1. The instance (ι′, ῐ, ῐ) has a property that does not occur in any other
instance: ib(ι′, ῐ, ῐ) = 0.

32 K. L. Brito et al.

(π′, π̆) = 5 5 2 0 4 1 10 1 2 3 6 5 4 7

π′
0 π′

1 π′
2 π′

3 π′
4 π′

5 π′
6 π′

7

(ι′, ῐ) = 5 0 3 3 2 4 10 1 2 3 4 5 6 7

ι′0 ι′1 ι′2 ι′3 ι′4 ι′5 ι′6 ι′7

Fig. 2. Given the permutation π′ = (0, 1, 2, 3, 6, 5, 4, 7) and the size of the intergenic
regions π̆ = (5, 5, 2, 0, 4, 1, 1) and ῐ = (5, 0, 3, 3, 2, 4, 1) we have the following intergenic
breakpoints: (π′

1, π
′
2), (π′

2, π
′
3), (π′

3, π
′
4), (π′

5, π
′
6), and (π′

6, π
′
7). Note that the elements

of the intergenic breakpoint (π′
3, π

′
4) are not consecutive on the identity permutation

while the elements of the intergenic breakpoint (π′
2, π

′
3) are, but the intergenic region

between the elements has an incorrect size.

Definition 8. The variation in the number of intergenic breakpoints after apply-
ing a sequence of operations S is denoted as Δib(π′, π̆, ῐ, S), such that:

Δib(π′, π̆, ῐ, S) = ib((π′, π̆, ῐ) · S) − ib(π′, π̆, ῐ).

Definition 9. A pair (a, b) is a block in a permutation π′ if |a − b| = 1, the
elements a and b are consecutive in the permutation π′, and the intergenic region
between them has a correct size.

Definition 10. Two intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1), such that

i < j, are connected if the following conditions are fulfilled:

i. At least one of the pairs (π′
i, π

′
i+1), (π′

j , π
′
j+1), (π′

i, π
′
j), (π′

i, π
′
j+1), (π′

i+1, π
′
j),

or (π′
i+1, π

′
j+1) corresponds to two consecutive elements in the identity per-

mutation ι′ that do not form a block in the permutation π′.
ii. π̆i+1 + π̆j+1 ≥ ῐk, such that ῐk is the size of the intergenic region between the

pair of consecutive elements in the identity permutation ι′.

Connected intergenic breakpoints represent regions that have the potential
to remove at least one intergenic breakpoint by placing two consecutive elements
and fixing the size of the intergenic region between them. For example, in Fig. 2,
the intergenic breakpoints (π′

3, π
′
4) and (π′

6, π
′
7) are connected while the intergenic

breakpoints (π′
2, π

′
3) and (π′

3, π
′
4) are not.

3 Results

We start this section by showing that problems SbIR and SbIRID belong to the
problem class NP-hard. For this, we used a reduction of Sorting by Reversals
problem, which does not consider intergenic regions. Then, we present lower
bounds (Subsect. 3.1) and approximation algorithms (Subsect. 3.2) for each of
the variations of the problems addressed in this work.

The Sorting by Reversals problem (SbR) has already been proven NP-
hard [6]. An instance of this problem consists of a permutation δ and a natural
number d. The goal is to determine if its possible to transform δ into ι applying
at most d reversals.

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 33

Lemma 1. SbIR problem is NP-hard.

Proof. We can reduce all instances of SbR to instances of SbIR by setting π = δ
and π̆ = ῐ = (0 0 ... 0). Note that it is possible to transform δ into ι applying at
most d reversals if and only if dSbIR(π, π̆, ῐ) ≤ d. ��
Lemma 2. SbIRID problem is NP-hard.

Proof. We can reduce all instances of SbR to instances of SbIRID by setting
π = δ and π̆ = ῐ = (0 0 ... 0). Note that for these instances of the SbIRID
problem no insertion and deletion will be applied, otherwise we could get a
smaller sequence of reversals just by ignoring the insertions and deletions. That
way, it is possible to transform δ into ι applying at most d reversals if and only
if dSbIRID(π, π̆, ῐ) ≤ d. ��

3.1 Lower Bounds

Following lemmas present lower bounds for each problem we consider.

Lemma 3. Δib(π′, π̆, ῐ, ρ) ≥ −2 for any reversal ρ.

Proof. Suppose that (π′
i−1, π

′
i) and (π′

j , π
′
j+1) are intergenic breakpoints. In this

case, the best scenario after applying reversal ρ
(i,j)
(x,y) removes the intergenic break-

points (π′
i−1, π

′
i) and (π′

j , π
′
j+1), reducing the number of intergenic breakpoints

by two. Since any reversal only affects the neighborhood of two pairs of genes
and two intergenic regions it is impossible to remove more than two intergenic
breakpoints. ��
Lemma 4. Δib(π′, π̆, ῐ, τ) ≥ −3 for any transposition τ .

Proof. Suppose that (π′
i−1, π

′
i), (π′

j−1, π
′
j), and (π′

k−1, π
′
k) are intergenic break-

points. In this case, the best scenario is a transposition τ
(i,j,k)
(x,y,z) that removes the

intergenic breakpoints (π′
i−1, π

′
i), (π′

j−1, π
′
j), and (π′

k−1, π
′
k), reducing the num-

ber of intergenic breakpoints by three. Since any transposition only affects the
neighborhood of three pairs of genes and three intergenic regions it is impossible
to remove more than three intergenic breakpoints. ��
Lemma 5. Δib(π′, π̆, ῐ, φ) ≥ −1 for any insertion φ.

Proof. As an insertion acts in just one intergenic region this means that the
best scenario is to remove the intergenic breakpoint (π′

i−1, π
′
i) after applying an

insertion φi
x, reducing by one the number of intergenic breakpoints. ��

Lemma 6. Δib(π′, π̆, ῐ, ψ) ≥ −1 for any deletion ψ.

Proof. As a deletion acts in just one intergenic region this means that the best
scenario is to remove the intergenic breakpoint (π′

i−1, π
′
i) after applying a dele-

tion ψi
x, reducing by one the number of intergenic breakpoints. ��

34 K. L. Brito et al.

Theorem 1. dSbIR(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)
2 .

Proof. By the Remark 1, we know that (ι′, ῐ, ῐ) is the only instance with no
intergenic breakpoints. To achieve the identity permutation and to fix the inter-
genic region sizes we need to remove ib(π′, π̆, ῐ) intergenic breakpoints. Also,
by Lemma 3, a reversal removes at most two intergenic breakpoints and lemma
follows. ��
Theorem 2. dSbIRID(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

2 .

Proof. Directly by Lemmas 5 and 6, and Theorem 1. ��
Theorem 3. dSbIRT (π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

3 .

Proof. Directly by Remark 1 and Lemmas 3 and 4. ��
Theorem 4. dSbIRTID(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

3 .

Proof. Directly by Lemmas 5 and 6, and Theorem 3. ��

3.2 Approximation Algorithms

In this subsection, we will present four approximation algorithms. Initially, we
will show an algorithm with approximation factor 4 for the SbIR and SbIRID
problems. Then, we will present an algorithm with approximation factor 6 for
the SbIRT and SbIRTID problems.

Lemma 7. Let (π, π̆, ῐ) be an instance such that
∑n+1

i=1 π̆i ≥ ∑n+1
i=1 ῐi and the

number of intergenic breakpoints is greater than one. It is always possible to find
at least one pair of intergenic breakpoints that are connected.

Proof. Since ib(π′, π̆, ῐ) > 1, we can find at least a pair of intergenic breakpoints.
We have to show that at least one of those pairs will be connected. Suppose that
exists an instance (π, π̆, ῐ), such that

∑n+1
i=1 π̆i ≥ ∑n+1

i=1 ῐi, ib(π′, π̆, ῐ) > 1, and
there is not a pair of intergenic breakpoints that are connected. The possibilities
for not finding such a pair of intergenic breakpoints are:

– For all pairs of intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1) the elements

(π′
i, π

′
i+1), (π′

j , π
′
j+1), (π′

i, π
′
j), (π′

i, π
′
j+1), (π′

i+1, π
′
j), and (π′

i+1, π
′
j+1) are not

consecutive in the identity permutation, but if it is true π cannot be a per-
mutation.

– For all pairs of intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1) we do not

have enough intergenic material to remove any intergenic breakpoint π̆i+1 +
π̆j+1 < ῐk, such that ῐk is the size of the intergenic region between the pair of
consecutive elements in the identity permutation. If it is true it implies that∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi and that contradicts the initial assumption. ��
Lemma 8. Let (π′

i, π
′
i+1) and (π′

j , π
′
j+1) be intergenic breakpoints that are con-

nected. It is possible to remove at least one intergenic breakpoint after at most
two reversals.

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 35

Proof. We analyze the possibilities to remove an intergenic breakpoint based on
a pair of connected intergenic breakpoints.

i. (π′
i, π

′
j) or (π′

i+1, π
′
j+1) are consecutive in the identity permutation: these

cases are symmetric and we need to apply only one reversal ρ
(i+1,j)
(x,y) to place

the element π′
j on the right side of the element π′

i or π′
i+1 on the left side

of π′
j+1. As π̆i+1 + π̆j+1 ≥ ῐk, then the x and y parameters can always be

chosen properly to fill the intergenic region with the correct size between the
consecutive elements generated (Fig. 3(a)).

ii. (π′
i, π

′
j+1): in this case we apply two consecutive reversals. In this scenario, we

need an intergenic breakpoint (π′
k, π′

k+1), such that k < i or k > j, to apply
the sequence of reversals without creating new intergenic breakpoints. We
will prove that exists such intergenic breakpoint by contradiction. Suppose
that there is no intergenic breakpoint (π′

k, π′
k+1) such that k < i or k > j.

This means that the segments (π′
0, . . . , π

′
i) and (π′

j+1, . . . , π
′
n+1) are composed

of consecutive elements with no intergenic breakpoint between them; also we
know that π′

i and π′
j+1 are consecutive elements, but if both statements are

true it implies that there are no valid values for the elements πi+1 and πj of
the permutation π. If k < i we apply a reversal ρ

(k+1,i)
(0,π̆i+1)

to obtain the case

(i) (Fig. 3(b)). If k > j we apply a reversal ρ
(j+1,k)
(0,π̆k+1)

to obtain the case (i)
(Fig. 3(c)). Note that in both scenarios the intergenic regions sizes remains
the same and the case (i) can be applied (Fig. 3(b)).

iii. (π′
i+1, π

′
j): In this case we apply two consecutive reversals. In this scenario, we

need an intergenic breakpoint (π′
k, π′

k+1), such that k > i and k < j, to apply
the sequence of reversals without creating new intergenic breakpoints. We will
prove that exists such intergenic breakpoint by contradiction. Suppose that
there is no intergenic breakpoint (π′

k, π′
k+1) such that k > i and k < j. This

means that the segment (π′
i+1, . . . , π

′
j) is composed of consecutive elements

with no intergenic breakpoint between them; also we know that (π′
i+1, π

′
j)

are consecutive elements, but if both statements are true implies that there
are no valid values for the elements πi+1 and πj of the permutation π. After
identifying the intergenic breakpoint (π′

k, π′
k+1) we apply a reversal ρ

(i+1,k)
(0,π̆k+1)

(Fig. 3(d)) to obtain the case (i).
iv. (π′

i, π
′
i+1) or (π′

j , π
′
j+1): these cases are symmetric and we need to apply two

consecutive reversals. Initially, we apply a reversal ρ
(i+1,j)
(0,π̆j+1)

without changing
the intergenic regions sizes, as result we obtain the case (i) (Fig. 3(e)). ��

Theorem 5. SbIR problem is 4-approximable.

Proof. While the permutation is not sorted and while the permutation has inter-
genic regions with incorrect size, it is always possible to remove at least one
intergenic breakpoint after applying at most two reversals (Lemmas 7 and 8). In
the worst case, it gives us a total of 2ib(π′, π̆, ῐ) reversals to transform (π, π̆, ῐ)
into (ι, ῐ, ῐ). By the Theorem 1, we obtained the lower bound ib(π′, π̆, ῐ)/2 and
the theorem follows. ��

36 K. L. Brito et al.

a)

· · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

b)

· · · π̆k+1 · · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

k π′
k+1 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

ρ2

c)

· · · π̆i+1 · · · π̆j+1 · · · π̆k+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

k π′
k+1 π′

n+1

ρ1

ρ2

d)

· · · π̆i+1 · · · π̆k+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

k π′
k+1 π′

j π′
j+1 π′

n+1

ρ1 ρ2

e)

· · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

ρ2

Fig. 3. The possibilities that can be found when we have a pair of connected intergenic
breakpoints and the operations of reversal that must be applied to remove at least
one intergenic breakpoint. The pair of elements that are consecutive in the identity
permutation are represented with a gray scale color.

Lemma 9. Let (π, π̆, ῐ) be an instance of the Sorting by Intergenic Reversals,
Insertions, and Deletions problem, such that ib(π′, π̆, ῐ) > 0. It is always possible
to find an insertion φ such that Δib(π′, π̆, ῐ, φ) ≤ 0.

Proof. Since ib(π′, π̆, ῐ) > 0, then it exists at least one intergenic breakpoint that
we can apply an insertion in this region. Therefore, in the worst case the amount
of intergenic breakpoints remains the same. ��
Lemma 10. Let (π′, π̆, ῐ) be an instance of the Sorting by Intergenic Reversals,
Insertions, and Deletions problem, such that ib(π′, π̆, ῐ) = 1 and

∑n+1
i=1 π̆i >

∑n+1
i=1 ῐi. It is always possible to find a deletion ψ such that Δib(π′, π̆, ῐ, ψ) = −1.

Proof. Since ib(π′, π̆, ῐ) = 1, then we know that π′ = ι′, otherwise the number of
intergenic breakpoints should be greater than one. Since all the elements of the
permutation π′ are consecutive and

∑n+1
i=1 π̆i >

∑n+1
i=1 ῐi, there is an intergenic

region π̆k, such as π̆k > ῐk. Thus the deletion ψk
ῐk−π̆k

removes the intergenic
breakpoint (π′

k−1, π
′
k) and the lemma follows. ��

Theorem 6. SbIRID problem is 4-approximable.

Proof. We are going to divide the proof into three cases:

i.
∑n+1

i=1 π̆i >
∑n+1

i=1 ῐi: Lemmas 7 and 8 remain valid as long as ib(π′, π̆, ῐ) > 1,
then we apply only one deletion to remove the last intergenic breakpoint
(Lemma 10).

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 37

ii.
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi: Lemmas 7 and 8 are sufficient to sort the permutation
and to fix the sizes of the intergenic regions by applying only reversals.

iii.
∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi: Initially we apply an insertion to make
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi (Lemma 9). Sequentially, Lemmas 7 and 8 guarantee that the per-
mutation will be sorted and the sizes of the intergenic regions will be fixed
applying only reversals. Note that it is not guaranteed that the initial inser-
tion removes any intergenic breakpoint, but then only reversals are applied
and the last reversal must remove two intergenic breakpoints. Considering
the insertion and the last reversal, on average, we were able to remove one
intergenic breakpoint after applying one operation.

Considering the three cases, in the worst scenario, it gives us a total of 2ib(π′, π̆, ῐ)
operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ). By Theorem 2, we obtained the
lower bound ib(π′, π̆, ῐ)/2 and the theorem follows. ��
Lemma 11. Let (π′

i, π
′
i+1) and (π′

j , π
′
j+1) be intergenic breakpoints that are con-

nected. It is possible to remove at least one intergenic breakpoint after at most
two operations of reversal or transposition.

Proof. Similar to Lemma 8, we will analyze the possibilities to remove an inter-
genic breakpoint based on a pair of connected intergenic breakpoints.

i. (π′
i, π

′
j) or (π′

i+1, π
′
j+1): We need to apply only one reversal, which is exactly

as the procedure shown in case (i) of Lemma 8.
ii. (π′

i, π
′
j+1): In this case we need to apply one transposition. As shown previ-

ously in case (ii) of Lemma 8, we know that it must exist another intergenic
breakpoint (π′

k, π′
k+1) such that k < i or k > j. If k < i we apply a transpo-

sition τ
(k+1,i+1,j+1)
(x,y,z) to place the element π′

i on the left side of the element

π′
j+1 (Fig. 4(a)). If k > j we apply a transposition τ

(i+1,j+1,k+1)
(x,y,z) to place

the element π′
j+1 on the right side of the element π′

i (Fig. 4(b)). In both
scenarios, we have that π̆i+1 + π̆j+1 ≥ ῐk, then the x, y, and z parameters
always can be chosen properly to fill the intergenic region with the correct
size between the consecutive elements generated.

iii. (π′
i+1, π

′
j): In this case we need to apply one transposition. As shown previ-

ously in case (iii) of Lemma 8, we know that it must exist another intergenic
breakpoint (π′

k, π′
k+1) such that k > i and k < j. After identifying the

intergenic breakpoint (π′
k, π′

k+1) we apply a transposition τ
(i+1,k+1,j+1)
(x,y,z) to

place the element π′
j on the left side of the element π′

i+1 (Fig. 4(c)). Since
π̆i+1+ π̆j+1 ≥ ῐk, then the x, y and z parameters always can be chosen prop-
erly to fill the intergenic region with the correct size between the consecutive
elements generated.

iv (π′
i, π

′
i+1) or (π′

j , π
′
j+1): We need to apply two reversals exactly as the pro-

cedure shown on Lemma 8 case (iv). ��

Theorem 7. SbIRT problem is 6-approximable.

38 K. L. Brito et al.

a)

· · · π̆k+1 · · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

k π′
k+1 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

τ1

b)

· · · π̆i+1 · · · π̆j+1 · · · π̆k+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

k π′
k+1 π′

n+1

τ1

c)

· · · π̆i+1 · · · π̆k+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

k π′
k+1 π′

j π′
j+1 π′

n+1

τ1

Fig. 4. The possibilities to remove at least one intergenic breakpoint by applying only
one transposition. The pair of elements that are consecutive in the identity permutation
are represented with the color gray.

Proof. While the permutation is not sorted and with all the intergenic regions
with the correct size it is always possible to remove at least one intergenic break-
point after applying at most two operations (Lemmas 7 and 11). In the worst
case, it gives us a total of 2ib(π′, π̆, ῐ) operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ).
By Theorem 3, we obtained the lower bound ib(π′, π̆, ῐ)/3 and the theorem fol-
lows. ��
Theorem 8. SbIRTID problem is 6-approximable.

Proof. Similar to Theorem6, we are going to divide the analysis into three cases:

i.
∑n+1

i=1 π̆i >
∑n+1

i=1 ῐi: Lemmas 7 and 11 remain valid as long as ib(π′, π̆, ῐ) > 1,
then we apply only one deletion to remove the last intergenic breakpoint
(Lemma 10).

ii.
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi: Lemmas 7 and 11 are sufficient to sort the permutation
and to fix the sizes of the intergenic regions by applying only reversals and
transpositions.

iii.
∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi: Initially we apply an insertion to make
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi (Lemma 9). Sequentially, Lemmas 7 and 11 guarantee that the per-
mutation will be sorted and the sizes of the intergenic regions will be fixed
applying only reversals and transpositions. Note that it is not guaranteed
that the initial insertion removes any intergenic breakpoint, but then only
reversals and transpositions are applied and the last operation (reversal or
transposition) must remove at least two intergenic breakpoints. Considering
the insertion and the last operation, on average, we were able to remove one
intergenic breakpoint after applying one operation.

Considering the three cases, in the worst scenario, it gives us a total of 2ib(π′, π̆, ῐ)
operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ). By Theorem 4, we obtained the
lower bound ib(π′, π̆, ῐ)/3, and the theorem follows. ��

Sorting by Rearrangements on Both Gene Order and Intergenic Sizes 39

4 Conclusion

We proved that the problems of Sorting by Intergenic Reversals and Sorting by
Intergenic Reversals, Insertions, and Deletions belong to NP-hard problems class.
Besides, we presented for both problems an algorithms with approximation factor
4. We also investigate the Sorting by Intergenic Reversals and Transpositions
problem and the variation with non-conservative events of insertion and deletion.
For both problems, we designed approximation algorithms of factor 6.

As future works, we intend to improve the approximation factors of the algo-
rithms and develop cost functions that consider the likelihood of each operation.

Acknowledgments. This work was supported by the National Council for Scientific
and Technological Development - CNPq (grants 400487/2016-0, 425340/ 2016-3, and
140466/2018-5), the São Paulo Research Foundation - FAPESP (grants 2013/08293-7,
2015/ 11937-9, 2017/12646-3, and 2017/16246-0), the Brazilian Federal Agency for the
Support and Evaluation of Graduate Education - CAPES, and the CAPES/COFECUB
program (grant 831/15).

References

1. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for
sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol.
2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45749-6 21

2. Biller, P., Guéguen, L., Knibbe, C., Tannier, E.: Breaking good: accounting for
fragility of genomic regions in rearrangement distance estimation. Genome Biol.
Evol. 8(5), 1427–1439 (2016)

3. Biller, P., Knibbe, C., Beslon, G., Tannier, E.: Comparative genomics on artificial
life. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709,
pp. 35–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8 4

4. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transpositions is difficult. SIAM J.
Comput. 26(3), 1148–1180 (2012)

5. Bulteau, L., Fertin, G., Tannier, E.: Genome rearrangements with indels in inter-
genes restrict the scenario space. BMC Bioinform. 17(14), 426 (2016)

6. Caprara, A.: Sorting permutations by reversals and eulerian cycle decompositions.
SIAM J. Discrete Math. 12(1), 91–110 (1999)

7. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transposi-
tions. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 369–379 (2006)

8. Fertin, G., Jean, G., Tannier, E.: Algorithms for computing the double cut and
join distance on both gene order and intergenic sizes. Algorithms Mol. Biol. 12(1),
16 (2017)

9. Oliveira, A.R., Jean, G., Fertin, G., Dias, U., Dias, Z.: Super short reversals on both
gene order and intergenic sizes. In: Alves, R. (ed.) BSB 2018. LNCS, vol. 11228,
pp. 14–25. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01722-4 2

10. Rahman, A., Shatabda, S., Hasan, M.: An approximation algorithm for sorting by
reversals and transpositions. J. Discrete Algorithms 6(3), 449–457 (2008)

11. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–
3346 (2005)

https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/978-3-319-40189-8_4
https://doi.org/10.1007/978-3-030-01722-4_2

	Sorting by Reversals, Transpositions, and Indels on Both Gene Order and Intergenic Sizes
	1 Introduction
	2 Basic Definitions
	3 Results
	3.1 Lower Bounds
	3.2 Approximation Algorithms

	4 Conclusion
	References

