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Preface

On behalf of the Program Committee, we would like to welcome you to the pro-
ceedings of the 15th edition of the International Symposium on Bioinformatics
Research and Applications (ISBRA 2019), held in Barcelona, Spain, June 3–6 2019.
The symposium provides a forum for the exchange of ideas and results among
researchers, developers, and practitioners working on all aspects of bioinformatics and
computational biology and their applications. This year we received 95 submissions in
response to the call for extended abstracts. The Program Committee decided to accept
22 of them for full publication in the proceedings and oral presentation at the sym-
posium. We also accepted 23 for oral presentation. Furthermore, we received 20
submissions in response to the call for short abstracts.

The technical program invited keynote talks were given by Prof. Niko Beerenwinkel
from ETH Zurich, Prof. Martin Vingron from Max Planck Institute for Molecular
Genetics, and Prof. Roderic Guigó from Pompeu Fabra University. We would like to
thank the Program Committee members and the additional reviewers for volunteering
their time to review and discuss symposium papers. We would like to extend special
thanks to the steering and general chairs of the symposium for their leadership, and to
the finance, publicity, and local organization chairs for their hard work in making
ISBRA 2019 a successful event. Last but not least, we would like to thank all authors
for presenting their work at the symposium.

April 2019 Zhipeng Cai
Pavel Skums

Min Li
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Computing a Consensus Phylogeny
via Leaf Removal

Zhi-Zhong Chen1(B), Shohei Ueta1, Jingyu Li2, and Lusheng Wang2

1 Division of Information System Design, Tokyo Denki University,
Hatoyama, Saitama 350-0394, Japan

zzchen@mail.dendai.ac.jp
2 Department of Computer Science, City University of Hong Kong,

Tat Chee Avenue, Kowloon, Hong Kong SAR
cswangl@cityu.edu.hk

Abstract. Given a set T = {T1, T2, . . . , Tm} of phylogenetic trees with
the same leaf-label set X, we wish to remove some leaves from the trees
so that there is a tree T with leaf-label set X displaying all the resulting
trees. One objective is to minimize the total number of leaves removed
from the trees, while the other is to minimize the maximum number of
leaves removed from an input tree. Chauve et al. [6] refer to the problem
with the first (respectively, second) objective as AST-LR (respectively,
AST-LR-d), and show that both problems are NP-hard. They further
present algorithms for the parameterized versions of both problems, but
it seems that their algorithm for the parameterized version of AST-LR
is flawed [7]. In this paper, we present a new algorithm for the parame-
terized version of AST-LR and also show that Chauve et al.’s algorithm
for the parameterized version of AST-LR-d can be sped up by an expo-
nential factor. We further design heuristic integer-linear programming
(ILP for short) models for AST-LR and AST-LR-d. Our experimental
results show that the heuristic models can be used to significantly speed
up solving the exact models proposed in [7].

1 Introduction

When studying the evolutionary history of a set X of existing species, one can
obtain a phylogenetic tree with leaf set X with high confidence by looking at a
segment of sequences or a set of genes [11]. When looking at different segments
of sequences, different phylogenetic trees with leaf set X can be obtained with
high confidence, too. In order to facilitate the comparison of the resulting trees,
a number of distance metrics have been proposed in the literature [4,6,10,14,15].
Among the metrics, the rSPR-distance defined in [5,15] is an important metric
that often helps us discover reticulation events. In particular, it provides a lower
bound on the number of reticulation events [2,3], and has been regularly used
to model reticulate evolution [12,13].

Recently, Chauve et al. [6] define two new metrics highly related to the rSPR
distance. Basically, to compute the rSPR distance of two phylogenetic trees,
c© Springer Nature Switzerland AG 2019
Z. Cai et al. (Eds.): ISBRA 2019, LNBI 11490, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-20242-2_1
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4 Z.-Z. Chen et al.

we are allowed to delete any edges from the input trees so that the resulting
forests become topologically identical, as long as the number of deleted edges
is minimized. In contrast, the two new metrics defined in [6] require that any
edge removed from the input trees must be incident to a leaf. Moreover, the
new metrics are defined for any number of phylogenetic trees and also allow
different leaves to be removed from different trees. More specifically, given a set
of phylogenetic trees, the two new metrics ask us to remove leaves from the input
trees so that there is a single tree displaying all the resulting trees, where a tree T
displays another tree T ′ if and only if T ′ is topologically identical to a subtree of
T . One of the metrics requires that the total number of leaves removed from the
input trees is minimized, while the other requires that the maximum number of
leaves removed from an input tree is minimized. The problem of computing the
former metric is denoted by AST-LR, while the latter is denoted by AST-LR-d.

As easily observed in [6], the special cases of AST-LR and AST-LR-d where
there are only two input trees are basically the maximum agreement subtree
problem and hence can be solved in O(n log n) time [8]. However, Chauve et al.
[6] show that both AST-LR and AST-LR-d are NP-hard in general. They then
present an algorithm for the parameterized version of each of the problem. Their
algorithm for the parameterized version of AST-LR (respectively, AST-LR-d)
runs in O

(
12qmn3

)
(respectively, O

(
1152dd3d(n2 + mn log n)

)
) time, where m

is the number of input trees, n is the number of leaves in each input tree, and q
(respectively, d) is the parameter.

Chauve et al.’s algorithm [6] for the parameterized version of AST-LR con-
sists of two stages, where the second stage is much more time-consuming than
the first. To prove that even the first stage is impractical, Chen et al. [7] imple-
mented the first stage and the experimental results in [7] show that it is indeed
very slow. Chauve et al.’s algorithm [6] for the parameterized version of AST-
LR-d is much more complicated and has a much higher time-complexity than the
parameterized version of AST-LR. Since both of Chauve et al.’s parameterized
algorithms look impractical, integer-linear programming (ILP for short) models
for AST-LR and AST-LR-d have been proposed in [7]. Experimental results in
[7] show that GUROBI (a popular ILP solver) can solve the ILP model for AST-
LR within much shorter time than the first stage of Chauve et al.’s algorithm
for the parameterized version of AST-LR. Another merit of the ILP models is
that they can be used to verify if a complicated fixed-parameter algorithm has
been correctly implemented.

Unfortunately, it seems that Chauve et al.’s algorithm [6] for the parameter-
ized version of AST-LR is flawed [7] roughly for the following reason. Recall that
their algorithm consists of two stages. The second stage is based on Theorem 6
in [6] and hence requires that for every set t of three leaf labels, the subtree Tt

induced by t in a targeted solution has been fixed in the first stage. However,
a counterexample in [7] shows that the requirement is not necessarily always
satisfied. More specifically, it is explained in [7] that if the first three trees in
Fig. 1 together with the parameter 4 are given as input, then after the first stage,
it is possible that only the leaves incident to the four broken edges have been
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removed and only the triplets in {ad|e, ad|j, cd|f} have been explicitly fixed for
a targeted solution, but the subtree induced by {a, c, d} in the targeted solution
has not been fixed and none of the modified input trees contains all the leaves
in {a, c, d}.

Fig. 1. Three trees and a center tree for them obtained by removing the black leaves.

In this paper, we present a new algorithm for the parameterized version
of AST-LR. The algorithm runs in O

(
(4q − 2)qm2n2

)
time. We also improve

the time complexity of Chauve et al.’s algorithm [6] for the parameterized
version of AST-LR-d by an exponential factor (namely, roughly 2d). In more
details, our algorithm for the parameterized version of AST-LR-d runs in time
O

(
36d(4d3 + 5d2 + d)d((n + m)n log n)

)
. We further design heuristic ILP mod-

els AST-LR and AST-LR-d and discuss how to use them to speed up solving
the exact ILP models proposed in [7]. Our experimental results show that the
heuristic ILP models lead to significant speedup of the exact ILP models.

Our program is available at http://rnc.r.dendai.ac.jp/consensusTree.html.

2 Preliminaries

Throughout this paper, a phylogenetic tree always means a rooted tree whose
leaves are distinctively labeled. Unless stated otherwise, a phylogenetic tree is
always binary, i.e., each non-leaf vertex has exactly two children in the tree.

Let T be a phylogenetic tree. For each vertex v of T , the subtree rooted at v
is called a pendant subtree of T . We use X(T ) to denote the leaf-label set of T .
For each x ∈ X(T ), we use xT to denote the leaf of T labeled x. Moreover, for
a subset Y of X(T ), we use Y T to denote {xT | x ∈ Y }. If T is clear from the
context, we simply write x and Y instead of xT and Y T , respectively. Moreover,
for a subset Y of X(T ), we use T − Y to denote the phylogenetic tree obtained
from T by first removing the leaves in Y T and further repeatedly removing an
unlabeled leaf or contracting an edge leaving a unifurcate vertex (i.e., vertex
with only one child) until no such leaf or edge exists. We use T |Y to denote
T − (X(T ) \ Y ). T displays another phylogenetic tree T ′ if X(T ′) ⊆ X(T ) and
T ′ = T |X(T ′).

A leaf-prune-and-regraft (LPR) operation on T is the operation of replacing
T by another phylogenetic tree T ′ with X(T ) = X(T ′) such that T and T ′ are
different but T − {x} and T ′ − {x} are identical, In other words, T ′ is obtained
from T as follows.

http://rnc.r.dendai.ac.jp/consensusTree.html
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1. Choose a leaf x and an edge e = (u, v) of T such that v is neither the sibling
nor the parent of x in T .

2. Remove the edge entering x and contract the edge leaving p, where p was the
parent of x before the removal.

3. Replace e by three edges (u,w), (w, v), and (w, x), where w is a new vertex.

We say that T ′ is obtained from T by pruning x and regrafting it on e.
Let (T1, . . . , Tm) be a list of phylogenetic trees, where it is unnecessary

that X(T1) = · · · = X(Tm). A leaf-disagreement for (T1, . . . , Tm) is a list
L = (Y1, . . . , Ym) such that there is a phylogenetic tree T displaying T1 − Y1

through Tm − Ym. The size of L is
∑m

i=1 |Yi|, the radius of L is maxm
i=1 |Yi|, and

T is called a center tree witnessing L. For example, for the first three trees T1,
T2, and T3 in Fig. 1, L = ({a, c}, {c}, {j}) is a leaf-disagreement of size 4 and
radius 2 and the last tree T in the figure witnesses L. For an integer k, a size-k
(respectively, radius-k) center tree for {T1, . . . , Tm} is a center tree witnessing
a leaf-disagreement of size (respectively, radius) at most k for (T1, . . . , Tm). T1,
. . . , Tm are compatible if (∅, . . . , ∅) is a leaf-disagreement for (T1, . . . , Tm).

Given a set {T1, . . . , Tm} of phylogenetic trees with X(T1) = · · · =
X(Tm), AST-LR (respectively, AST-LR-d) is the problem of computing a leaf-
disagreement for (T1, . . . , Tm) whose size (respectively, radius) is minimized over
all leaf-disagreements for (T1, . . . , Tm).

Let T1 and T2 be two phylogenetic trees with X(T1) = X(T2). A leaf-
disagreement (Y1, Y2) for (T1, T2) is 1-sided if Y2 = ∅. As easily observed in
[6], the following hold:

– For every leaf-disagreement (Y1, Y2) for (T1, T2), (Y1 ∪ Y2, ∅) is a 1-sided leaf-
disagreement for (T1, T2).

– For every 1-sided leaf-disagreement (Y, ∅) for (T1, T2) and for every Y1 ⊆ Y ,
(Y1, Y \ Y1) is a leaf-disagreement for (T1, T2).

For simplicity, we use Y to denote a 1-sided leaf-disagreement (Y, ∅) for (T1, T2).
Y is minimal if for every y ∈ Y , Y \ {y} is not a 1-sided leaf-disagreement
for (T1, T2). We use dLR(T1, T2) to denote the minimum size of a 1-sided leaf-
disagreement Y for (T1, T2). Given T1 and T2, dLR(T1, T2) can be computed in
O(n log n) time, where n = |X(T1)| [8]. Moreover, by the above observation,
dLR(T1, T2) (respectively, � 1

2dLR(T1, T2)�) is the minimum size (respectively,
radius) of a leaf-disagreement for (T1, T2). In other words, if we require that
there are only two trees in the input, then AST-LR and AST-LR-d become
basically the same problem and can be solved in O(n log n) time.

3 Parameterized Algorithm for AST-LR

A triplet is a phylogenetic tree with exactly 3 leaves. We use xy|z to denote the
triplet t such that X(t) = {x, y, z} and x and y are siblings in t. Two triplets
t1 and t2 conflict if t1 = xy|z and t2 ∈ {xz|y, yz|x}. We say that xy|z is a
triplet of a phylogenetic tree T if {x, y, z} ⊆ X(T ) and T |{x,y,z} = xy|z. For a
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phylogenetic tree T , we use tr(T ) to denote the set of triplets in T . Moreover,
for a set T of phylogenetic trees, we use tr(T ) to denote

⋃
T∈T tr(T ), and use

X(T ) to denote
⋃

T∈T X(T ). A full set of triplets on a set X of labels is a set
S of triplets such that X = X(S) and S contains exactly one of xy|z, xz|y, and
yz|x for each triple {x, y, z} ⊆ X . A triple {x, y, z} is conflicting in T if tr(T )
has two conflicting triplets with label set {x, y, z}.

3.1 Deciding the Existence of a Center Tree

In this subsection, we sketch how to apply Aho et al.’s polynomial-time algorithm
[1] to deciding whether there is a phylogenetic tree displaying a given set T̃ =
{T̃1, . . . , T̃�} of phylogenetic trees. If |X(T̃i)| ≤ 2 for some T̃i ∈ T̃ , then it is easy
to see that there is a phylogenetic tree displaying the trees in T̃ if and only if
there is a phylogenetic tree displaying the trees in T̃ \ {T̃i}. So, we may assume
that |X(T̃i)| ≥ 3 for every T̃i ∈ T̃ . For convenience, we use T̃i,l (respectively,
T̃i,r) to denote the pendant subtree of T̃i rooted at the left (respectively, right)
child of the root of T̃i.

Recall the well-known fact that each phylogenetic tree T is the unique phy-
logenetic tree displaying the triplets in tr(T ). So, to decide whether there is a
phylogenetic tree displaying the trees in T̃ , it suffices to decide whether there
is a phylogenetic tree displaying the triplets in tr(T̃ ). Note that a triplet xy|z
here has the same meaning as the constraint (x, y) < (x, z) in [1]. So, for our
purpose, we can call Aho et al.’s algorithm on input (X(T̃ ), tr(T̃ )).

Consider the call of Aho et al.’s algorithm on input (X(T̃ ), tr(T̃ )). The
algorithm is recursive and actually returns a not-necessarily-binary phylogenetic
tree displaying the triplets in tr(T̃ ) if one exists. We claim that there is a not-
necessarily-binary phylogenetic tree displaying the triplets in tr(T̃ ) if and only
if there is a phylogenetic tree displaying the triplets in tr(T̃ ). The “if” part is
clear. To see the “only-if” part, assume that T is a non-binary phylogenetic tree
displaying the triplets in tr(T̃ ). Let v be a vertex with more than two children
in T . We modify T by choosing two arbitrary children v1 and v2 of v in T ,
adding a new vertex u, and replacing the edges (v, v1) and (v, v2) with the edges
(v, u), (u, v1), (u, v2). The modification decreases the degree of v by 1 and one
can easily see that the modified T still displays the triplets in tr(T̃ ). So, we can
repeat the modification until T has no vertex with more than two children, while
always ensuring that T displays the triplets in tr(T̃ ).

We next detail Aho et al.’s recursive algorithm. In the base case where
tr(T̃ ) = ∅, the algorithm returns “yes” together with an arbitrary phyloge-
netic tree whose leaf-label set is X(T̃ ). On the other hand, in case tr(T̃ ) 
= ∅, it
obtains a partition P of X(T̃ ) by first initializing P = {{x} | x ∈ X(T̃ )} and
then repeatedly replacing two subsets S1 ∈ P and S2 ∈ P with S1∪S2 if there is
a xy|z ∈ tr(T̃ ) with x ∈ S1 and y ∈ S2. We claim that for every T̃i ∈ T̃ , X(T̃i,l) is
a subset of some set in P and so is X(T̃i,r). This is true because if x and y are two
leaves in T̃i,l (respectively, T̃i,r), then for each leaf z in T̃i,r (respectively, T̃i,l),
xy|z is a triplet in tr(T̃ ). Now, if |P | = 1, the algorithm returns “no”. Otherwise,
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for each set S ∈ P , it computes T̃S = {T̃i ∈ T̃ | X(T̃i) ⊆ S} ∪ {T̃i,l | T̃i ∈ T̃ ,
X(T̃i,l) ⊆ S, and X(T̃i,r) 
⊆ S} ∪ {T̃i,r | T̃i ∈ T̃ , X(T̃i,r) ⊆ S, and X(T̃i,l) 
⊆ S},
and makes a recursive call on input (X(T̃S), tr(T̃S)). If at least one of the |P |
recursive calls returns “no”, the algorithm returns“no”; otherwise, the algorithm
receives a not-necessarily-binary phylogenetic tree TS from the recursive call on
input (X(T̃S), tr(T̃S)) for each S ∈ P , combine the |P | trees TS into a single
not-necessarily-binary phylogenetic tree T by adding a new root and connecting
it to the root of TS for each S ∈ P , and further returns “yes” together with T .

For convenience, we refer to P as the label-partition for T̃ . Alternatively, we
can obtain P as follows. First, we construct an auxiliary graph H = (V1∪V2, E1∪
E2 ∪ E3) from T̃ , where

– V1 consists of the leaves (together with their labels) in the trees in T̃ ;
– for each T̃i ∈ T̃ , V2 contains two vertices vi,1 and vi,2;
– for each T̃i ∈ T̃ and for each leaf x of T̃i, if x is a descendant of the left

(respectively, right) child of the root in T̃i, then E1 (respectively, E2) contains
the edge {x, vi,1} (respectively, {x, vi,2});

– for every two vertices x and y in V1, if x and y have the same label, then E3

contains the edge {x, y}.

Let K1, . . . , Kh be the connected components of H. For each i ∈ {1, . . . , h},
let Xi be the set of all x ∈ X(T̃ ) such that x is the label of some vertex
in V (Ki) ∩ V1. Then, one can easily see that P = {X1, . . . , Xh}. This new
computation of P is more efficient because it uses the trees in T̃ directly rather
than using the triplets in tr(T̃ ). Indeed, there is an even more efficient way of
computing P . To see this, first note that for each x ∈ X(T̃ ), the vertices of H
with label x form a clique Cx. Suppose that we modify H by contracting Cx to
a single vertex (still with label x) for each x ∈ X(T̃ ). The modified H has the
same number of connected components as before. Moreover, if we compute P
from the connected components of the modified H as before, then P should be
the same as before. Furthermore, instead of constructing H and then modifying
it, we can construct the modified H from the trees in T̃ directly in O(�|X(T̃ )|)
time. In this way, P can be computed in O(�|X(T̃ )|) time because the modified
graph H has O(� + |X(T̃ )|) vertices and O(�|X(T̃ )|) edges. The reason why we
prefer H to the modified H is that H makes our analysis in Sect. 3.2 easier.

3.2 A New Algorithm

In this subsection, we present a new algorithm for the parameterized ver-
sion of AST-LR. So, consider an instance (q, {T1, . . . , Tm}) of the problem.
Note that X(T1) = · · · = X(Tm). For each i ∈ {1, . . . , m}, we call Cole
et al.’s algorithm [8] to compute dLR(Ti, Tj) for each j ∈ {1, . . . , m}, and
then check if

∑m
j=1 dLR(Ti, Tj) ≤ q. If

∑m
j=1 dLR(Ti, Tj) ≤ q for at least

one i ∈ {1, . . . , m}, then we are done by returning “yes”. The total time
taken by the calls of Cole et al.’s algorithm is O(m2n log n), where n is the
number of leaves in each of T1, . . . , Tm. So, we may assume that there is no
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i ∈ {1, . . . , m} with
∑m

j=1 dLR(Ti, Tj) ≤ q. Then, for each phylogenetic tree T

with
∑m

j=1 dLR(T, Tj) ≤ q, we have dLR(T, Ti) ≥ 1 for every i ∈ {1, . . . , m}.
Consequently, m ≤ q.

Since our algorithm will be recursive, we need to consider a call originated
from the root call (i.e., the call on input (q, {T1, . . . , Tm}) after zero or more
subsequent calls. Let (q̂, {T̂1, . . . , T̂k}) be the input to the call. We will maintain
the invariant that for each i ∈ {1, . . . , k}, there is a j ∈ {1, . . . , m} with T̂i =
Tj |X(T̂i)

. So, k ≤ m. However, it is not necessarily true that X(T̂1) = · · · =

X(T̂k). If there is an i ∈ {1, . . . , k} with |X(T̂i)| ≤ 2, then we can remove
T̂i from the input because there is a leaf-disagreement of size at most q̂ for
(T̂1, . . . , T̂k) if and only if there is a leaf-disagreement of size at most q̂ for
(T̂1, . . . , T̂i−1, T̂i+1, . . . , T̂k). So, we may assume that |X(T̂i)| ≥ 3 for every i ∈
{1, . . . , k}.

Let T̂ = {T̂1, . . . , T̂k}. We next detail our algorithm on input (q̂, T̂ ). In the
base case where q̂ < 0, the algorithm returns “no”. So, assume that q̂ ≥ 0. Our
algorithm first calls Aho et al.’s algorithm to decide if there is a phylogenetic tree
displaying the trees in T̂ . If the call returns “yes”, then our algorithm returns
“yes”. Otherwise, as sketched in the last subsection, the call returns “no” because
it has found a set T̃ = {T̃1, . . . , T̃�} of two or more phylogenetic trees satisfying
the following conditions:

C1. Each T̃i ∈ T̃ is a pendant subtree of some T̂ji ∈ T̂ with |X(T̃i)| ≥ 3.
C2. If i and i′ are different integers in {1, . . . , �}, then ji 
= ji′ .
C3. The partition P of X(T̃ ) constructed from tr(T̃ ) is X(T̃ ).

By Conditions C1 and C2, � ≤ k ≤ m ≤ q.
Consider the auxiliary bipartite graph H = (V1 ∪ V2, E1 ∪ E2 ∪ E3) con-

structed from T̃ as in Sect. 3.1. Since P = X(T̃ ), H is connected. Our algorithm
constructs a vertex-induced subgraph H ′ of H as follows. Initially, H ′ is a copy
of H. Then, as long as H ′ has a vertex x ∈ V1 such that removing x from H ′

does not disconnect H ′, we keep modifying H ′ by removing x. Suppose that we
have finished modifying H ′ in this way. Let V ′

1 = {x ∈ V1 | x still remains in
H ′}.

Lemma 1. |V ′
1 | ≤ 2|V2| − 2 = 4� − 2.

For each i ∈ {1, . . . , �}, let V ′
1,i = {x ∈ V ′

1 | x is a leaf of T̃i} and T̃ ′
i = T̃i|V ′

1,i
.

Lemma 2. There is no phylogenetic tree displaying T̃ ′ = {T̃ ′
i |V ′

1,i 
= ∅}.

By Conditions C1 and C2, T̃ ′
i = T̂ji |V ′

1,i
as well for each T̃ ′

i ∈ T̃ ′. Thus, by

Lemma 2, we need to delete at least one leaf of V ′
1 from some T̂ji with T̃ ′

i ∈ T̃ ′,
in order to make the trees in {T̂ji | T̃ ′

i ∈ T̃ ′} compatible. For convenience, we
refer to V ′

1 as a small witness for the incompatibility of the trees in T̂ . Now, for
each i ∈ {1, . . . , �} and for each leaf x in T̂i, our algorithm makes a recursive call
on input (q̂ − 1, {T̂1, . . . , T̂ji−1, T̂ji − {x}, T̂ji+1, . . . , T̂k}). If at least one of the
calls returns “yes”, then the algorithm returns “yes”; otherwise, it returns “no”.

To compute V ′
1 from T̃ efficiently, we can proceed as follows.
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1. Try to find an x such that x is a proper leaf descendant of a child of the root
of some T̃i with i ∈ {1, . . . , �} and the label-partition for {T̃1, . . . , T̃i−1, T̃i −
{x}, T̃i+1, . . . , T̃�} is the same as that for {T̃1, . . . , T̃�}. (Comment: As noted
in Sect. 3.1, the label-partition can be computed in O(�|X(T̃ )|) time.)

2. If x is found in Step 1, then remove it from T̃i and go to Step 1. Otherwise,
set V ′

1 to be the set of leaves in T̃1, . . . , T̃�.

So, V ′
1 can be computed in O(�2|X(T̃ )|2) time.

Theorem 1. The parameterized AST-LR for input (q, {T1, . . . , Tm}) can be
solved in O

(
(4q − 2)qm2n2

)
time, where n is the number of leaves in each input

tree.

4 Parameterized Algorithm for AST-LR-d

We first review Chauve et al.’s algorithm [6] for the parameterized version of
AST-LR-d. An instance of the parameterized version consists of an integer d
and a set {T1, . . . , Tm} of phylogenetic trees with X(T1) = · · · = X(Tm), and
the objective is to decide whether there is a leaf-disagreement of radius at most
d for (T1, . . . , Tm). Chauve et al.’s algorithm for the problem actually solves
a more general problem. More specifically, other than d and {T1, . . . , Tm}, the
input to their algorithm also includes an integer d′ and the algorithm is supposed
to return “yes” if and only if T1 can be transformed into a radius-d center tree for
{T2, . . . , Tm} by performing at most d′ LPR operations. Obviously, to solve the
parameterized version for (d, {T1, . . . , Tm}), it suffices to solve the generalized
problem for (d, (T1, . . . , Tm), d′) with d′ = d.

So, consider the call of Chauve et al.’s algorithm on input (d, {T1, . . . ,
Tm}, d′). Since the algorithm is recursive, we need to consider a call originated
from the root call (i.e., the call on input (d, {T1, . . . , Tm}, d)) after zero or more
subsequent calls. Let (d, {T̃1, T2, . . . , Tm}, d′) be the input to the call. In one base
case where d′ < 0, the algorithm returns “no”. In another base case where d′ ≥ 0
and T̃1 is a radius-d center tree for {T2, . . . , Tm}, it returns “yes”. So, assume
that neither of the base cases occurs. Then, there must exist an i ∈ {2, . . . , m}
such that dLR(T̃1, Ti) > d. Without loss of generality, we may assume i = 2.

Basically, their algorithm tries to transform T̃1 into a radius-d center tree
for {T2, . . . , Tm} by performing at most d′ LPR operations. There are two main
ideas behind their algorithm. One is to compute a set S ⊆ X(T̃1) in O(n2) time
such that |S| ≤ 32·d2 and every minimal 1-sided leaf-disagreement Y for (T̃1, T2)
with |Y | ≤ d is a subset of S. So, in order to transform T̃1 into a radius-d center
tree for {T2, . . . , Tm}, we have to prune at least one y ∈ Y from T̃1 and further
regraft it on an edge of T̃1. Their other idea is to find, for each y ∈ Y , a set Py of
edges in T̃1 with |Py| ≤ 18(d+d′)+8 in O(n log n+nd) time such that y should
be regrafted on one of the edges in Py in order to transform T̃1 to a radius-d
center tree for {T2, . . . , Tm}. Based on the two ideas, their algorithm then makes
a recursive call on input (d, {T̃ ′

1, T2, . . . , Tm}, d′ − 1) for every y ∈ Y and every
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edge ey ∈ Py, where T̃ ′
1 is obtained from T̃1 by pruning y and regrafting it on ey.

It is easy to see that their algorithm takes O
(
1152dd3d(n2 + mn log n)

)
time.

We next describe how to speed up Chauve et al.’s algorithm. The idea is to
avoid computing S. More specifically, instead of S, we obtain a subtree T̂1 of T̃1

and a subtree T̂2 of T̃2 as follows.

1. Initially, T̂1 (respectively, T̂2) is a copy of T̃1 (respectively, T2).
2. As long as there is an x ∈ X(T̂1) with dLR(T̂1 − {x}, T̂2 − {x}) ≥ d + 1,

keep removing x from both T̂1 and T̂2. (Comment: dLR(T̂1 −{x}, T̂2 −{x}) ≥
dLR(T̂1, T̂2) − 1.)

Obviously, dLR(T̂1, T̂2) = d + 1 because dLR(T̃1, T2) ≥ d + 1. Since T̂1 is a
subtree of T̃1, we must prune at least one leaf y of T̂1 from T̃1 and regraft it on
an edge ey of T̃1 in order to satisfy dLR(T̃1, T2) ≤ d. From Lemma 10 in [6], it is
clear that ey should be an edge in the set Py. So, we compute Py as in Chauve
et al.’s algorithm. Now, for each leaf y of T̂1 and for each ey ∈ Py, our algorithm
makes a recursive call on input (d, {T̃ ′

1, T2, . . . , Tm}, d′ −1), where T̃ ′
1 is obtained

from T̃1 by pruning y and regrafting it on ey.
To analyze the time complexity of our algorithm, we need to bound |X(T̂1)|.

Lemma 3. |X(T̂1)| ≤ (d + 1)(4d + 1).

Theorem 2. The parameterized version of AST-LR-d for input (d, {T1, . . . ,
Tm}) can be solved in O

(
36d(4d3 + 5d2 + d)d((n + m)n log n)

)
, where n is the

number of leaves in each input tree.

5 ILP Approach to the Problems

We use the notation (j1, . . . , jk) ⊆ S to denote an ordered subset (j1, . . . , jk) of
a set S. Let T = {T1, . . . , Tm} be a set of phylogenetic trees not necessarily with
X(T1) = · · · = X(Tm). A quadruple (xj , xk, xl, xh) ⊆ X(T ) is conflicting in T
if {xjxk|xl, xlxh|xk, xkxh|xj} ⊆ tr(T ) or {xjxk|xl, xlxh|xk, xjxh|xk} ⊆ tr(T ).

Lemma 4. [9] A full set T of triplets is compatible if and only if no quadruple
(xj , xk, xl, xh) ⊆ X(T ) is conflicting in T .

5.1 Exact ILP Models

For each (j, k, l) ⊆ {1, . . . , n}, we define Ij,k,l,0 = {i ∈ {1, . . . , m} | Ti|{xj ,xk,xl} =
xjxk|xl}, Ij,k,l,1 = {i ∈ {1, . . . , m} | Ti|{xj ,xk,xl} = xjxl|xk}, and Ij,k,l,2 = {i ∈
{1, . . . , m} | Ti|{xj ,xk,xl} = xkxl|xj}. The ILP model for AST-LR-d proposed in
[7] is based on Lemma 4 and is as follows.
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min d
s.t. ∀1≤i≤m

∑n
j=1 yi,j ≤ d

∀(j,k,l)⊆{1,...,n} aj,k,l + bj,k,l ≤ 1
∀(j,k,l)⊆{1,...,n}∀i∈Ij,k,l,0 yi,j + yi,k + yi,l ≥ aj,k,l + bj,k,l

∀(j,k,l)⊆{1,...,n}∀i∈Ij,k,l,1 yi,j + yi,k + yi,l ≥ 1 − bj,k,l

∀(j,k,l)⊆{1,...,n}∀i∈Ij,k,l,2 yi,j + yi,k + yi,l ≥ 1 − aj,k,l

∀(j,k,l,h)⊆{1,...,n} aj,k,l + bj,k,l − ak,l,h − aj,k,h ≥ −1
∀(j,k,l,h)⊆{1,...,n} aj,k,l + bj,k,l − ak,l,h − bj,k,h ≥ −1
all variables yi,j , aj,k,l, bj,k,l : binary

To obtain an ILP model for AST-LR, we just simply modify the above ILP
model for AST-LR-d by deleting the first set of constraints and replacing the
objective function d with

∑m
i=1

∑n
j=1 yi,j .

5.2 Heuristic ILP Models

The exact ILP models may take long time to be solved by an ILP solver (such as
Gurobi and Cplex). So, we here propose heuristic ILP models instead. As before,
we first present a heuristic ILP model for AST-LR-d and then modify it into a
heuristic ILP model for AST-LR.

The idea is to avoid explicitly computing the triplets T |{xj ,xk,xl} in the
output center tree T . Intuitively speaking, the idea is to remove the vari-
ables aj,k,l and bj,k,l from the exact models. Without explicitly computing
the triplet T |{xj ,xk,xl}, we have to resort to removing direct conflicts between
the input trees. In other words, for every (j, k, l) ⊆ {1, . . . , n} and for every
{i1, i2} ⊆ {1, . . . , m}, if Ti1 |{xj ,xk,xl} and Ti2 |{xj ,xk,xl} are different, we add the
constraint yi1,j + yi1,k + yi1,l + yi2,j + yi2,k + yi2,l ≥ 1 to the model. Similarly, for
every (j, k, l, h) ⊆ {1, . . . , n} and for every {i1, i2, i3} ⊆ {1, . . . , m}, if one of the
following holds, then we add the constraint yi1,j + yi1,k + yi1,l + yi2,j + yi2,k +
yi2,l + yi3,j + yi3,k + yi3,l ≥ 1 to the model:

– Ti1 |{xj ,xk,xl} = xjxk|xl, Ti2 |{xj ,xk,xl} = xlxh|xk, and Ti3 |{xj ,xk,xl} = xkxh|xj .
– Ti1 |{xj ,xk,xl} = xjxk|xl, Ti2 |{xj ,xk,xl} = xlxh|xk, and Ti3 |{xj ,xk,xl} = xjxh|xk.

Now, we have obtained the following heuristic ILP model for AST-LR-d:

min d
s.t. ∀1≤i≤m

∑n
j=1 yi,j ≤ d

∀(j,k,l)⊆{1,...,n}∀{t1,t2}⊆{0,1,2}∀i1∈Ij,k,l,t1
∀i2∈Ij,k,l,t2

yi1,j + yi1,k + yi1,l + yi2,j + yi2,k + yi2,l ≥ 1
∀(j,k,l,h)⊆{1,...,n}∀i1∈Ij,k,l,0∀i2∈Ik,l,h,2∀i3∈Ij,k,h,1∪Ij,k,h,2

yi1,j + yi1,k + yi1,l + yi2,j + yi2,k + yi2,l + yi3,j + yi3,k + yi3,l ≥ 1
all variables yi,j : binary
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By experiments, we have found that the heuristic model can be solved much
faster than its exact counterpart by Gurobi or Cplex. Of course, an optimal
solution s∗ of the heuristic model may not lead to a correct leaf-disagreement.
In more details, even though s∗ tells us which leaves should be removed from
each Ti, there may not exist a center tree displaying all the resulting trees.
Nevertheless, instead of solving the exact model directly, we can first solve the
heuristic model to obtain s∗ and then proceed to solving the exact model with
the help of s∗. The crucial points are the following:

– The value of d in s∗ is a lower bound on the optimal objective value of the
exact ILP model. We can incorporate this bound into the exact model when
solving it with an ILP solver. The bound can help the solver prune a lot of
unnecessary branches of the search tree.

– The values of yi,j ’s in s∗ can be used as a starting partial-solution when
solving the exact model by an ILP solver. By experiments, we have found
that the partial start can often be extended to a feasible (and hence optimal)
solution of the corresponding exact model by the solver. As the result, the
solver can often solve the exact model within almost the same time as the
heuristic model.

As will be seen in Sect. 5.3, using the heuristic model as in the above leads
to significant speedup of solving the exact model.

To obtain a heuristic ILP model for AST-LR, we modify the above heuristic
ILP model for AST-LR-d as we did in the exact case. In Sect. 5.3, we will see
that the heuristic model can be used to speed up solving the exact model.

5.3 Experimental Results

To evaluate our ILP models empirically, we run our program on a Ubuntu (x64)
desktop PC with i7-4790K CPU and 31.4 GiB RAM and another CentOS (x64)
desktop PC with E5-2687W(v4) CPU and 252.2 GiB RAM. In order to solve our
ILP models, we use Gurobi as the solver.

Our models have many constraints and hence it often takes time for Gurobi
to get started. Note that most of the constraints are for excluding conflicting
quadruples. In our experiments, we use these constraints as lazy constraints when
using Gurobi to solve the models. In more details, Gurobi will remove these
constraints at the beginning, but will add an initially-removed constraint back
later if the constraint is found to be violated by the incumbent integral solution.
In this way, Gurobi can start up much faster. Moreover, by experiments, we
have found that a set of trees without conflicting triples often have no conflicting
quadruples. Thus, we can often expect that very few initially-removed constraints
are added back and in turn Gurobi can finish within much shorter time.

To test the performance of our models, we generate simulated datasets as
follows. First, for each n ∈ {15, 25}, we generate a set Sn of 100 random phylo-
genetic trees with n leaves using the program of [3]. Then, for each n ∈ {15, 25},
each T ∈ Sn, and each k ∈ {1, 3, 5, 7}, we generate 5 trees Tn,k,1, . . . , Tn,k,5
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from T by performing k random Nearest-Neighbor Interchange (NNI) moves on
T ; the trees Tn,k,1, . . . , Tn,k,5 together form an instance of AST-LR and AST-
LR-d. So, in total, there are 800 instances in our experiment for each of AST-LR
and AST-LR-d. Since there are many instances and some of them may take
long time to solve, we use the Ubuntu (respectively, CentOS) machine for those
instances with n = 15 (respectively, n = 25).

Our experimental results for AST-LR-d and AST-LR are omitted here for
lack of space but are summarized in two tables which are available at

http://rnc.r.dendai.ac.jp/∼chen/centerTree tables.pdf
From the tables, one can see that compared with solving the exact model directly,
it is much faster to first solve the heuristic model and then use its output to
solve the exact model. Moreover, in case both of the methods fail to find optimal
solutions within the time limit, the latter method finds better heuristic solutions.
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Abstract. Since the genome of the nucleus is a complicated three-dimensional
spatial structure but not a single linear structure, biologists consider that 3D
structure of plant chromatin is highly correlated with the function of the genome,
which can be used to study the regulation mechanisms of genes and their
evolutionary process. Because plants are more prone to chromosome structural
variation and the 3D structure of plant chromatin are highly correlated with the
function of the genome, it is important to investigate the impact of chromosome
structural variation on gene expression by analyzing 3D structure. Here, we will
briefly review the current bioinformatics tools for 3D plant genome study, which
covers Hi-C data processing tools, then are the tools for A and B compartments
identification, topologically associated domains (TAD) identification, identifi-
cation of significant interactions and visualization. And then, we could provide
the useful information for the related 3D plant genomics research scientists to
select the appropriate tools according to their study. Finally, we discuss how to
develop the future 3D genomic plant bioinformatics tools to keep up with the
pace of scientific research development.

Keywords: Plant three-dimensional genomes � Hi-C � Bioinformatics tools �
Chromatin spatial structure

1 Introduction

Previous Studies indicate that the genome in the nucleus is not a single linear structure,
but a complex three-dimensional (3D) architecture that displays a hierarchical pattern
[1–6] (see Fig. 1). Since plants usually are polyploid and have a more complex genome
structure rather than animals [7], the 3D structure of the plant genome is more com-
plicated than that of animals. Moreover, because plants are more prone to chromosome
structural variation [8] and the 3D structure of plant chromatin are highly correlated
with the function of the genome [9, 10], it is important to investigate the impact of
chromosome structural variation on gene expression by analyzing 3D structure. Now, 3D
structure of plant chromatin is mainly used to study the regulation mechanisms of genes
and their evolutionary process [11, 12]. High-throughput chromosome conformation
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capture (Hi-C) technique is a main method to probe the three-dimensional architecture
of whole genomes [12–15].

The process of Hi-C experiment is crosslinking with formaldehyde, digesting DNA
with a restriction enzyme, marking with biotin, ligation, de-crosslinking, shearing the
DNA, capturing the biotin-containing fragments with streptavidin beads, purification,
and using second-generation high-throughput sequencing for captured fragments [1, 3,
16]. However, the Hi-C data is not only big, the size of which could be dozens of GBs
[1, 5], but also is comprised such invalid data that is inevitably generated during the
experiment [16, 17]. Therefore, it is necessary to process and analyze the complicated
Hi-C data by using bioinformatics tools.

Currently, the 3D plant genome research becomes a hot study area [12, 18–20],
which focuses on constructing 3D genome map, A and B compartments identification,
topologically associated domains (TADs) identification and identification of significant
interactions. For example, Mascher et al. [21] locates the spatial organization of chro-
matin in the nucleus by using 3D genome map. Also, Wang et al. [12] use 3D maps to
identify A/B compartments and significant interactions for cotton. In addition, Liu et al.
[15] indicate that thousands of distinct TADs cover about a quarter of the rice genome.

However, since only a few studies comprehensively review the import bioinfor-
matics tools for 3D architecture research of plant genomes, this review firstly introduce
the Hi-C data processing tools, then are the tools for A and B compartments identi-
fication, topologically associated domains (TAD) identification, identification of sig-
nificant interactions and visualization. Finally, we discuss the future research direction
for 3D genomic plant bioinformatics tools.

2 3D Plant Genomic Bioinformatics Tools

2.1 Hi-C Data Processing Tool

After Hi-C experiment and high-throughput sequencing analysis [1], we obtain raw Hi-
C data which are comprised of pair-end reads in FASTQ file format [1, 22]. At present,
Hi-C requires high sequencing depth to have high resolution. However, as the
sequencing depth increases, more low quality sequences are generated. Therefore, we
have to preprocess the raw Hi-C data to receive the clean Hi-C data as following steps.

Chromosome
territories

A/B 
compartments TADs Chromatin 

loops

:CTCF

:Cohesin

A
B

Fig. 1. Schematic representation of chromatin hierarchical architecture
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Firstly, we use FastQC [23] to control the quality of the reads, and then use the filtering
tools such as Trimmomatic [24] to filter the invalid data. Moreover, several artificial
intelligent algorithms, such as deDoc [25, 26], can use low-resolution Hi-C to predict
high-resolution TADs and have high-resolution 3D genomic structures. Figure 2
describes the workflow of Hi-C data processing, which mainly consists of mapping,
filtering, binning, and normalization [12, 27]. The final output of process Hi-C data is
the normalized contact matrices, which is the basis for hierarchical structure of chro-
matin research.

There are many bioinformatics tools developed for Hi-C data preprocessing, which
are listed by Table 1. Here, we introduce commonly used HiC-Pro [28], HOMER [29]
and Juicer [30] in detail.

Clean Hi-C reads 
(FASTQ files)

Hi-C reads that aligned to 
reference genome
(SAM/BAM files)

Valid Hi-C reads
(*.bam or  *.txt)

Raw contact 
matrices

Normalized 
contact 
matrices 

Read mapping
Aligning pair-end 

reads to the reference 
genome

Read filtering
Filtering the 

dangling-end and self 
ligation reads

Binning
Dividing the genome 

into bins of equal 
length and then 
constructing a 

genome-wide contact 
matrices

Normalization
Eliminating the 
bias of the Raw 

contact
matrices

Fig. 2. The workflow for Hi-C data processing

Table 1. Integration software for Hi-C data processing

Tools Mapping, Filtering,
Binning, Normalization

URL Features

HOMER [29],
developed by Java,
R and Perl in 2010

�,
p p

,
p
,
p

http://homer.ucsd.
edu/homer/
interactions

Providing identification of significant
interactions

Hiclib [17],
developed by
Python in 2012

p
,
p
,
p
,
p

https://bitbucket.
org/mirnylab/hiclib

Iterative mapping accounts for the
modification of fragments’ sequences

HiCUP [31],
developed by R
and Perl in 2015

p
,
p
, �, � http://www.

bioinformatics.
babraham.ac.uk/
projects/hicup

Mapping data to a specified reference
genome and removing artefacts;
Providing an easy-to-interpret quality
control report

HiCdat [32],
developed by R
and C++ in 2015

p
,
p
,
p
,
p

https://github.com/
MWSchmid/
HiCdat

Easy-to-use; Focusing on the analysis
of larger chromosomes structural
features
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HiC-Pro is an optimized and flexible pipeline to process Hi-C data from raw reads
to normalized contact matrices [28]. It provides a fast implementation of the iterative
correction method and a memory-efficient data format, which allows us to analyze
allele-specific interaction effect. Though we can use HiC-Pro to do all the steps of Hi-C
data processing by one instruction, it is not only hard to install and configure, but also
needs a number of preparations before running.

The installation and configuration of HOMER [29] is much simpler than HIC-pro.
HOMER will analyze data with overlapping windows when generating Hi-C contact
matrices. It not only can identify significant intra-chromosomal interactions and inter-
chromosomal interactions, but also does not penalize features that span boundaries [29].
However, when processing a very big Hi-C data, it costs a lot of memory for parallel
computing. Moreover, the format of contact matrices file occupies a large storage space.

Juicer is not only an easy-to-use and fully-automated pipeline for the Hi-C data
processing, but also can annotate structural features automatically [30]. Moreover,
Juicer allows to process datasets at the tera base scale. However, the queues of its
running alignments are so complicated that we have to usually modify the script.

2.2 A and B Compartments Identification

Plant chromatin regions can be divided into A and B compartments [12, 34]. The A
compartment is usually associated with higher gene density, more active epigenetic
marks, and higher transcription activity than B compartment. By analyzing A/B
compartments, we can better understand the distribution pattern of euchromatin and
heterochromatin in the plant chromosomes [34].

We usually convert the normalized contact matrices into Pearson correlation
matrices. Then employ the first principal component (PC1) [35, 36] on Pearson cor-
relation matrices [29, 37] to identify A and B compartments. The area where the value
of PC1 is positive represents the A compartments and the negative represents B
compartments (see Fig. 3). HOMER [29], HiTC [37] and Juicer [30] provide the
runHiCpca.pl, pca.hic and Eigenvector function to identify A/B compartment,
respectively.

Table 1. (continued)

Tools Mapping, Filtering,
Binning, Normalization

URL Features

HiC-Pro [28],
developed by
Python in 2015

p
,
p
,
p
,
p

https://github.com/
nservant/HiC-Pro

Fast iterative correction method;
Memory-efficient data format;
Distinguishing allele-specific
interactions

Juicer [30],
developed by Java
in 2016

p
,
p
,
p
,
p

https://github.com/
theaidenlab/juicer

Processing terabase scale Hi-C
datasets with a single click;
Annotating TADs and loops
automatically; Being compatible with
multiple cluster operating systems

TADbit [33],
developed by
Python in 2017

p
,
p
,
p
,
p

https://github.com/
3DGenomes/tadbit

Providing TAD identification and 3D
model construction
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For example, when using HOMER [29] to identify A/B compartment, the input is a
Paired-End Tag Directory and the output is a txt and a bedGraph file of the PC1. The
input of HiTC [37] is a normalized contact matrix and the output is a R program object
which saves the data of PC1. As for Juicer [30], the input file is a.hic file that stores
contact matrices from multiple resolutions and the output is a txt file containing the
PC1 data. In summary, Homer’s operation and output are better than another two tools.

2.3 TADs Identification

As 3D genome of various plants have been studied, it has been found that TADs are
also ubiquitous in plant chromatin [11, 12, 27]. The locations of housekeeping genes
[38] are closely associated with cross-tissue conserved TADs. Therefore, the TADs
identification helps us understand the spatial relationship of local chromatin regions
and provides a potential relationship between regulatory elements and genes [39]. As
an example, Fig. 4 describes the TAD schematic diagram by black square.

Fig. 3. A/B compartments analysis. The x-axis is the base coordinate in the species reference
genome, and the y-axis is the first principal component (PC1). The red histogram represents the
A compartment and the blue histogram is the B compartment. (Color figure online)

Fig. 4. TAD schematic diagram. Both the x-axis and the y-axis represent coordinates of the
reference genome for Populus bolleana Lauche, and the TADs are marked by the black square.
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The identification methods for TADs consists two categories [40]. One defines a
one-dimensional test statistic from the contact matrices to detect TADs, assuming that
TADs are non-overlapping. The other explores the two-dimensional structure of the
contact matrices and identifies the TADs hierarchy by optimization or clustering
algorithm [41–43]. Table 2 list the commonly used methods. Here, we will introduce
TopDom [44], DI-HMM [2] and HiCseg [45] in detail.

TopDom is an efficient and deterministic method [44]. It is fast due to the linear time
complexity. Moreover, it can identify the high accurate TADs by depending on the single
and intuitive parameter. The input file is the normalized contact matrices, and the output is
three files that provide start and end coordinates of the TAD domain on the chromosome.

DI-HMM [2] is to identify TADs based on one-dimensional signal. It devises
directionality index (DI) to quantify the degree of upstream or downstream interaction
bias for a genomic region, then uses a Hidden Markov model (HMM) based on the DI
to identify biased “states” and therefore infers the locations of topological domains in
the genome. However, HiCseg [45] identifies TADs based on image segmentation
theory and maximum likelihood approach. Compared with DI-HMM, HiCseg and
TopDom, TopDom not only runs much faster than DI-HMM and HiCseg, but also can
identify more TADs in the same computational environment [44].

Table 2. Methods for identifying TADs

Method Hierarchical
structure

Principle URL

DI-HMM [2]
developed in
2012

NO Devising directionality index (DI) to
quantify the degree of upstream or
downstream interaction bias for a
genomic region, then use a Hidden
Markov model (HMM) to identify
biased “states”

https://media.nature.com/original/
nature-asets/nature/journal/v485/
n7398/extref/nature11082-s1.pdf

HiCseg [45]
developed in
2014

NO Performing image segmentation based
on maximum likelihood approach

https://cran.r-project.org/web/
packages/HiCseg/index.html

Insulation
Score [46]
developed in
2015

NO Devising insulation score to reflect the
aggregate of interactions in the
interval

https://github.com/dekkerlab/
crane-nature-2015

TopDom [44]
developed in
2016

NO The average contact frequency
between regions within a TAD is
much higher than between inside and
outside regions

http://zhoulab.usc.edu/TopDom/

TADtree [40]
developed in
2016

YES Devising empirical distributions of
contact frequencies within TADs,
where positions that are far apart have
a greater contacts enrichment than
close positions

http://compbio.cs.brown.edu/
projects/tadtree/

HiTAD [47]
developed in
2017

YES Optimizing spatial TADs
combinations based on the result of
improved DI-HMM in space

https://pypi.python.org/pypi/
TADLib

TADbit [33]
developed in
2017

NO Using BIC-penalized likelihood https://github.com/3DGenomes/
tadbit
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2.4 Identification of Significant Interactions

The significant interaction [48, 49] indicates that the contact frequency between two
regions of chromatins is significantly greater than in their neighborhood [5, 48, 50].
Significant interactions always are used to investigate the regulation and expression of
plant genes [51, 52]. Table 3 lists commonly used methods for significant interactions.
Here, we will introduce HOMER [29], Fit-Hi-C [53] and HiCCUPS [5] in detail.

HOMER [29] can obtain the results of significant interaction with only single
instruction. The input file is a Paired-End Tag Directory, and the output is a text file
that contains information about significant interactions. Since HOMER has a number of
data analysis functions, it is convenient for us to carry out 3D genomes analysis.

Fit-Hi-C [53] uses the spline model to fit such contact frequency and distance for
each pairs of loci twice that can identify a large number of significant interactions of
chromatins. The analysis results are highly sensitive, low accurate and have high false
positives.

Table 3. The methods for identification of significant interaction

Tools Model Features URL

HOMER
[29]
developed
in 2010

Binomial
distribution

Multi-functional integrated
software

http://homer.ucsd.edu/
homer/interactions

HiCCUPS
[5]
developed
in 2014

Poisson process Eliminating the effects of TAD
structure

https://github.com/
aidenlab/juicer/wiki/
Download

Fit-Hi-C
[53]
developed
in 2014

Binomial
distribution

Fitting contact frequency with
the specified genomic distance
twice

https://noble.gs.
washington.edu/proj/
fit-hi-c/

diffHic [54]
developed
in 2015

Negative binomial
distribution

Using edgeR and biological
duplication

https://bioconductor.
org/packages/release/
bioc/html/diffHic.html

HIPPIE
[55]
developed
in 2015

Negative binomial
distribution

Resolution based on the length of
the restriction enzyme fragments;
Providing error checking

http://wanglab.pcbi.
upenn.edu/hippie

GOTHiC
[48]
developed
in 2017

Binomial
distribution

Calculating expected contact
matrices; Provides a statistical
framework for further data
analysis

http://bioconductor.
org/packages/release/
bioc/html/GOTHiC.
html

HiC-DC
[50]
developed
in 2017

Zero-truncated
negative binomial
regression
distribution

Considering the characteristics of
the zero-inflation and over-
dispersion of counts in the
contact matrices

https://bitbucket.org/
leslielab/hic.dc
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HiCCUPS [5] is part of the Juicer [30] software suite, which can identify the
significant interactions from the normalized Hi-C contact matrices. Although the
number of significant interactions recognized by HiCCUPS is relatively small, the
accuracy is higher than both Homer and Fit-Hi-C.

2.5 Visualization

For each aforementioned step, we will have the corresponding output data. However,
these corresponding output data are too complicated to be intuitively understand. For
example, the.hic file generated by the Juicer to represent the contact matrices infor-
mation is in such a compressed binary file format that needs the help of the visual-
ization tool to visualize the spatial organization and structure of chromatins. Here, we
list commonly used visualization tools for plant Hi-C data by Table 4.

HiTC [37], an R package, is compatible with HiC-Pro, which can visualize A/B
compartments and the Hi-C contact matrices with annotation files like TADs. However,
it cannot interact and has fewer options for operation. Moreover, since using HiTC
requires professional programming skill, the tool is not easy to use.

Juicebox [56] is a visualization tool for the output of Juicer, which can use Hi-C
contact matrices to make heat maps with tracks to visualize TADs and loops. In
addition, Juicebox offers an interactive graphical user interface (GUI) and online ser-
vice rather than HiTC. However, Juicebox can only visualize the low resolution heat
map, but not support the high resolution chromatin heat map [30, 56].

HiCPlotter [57] is a Python data visualization tool for Hi-C contact matrices with
different data types. It can add multiple types of tracks to the heat map of contact
matrices. Compared with HiTC and Juicebox, an important advantage for HiCPlotter is
to offer comparison function to compare two different contact matrices. However, the
compatible capacity of HiCPlotter still needs to be improved that it cannot accept the
contact matrices file produced by Juicer.

3 Summary

Due to the rapid development of high-throughput sequencing technology and Hi-C
technology, there has been a surge in three-dimensional plant genome research
recently.

Table 4. The visualization applications

Tools Year GUI URL

HiTC [37] 2012 NO http://www.bioconductor.org/packages/
release/bioc/html/HiTC.html

Juicebox [56] 2016 YES https://github.com/aidenlab/Juicebox
HiCPlotter [57] 2015 NO https://github.com/kcakdemir/HiCPlotter
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Therefore, this study presents commonly used bioinformatics tools for plant 3D
genome research from the Hi-C data processing, A/B compartments identification,
TADs identification, identification of significant interactions and visualization. This
study illustrates the advantages, shortcomings and application scope for the related
bioinformatics tools, and tries to provide the useful information for the related 3D plant
genomics research scientists to select the appropriate tools according to their study.

Though there are already a number of bioinformatics tools developed for 3D plant
genomics study, the tool still should be continually optimized and innovated to keep up
with the pace of scientific research development. Thus, we consider the following
future direction of the bioinformatics tools developed for 3D plant genomics study.
Firstly, we should increase the computational efficiency to support quickly accumulated
3D genomic data. Secondly, we should develop a unified data format and integrate the
commonly used functions together to make a friend analytic tool for 3D plant study.
Finally, we should improve such the existing tools by adding the comparative analysis
function for the data sets from multiple experiments, that can help the researchers
investigate the spatial structure similarities and differences in the same kind cells in
various life cycles or homologous species.
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Abstract. During the evolutionary process, the genome is affected by
various genome rearrangements, which are events that modify large
stretches of the genetic material. In the literature, several models were
designed to estimate the number of events that occurred during the
evolution, but these models represent genomes as a sequence of genes,
overlooking the genetic material between consecutive genes. However,
recent studies show that taking into account the genetic material present
between consecutive genes can be more realistic. Reversal and transpo-
sition are genome rearrangements widely studied in the literature. A
reversal inverts a segment of the genome while a transposition swaps
the positions of two consecutive segments. Genomes also undergo non-
conservative events (events that alter the amount of genetic material)
such as insertion and deletion, which insert and remove genetic material
from intergenic regions of the genome, respectively. We study problems
considering both gene order and intergenic regions size. We investigate
the reversal distance between two genomes in two scenarios: with and
without non-conservative events. For both problems, we show that they
belong to NP-hard problems class and we present a 4-approximation
algorithm. We also study the reversal and transposition distance between
two genomes (and the variation with non-conservative events) and we
present a 6-approximation algorithm.

Keywords: Genome rearrangements · Intergenic regions ·
Approximation algorithms

1 Introduction

Genome rearrangements are events that insert, remove or change the position
and/or orientation of large stretches of the genetic material. When we compare
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the genomes of two individuals, one of the main goals is to estimate the sequence
of rearrangement events that transformed one genome into the other.

A model M determines the set of rearrangement events allowed to mod-
ify the genome. The size of the smallest sequence of rearrangement events in
a model M capable of transforming a genome into another is called rearrange-
ment distance. When we assume no duplicated gene, we can map every gene to a
unique number to represent genomes as permutations of integer elements. Usu-
ally, rearrangement problems are treated as sorting problems and the goal is to
turn any genome π into a specific genome ι = (1, . . . , n), which is called identity
permutation. If the orientation of the genes is known, a positive or negative sign
is assigned to each element. Otherwise, signs are omitted.

When the gene orientations are unknown, Caprara [6] proved that the Sorting
Permutations by Reversals problem belongs to NP-hard problems class. The best
algorithm has an approximation factor of 1.375 and was presented by Berman
et al. [1]. Sorting Permutations by Transpositions problem also belongs to NP-
hard problems class [4] and the best algorithm has an approximation factor of
1.375 [7]. When we consider a model allowing reversals and transpositions we
have the Sorting Permutations by Reversals and Transpositions problem. The
best algorithm for this problem has an approximation factor of 2.8334 + ε, for
any ε > 0 [10] and its complexity is unknown.

The representation of a genome only as a gene sequence is a technique very
useful, but all the information that is not present on the genes are discarded
that implies in loss of information. In particular, the intergenic regions between
consecutive genes are not taken into account by these representations. Recently,
authors have suggested that incorporating this information may improve the
distance estimate from an evolutionary point of view [2,3]. Thus, it is justi-
fied to perform investigations considering the order of the genes and the size of
the intergenic regions. Works considering gene order and intergenic sizes have
already been presented. A model allowing Double-Cut and Join (DCJ) opera-
tion was presented together with the NP-hard proof and a 4/3-approximation
algorithm [8]. The DCJ [11] is a rearrangement event that cuts the genome into
two points and the extremities of the resulting segments are reassembled fol-
lowing specific criteria. A model allowing DCJs, insertions, and deletions also
was investigated and an exact polynomial time algorithm was designed [5] when
insertions and deletions act only on intergenic regions. Besides, Oliveira et al. [9]
presented a model that allows the use of only super short reversals (reversals
that affect at most two genes) also considering intergenic regions size.

In this paper, we consider that gene orientations are unknown. We investigate
four problems to estimate the distance between genomes also taking into account
intergenic regions, two of them allowing just conservative events of reversal and
transposition: Sorting by Intergenic Reversals (SbIR) and Sorting by Intergenic
Reversals and Transpositions (SbIRT). We also investigate two other problems
that allow non-conservative events of insertion and deletion: Sorting by Inter-
genic Reversals, Insertions, and Deletions (SbIRID) and Sorting by Intergenic
Reversals, Transpositions, Insertions, and Deletions (SbIRTID).
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This manuscript is organized as follows. Section 2 provides definitions that are
used throughout the paper. Section 3 presents the complexity proofs for SbIR and
SbIRID problems and an approximation algorithm for each problem addressed
in this manuscript. Section 4 concludes the paper.

2 Basic Definitions

Given a genome G as a sequence of n genes g1, . . . , gn and a sequence of n + 1
intergenic regions r1, . . . , rn+1, each gene is surrounded by two intergenic regions
so that: G = (r1, g1, r2, g2, . . . , rn, gn, rn+1). Our model assumes that (i) genes
orientation is unknown, (ii) there are no duplicate genes, and (iii) the considered
genomes share the same set of genes. In this way, we can assign each gene a unique
value and map the gene sequence as a permutation π = (π1 π2 . . . πn), πi ∈ N,
1 ≤ πi ≤ n, and πi �= πj for all i �= j.

Rearrangement events can split intergenic regions, and each intergenic
region has a well-defined amount of nucleotides. Thus, we represent it by
the size (amount of nucleotides). The sequence of intergenic regions π̆ =
(π̆1 π̆2 . . . π̆n+1), π̆i ∈ N, represents the respective intergenic region sizes,
such that π̆i is on the left side of πi, whereas π̆i+1 is on the right side.

Since we represent genes as a permutation π, we can treat the problem as a
sorting problem in which the target permutation is the identity ι. This approach
is widely used and it means that if we are able to transform (π, π̆) into (ι, ῐ)
we can also transform (α, ᾰ) into (σ, σ̆). Therefore, an instance of our prob-
lem is composed by three elements (π, π̆, ῐ) and the rearrangement distance
considering a model M is represented as dM(π, π̆, ῐ).

Definition 1. An intergenic reversal ρ
(i,j)
(x,y), with 1 ≤ i ≤ j ≤ n, 0 ≤ x ≤ π̆i,

0 ≤ y ≤ π̆j+1, and {x, y} ⊂ N, splits the intergenic regions π̆i and π̆j+1 into
pieces with sizes (x, x′ = π̆i−x) and (y, y′ = π̆j+1−y), respectively. The sequence
(x′, πi, . . . , πj , y) is inverted and the pieces (x, y) and (x′, y′) form new intergenic
regions π̆i and π̆j+1, respectively.

Definition 2. An intergenic transposition τ
(i,j,k)
(x,y,z), with 1 ≤ i < j < k ≤ n + 1,

0 ≤ x ≤ π̆i, 0 ≤ y ≤ π̆j, 0 ≤ z ≤ π̆k, and {x, y, z} ⊂ N, splits the intergenic
regions π̆i, π̆j, and π̆k into pieces with sizes (x, x′ = π̆i − x), (y, y′ = π̆j − y),
and (z, z′ = π̆k − z), respectively. The sequences (x′, πi, . . . , y) and (y′, πj , . . . , z)
swap positions without changing orientation, and pieces (x, y′), (z, x′), and (y, z′)
form new intergenic regions π̆i, π̆k+i−j, and π̆k, respectively.

Figures 1(a) and (b) show a generic example of intergenic reversal and inter-
genic transposition, respectively.

Definition 3. An intergenic insertion φi
x, such that 1 ≤ i ≤ (n+1), x > 0, and

x ∈ N acts on the intergenic region π̆i inserting an amount x of nucleotides.

Definition 4. An intergenic deletion ψi
x, such that 1 ≤ i ≤ (n+1), 0 < x ≤ π̆i,

and x ∈ N acts on the intergenic region π̆i removing an amount x of nucleotides.
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π̆1 · · · π̆i π̆j+1 · · · π̆n+1π1 πi−1 · · ·πi πj πj+1 πn

π̆1 · · · x |x′ y | y′ · · · π̆n+1π1 πi−1 · · ·πi πj πj+1 πn

π̆1 · · · x | y x′ | y′ · · · π̆n+1π1 πi−1 · · ·πj πi πj+1 πn

(a)

π̆1 · · · π̆i · · · π̆j · · · π̆k · · · π̆n+1π1 πi−1 πi πj−1 πj πk−1 πk πn

π̆1 · · · x |x′ · · · y | y′ · · · z | z′ · · · π̆n+1π1 πi−1 πi πj−1 πj πk−1 πk πn

π̆1 · · · x | y′ · · · z |x′ · · · y | z′ · · · π̆n+1π1 πi−1 πj πk−1 πi πj−1 πk πn

(b)

Fig. 1. The figure illustrates two intergenic genome rearrangement operations, the
reversal (a) and transposition (b).

From now on, we will refer to the operations simply as a reversal, transpo-
sition, insertion, and deletion. Since reversal and transposition do not insert or
remove genetic material, when dealing solely with conservative events the sum
of intergenic regions size in both genomes is the same.

Definition 5. Given a permutation π with n elements, the extended permuta-
tion π′ is a permutation with two new elements π′

0 = 0 and π′
n+1 = n + 1.

From now on, we use the term permutation to denote the extended permu-
tation. We say that an intergenic region is of (in)correct size if it occurs between
two elements consecutive both in π′ and ι′ and whose size is (not) the same in
π′ and ι′.

Definition 6. An intergenic breakpoint is a pair of elements π′
i and π′

i+1 of
the permutation π′, such that either they are not consecutive in the identity
permutation ι′, or they are consecutive and the intergenic region between them
has an incorrect size.

An intergenic breakpoint represents a region that at some point has to be
affected by some operation either to fix the gene order or the size of the intergenic
region. Figure 2 shows examples of intergenic breakpoints.

Definition 7. The number of intergenic breakpoints is denoted as ib(π′, π̆, ῐ).

Remark 1. The instance (ι′, ῐ, ῐ) has a property that does not occur in any other
instance: ib(ι′, ῐ, ῐ) = 0.
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(π′, π̆) = 5 5 2 0 4 1 10 1 2 3 6 5 4 7

π′
0 π′

1 π′
2 π′

3 π′
4 π′

5 π′
6 π′

7

(ι′, ῐ) = 5 0 3 3 2 4 10 1 2 3 4 5 6 7

ι′0 ι′1 ι′2 ι′3 ι′4 ι′5 ι′6 ι′7

Fig. 2. Given the permutation π′ = (0, 1, 2, 3, 6, 5, 4, 7) and the size of the intergenic
regions π̆ = (5, 5, 2, 0, 4, 1, 1) and ῐ = (5, 0, 3, 3, 2, 4, 1) we have the following intergenic
breakpoints: (π′

1, π
′
2), (π′

2, π
′
3), (π′

3, π
′
4), (π′

5, π
′
6), and (π′

6, π
′
7). Note that the elements

of the intergenic breakpoint (π′
3, π

′
4) are not consecutive on the identity permutation

while the elements of the intergenic breakpoint (π′
2, π

′
3) are, but the intergenic region

between the elements has an incorrect size.

Definition 8. The variation in the number of intergenic breakpoints after apply-
ing a sequence of operations S is denoted as Δib(π′, π̆, ῐ, S), such that:

Δib(π′, π̆, ῐ, S) = ib((π′, π̆, ῐ) · S) − ib(π′, π̆, ῐ).

Definition 9. A pair (a, b) is a block in a permutation π′ if |a − b| = 1, the
elements a and b are consecutive in the permutation π′, and the intergenic region
between them has a correct size.

Definition 10. Two intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1), such that

i < j, are connected if the following conditions are fulfilled:

i. At least one of the pairs (π′
i, π

′
i+1), (π′

j , π
′
j+1), (π′

i, π
′
j), (π′

i, π
′
j+1), (π′

i+1, π
′
j),

or (π′
i+1, π

′
j+1) corresponds to two consecutive elements in the identity per-

mutation ι′ that do not form a block in the permutation π′.
ii. π̆i+1 + π̆j+1 ≥ ῐk, such that ῐk is the size of the intergenic region between the

pair of consecutive elements in the identity permutation ι′.

Connected intergenic breakpoints represent regions that have the potential
to remove at least one intergenic breakpoint by placing two consecutive elements
and fixing the size of the intergenic region between them. For example, in Fig. 2,
the intergenic breakpoints (π′

3, π
′
4) and (π′

6, π
′
7) are connected while the intergenic

breakpoints (π′
2, π

′
3) and (π′

3, π
′
4) are not.

3 Results

We start this section by showing that problems SbIR and SbIRID belong to the
problem class NP-hard. For this, we used a reduction of Sorting by Reversals
problem, which does not consider intergenic regions. Then, we present lower
bounds (Subsect. 3.1) and approximation algorithms (Subsect. 3.2) for each of
the variations of the problems addressed in this work.

The Sorting by Reversals problem (SbR) has already been proven NP-
hard [6]. An instance of this problem consists of a permutation δ and a natural
number d. The goal is to determine if its possible to transform δ into ι applying
at most d reversals.
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Lemma 1. SbIR problem is NP-hard.

Proof. We can reduce all instances of SbR to instances of SbIR by setting π = δ
and π̆ = ῐ = (0 0 ... 0). Note that it is possible to transform δ into ι applying at
most d reversals if and only if dSbIR(π, π̆, ῐ) ≤ d. ��
Lemma 2. SbIRID problem is NP-hard.

Proof. We can reduce all instances of SbR to instances of SbIRID by setting
π = δ and π̆ = ῐ = (0 0 ... 0). Note that for these instances of the SbIRID
problem no insertion and deletion will be applied, otherwise we could get a
smaller sequence of reversals just by ignoring the insertions and deletions. That
way, it is possible to transform δ into ι applying at most d reversals if and only
if dSbIRID(π, π̆, ῐ) ≤ d. ��

3.1 Lower Bounds

Following lemmas present lower bounds for each problem we consider.

Lemma 3. Δib(π′, π̆, ῐ, ρ) ≥ −2 for any reversal ρ.

Proof. Suppose that (π′
i−1, π

′
i) and (π′

j , π
′
j+1) are intergenic breakpoints. In this

case, the best scenario after applying reversal ρ
(i,j)
(x,y) removes the intergenic break-

points (π′
i−1, π

′
i) and (π′

j , π
′
j+1), reducing the number of intergenic breakpoints

by two. Since any reversal only affects the neighborhood of two pairs of genes
and two intergenic regions it is impossible to remove more than two intergenic
breakpoints. ��
Lemma 4. Δib(π′, π̆, ῐ, τ) ≥ −3 for any transposition τ .

Proof. Suppose that (π′
i−1, π

′
i), (π′

j−1, π
′
j), and (π′

k−1, π
′
k) are intergenic break-

points. In this case, the best scenario is a transposition τ
(i,j,k)
(x,y,z) that removes the

intergenic breakpoints (π′
i−1, π

′
i), (π′

j−1, π
′
j), and (π′

k−1, π
′
k), reducing the num-

ber of intergenic breakpoints by three. Since any transposition only affects the
neighborhood of three pairs of genes and three intergenic regions it is impossible
to remove more than three intergenic breakpoints. ��
Lemma 5. Δib(π′, π̆, ῐ, φ) ≥ −1 for any insertion φ.

Proof. As an insertion acts in just one intergenic region this means that the
best scenario is to remove the intergenic breakpoint (π′

i−1, π
′
i) after applying an

insertion φi
x, reducing by one the number of intergenic breakpoints. ��

Lemma 6. Δib(π′, π̆, ῐ, ψ) ≥ −1 for any deletion ψ.

Proof. As a deletion acts in just one intergenic region this means that the best
scenario is to remove the intergenic breakpoint (π′

i−1, π
′
i) after applying a dele-

tion ψi
x, reducing by one the number of intergenic breakpoints. ��
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Theorem 1. dSbIR(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)
2 .

Proof. By the Remark 1, we know that (ι′, ῐ, ῐ) is the only instance with no
intergenic breakpoints. To achieve the identity permutation and to fix the inter-
genic region sizes we need to remove ib(π′, π̆, ῐ) intergenic breakpoints. Also,
by Lemma 3, a reversal removes at most two intergenic breakpoints and lemma
follows. ��
Theorem 2. dSbIRID(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

2 .

Proof. Directly by Lemmas 5 and 6, and Theorem 1. ��
Theorem 3. dSbIRT (π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

3 .

Proof. Directly by Remark 1 and Lemmas 3 and 4. ��
Theorem 4. dSbIRTID(π, π̆, ῐ) ≥ ib(π′,π̆,ῐ)

3 .

Proof. Directly by Lemmas 5 and 6, and Theorem 3. ��

3.2 Approximation Algorithms

In this subsection, we will present four approximation algorithms. Initially, we
will show an algorithm with approximation factor 4 for the SbIR and SbIRID
problems. Then, we will present an algorithm with approximation factor 6 for
the SbIRT and SbIRTID problems.

Lemma 7. Let (π, π̆, ῐ) be an instance such that
∑n+1

i=1 π̆i ≥ ∑n+1
i=1 ῐi and the

number of intergenic breakpoints is greater than one. It is always possible to find
at least one pair of intergenic breakpoints that are connected.

Proof. Since ib(π′, π̆, ῐ) > 1, we can find at least a pair of intergenic breakpoints.
We have to show that at least one of those pairs will be connected. Suppose that
exists an instance (π, π̆, ῐ), such that

∑n+1
i=1 π̆i ≥ ∑n+1

i=1 ῐi, ib(π′, π̆, ῐ) > 1, and
there is not a pair of intergenic breakpoints that are connected. The possibilities
for not finding such a pair of intergenic breakpoints are:

– For all pairs of intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1) the elements

(π′
i, π

′
i+1), (π′

j , π
′
j+1), (π′

i, π
′
j), (π′

i, π
′
j+1), (π′

i+1, π
′
j), and (π′

i+1, π
′
j+1) are not

consecutive in the identity permutation, but if it is true π cannot be a per-
mutation.

– For all pairs of intergenic breakpoints (π′
i, π

′
i+1) and (π′

j , π
′
j+1) we do not

have enough intergenic material to remove any intergenic breakpoint π̆i+1 +
π̆j+1 < ῐk, such that ῐk is the size of the intergenic region between the pair of
consecutive elements in the identity permutation. If it is true it implies that∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi and that contradicts the initial assumption. ��
Lemma 8. Let (π′

i, π
′
i+1) and (π′

j , π
′
j+1) be intergenic breakpoints that are con-

nected. It is possible to remove at least one intergenic breakpoint after at most
two reversals.
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Proof. We analyze the possibilities to remove an intergenic breakpoint based on
a pair of connected intergenic breakpoints.

i. (π′
i, π

′
j) or (π′

i+1, π
′
j+1) are consecutive in the identity permutation: these

cases are symmetric and we need to apply only one reversal ρ
(i+1,j)
(x,y) to place

the element π′
j on the right side of the element π′

i or π′
i+1 on the left side

of π′
j+1. As π̆i+1 + π̆j+1 ≥ ῐk, then the x and y parameters can always be

chosen properly to fill the intergenic region with the correct size between the
consecutive elements generated (Fig. 3(a)).

ii. (π′
i, π

′
j+1): in this case we apply two consecutive reversals. In this scenario, we

need an intergenic breakpoint (π′
k, π′

k+1), such that k < i or k > j, to apply
the sequence of reversals without creating new intergenic breakpoints. We
will prove that exists such intergenic breakpoint by contradiction. Suppose
that there is no intergenic breakpoint (π′

k, π′
k+1) such that k < i or k > j.

This means that the segments (π′
0, . . . , π

′
i) and (π′

j+1, . . . , π
′
n+1) are composed

of consecutive elements with no intergenic breakpoint between them; also we
know that π′

i and π′
j+1 are consecutive elements, but if both statements are

true it implies that there are no valid values for the elements πi+1 and πj of
the permutation π. If k < i we apply a reversal ρ

(k+1,i)
(0,π̆i+1)

to obtain the case

(i) (Fig. 3(b)). If k > j we apply a reversal ρ
(j+1,k)
(0,π̆k+1)

to obtain the case (i)
(Fig. 3(c)). Note that in both scenarios the intergenic regions sizes remains
the same and the case (i) can be applied (Fig. 3(b)).

iii. (π′
i+1, π

′
j): In this case we apply two consecutive reversals. In this scenario, we

need an intergenic breakpoint (π′
k, π′

k+1), such that k > i and k < j, to apply
the sequence of reversals without creating new intergenic breakpoints. We will
prove that exists such intergenic breakpoint by contradiction. Suppose that
there is no intergenic breakpoint (π′

k, π′
k+1) such that k > i and k < j. This

means that the segment (π′
i+1, . . . , π

′
j) is composed of consecutive elements

with no intergenic breakpoint between them; also we know that (π′
i+1, π

′
j)

are consecutive elements, but if both statements are true implies that there
are no valid values for the elements πi+1 and πj of the permutation π. After
identifying the intergenic breakpoint (π′

k, π′
k+1) we apply a reversal ρ

(i+1,k)
(0,π̆k+1)

(Fig. 3(d)) to obtain the case (i).
iv. (π′

i, π
′
i+1) or (π′

j , π
′
j+1): these cases are symmetric and we need to apply two

consecutive reversals. Initially, we apply a reversal ρ
(i+1,j)
(0,π̆j+1)

without changing
the intergenic regions sizes, as result we obtain the case (i) (Fig. 3(e)). ��

Theorem 5. SbIR problem is 4-approximable.

Proof. While the permutation is not sorted and while the permutation has inter-
genic regions with incorrect size, it is always possible to remove at least one
intergenic breakpoint after applying at most two reversals (Lemmas 7 and 8). In
the worst case, it gives us a total of 2ib(π′, π̆, ῐ) reversals to transform (π, π̆, ῐ)
into (ι, ῐ, ῐ). By the Theorem 1, we obtained the lower bound ib(π′, π̆, ῐ)/2 and
the theorem follows. ��
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a)

· · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

b)

· · · π̆k+1 · · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

k π′
k+1 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

ρ2

c)

· · · π̆i+1 · · · π̆j+1 · · · π̆k+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

k π′
k+1 π′

n+1

ρ1

ρ2

d)

· · · π̆i+1 · · · π̆k+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

k π′
k+1 π′

j π′
j+1 π′

n+1

ρ1 ρ2

e)

· · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

ρ1

ρ2

Fig. 3. The possibilities that can be found when we have a pair of connected intergenic
breakpoints and the operations of reversal that must be applied to remove at least
one intergenic breakpoint. The pair of elements that are consecutive in the identity
permutation are represented with a gray scale color.

Lemma 9. Let (π, π̆, ῐ) be an instance of the Sorting by Intergenic Reversals,
Insertions, and Deletions problem, such that ib(π′, π̆, ῐ) > 0. It is always possible
to find an insertion φ such that Δib(π′, π̆, ῐ, φ) ≤ 0.

Proof. Since ib(π′, π̆, ῐ) > 0, then it exists at least one intergenic breakpoint that
we can apply an insertion in this region. Therefore, in the worst case the amount
of intergenic breakpoints remains the same. ��
Lemma 10. Let (π′, π̆, ῐ) be an instance of the Sorting by Intergenic Reversals,
Insertions, and Deletions problem, such that ib(π′, π̆, ῐ) = 1 and

∑n+1
i=1 π̆i >

∑n+1
i=1 ῐi. It is always possible to find a deletion ψ such that Δib(π′, π̆, ῐ, ψ) = −1.

Proof. Since ib(π′, π̆, ῐ) = 1, then we know that π′ = ι′, otherwise the number of
intergenic breakpoints should be greater than one. Since all the elements of the
permutation π′ are consecutive and

∑n+1
i=1 π̆i >

∑n+1
i=1 ῐi, there is an intergenic

region π̆k, such as π̆k > ῐk. Thus the deletion ψk
ῐk−π̆k

removes the intergenic
breakpoint (π′

k−1, π
′
k) and the lemma follows. ��

Theorem 6. SbIRID problem is 4-approximable.

Proof. We are going to divide the proof into three cases:

i.
∑n+1

i=1 π̆i >
∑n+1

i=1 ῐi: Lemmas 7 and 8 remain valid as long as ib(π′, π̆, ῐ) > 1,
then we apply only one deletion to remove the last intergenic breakpoint
(Lemma 10).
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ii.
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi: Lemmas 7 and 8 are sufficient to sort the permutation
and to fix the sizes of the intergenic regions by applying only reversals.

iii.
∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi: Initially we apply an insertion to make
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi (Lemma 9). Sequentially, Lemmas 7 and 8 guarantee that the per-
mutation will be sorted and the sizes of the intergenic regions will be fixed
applying only reversals. Note that it is not guaranteed that the initial inser-
tion removes any intergenic breakpoint, but then only reversals are applied
and the last reversal must remove two intergenic breakpoints. Considering
the insertion and the last reversal, on average, we were able to remove one
intergenic breakpoint after applying one operation.

Considering the three cases, in the worst scenario, it gives us a total of 2ib(π′, π̆, ῐ)
operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ). By Theorem 2, we obtained the
lower bound ib(π′, π̆, ῐ)/2 and the theorem follows. ��
Lemma 11. Let (π′

i, π
′
i+1) and (π′

j , π
′
j+1) be intergenic breakpoints that are con-

nected. It is possible to remove at least one intergenic breakpoint after at most
two operations of reversal or transposition.

Proof. Similar to Lemma 8, we will analyze the possibilities to remove an inter-
genic breakpoint based on a pair of connected intergenic breakpoints.

i. (π′
i, π

′
j) or (π′

i+1, π
′
j+1): We need to apply only one reversal, which is exactly

as the procedure shown in case (i) of Lemma 8.
ii. (π′

i, π
′
j+1): In this case we need to apply one transposition. As shown previ-

ously in case (ii) of Lemma 8, we know that it must exist another intergenic
breakpoint (π′

k, π′
k+1) such that k < i or k > j. If k < i we apply a transpo-

sition τ
(k+1,i+1,j+1)
(x,y,z) to place the element π′

i on the left side of the element

π′
j+1 (Fig. 4(a)). If k > j we apply a transposition τ

(i+1,j+1,k+1)
(x,y,z) to place

the element π′
j+1 on the right side of the element π′

i (Fig. 4(b)). In both
scenarios, we have that π̆i+1 + π̆j+1 ≥ ῐk, then the x, y, and z parameters
always can be chosen properly to fill the intergenic region with the correct
size between the consecutive elements generated.

iii. (π′
i+1, π

′
j): In this case we need to apply one transposition. As shown previ-

ously in case (iii) of Lemma 8, we know that it must exist another intergenic
breakpoint (π′

k, π′
k+1) such that k > i and k < j. After identifying the

intergenic breakpoint (π′
k, π′

k+1) we apply a transposition τ
(i+1,k+1,j+1)
(x,y,z) to

place the element π′
j on the left side of the element π′

i+1 (Fig. 4(c)). Since
π̆i+1+ π̆j+1 ≥ ῐk, then the x, y and z parameters always can be chosen prop-
erly to fill the intergenic region with the correct size between the consecutive
elements generated.

iv (π′
i, π

′
i+1) or (π′

j , π
′
j+1): We need to apply two reversals exactly as the pro-

cedure shown on Lemma 8 case (iv). ��

Theorem 7. SbIRT problem is 6-approximable.
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a)

· · · π̆k+1 · · · π̆i+1 · · · π̆j+1 · · ·π′
0 π′

k π′
k+1 π′

i π′
i+1 π′

j π′
j+1 π′

n+1

τ1

b)

· · · π̆i+1 · · · π̆j+1 · · · π̆k+1 · · ·π′
0 π′

i π′
i+1 π′

j π′
j+1 π′

k π′
k+1 π′

n+1

τ1

c)

· · · π̆i+1 · · · π̆k+1 · · · π̆j+1 · · ·π′
0 π′

i π′
i+1 π′

k π′
k+1 π′

j π′
j+1 π′

n+1

τ1

Fig. 4. The possibilities to remove at least one intergenic breakpoint by applying only
one transposition. The pair of elements that are consecutive in the identity permutation
are represented with the color gray.

Proof. While the permutation is not sorted and with all the intergenic regions
with the correct size it is always possible to remove at least one intergenic break-
point after applying at most two operations (Lemmas 7 and 11). In the worst
case, it gives us a total of 2ib(π′, π̆, ῐ) operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ).
By Theorem 3, we obtained the lower bound ib(π′, π̆, ῐ)/3 and the theorem fol-
lows. ��
Theorem 8. SbIRTID problem is 6-approximable.

Proof. Similar to Theorem6, we are going to divide the analysis into three cases:

i.
∑n+1

i=1 π̆i >
∑n+1

i=1 ῐi: Lemmas 7 and 11 remain valid as long as ib(π′, π̆, ῐ) > 1,
then we apply only one deletion to remove the last intergenic breakpoint
(Lemma 10).

ii.
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi: Lemmas 7 and 11 are sufficient to sort the permutation
and to fix the sizes of the intergenic regions by applying only reversals and
transpositions.

iii.
∑n+1

i=1 π̆i <
∑n+1

i=1 ῐi: Initially we apply an insertion to make
∑n+1

i=1 π̆i =
∑n+1

i=1 ῐi (Lemma 9). Sequentially, Lemmas 7 and 11 guarantee that the per-
mutation will be sorted and the sizes of the intergenic regions will be fixed
applying only reversals and transpositions. Note that it is not guaranteed
that the initial insertion removes any intergenic breakpoint, but then only
reversals and transpositions are applied and the last operation (reversal or
transposition) must remove at least two intergenic breakpoints. Considering
the insertion and the last operation, on average, we were able to remove one
intergenic breakpoint after applying one operation.

Considering the three cases, in the worst scenario, it gives us a total of 2ib(π′, π̆, ῐ)
operations to transform (π, π̆, ῐ) into (ι, ῐ, ῐ). By Theorem 4, we obtained the
lower bound ib(π′, π̆, ῐ)/3, and the theorem follows. ��
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4 Conclusion

We proved that the problems of Sorting by Intergenic Reversals and Sorting by
Intergenic Reversals, Insertions, and Deletions belong to NP-hard problems class.
Besides, we presented for both problems an algorithms with approximation factor
4. We also investigate the Sorting by Intergenic Reversals and Transpositions
problem and the variation with non-conservative events of insertion and deletion.
For both problems, we designed approximation algorithms of factor 6.

As future works, we intend to improve the approximation factors of the algo-
rithms and develop cost functions that consider the likelihood of each operation.
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Abstract. Statistical methods were recently introduced for inferring
phylogenetic networks under the multispecies network coalescent, thus
accounting for both reticulation and incomplete lineage sorting. Two evo-
lutionary processes that are ubiquitous across all three domains of life,
but are not accounted for by those methods, are gene duplication and
loss (GDL).

In this work, we devise a three-piece model—phylogenetic network,
locus network, and gene tree—that unifies all the aforementioned pro-
cesses into a single model of how genes evolve in the presence of ILS,
GDL, and introgression within the branches of a phylogenetic network.
To illustrate the power of this model, we develop an algorithm for esti-
mating the parameters of a phylogenetic network topology under this
unified model.

We demonstrate the application of the model and the accuracy of the
algorithm on simulated as well as biological data.

Our work adds to the biologist’s toolbox of methods for phylogenomic
inference by accounting for more complex evolutionary processes.

Keywords: Phylogenetic network · Coalescence · Introgression ·
Gene duplication and loss

1 Introduction

Independently evolving lineages of eukaryotic organisms are typically referred
to as species (they may also be referred to as populations depending on the
context and operational definition of those terms). Over evolutionary time scales,
species lineages bifurcate to form two descendant species from a single ancestral
species. This gives rise to a species tree, which is a phylogenetic tree describing
the evolutionary history of a set of species.

Estimating a species tree is challenging as gene trees are expected to be dis-
cordant with the species tree because of several well known processes. The first
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process leading to discordance is incomplete lineage sorting (ILS), where multi-
ple versions or alleles of a gene persist in a species up through to its ancestral
species [9]. The second is horizontal gene transfer (HGT) through hybrid specia-
tion [11], introgression [10], and speciation with gene flow [13]. This can lead to
gene coalescent times which are younger than the earliest speciation event sepa-
rating the corresponding species. The third is gene duplication and loss (GDL),
where new copies of a gene are created at new loci in the genome, so that the
relationship between sequences from different species at different loci (paralogs)
reflects the duplication and loss process rather than the speciation process [4].

ILS has been addressed by years of research into the multispecies coalescent
(MSC), a mathematical model which describes the evolution of gene trees within
a species tree and naturally accommodates ILS [4]. In the MSC, the relationship
between sequences from different species at orthologous (as opposed to paral-
ogous) loci is represented by a gene tree, evolving within a species tree, and
constrained so that its coalescent times must be older than the corresponding
most recent common ancestors (MRCAs).

More recently, HGT has been addressed by generalizing the MSC model
to the multispecies network coalescent (MSNC) model, which represents the
evolutionary history of species as a phylogenetic network [22]. This flexible model
of reticulate evolution can naturally accommodate hybrid speciation [25] and
introgression [21]. Implementations of this method include mcmc seq in PhyloNet
[20,23] and SpeciesNetwork in BEAST [25].

GDL has been addressed by the development of models which add a third
layer to the MSC between the species tree and the gene trees. This is known as
the locus tree, and it contains vertices encoding duplication events, as well as
vertices which directly correspond to the speciation vertices of the species tree
[16]. The duplicate copy of a gene is assumed to reside in a new unlinked locus,
so that there are multiple copies of a gene present in a single genome. The leaves
of a single locus tree can therefore represent multiple loci, and the source of data
in this model may be more appropriately termed “gene families” (cf. “genes”).

DLCoal, the original implementation of the three-layer model [16], is rel-
atively inflexible. It takes as input a gene tree topology, a species tree fixed
in topology, branch lengths and effective population sizes, and rates of gene
duplication and loss. From such input data it can estimate the locus tree, the
mapping of gene tree coalescent vertices to locus tree branches, and the mapping
of speciation vertices in the locus tree to the species tree. DLCoal also relies on
the accuracy of the supplied gene tree topology, which may contain errors due to
the gene tree inference method or insufficient information in the original multi-
ple sequence alignment (MSA). A later method, DLC-Coestimation [24], avoids
that potential issue by jointly estimating the gene tree along with the locus tree
and reconciliations and mapping directly from a gene family MSA.

The most recent implementation of the three-layer model jointly estimates
the species, locus and gene tree topology and times, as well as general parameters
including duplication and loss rates from the MSAs of multiple gene families [5].
In a simulation study, this method was able to successfully infer the species tree
topology, and outperformed using the MSC model alone (without accounting for
GDL) when estimating species divergence times [5].
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While the above methods either account for both ILS and HGT, or for both
ILS and GDL, no model has been designed or implemented that accounts for
all three processes which generate gene tree discordance; ILS, HGT and GDL.
Here we present a new model which extends the MSNC to a three-layer model
by adding a locus network between the species network and gene trees. This
new model accounts for HGT at the species network level, GDL at the locus
network level, and ILS at the gene tree level. We have implemented a maximum
a posteriori (MAP) search for this model which jointly estimates the speciation
times, inheritance probabilities and duplication and loss rates. Using simulation
experiments, we show that it can accurately infer the aforementioned parameters.

We also used simulated data and an empirical data set of six yeast species to
study the difference in accuracy between our new method and an MSNC method
which does not account for GDL. Results from those experiments showed that
accounting for GDL in addition to ILS and HGT is particularly important when
estimating reticulation times.

2 Methods

Similar to the three-layer model of [16], we develop a three-layer model that
uses a locus network (different from the locus tree of [16]) as an intermediate
layer between the species network and gene tree. This structure allows for unified
modeling of coalescence and GDL, where all coalescence events are captured by
the relationship between the gene tree and locus network, and all GDL events
are captured by the relationship between the locus network and phylogenetic
network. The reticulation events (e.g., introgression) are captured by the fact
that the species and locus structures are both networks, rather than trees.

2.1 The Three-Layer Model

A species network S = (V (S), E(S), τS) is a directed acyclic graph depicting
the reticulate evolutionary histories of a set of species where V (S) is the set
of vertices in the network, E(S) is the set of edges and τS contains the set
of branch lengths of the edges. We use S to denote {V (S), E(S)}. Further,
V = r ∪ VL ∪ VT ∪ VN where r is the root of the network, VL is the set of leaf
vertices, VT denotes the set of tree vertices with two children and one parent
and VN represents the set of reticulation vertices with one child and two parents.
The set of all internal vertices is IV (S) = r ∪ VT ∪ VN . If vertex u has only
one parent, we call this parent pa(u). The set of children of u is denoted as c(u).
For each reticulation vertex u with two parents v and w, there is an inheritance
probability γ ∈ [0, 1] such that the probability of locus u inheriting from v is γ
and inheriting from w is 1 − γ. Γ is a vector of all inheritance probabilities for
all vertices in VN , Γ ((v, u)) = γ and Γ ((w, v)) = 1− γ. The population sizes are
denoted as NS and the population size on branch e(u, v) is NS((u, v)).
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Locus Networks and Locus-Network-to-Species-Network Reconcilia-
tion. A locus network L = (V (L), E(L), τL) is generated by applying dupli-
cation and loss events onto the species network with a top-down birth-death
process [1,2,18]. Birth events create new loci by duplicating an existing locus,
and death (loss) events eliminate loci so that it will have no sampled descendants.
Fully describing the result of this process requires a reconciliation RL from the
locus network to the species network, where the vertices on the locus network
can be mapped to either the vertices or the branches of the species network. If
u ∈ V (L) is mapped to a species network vertex, then we call it a speciation ver-
tex; the set of speciation vertices is denoted as VS(L). If it is mapped to a species
network branch; we call it a duplication vertex and the set of duplication ver-
tices is denoted as VD(L). Branches with no existing leaf vertices are pruned out
(Fig. 1). For a duplication, a new locus is generated, so a mapping δ(u, v) = 1 or
δ(u, v) = 0 is used to indicate whether (u, v) leads to the new (daughter) locus or
if (u, v) is the mother branch where u is the duplication vertex. The population
size of branch e = (u, v) in the locus network is the population size of the branch
e′ = (w, x) on the species network where RL(u) = (w, x) or RL(v) = (w, x) or
RL(u) = w,RL(v) = x. Similarly, Γ ((u, v)) = Γ ((w, x)) where (w, x) ∈ E(S) if
RL(u) = (w, x) or RL(v) = (w, x) or RL(u) = w,RL(v) = x. It is important to
note that reticulation edges present in the species network may be deleted from
the locus network (as in the (F,X) branch leading to the B2 locus in Fig. 1), so
the locus network can be a tree or more tree-like with fewer reticulation vertices
than the species network.

A1 B1 C1A2 B2 C2C3

x

x

A1 B1 C1A2 B2 C2C3

Fig. 1. A gene duplication and loss scenario inside of a species network on three species
A, B, and C. (Left) The complete locus network embedded in the species network,
produced by a birth-death process, and containing all duplication and loss events.
(Right) Lineages in the locus network with no sampled loci due to loss events are pruned
from the locus network, resulting in the observed locus network. Extinct lineages are
deleted. Duplication, loss, and speciation/hybridization events are represented by �, ×,
and •, respectively. New lineages arising from duplication are colored red and green.
(Color figure online)

Gene Trees and Gene-Tree-to-Locus-Network Reconciliation. A gene
tree G = (V (G), E(G), τG) describes the evolution of lineages and the definitions
of vertices are similar with those in the species network and locus network. The
reconciliation from the gene tree to the locus network is denoted by RG. The
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two reconciliations RL and RG are collectively denoted by R. For each locus
network branch e = (u,w) with δ((u,w)) = 1, the coalescent time of every gene
vertex mapped to the leaf vertices under w must be more recent than u. Also, we
define M as the mapping from the gene tree leaf vertex-set to the locus network
leaf vertex-set. M indicates what gene is from what locus in the locus network.
Figure 2 shows the reconciliations from the gene tree to the locus network (RG)
and from the locus network to the species network (RL).

A B C A1 B1 C1 A2 B2 C2C3

RL

a1b1 c1a2 b2 c2c3

RG

Species network Locus network Gene tree

Fig. 2. Gene duplication/loss events are obtained by mapping the nodes of the locus
network onto the branches of the species network, via reconciliation RL (the dotted
arrows from the locus network to the species network). Coalescence events are obtained
by mapping the gene tree nodes onto the branches of the locus network, via reconcil-
iation RG (the dotted arrows from the gene tree to the locus network). Duplication,
loss, speciation/hybridization, and coalescence events are represented by �, ×, •, and
�, respectively.

2.2 Model Assumptions

In this model, we need to make some assumptions as made in [5,16,24].

1. After the duplication, the daughter locus becomes totally unlinked and any
further evolution of the mother and daughter loci, as well as the coalescent
histories of the mother and daughter genes, are independent conditional on
the species network topology, times and population sizes. Thus we can calcu-
late the coalescent probabilities separately for each locus, and use the product
as the gene family coalescent probability.

2. At a locus level, hemiplasy [3] is assumed to be non existent in this model.
In other words, for each duplication and loss event, the resulting addition
or deletion of locus will be transmitted universally to all descendent species.
This allows us to explain all unobserved loci by means of gene loss.

3. In our present implementation, one individual per species is sampled for each
locus.



Unifying Gene Duplication, Loss, and Coalescence on Phylogenetic Networks 45

2.3 Probability Distribution

For a species network S and a set of gene families GF with each member GFi =
(Li,Gi, Ri,Mi, δ

L
i ), and parameters θ, the posterior p(S,GF, θ|D) given observed

DNA sequences D is

p(S,GF, θ|D) ∝
∏

i

p(GFi|S, θ) × p(Di|GFi) × p(θ)

where Di is the DNA sequences for GFi and θ = {μ, λ, Γ,NS} which are the
duplication rate, loss rate, substitution rate, inheritance probabilities and popu-
lation size respectively. The term p(GFi|S, θ) can be decomposed into (we drop
the subscript i for readability) the product p(G, τG, RG|L, τL, δL,M, Γ,NS) ×
p(M |L, τL, RL, δL) × p(L, τL, RL, δL|S, τS , μ, λ), and we have p(D|GFi) =
p(D|G, τG). The term p(G, τG, RG|L, τL, δL,M, Γ,NS) is the probability of the
gene tree coalescing in the locus network under a bounded coalescence model
where gene lineages originated from gene duplication events must coalesce ear-
lier than the duplication event. The bounded coalescence model is extended from
[16] and gains the capacity to handle hybridization events. The details are in [6].

The term p(M |L, τL, RL, δL) is the probability of the map of gene tree leaves
to locus network leaves. Since we assume no prior knowledge of locus information
of each sampled gene copy from a certain species, the mapping has a uniform
distribution based on the number of possible permutations:

p(M |L, τL, RL, δL) =
∏

x∈L(S)

1
|u : RL(u) = x|! . (1)

The number of permutations is constant for a given data set D, so for identifi-
cation of the MAP topology or algorithms like MCMC which use unnormalized
posterior probabilities not scaled by 1/P (D), the calculation of this prior is
unnecessary. The term p(L, τL, RL, δL|S, τS , μ, λ) is the probability of the locus
network generated inside of the species network with duplication rate μ and loss
rate λ and is also derived in [6]. The term p(S) is the prior of the species network
which is a compound prior with uniform prior on the topology and exponential
prior on divergence times as in [7,19].

2.4 MAP Inference of the Parameters of a Fixed Network Topology

Our goal is to find the maximum a posteriori (MAP) estimate of the parameters;
that is,

(S∗,GF
∗, θ∗) = argmax(S,GF,θ)p(S,GF, θ|D). (2)

In this present work, we will focus on inferring the species network parameters—
times, population sizes and inheritance probabilities—with the topology being
fixed, as well as locus networks, gene trees and reconciliations between them.
General parameters such as duplication and loss rates are also inferred. Because
of the hierarchical nature of the generative model, changes on higher level com-
ponents will influence lower level components as well. For example, changing the
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heights of the species network vertices will also change the heights of correspond-
ing locus network vertices. We developed four groups of operators, each working
on different levels of the model, which we describe in detail in [6]. The first group
makes changes to the species network and can also alter the locus networks and
gene trees. The second group changes the locus network and can also alter the
gene trees. The third group makes changes to the gene trees alone, while the
fourth applies to the macroevolutionary rates, which in our implementation is
limited to the duplication and loss rates.

2.5 Results and Discussion

2.6 Performance on Simulated Data

Simulation Setup. We simulated DNA sequence data for multiple gene families
with our gene tree simulator and Seq-Gen [14]. Our gene tree simulator employs
the hybridization-duplication-loss-coalescence model and operates in two phases.
First, it generates the locus network within a predefined species network by
simulating duplications and losses.

1× 107
1.5× 107
2.5× 107
3× 107
4× 107
5× 107

1.5× 108

A B C D E F

H
G

J

K

L
X

R

0.3
0.7

Fig. 3. The model network used
to simulate data for Experiments
1 to 3. The values on the right
correspond to divergence times of
the nodes in number of generations.
The inheritance probability values
are shown on the reticulation edges.

Then the gene tree is simulated under a
coalescence model along the locus network.
If the gene lineages could not coalesce before
the duplication event backward in time, it
will be rejected and retried until it coalesces
after the event, up to 108 attempts, beyond
which the locus network will be rejected and
regenerated. Locus networks with fewer than
3 extant species will be rejected. Once the
gene trees were generated, the program Seq-
Gen [14] was used to simulate the evolution
of DNA sequences down the gene trees under
a specified model of evolution. In all sim-
ulations reported here, we used the Jukes-
Cantor model of evolution [8] to generate
1000 bp long DNA sequences. For Experi-
ments 1 to 3, we used the network of Fig. 3 as
the model species network. Population sizes are given as the number of diploid
individuals, and specified duplication/loss rates and population sizes were set to
be the same across all branches of the model networks. A mutation rate of 10−9

was used for all simulation experiments.

Experiment 1: Testing the Effects of GDL Rate and Population Size.
In this experiment, different settings of duplication/loss rates and population
sizes were used to test how these parameters would affect the accuracy of infer-
ences. The duplication and loss rates (both were equal) used were 5 × 10−10,
10−9 and 2.5 × 10−9 and the population sizes were 106, 4 × 106, and 8 × 106.
For each of the 9 different settings of duplication/loss rates and population size,
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we generated 10 replica each with 50 gene families and ran 15 million iterations
for each data set. First, we calculated the average difference of the estimated
divergence times and the true values in population mutation rate units for the 9
settings based on the 10 replica for each setting. Most estimates of the divergence
times are accurate across different settings, with the exception of the reticulation
time “X” which appears to be less identifiable at smaller population sizes (see
[6]). We calculated the difference between the estimated inheritance probabilities
and the true value (0.3) on (K,X) (see [6]). No consistent trend was observed
in the accuracy of inheritance probability estimates over the ranges of popula-
tion size and duplication and loss rates studied. To assess the accuracy of locus
networks and gene trees, we calculated the topological error in metrics devel-
oped by [12] between the estimated and true locus networks and RF distance
between true and estimated gene trees [17]. Overall our method shows very good
accuracy (indicated by topological distances close to 0). The average distance
for the locus networks increases as the duplication and loss rate increases, but it
appears invariant to varying population size. This makes sense because the locus
networks are determined by the duplication and loss events not the ILS events.
If ILS, GDL and HGT are absent all gene tree topologies will identical to the
species tree topology, and be perfectly accurate when the species tree topology
is fixed at the truth. However in our model gene trees can vary because of all
three processes. The prevalence of ILS is partly dependent on population sizes,
and therefore it is unsurprising that we show gene tree topological error consis-
tently increasing as population sizes get larger (see [6]). Finally, we assessed the
method’s performance in terms of estimating the duplication and loss rates. As
the results show, the method performs well at estimating both rates under the
range of population sizes and duplication and loss rates studied (see [6]).

Experiment 2: Testing the Effect of the Number of Gene Families. In
order to determine how our method performs given larger or smaller data sets,
we varied the number of gene families (5, 10, 25, and 50) under one setting of
duplication/loss rate (2.5 × 10−9) and population size (4 × 106). 10 replica for
each number of gene families were simulated and 15 million iterations were run
for each data set. Results (see [6]) show that even for 5 gene families, a relatively
small number, the estimated divergence times are generally accurate especially
for H and R. The accuracy and precision improve as more gene families are used
for example for nodes G, J and L.

We tested the inference of other parameters. Figure 4(a) shows that both
the accuracy and precision of the inheritance probability improved for larger
numbers of gene families. The accuracy of the duplication rate both appear
to improve slightly with more data. The loss rate, while accurately estimated,
did not show any consistent trends. As the results show, the accuracy of the
locus networks and of the gene trees seems to be stable across different settings
in terms of both mean and standard deviation. As gene tree topologies, while
independent, are conditioned on the species network topology, when the species
network topology is fixed even without any data there will already be a lot of
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information in the model on the gene tree topologies. Also, the locus networks
are independent for each gene tree conditioned on the species network topology.
So increasing the number of gene trees will not improve the overall accuracy
of gene tree estimates to the same extant as when jointly estimated with the
species tree or network topology (Fig. 4(b)).

Fig. 4. (a) The difference of estimated parameters from the true values. Top: difference
between estimated inheritance probability and the true value (0.3) on (H, X). Middle:
difference of estimated duplication rate and true value. Bottom: difference of estimated
loss rate and true value. The number of gene families used as input to the inference
method is shown on the x-axis. Standard deviations are represented by vertical bar. (b)
The average topological distances between the inferred and true networks or trees. Top:
Locus network difference. Bottom: Gene tree difference. The number of gene families
used as input to the inference method is shown on the x-axis. Standard deviation is
represented as vertical bar.

Experiment 3: Comparing Inference With and Without GDL. In this
experiment we set out to test how a method that accounts only for incomplete
lineage sorting but ignores duplication and loss would perform as compared
to our model here. To achieve this, we ran our method and a Bayesian MCMC
species network inference method (the mcmc seq command, with the species net-
work fixed, and using the MAP estimation) in PhyloNet [23] which implements
the method of [20]. We simulated 10 replica under duplication and loss rates of
2.5 × 10−9 and population size 107 and 50 gene families for each data set. For
each gene family we randomly selected one gene copy for each species if there was
at least one. As a result, around half of the sequences in the gene families were
kept after this pruning of the data sets. We fed the sequences to both methods
and ran them both for 15 million iterations. Our results show that our method,
which accounts for gene duplication and loss even with a single sampled locus
per species, more accurately estimated speciation and reticulation times. This
was particularly true of the reticulation vertex, where mcmc seq dramatically
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underestimated the reticulation time (see [6]). Also, we have a better estima-
tion of the inheritance probabilities than mcmc seq. Our estimation is 0.268 and
mcmc seq had estimation of 0.464 where the true value is 0.3.

2.7 Biological Data

We used the yeast genome data set with duplications reported on http://
compbio.mit.edu/dlcoal/ and randomly selected two data sets restricted to six
genomes. One consists of 100 gene families each with exactly one copy for each
species with alignments 1000nt–2000nt in length; the other consists of 100 gene
families with possibly multiple or 0 copies for each species with alignments
1000nt–2000nt in length. We used 10−10 as duplication and loss rate and 4×10−10

as mutation rate and 107 as population size which are comparable with the set-
tings used in [15]. Then we fed mcmc seq with the first data set and ran the
command 10 times for 15 million iterations each with the maximum number
of reticulation vertex set to be one. The most prevalent topology is shown in
Fig. 5(a) and appeared in 7 of the 10 runs. We then fed our method with the
second data set and run 7 times each with 15 million iterations. A table of the
average estimated divergence times is given in Fig. 5(b). We can see that most
of the divergence times are similar and the only significant differences are at the
divergence times of vertices J, X and L. Given our method is better at estimat-
ing divergence times given results from Experiment 3, it seems that the ones
obtained by our method here are probably more accurate estimations.

The inheritance probability on branch (R,X) estimated by mcmc seq was
0.503 ± 0.147 while the value estimated by our method was 0.461 ± 0.091. The
error is the standard deviation among runs, and shows that the estimated inher-
itance probabilities of the two methods are very close.

cgla scas sbay scer spar smik

R

L

K

X

J

H

G

Our method mcmc seq

G 0.04068± 0.001 0.0401± 0.001
H 0.0708± 0.001 0.0677± 0.002
X 0.02851± 0.015 0.0626± 0.0292
K 0.0937± 0.003 0.0911± 0.004
J 0.1187± 0.005 0.1227± 0.004
L 0.2321± 0.002 0.1877± 0.007
R 0.2415± 0.002 0.1955± 0.008

)b()a(

Fig. 5. (a) The yeast species network topology inferred by mcmc seq on the 100
gene families. (b) Mean and standard deviation of the estimated divergence times
of mcmc seq and our method (std’s smaller than 0.001 are rounded to 0.001).

http://compbio.mit.edu/dlcoal/
http://compbio.mit.edu/dlcoal/
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3 Conclusions

In this work, we developed a probabilistic model that simultaneously accounts
for hybridization, gene duplication, loss and ILS. We also devised a stochastic
search algorithm for parameterizing phylogenetic networks based on this model.
This algorithm provides estimates of evolutionary parameters, as well as gene
histories and their reconciliations. Results based on simulation studies show good
performance of the algorithm as well as insights obtained by employing the new
model as compared with existing models that exclude gene duplication and loss.

We identify three natural directions for future research. First, while in this
work we assumed a fixed phylogenetic network topology, in most empirical stud-
ies such a topology is not given or known. Developing a method that infers the
phylogenetic network, along with all the parameters that the current method
estimates, is essential for proper application of the model. Second, while this
work focused on obtaining point estimates of the phylogenetic network’s param-
eters, developing a method that estimates a posterior distribution on the space
of phylogenetic networks and their parameters would provide additional infor-
mation, including assessment of statistical significance and the uniqueness and
distinguishability of optimal solutions. Third, the computational bottleneck in
this domain stems from the time it takes to compute the likelihood of a given
point in the parameter space as well as from the need to walk an enormous and
complex space of such parameters. For example, it took between 15 and 20 h for
a single run of 15 million iterations on a data set with four or five species and
50 gene families. Developing algorithmic techniques and potentially alternative
likelihood functions to speed up these calculations is imperative for this work to
be applicable to data sets of the scale that biologists can now generate using the
latest sequencing technologies.
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Abstract. Studying phylogenetic trees is fundamental to biology and
benefitting a vast variety of other research areas. Comparing such trees
is essential to such studies for which a growing and diverse collection
of tree distances are available. In practice, tree distances suffer from
problems that can severely limit their applicability. Notably, these dis-
tances include the cluster matching distance that is adapted from the
Robinson-Foulds distance to overcome many of the drawbacks of this
traditional measure. However, at the same time, the cluster matching dis-
tance is much more confined in its application than the Robinson-Foulds
distance and makes sacrifices for satisfying the properties of a metric.
Here, we propose the cluster affinity distance, a new tree distance that is
adapted from the cluster matching distance but has not its drawbacks.
Nevertheless, as we show, the cluster affinity distance preserves all of the
properties that make the matching distance appealing.
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1 Introduction

Phylogenetic trees depict the phylogenetic relationships of entities, like molecular
sequences, genomes, or species, and can be of enormous size. For researchers,
phylogenetic trees are full of complexities and present a primary tool for studying
how entities have evolved the way they are today. Potential applications of such
studies are widespread and affecting a vast variety of fundamental research areas
such as biology, ecology, epidemiology, and conservation biology.

Studying phylogenetic trees entails the comparative evaluation of their dif-
ferences and similarities [8,20]. To compare phylogenetic trees a large variety of
measures has been considered and analyzed (e.g., [11,12]). However, all of these
measures are prone to shortcomings or weaknesses that can severely limit their
usefulness in practice, ranging from intrinsic exponential time-complexities (e.g.,
[1,5,6]) to negatively skewed distributions [21], and several measures suffer from
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topology biases [23] or do not satisfy the properties of a metric (e.g., [16]). For
example, the problems of computing the distance for a pair of trees under vari-
ous tree edit operations are NP-hard, such as the traditional tree edit operations
nearest neighbor interchange (NNI), subtree pruning and regrafting (SPR), and
tree bisection and reconnection (TBR) [1,6]. Gene tree parsimony costs that
rely on evolutionary models to compare trees do not satisfy the properties of
a metric [16] and suffer from topology biases [23]. Widely-used is the classic
Robinson-Foulds (RF) distance [19], perhaps, because it is not confined by an
evolutionary model and linear-time computable [7]. In practice, however, phy-
logenetic trees are prone to small error, and the RF distance is not sufficiently
“robust” to compensate for such errors. A tree distance is considered to be robust
when a small error in the compared trees that is modeled by successive tree edit
operations will not cause abrupt distance changes (e.g., [15]). Another signifi-
cant drawback of the RF distance is its negatively skewed distribution [21] where
most distances are close to the maximum possible distance, called RF diameter.

Matching distances present a significant leap in comparative phylogenetics.
These distances can be seen as weighted adaptions of the classic RF distance,
and are designed to overcome its shortcomings. The matching distances, similar
to the RF distance, are defined for comparing rooted tree-pairs [4] and unrooted
tree-pairs [15]. Here, we focus on the rooted version of the matching distance,
which is called the cluster matching distance.

The cluster matching distance is defined for a pair of rooted and binary input
trees. This distance is based on matching the clusters (or clades) between the
two trees perfectly, i.e., every cluster in each tree is paired with exactly one
cluster in the other tree. For each cluster pair, the cluster distance is defined as
the count of the symmetric difference of the involved clusters. Now, the cluster
matching distance is the score of a minimum-weight perfect matching; that is, a
perfect matching with their overall minimum distance of its cluster pairs.

Despite the desirable properties of the cluster matching distance, its appli-
cability is severely limited when compared to the RF distance. Unlike the
RF distance that is also defined for non-binary trees, the matching distance
requires binary input trees to establish a perfect matching. In practice, however,
trees inferred from biological data are often non-binary and have various multi-
furcated vertices that allow representing the uncertainty of their actual binary
resolution (e.g., [8]). While the perfect matching of the cluster matching distance
establishes its metric properties, this matching is prone to skew the actual “sim-
ilarity” of the input trees. For example, minimum weight perfect matchings can
enforce that most clusters are not matched with their smallest possible cluster
distance, and thus overestimating largely the actual minimum cluster distances
between the input trees. Thus, the same cluster matching distance can describe
tree pairs that are quite different in terms of their minimum cluster distances.

Here, provided with the great template of the cluster matching distance, we
introduce a new adapted distance, referred to as the cluster affinity distance,
that is generally defined for multi-furcated and binary trees, and where each
cluster in a tree is matched with the smallest cluster distance. At the same time,
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as we prove, the cluster affinity distance is not jeopardizing any of the properties
that make the cluster matching distance appealing.

Related Work. The need to compare phylogenetic trees has given rise to the
proliferation of various measures for the pairwise comparison of such trees [11].
Here we describe distance-based measures for the pairwise comparison of trees
over the same label set that are closely related to the presented work and discuss
their advantages and shortcomings.

While all of the presented measures induce a metric on the tree-space, which
is not true for measures that rely on biological models (e.g., [16]), they widely
differ in their asymptotic computation times and distributions. Also, these mea-
sures vary in terms of their diameters, and gradients regarding the classic tree
edit operations NNI, SPR, and TBR. The diameter of a measure for the tree
space of all n taxa trees is the maximum distance between any pair of trees
in this space [11]. In practice, such diameters are often used to normalize their
corresponding measures to compare them when analyzing tree distances [10].
The gradient of a tree edit operation for a given distance metric is the maxi-
mum distance between all tree pairs that can be transformed into each other
by one edit operation. Errors in trees can be expressed in terms of the tree edit
operations [24], and thus the gradient of an edit operation for a measure can be
used to describe the robustness regarding the error of this measure [15]. In the
following, we overview the measures of interest for this work, which are (i) tree
edit measures, (ii) the RF measure, and (iii) the cluster matching distance.

Tree edit measures. Maybe the most natural tree measures are based on the
traditional tree edit operations that are informally described for an unrooted
and full-binary tree T over n taxa as follows.

Nearest neighbor interchange (NNI): This operation selects an internal edge in
T (i.e., an edge that is not incident to a leaf), and exchanges a subtree on
one side of the selected edge with a subtree on the other side of the edge.

Subtree prune and regraft (SPR): This operation prunes a subtree from a tree
T by cutting an edge and redrafts the subtree to a new vertex obtained by
subdividing an edge of the edited tree.

Tree bisection and reconnection (TBR): This operation divides a tree T into two
subtrees by removing an edge, and then reconnects these subtrees by creating
a new edge between the midpoints of edges in them.

The NNI, SPR, and TBR measures are defined to count the minimal number of
corresponding edit operations required to change a given pair of trees into each
other. The NNI distance has been introduced independently by DasGupta [6]
and Li et al. [13], and computing this distance is NP-hard [14]. Later on, the
SPR distance and TBR distance were introduced for unrooted and rooted trees,
and their NP-hardness was shown eventually [1,5]. All of these measures induce
metrics or distances on the space of trees [11]. The diameter of the NNI distance is
Θ(n log n) [6,13], and the diameters for the SPR and TBR distance are Θ(n) [1].
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The RF distance. The RF distance [19] is a popular and widely used measure [7,
17,19], which can be computed in linear time in the size of the compared tree
pair [7]. However, the RF distance has a negatively skewed distribution, and
in practice, this distance is mostly useful when the compared trees are “very
similar” [21]. Further, the RF distance is not robust towards small changes,
such as topological error, since re-attaching a single leaf elsewhere in one of the
compared trees can maximize the distance.

The cluster matching distance. The cluster matching distance has been intro-
duced by Bogdanowicz and Giaro [4] for the comparison of a pair of rooted
binary trees on the same leaves and is using a minimum-weight perfect match-
ing to compare the clusters of these trees. Let n be the number of leaves of
the trees that are compared. The cluster matching distance can be computed
in O(n2.5 log n) time [15], and its diameter is bound by Θ(n2) [4]. Further, the
gradients of the cluster matching distance under the rooted versions of the tra-
ditional edit operations NNI, SPR, and TBR are bound by Θ(n), Θ(n2), and
Θ(n2), respectively [18].

Contribution. We introduce the cluster affinity distance for two rooted, and
not necessarily binary, input trees. This distance is based on the directed cluster
distance for an ordered tree pair that pairs each cluster in the first tree with
a cluster in the second tree with the minimum cluster distance, and scores the
overall cluster distances of these pairs. Now, the cluster affinity distance is the
average of the directed cluster distances for each ordered pair of the input trees.

Following the outline of Lin et al. [15], we first show that the cluster affinity
distance is a metric. Then, we prove that the diameter of the cluster affinity
distance is bound by Θ(n2). Moreover, we prove that the gradients of the cluster
affinity distance under the rooted versions of the edit operations NNI, SPR, and
TBR are bound by Θ(n), Θ(n2), and Θ(n2), respectively. By n we refer to the
number of leaves of the compared trees.

In an experimental study, we show that the cluster affinity distance, like the
cluster matching distance, overcomes major drawbacks of the RF distance. First,
we demonstrate the distribution of the cluster affinity distance between randomly
generated binary trees using Yule-Harding model and birth-death process model.
For both models, the cluster affinity distance is more broadly distributed in the
form of a bell-shape and has a broader range than the RF distance. Then, we
show how the cluster affinity distance and the RF distance are correlated with
the number of classical tree edit operations. When compared to the RF distance,
the cluster affinity distance is gradually saturated towards its maximum value.

2 Preliminaries and Basic Definitions

A (phylogenetic) tree T is a connected acyclic graph that has exactly one distin-
guished vertex of degree two, called the root of T , and where all of the remaining
vertices are either of degree three or one. The vertices of degree larger than one



56 J. Moon and O. Eulenstein

are the internal vertices of T , and the remaining vertices are the leaves of T . For
a tree T , we denote its vertex set, edge set, leaves, internal vertices, and root,
by V (T ), E(T ),L(T ), Vint(T ), and r(T ), respectively.

In the following we introduce needed terminology relating to the semi-order
represented by T . We define ≤T to be the partial order on V (T ), where x ≤T y
if y is a vertex on the path between r(T ) and x. If x ≤T y, we call x a descendant
of y, and y an ancestor of x. We also define x <T y, if x ≤T y and x �= y. If
{x, y} ∈ E(T ) and x ≤T y, then we call y the parent of x and x a child of y. For
a node x ∈ V (T ), the subtree of T rooted at x is denoted by T (x), the cluster
of x is defined by CT (x) := L(T (x)), and the set of all clusters of T is defined
by H(T ) =

⋃
x∈V (T ) CT (x). X ∈ H(T ) is called a trivial cluster if X = L(T )

or |X| = 1, it is called non-trivial otherwise. The set of non-trivial clusters is
defined by H′(T ) =

⋃
x∈Vint(T )\r(T ) CT (x). The symmetric difference of two sets

X and Y is defined as X � Y = (X \ Y ) ∪ (Y \ X). Let T1 and T2 be trees with
same leaves, then the (rooted) Robinson-Foulds (rRF) distance [19] is defined as
RF (T1, T2) := 1

2 |H(T1) � H(T2)|.
Let T be a tree and φ(T ) be the set of trees derived by applying the edit

operation φ to T , then φ(T ) is called the (local) neighborhood of T under φ [20].
We provide the definitions for the classic rooted tree edit operations.

rNNI [5]: Let T2 ∈ rNNI (T1). An internal vertex u of a rooted binary tree T1

has two incident edges that connects its children l and r. A rooted binary
tree T2 is obtained from T1 by deleting e = {u, l} (or e′ = {u, r}), adding the
edge between l (or r) and the vertex subdivides the edge that is incident with
PaT1(u) and u’s sibling, and then suppressing any degree-two vertices.

rSPR [5]: Let T2 ∈ rSPR(T1), e = {u, v}, u ≤T1 v. A rooted binary tree T2 is
obtained from T1 by deleting e, adding the edge between u and the vertex
that subdivides the edge of T1 \ e, and suppressing degree-two vertices.

rTBR [5]: Let T2 ∈ rTBR(T1). Analogous to rSPR, a rooted binary tree T2 is
obtained from T1 by deleting e, adding an edge between vertices such that
each of the vertices subdivides the edge of one and the other component of
T1 \ e, and then suppressing any degree-two vertices.

3 A New Metric Space

Definition 1 (Cluster Affinity Distance). Let T1 and T2 be trees over the same
leaves and f(T1, T2) := ΣX∈H′(T1)

(
minY ∈H′(T2) |X � Y |). The cluster affinity

(CA) distance is defined as CA(T1, T2) := 1
2

(
f(T1, T2) + f(T2, T1)

)
.

Proposition 1. The CA distance is O(n2) time computable.

Proof. Let T1 and T2 be trees over n taxa. Computing f(T1, T2) requires O(n2)
time by using the n-bit binary vector representation of clusters. For all X ∈
H′(T1), Y ∈ H′(T1), the clusters X and Y are represented by the n-bit binary
vectors that map each leaf to 1 if the cluster contains the leaf, and 0 otherwise.
Let bX and bY be the vector representations of the clusters X and Y , then
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|X � Y | = |bX ∨ bY |2 − |bX ∧ bY |2, where ∨ and ∧ denote the bitwise operations
OR and AND, respectively. Thus, the CA distance is O(n2) time computable.

Proposition 2. The CA distance is a metric.

Proof. Observe that non-negativity and symmetry properties follow directly from
definition of the CA distance (i.e., Definition 1).

To show the identity property, suppose that there are trees Ti and Tj where
CA(Ti, Tj) = 0. Since f(Ti, Tj) ≥ 0 and f(Tj , Ti) ≥ 0, CA(Ti, Tj) = 0 follows
that f(Ti, Tj) = f(Tj , Ti) = 0. It follows that H′(Ti) ⊆ H′(Tj) and H′(Tj) ⊆
H′(Ti). Hence, H′(Ti) = H′(Tj) and Ti = Tj. The opposite direction is trivial.

To show the triangle inequality property, for a cluster Xs ∈ H′(Ti), suppose
that {Ys} = arg minY ∈H′(Tj) |Xs � Y | and {Zs} = arg minZ∈H′(Tk) |Ys � Z|.
(For simplicity, assume |{Ys}| = |{Zs}| = 1). By the property of the symmetric
difference operation, |Xs�Zs| ≤ |Xs�Ys|+|Ys�Zs|. Because minZ∈H′(Tk) |Xs�
Z| ≤ |Xs � Zs|, minY ∈H′(Tj) |Xs � Y | = |Xs � Ys|, and minZ∈H′(Tk) |Ys � Z| =
|Ys � Zs|, it follows that minZ∈H′(Tk) |Xs � Z| ≤ |Xs � Ys| + |Ys � Zs|. Since
f(Ti, Tk) ≤ f(Ti, Tj) + f(Tj , Tk) and f(Tk, Ti) ≤ f(Tk, Tj) + f(Tj , Ti), it follows
that CA(Ti, Tk) ≤ CA(Ti, Tj) + CA(Tj , Tk).

Definition 2 (Diameter). Let T(n) be the space of all trees on the identical n
leaves. Then the diameter of T(n) with respect to a distance metric D on T(n)
is defined as Δ(D,n) := max{D(T1, T2) | T1, T2 ∈ T(n)}.
Proposition 3. Δ(CA, n) = Θ(n2).

Proof. Let T1 = (. . . (1, 2), 3), . . . n − 1) and T2 = (. . . (n, n − 1), n − 2), . . . 1) be
two caterpillars over the same leaf set.

Let vl ∈ V (T2) such that CT2(vl) = {n, n − 1, · · · , 3
4n}. For all u ∈ Vint(T1) \

{r(T1)}, |CT1(u) � CT2(vl)| > n
4 since |{1, 2} � {n, n − 1, · · · , 3

4n}| = n
4 + 3,

|{1, 2, 3}�{n, n− 1, · · · , 3
4n}| = n

4 +4, · · · , and so on. Similarly, let vh ∈ V (T2)
such that CT2(vh) = {n, n − 1, . . . , n

4 }. For all u ∈ Vint(T1) \ {r(T1)}, |CT1(u) �
CT2(vh)| ≥ n

4 since |{1, 2, · · · , n−1}�{n, n−1, · · · , n
4 }| = n

4 , |{1, 2, · · · , n−2}�
{n, n−1, · · · , n

4 }| = n
4 +1, and so on. For any vertex v such that vl ≤T2 v ≤T2 vh,

|CT1(u) � CT2(v)| > n
4 for all u ∈ Vint(T1) \ {r(T1)}. Because there are n

2 such
vertices in V (T2), we have f(T2, T1) > n

4 × n
2 = Ω(n2).

Let ul ∈ V (T1) such that CT1(ul) = {1, 2, · · · , n
4 }. For all v ∈ Vint(T2) \

{r(T2)}, |CT2(v) � CT1(ul)| > n
4 since |{n, n − 1} � {1, 2, · · · , n

4 }| = n
4 + 2,

|{n, n−1, n−2}�{1, 2, · · · , n
4 }| = n

4 +3,· · · , and so on. Similarly, let uh ∈ V (T1)
such that CT1(uh) = {1, 2, . . . , 3

4n}. For all v ∈ Vint(T2) \ {r(T2)}, |CT2(v) �
CT1(uh)| > n

4 since |{n, n−1, · · · , 2}�{1, 2, · · · , 3
4n}| = n

4 +1, |{n, n−1, · · · , 3}�
{1, 2, · · · , 3

4n}| = n
4 +2, and so on. For any vertex u such that ul ≤T1 u ≤T1 uh,

|CT1(u) � CT2(v)| > n
4 for all v ∈ Vint(T2) \ {r(T2)}. Because there are n

2 such
vertices in V (T1), f(T1, T2) > n

4 × n
2 = Ω(n2).

For the upper bound, consider two trees T1 and T2 on n leaves. For any pair
of u ∈ Vint(T1) \ {r(T1)} and v ∈ Vint(T2) \ {r(T2)}, |CT1(u) � CT2(v)| ≤ n − 3.
Hence, f(T1, T2) = O(n2) and f(T2, T1) = O(n2). Finally, Δ(CA, n) = Θ(n2).
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4 Gradients for the Tree Edit Operations

Definition 3 (Gradient). The gradient of a tree edit operation φ with respect to
a distance D on T(n) is G(T (n),D, φ) := max{D(T1, T2) | T1, T2 ∈ T(n) ∧ T2 ∈
φ(T1)} [15].

Fig. 1. An rNNI operation: T1 ∈ rNNI(T2), T2 ∈ rNNI(T1), and CA(T1, T2) = n
4
.

Proposition 4. G(n,CA, rNNI ) = Θ(n).

Proof. Consider the trees T1 and T2 with the same n leaves as shown in Fig. 1.
Suppose that T1 and T2 are well-balanced trees such that |C1| = |C2| = |C3| =
|C4| = n

4 . Note that CT1(u1) = C1 ∪ C2 ∪ C3 ∪ C4, CT1(u2) = C1 ∪ C2, CT1(u3) =
C3 ∪ C4, CT2(v1) = C1 ∪ C2 ∪ C3 ∪ C4, CT2(v2) = C1 ∪ C3 ∪ C4, and CT2(v3) =
C3 ∪ C4. It follows that f(T1, T2) = n

4 since |CT1(u1) � CT2(v1)| = 0, |CT1(u2) �
CT2(v4)| = |CT1(u2) � CT2(v7)| = n

4 , |CT1(u3) � CT2(v3)| = 0. Similarly, it follows
that f(T2, T1) = n

4 since |CT2(v2)�CT1(u3)| = |CT2(v2)�CT1(u1)| = n
4 . Therefore,

G(T (n),CA, rNNI ) = Θ(n).

Fig. 2. An rSPR operation: T1 ∈ rSPR(T2), T2 ∈ rSPR(T1), and CA(T1, T2) = Θ(n2).

Proposition 5. G(n,CA, rSPR) = Θ(n2)

Proof. Consider the caterpillar trees T1 and T2 with the same n leaves as shown
in Fig. 2. By the rSPR operation from T1 to T2, the edge {ul, ul+1} is deleted, and
the subtree T1(ul) is grafted between uk and uk+1 where 1 < l < k < n. It follows
that |CT1(ul)�CT2(vl)| = 0, |CT1(uk)�CT2(vk′)| = 0, and |CT1(ul+1)�CT2(vl)| = 1.
Suppose that n

8 < l < n
4 and k ≥ 3

4n, then Σul<T1u<T1uk
|CT1(u) � CT2(vl)| =

Σul<T1u<T1uk
|CT1(u) � CT2(vk′)| = 1 + 2 + · · · + m = m(m+1)

2 ≥ 3
8n2 since m =

k− l−1 ≥ n
2 . It follows that f(T1, T2) = Ω(n2), hence G(n,CA, rNNI ) = Ω(n2).

The upper bound is trivial by Proposition 3. Therefore, G(n,CA, rSPR) = Θ(n2).

Corollary 1. G(n,CA, rTBR) = Θ(n2).
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5 Experiments

We study the characteristics of the distances rRF and CM in comparison with
the CA distance using simulated datasets. First, we compare the distances of tree
pairs under these measures when randomly sampled under two classic models.
Second, we study how the distances rRF, CM, and CA are correlated with the
number of consecutive tree edit operations. For the experiments, we define a
profile to be a tuple of trees over the same leaf set.

Table 1. Descriptive statistics of the distances rRF, CM, CA, between a pair of ran-
domly generated binary trees under the Yule-Harding model and the birth-death pro-
cess model on 100 and 1000 leaves. (SD: standard deviation, CV: coefficient of variation)

Leaves 100 1000

Model rRF CM CA rRF CM CA

Yule-Harding Mean 97.77 891.60 626.31 997.78 17659.27 11090.88

SD 0.48 38.28 26.58 0.48 423.3 311.87

CV 0.49% 4.29% 4.24% 0.04% 2.39% 2.81%

Median 98 889 625 998 17637 11070

Min 94 760 529 994 16253 10066

Max 98 1123 808 998 20031 12861

Birth-death Mean 81.37 891.6 283.2 837.87 17659.27 4764.95

SD 4.16 38.28 36.89 12.84 423.3 380.38

CV 5.11% 4.29% 13.02% 1.53% 2.39% 7.98%

Median 82 889 282 838 17637 4754

Min 58 760 148 782 16253 3357

Max 95 1123 458 891 20031 6563

5.1 Distribution of the Tree Distance Metrics

We compared the distance distributions under rRF, CM, and CA for ran-
domly sampled trees under the Yule-Harding model [9] and birth-death process
model [2].

Dataset. We generated the profiles Pk := {p1, . . . , pl} and Qk := {q1, . . . , ql} of
random trees over k leaves for each k ∈ {100, 1000}, and l := 100000 separately
under each of the two models as follows.

Yule-Harding Model. The following procedure [3] is sampling trees for each k.

i. an initial list of k single-vertex trees is generated.
ii. two randomly chosen trees are merged into a new tree by making the roots

of these trees the children of a new root.
iii. this process is repeated until the list contains only one tree.
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Fig. 3. Distributions of the distances rRF, CM, and CA between a pair of randomly
generated binary trees by using the Yule-Harding model on 100 and 1000 leaves. The
ranges of the x-axes are μ ± 0.8 × μ for n = 100 and μ ± 0.4 × μ for n = 1000.

Birth-Death Process Model. The software DendroPy version 3.10 [22] was used
with the parameters 0.1 and 0 for the birth rate and death rate, respectively.

Experimental Setting. For the profiles Pk and Qk (k ∈ {100, 1000}) generated
under each of the two models, we computed the distances rRF and CA for each
pair pi and qi, where 1 ≤ i ≤ l.

Results and Discussion. We discuss the results for each of the two models.

Yule-Harding Model. The distributions of the distances rRF, CM, and CA
between the pairs of randomly generated trees are depicted in Fig. 3, and the cor-
responding descriptive statistics are shown in Table 1. The rRF distances show
very narrow distributions for the sampled tree pairs with 100 and 1000 leaves,
and thus the coefficient of variation (CV) of these distances are relatively min-
imal. Also, the minimum value and mean value for both of these distributions
are very close to the theoretical maximum values (i.e., diameters). Further, the
standard deviation and the range of the rRF distances are similar for tree pairs
that have between 100 and 1000 leaves, suggesting that they are not propor-
tional to the number of leaves. In contrast, the distances CM and CA are more
broadly and bell-shape like distributed, which also have a much larger CV than
the corresponding rRF distributions for 100 and 1000 leaves.

Birth-Death Process Model. Table 1 summarizes the descriptive statistics and
Fig. 4 shows the distributions of the distances rRF, CM, and CA between a pair
of randomly generated trees. Unlike the Yule-Harding model, the distributions
of the distances rRF, CM and CA are all in the form of a bell-shape. However,
the CA distance is more widely and evenly dispersed than the CM distance.
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Fig. 4. Distribution of the distances rRF, CM, and CA between a pair of randomly
generated binary trees under the birth-death process model on 100 and 1000 leaves.
The ranges of the x-axes are μ ± 0.8 × μ for n = 100 and μ ± 0.4 × μ for n = 1000.

Hence, the distribution of the CA distance shows a much larger CV than the
distribution of the distances rRF and CM, for both 100 and 1000 leaves.

5.2 Distance Metrics Under the Tree Edit Operations

We show (i) how the distances rRF, CM, and CA correlate with the number of
consecutive tree edit operations, and (ii) that the rRF distance is expected to be
saturated faster than the distances CM and CA under repeated edit operations.

Dataset.We generated a profile P consisting of 1000 random trees on 500 leaves,
where each tree in P was sampled under the Yule-Harding model using the
procedure described in Sect. 5.1. For each of the rooted tree edit operations rNNI,
rSPR, and rTBR we generated the profiles Q(i) := {q(i)1, . . . , q(i)1000} for (i)
every i ∈ {1, . . . , 2000} for the rNNI operation, and (ii) every i ∈ {1, . . . , 500}
for the rSPR and rTBR operations. The profiles were generated as follows.

i. Given a tree edit operation, the initial profile Q(1) is set to profile P . If this
operation is rNNI, the range r is set to 2000. Otherwise, r is set to 500.

ii. For each i ∈ {2, . . . , r} the profile Q(i + 1) is generated from profile Q(i).
The tree q(i + 1)j is created by applying the input tree edit operation to
tree q(i + 1)j (for each j ∈ {1, . . . , 1000}) , where the selection of edges in
q(i)j that is needed to specify the operation is chosen randomly. E.g., for the
rSPR operation, two edges (possibly including a root edge) of tree q(i)j are
randomly chosen, where the first edge determines the pruning location of the
subtree, and the second edge the regrafting location of the subtree.
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Experimental Setting. Distances were computed between tree pairs q(1)j and
q(i)j averaged over all j ∈ {1, . . . , 1000}, under distance measures rRF, CM, and
CA for every i ∈ {1, . . . , r} (r = 2000 for rNNI, and r = 500 for rSPR and rTBR)
using the profiles that were generated for each of the edit operations. Similarly,
the maximum of the distances between the tree pairs q(1)j and q(i)j over all
j ∈ {1, . . . , 1000} was computed to finally compute the ratio of the averages to
their corresponding maximum distances.

Fig. 5. Distances by tree edit operations: average rRF and CA distances of 1000 trees
on 500 leaves as a function of the number of consecutive tree edit operations.

5.3 Results and Discussion

Figure 5(a) depicts the average for the distances rRF, CM, and CA between
the initial tree and rNNI operation applied trees. The gradient of the rRF dis-
tance curve is very steep between 0 ∼ 1200 operations, and the inclination of
the curve is gradual after 1600 operations. However, after 1600 operations the
distances CM and CA still have increasing trends. Figure 5(b) shows the average
of the distances rRF, CM, and CA between the initial tree and rSPR operation
applied trees. While the gradient of the rRF distance curve is gradual after 300
operations, the gradients of the distances CM and CA are in increasing trends.
Figure 5(c) shows the average for the distances rRF, CM, and CA between the
initial tree and rTBR operation applied trees. Unlike the rSPR operation, the
gradients of the curves for the distances rRF, CM, and CA are all steep between
0–200 operations, but they are gradual after 300 operations.

6 Conclusion

There may not be an optimal tree comparison measure, and one or more mea-
sures may be used by the practitioner depending on the application. However,
such choices can be guided by the strengths and weaknesses of such measures.
We introduced the CA distance and showed that this distance, like the CM dis-
tance, offers a variety of desirable features. In contrast to the CM distance, the
CA distance is also applicable to non-binary trees and reflects more precisely
the distances between a tree pair in terms of the minimum cluster distances.
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Abstract. Genomic data privacy arises as one of the most important
concerns facing the wide commoditization of DNA-genotyping. In this
paper, we study the problem of privacy preserved kin-genomic data pub-
lishing. The major challenge in protecting kin-genomic data privacy is
to protect against powerful attackers with abundant background knowl-
edge. We propose a probabilistic model based on factor graph with the
knowledge of publicly available GWAS statistics to reveal the depen-
dency relationship between genotypes and phenotypes. Furthermore, a
genomic data sanitization method is proposed to protect against optimal
inference attacks launched by powerful attackers.

Keywords: Factor graph · SNP/trait associations · Optimal attack ·
Data sanitization

1 Introduction

With the technical advancement of DNA-genotyping, genomic data publishing
and analyzing have become an emerging paradigm, consisting of mass genomic
data and diversified service requirements. For example, several commercial plat-
forms have established to offer DNA-sequencing services to more than 900,000
users, such as 23andMe [1], OpenSNP [2] or PatientsLikeMe [3]. One typical
service is to enable users to learn their predispositions to certain genetic dis-
eases with genotyped DNA. On the other hand, collected DNA information by
researchers is beneficial to establish new method of diagnosing diseases, or new
medicines. These services and benefit are fundamentally derived from big data
analyzing technologies, with the aid of GWAS (Genome-wide association studies)
statistics and SNPs (single-nucleotide polymorphisms)-trait associations. GWAS
explore genetic variation from case-control studies to figure out whether certain
SNPs appear more frequently in people with a certain disease (or genetic trait).
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GWAS show that various SNPs are associated with various complex genetic
traits. Most of these information are publicly available. For example, the GWAS
catalog [5] publish the SNPs-trait associations and related GWAS statistics.

As a fundamental data analyzing operation, modeling the association of SNPs
and traits has been proved to help the understanding the association between
genotypes and phenotypes, which is the basis of promising genetic diagnos-
tics and medicine development. Particularly, probabilistic graphical models have
been widely applied for modeling probabilistic dependency relationship between
various SNPs and traits. For example, a recent work [18] proposed a Bayesian
network model for characterizing SNP-trait association. In their model, each
SNP or trait is represented as a network node, and a two-layered Bayesian net-
work is constructed. Their model suffers from a serious limitation that lies that
in the constructed Bayesian network, the direction of network arcs contradicts
to the actual dependency relationship between SNPs and traits. In GWAS, a
trait is usually viewed as a dependent variable whereas a SNP is treated as
an independent variable, which implies the arcs should always point from SNP
to trait. The current modeling based on probabilistic graphical models exists a
major limitation which lies that most of the current works do not consider the
kin-genomic dependency relationship.

In this paper, we study how to construct an accurate probabilistic graphical
models based on GWAS statistics. Although such modeling is attractive, incor-
porating complex variable dependency and genetic associations among family
members bring two major challenges. The first challenge comes from privacy
concern. Genomes from two relatives are highly correlated; consequently, a per-
son’s genomic information can be easily leaked by her careless relatives, through
a simple data releasing on a personal computer, without any consent from her
relatives in advance. Although anonymized data is released by careless relatives,
once one family member is identified (many de-anonymization algorithms have
been proposed [7,15,17]), all family members privacy are a embarrassing situa-
tion. For example, Henrietta Lacks [4], whose DNA was sequenced and published
online platform SNPedia without the consent of her family. Just after several
minutes of uploading, attackers generate a complete report of genetic informa-
tion about Henrietta Lacks and her family [14]. Thus, genomic data publishing
and analyzing should avoid considerable leakage of sensitive information. The
second challenge comes from modeling SNP-trait association for a given family.
For a given family, modeling the complex genomic dependency is challenging,
which involves computing minor allele frequencies (MAFs) of one SNPs, the
fundamental rules of Mendelian inheritance [16], etc.

Although numerous efforts have been made for each challenge respectively
[6,9–13,19], it remains an unsolved problem to model SNP-trait association for
a family and conduct privacy-preserved genomic data publishing. For this chal-
lenge, we devote to modeling SNP-trait association for a family efficiently and
privacy preserved publish kin-genomic data.

In this paper, we first propose a model to characterize GWAS statistics based
on factor graph through incorporating SNPs, traits and related statistics into it.
The model presents the conditional dependency between SNPs and traits, and
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conditional dependency among any two family numbers. Given the proposed
model, statistical inference attack can be efficiently launched to predict hidden
variables based on revealed variables and auxiliary knowledge.

To derive privacy-preserved genomic data publishing, we assume the attacker
is powerful with abundant background knowledge. To meet such a requirement,
we formulate an optimization problem that takes optimal attack as input and
outputs an optimal data sanitization method, such that the derived sanitized
genomic data satisfies the specified approximation degree and privacy guarantee
can be maximized.

Our key contributions are summarized as follows.

– We propose a probabilistic model, in which the dependency relationship
between genotypes and phenotypes can be revealed.

– The proposed probabilistic model formulate a framework based on which
various statistical attacks can be presented.

– An optimization problem is formulated to achieve genomic privacy-utility
tradeoff.

The rest of this paper is organized as follows. Section 2 introduces our sys-
tem and adversary models, together with privacy and utility metrics. Section 3
presents optimization algorithm to solve optimal privacy preserving method.
Section 4 concludes this paper.

2 Problem Formulation

In this section, we introduce the system and adversary model, quantification
methods for measuring genomic data privacy and utility.

2.1 Adversary Model

The objective of the attacker is to predict the values of hidden traits and SNPs
of members of a target family. To launch the attack, the attacker utilizes some
auxiliary knowledge, essentially the SNP/trait associations (released by GWAS)
and the fundamental rules of Mendelian inheritance. In addition to these publicly
available auxiliary knowledge, the attacker collects a subset of traits and SNPs of
several members of given family, typically those who have released their genomic
information for service or research purpose.

The attack behavior can be formally formulated as exploring marginal prob-
abilities of unknown SNPs and traits from the global probability distribu-
tion Pr(XU |XK , C), where XU represents unknown SNPs and traits; XK the
observed SNPs and traits released by family members, and C the auxiliary
knowledge. We assume the attacker has wide range of auxiliary knowledge, so
that robust privacy preservation methods must be built. We assume the attacker
knows the prior probability of SNPs and traits X of each family member, ψ(X).
Clearly, for a family member,

∑
ψ(X) = 1 is always held for all her possi-

ble X. ψ(X) is expressed as a user’s profile. Furthermore, we also assume the
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attacker knows our privacy preservation method. With such open design, this
inference attack can be launched efficiently by executing belief propagation on
factor graph. (see Sect. 3.2 of [8] for more details about the inference attack).

2.2 Privacy and Utility Metrics

We define F to be the number of members in a given family and S to be the set
of SNPs, where |F | = m and |S| = n. We also denote the value of an arbitrary
SNP j(j ∈ S) for family member i(i ∈ F ) is sij , where sij ∈ {0, 1, 2}, where
sij = 0 represents sij = BB which implies both alleles of i are major alleles;
sij = 1 represents sij = Bb which implies alleles of i are a major allele and a
minor allele; sij = 2 represents sij = bb which implies both alleles are minor
alleles. We assume an attacker launch attacks with broad auxiliary knowledge,
involving intercepted partial SNPs or traits released by some members of given
family.

We express the inference for marginal probabilities as Pr(x̂i
j |XK , C), for all

i ∈ F , j ∈ S. We quantify data privacy by measuring the attacker’s error in pre-
dicting target SNPs and traits. Such incorrectness can be measured by exploring
the expected distance between the adversary estimation on target variables x̂i

j ,
and the true value of the corresponding variables, xi

j . Since the attacker knows
the family member’s profile ψ(X) and privacy preserving method f(X ′|X), she
computes the posterior probability of X, conditional on X ′ with prior knowledge
ψ(X) and f(X ′|X):

Pr(X|X ′) =
Pr(X,X ′)
Pr(X ′)

=
f(X ′|X)ψ(X)

∑
X f(X ′|X)ψ(X)

Then, for each variable X with posterior probability distribution Pr(X|X ′),
the attacker infer the family member’s hidden SNPs and traits based on X. We
represent the predicted hidden variables from Pr(X|X ′) as ZX . The attackers’
objective is then to choose a proper Ẑ to minimize the family member’s condi-
tional expected genomic privacy, conditional on Pr(X|X ′). For an Ẑ, the family
member’s conditional expected genomic data privacy is

∑

x

Pr(X|X ′)dp(ZX , Ẑ)

where dp(ZX , Ẑ) is the difference between ZX(A) and Ẑ.
For the minimized Ẑ, it is

min
Ẑ

∑

X

Pr(X|X ′)dp(ZX , Ẑ) (1)

For a given X ′, the conditional genomic data privacy is given by 1. How-
ever, the probability distribution of X ′ after carrying out privacy preservation
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method is Pr(X ′) =
∑

X f(X ′|X)ψ(X). Thus, the family member’s uncondi-
tional expected genomic privacy is

∑

X′
ψ(X ′)min

Ẑ

∑

X

Pr(X|X ′)dp(ZX , Ẑ)

=
∑

X′
min
Ẑ

∑

X

ψ(X)f(X ′|X)dp(ZX , Ẑ)

Then the genomic data privacy loss can be formally formulated as follows:

Definition 2.1 Genomic Data Privacy Loss. Genomic data privacy loss
measures how much privacy loses of a family member in the inference attack
issued launch by a attacker, which is qualified by the family member’s uncondi-
tional expected privacy:

∑

X′
min
Ẑ

∑

X

ψ(X)f(X ′|X)dp(ZX , Ẑ)

We define
PX′ = min

Ẑ

∑

X

ψ(X)f(X ′|X)dp(ZX , Ẑ). (2)

Substituting PX′ into the above expression, it can be rewritten as
∑

X′
PX′ , (3)

which is the optimization objective and an optimal privacy preservation method
can maximize it, in order to finding the optimal f(X ′|X).

Unfortunately, the problem in (2) is nonlinear due to the minimum operator.
To reduce computation overhead, the nonlinear problem can be converted into
a set of linear constraints:

PX′ ≤
∑

X

ψ(X)f(X ′|X)dp(ZX , Ẑ) ∀Ẑ (4)

Therefore, the problem of maximizing (3) under constraint (2) can be solved
given the solution of solving the optimizing (3) under condition (4).

Utility Metrics: we quantify data utility by measuring the average prediction
accuracy for arbitrary SNPs and traits. Such accuracy difference du(X,X ′) can
also be measured by exploring the expected distance between the prediction
value on target variables x̂i

j , and the true value of the corresponding variables,
xi
j . Given f(X ′|X), ψ(X), and du(X,X ′), data utility can be measured as the

expectation of du(X,X ′) over all X and X ′ for a family member: PULi =∑
X,X′ ψ(X)f(X ′|X)du(X,X ′) ≤ δ.
Attribute set disparity measurer du is determined by data semantics. In dif-

ferent applications, du can be defined as Euclidean, Hamming, or Mahalanobis
distance, etc.
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3 SNP-Trait Association Modeling

Figure 1 shows a factor graph for a family with three members, assuming each
member has 2 traits T = {t1, t2}, 3 SNPs S = {s1, s2, s3}. For two traits t1 and
t2, the associated SNPs are {s1} and {s1, s2, s3}, respectively.
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Fig. 1. A factor graph with 2 traits T = {t1, t2} and 3 SNPs S = {s1, s2, s3}.

4 Privacy-Utility Tradeoff

The problem of finding optimal privacy preserving genomic data publishing
method f(X ′|X) can be formulated as follows. A linear program for a fam-
ily member to find the optimal genomic data sanitization is: choose f(X ′|X), Ẑ,
∀X,X ′, in order to

Maximize:
∑

X′
PX′

Subject to:

PX′ ≤
∑

X

ψ(X)f(X ′|X)dp(ZX(A), Ẑ) ∀Ẑ

∑

X

ψ(X)
∑

X′
f(X ′|X)du(X,X ′) ≤ δ

f(X ′|X) ≥ 0 ∀X,X ′
∑

X′
f(X ′|X) = 1, ∀X

5 Conclusions

We have proposed a probabilistic graphical model for modeling SNPs-trait asso-
ciations from GWAS statistics, based on factor graph. Furthermore, we have
proposed a privacy preserved kin-genomic data publishing method, which is able
to protect against inference attacks from powerful attackers.
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Abstract. The recently developed Domain-Gene-Species (DGS) recon-
ciliation framework, which jointly models the evolution of a domain fam-
ily inside one or more gene families and the evolution of those gene
families inside a species tree, represents one of the most powerful com-
putational techniques for reconstructing detailed histories of domain and
gene family evolution in eukaryotic species. However, the DGS reconcili-
ation framework allows for the reconciliation of only a single domain tree
(representing a single domain family present in one or more gene families
from the species under consideration) at a time, i.e., each domain tree is
reconciled separately without consideration of any other domain families
that might be present in the gene trees under consideration. However,
this can lead to conflicting gene-species reconciliations for gene trees con-
taining multiple domain families.

In this work, we address this problem by extending the DGS reconcil-
iation model to simultaneously reconcile a set of domain trees, a set of
gene trees, and a species tree. The new model, which we call the multi-
DGS (mDGS) reconciliation model, produces a consistent joint reconcil-
iation showing the evolution of each domain tree in its corresponding
gene trees and the evolution of each gene tree inside the species tree.
We formalize the mDGS reconciliation framework and define the associ-
ated computational problem, provide a heuristic algorithm for estimating
optimal mDGS reconciliations (both the DGS and mDGS reconciliation
problems are NP-hard), and apply our algorithm to a large dataset of
over 3800 domain trees and over 7100 gene trees from 12 fly species.
Our analysis of this dataset reveals interesting underlying patterns of
co-occurrence of domains and genes, demonstrates the importance of
mDGS reconciliation, and shows that the proposed heuristic is effective
at estimating optimal mDGS reconciliations.

1 Introduction

Most eukaryotic genes are known to contain one or more protein domains [2,4]
and it is well understood that the domain content of genes can change over
c© Springer Nature Switzerland AG 2019
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time due to evolutionary events such as domain duplications, transfers, or
losses [8]. Changes in the domain content of genes have important functional
consequences [11,12] and it is therefore important to reconstruct the history of
these changes in the evolution of gene families. Several methods have been devel-
oped for studying the evolution of domain families (or domain trees), but these
methods either do not take gene trees into account [1,13,15] or do not account
for the inter-dependence of domain, gene, and species level evolution [10].

The recently developed Domain-Gene-Species (DGS) reconciliation frame-
work [6,7], which jointly models the evolution of a domain family inside one or
more gene families and the evolution of those gene families inside a species tree,
represents one of the most powerful computational techniques for reconstruct-
ing detailed histories of domain and gene family evolution in eukaryotic species.
However, the DGS reconciliation framework allows for the reconciliation of only
a single domain tree (representing a single domain family present in one or more
gene families from the species under consideration) at a time, i.e., each domain
tree is reconciled separately without consideration of any other domain fami-
lies that might be present in the gene trees under consideration. This poses a
problem since many gene families (or gene trees) have multiple protein domains;
specifically, solving the DGS reconciliation problem on different domain trees
that are represented in the same gene tree can yield conflicting reconciliations
for that gene tree with the species tree.

Our Contributions. In this work, we address this problem by extending the
DGS reconciliation model to simultaneously reconcile a set of domain trees, a
set of gene trees, and a species tree. The new model, which we call the multi-
DGS (mDGS) reconciliation model, produces a consistent joint reconciliation
showing the evolution of each domain tree in its corresponding gene trees and
the evolution of each gene tree inside the species tree. We formalize the mDGS
reconciliation framework and define the associated computational problem, pro-
vide a heuristic algorithm for estimating optimal mDGS reconciliations (both
the DGS and mDGS reconciliation problems are NP-hard), and apply our algo-
rithm to a large dataset of over 3800 domain trees and over 7100 gene trees from
12 fly species. Our experimental results demonstrate the importance of mDGS
reconciliation and show that the proposed heuristic is effective at estimating opti-
mal mDGS reconciliations. We also develop a technique to further improve the
accuracy of mDGS reconciliation by using appropriately chosen subsets of the
domain and gene trees under consideration and provide a clustering algorithm to
find such subsets. An implementation of our heuristic for mDGS reconciliation
is available freely from https://compbio.engr.uconn.edu/software/seadog/.

2 Definitions and Preliminaries

We follow the notation and basic definitions from [6,7].

Preliminaries. Throughout this manuscript, the term tree refers to rooted
binary trees. Given a tree T , we denote its node, edge, and leaf sets by V (T ),

https://compbio.engr.uconn.edu/software/seadog/
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E(T ), and Le(T ) respectively. The root node of T is denoted by rt(T ), the parent
of a node v ∈ V (T ) by paT (v), its set of children by ChT (v), and the (maximal)
subtree of T rooted at v by T (v). The set of internal nodes of T , denoted I(T ),
is defined to be V (T ) \ Le(T ). We define ≤T to be the partial order on V (T )
where x ≤T y if y is a node on the path between rt(T ) and x. The partial order
≥T is defined analogously, i.e., x ≥T y if x is a node on the path between rt(T )
and y. We say that y is an ancestor of x, or that x is a descendant of y, if x ≤T y
(note that, under this definition, every node is a descendant as well as ancestor
of itself). We say that x and y are incomparable if neither x ≤T y nor y ≤T x.
Given a non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the least common
ancestor (LCA) of all the leaves in L in tree T ; i.e., lcaT (L) is the unique smallest
upper bound of L under ≤T .

The input for mDGS reconciliation is a collection of domain trees D, a collec-
tion of gene trees G, and a species tree S. The species tree is a tree showing the
evolutionary history for a chosen set of species. Each gene tree is a tree showing
the evolutionary history for a set of genes related by common ancestry, called a
gene family, restricted to the species represented in the species tree. Similarly,
a domain tree shows the evolutionary history of a set of domains related by
common ancestry, called a domain family, restricted to the species present in
the species tree. For mDGS reconciliation, we require that the collections D and
G be “complete”, in the sense that all gene families represented in any domain
tree from D should be present as a gene tree in G and all domain families repre-
sented in any gene tree of G should be present as a domain tree in D. We refer
to any such “complete” pair of collections D and G as a DG-group. Essentially, a
DG-group can be viewed as a connected component in a bipartite graph where
the node set corresponds to all domain families and all gene families present in
the species under consideration and an edge connects a domain family node and
a gene family node if a domain from that domain family exists in a gene from
that gene family.

As in DGS reconciliation [6,7], each leaf in a gene tree is labeled by the species
from which that leaf (gene) was sampled. Similarly, each leaf in a domain tree is
labeled with the gene from which that leaf (domain) was taken. This defines a
leaf-to-leaf mapping from the domain trees to the gene trees, and from the gene
trees to the species tree. Since a gene may have multiple domains, there may be
multiple domains (possibly from different domain trees) mapping to the same
gene. Similarly, since domains from the same domain family may be present in
multiple gene families, different leaves of a single domain tree may map to genes
from different gene families.

For convenience, we extend the notions of the leaf set, vertex set, and
edge set of a tree as follows: Le(G) = ∪G∈GLe(G), V (G) = ∪G∈GV (G), and
E(G) = ∪G∈GE(G). And Le(D) = ∪D∈DLe(D), V (D) = ∪D∈DV (D), and
E(D) = ∪D∈DE(D).

mDGS Reconciliation. The multi-Domain-Gene-Species (mDGS) reconcilia-
tion model defines what constitutes a valid joint reconciliation of the given gene
trees with the species tree and of the given domain trees with the gene trees. As
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with DGS reconciliation, mDGS reconciliation models the primary evolutionary
events that shape gene family evolution in multicellular eukaryotes: speciation,
gene duplication, and gene loss. Similarly, the reconciliation of a domain tree with
one or more gene trees models the elementary evolutionary events that shape
domain family evolution within genes: co-divergence, domain transfer, domain
duplication, and domain loss. Formally:

Definition 1 (mDGS-reconciliation). Given a collection of domain trees D
and a collection of gene trees G that form a DG-group, and given a species tree S
and leaf-mappings LD : Le(D) → Le(G) and LG : Le(G) → Le(S), an mDGS rec-
onciliation for D, G, and S is a nine-tuple 〈MD,MG , ΣD, ΣG ,ΔD,ΔG , Θ,Ξ, τ〉,
where MD : V (D) → V (G) and MG : V (G) → V (S) map each node of D to a
node from G and each node from G to a node of S, respectively, the sets ΣD,
ΔD, and Θ partition I(D) into co-divergence, domain-duplication, and domain-
transfer nodes, respectively, the sets ΣG and ΔG partition I(G) into speciation
and gene-duplication nodes, respectively, Ξ is a subset of domain tree edges that
represent domain-transfer events, and τ : Θ → V (G) specifies the recipient gene
for each domain-transfer event, subject to:
Gene-Species constraints:

1. If g ∈ Le(G), then MG(g) = LG(g).
2. If g ∈ I(G) and g′ and g′′ denote the children of g, then,

(a) MG(g) ≥S lca(MG(g′),MG(g′′)),
(b) g ∈ ΣG if and only if MG(g) = lca(MG(g′),MG(g′′)) and MG(g′) and

MG(g′′) are incomparable,
(c) g ∈ ΔG only if MG(g) ≥S lca(MG(g′),MG(g′′)).

Domain-Gene constraints:

3. If d ∈ Le(D), then MD(d) = LD(d).
4. If d ∈ I(D) and d′ and d′′ denote the children of d, then,

(a) MD(d) 
<G MD(d′) and MD(d) 
<G MD(d′′),
(b) At least one of MD(d′) and MD(d′′) is a descendant of MD(d) (in the

same gene tree).
5. Given any edge (d, d′) ∈ E(D), (d, d′) ∈ Ξ if and only if MD(d) and MD(d′)

are in different gene trees or incomparable in the same gene tree.
6. If d ∈ I(D) and d′ and d′′ denote the children of d, then,

(a) d ∈ ΣD if and only if MD(d) = lca(MD(d′),MD(d′′)) (in the same gene
tree) and MD(d′) and MD(d′′) are incomparable,

(b) d ∈ ΔD only if MD(d) ≥G lca(MD(d′),MD(d′′)) (in the same gene tree),
(c) d ∈ Θ if and only if either (d, d′) ∈ Ξ or (d, d′′) ∈ Ξ.
(d) If d ∈ Θ and (d, d′) ∈ Ξ, then MD(d) and τ(d) must either be in dif-

ferent gene trees or incomparable in the same gene tree, MG(MD(d)) =
MG(τ(d)), and MD(d′) ≤G τ(d).
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Fig. 1. The figure shows an mDGS reconciliation for two domain trees, two gene trees,
and a species tree on 4 taxa. The mappings of the domain trees into the gene trees and
of the gene trees into the species tree are shown by the dotted red lines. Domain-gene
leaf associations are specified by shared leaf labels, and gene-species leaf associations
are specified by shared letters (A, B, C, or D). In the gene-species reconciliation, a
gene-duplication event (marked by the blue square) is invoked at the root of gene tree
1 while all other internal nodes of the gene trees represent speciation events. In the
domain-gene reconciliation, two domain transfer events are invoked at the nodes with
the orange star, one in domain tree 1 and one in domain tree 2, and duplication event
is invoked at the node with the orange circle in domain tree 2. The bolded edges in the
domain trees represent the domain-transfer edges; in both domain trees the domains
are copied from gene tree 1 to gene tree 2, and the recipient genes for domain transfer
1 and domain transfer 2 are marked as “receiver 1” and “receiver 2”, respectively. As
required by the model, for both transfer events, the donor gene and recipient gene both
map to the same species tree node. (Color figure online)

Constraints 1 and 2 above apply to the reconciliation of the gene trees with
the species tree and are based on the classical Duplication-Loss model [3,9]
extended to allow suboptimal gene-species reconciliations. Constraints 3, 4, 5,
and 6 apply to the reconciliation of the domain tree with the gene trees. Overall,
the mDGS reconciliation model is nearly identical to the DGS reconciliation
model [6,7], except that we reconcile multiple domain trees instead of just one.
We refer the reader to [7] for a detailed explanation of the underlying model and
of each constraint. Figure 1 shows an example of a valid mDGS reconciliation.

We point out that the interdependence between domain-gene and gene-
species reconciliations stems from Constraint 6d, which specifies which genes
may be designated as the recipient gene for any given domain-transfer event. In
the absence of horizontal gene transfer, the transfer of a domain from one gene to
another can only happen within the same genome. Thus, Constraint 6d explicitly
enforces that the donor gene and recipient gene for any domain transfer event
must map to the same species in the species tree. It is this relationship between
gene-species mappings and domain-transfer events that necessitates the compu-
tation of a joint reconciliation, so that one cannot simply compute optimal DGS
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or mDGS reconciliations by optimizing domain-gene and gene-species reconcilia-
tions independently. It is also important to note that mDGS reconciliation is not
a direct generalization of the DGS problem since mDGS reconciliation requires
D and G to form a DG-group. Valid input instances for DGS reconciliation may
therefore not be valid input instances for mDGS reconciliation. In the remainder
of this paper we assume that D and G form a DG-group.

We define a parsimony based problem formulation for finding an optimal
mDGS reconciliation. Thus, each evolutionary event other than speciation and
co-divergence is assigned a positive cost, and the computational objective is to
find an mDGS reconciliation of minimum total cost. PG

Δ and PG
loss denote the

gene-duplication and gene-loss costs, while PD
Δ , PD

Θ , and PG
loss denote domain-

duplication, domain-transfer, and domain-loss costs. The model allows for the
use of two separate costs PD

Θ1 and PD
Θ2 instead of a single PD

Θ , so that a distinction
can be made between domain transfers that remain within the same gene family
from those that cross gene family boundaries.

Definition 2 (Reconciliation cost). Given an mDGS reconciliation α, the
reconciliation cost for α is the total cost of all events invoked by α.

Note that, while domain-duplication, domain-transfer, and gene-duplication
events are directly specified in the mDGS reconciliation, domain-losses and gene-
losses are not. However, given an mDGS reconciliation, one can directly count the
minimum number of gene-losses and domain-losses implied by the reconciliation
as shown in [7].

Definition 3 (Optimal mDGS Reconciliation Problem). Given D, G and
S, along with PG

Δ, PG
loss, PD

Δ , PD
Θ1, PD

Θ2, and PD
loss, the Optimal mDGS Reconcil-

iation problem is to find an mDGS reconciliation for D, G and S with minimum
reconciliation cost.

The NP-hardness of the optimal mDGS reconciliation problem follows from
the NP-hardness proof for optimal DGS reconciliation [7]. Specifically, even
though mDGS reconciliation is not a direct generalization of DGS reconcilia-
tion, the gadget used in [7] yields a valid input instance (i.e., the domain tree
and gene trees form a DG-group) for the optimal mDGS reconciliation problem
as well.

3 A Heuristic for Optimal mDGS Reconciliation Problem

Algorithms for DGS reconciliation cannot be used for computing mDGS rec-
onciliations due to differences in the problem formulation and final objective.
However, optimal DGS reconciliations may still serve as a good starting point
for computing optimal mDGS reconciliations (we demonstrate this later in our
experiments). Our proposed heuristic is based on this idea and we show how to
modify an existing algorithm for DGS reconciliation to estimate optimal mDGS
reconciliations.
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Currently, two algorithms exist for DGS reconciliation problem: An efficient
dynamic programming based heuristic algorithm from [7], and an exact integer
linear programming (ILP) based algorithm from [6]. Since, problem instances
for mDGS reconciliation are generally much larger (more domain trees and gene
trees) than those for DGS reconciliation, the exact ILP based algorithm is not
well-suited. We therefore focused on extending the efficient dynamic program-
ming based heuristic algorithm from [7] which has also been previously shown
to compute optimal DGS reconciliations (i.e., same as those computed using
the exact ILP approach) in the vast majority of test cases [6]. We will refer to
this dynamic programming heuristic as the DGS-algorithm. We refer the reader
to [7] for a complete description of the DGS-algorithm; however, for the cur-
rent discussion it suffices to view it as a black box that estimates optimal DGS
reconciliations. The DGS-algorithm takes as input a single domain tree D, set
of associated gene trees G, and a species tree S for the species under consider-
ation. The output of the algorithm is a domain-gene reconciliation of D with
G and gene-species reconciliations for each G ∈ G with S (with the domain-
gene reconciliation satisfying the constraints imposed on it by the gene-species
reconciliations, and vice versa).

Observe that algorithms for DGS reconciliation cannot be used for comput-
ing mDGS reconciliations since reconciling each domain tree of D individually
may lead to conflicting gene-species reconciliations for one or more gene trees.
Our heuristic for mDGS reconciliation, which we will refer to as the mDGS-
algorithm, identifies such conflicts and resolves them. In particular, it preserves
the domain-gene reconciliations inferred through DGS reconciliation, but adjusts
any conflicting gene-species mappings to create a single gene-species mapping
for each gene tree. Before we describe the algorithm in detail, we need the fol-
lowing notation: Given any gene tree G ∈ G, let DG be the set containing those
domain trees from D that are represented in G. Analogously, given any domain
tree D ∈ D, let GD denote the set containing exactly those gene trees from G
that are represented in D.

mDGS-Algorithm (D,G, S,LD,LG)

1. For each domain tree D ∈ D
(a) Run DGS-algorithm(D,GD, S,LD,LGD ). This yields a gene-species map-

ping for each G ∈ GD.
2. For each gene tree G ∈ G

(a) Consider the (up to) |DG| different gene-species mapping for G generated
above. Let these mapping be denoted by MG

1 , . . . ,MG
|DG|.

(b) For each g ∈ I(G) in post order, let MG(g) = lca(MG(g′),MG(g′′),
MG

1 (g), . . . ,MG
|DG|(g)), where g′ and g′′ denote the two children of g ∈

V (G).
3. For each domain tree D ∈ D

(a) For each transfer event d in a post-order traversal of D
i. Let g and g′ denote the donor and recipient gene nodes for the transfer

event at d, and let G and G′ denote the gene trees containing g and
g′, respectively.
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ii. If MG(g) 
= MG′
(g′) then MG(g) = MG′

(g′) = lca(MG(g),MG′

(g′)).
4. Repeat Steps 2 and 3 above until no further changes are made to MG .
5. Return the domain-gene reconciliation for each D ∈ D as computed in Step

1, and the gene-species reconciliation MG for each G ∈ G as computed above.

It is easy to see that this heuristic is guaranteed to yield a valid mDGS
reconciliation. It is also not difficult to show that, after the initial runs of DGS-
algorithm in Step 1, the heuristic above requires no more than O((m×n×|Le(S)|)
time, where m is the total number of leaves in all domain trees of D and n is the
total number of leaves in all gene trees of G. We found the heuristic to be very
efficient in practice, requiring less than an hour to run on our entire dataset of
3847 domain trees and 7165 gene trees from 12 species (described in the next
section) using a single core on a desktop computer.

Empirical Justification. Observe that the mDGS-algorithm resolves conflicts
by simply taking their least common ancestor in case of conflicting mappings
for the same gene node. Despite its simplicity, this algorithm is expected to
work well if (i) the number of gene nodes that are assigned conflicting mappings
under different domain trees is small, and/or (ii) for the gene nodes that do have
conflicting mappings, those conflicting mappings are close together on the species
tree. This is exactly what we find in our empirical data analysis. Specifically, we
find that different domain trees are remarkably consistent in their gene-species
mappings under DGS reconciliation and only a very small fraction of gene nodes
had conflicting mappings that had to be resolved by the mDGS-algorithm. These
results appear in the next section.

4 Experiments and Results

Dataset. To experimentally study the impact of using mDGS reconciliation
instead of DGS reconciliation, we used a biological dataset of 3847 rooted domain
trees and 7165 rooted gene trees from 12 fly species. This dataset was first created
and used in [7] to evaluate the performance of the heuristic algorithm for DGS
reconciliation and was subsequently also used in [6]. The domain trees and gene
trees in this dataset were constructed and error-corrected using state-of-the-art
methods [7,14], and each gene tree contains at least one domain present in the
domain trees. On average, each gene in the dataset contains 1.4 domains, each
gene family contains 1.68 domain families, and each domain family is associated
with 2.93 gene families.

Structure of DG-Groups. We first computed all DG-groups on our dataset
and studied their structural properties. We found that the 3847 domain trees
and 7165 gene trees could be partitioned into 2010 DG-groups. Among these,
1241 DG-groups consist of a single domain tree and single gene tree, and 386
DG-groups have a single domain tree but at least two gene trees. Note that, for
these two types of DG-groups, using mDGS reconciliation is the same as using
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DGS reconciliation. The remaining 383 DG-groups each had multiple domain
trees and we refer to these as complex DG-groups. Among the 383 complex DG-
groups, 149 had a single gene tree and 234 had multiple gene trees. One of the
complex DG-groups is extremely large and contains 1205 domain trees and 2394
gene trees, constituting almost one-third of the entire dataset. For the remaining
382 complex DG-groups the average number of domain and gene trees is 2.74
and 2.85, respectively, with the largest DG-group having 15 domain trees and 23
gene trees. Among the 2220 domain trees in the 383 complex DG-groups, 1032
evolve inside only one gene tree and the others in multiple gene trees, including
239 that evolve inside more than five. Likewise, among the 3418 gene trees in
these DG-groups, 1823 are associated with only one domain tree, 1061 with two,
and only 61 gene trees are associated with more than 5 domain trees.

Impact of mDGS Reconciliation. We applied our mDGS-algorithm on the
383 complex DG-groups and compared the resulting gene-species reconciliations
with those inferred through DGS reconciliation. We observed that gene-species
mappings inferred through DGS reconciliation are highly consistent in general,
but that there are several gene nodes for which different domain trees imply
conflicting gene-species mappings. Overall, we found there were 12201 internal
gene tree nodes that were assigned gene-species mappings by at least two domain
trees, and among these gene nodes 148 were assigned conflicting mappings. Thus,
only a small fraction of the total of 66854 internal gene tree nodes present in the
383 complex DG-groups was assigned conflicting mappings. This shows that,
in the vast majority of cases, optimal mDGS reconciliations are composed of
optimal DGS reconciliations.

We also found that the mDGS-algorithm rectified these conflicts without
significantly increasing the total gene-species reconciliation cost or significantly
affecting other conflict-free gene-species mappings. Specifically, in the largest
DG-group the total gene-species reconciliation cost for the 2394 gene trees
increased by only 4.6% compared to DGS reconciliation, and total number
of gene nodes that deviate from their LCA (least common ancestor) mapping
increased by only 294 (increased from 501 to 795) among a total of 46693 total
internal gene nodes. These are very small numbers considering that there are
6, 577 domain transfer events in the largest DG-group. Similarly, in the remain-
ing 382 DG-groups, the total gene-species reconciliation cost for the 1024 gene
trees increased by only 3.47% compared to DGS reconciliation, and total num-
ber of gene nodes that deviate from their LCA mapping increased by only 51
(increased from 106 to 157) among a total of 20161 total internal gene nodes.
The total number of domain transfers in these DG-groups was 1786.

Splitting Large DG-Groups into Smaller Communities. As seen in our
dataset, DG-groups can become extremely large, comprising of thousands of
domain trees and gene trees. Upon closer inspection of the largest complex DG-
group in our dataset (with 1205 domain trees and 2394 gene trees), we found that
it is composed of many small well-connected communities of domain and gene
trees, with different communities connected to each other through small numbers
of shared gene trees. We refer to these communities within a larger DG-group
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as DG-communities, and gene trees that “connect” different DG-communities as
connecting gene trees. Figure 2 illustrates how a larger DG-group can be split
into smaller DG-communities connected through connecting gene trees.

Fig. 2. This figure shows how the DG-group on the left can be split into three smaller
DG-communities. Blue dots represent domain trees. Solid orange circles (labeled A
and B) represent connecting gene trees, and hollow orange circles represent other gene
trees. As shown, each DG-community is connected to at least one other DG-community
through connecting gene trees. (Color figure online)

To systematically identify DG-communities within large DG-groups and
study their relevance, we devised a simple algorithm for identifying clusters in
bipartite graphs. While many clustering algorithms exist for bipartite graphs, we
found that these could not be directly applied for identifying DG-communities
since most clustering algorithms seek to partition the set of nodes into distinct
clusters (effectively by deleting edges). This would not work in the current set-
ting since we wish to retain all domain-gene edges and some gene trees must
therefore appear in multiple DG-communities.

Our new clustering algorithm is specifically designed for identifying DG-
communities. It partitions all domain trees into different DG-communities, but
allows some gene trees to appear in multiple DG-communities. The algorithm
makes use of a similarity measure between domain trees to do the clustering
and we define this similarity in a manner that is meaningful for detecting DG-
communities. Specifically, given domain trees D1 and D2, we define the similarity
between them, denoted sim(D1,D2), as follows:

sim(D1,D2) =
|GD1 ∩ GD2 |

|GD1 |
+

|GD1 ∩ GD2 |
|GD2 |

. (1)

A high-level description of the proposed clustering algorithm follows. In addi-
tion to D and G, the algorithm takes as input a clustering parameter ρ.

Find-Communities (D,G,LD, ρ)

1. Compute sim(D1,D2) for each pair of domain trees D1,D2 ∈ D.
2. Initialize the set pool to include all domain trees in D.
3. While |pool| ≥ 2 and maxD1,D2∈pool sim(D1,D2) ≥ ρ.
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(a) Choose a pair of domain trees from pool with greatest similarity and create
a new community with that pair. Add all gene trees associated with the
two domain trees to this community.

(b) Repeatedly choose one domain tree from pool that has maximal average
similarity to the domain trees in the current community and add this
domain tree to the current community. Add all gene trees associated
with this new domain tree to the community. Repeat this step until the
maximal average similarity falls below ρ.

4. Add all remaining domain trees in pool to their own single-domain communi-
ties, along with their associated gene trees.

There are several crucial reasons for decomposing large DG-groups into
smaller DG-communities. First, DG-communities are expected to represent clus-
ters of domains and genes that are closely related and biologically meaning-
ful, whereas the domains and genes in a large DG-group are likely to be only
weakly associated. Second, DG-communities reveal the underlying structure of
DG-groups and help identify connecting gene families. And third, each DG-
community can be viewed as a smaller DG-group for the purposes of mDGS rec-
onciliation and it may be more appropriate to use these smaller DG-communities
than larger weakly connected DG-groups.

Analyzing DG-Communities. We applied our clustering algorithm to the
largest complex group in our dataset with clustering parameter ρ = 1.0.
This resulted in the identification of 532 DG-communities, of which 304
DG-communities contain only one domain tree and the remaining 228 DG-
communities together contain 901 domain trees. Among the 2394 gene trees
in the largest complex DG-group, 647 (or 1.22 per DG-community on average)
were identified as connecting gene trees. We found that these connecting gene
trees were often larger in size and contained more domains, on average, than
the other gene trees. More precisely, the 647 connecting gene trees contained 2.8
domains each, on average, compared to 1.81 domains over all gene trees within
the DG-group. Similarly, connecting gene trees each contained 29.2 leaf nodes
on average, compared to 20.0 leaf nodes for all gene trees in the DG-group. This
is not entirely surprising since any connecting gene tree must necessarily contain
domains from at least two different domain trees while no such constraint applies
to other gene trees.

Next, we applied our mDGS reconciliation heuristic to each DG-community
separately and compared the resulting gene-species reconciliations against those
obtained by applying the heuristic to the entire DG-group. Recall that, when
mDGS reconciliation was applied to the entire DG-group, the total number of
gene nodes that deviate from their LCA mapping increased to 795 from the 501
observed for the base DGS-algorithm. In contract, when the mDGS-algorithm is
applied separately to each DG-community in this DG-group, the total number
of gene nodes that deviate from their LCA mapping increases to only 567. In
other words, to make the underlying DGS reconciliations consistent in their
gene-species mappings, mDGS reconciliation on the entire DG-group required
294 additional gene tree nodes to deviate from their LCA mappings, while this
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number falls dramatically to only 66 gene nodes when mDGS reconciliation
is applied to all DG-communities in that DG-group. Thus, the vast majority
of gene nodes that deviate from their LCA mappings appear on connecting
gene trees. One possible explanation for this surprising result is that nodes in
connecting gene trees are more likely to be assigned conflicting mappings by their
associated domain trees; however, we observed that this was not the case. In fact,
we found that conflicting gene trees had only 31 gene tree nodes with conflicting
mapping assignments compared to 115 for all 2394 gene trees in the DG-group.
This implies that the abundance of gene nodes on conflicting gene trees that
deviate from their LCA mappings is caused by greater disagreement between
the conflicting mappings (i.e., the conflicting mappings may be far apart on the
species tree), causing the mapping of such nodes to be moved higher up towards
the root than for other nodes with conflicting mappings.

We performed further analysis to assess if the sizes or other features of con-
necting gene trees may explain this overabundance of gene nodes deviating from
their LCA mappings. We found that even though connecting gene trees are
larger, on average, than other gene trees, they together contained less than 40%
of the total number of gene tree nodes in this DG-group. We also evaluated
if the larger number of domain families, on average, represented in connecting
gene trees may explain the overabundance, but found that connecting gene trees
constitute only 61% of all gene trees with at least two domain families and that
these gene trees contain the same average number of domain families as connect-
ing gene trees. Thus, the overabundance of gene nodes deviating from their LCA
mappings on connecting gene trees is adequately explained neither by their size
nor by their domain content.

One possible explanation for this surprising result is a higher error rate for
connecting gene trees. Such error in gene trees could be caused by domain chain-
ing, discordance in domain evolutionary histories, and other reasons. Thus, the
identification of DG-communities within DG-groups may not only lead to more
accurate mDGS reconciliations but also help identify erroneous multi-domain
gene trees.

5 Conclusion

In this work, we extended the existing DGS reconciliation framework to address
the problem of inconsistent gene-species mappings. We introduced the mDGS
reconciliation framework and provided an efficient heuristic for estimating opti-
mal mDGS reconciliations. Using an extensive experimental study on real biolog-
ical data, we demonstrated the importance of mDGS reconciliation and showed
that the proposed heuristic is effective at estimating optimal mDGS reconcilia-
tions. We also developed a technique to further improve the accuracy of mDGS
reconciliation by introducing the notion of a DG-community, which is a subset
of the domain and gene trees under consideration, and providing a clustering
algorithm to find such DG-communities.

Several important research questions remain to be explored. First, our heuris-
tic for mDGS reconciliation is rather simplistic, changing only the gene-species
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mappings to achieve consistency and preserving the domain-gene mappings com-
puted using DGS reconciliation. Simultaneous correction of both the domain-
gene and gene-species mappings may lead to more optimal reconciliations. Sec-
ond, a thorough simulation study is needed to systematically assess the impact of
using mDGS reconciliation instead of DGS reconciliation and to properly assess
the effectiveness of the proposed heuristic. The recent development of a prob-
abilistic simulation framework for gene and subgene evolution [5] will facilitate
such studies. And third, it would be interesting to further study the connect-
ing gene families identified by our algorithm for finding DG-communities. It is
possible that some of them represent cases of domain chaining.
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Abstract. A drug-drug interaction(DDI) was defined as the pharma-
cological effect(s) of a drug influenced by another drug. The positive
DDIs can improve the therapeutic effect of patients. However, the nega-
tive DDIs can lead serious results, such as drug withdrawal from market
and even patient death. Currently, multiple pharmaceutical drugs have
widely been used to treat complex diseases, such as cancer. The tradi-
tional biomedical experiments are very time-consuming and very costly
to validate new DDIs. Therefore, it is appealing to develop computational
methods to discover potential DDIs. In this study, we propose a new com-
putational method (called IDNDDI) to predict novel DDIs. Based on the
binary vector of drug chemical, biological and phenotype data, IDNDDI
computes the integrated drug feature similarity by the cosine similarity
method. In addition, the node-based drug network diffusion method is
used to calculate the relational initial scores for new drugs. To system-
atically evaluate the prediction performance of IDNDDI and compare
it with other prediction methods, we conduct the 5-fold cross valida-
tion and de novo drug validation. In terms of the AUC (area under the
ROC curve)value, IDNDDI achieves the better prediction performance
in the 5-fold cross validation, specifically, the AUC value is 0.9691, which
is larger than the state-of-the-art L1E (L1 Classifier ensemble method)
results of 0.9570. In addition, IDNDDI also obtains the best prediction
result in the de novo drug validation and the AUC reaches 0.9292. The
prediction ability in application of our method is also illustrated by case
studies. IDNDDI is an effective DDI prediction method which can help to
reduce adverse drug reactions and improve the efficiency of drug devel-
opment progress.
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1 Introduction

A drug-drug interaction (DDI) is defined as a drug’s pharmacological effect influ-
enced by another drug, which usually appears when two or more drugs are
administered simultaneously for a patient. The positive DDIs can provide more
effective treatment to patients. However, the undesirable DDIs are the major
cause of adverse reaction events. In serious cases, these drugs may be withdrawn
from market and lead the death of patients [1]. In fact, we usually use multi-
drugs to treat diseases, such as cancer [2]. The main object of multi-drug therapy
is to improve the life quality of patients and increase the overall survival rate.
However, the adverse DDIs must be avoided as much as possible. Therefore,
in order to systematically understand DDIs, reduce the cost of drug develop-
ment and improve the treatment effect, discovering the novel DDIs has become
an important issue of bioinformatics research. With the development of medical
technologies, it is necessary to predict potential DDIs by computational methods
which have time and cost advantage.

Many computational approaches have been developed to infer new DDIs in
recent years. A method has been developed to discover novel DDIs by Tatonetti
et al., which uses the drug adverse event profiles [3]. Based on two types of drug
interactions: potential CYP (Cytochrome P450)-related DDIs, and non-CYP-
related DDIs (NCRDs), INDI (INferring Drug Interactions) method has been
developed to infer hidden DDIs, it computes the drug chemical similarities, side
effect similarities, protein-protein interactions similarities and target sequence
similarities, respectively [4]. Based on machine learning classifiers, Cheng et al.
propose a DDI prediction method which also uses the drug phenotypic, ther-
apeutic, chemical and genomic properties. Based on the 2D and 3D molecular
structure, interaction profile, target and side-effect data, Vilar et al. develop a
method to infer novel DDIs, which is a protocol applicable on large scale datasets
[5]. The label propagation method is proposed to discover novel DDIs by using
drug chemical structures, drug side effects and off side effects [6]. The multitask
dyadic regression model has been used to predict DDI types based on known
DDIs and their types [7]. Drug interaction profile fingerprints (IPFs) have been
used to predict new DDIs [8]. Three ensemble methods, including weight aver-
age ensemble (WAE), L1 classifier ensemble (L1E) and L2 classifier ensemble
(L2E) have also been developed to predict novel DDIs [9]. They integrate drug
chemical, biological, phenotype and known DDIs network information.

Although some effective results for predicting hidden DDIs have been
achieved by these computational methods, there are still some limits that desire
to be improved. The features of drugs and known DDIs should be more effec-
tively integrated. Furthermore, the DDIs prediction of new drugs also should be
paid more attention. Therefore, in order to improve the treatment effects, we
should develop more effective computational methods to predict potential DDIs.

In this study, based on chemical, biological and phenotype information of
drugs, we develop a method (called IDNDDI) to predict potential DDIs. A binary
vector is constructed by combing all these chemical, biological and phenotype
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Table 1. The description of dataset

Data type Data Database Dimensionality

Chemical Chemical substructures PubChem 881

Biological Drug-targets DrugBank 780

Drug transporters DrugBank 18

Drug enzymes DrugBank 129

Drug pathways KEGG 253

Phenotypic Drug indications SIDER 4897

Drug side effects SIDER 4897

Drug off side effects OFFSIDES 9496

Interaction Drug-drug interactions TWOSIDES DDIs:48,584

information of drugs, then IDNDDI computes the feature similarity between
drugs by the cosine similarity method. IDNDDI also computes the Gaussian
Interaction Profile (GIP) similarity of drugs via known DDIs. In order to predict
DDIs for new drugs, the node-based drug network diffusion method is used to
calculate the relational initial scores for new drugs. IDNDDI uses the regularized
least squares (RLS) classifier to infer the novel DDIs. We conduct the 5-fold
cross validation and de novo validation to assess the prediction performance
and compare it with other methods. AUC (area under the ROC curve) value is
metric to evaluate prediction ability. In 5-fold cross validation, IDNDDI obtains
the best prediction performance, the AUC value reaches 0.9691, which is larger
than the state-of-the-art L1E results of 0.9599. In de novo validation, its AUC
value reaches 0.9292 and is larger than the best result of WAE whose AUC
value is 0.9073. The case studies illustrate the prediction ability of IDNDDI in
practical applications.

2 Materials

In this study, the benchmark dataset of known DDIs is obtained from the TWO-
SIDES database [10]. We also extract the chemical substructure information of
drugs from PubChem Compound database. The number of dimensions with Pub-
Chem substructure is 881. Drug-indications, drug-side effects and drug-off side
effects are three types of phenotypic data of drugs. The former two are down-
loaded from SIDER database that consists of 1430 drugs and 5580 side effect
terms. The latter is extracted from OFF-SIDES database.

Furthermore, biological features of drugs are constructed by drug-target
interactions, drug enzymes, drug transports and drug pathways. DrugBank
database provides drug-target interactions, drug enzymes and drug transports
[11]. Drug pathways are extareracted from KEGG database [12].
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A DDI benchmark dataset is constructed after projecting drugs in TWO-
SIDES to PubChem, DrugBank, KEGG, SIDER and OFFSIDER, which con-
tains 548 drugs and 48,584 DDIs. Tabel 1 shows the basic description about data
types, data sources and dimensions of these dataset. In addition, the previous
literature also provide the address to download it [9].

3 Methods

3.1 Similarity with Chemical, Biological and Phenotypic Data

In order to compute their feature similarity, we construct a binary vector by the
chemical, biological and phenotypic data of drugs. The dimensionality of these
binary vectors is the sum of all dimensionality of all chemical, biological and
phenotypic data. There are 21,351 types of drug features, and the values of 1
and 0 in these vectors indicate the presence or absence of chemical substructures,
targets, transporters, enzymes, pathways, indications, side effects and off side
effects. We calculate the feature similarity of drugs by the cosine method. For
example, for drugs di and dj , the similarity value computation method is defined
as follows:

Simd(di, dj) =

M∑

l=1

di(l)dj(l)
√

M∑

l=1

d2i (l)

√
M∑

l=1

d2j (l)

(1)

where di(l) and dj(l) are the lth element of feature vector of drugs di and dj ,
respectively, and M is the dimensionality of drug features (21,351). The feature
similarity values all range from 0 to 1.

3.2 Gaussian Interaction Profile Kernels Similarity

We also compute the Gaussian Interaction Profile (GIP) similarity of drug pairs
by known DDIs. Let D = {d1, d2, ......, dN} be the set of N drugs. The matrix
Y ∈ N ∗ N represents the adjacency matrix of the DDI network. The value of
yij is 1 when drug di interacts with dj , otherwise is 0. Specifically, for drugs di
and dj , the GIP kernel similarity KGIP,d can be computed as follows:

KGIP,d(di, dj) = exp(−γd||ydi − ydj ||2), (2)

γd = γ,
d/(

1
N

N∑

i=1

||ydi||2), (3)

where ydi = {yi1, yi2, ......, yiN} and ydj = {yj1, yj2, ......, yjN} are the associa-
tion profiles of drugs di and dj , respectively. N is the number of drugs. γd is
the regularization parameter of kernel bandwidth and γ,

d is set to 1 according
to previous studies [13,14].
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3.3 Integrating Similarities of Drugs

Based on the drug feature similarity Simd and drug GIP similarity KGIP,d, the
final drug similarity Sd is computed by the mean as follows:

Sd =
Simd + KGIP,d

2
, (4)

in which the Simd, KGIP,d and Sd are the N ∗ N matrices.

3.4 Regularized Least Squares (RLS) Classifier

The machine learning method classifier has been widely used in other prediction
issues, such as drug-target associations [13]. In this study, we also adopt RLS to
predict hidden DDIs, the computation method of drug-drug pairs is defined as
follows:

Y T
p = Sd(Sd + σI)−1

Y

Ŷ =
Yp + Y T

p

2

(5)

where I is the unit matrix and Y is the symmetrical adjacency matrix of known
DDIs. σ is the regularization parameter and also set to be 1 [15]. Since RLS
classifier can not guarantee the predicted Y T

p to be symmetric, we obtain a
predicted symmetric matrix Ŷ from the mean of matrix Yp and its transpose
[13].

3.5 Node-Based Drug Network Diffusion for New Drugs

We all known that some prediction models can not predict novel DDIs for new
drugs which have no known DDIs. In this study, we add an initial interaction
profile process before inferring new DDIs for them. Inspired by the successful
applications of CSN method [16]. We also adopt node-based drug network diffu-
sion to calculate the relational score. The drug network is constructed by using
drug-target interactions, drug-indications and known DDIs. Comparing with the
similarity network constructed by drug-target interactions, drug-indications and
known DDIs, the node-based drug network is much sparser, especially when the
number of drugs is very large. The probabilities for a seed node reaching each
neighbor to be low in the diffusion process in the similarity-based drug network.
The similarity-based drug network is sensitive to noises [16].

Firstly, we construct an adjacency matrix A as follows:

A =

⎡

⎣
Y Mdt Mdi

MT
dt 0 0

MT
di 0 0

⎤

⎦ (6)
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where Y represents DDIs, which includes the new drugs but the interaction
profile is 0 vector. Adjacency matrix Mdt represents the known drug-target
interactions and adjacency matrix Mdi also represents known drug indication
interactions. Therefore, A is a (N + Nt + Ni) ∗ (N + Nt + Ni) matrix, where N ,
Nt and Ni are the number of drugs, targets and indications, respectively.

The node-based drug networks diffusion is a two-round resource transfer pro-
cess. In the first transfer process, the scores of linked target nodes and indication
nodes of new drug nodes are transferred to the other drug nodes based on the
assigned transfer weight. For drug dnew, the initial resource transferred from its
linked target node ti to drug dj is calculated as follows:

Rst(ti, dj) =
A(ti, dj)
N∑

l=1

A(ti, l)
∗ A(ti, dnew), (7)

Then the drug dj obtains the allocated resource by adding the contributions
from all target nodes and indication nodes associated to it as follows:

Rst(dj) =
Nt+Ni∑

l=N+1

Rst(l, dj), (8)

In the second transfer process, we allocated the resource of drugs obtained in
the first round to the drugs according to transfer weights from drugs to drugs. For
example, the resource transfer from drug dj to drug di is calculated as follows:

Rnd(dj , di) =
A(dj , di)
N∑

l=1

A(di, l)
∗ Rst(dj), (9)

Then the final resource allocated from drug dnew to drug di can be calculated
as follows:

R(dnew, di) =
N∑

l=1

Rnd(l, di), (10)

Then the values of interaction score vector R(dnew, 1 : N) between drug
dnew and other drugs are computed. When drug dnew is a new drug, we use
these scores as the initial scores. However, considering the computed scores by
node-based drug network diffusion method are too small, and the values of other
known DDIs which is defined as 1, we adopt the proportion method to expend
these values to higher possibility values. The expended method is defined as
follows:

R(dnew, 1 : N) = R(dnew, 1 : N) ∗ (
α

max(R(dnew, 1 : N))
), (11)

where α is the possibility score that the max value of R(i, 1 : N) need to be
expanded, while other values are also to be expanded according to the ratio. In
this study, we set the values of α by de novo drug validation.
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4 Results and Discussions

4.1 Benchmark Evaluation and Evaluation Indices

To comprehensively assess the prediction performance of IDNDDI and compare
it with other DDIs prediction methods. We conduct the 5-fold cross validation
and the de novo drug validation. The AUC value is used to the metric. In the
5-fold cross validation, the known DDIs are divided into 5 groups, and one group
is in turn chosen as the testing set and the rest as the training set. In de novo
drug validation, one drug is chosen as the test set and the other drugs as the
training set at each time. Furthermore, the GIP kernel similarity is related with
known DDIs, we recompute it based on training samples at each time in which
the testing samples are set to be 0.

Table 2. The prediction performances of different methods in the 5-fold cross valida-
tion, the best result is in the bold face.

Method Feature AUC

WAE Chemical data, biological data, phenotypic data 0.9502

L1E Chemical data, biological data, phenotypic data 0.9570

L2E Chemical data, biological data, phenotypic data 0.9561

LP Drug-sub 0.9356

Drug-label 0.9364

Drug-off label 0.9374

IDNDDI Chemical data, biological data, phenotypic data 0.9691

Table 3. The prediction performances of different methods in the de novo drug
validation, the best result is in the bold face.

Method Feature AUC

WAE Chemical data, biological data, phenotypic data 0.9073

LP Drug-sub 0.8993

Drug-label 0.8994

Drug-off label 0.8997

IDNDDI Chemical data, biological data, phenotypic data 0.9292

4.2 Comparison with Previous Methods

We compare IDNDDI with other four competing methods, including WAE, L1E,
L2E and LP (label propagation method) [9]. WAE, L1E and L2E are the inte-
grated method by using drug chemical data, biological data and phenotypic data.
Furthermore, LP method used drug substructures of chemical data, drug side
effects and drug off side effects to predict novel DDIs.
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5-Fold Cross Validation. We calculate the AUC values of different methods
over 10 repeats. The average AUC values of different methods in the 5-fold cross
validation are showed in Table 2. The prediction result shows that IDNDDI is
superior to other methods in terms of AUC value (IDNDDI:0.9691, WAE: 0.9502,
L1E: 0.9570, L2E: 0.9561, LP (max): 0.9374).

De Novo Drug Validation. In addition, to comprehensively assess the pre-
diction performance of computational method, we also conduct the de novo
drug validation. Some methods can not predict potential DDIs for new drugs
without added the initial interaction profile process. Therefore, in the de novo
drug validation experiments, we compare IDNDDI with WAE method and Label
propagation method. WAE used chemical data, biological data and phenotypic
data and integrated the results of neighbor recommendation method and ran-
dom walk method in de novo drug validation. Table 3 describes the prediction
performance of IDNDDI, WAE and LP methods. The AUC value of IDNDDI is
0.9292, which is better than other methods (WAE: 0.9073, LP (max): 0.8997).
By comparing the AUC values of different methods in the 5-fold cross valida-
tion and the de novo drug validation, IDNDDI method is an effective method to
predict new DDIs.

4.3 Parameter Analysis for α

In this section, we analyse the parameter α which is used to expand possibil-
ity scores of the maximum value in the de novo drug validation. We choose
the parameter to obtain the best prediction performance in the de novo drug
validation.

Table 4. The AUC of IDNDDI under different settings of α, the best result is in the
bold face.

α 0 0.1 0.2 0.3 0.4

AUC 0.7783 0.9005 0.9221 0.9275 0.9290

0.5 0.6 0.7 0.8 0.9 1.0

0.9292 0.9289 0.9285 0.9280 0.9275 0.9271

Table 4 shows the prediction performances of IDNDDI when α ranges from
0 to 1.0. We can see from Table 4 that the prediction performance of IDNDDI is
worst when the value of α is set to be 0. α = 0 means to directly predict DDIs
without added the initial process. It also illustrates that the initial process via
node-based network diffusion method can improve the prediction performance
in the de novo drug validation. IDNDDI obtains the best prediction performance
when the value of α is set to be 0.5 and its AUC value reaches 0.9292. Table 4 indi-
cates that the expanding method and the node-based network diffusion method
can effectively improve the prediction ability of IDNDDI.
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Table 5. Top 10 new DDIs predicted by IDNDDI method.

Rank Drug ID1 Drug ID2 Drug name1 Drug name2 Evidence

1 DB00448 DB01059 Lansoprazole Norfloxacin Unknown

2 DB00333 DB00213 Methadone Pantoprazole DrugBank

3 DB00991 DB00231 Oxaprozin Temazepam Unknown

4 DB00813 DB00535 Fentanyl Cefdinir Unknown

5 DB00863 DB00690 Ranitidine Flurazepam Unknown

6 DB00470 DB00331 Dronabinol Metformin Unknown

7 DB00989 DB01136 Rivastigmine Carvedilol DrugBank

8 DB00257 DB00230 Clotrimazole Pregabalin DrugBank

9 DB00869 DB00537 Dorzolamide Ciprofloxacin Unknown

10 DB00887 DB00207 Bumetanide Azithromycin Unknown

4.4 Case Studies

In order to validate the prediction ability of IDNDDI in practical application,
we verify the top 10 new DDIs predicted by IDNDDI based on the benchmark
dataset. The benchmark dataset is downloaded from the TWOSIDES database
and is composed of 548 drugs and 48,584 known DDIs. The predicted new DDIs
are evaluated by the latest version of DrugBank. We can see from Table 5 that
3 of top 10 DDIs are confirmed in DrugBank. For example, when Methadone is
combined with Pantoprazole, its metabolism can be decreased [11]. Carvedilol
is a non-selective beta blocker indicated in the treatment of mild to moderate
congestive heart failure (CHF), which can increase the bradycardic activities of
Rivastigmine [11]. In addition, other predicted DDIs that have not been validated
in DrugBank database, which deserves to validate by biochemical experiments
in the future.

5 Conclusion

In this study, we proposed a new computational method (IDNDDI) to infer
novel DDIs. IDNDDI computes the feature similarity of drugs by the cosine
similarity method. It uses the chemical, biological and phenotypic data of drugs
to construct a binary vector. In order to improve the prediction ability for new
drugs, we adopt the node-based drug network diffusion method to calculate
the relational initial association scores for them. The RLS method is used to
compute the probability scores of drug pairs. In the 5-fold cross validation and
the de novo drug validation, IDNDDI achieves better prediction performances
than other comparison methods.

In addition. We can also consider other more sophisticated methods to inte-
grate the chemical, biological and phenotypic data of drugs. Deep learning
method and other machine learning methods, such as matrix approximation
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method also can be adopted to predict new DDIs. To help with drug devel-
opment and diseases treatment, we would develop a more effective method to
predict new DDIs in the future by the above mentioned methods.
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Abstract. Models of biological regulatory networks are essential to
understand the cellular processes. However, the definition of such mod-
els is still mostly manually performed, and consequently prone to error.
Moreover, as new experimental data is acquired, models need to be
revised and updated. Here, we propose a model revision tool, capable
of proposing the set of minimum repairs to render a model consistent
with a set of experimental observations. We consider four possible repair
operations, giving preference to function repairs over topological ones.
Also, we consider observations at stable state, i.e., we do not consider
the model dynamics. We evaluate our tool on five known logical mod-
els. We perform random changes considering several parameter config-
urations to assess the tool repairing capabilities. Whenever a model is
repaired under the time limit, the tool successfully produces the opti-
mal solutions to repair the model. Also, the number of repair operations
required is less than or equal to the number of random changes applied
to the original model.

1 Introduction

Biological regulatory networks are composed of genes, proteins and their inter-
actions to describe complex cellular processes. Modelling such networks is par-
ticularly useful to be able to computationally reproduce existing observations,
test hypotheses, and identify predictions in silico.

Different formalisms have been proposed to model the dynamical behavior
resulting from the network’ interacting components with different levels of detail
(see [12] for a review). Here, we consider the logical formalism introduced by
Thomas [20]. Network components are represented by discrete variables (here
we consider the Boolean case), edges represent regulatory interactions (either
positive or negative) and regulatory effects are represented by Boolean functions.

The definition of such models is typically a manual task performed by a
domain expert, in particular for the definition of regulatory effects, where the
study of the behaviors generated by the model are compared against existing
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data (e.g. literature or experimental). However, the study of the generated
behaviors is hampered by the combinatorial explosion of the qualitative state
space. To tackle this problem, several formal verification techniques have been
proposed, such as: model-checking to automatically verify reachability proper-
ties [16], model reduction to reduce the size of the generated dynamics [17], and
the identification of attractors [11], among others [18].

As the model is extended or new data is acquired, the model may become
inconsistent, and in that case needs to be revised. One crucial step of the model
revision process is the redefinition of the component’s Boolean functions, a man-
ual process that is not formally defined and therefore is prone to error.

Approaches to model revision have been proposed using Answer Set Program-
ming (ASP) [6,8,15] and Boolean Satisfiability (SAT) [10]. Here, we propose an
ASP-based model revision approach for the Boolean logical formalism, with four
possible causes for model inconsistency and the corresponding repair operations.

The paper is organised as follows. Section 2 describes the logical formalism
applied to biological regulatory networks. Section 3 describes the model revision
process and the proposed repair operations. The proposed approach is presented
in Sect. 4. The implemented tool is evaluated on five well-known biological models
in Sect. 5. Section 6 presents the conclusion and future prospects.

2 Logical Regulatory Networks

Biological regulatory networks are usually represented by a directed graph
G = (V,E), known as regulatory graph. In a regulatory graph, nodes represent
the set of components V and the set of edges E ⊆ {(u, v, t) : u, v ∈ V ; t ∈ {−,+}}
represent regulatory interactions. If the regulatory graph has an edge from vi to
vj , then vi is said to be a regulator of vj . We can associate a sign t to each edge
representing a positive interaction (activation) or a negative interaction (inhi-
bition). Such regulatory graphs define the topology/structure of the network,
lacking information on the components regulatory rules.

2.1 Logical Model

A logical model of a regulatory network is defined by a tuple (V,K), where
V = {v1, v2, . . . , vn} is the set of n regulatory components of the network, where
each vi is associated with an integer value in Di = {0, . . . ,maxi}, representing
the component concentration level. A state of the network is thus defined as a
vector s ∈ S =

∏
vi∈V Di. Then K = {K1,K2, . . . ,Kn} is the set of n regulatory

functions where Ki is the regulatory function of vi and Ki : S → Di.
In this work, we consider only Boolean logical models with ∀i maxi = 1, i.e.,

each components of the network is represented by a Boolean value, meaning that
the component is either present (active) or absent (inactive).
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2.2 Boolean Functions

Let B be the set {0, 1} and Bn be the n-dimensional cartesian product of the
set B. Given (x1, . . . , xn) ∈ Bn, a Boolean function f : Bn → B is positive (resp.
negative) in xi if f |xi=0 ≤ f |xi=1 (resp. xi if f |xi=0 ≥ f |xi=1). Function f is
monotone if it is either positive or negative for every xi [2].

A monotone Boolean function f can be represented in Disjunctive Normal
Form (DNF) [2], where a DNF formula is a disjunction of terms where each term
is a conjunction of literals [1], and each variable xi appears always as a positive
literal (xi) if f is positive in xi, or it always appears negated (¬xi) otherwise. In
other words, each component regulating another component either has a positive
(resp. negative) interaction always appearing as a positive (resp. negated) literal
in the DNF of the regulatory function.

A nondegenerate Boolean function is a function that depends on all of its
variables, i.e., all variables have an impact on its result. More formally, a function
f is nondegenerate if all of its variables are essential. A variable xi is essential for
f if f |xi=0(X) �= f |xi=1(X) for some X ∈ Bn−1, and is inessential otherwise [21].

In this work, we restrict the domain of the regulatory functions to the set of
monotone nondegenerate Boolean functions.

2.3 Dynamics

From a given initial state of the network, the value of a component can be
updated following its regulatory function, and every component can potentially
change its value at any given time. The generation of successors of each state
can follow: a synchronous update policy, where every component is called to
update their value simultaneously, yielding a single state successor; an asyn-
chronous update policy, where the state has a distinct successor for each com-
ponent changing its value; among other update policies (see [5] for details).

The generated dynamics is represented by a State Transition Graph (STG),
where each node corresponds to a state of the network, and each edge represents
a possible transition between states. A key property of interest is the identi-
fication of attractors in the STG, which typically denote subsets of states of
biological interest [11]. There are two types of attractors: complex and point
attractors. Complex attractors are sets of mutually reachable states defined as
terminal Strongly Connected Components (SCC). If an SCC has a single state,
it is denoted a point attractor or stable state, i.e. a state without a transition
to any other state in the STG.

In this work, we focus on the set of point attractors (stable states) of the
Boolean logical model.

3 Model Revision

Models of biological regulatory networks are not always in line with existing
experimental observations, i.e., the model cannot explain some experimental
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Table 1. Causes of inconsistency and corresponding repair operations. Class F stands
for function repair and class T stands for topology repair.

Type Cause Repair operation Class

1 Wrong regulatory function Function change F

2 Wrong interaction type Edge sign flip T

3 Wrong regulator Edge removal T

4 Missing regulator Edge addition T

observations. In this case, we say that the model is inconsistent and must be
revised and updated.

We consider a model to be consistent, if all its nodes are consistent. A given
node is consistent if the value given by its regulatory function is the same as the
one given by the experimental observation (if available). Otherwise, it is incon-
sistent. In the following, we consider all the model stable states as experimental
observations.

Given a Boolean logical model, we define four possible causes for incon-
sistency and the corresponding repair operations as shown in Table 1. Repair
operations can be classified as function repairs (class F) thus changing the reg-
ulatory functions or as topology repairs (class T) thus changing the topology of
the regulatory graph.

In the following we describe in detail the repair operations defined as well
as the complete model revision procedure, defining a preference order on the
proposed repairs of Table 1. In particular, we assume that the domain expert
has a higher level of confidence in the correctness of the network topology than
in the regulatory functions of the model. We therefore give preference to the use
of class F rather than class T repairs.

3.1 Function Repair

The definition of logical models still relies on domain experts to choose the best
functions for every network component. However, given a component with k

regulators, there are 22
k

possible Boolean functions to choose from, rendering
this manual process prone to error. In this work, we restrict the function space to
the set of monotone nondegenerate Boolean functions, which still yields a large
number of functions to choose from, as a function of k.

Let f and f ′ be two monotone nondegenerate Boolean functions in Bn → B,
with the relation 	 being defined as:

f 	 f ′ ⇐⇒ f(X) ⇒ f ′(X). (1)

A partial order set (POset) is then defined by the set of all monotone non-
degenerate Boolean functions in Bn → B and the relation 	 [2,3], and is repre-
sented by an Hasse diagram (see Fig. 3). Considering the partial order relation
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v1 v2

v3 v4

fv1 = v2

fv2 = ¬v1 ∧ v4

fv3 = v1 ∨ (v2 ∧ ¬v4)

1 0

0 0

Fig. 1. Inconsistent logical model
(Color figure online).

v1 v2

v3 v4

fv1 = ¬v2

fv2 = ¬v1 ∧ v4

fv3 = (v1 ∧ v2) ∨ (v2 ∧ ¬v4)

1 0

0 0

Fig. 2. Repaired logical model (Color
figure online).

between functions, we rely on the work proposed by Cury et al. [3] to compute the
functions with minimal impact to the original one, i.e., their immediate neigh-
bours. In Cury et al. [3] a set of rules is proposed to compute the father/children
of a given function f without the need to compute the whole function space.
Given two functions f and f ′, f ′ is a father of f if and only if f 	 f ′ and �f ′′

such that f 	 f ′′ and f ′′ 	 f ′. In this case f is said to be a child of f ′.
When a function is inconsistent with the experimental observations, we first

determine whether it is necessary to generalize the function (go up in the Hasse
diagram), or specify the function (go down in the Hasse Diagram). If it is nec-
essary to generalize (resp. specify) the function, we compute the set of fathers
(resp. children) of the function. We continue to go up (resp. down) the diagram
if none of the fathers (resp. children) is consistent.

3.2 Topology Repair

Changing regulatory functions may not suffice to make a model consistent. In
this case, it may be necessary to (also) change the topology of the network. Here,
we consider three topology-changing repair operations: flip the sign of an edge;
remove an edge; and add an edge.

Flipping the sign of an edge changes the role of a single regulator. Since
we consider the set of monotone nondegenerate Boolean functions, there are no
dual regulators, i.e. regulators acting both as activators and as inhibitors. Thus,
a negative regulator (inhibitor) becomes a positive regulator (activator) and
vice-versa. By adding (resp. removing) an edge, we are adding (resp. removing)
regulators from the Boolean function, which effectively changes its dimension
which will likely have a greater impact than a function repair.

3.3 Repairing a Model

A model is considered inconsistent and deemed to be repaired if there is at least
one inconsistent node. A node is inconsistent with some observational data if
the expected value of the node differs from the node value evaluated by the
corresponding regulatory function. Here, we consider the model’s stable states
as the observational data.

Figure 1 shows an example of an inconsistent model. The experimental obser-
vation is next to each node in the graph. This model with the corresponding
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observations has two inconsistent nodes: v1 and v3. For example, node v1 is only
positively regulated by v2 (which has an observed value of 0), and therefore, the
function of v1 evaluates to 0, but the experimental observation of v1 is 1.

There might be many reasons for a node to be inconsistent. To render a node
consistent, one tries first to repair the function before considering any topological
change in the network. This allows to search for possible repairs in the dimension
of the current function before expanding the search space considering different
function dimensions. The ordering is therefore as follows:

1. Repair the function;
2. Flip the sign of an edge;
3. Add/remove an edge.

In Fig. 1, node v3 is inconsistent and different (function and topological)
repair operations can be applied. There are 9 monotone nondegenerate Boolean
functions with 3 regulators (see Fig. 3). Each of the 3 incoming edges can flip their
sign. Also, we can remove any of the 3 incoming edges or add the missing edge
from node v3 to itself. If we consider the addition and removal of edges, which
changes the search space of the Boolean functions, and that we can apply any
combination of repair operations, we obtain a set of 2087 possible combinations
of repair operations. Since models of regulatory networks typically have more
than 4 nodes, the number of repair operations clearly explodes.

We start by first determining the minimum number of inconsistent nodes, to
determine the solution with the minimum number of topology repairs. Therefore,
first we try to repair a node by changing the regulatory function. If changing
the function is not sufficient to make the model consistent we then proceed
with topological repairs incrementally. We start by considering applying one
topological repair operation, flipping the sign of an edge, for each possible edge.
Then we consider applying two topology repair operations, and so on, until no
more operations are possible. Whenever a topology repair operation is applied,
the regulatory function must be verified for inconsistency again, and a function
repair operation is most likely necessary.

Figure 2 shows the repaired model of Fig. 1, where the edge from v2 to v1
flipped the sign, making node v1 consistent, and the regulatory function of v3
changed, making node v3 consistent. This is an optimal model repair with mini-
mum topology changes. Figure 3 shows the Hasse diagram for the set of monotone
nondegenerate Boolean functions of node v3. Marked in blue (dark grey) is the
original function of v3 (Fig. 1) and marked in green (light grey) is the regulatory
function of v3 after the repair (Fig. 2).

4 Approach

In this section, we describe the approach for the revision of Boolean logical
models considering the set of repair operations proposed in Sect. 3.

As previously mentioned, one must first determine if a model contains incon-
sistencies in order to repair it. In previous work, we proposed an Answer Set
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(v1 ∧ v2) ∨ (v1 ∧ ¬v4) ∨ (v2 ∧ ¬v4)

(v1) ∨ (v2 ∧ ¬v4) (v2) ∨ (v1 ∧ ¬v4) (¬v4) ∨ (v1 ∧ v2)

(v1 ∧ v2) ∨ (v2 ∧ ¬v4) (v2 ∧ ¬v4) ∨ (v1 ∧ ¬v4) (v1 ∧ ¬v4) ∨ (v1 ∧ v2)

(v1) ∨ (v2) ∨ (¬v4)

(v1 ∧ v2 ∧ ¬v4)

more generic

more specific

Fig. 3. Hasse diagram for monotone nondegenerate Boolean functions of three regula-
tors (arguments v1, v2, and ¬v4).

Programming (ASP) [7] program to verify the consistency of a model given a
set of experimental observations [9]. As previously stated, in this work, we con-
sider the model corresponding stable states, i.e., we do not consider the model
dynamics between specific states.

Given a model, a set of experimental observations, and a set of inconsis-
tencies, we developed a procedure to try to repair the model using the repair
operations in Table 1.

We start by verifying the consistency of the model, using the previously
developed ASP program [9]. If the model is consistent with the data, no revision
is necessary. In case of an inconsistent model, our ASP program returns the
minimum number of nodes that are inconsistent, i.e., the minimum number
of nodes to which no value can be assigned. We call these nodes inconsistent
nodes. Moreover, since we give preference to the repair of regulatory functions,
as described in Sect. 3, we retrieve additional information from the ASP program
regarding the inconsistent nodes. We define two possible reasons of inconsistency:
the regulatory function of an inconsistent node needs to be either more specific
or more generic. For example, if a regulatory function for a given node produces
a 0 (resp. 1) but the value of the node should be 1 (resp. 0) in order for the
node to be consistent, it is likely that a more generic (resp. specific) regulatory
function is needed. These reasons for inconsistent do not imply that we can
repair a model by only changing the regulatory function, but give us a direction
to search for possible repairs.

The proposed procedure determines the minimum repair operations necessary
to make the model consistent, using a lexicographic optimization criterion with
the following order:

1. Minimize the number of add/remove edge operations;
2. Minimize the number of flip sign of an edge operations;
3. Minimize the number of change regulatory function operations.

This order of optimization gives preference to applying changes to the regulatory
functions over any topological change.
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As an example, let us consider an inconsistent model with a single inconsis-
tent node. To determine the optimum solutions (i.e., minimal repair operations
to be applied), we start by trying to change the regulatory function of the incon-
sistent node, by replacing it either by a more generic or a more specific one,
according to the corresponding reason of inconsistency. This is performed using
an ASP program to compute the immediate neighbours (fathers or children) of
a given monotone nondegenerate Boolean function, considering the set of rules
proposed by Cury et al. [3].

Using this ASP program, our procedure computes all the fathers (resp. chil-
dren) of the regulatory function. If none of the fathers (resp. children) is consis-
tent, it is computed the corresponding fathers (resp. children), until it finds either
a consistent function or there are no more functions. This approach guarantees
that, if a function repair operation can be applied, then the original function is
modified to (one of) the nearest function(s) in the Hasse diagram that is consis-
tent with the experimental data, i.e. having less differences in the truth table.
If no function is found, it proceeds to change the regulatory graph topology.
In the first stage, it tries to change only the sign of the incoming edges of the
inconsistent node. For each attempt of flipping the sign of an edge operation, it
calculates all the possible function changes again. Then, if flipping the sign of a
single edge is not enough to make a model consistent, it considers combinations
of two edges, and so on until all the edges are considered. If no solution is found,
the procedure advance to the next state of topological changes, by repeating
this process considering adding or removing one edge. If the model is still not
consistent, then considers the same process with two edges, and so on until no
more edges can be added or removed.

This process is applied to every inconsistent node. Remember that we con-
sider only the model stable states as experimental data, and thus repairing the
consistency of one node does not impact the consistency of other nodes.

Even though we do not have to compute the complete Hasse diagram of all
possible functions for a given n, the computation of the fathers/children of a
given function still greatly increases with n. Therefore, we limit all regulatory
functions to a maximum of 12 regulators, since most models have regulatory
functions with an average of 3 regulators and no more than 8 (see Table 2).

Also, we can only repair a model if an inconsistent node has a single reason
for its inconsistency: it either needs to be more specific or more generic, but
not both simultaneously. If a function would need to be more specific in one
experimental observation and more generic in another observation, in order to
repair the model we would have to consider the set of all monotone nondegenerate
functions. Here, we only consider the set of monotone nondegenerate functions
that are comparable with the original function. Having this limitation allows for
a reduction of the search space when repairing a function.

Finally, we developed a tool in C++1, with the behaviour illustrated in Fig. 4.
Given a logical model and a set of experimental observations, the tool decides
whether the input is satisfiable. The input is said to be satisfiable either if it is
consistent or if a repair can be found. Otherwise it is unsatisfiable.

1 Tool available at http://sat.inesc-id.pt/∼joaofrg/ISBRA2019/model revision.zip.

http://sat.inesc-id.pt/~joaofrg/ISBRA2019/model_revision.zip
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Model
+

Exp. Obs.

(C++)

Check
Inconsistency

(ASP)

Inconsistencies

Consistent

Not possible to repair

Search Repairs

(C++)

Calculate Neighbour Functions
(ASP)

Unsatisfiable

Consistent

Solutions

Repairs
. . .

Repairs

Fig. 4. Diagram of the developed tool. Model and experimental observations are the
input of the tool. The tool produces as output all the optimal sets of repair operations.
Marked in dashed arrows are alternative flows, where the model is consistent (no need
of repair), or it is not possible to repair (no repairs produced). In yellow are represented
the ASP components of the tool, and in white are the C++ components (Color figure
online).

Table 2. Boolean logical models considered for evaluation with corresponding: used
abbreviation (Abbr.), number of nodes (#Nodes), number of edges (#Edges), number
of stable states (#SS), average number of regulators per node (Avg.Reg.), maximum
number of regulators (M.Reg.), and bibliographic reference (Ref.).

Abbr. Model #Nodes #Edges #SS Avg.Reg. M.Reg. Ref.

FY Fission yeast 10 27 12 3 5 [4]

SP Segment polarity (1 cell) 19 57 7 3 8 [19]

TCR TCR signalisation 40 57 7 1, 425 5 [13]

MCC Mammalian cell cycle 10 35 1 3, 5 6 [5]

Th Th cell differentiation 23 35 3 1, 842 5 [14]

Additionally, we provide a few options to the user. First, we allow the user
to prevent some repair operations. Second, the user can define nodes as fixed
nodes, preventing them from being considered inconsistent. We also allow the
user to define some edges as fixed, preventing solutions with repair operations
that change the sign or remove fixed edges.

5 Evaluation

In order to evaluate the proposed approach, we considered a set of five known
logical models representative of different processes and organisms (see Table 2):
the cell-cycle regulatory network of fission yeast by Davidich and Bornholdt [4];
the segment polarity network which plays a role in the fly embryo segmentation
by Sanchèz et al. [19]; the T-Cell Receptor (TCR) signaling network by Klamt
et al. [13]; the core network controlling the mammalian cell cycle by Fauré et
al. [5]; and the regulatory network controlling T-helper cell differentiation by
Mendoza and Xenarios [14].
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Table 3. Results for FY, SP, TCR, MCC and Th. F%, E%, R%, and A% are the
probabilistic parameters used to change the original model. Time (T), in seconds,
is the median of time for the solved instances. #TO is the number of timeouts. 10
instances were considered per configuration per model.

(%) FY SP TCR MCC Th

F E R A T (s) #TO T (s) #TO T (s) #TO T (s) #TO T (s) #TO

5 0 0 0 0,034 0 0,036 0 0,047 0 0,021 0 0,028 0

25 0 0 0 0,059 0 4,734 0 0,063 0 0,021 0 0,061 0

50 0 0 0 0,060 0 14,003 2 0,097 0 0,033 0 0,677 0

100 0 0 0 0,072 0 18,937 2 0,129 0 0,046 0 0,751 0

0 5 0 0 0,070 0 0,105 0 0,050 0 0,033 0 0,061 1

0 10 0 0 0,070 0 1,566 1 0,050 0 0,101 0 0,044 0

0 15 0 0 0,035 1 0,168 3 0,050 0 0,039 0 0,051 1

0 20 0 0 0,071 2 0,284 4 0,050 0 0,136 0 0,062 1

0 0 1 0 0,034 0 0,635 0 0,045 0 0,020 0 0,025 1

0 0 5 0 0,069 0 5,021 1 0,046 0 0,020 0 0,026 1

0 0 10 0 0,095 2 24,481 4 0,060 0 0,019 0 0,589 2

0 0 15 0 0,083 2 32,896 3 7,106 0 0,029 0 1,613 2

0 0 0 1 0,874 0 0,130 2 0,152 0 0,020 0 0,028 3

0 0 0 5 0,096 0 42,684 7 2,518 3 0,219 0 0,497 8

0 0 0 10 0,842 1 - 10 - 10 0,234 1 - 10

0 0 0 15 6,003 4 - 10 - 10 0,622 0 258,022 9

25 5 0 0 0,062 0 5,358 0 0,063 0 0,032 0 0,108 0

50 25 0 0 0,127 2 13,989 4 0,187 0 0,570 0 0,724 1

5 25 5 5 0,453 4 - 10 3,979 8 0,549 1 0,781 9

10 10 5 5 0,601 2 24,637 8 50,662 6 0,142 1 0,745 7

We developed a tool to make a set of random changes to a logical model
according to four given probabilistic parameters. Our goal was to change a logical
model, and then assess the repairing capabilities of the proposed tool to make the
model consistent again. The set of four probabilistic parameters were considered:
changing a function (F%); changing the sign of an edge (E%); removing an
existing edge (R%); and adding a missing edge (A%).

We changed each model with several parameters configurations, and consid-
ered 10 instances per configuration per model (see Table 3). We considered gen-
erating instances where only the functions were changed, simulating cases where
the topology of the network is correct. We also considered instances where only
the sign of the edges was changed, instances where we only removed edges, and
instances where only were added new edges. We generated instances with more
functions changes than topology changes, since we assume greater confidence in
the correctness of the topology than of the regulatory functions.

Due to the limitations of our tool, we only considered instances that have
regulatory functions with less than 12 regulators, and instances with a single
reason for inconsistency per node (as described in Sect. 4). We also only consid-
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ered instances different from the original models, i.e., instances where at least
one change was applied. All experiments were run on an AMD Opteron(TM)
1.4 GHz 32-core Linux machine, with a time limit of 600 s.

Table 3 presents the results of our tool applied to different models (FY, SP,
TCR, MCC, and Th) and different changes. The time is presented in seconds
and corresponds to the median of times of solved instances. Whenever the model
repair was possible under the time limit, the tool successfully repaired the model
with a less or equal number of repair operations than the number of changes
applied to the original model.

Table 3 shows that most of the repaired models can be repaired under 60 s. It
is also possible to verify that changing the topology of the network has a bigger
impact, increasing the number of timeouts as the number of changes increases.
Perturbing the model with the addition of new edges has a bigger impact in the
model revision process than the removal of edges. This is due to the dimension
increase of the regulatory function, which greatly increases the search space for
possible function repairs.

Comparing the results for the SP and TCR models we can observe that,
although the TCR model is composed of more nodes (40) than SP model (19),
repairing the SP model takes more time in general, for the same number of
edges (57). This means that the latter has a more interconnected network, with
regulatory functions depending on a higher number of regulators. The dimension
of the regulatory function greatly impacts the performance of our tool, since the
number of monotone nondegenerate Boolean functions to be considered increases
with a double exponential with the number of regulators.

6 Conclusion and Future Work

In this work we propose a logical model revision tool without considering dynam-
ics. We use ASP to verify the consistency of a model and retrieve useful informa-
tion in case of inconsistency, and compute possible regulatory functions replace-
ment candidates. And C++ to search the set of repair operations. Four repair
operations are proposed: regulatory function change; edge sign flipping; edge
addition; and edge removal. Our tool receives as an input a logical model and
a set of experimental observations, and produces sets of repair operations to
render the model consistent, under an optimization criteria (Sect. 4).

The tool was successfully tested using several well-known biological models,
being able to repair most of the instances under 60 s. We were able to conclude
that the dimension of the regulatory functions has the biggest impact on the tool
performance, since the number of monotone nondegenerate Boolean functions
increases.

As a future work, time-series data could be used to also consider the model
dynamics. Also, the possibility to repair models with inconsistent nodes with
multiple reasons for inconsistency (see Sect. 4 for more details). The proposed
tool produces all the optimal solutions to repair a model. Heuristics could be
used to reduced the number of solutions produced (see [15] for details).
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Abstract. Data integration of multi-platform based omics data from
biospecimen holds promise of improving survival prediction and per-
sonalized therapies in cancer. Multi-omics data provide comprehensive
descriptions of human genomes regulated by complex interactions of
multiple biological processes such as genetic, epigenetic, and transcrip-
tional regulation. Therefore, the integration of multi-omics data is essen-
tial to decipher complex mechanisms of human diseases and to enhance
treatments based on genetic understanding of each patient in precision
medicine. In this paper, we propose a gene- and pathway-based deep
neural network for multi-omics data integration (MiNet) to predict can-
cer survival outcomes. MiNet introduces a multi-omics layer that repre-
sents multi-layered biological processes of genetic, epigenetic, and tran-
scriptional regulation, in the gene- and pathway-based neural network.
MiNet captures nonlinear effects of multi-omics data to survival out-
comes via a neural network framework, while allowing one to biologi-
cally interpret the model. In the extensive experiments with multi-omics
data of Gliblastoma multiforme (GBM) patients, MiNet outperformed
the current cutting-edge methods including SurvivalNet and Cox-nnet.
Moreover, MiNet’s model showed the capability to interpret a multi-
layered biological system. A number of biological literature in GBM sup-
ported the biological interpretation of MiNet. The open-source software
of MiNet in PyTorch is publicly available at https://github.com/DataX-
JieHao/MiNet.
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1 Introduction

Data integration of multi-platform based omics data (e.g., genomics, proteomics,
and metabolomics) from biospecimens holds promise of improving survival pre-
diction and personalized therapies in cancer [11,12]. The importance of integra-
tive studies has been increasingly emphasized along with the rapid development
of various types of high-throughput multi-omics data. A large scale of multi-
omics data sets have been generated in various cancer projects, such as The
Cancer Genome Atlas (TCGA) and The Cancer Genome Project in Wellcome
Trust Sanger Institute. In particular, TCGA provides various types of omics
data of more than 33 cancers, including tissue exome sequencing, gene expres-
sion, Copy Number Alternation (CNA), DNA variation, DNA methylation, and
microRNA, as well as clinical data such as race, tumor stage, and survival status
and months of cancer patients.

Multi-omics data provide comprehensive descriptions of human genomes reg-
ulated by complex interactions of multiple biological processes such as genetic,
epigenetic, and transcriptional regulation [16]. Thus, the integration of multi-
omics data can be leveraged to decipher complex mechanisms of human dis-
eases and to enhance cancer treatments based on genetic understanding of each
patient in precision medicine. Specifically, genes are activated by sequential inter-
actions of DNA variations, CNA, histone modifications, transcription factors,
DNA methylation, and other genes in relevant pathways [1,23]. CNA, which is
a modified gene structure, often alters downstream pathways or regulatory net-
works, and DNA methylation often reduces gene expression in a nearby gene
when the methyl groups are added to the DNA. Hence, monozygotic twins dis-
cordance in disease is often caused due to different CNA, although they have
nearly identical genetic variants [3,17].

Recently, multi-omics data have been widely incorporated in an increasing
number of research projects in survival analysis, rather than using a single type
of genomic data that most genomic research traditionally has analyzed. Multi-
omics data such as CNA, DNA methylation, and gene expression were integrated
to identify knowledge-driven genomic interactions with clinical outcomes of inter-
est in ovarian carcinoma [15]. The meta-dimensional models, which incorporate
biological pathways with multi-omics data, enhanced the model interpretability
in the biological pathway level. A multi-block bipartite graph was proposed not
only to identify intra- and inter-block interaction effects of multi-omics data, but
also to predict quantitative traits such as gene expression and survival time [14].
SurvivalNet integrated multi-omics data such as DNA mutation, CNA, protein,
and mRNA along with clinical information into a deep neural network to improve
survival prediction of patients in cancers [24]. Feature selection techniques were
applied to each omics dataset separately, and selected features of the multi-omics
data and clinical data were combined into a large augmented matrix in Survival-
Net. Another deep learning-based model integrated RNA-Seq, miRNA-Seq, and
DNA methylation data to differentiate survival groups in hepatocellular carci-
noma [5]. Furthermore, the differential subgroups identified several significant
multi-omics features.
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Fig. 1. The architecture of MiNet

In this study, we propose a novel approach, called MiNet, to integrate multi-
omics data and clinical data using a pathway-based deep neural network for
survival analysis. Our previously published model, Cox-PASNet, which is a
pathway-based deep neural network for predicting survival outcome, has con-
sidered only gene expression data as well as clinical data [9]. The main contribu-
tions of MiNet are as follows: (1) to introduce a multi-omics layer that represents
gene-based interaction effects of multi-omics data and (2) to interpret the model
in a biological pathway level.

The rest of the paper is organized as follows. In Sect. 2, our proposed model
is elaborated in detail. The experimental setting and results are demonstrated
in Sect. 3. Section 4 discusses the model interpretation with biological findings,
while Sect. 5 concludes the discussion.

2 Methods

We propose a gene- and pathway-based multi-omics integrative deep neural net-
work (MiNet) to predict cancer survival outcomes. MiNet introduces a gene-
based multi-omics layer to integrate multi-omics data, leveraging the advantages
of the pathway-based neural network framework in Cox-PASNet [9]. The neural
network structure of MiNet follows a biological system, which is multi-layered
with multi-omics data and their interactions along with clinical features, by uti-
lizing prior knowledge of biological pathways. The biologically inspired neural
network architecture provides a rich interpretation of a biological system.

2.1 Multi-omics Integration

Most studies have integrated multi-omics data by combining all types of omics
data to a single matrix and performed analysis, e.g., survival analysis. However,
the consideration of the augmented multi-omics data as independent features
lacks of representing interaction effects of genomic and epigenomic data with
gene expressions. Note that CNA and DNA methylation often regulate tran-
scriptional mechanisms of genes, so some genes may be down- or up-regulated
caused by interaction effects of other omics data.
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We introduce a multi-omics layer that transfers gene-based interaction effects
of multi-omics data to the pathway-based neural network of Cox-PASNet [9].
MiNet generates multi-omics features that include main and interaction effects
of multi-omics data on each gene. Then, MiNet inputs the multi-omics features
to the multi-omics layer followed by the gene layer that represents canonical
gene expression level. Note that the gene layer of MiNet consists of canonical
gene expressions which are high-level representations of gene-based multi-omics
data, whereas Cox-PASNet introduces gene expression data directly into the
gene layer.

We consider cis-regulatory interaction effects of CNA and DNA methylation
to a nearest gene. Multi-omics feature vectors xi are generated as:

xi =

⎡
⎢⎢⎢⎢⎣

gi

ci

di

gi ⊗ ci

gi ⊗ di

⎤
⎥⎥⎥⎥⎦

� // Main effect of gene expression
// Main effect of CNA
// Main effect of DNA methlyation
// Interaction effect with CNA
// Interaction effect with DNA methlyation

, (1)

where gi, ci, and di are sample vectors of gene expression, CNA, and DNA
methylation for the i-th gene, respectively. Note that we consider the genes that
have at least a gene expression feature. Then, canonical gene expression (g̃i) for
the i-th gene is expressed by:

g̃i = σ(xiwi), (2)

where wi is a weight vector, σ(·) is an activation function, and ⊗ is element-
by-element multiplication. The main or interaction effects are ignored if there
is no CNA or DNA methylation associated to the i-th gene, so genes may have
different numbers of multi-omics features.

2.2 The Architecture of MiNet

The architecture of MiNet is composed of a multi-omics layer, a gene layer, a
pathway layer, multiple hidden layers, a clinical layer, and a Cox layer, as shown
in Fig. 1. The multi-omics layer is an input layer, which introduces multi-omics
features (see Eq. 1) from genomics (CNV), epigenomics (DNA methylation), and
transcriptomics (gene expression) data into MiNet. The multi-omics layer contains
multi-omics features of all genes, and the connections betweenmulti-omics features
and genes are implemented by a boolean mask matrix. Note that the associations
of multi-omics features are determined with the nearest gene. Most databases often
provide genes that CNV and DNA methlayion are mapped to. At the end, every
multi-omics features are connected to only a node in the gene layer.

The gene layer represents canonical gene features computed by Eq. 2, where
each node indicates a gene in a biological system. Since a set of genes are involved
in biological pathways, genes in the gene layer transfer to corresponding pathway
nodes in the pathway layer. Note that the connections between genes and path-
ways are given by pathway databases, so the number of nodes in the pathway
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layer is identical with the number of known biological pathways. Hidden layers
show hierarchical representations of multiple pathways. A hidden node contains
the interaction effect of a set of pathways. More hidden layers may capture more
complex interactions of biological pathways.

The clinical layer is an additional input layer for clinical features (e.g., sex,
age, and tumor stage). The clinical data are introduced to the output layer as
additional features of the last hidden layer, rather than concatenating with the
multi-omics layer. The independent clinical layer prevents a few input features
from dominating others and makes the model interpretation effective in genomic
level. Clinical features, such as age, have often been shown as significant covari-
ates in several cancer studies. The effects of genomic features may be suppressed
by clinical features or vice versa. Moreover, genomic data and clinical data should
be separated for the model interpretation.

The output layer with one node is named as a Cox layer. A linear activation
function without bias is applied to this layer to adopt Cox regression. The final
outcome of MiNet is Prognostic Index (PI) which is a linear combination of
covariates, and PI is introduced to the hazard function for the Cox proportional
hazards model as:

λ(t|x) = λ0(t) exp(PI), (3)

where PI is an outcome of the Cox layer in MiNet.

2.3 Training MiNet with Sparse Coding

MiNet minimizes the average negative log partial likelihood with L2 regulariza-
tion. MiNet adapts the training strategy introduced in Cox-PASNet for effective
training with high-dimensional, low-sample-size data, where small sub-networks
are randomly selected and trained with sparse coding. For the parameter initial-
ization, all layers are fully-connected with He’s initialization strategy [10].

The connections between the multi-omics layer and the gene layer are masked
by the given boolean mask matrix during the entire training process, similarly
in the connections between the gene layer and the pathway layer. Note that the
connections between the multi-omics layer and the pathway layer are defined by
prior biological knowledge. Sparse coding is applied to the hidden layers following
the pathway layer.

We apply sparse coding (L1 regularization) individually on each layer pair,
instead of entire weight matrix. Inspired by LASSO, a soft-thresholding strategy
is applied to the connections on each layer pair. Thus, weight matrix is further
optimized on each layer pair by:

W� ← S(W, Qs), (4)

where S(W, s) = sign(W)(|W| − Qs)+ is the soft-thresholding function and
sign(W) returns a sign of W. (|W| − Qs)+ returns |W| − Qs if |W| − Qs >
0, otherwise, (|W| − Qs)+ = 0. Qs is the optimal threshold with respect to
the optimal sparsity level s. The optimal sparsity level s is estimated with the
strategy proposed in Cox-PASNet [9].
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Table 1. Performance comparison of MiNet with the benchmark methods using C-
index in over 20 experiments

Model C-index (μ ± σ)

Cox-EN [20] 0.5163 ± 0.0359

SurvivalNet [24] 0.5567 ± 0.0312

Cox-nnet [7] 0.5655 ± 0.0287

MiNet (proposed) 0.6214 ± 0.0352

Fig. 2. Distribution of C-index with 20 experiments

Table 2. Statistical assessment

Wilcoxon rank-sum test

MiNet vs. Cox-EN 1e-4∗

MiNet vs. Cox-nnet 2e-4∗

MiNet vs. SurvivalNet 2e-4∗

∗shows the statistical significance with significance
level = 0.05.

3 Experimental Results

In this paper, we conducted experiments with multi-omics data and clinical data
in Glioblastoma Multiforme (GBM), which is the most invasive brain tumor.
We downloaded multi-omics data including gene expressions, CNAs, and DNA
methylations, and clinical data of GBM patients from The Cancer Genome Atlas
(TCGA)1. We retrieved age, survival status (living or deceased), and survival
months of the GBM patients. Age was used as a clinical feature, and both survival
status and survival months were used for response variables. The other clinical
features were not considered because of large missing values. We filtered out
samples with missing values in survival information.

For pathway-based analysis, we downloaded KEGG and Reactome pathway
databases from the Molecular Signatures Database (MSigDB) [21]. The pathway
databases consist of gene sets of well-known biological pathways, which have

1 https://cancergenome.nih.gov.

https://cancergenome.nih.gov
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molecular interactions in a cell that simultaneously lead to a certain biological
process. Small pathways with less than 25 genes were excluded to avoid large
redundancy with other pathways [18].

For the experiments, we considered genes that belong to at least one pathway.
In particular, 5,481 genes were associated with 507 pathways in the dataset. We
included CNAs and DNA methylations associated to the 5,481 genes. Missing
values in CNV and DNA methylation features were imputed by 1-Nearest Neigh-
bor (1-NN). Finally, we used 24,803 multi-omics features including interactions
and one clinical feature (i.e. age) from 523 samples. The dataset for benchmark
models has 14,142 multi-omics features and age from 523 samples, where inter-
actions were excluded. Note that the benchmark methods considered much less
numbers of input features than our model.

We compared the performance of MiNet with the current cutting-edge meth-
ods: Cox regression with elastic net regularization (Cox-EN) [20], Survival-
Net [24], and Cox-nnet [7]. Concordance index (C-index) was measured to eval-
uate the performance of the methods. C-index is commonly used to measure
the predictive performance in survival analysis. We randomly split the entire
data into three subsets of training (64%), validation (16%), and test data (20%)
by stratified sampling with survival status, so that each subset preserves the
same proportion of censored samples as the entire data. Then, all features were
normalized to zero mean with variance of one. Validation and test data were
normalized with the mean and variance obtained from training data. Valida-
tion data were used to perform early stopping and grid search for finding the
optimal hyper-parameters. We repeated the experiments 20 times to show the
reproducibility of the performance.

Our proposed method MiNet was implemented by PyTorch 1.0 with CUDA
10. We used ReLU for the activation function, and dropout and L2 regulariza-
tion were applied to avoid overfitting problems. Adaptive Moment Estimation
(Adam) optimizer was performed to take advantage of a fast convergence and
a reduced oscillation. The structure of MiNet was constructed with two hidden
layers following multi-omics, gene, and pathway layers, as empirically showing
better performance than with a single hidden layer. We considered 22 and 5
nodes in the two hidden layers (H1 and H2) respectively, following the rule of
thumb that the number of hidden nodes is the square root of the number of input
nodes. Dropout rates were empirically set as 0.7 and 0.5 for pathway layer and
hidden layer, respectively. The optimal initial learning rate (η) and L2 regular-
ization (λ) were determined by grid search that maximizes C-index in validation
data on each experiment. All experiments were performed with four NVIDIA
Tesla M40 (12GB memory) Graphics Processing Units (GPU). The source code
of MiNet is publicly available in GitHub2.

Experiments of SurvivalNet [24] and Cox-nnet [7] were performed by the
Python packages published on GitHub3,4. Bayesian optimization [19] was

2 https://github.com/DataX-JieHao/MiNet.
3 https://github.com/CancerDataScience/SurvivalNet.
4 https://github.com/lanagarmire/cox-nnet.

https://github.com/DataX-JieHao/MiNet
https://github.com/CancerDataScience/SurvivalNet
https://github.com/lanagarmire/cox-nnet
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employed in SurvivalNet for the optimal neural network structure and hyper-
parameters, such as number of layers, number of nodes, dropout rate, L1 regular-
ization, and L2 regularization. For Cox-nnet, grid search strategy was applied for
optimal regularization parameter (L2). Cox-EN was implemented by the package
Glmnet Vignette in Python [20]. The tunning hyperparamter λ and the elastic-
net penalty term α (α ∈ [0, 1]) were optimized by grid search. Kaplan-Meier
analysis and log-rank test were performed by using the Python package lifelines.

C-index scores obtained from Cox-EN, SurvivalNet, Cox-nnet, and MiNet
over 20 experiments with GBM data are shown in Table 1. Our proposed method,
MiNet, produced the highest C-index of 0.6214 ± 0.0352 among the benchmark
methods, whereas Cox-EN, SurvivalNet, and Cox-nnet showed 0.5163 ± 0.0359,
0.5567 ± 0.0312, and 0.5655 ± 0.0287, respectively. Figure 2 depicts the distribu-
tion of C-index of the experiments. Moreover, we performed Wilcoxon rank-sum
tests to assess the statistical significance of the model improvement. As shown
at Table 2, the outperformance of MiNet against the other benchmarks was sta-
tistically assessed, i.e., p-values < 0.05.

4 Model Interpretation with GBM

For the model interpretation of MiNet with GBM data, we trained the model
with the entire data again using the optimal hyper-parameters that have been
selected most frequently over 20 experiments (i.e., λ = 0.02 and η = 0.005).
In consequence, the C-index of the re-trained model was 0.91, which was not
overfitted to the input data.

We first examined the six covariates, which are the input nodes to the Cox
layer. Five covariates are in the last hidden layer (H2), and one covariate (age)
is from the clinical layer. Figure 3a illustrates the H2 and age node values, where
the nodes are ranked by the partial derivatives with respect to the H2 layer and
the clinical layer. Overall, the node values show high correlation with PI. Specifi-
cally, Node 2 in H2 (the first column in Fig. 3a) appeared as the most important
covariate for predicting survival time in MiNet with GBM data. For evaluat-
ing each covariate, we separated the samples into two groups of high-risk and
low-risk by the median of PI. Then, p-values were computed with logrank test.
The p-values are shown in the upper plot in Fig. 3a, where all covariates were
statistically significant (i.e., p-values < 0.05). Kaplan-Meier plots are depicted
in Fig. 3b and c with the two top-ranked covariates, which demonstrates signifi-
cantly distinct survival curves. Moreover, the six nodes are visualized by t-SNE
in Fig. 4, which shows a highly linear correlation between the six covariates and
the survival outcomes.

Table 3 shows five top-ranked pathways by MiNet, where pathway nodes
are ranked by the partial derivatives with respect to the pathway layer. It was
discovered that GnRH receptor is expressed in GBM [8]. Interestingly, GnRH
signaling pathway was not identified with single omics data, but significantly
enriched with multi-omics data [13]. MiNet accordingly ranked GnRH signaling
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(a)

(b) (c)

Fig. 3. Graphical interpretation of the last hidden layer (H2) and the clinical layer. (a)
Heatmap of the H2 and age node values. The horizontal dashed line separates high-risk
and low-risk groups, which were separated by the median of PI. The upper dot plot
shows -log10(p-values) from the logrank test between high-risk and low-risk groups for
every single node. The right curve shows the distribution of PI with the corresponding
samples on the heatmap. (b) – (c) Kaplan-Meier plots for the two top-ranked covariates.

pathway as a significant factor with multi-omics data. Furthermore, the other
four pathways have been also recognized in GBM with several biological litera-
ture. The references are listed in Table 3.

Two genes of NRAS and PRKACA are identified as significant in GnRH
signaling pathway (see Table 4). Then, we traced back to the multi-omics layer of
the genes. Somatic mutation of NRAS in GBM and its critical role in PI3K-AKT
pathway were reported [2]. For NRAS, the main effects of gene expression was
the most important factor, followed by the interaction effects of gene expression
and CNA and the main effect of DNA methylation. The numbers in parenthesis
show partial derivatives with respect to the input nodes, and the higher values
indicate the more important factors. For PRKACA, the main effect of CNA and
gene expression were highly ranked as the most important multi-omics factors
and followed by the interaction effect of CNA, so CNA may play an important
role in regulating PRKACA in GBM.
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Fig. 4. Visualization of the H2 and age nodes in MiNet using t-SNE.

Table 3. Five top-ranked pathways by MiNet

Pathways Size Ref.

GnRH signaling pathway 101 [13]

Genes involved in RNA Polymerase I, RNA Polymerase III, and
Mitochondrial Transcription

122 –

Genes involved in Response to elevated platelet cytosolic Ca2+ 89 [4]

Melanogenesis 102 [6]

Genes involved in Extracellular matrix organization 87 [22]

Table 4. Two top-ranked genes in GnRH signaling pathway

Genes Multi-omics Ref.

NRAS G (0.001829), G⊗C (0.000888), D (0.000791),
C (0.000319), G ⊗ M (0.000037)

[2]

PRKACA C (0.000774), G (0.000738), G ⊗ C (0.000698) -

5 Conclusion

In this paper, we propose a gene- and pathway-based deep neural network for
multi-omics data integration, named MiNet, to predict cancer survival outcomes.
In MiNet, gene-based multi-omics features are generated by considering main
and interaction effects of multi-omics data in the multi-omics layer. The multi-
omics features produce canonical gene expression in the gene layer. The hierar-
chical representations of biological processes of multi-omics, genes, and pathways
are captured in MiNet. MiNet showed the outstanding performance to predict
cancer survival outcomes with GBM patients. More importantly, MiNet provides
the capability to interpret a multi-layered biological system. A large number of
biological literature supported our biological findings from MiNet.

The multi-omics layer of MiNet is designed as a neural network module for
the integration of multi-omics data, and is compatible to the pathway-based
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neural network, Cox-PASNet. The high flexibility and expandability of the model
architecture would allow one to take an advantage of utilizing the well-established
pathway-based framework.
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Abstract. Essential genes play an indispensable role in cell viability and fertility.
Identifying human essential genes helps us to study the functions of human genes,
but also provides a way for finding potential targets for cancer and other diseases.
Recently, with the publishing of human essential gene data and the availability of a
large amount of biological data, some computational methods have been proposed
to predict human essential genes based on genes’ DNA sequence or their topo-
logical properties in the protein-protein interaction (PPI) network. However, there
is still some room to improve the prediction accuracy. In this work, we propose a
novel supervised method to predict human essential genes by network embedding
protein-protein interaction network. Our method extracts the features of the genes
in network by mapping them to a latent space of features that maximally preserves
the relationships between the genes and their network neighborhoods. After that,
the features are input into a SVM classifier to predict human essential genes. Two
human PPI networks are employed to evaluate the effectiveness of our method.
The prediction results show that our method outperforms the method that only
uses genes’ sequence information, but also is obviously superior to the method
utilizing genes’ centrality properties in the network as input features.

Keywords: Human essential genes � Protein-protein interaction network �
Network embedding � Feature representation

1 Introduction

A gene can be defined as essential gene if it plays indispensable role in cell viability
and fertility [1]. Studying essential genes of prokaryotic or simple eukaryotic organ-
isms closely associates with the emerging science of synthetic biology, which aims to
create a cell with minimal genome. Detecting essential genes of bacterial cell also
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points the way to new approaches for finding potential drug targets for new antibiotics
[2]. Recently, some studies have pointed out that the essential genes have closed
association with human diseases [3]. The researchers are eager to identify essential
genes of human to seek guidance for treating diseases. Some systematic approaches to
identifying the essential genes of an eukaryote cell, such as single-gene knockouts [4],
conditional knockouts [5], and RNA interference [6] are pioneered in yeast and worm.
However, those systematic genetic screens are hard to be applied on human cells.
Recently, with advances in gene editing enabled by the CRISPR-Cas system, three
research teams have identified about 2000 essential genes in human cancer cell lines by
using CRISPER screen and gene trap technology [7–9]. Their studies give a clear
definition of human essential genes that are required for the viability of individual
human cell types. These data not only present an opportunity to further comprehen-
sively study the functions of human genes, but also provides potential targets for cancer
and other diseases.

Designing an effective computational method to identify essential genes from non-
essential genes has always been one of the hottest fields in bioinformatics, which aims
to provide guidance and proof for biological experiments. In the past few years, some
computational methods have been successfully applied on some simple eukaryotic
organisms, such as S.cerevisiae [10], C. elegans [11] and A.thaliana [12], Generally,
these computational methods can be classified into two categories, unsupervised and
supervised methods [13].

Unsupervised approaches make use of genes’ features to assign a ranking score for
each gene, and the genes ranked in top list are regarded as candidate essential genes.
One of the most important features related to the essentiality of genes are their topo-
logical properties in biological networks [14]. It has been found that in some species,
such as S.cerevisiae (yeast), C. elegans (worm), and D.melanogaster (fruit fly), the
proteins (genes) with larger number of interactive partners in protein-protein interaction
(PPI) network are tended to be essential proteins (genes), because removing them from
the networks will cause the breakdown of the network. Therefore some centrality
methods have been proposed for identifying essential genes, such as Betweenness
Centrality (BC) [15], Closeness Centrality (CC) [16], Degree Centrality (DC) [17],
Eigenvector Centrality (EC) [18], Information Centrality (IC) [19], Edge Clustering
Coefficient Centrality (NC) [20] and Subgraph Centrality (SC) [21]. However, the
performance of these centrality-based methods is limited to the incomplete and error-
prone PPI data currently available. Therefore, recently, some researchers have tried to
improve the prediction accuracy of essential genes by integrating PPI networks with
other biological information, such as gene functional annotation data [22], gene
expression data (PeC [23], WDC [24]), subcellular information [25], protein domain
information [25], orthologous information [26].

Supervised approaches usually identify essential genes by inputting some features
to train a classifier, i.e. SVM, Random forest, and then employ the classifier to predict
essential genes of the same organism or the other organisms. For example, Chen et al.
[10] trained a SVM classifier by the features of some known yeast essential proteins,
including the combination of phyletic retention, protein evolutionary rate, paralogy,
protein size, and the degree centrality in PPI networks and gene-expression networks.
After that, the classifier is adopted to predict other potential yeast essential genes.
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Recently, Zhong et al. [27] developed a xgboost based classifier to integrate multiple
topological properties of essential genes in PPI network to predict yeast and E.coli
essential genes. However, lacking gold dataset of human essential genes hinders us to
apply the supervised methods on predicting essential genes in human cells. With the
publishing of human essential gene data, Guo et al. [28] proposed a supervised method
to predict human essential genes by inputting the genes’ nucleotide sequence into a
SVM classifier. Their work inspires us to design a more effective method to improve
the prediction accuracy of human essential genes.

In this work, we propose a novel supervised method to predict human essential
genes by network embedding protein-protein interaction network. As far as we know,
genes and their protein products work together to perform their functions in cell. Their
topological properties in PPI network are very powerful in essentiality prediction. To
fully taking advantage of genes’ properties in PPI network, we adopt a method that was
originally proposed for natural language processing [29] to represent the features of
genes in PPI network, and then input these features into different types of classifiers to
predict human essential genes. Compared with previous supervised methods, our
method extracts the features of the genes in network by mapping them to a latent space
of features that maximally preserves the relationships between the nodes and their
network neighborhoods. Our method was applied on predicting human essential genes.
The prediction results show that our method outperforms Guo’s method [28] that only
uses genes’ sequence information, but also is obviously superior to the methods using
genes’ centrality properties in the network as input features.

2 Methods

As Fig. 1 shown, our method mainly consists of two steps to predict human essential
genes. The first step is to learn feature representation of every node in PPI network. The
second step is to put these feature representations (also called feature vectors) into a
classifier to predict human essential genes.

Fig. 1. An overview of framework for identifying essential genes.
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2.1 Network Feature Learning

Inspired by node2vec model [29], our method takes two steps to learn the feature
representation of every node in PPI network, meanwhile preserving their neighborhood
relationships. At first, a bias random walk is implemented on the PPI network starting
from each node in the network, and then a sequence of nodes is extracted, which
represents the network context of the start node. After that, these sequences are put into
a Skip-gram-based architecture to learn the feature representation of each node.

2.1.1 Bias Random Walking
Feature learning methods have been originally developed in the context of natural
language process, where the input data is a sequence of words with neighborhood
relationship. However, the input of this work is a network. Hence, the first step of
feature learning is to use a bias random walk method to extract the linear neighborhood
relationship of each node in the network.

A PPI network can be represented as an undirected graph G = (V, E, W), where a
node v2V represents a gene and an edge e(u,v) 2 E denotes an interaction between two
genes v and u. w(u,v) denotes the weight of edge e(u,v). In this work, the weights of all
edges are set to 1. At random walking, the nodes in the network travel to their
neighbors at certain probability. Considering the differences in the neighbors of a node,
a bias random walk is implemented. That is, given a node v, it walks to one of its
neighbors x by evaluating the transition probabilities p(v, x) on e(v, x) leading from v.
We set the transition probabilities p(v, x) = b(v, x) * w(v, x).

bðv; xÞ ¼
1
p ; dvx ¼ 0
1 ; dvx ¼ 1
1
q ; dvx ¼ 2

8
<
: ð1Þ

Where dvx represents the distance from the previous node v to the next node x. The
return hyper-parameter p controls the probability of jumping back to the previous node
v. the in-out hyper-parameter q controls the probability of jumping to the next node x
without common neighborhoods. Specially, dvx = 0 means node v and x connect
directly. dvx = 1 means that the node v and x have common neighbors. dvx = 2 means
that the node v and x connect indirectly and have non-common neighbors.

After preprocessing to compute transition probabilities each node and each edge in
the network, we simulate several numbers of random walks of fixed length starting
from every node. At every step of the walking, one note selects one of its neighbors by
applying alias sampling on the transition probabilities. Finally, a sequence of nodes is
output, which records the walking trace in the network starting from a node but also
reserves the neighborhood relationship of the starting node in the network. The
pseudocode for Bias random walking is given in Algorithm 1.
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Vcur_nbrs = sort(GetNeighbors(curr,G’)) // getting neighbor list of current node
next = AliasSample(Vcur_nbrs , π) //applying alias sampling on the transition probabilities to select a neigh-

bor node
Append next to walk

Append walk to walks
return walks

Algorithm 1 Bias random walking
Input G=(V,E,W), walk_length, Num_walks, Parameters p and q; 
Output node lists:walks  

π =PreprocessTransitionProbabilities(G,p,q)// computing transition probabilities for each node and each edge
G’=(V,E,π ) 
Initialize walks to Empty
for walk_iter = 1 to Num_walks do
  for all nodes u∈V do
    walk=[u]
    while len(walk) < walk_length:

curr = walk[-1]

2.1.2 Feature Learning Methods
In this work, a skip-gram with negative sampling (SGNS) architecture is employed to
learn the feature representation for every node in the network, which was introduced by
Mikolov et al. in [30] and was also called word2vec method. In the rest of this section,
we provide a brief overview of the SGNS method.

Given a sequence of nodes vmi
� �

from a finite node set V ¼ vki
� �

, here, m is the
number of nodes in the node sequence and k is the number of nodes in the training set,
let f: vj 2 V�[ Rd be the mapping function from node vector to feature represen-
tations. Here d is the number of dimensions of the feature representation. For every
node in the input sequence of nodes, vj 2 V and vj 2 N(vi) denote the neighborhood
node of vi. The aim of the SGNS is to maximize the log-probability of neighborhood
nodes N(vi) surrounding a node vi conditioned on its feature representation, given by f.
Formally, the objective function is following.

max
f

X

vi2V
logPðNðviÞjf ðviÞÞ ð2Þ

We assume that the possibility of observing a neighborhood node is independent of
other neighborhood nodes given the feature representation of the source vi.

PðNðviÞjf ðviÞÞ ¼
Y

vj2NðviÞ
Pðvj jf ðviÞÞ ð3Þ

Where P(vi|f(vj)) is the softmax function.

Pðvj jf ðviÞÞ ¼ expðf ðvjÞ � f ðviÞÞP
vs2V expðf ðvsÞ � f ðviÞÞ

ð4Þ
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SGNS architecture is shown in Fig. 1. Firstly, the SGNS counts the number of
distinct nodes in the training set. After that, the SGNS represents an input node
sequence as a one-hot vector with k components. Only one position where the node
appears in the vector is placed in 1 and the others are placed in 0 s. The output of the
architecture is also a single vector with k components, which represents the probability
that a node in the training set should be the neighbor of the input node. To get the
neighborhood nodes of an input node, we slide a window along the node sequence. The
goal of the training is to learn the weights of the hidden layer and to use SGD
(Stochastic Gradient Descent) to optimize the weight matrix. The final feature repre-
sentation of an input node is generated by multiplying the input 1 * k vector and a
k * d weight matrix. Note that computing

P
exp (f(vs)�f(vi)) in Eq. 4 is too expensive

for the large network during training. We alleviated the computational problem by
using negative sampling for all our experiments.

2.2 Classification

After learning the feature represent of every node in the network, we put these feature
vectors into a classifier to predict essential genes. These node features are randomly
divided into testing samples and training samples. There are various classifiers avail-
able to finish the prediction task. In this work, we focus on proofing that the genes’
features maximally preserving their neighborhood relationships in the network are
helpful to predict human essential genes. We adopt one of following popular classifiers
to predict human essential genes. They are support vector machine (SVM) [10], ran-
dom forest (RF) [31], decision tree (DT) [32], extra tree (ET), logistic regression
(LR) [33], Naive Bayes (NB) [34] and k-Nearest Neighbor (KNN) [35].

3 Results

3.1 Datasets

The human essential genes were from the supplementary files of the reference [28],
which was extracted from the DEG database (http://tubic.tju.edu.cn/deg/), the updated
version of which contained human gene essentiality information from three recent works
[7–9]. The dataset consisted of 1516 essential genes and 10499 non-essential genes.

Two human PPI network datasets were employed to evaluate the performance of
our method. The one was from a human functional interaction (FI) network, including
protein-protein interactions, gene coexpression data, protein domain interaction, Gene
Ontology (GO) annotations and text-mined protein interactions from Reactome data-
base [36]. The network contained 12,277 genes and 230,243 interactions. We com-
pared all the genes in FI network with the genes from reference [28] and only kept the
overlapping genes of the two datasets. Ultimately, 6747 genes were obtained as one of
our benchmark dataset (called FIs), including 1,359 essential genes and 5,388 non-
essential genes. Another human network data was from InBio Map database, which
was aggregated from 8 source databases and spanning 87% of reviewed human UniProt
IDs [37]. The network contained 17530 genes and 625641 interactions. Similarly, we
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obtained 10548 genes overlapping with the genes from reference [28] as another our
benchmark dataset (called InWeb_IM), including 1512 essential genes and 9036 non-
essential genes.

3.2 Evaluation Metrics

To evaluate the performance of our method in predicting human essential genes, five-
fold cross-validation test was performed, where the benchmark dataset was randomly
divided into 5 parts, the four parts was training set and the other one was testing set. We
kept the ratio of essential genes to non-essential genes as 1:1 in each fold data. Some
popular statistic metrics were adopted to evaluate the prediction performance of each
method, including ACC, Precision, Recall, SP, NPV, F-measure and MCC (Matthews
Correlation Coefficient). To evaluation the overall performance of each method, the
Area Under ROC Curve (AUC) and the Area Under Precision-Recall Curve (AP) are
calculated for comparison.

3.3 Comparison with Existing Methods

To evaluate the performance of our method in predicting human essential genes, we
compared it with other two existing methods. The one namely Z curve method
employed a k-interval Z curve method to extract DNA sequence features of genes and
input these features into a SVM classifier to make prediction [28]. The other namely
centrality-based method calculated 7 popular central indices of DC, BC, CC, SC, EC,
IC and NC for each gene in human network and combined them into a 7-column vector
as input to a SVM classifier. All these indices were calculated by a Cytoscape plugin
CytoNCA [38]. For fair comparison, our method also chose a SVM classifier for
prediction. Tables 1 and 2 show the prediction performance of all comparing methods
on two different human network datasets, including FIs dataset and InWeb_IM dataset.
The digits in the brackets at the first column of the tables are the ratio between essential
genes and non-essential genes in the course of validation.

Table 1. Performance comparison of existing methods on FIs dataset.

Methods Precision Recall SP NPV F-measure MCC Accuracy AUC AP

Centrality (1:1) 0.852 0.553 0.904 0.669 0.671 0.488 0.728 0.760 0.797
Z curve (1:1) 0.733 0.800 0.708 0.780 0.765 0.511 0.754 0.824 0.783
Our method (1:1) 0.859 0.836 0.863 0.840 0.847 0.699 0.849 0.914 0.902

Table 2. Performance comparison of existing methods on InWeb_IM dataset.

Methods Precision Recall SP NPV F-measure MCC Accuracy AUC AP

Centrality (1:1) 0.816 0.713 0.839 0.745 0.761 0.557 0.776 0.851 0.841
Z curve (1:1) 0.730 0.777 0.713 0.762 0.753 0.491 0.745 0.827 0.801
Our method (1:1) 0.845 0.850 0.844 0.849 0.848 0.694 0.847 0.914 0.903
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As Tables 1 and 2 shown, our method achieved the best performance among all
comparing methods on the two datasets. When the ratio of the two kinds of genes in the
training or testing sets was as 1:1, The F-measure, MCC, AUC and AP values of our
method reached up to 0.847, 0.699, 0.914 and 0.902 on FIs dataset and reached up to
0.848, 0.694 and 0.914 and 0.903 on InWeb_IM dataset. However, the highest F-
measure, MCC and AUC values of the other two methods are 0.765, 0.511 and 0.824
for Z curve method on FIs dataset, and 0.761, 0.557 and 0.851 for Centrality method on
InWeb_IM dataset. Note that the Centrality method has higher AP values on the two
datasets than the Z curve method, i.e. 0.797 on FIs dataset and 0.841 on InWeb_IM
dataset. Hence, compared with the Z-curve method that used human sequence data and
the Centrality method that used topological properties in the PPI network, our method
learning the genes’ latent features from PPI network can effectively improve the
accuracy of predicting human essential genes.

3.4 Evaluation of Impact of Different Classifiers

In order to further test the impact of different classifiers on the prediction of our
method, besides SVM, other popular classifiers, such as random forest (lR), decision
tree (DT), extra tree (ET), logistic regression (LR), Naive Bayes (NB) and k-Nearest
Neighbor (KNN), were selected to make prediction in our method. Tables 3 and 4 list
the performance comparisons of our method on two different datasets with respect to
different classifiers.

The results show that the performance of our method can be further improved by
selecting other more efficient classifiers. On the whole, the extra tree algorithm
(ET) based on random forest has the best performance. As maintaining the
essential/non-essential gene ratio as 1:1, the F-measure, MCC, AUC and AP values of
our method by using ET classifier achieved 0.853, 0.712, 0.923, 0.922 on FIs dataset
and 0.856, 0.707, 0.926 and 0.920 on InWeb_IM dataset.

Table 3. Performance comparison for our method with different classifiers on FIs dataset.

Methods Precision Recall SP NPV F-measure MCC Accuracy AUC AP

DT(1:1) 0.768 0.788 0.762 0.783 0.778 0.551 0.775 0.775 0.831
NB(1:1) 0.822 0.765 0.834 0.780 0.792 0.600 0.799 0.876 0.873
KNN(1:1) 0.837 0.805 0.844 0.812 0.821 0.649 0.824 0.895 0.906
LR(1:1) 0.839 0.827 0.841 0.829 0.833 0.668 0.834 0.910 0.907
SVM(1:1) 0.859 0.836 0.863 0.840 0.847 0.699 0.849 0.914 0.902
RF(1:1) 0.859 0.844 0.861 0.846 0.851 0.705 0.852 0.921 0.921
ET(1:1) 0.867 0.840 0.872 0.845 0.853 0.712 0.856 0.923 0.922
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4 Conclusion

In this work, we proposed a novel supervised method to predict human essential gene
by network embedding human PPI network. Compared with the previous method, our
method firstly represented the nodes in the PPI network as latent features vectors that
maximally preserved the relationships between the nodes and their network neighbors
and then input the feature vectors to a classifier to predict potential human essential
genes. The prediction was implemented on two different human PPI datasets. The
results show that the highest AUC values of our method on the two datasets reached
0.923 and 0.926 by selecting ET classifier on the proportion of original data. Even
taking the same SVM classifier as Guo’s method [28], our method also obviously
outperformed the methods that took DNA sequences or network topological properties
as input features, which verified that learning feature vectors for the nodes from the PPI
network can make a great contribution to improving the prediction of the human
essential genes. In our future work, more powerful network embedding method should
be designed to find the latent feature representation of the nodes in the PPI network and
more effective machine learning methods should be developed to predict human
essential genes based on the features of genes.
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Abstract. In the field of computational biology and bioinformatics, there
have been limited studies on the development of protein-protein proxim-
ity measures which blend multiple sources of biological properties of pro-
tein. In Protein-Protein Interaction Network (PPIN), hub-proteins play a
central role. There are many literature with user-studied different degree
cut-offs for defining hub-proteins. Therefore, there is a need for a stan-
dard method for identifying hub-proteins without manually determin-
ing the degree cut-off. In the current research article, an effort has been
made towards addressing both problems. At first, we have proposed a new
Fused protein-protein Similarity measure - FuSim, which involves biologi-
cal properties of both Gene Ontology (GO) and PPIN. Later, utilizing the
proposed similarity measure, a multi-objective clustering algorithm-based
automated hub-protein detection framework is developed.

Keywords: Protein-protein interaction network (PPIN) ·
Gene Ontology (GO) · Multi-objective optimization · Clustering ·
Hub proteins · Protein-protein similarity measure

1 Introduction

In PPIN, hub-proteins are small number of highly connected protein nodes which
play a central role. Essential proteins plays fundamental role in survival and
reproduction of an organism. According to existing literature, most of the essen-
tial proteins are found to be hubs instead of non-hubs protein [8]. Thus, identi-
fying and understanding hub proteins is an open problem in the field of bioinfor-
matics. Different literature follows different degree-thresholds and different con-
ventions in defining hub-proteins ([5,7]). Hence, there is a need for a standard
method to identify hub proteins from PPIN with limited manual intervention.
Motivated by this fact, an effort has been made in the current paper towards
determining the number of hub-proteins automatically and identify them from
PPIN.
c© Springer Nature Switzerland AG 2019
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Measuring functional similarity between genes/proteins is crucial as it is the
building block to further analyze the biological, molecular, cellular functionali-
ties of genes/proteins. In literature, different gene-gene/protein-protein proxim-
ity measures were developed using various biological resources [1,2,12,16]. Genes
associated with similar biological, molecular or cellular functions tend to form
groups (clusters/bi-clusters) [1,2] and hence their protein products also tend to
interact with each other [16]. Therefore, one favourite way to determine the func-
tional similarity between genes/proteins among researchers is through studying
interaction edges between proteins in a PPIN [12,16].

PPIN stores biological information regarding different interacting proteins
and confidence of interaction. Another potential database for storing knowledge
about several molecular, biological and cellular processes and sub-processes for
which genes/proteins are involved is Gene Ontology (GO)1. It is a large ontol-
ogy consists of three child ontologies like biological process (BP), molecular
function (MF) and cellular component (CC). Each node of the GO tree rep-
resents one particular biological or cellular or molecular process/sub-process;
which are called GO-term. Considering the gene annotation information as well
as structural properties of GO, in the past several gene-gene semantic similarity
measures have been proposed [2,10,14]. But none of them takes both GO and
PPIN into the account to measure functional relatedness between genes.

In this work, in the first phase, we have proposed an integrated protein-
protein similarity measure exploring both GO and PPIN. In the second phase,
we have employed our proposed proximity measure to identify hub proteins auto-
matically from PPIN through a widely used pattern recognition tool - Clustering
[1,3]. The utility of the proposed framework has been measured through proper
validity indices.

2 Relevant Existing Works and Motivation

In the past, several semantic similarity measures between GO-terms or genes or
proteins have been proposed utilizing GO. Some of them adopted information
theoretic approaches like Resnik’s similarity [14], Lin’s similarity [10]. Authors
Wang et al. [17] proposed a similarity measure, which considers topological infor-
mation of the GO graph. One GO annotation set-based method to measure the
similarity between genes was proposed by [13], which is named as normalized
term-overlap method. Several hybrid similarity measure, for example in Shen et
al. [15], authors proposed a similarity measure that takes into account both the
path length between the terms as well as the information content of the ancestor
terms. Recently in [2], authors have developed some multi-factored gene-gene
similarity/distance measures by considering several mutually exclusive GO and
GO-term properties to identify functionally as well as semantically related genes
from a genome. In [6], authors have proposed a protein-protein semantic simi-
larity measure by combining similarity scores of the GO-terms associated with
the proteins. Apart from GO-based similarity measures, many works have been
1 http://geneontology.org/.

http://geneontology.org/
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done on finding co-expressed genes or genes which are functionally similar based
on their expression levels [1]. Also, there are few research articles on finding
functional similarity between genes/proteins based on interaction data in PPIN.
In [16], authors have proposed a method to develop gene-gene functional similar-
ity network based on both traditional GO-based similarity measures and PPIN.
Article [12] proposed a diseased-gene selection technique - termed as RelSim
based on information from gene expression profile and PPIN. According to past
literature, several researchers have proposed different strategies to detect hub
proteins from PPIN. For example, in [5], the top 95% and 50% of the high degree
nodes were defined as hubs in two different contexts; in [7], nodes with degree
greater than 5 were labelled as hubs. After performing a thorough literature
survey, we found no existing works considering both GO and PPIN in designing
gene-gene/protein-protein similarity measure [2,13,16]. Also, a limited study has
been performed in the direction of detecting hub proteins automatically from a
PPIN. The underlying idea of our proposed automated hub-detection technique
is based on the ground principles of any clustering algorithm [1,3]. For any gene
clustering technique [1], each cluster has a center gene (cluster center), which has
the highest average similarity with other genes of the same cluster but the lowest
average similarity with other cluster center genes. This property is applicable for
proteins in PPIN too. The hub proteins are highly connected to a set of non-hub
proteins but less connected with other hub proteins. It has also been shown in
existing research [12] that genes having more functional similarity have more
interacting proteins. Inversely, two proteins with less interaction indicate that
they and their corresponding genes are less functionally similar. Therefore, we
have performed a multi-objective clustering on a set of proteins utilizing our pro-
posed FuSim measure as underlying proximity measure. In the resulting clusters,
center protein in a cluster is most functionally and semantically similar hence
more interacting to other proteins of the same cluster and least functionally simi-
lar therefore less interacting to other center proteins. So, obtained cluster centers
in our approach follow the property of hub-proteins in a PPIN. As underlying
optimization strategy of used clustering algorithm, AMOSA (Archived Multi
Objective Simulated Annealing) [4] is utilized which has shown its superiority
over several other multi-objective as well as single objective optimization tech-
niques in existing literature [1,3,4]. One advantage of AMOSA-based clustering
is, unlike K-means or hierarchical clustering, the number of clusters in a solu-
tion is determined automatically within a given range. Hence, in our proposed
hub-detection framework, the number of hubs (cluster center proteins) also gets
determined and hence identified automatically.

3 Proposed Fused Protein-Protein Similarity Measure:
FuSim

Our proposed hybrid protein-protein similarity measure includes important fac-
tors from both GO and PPIN. Two factors which participate in forming the
proposed measure are as follows.
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1. Multi-factored protein-protein semantic similarity based on GO [2]
2. Functional similarity between proteins based on the confidence of association

in PPIN [12].

For a particular organism, let pi and pj represents two proteins. Ai and Aj

represent sets of annotated GO-terms by pi and pj respectively. According to
definition of multi-factored semantic measure [2], the multi-factored semantic
similarity between two GO-terms gti and gtj is as follows.

Multi-sim(gti, gtj) =

arctan[simLin(gti, gtj) + simShen(gti, gtj) + simnorm−structdepth(gti, gtj)]

π/2
(1)

Where, simLin(gti, gtj), simShen(gti, gtj) and simnorm−structdepth(gti, gtj) are
Lin’s semantic similarity measure [2], Shen’s similarity measure [15] and normal-
ized structure-based semantic similarity [2].

Utilizing the above equation, the multi-factored semantic similarity between
protein pi and pj is as follows.

Multi-SIM(pi, pj) =
1

m×n

∑
gtk∈Ai,gtp∈Aj

Multi-sim(gtk, gtp) + simNTO(pi, pj)

2
(2)

where, simNTO(pi, pj) is normalized term overlap-based similarity measure [13].
m = |Ai| and n = |Aj |. The value of Multi-SIM(pi, pj) ∈ [0, 1].

Again let, Ni is the set of interactive proteins of protein pi in corresponding
PPIN. wij is the confidence score or weight value of the interacting edge between
protein pj ∈ Ni and pi. Let Nij is the set of proteins which are interactive
neighbours of both protein pi and pj i.e. Nij = Ni ∩ Nj . Ñ = Ni\Nj , indicates
set of proteins which are interactive neighbours of protein pi but not of protein
pj . The functional similarity between two proteins pi and pj based on confidence
(here weight) of association in PPIN [12] is defined as follows.

PPI-SIM(pi, pj) =

∑
pk∈Nij

min{wik, wjk}
∑

pk∈Ñi
wik +

∑
pk∈Nij

max{wik, wjk} +
∑

pk∈Ñj
wjk

(3)

Value of PPI-SIM(pi, pj) ∈ [0, 1]. Combining Eqs. 2 and 3, our proposed hybrid
similarity measure FuSim(pi, pj) is defined as follows.

FuSim(pi, pj) =
Multi-SIM(pi, pj) + PPI-SIM(pi, pj)

2
(4)

where, FuSim(pi, pj) ∈ [0, 1].

4 The Working Methodology of Proposed Automated
Hub Detection Technique

Our overall proposed framework can majorly be divided in two phases as follows.
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Phase 1: Choose dataset and generate protein-GO-term annotation
dataset and protein-protein similarity matrix
Different steps followed in this phase are described as follows.

Step 1: Fetching protein annotation information from GO: For the
experiment purpose, we have chosen Homo sapience PPI database from HitPre-
dict [11]. The database contains 18,484 unique protein IDs and 2,60,277 number
of interactions with confidence score (weight). We obtained annotation informa-
tion of 18,484 proteins using GO tool - GO Consortium (See footnote 1). Out
of 18,484 proteins, 16,196 proteins were mapped to one or more GO-terms, and
2289 proteins were unmapped. For further analysis, we have considered mapped
proteins only. For our experiment, the total number of significant GO-terms
obtained is 358 (out of which 243 for BP, 50 for MF and 65 for CC). Also, we
have obtained the full GO tree2 for calculating our proposed similarity measure.

Step 2: Generating protein-GO-term annotation matrix and protein-
protein similarity matrix: Once the protein annotation information is
obtained from the GO tool the corresponding protein-GO-term binary anno-
tation matrix [2] is prepared for our chosen dataset. The dimension of obtained
annotation matrix is 16,196 × 358, where 16,196 = # of mapped proteins and
358 = # of significant GO-terms. To form this matrix we have followed the same
strategy as followed in [2]. This matrix is used as an input matrix to our applied
multi-objective clustering algorithm.

Another input to our performed clustering algorithm is protein-protein simi-
larity matrix based on which groups of functionally similar proteins are formed.
First, we have calculated similarity value between each pair of proteins from
the set of 16,196 proteins according to our proposed measure FuSim in Eq. 4.
Apart from our proposed measure, for comparative analysis purpose, we have
also chosen six other GO/PPIN-based similarity measures viz. Lin’s measure
[10], Shen’s measure [15], Mistry’s measure [13], Structdepth-based measure [2],
Multi-factored similarity measure [2] - which are GO-based measures, and confi-
dence (weight) of association-based measure [12]: which is PPIN-based measure.
Utilizing all these six existing measures, corresponding protein-protein similar-
ity matrices are developed too. A dataset having p number of proteins have
p× p dimensional protein-protein similarity matrix for each of the proposed and
chosen similarity measures.

Phase 2: Identifying hub proteins automatically through multi-
objective clustering on protein-GO-term annotation dataset

This is the phase of the proposed framework where hub protein detection takes
place automatically. Two objective functions are simultaneously optimized in our
utilized AMOSA-based clustering viz. Xie-Beni (XB) index [3] (minimized) and
PBM index [3] (maximized). The AMOSA-based clustering has been applied here
on proteins of prepared protein-GO-term annotation matrix from phase 1 utiliz-
ing our proposed as well as six of chosen existing similarity measures as mentioned

2 http://purl.obolibrary.org/obo/go/go-basic.obo.

http://purl.obolibrary.org/obo/go/go-basic.obo
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in step 2 of phase 1. Some basic concepts regarding AMOSA [4] to be noted before
going through in detail of proposed algorithm are given below.

– ‘Archive’ in AMOSA ≈ ‘Population’ in genetic algorithm
– ‘Archive element of ‘Archive’ ≈ ‘Chromosome’ in ‘Population’ ≈ Complete

clustering solution.
– Suppose p = # of proteins, GOT = # of GO-terms.
– Input: Protein-GO-term annotation dataset of dimension p × GOT and

protein-protein similarity matrix of dimension p × p.
– Output: Set of hub proteins. Let us denote this as Ph.

The Pseudo-code of proposed hub-selection algorithm is shown in Fig. 1.

Set Tmax, Tmin , HL, SL, iter, α, tmp=Tmax

/* Tmax = Maximum temperature, Tmin = Minimum temperature
HL= Hard limit, SL= Soft limit */
Initialization of Archive.
current-sol = random(Archive). /* solution chosen randomly from Archive*/
while (tmp > Tmin)

for (i=0; i< iter; i++)
new-sol=perturb(current-sol).
Checking domination status of new-sol and current-sol. current-sol gets updated

End for
tmp = α ∗ tmp.
End while
if Archive-size > SL

Cluster Archive to HL number of clusters.

V= max(Sil1, Sil2...Sill) /* Sili = Silhouette index for ith Archive element*/
Solbest = V. Archive-element

/* V.Archive-element = Archive element with maximum Silhouette index */
Ph Cluster-centers (Solbest). /* Ph = set of hub proteins */
Validate Ph using GO consortium.

Fig. 1. Pseudo-code of proposed automated hub detection algorithm

5 Experimental Results and Discussion

To compare the accuracy of the obtained hub and non-hub sets of proteins we
need a reference set which can be used as gold standard/true labels. We have
prepared the reference set according to literature [9] where top 10% of highly
connected proteins are considered as hub proteins after consulting definitions of
hub-proteins in some literature. As high connectivity is the fundamental property
of any hub-protein, therefore, this approach to create the reference hub/non-hub
protein set seems convincing to us.

Table 1 reports the Silhouette index values of best clustering solution corre-
sponding to each of seven similarity measures (out of which one is FuSim and
rest six measures are existing). From the reported values of Table 1, we can see
that the quality of best-obtained clustering solution by our proposed hybrid sim-
ilarity measure FuSim is better than best clustering solutions obtained by other
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chosen similarity measures according to Silhouette measure. This result also val-
idates the logic that both GO and PPIN are unavoidable sources to measure
the functional similarity between proteins. Below to each Silhouette value, the
number of clusters in the corresponding solution is indicated. The number of
hub proteins for each measure-based approach is equal to the number of clus-
ters shown in this table, and each center protein of each cluster is treated as
hub-protein in this work.

Once the sets of hub/non-hub proteins are identified by our developed frame-
work the next step is to validate obtained set through biological significance test
through GO Consortium. We conducted the biological significance test for hub
protein set obtained by FuSim-based approach (1,494 number of hub proteins) as
well as six other similarity measure-based approaches. We found that on average
all hub-proteins were annotated with a large number of GO-terms compared to
non-hub proteins. This is another essential property of hub-protein, i.e. involve-
ment in a large number of biological activities. After performing the biological
significance test, we have compared obtained hub/non-hub protein set with refer-
ence hub/non-hub protein set developed before with respect to two external valid-
ity measures, i.e. ARI and %CA. The obtained ARI and %CA values are reported
in Table 2. If we further analyse Table 2, we can see that for FuSim-based auto-
mated hub detection approach the accuracy of identified protein hub/non-hub sets
has improved with respect to both indices compared to other similarity measures.
Reported result experimentally supports our argument on utility of proposed GO
and PPIN-based measure - FuSim over other existing measures which are build
upon single biological source like either GO or PPIN.

Table 1. The Silhouette index value corresponding to best obtained clustering solution
for AMOSA-based clustering for all of seven similarity measures. The number of clusters
K corresponding to the clustering solution is indicated too.

Similarity measure FuSim Multi-factored [2] Conf. of asso. [12] Shen Lin Mistry Structdepth

Silhouette value 0.623 0.57 0.55 0.553 0.547 0.53 0.51

# clusters (K) 1,494 1,265 1,370 993 997 1005 910

Table 2. Comparison between obtained hub/non-hub protein sets by seven similar-
ity measure-based approaches with reference hub/non-hub protein set with respect to
Adjusted Rand Index (ARI) and Classification Accuracy (%CA) values.

Similarity measure FuSim Multi-factored [2] Conf. of asso. [12] Shen Lin Mistry Structdepth

ARI 0.71 0.67 0.65 0.62 0.623 0.59 0.57

%CA 95.6% 92.3% 90.4% 82.3% 81.7% 78.1% 77.6%

In future, one or more mutually exclusive biological factors can be fused
with FuSim measure to configure it into more refined protein-protein similarity
measure. Also, to prove that the obtained results are statistically and biologically
significant a thorough statistical/biological significance tests can be performed.
Authors are working in that direction.
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Abstract. Essential proteins are indispensable for cell survival, and the iden-
tification of essential proteins plays a critical role in biological and pharma-
ceutical design research. Recently, some machine learning methods have been
proposed by introducing effective protein features or by employing powerful
classifiers. Seldom of them focused on improving the prediction accuracy by
designing efficient strategies to ensemble different classifiers. In this work, a
novel ensemble learning framework called by Tri-ensemble was proposed to
integrate different classifiers, which selected three weak classifiers and trained
these classifiers by continually adding the samples that are predicted to have
abnormally high or abnormally low properties by the other two classifiers. We
applied Tri-ensemble on predicting the essential protein of Yeast and E.coli. The
results show that our approach achieves better performance than both individual
classifiers and the other ensemble learning methods.

Keywords: Essential proteins � Ensemble learning � Machine learning �
Tri-ensemble

1 Introduction

Essential proteins are indispensable for cells to survive and play a crucial role in the
cellular function of each organism [1]. Lacking essential proteins will lead to the
function loss of generating relevant protein complexes and even to cell death. Identi-
fying essential proteins can help us better understand the minimal requirements for cell
life, and it is also critical for biological and pharmaceutical design research.

In recent years, many methods have been proposed to identify essential proteins
based on their topological features in biological network, protein sequence features and
some other biological features, such as protein domain and protein orthology
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properties. Previous studies found that essential proteins tend to be the center of
protein-protein interaction (PPI) network, because removing them from the networks
will cause the lethality and break down of the networks [2]. Therefore, many centrality
methods have been proposed to identify essential proteins from PPI network, such as
Betweenness Centrality (BC) [3, 4], Closeness Centrality (CC) [5], Degree Centrality
(DC) [6], Eigenvector Centrality (EC) [7], Information Centrality (IC) [8], Edge
Clustering Coefficient Centrality (NC) [9] and Subgraph Centrality (SC) [10]. How-
ever, these centrality methods overly depended on the topological features extracted
from the PPI network and ignored their other biological features. Recently, new
methods that combine the topological features with the biological ones have been
developed. Li et al. [11] have proposed a new method to predict essential proteins
called PeC and Tang et al. [12] have developed another one, WDC, which integrates
network topology with gene expression profiles. Considering the fact that essential
proteins are more conserved than non-essential ones [13] and they frequently connect
to each other [14], Peng et al. [15] have proposed an iterative method to predict
essential proteins based on the orthology and PPI networks.

Meanwhile, many machine learning algorithms were also applied to the identifi-
cation of essential proteins. Gustafson et al. [16] extracted the topological features such
as degree centrality (DC), and biological features such as paralogs, open reading frame
(ORF) length, then put these features into a Naive Bayes classifier for essential protein
prediction. Hwang et al. [17] combined different kinds of PPI network topological
features (DC, BC, CC, etc.) and some biological features including ORF length,
phyletic retention (PHY) and strand to predict essential proteins by using SVM method.
There are also some methods by integrating different classifiers. Zhong et al. [18]
combined topological features and biological features by using GEP-based method to
predict essential protein. Acencio et al. [19] combined multiple decision tree classifiers
by a voting strategy. They used local effects of subcellular localization, biological
features and network topological features as the input of the classifiers. Deng et al. [20]
have also combined multi-model including Naive Bayes classifier, C4.5 decision tree,
CN2 rule and logistical regression model to predict essential proteins. Chen and Xu
et al. [21] combined support vector machines (SVM) and Artificial Neural Networks
(ANN) to predict essential proteins. However, the aforementioned methods took very
simple strategies, such as voting strategy, to integrate different classifiers.

In order to better identify the essential proteins, in this work, a novel ensemble
learning framework called by Tri-ensemble was proposed to integrate different clas-
sifiers. The main premise of ensemble learning is that by combining multiple models,
the errors of a single one will likely be compensated by others, and as a result, the
overall prediction performance of the ensemble would be improved. Ensemble learning
consists of two parts, the one is how to generate different individual classifiers, and the
other is how to integrate them. At present, there are two kinds of approaches for
ensemble learning to generate individual classifiers. The one is bagging [22] that
generates multiple classifiers through different training samples and uses them to get an
aggregated predictor. There is no strong dependency between individual classifiers for
bagging approaches. The other is boosting. There is a strong dependency between
individual classifiers. Freund and Schapire [23] have developed a boosting approach
named Adaboost, which gave weights to samples and classifiers and updated the
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weights based on error rate. Chen et al. [24] have proposed a scalable tree boosting
system named Xgboost, which made prediction by weighted summing the prediction
scores of different regression trees. The next step for ensemble learning is to integrate
individual classifiers. The current combination strategies include average method,
voting method and stacking [25].

Compared with previous ensemble learning method, Tri-ensemble took different
strategies to generate and integrate classifiers. It selected three weak classifiers and the
training set of one classifier was not fixed but changed with respect to the prediction
results of the other two weak classifiers. One of the three classifiers was continually
trained through increasing the samples that were misclassified or abnormally predicted
by the other two classifiers. Finally, the prediction of the three classifiers was combined
by a logistic regression model. The basic idea of our method using three weak clas-
sifiers comes from Tri-training for Semi-supervised learning algorithm proposed by
Zhou et al. [26], which put forward the idea of multi-view and selected three classifiers
and learned the differences between them by voting. We applied Tri-ensemble to
predict the essential proteins of Yeast and E.coli. The results show that our approach
achieves better results than individual classifiers and the other ensemble learning
methods.

2 Methods

Figure 1 shows the workflow of Tri-ensemble for predicting essential proteins. It firstly
divided data into a training set and a testing set. Every one of the three weak classifiers
was trained by continually adding the samples that are predicted to have abnormally
high or abnormally low properties by the other two classifiers. After generating the
three classifiers, a logistic regression model was adopted to integrate the output of the
three classifiers to make a final prediction.

2.1 Partitioning Data

The original data is randomly divided into five parts, four parts taken as the training set,
and the remaining one as the test set. And then the training set is further randomly
divided into P and R, where P is a quarter of the training set and R is the remaining part
of the training set. After that, bootstrap sampling was done on P to generate three data
sets with the same size, denoted by P1, P2, P3. The size was set to 1000 in the Yeast data
experiment and set to 530 in the E.coli data experiment. Meanwhile, set R was divided
into n mutually exclusive subsets, denoted by R1, R2 … Rn. Their relationship can be
formally expressed as follows. R ¼ R1 [R2 [ . . .[Rn; where R1 \ R2 \ . . .\Rn ¼ ;.
P1 � P; P2 � P; P3 � P; where P1 \P2 \Pn 6¼ ;.

2.2 Training Weak Classifiers

Three weak classifiers h1, h2, h3, were initially trained by the training samples in P1, P2,
P3, respectively. After that, every one of the three weak classifiers made a prediction on
the samples in Rj, where Rj 2 fR1;R2. . .Rng. Then, every one of the three weak
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classifiers attached part of samples in Rj to its corresponding training sample set and
were implemented training again. The newly attached samples were selected if they
were misclassified or abnormally predicted by the other two weak classifiers. The
samples were considered to be misclassified or abnormally predicted by a classifier if
their prediction values satisfied Eq. 1.

jhiðxÞ � Eij[ n � r2i ; i 2 1; 3½ � ð1Þ

Where hi(x) denotes the output positive probability of sample x by the weak classifier
hi. Ei and r2i are the mean and variance of the output positive probability of the weak
classifier hi over all samples. n is a custom coefficient, it was set to 3 in the Yeast data
experiment and set to 1 in the E.coli data experiment. For example, the weak classifier
h1 will attach some samples in Rj to its initial training set P1 if the positive probabilities
of these samples predicted by the weak classifier h2 and h3 deviate from the corre-
sponding mean values of the two weak classifiers.

The process was repeated n times until all sample in fR1;R2. . .Rng were predicted
by the three weak classifiers. Meanwhile, the three classifiers were well trained with the
increase of training samples.

Fig. 1. An overview of Tri-ensemble. R_pred1, R_pred2, R_pred3 are the predicted probability
values of three weak classifiers on the samples in Rj and T_pred1, T_pred2, T_pred3 are the
predicted probability values of three weak classifiers on the test set
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2.3 Integration Classifiers

The final step of the Tri-ensemble for predicting essential proteins is to integrate the
output of the three weak classifiers by a logistic regression (LR) model and get the final
predictions. This is also a stacking integration strategy. The equation of logistic
regression (LR) model is as follows.

x ¼ w0 þw1x1 þw2x2 þw3x3 ð2Þ

f xð Þ ¼ 1
1þ e�x ð3Þ

Where w0;w1;w2;w3 are a set of weights learned by logistic regression algorithms and
x1; x2; x3 are the 3 characteristics of each sample.

The parameters in the LR model were learned in the course of training the three
weak classifiers by using their prediction results and corresponding real labels of the
training samples. Following is the detailed process of training LR model. In the course
of training the three weak classifiers, when inputting data set R1 to every weak clas-
sifier, the prediction results of the samples in R1 by the three weak classifiers were
collected. The process was repeated n times until all samples in fR1;R2. . .Rng were
predicted by the three classifiers and the corresponding prediction results at each repeat
were collected. After that, we combined the n of result collections predicted by the
three weak classifiers at each repeat and input them and their corresponding real labels
into LR model to learn its parameters. When the LR model was well trained, the test
data was input and the final prediction results were generated.

3 Results

3.1 Datasets

Saccharomyces cerevisiae (Yeast) has the most complete and reliable essential protein
set and PPI network data among all species, so we use Yeast data to test our method.
Meanwhile, to further prove the high performance and to reflect the generalization
ability of our method, we also applied it on E. coli data.

For Yeast data, we collected essential proteins from the MIPS database [27], the
SGD database [28], the DEG database [1], and the SGDP (Saccharomyces Genome
Deletion Project) database [29]. The yeast PPI network data was from the DIP database
[30]. There were 5093 proteins and 24743 edges in the PPI network after removing
self-referenced and duplicated edges. Among the 5093 proteins, there were 1167
essential proteins and the remaining 3926 proteins were regarded as non-essential
proteins. Therefore, the ratio of essential proteins to non-essential proteins reached
1:3.36.

The essential proteins of E.coli were collected in the DEG database. The PPI
network data of E. coli was downloaded from the DIP database, including 2727 pro-
teins and 11803 edges. Among the 2727 proteins, there were 254 essential proteins and
2473 non-essential proteins, and the ratio reached 1:9.74.
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The inputting features of the classifiers for Yeast data consisted of 10 topological
features and 16 subcellular localization features. The topological features included 7
centrality methods, such as Betweenness Centrality (BC) [3, 4], Closeness Centrality
(CC) [5], Degree Centrality (DC) [6], Eigenvector Centrality (EC) [7], Information
Centrality (IC) [8], Edge Clustering Coefficient Centrality (NC) [9] and Subgraph
Centrality (SC) [10], which were calculated by a Cytoscape plugin CytoNCA [31]. And
three composited features (PeC [11], WDC [12], and ION [15]) that integrate the
topological features with other biological features. ION integrated orthology data with
PPI network to predict essential proteins. PeC and WDC predicted essential proteins by
combing PPI network with gene expression profiles. The orthology data used in ION
came from InParanoid database [32] and the gene expression data used by PeC and
WDC came from Tu’s literature [33]. The 16 subcellular localization features involving
in Vacuole, Vesicles, Lysosome, Membrane, Mitochondrion, Peroxisome, Secretory
pathway, Cell wall, Cytoskeleton, Endoplasmic reticulum, Golgi, Transmembrane,
Cytoplasm, Nucleus, Endosome and Extracellular were download from the eSLDB
database [34]. The inputting features of the classifiers for E.coli data included BC, CC,
DC, EC, IC, NC, SC and ION.

3.2 Evaluation Metrics

Both Yeast dataset and E. coli dataset are unbalanced datasets, where the ratio of
essential proteins to non-essential proteins is 1:3.36 in Yeast dataset and 1:9.74 in
E.coli dataset. We proportional separated the samples to 5 folds, according to the
original ratio of essential to non-essential proteins. One of the five folds was selected as
a test set, while the remaining four folds were used as training set. The process was
repeated 5 times until each one of the five folds was used for testing.

To evaluate the performance of our method, some popular statistic evaluation
metrics are adopted, including SP, SN, FPR, PPV, NPV, F-measure, ACC and MCC
metrics. Additionally, to evaluate the overall performance of each method, the ROC
curves are drawn with different thresholds and the Area Under ROC Curve (AUC) is
calculated for comparison.

3.3 Comparing with Existing Methods

To test the effectiveness of our method, three different classifiers were selected as the
weak classifiers of our method and the prediction performance of our method was
compared with that of any individual classifiers and two state-of-the–art ensemble
learning methods, i.e. Adaboost and Xgboost. Softmax refers to single layer neural
network plus softmax regression classifier. We carried out two experiments by using
our method to combine different three weak classifiers, namely,
Tri-ensemble1;Tri-ensemble2: Tri-ensemble1 integrated single layer neural network
plus softmax regression classifier (NN + Softmax), Adaboost and Random Forest.
Tri-ensemble2 integrated single layer neural network plus softmax regression classifier
(NN + Softmax), Xgboost and Random Forest. We also compared with Logistic
Regression (LR) method because our method used it to integrate the output of the weak
classifiers. Adaboost and Xgboost are two boosting-based ensemble learning methods,
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whose default weak classifiers are decision trees and regression trees respectively.
Tables 1 and 2 show the performance comparisons of our method and individual
classifiers on Yeast and E.coli dataset.

The AUC values are calculated by averaging the area under the ROC curves of all
the testing samples in the 5-fold cross-validation, which illustrated the overall per-
formance of each method. In addition, we ranked all Yeast proteins or E.coli proteins in
descending order according to their score calculated by each method and selected the
top of 1167 proteins as predicted essential proteins in Yeast dataset and the top of 254
proteins as predicted essential proteins in E.coli dataset. After that, the SN, SP, FPR,
PPV, NPV, F-Measure, ACC and MCC values were calculated for each method based
on the predicted essential proteins. Note that there are exactly 1167 real essential
proteins in Yeast dataset and 254 real essential proteins in E.coli dataset.

As can be seen from Tables 1 and 2 on Yeast and E.coli dataset, all of our methods
that integrated three different weak classifiers outperformed the corresponding indi-
vidual classifiers and the other ensemble learning methods, i.e. Adaboost and Xgboost.
Among all of our methods, Tri-ensemble2 that integrated single layer neural network
plus softmax regression classifier(NN + Softmax), Xgboost and Random Forest had
better performance than that of Tri-ensemble1. Consequently, we used the results of
Tri-ensemble2 for following comparison.

3.4 Comparing with Other Machine Learning-Based Methods

To further evaluate our methods, we also compared it with the other machine learning
methods, such as GEP, SVM, SMO, NaiveBayes, Bays Network and NaiveBayes Tree.
GEP is a newly proposed method and has excellent performance for essential protein
prediction. All the other machine learning methods except GEP were implemented by
WEKA software. The parameters of these methods were set to their default values.
Table 3 shows the AUC values comparison between Tri-ensemble and the other
machine learning methods on Yeast and E.coli dataset.

Table 1. The comparisons of SN, SP, FPR, PPV, NPV, F-MEASURE, ACC, MCC and AUC
for Tri-ensemble and individual classifiers on Yeast dataset.

Methods SN SP FPR PPV NPV F-measure ACC MCC AUC

Softmax 0.5278 0.8597 0.1403 0.5278 0.8597 0.5278 0.7836 0.3875 0.7771
Random Forest 0.5073 0.8535 0.1465 0.5073 0.8535 0.5073 0.7742 0.3608 0.7536
LR 0.5321 0.8609 0.1391 0.5321 0.8609 0.5321 0.7856 0.3931 0.7762
Adaboost 0.5373 0.8625 0.1375 0.5373 0.8625 0.5373 0.7879 0.3997 0.7695
Xgboost 0.5278 0.8597 0.1403 0.5278 0.8597 0.5278 0.7836 0.3837 0.7707

Tri-ensemble1 0.5458 0.865 0.135 0.5458 0.865 0.5484 0.7919 0.4108 0.7833

Tri-ensemble2 0.5467 0.8653 0.1347 0.5467 0.8653 0.5467 0.7927 0.412 0.7847
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As can be seen from Table 3, the values of AUC of Tri-ensemble2 were higher than
that of the other methods on Yeast and E.coli dataset, which suggests that applying our
ensemble learning method to integrate suitable weak classifiers, such as single layer
neural network plus softmax regression classifier(NN + Softmax), Xgboost and Ran-
dom Forest, can achieve better performance on essential protein prediction than GEP
that has excellent prediction accuracy.

4 Conclusions

This paper proposed a novel ensemble framework named by Tri-ensemble to predict
essential proteins, which improved the prediction accuracy by integrating different
weak classifiers. Tri-ensemble firstly partitioned the data into training set and testing set
and further divided the training set into two parts. And then three weak classifiers were
selected and were initially trained by a small part of training samples. After that, the
three weak classifiers were trained through continually attaching remaining training
samples that were misclassified or abnormally predicted by the other two classifiers.
Finally, a stacking strategy was adopted to integrate the output of the three weak
classifiers by a logistic regression model. Compared with previous ensemble learning
method, the Tri-ensemble selected three weak classifiers and the training sets of one

Table 2. The comparison of SN, SP, FPR, PPV, NPV, F-MEASURE, ACC, MCC and AUC for
Tri-ensemble and individual classifiers on E.coli dataset.

Methods SN SP FPR PPV NPV F-measure ACC MCC AUC

Softmax 0.3268 0.9309 0.0691 0.3268 0.9309 0.3268 0.8746 0.2576 0.7611
Random Forest 0.3504 0.9333 0.0667 0.3504 0.9333 0.3504 0.879 0.2837 0.7612
LR 0.3228 0.9305 0.0696 0.3228 0.9305 0.3228 0.8739 0.2533 0.7617
Adaboost 0.3425 0.9325 0.0675 0.3425 0.9325 0.3425 0.8775 0.275 0.7606
Xgboost 0.3701 0.9353 0.0647 0.3701 0.9353 0.3701 0.8827 0.3054 0.7674

Tri-ensemble1 0.3819 0.9365 0.0635 0.3819 0.9365 0.3819 0.8849 0.3184 0.7787

Tri-ensemble2 0.3898 0.9373 0.0627 0.3898 0.9373 0.3898 0.8863 0.3271 0.7828

Table 3. The AUC values comparison between Tri-ensemble and other machine learning
methods on Yeast and E.coli dataset.

Methods AUC of Yeast data AUC of E.coli data

Tri-ensemble2 0.7847 0.7828

GEP 0.773 0.779
SVM 0.577 0.5
SMO 0.608 0.5
NaiveBayes 0.744 0.7437
Bayes Network 0.731 0.7258
NaiveBayes Tree 0.746 0.7204
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classifier was not fixed but changed with respect to the prediction results of the other
two classifiers. We carried out experiments on Yeast data and E.coli data and the results
show that our approach can achieve better prediction performance than both individual
classifiers and the other state-of-the-art ensemble learning methods.
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Abstract. The lack of well-structured annotations in a growing amount
of RNA expression data complicates data interoperability and reusability.
Commonly used text mining methods extract annotations from existing
unstructured data descriptions and often provide inaccurate output that
requires manual curation. Automatic data-based augmentation (gener-
ation of annotations on the base of expression data) can considerably
improve the annotation quality and has not been well-studied. We for-
mulate an automatic augmentation of small RNA-seq expression data as
a classification problem and investigate deep learning (DL) and random
forest (RF) approaches to solve it. We generate tissue and sex annota-
tions from small RNA-seq expression data for tissues and cell lines of
homo sapiens. We validate our approach on 4243 annotated small RNA-
seq samples from the Small RNA Expression Atlas (SEA) database. The
average prediction accuracy for tissue groups is 98% (DL), for tissues
- 96.5% (DL), and for sex - 77% (DL). The “one dataset out” aver-
age accuracy for tissue group prediction is 83% (DL) and 59% (RF). On
average, DL provides better results as compared to RF, and considerably
improves classification performance for ‘unseen’ datasets.

Keywords: Augmentation · Deep learning · Random forest ·
Ontology · Small RNA · Expression counts · Contamination

1 Background

Qualitative and standardized annotations (tissue, disease, age, sex, cell line, etc.)
of expression data is a key aspect to enable data interoperability and reusability.
Data should be findable, accessible, interoperable, and reusable (FAIR), which
ultimately facilitate knowledge discovery [16]. Annotations are essential part of
c© Springer Nature Switzerland AG 2019
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semantic data integration systems [9]. In various databases, data annotations are
available in different often-unstructured text formats and many times important
information on e.g. age, sex, and sometimes even tissue of sample origin is miss-
ing (i.e GEO [3]). This leads to missing and/or inaccurate annotations, and
requires revision and correction by an expert [6]. While state-of-the-art expres-
sion databases such as the small RNA Expression Atlas (SEA, http://sea.ims.
bio) [10] provide well-structured, ontology-based annotations of publicly avail-
able small RNA-seq (sRNA-seq) data, this is achieved by curation of annotations,
and missing information is still a problem in many experimental databases.

A fundamental hypothesis is that augmentation from the source (here,
expression counts) data can annotate missing information with high accuracy,
allowing for the subsequent analysis of the (meta) data. We suppose that data
with similar expression profiles should have similar annotations. Several pub-
lications highlight the possibility to use machine learning (ML) approaches to
augment expression information, for small RNAs (sRNAs) as well as messenger
RNAs (mRNAs). In [4,6], the sex in different micro RNA (miRNA) tissues was
defined. In [6], the authors used the DESeq package and analysis of variance
(ANOVA) to detect sex differences in several tissue in miRNAs. In [2], age, sex,
and tissue were predicted in mRNA sequencing (mRNA-seq) expressions. In [12],
the sex of mRNAs was predicted, and the most important mRNAs were selected.
Random Forest (RF) classifier is being widely used for classification of expres-
sion data, especially in disease diagnostics [13]. RF also enables explanation of
classification by supplying variable importances.

Deep learning (DL) is making major advances in solving problems that have
resisted the best attempts of the artificial intelligence community for many years
[7]. DL is able to deal with big data and is robust even for massive amount of
noisy labeled training data [17]. On the downside, DL requires large amount of
training data [8], is prone to overfit on small training sets, and are notoriously
hard to biologically interpret (extraction of feature importances) [15].

In this study we investigate whether the DL-based data augmentation could
be superior to classical ML approaches, such as RF. The main hypothesis is
that DL classifier trained on sufficiently large data sets would generalize more
efficiently to yet unseen datasets. Whereas single unseen samples might be easy
to learn, datasets usually contain a distinct experimental bias that the model has
not learnt a priori. We apply DL and RF models on human sRNA-seq datasets
from SEA, which contains 4243 sRNA-seq samples. Every sample is semantically
annotated and analyzed with the same workflow (OASIS [11], https://oasis.dzne.
de), increasing data interoperability while reducing analysis bias.

We use this data to predict tissue and sex annotations. DL performs slightly
better than RF for cross-validation experiments and significantly outperforms
it for “one dataset out” experiments. These results strongly suggest that DL-
based expression data augmentation could significantly outperform classical ML
approaches, given enough training data.

http://sea.ims.bio
http://sea.ims.bio
https://oasis.dzne.de
https://oasis.dzne.de
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2 Methods

2.1 Data and Meta-data Acquisition

We augment sRNA-seq data with missing annotations. We use SEA sRNA-seq
data integration platform that contains 4243 samples and annotations in 350
datasets. The relatively large number of high-quality samples allows us to use
DL for data augmentation purposes.

We selected 128 homo sapiens datasets with available annotations for tissue
or cell line. We avoided small datasets and samples with rare types of tissues.
We used 2806 samples for tissue prediction, including 641 cell line samples with
known tissue. For sex classification, we used samples with available sex (only real
tissue samples, 1591 samples in 41 datasets). The female and male proportion
was 42% and 58%, respectively. We constructed separate classification models
for each outcome variable prediction (tissue, sex).

There are two kinds of expression data available: sRNA expression and the
reads not mapped to sRNAs, but mapped to contamination organisms. We use
both expression profiles, separately and together. The expression counts from
SEA are normalized inside each sample using reads per million (RPM).

Available tissues are annotated in SEA as specifically as possible. For exam-
ple, parts of the brain are annotated as “neocortex” or“prefrontal cortex” if this
information is available from the experiment. However, using all those tissues in
classification leads to a large number of small classes. To avoid this, we joined
the available tissues according to used BTO ontology (Table 1). We added also
the cell lines to the corresponding groups. We used a hierarchical classification
approach: first, we predicted the tissue group and then the single tissue.

Table 1. Tissue and cell line grouping according to ontologies.

Tissue group Containing tissues

blood group blood, blood plasma, blood serum, peripheral blood, umbilical
cord blood, serum, buffy coat, immortal human B cell, liver,
lymphoblastoid cell

brain group brain, cingulate gyrus, motor cortex, prefrontal cortex,
neocortex

epithelium group skin, dermis, epidermis, breast, oral mucosa, larynx

gland group prostate gland, testis, kidney, bladder, uterine endometrium,
tonsil, lymph node

intestine group intestine, colon, ileal mucosa
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2.2 Data Scaling and Filtering

Data Scaling (DL Only): We scaled counts of each sRNA independently. We
compared two alternative scalers. A MinMax scaler scales the data in the range
(0,1). A standard scaler standardizes features by removing the mean and scaling
to unit variance. The MinMax scaler showed better results.

SRNA Filtering (for both RF and DL): The number of features (sRNAs)
was considerably greater than the number of available observations (samples).
The initial number of factors was approximately 35000, while the number of
available samples was 2200 (for tissue prediction, even fewer for sex). In addition,
approximately 5600 contamination counts were available for each sample.

Most of the counts were equal to zero. The preliminary experiments showed
that the maximal accuracy was obtained by excluding variables (sRNAs and
contaminants) containing more than 30% of zeroes. After this, the number of
sRNAs and contaminants was approximately 2500 and 2000 respectively.

Sample Filtering (for both RF and DL): Some tissues we could not group
(i.e. milk, urine, heart, etc), especially if they were presented in only one dataset.
This made “one dataset out” classification (s. Sect. 2.3, Validation) impossible,
and we did not predict tissue in such datasets. We also excluded some tissues
and cell lines that were presented in one dataset containing less than 9 samples.
The cell lines located in the t-distributed stochastic neighbor embedding (t-SNE)

Fig. 1. t-SNE plot for available tissue types.
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plot in other region as the corresponding tissue, were also excluded. The reason
for this is that such cell lines are not similar to original tissue and should be
predicted separately.

After this exclusion, 105 datasets are left, containing 2215 samples. The pro-
portions of cell lines and tissue samples are 23% and 77%, respectively. Figure 1
illustrates the t-SNE plot for the tissue groups.

2.3 Models

DL Model: We used a fully connected neuronal network (NN) architecture. It
has one input layer with number of inputs equal to the number of variables after
the initial filtering; we tested the NN with different hyper-parameters (such as
layer sizes, number of layers, and drop-out rates). Finally, we used a NN with
three hidden layers containing 1000, 250, and 250 neurons, with the drop-out
rates 0.5, 0.4, and 0.4. The number of neurons in the output layer was equal to
the number of predicted classes.

We examined different optimizers: ‘rmsprop’, ‘adam’, ‘sgd’, ‘adadelta’. We
used the rectifier linear unit (ReLU) activation function for our initial and hidden
layers. We chose the “softmax” activation for multi-class classification.

We trained the NN for 50 epochs with batch size 30.

RF Model: On both stages of the RF, the following parameters were used:
mtry equal to the square root of the number of features, and down-sampling
to balance the imbalanced classes (especially for tissue prediction). On the first
stage (pre-classification), the RF was based on all filtered columns, and the
number of trees was 100. We ordered the features according to their importance
(Gini index decrease). We used the top-1000 selected features for the second
stage classification with an increased number of trees (here, 500). We used RF
models for obtaining variable importances

Validation: We implemented two types of cross-validation to check the accu-
racy of data augmentation in two different conditions. First, we used 5 fold CV
as one readout, where we reported the average performance. Second, we trained
a model using CV and classified a test dataset, which was not seen by the model
during training. More specifically, this data came from a different experiment,
which contained a different bias, but had a tissue that the model was trained on.
This case is more relevant to the real situation, because for automatic augmen-
tation, one should augment the new dataset, taking other datasets as training
data. In the case of tissue prediction, such a validation technique was not avail-
able for each dataset, because some tissues are available in one dataset only.
Throughout this manuscript we will refer to the 5 fold CV as ‘cross validation’
and the validation on unseen datasets as ‘one dataset out’.
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Quality Metrics: The main metric of the classification quality was accuracy.
Apart from the accuracy, we used various other metrics such as: confusion matrix,
precision, recall, F1 score in macro and micro versions, and Cohen’s kappa, which
normalizes the accuracy by the imbalance of the classes in the data. Those
metrics we used internally to tune the classification models.

Software Libraries: All the scripts for DL classification are developed in R
based on the “keras” library. The RF models are also implemented in R, using
the“randomForest” library. We used the Python 3.5 “sklearn.manifold” t-SNE
library to build the t-SNE plots.

3 Results

The main hypothesis of this study is that DL-based expression data augmenta-
tion approaches might outperform classical approaches. We therefore compared
DL to RF classification to predict the target tissue and patient sex of human
sRNA-seq data. A second aim was to analyse variable importance to check their
biological relevance.

3.1 Robust sRNA-seq Tissue Prediction

Tissue Group Prediction:

CV Experiments. We experimented with 9 and 15 minimal number of samples
per tissue class. Figure 2 (left) shows that RF is less accurate, especially for a
class with a minimum of 9 samples: DL: 97%, RF: 85%. For the classes with

Fig. 2. CV tissue pred. accuracy (left); “One dataset out” tissue groups pred. accuracy
(right)
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a minimum of 15 samples, the accuracy was better: DL: 98%, RF: 92%. The
DL model gave better results, in both cases, because it did not suffer from
imbalanced classes, however we used an internal class balancing mechanism for
the RF model.

“One Dataset Out” Experiments. After initial filtering only 6 aggregated tissues
were left. The reason was that some tissues were only in one dataset and some
tissues were presented in datasets containing less than 9 samples (see Sect. 2.2,
Sample Filtering). In Fig. 2 (right), we present the accuracy of tissue group pre-
diction. Notice that the datasets with the same tissue may differ from dataset to
dataset because of different factor influences (e.g., library preparation methods,
biological conditions of samples: cell types, diseases). This is a reason for the
significantly lower model accuracy in this case. For the intestine group, which
we could not detect very well, the accuracy was around 50%. We could predict
most of the datasets with accuracy of 80-100%. The average accuracy is 83%
(DL) and 59% (RF).

Tissue Prediction:

CV Experiments. We avoided combining any tissue or cell line. Instead, we used
all the tissue and cell line classes that had more than nine samples. The DL und
RF models had standard parameters, as described above. The average accu-
racy (Fig. 2, left) was DL: 96.5%, RF: 93%. The classes were not as imbalanced
without tissue aggregation, and thus we got similar results with both models.

“One Dataset Out” Experiments. Knowing the tissue group from the previous
experiments, we specified its tissue class. The dataset exclusion criteria were the
same as in previous experiments with tissue groups. The resulting histogram for
each dataset as a test set are presented in Fig. 3 (left). The tissue in the most
datasets is predicted within the accuracy interval (0.8,1); nevertheless, tissue
in some datasets is predicted with accuracy (0, 0.2). In Fig. 3 (right) and then
in Fig. 4, we can see the tissues and cell lines that could not be predicted well
(brain, breast, colon, skin, etc.). Bad “brain” tissue prediction was caused by its
identification as sub/tissues: prefrontal cortex and neocortex. It could be true,
because the sub-tissue had no annotation in the given dataset.

“Breast” and “skin” tissues are very similar, and both were not identified
correctly in many datasets. “Colon” tissue was identified as the “HCT116” cell
line, i.e., colon cancer and as “ileal mucosa”, which is very near to the colon.

We conclude that for tissue group prediction DL outperforms RF, especially
in “one dataset out” case. For tissue prediction the difference was smaller, but
DL was still better.

3.2 Robust sRNA-seq Sex Prediction

The DL and RF models had standard parameters described above. To improve
the model accuracy apart from sRNA-seq expression counts, we extend the mod-
els with contamination expression counts (Fig. 5).
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Fig. 3. “One dataset out” tissue pred. accuracy histogram; “One dataset out” tissues
pred. accuracy by classes.

Fig. 4. “One dataset out” of tissue groups each dataset pred. accuracy.

The best models were DL and RF based on both sRNAs and contamina-
tions, with accuracies of 77% and 76.9%. The other three models RF(RNA),
DL(contaminations), and DL(RNA) gave an accuracy of approximately 76.2%.
It was unexpected that the model based on contaminations only could predict
the sex with an accuracy of approximately 76% for both DL and RF. So for sex
prediction DL slightly outperforms RF.

4 Enrichment Tests

Given the good prediction accuracy we next investigated whether the ML mod-
els learn tissue- and/or sex-specific sRNAs. The hypothesis is that to govern
accurate prediction the model has to put more emphasis on sRNAs that contain
biologically relevant information, in a given context, while ignoring non-relevant
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information. For the tissue prediction use case, this would imply that a good
classifier would put heavy emphasis on sRNAs that are tissue-specific whereas
it would put little weight on house-keeping sRNA expression, which is largely
invariant over tissues. The same should be true for the sex prediction.

Fig. 5. CV sex prediction accuracy with different models.

We used the miRNA enrichment analysis and annotation (miEAA) tool [1]
and run over-representation analysis with default settings, no reference miRNA
set and checking Organs, Diseases and Age/Gender dependent miRNAs. The
tool was developed for miRNAs, so we excluded other types of sRNAs from the
analysis. We performed the enrichment test on prediction of tissue groups and
sex. We took the top-200 miRNAs from the RF classifier (Sects. 3.1–3.2).

4.1 Tissue-Specific sRNA Enrichment

First, we investigated the enrichment of biological categories for miRNAs that are
important for tissue classification. In Fig. 6 we see the enrichment of stem cells
responsible for tissue-specific tissue formation, and of the cytoskeleton. Blood
(including lymphocytes) and adipose tissue show some tissue-specific categories.
However, the full set of top miRNAs would probably not provide a clear enrich-
ment, because the miRNA subsets used by the classifier to detect the particular
tissue groups are mixed.

Next, we clustered sRNAs by their expression. We could see specific clusters
of tissue groups with highly expressed miRNAs. Next, we analyzed each specific
cluster separately.

Brain: The cluster contains 43 miRNAs. 10 of them (miR-124, miR-128, miR-
129, miR-137, miR-138, miR-153, miR-323, miR-708, miR-99, and miR-9) are
reported as brain-specific in [5]. The enrichment test (Fig. 6) shows that most of
the enriched categories are brain-specific or nervous system-specific. Therefore,
this cluster is well-suited for detection of the brain group.
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Fig. 6. Enrichment results for tissue-specific categories.

Intestine: This cluster contains 22 miRNAs. 3 of them (miR-10a, miR-196, and
miR-200a) are reported as kidney-specific, and one(miR-196) as liver-specific in
[5]. In addition, four of them (miR-192, miR-194 and miR-215) are reported as
kidney-specific in [14]. Moreover, miR-31 is reported as brain-specific in [5]. The
enrichment test (Fig. 6) shows, from organ/tissue category, that the lymphoid
tissue is enriched, and may be associated with intestine. Therefore, this cluster
in general suits for detection of the intestine group.

Blood: This cluster contains only six miRNAs. Four of them (miR-129, miR-9,
miR-323 and miR-708) are reported as brain-specific in [5]. However, miR-129
is a candidate biomarker for heart failure, and thus is heart/blood specific. The
set of six miRNAs is too small for the enrichment test. The classifier uses this
cluster more for brain detection than for blood detection, as some sRNAs are
highly expressed both in blood and in brain.

The results indicate that the ML learns relevant tissue-specific sRNAs, espe-
cially for the brain and intestine clusters.

4.2 Sex Specific sRNA Enrichment

We investigated the enrichment of biological categories coming from sex classi-
fication. Figure 7 (left) illustrates enrichment of sex-specific terms (upregulated
in male, sex-dependent). A broad range of tissues (liver, kidney, adipose tissue,
serum, skeletal muscle, bones, breast, and ovary) is enriched. This may show a
sex specificity of miRNA expression in many organs.

The list of enriched diseases mostly contains cancer. Considering that cancer
is more frequent in males (approx. 1.5 times), we checked whether the classifier



Deep Learning and Random Forest-Based Augmentation of sRNA 169

Fig. 7. Enrichment results.

had learned disease instead of learning sex. We divided all available samples into
cancer-specific and non-cancer specific, and classified sex separately (Fig. 7).

For cancer-related samples, a similar list of diseases is enriched. Therefore,
this classifier may be disease-based. However, for non-cancer samples, tissues and
a shorter list of diseases are enriched. Therefore, this classifier is really based on
organ sex specificity. This means that the classifier based on all samples causes
mixed sex classification: sometimes based on disease, sometimes based on organs.

5 Conclusion and Future Work

We compared the performance of DL with classical (RF) approach for prediction
of tissue and sex based of human sRNA-seq expression data. The obtained results
show that DL based augmentation outperforms RF, especially in the ‘one dataset
out’ validation. DL acts as a “black box” model, while RF allows to explain
variable importance. As our future work, we are going to predict age in the same
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manner as sex, improve our models by stacking a combination of various models,
and apply our models for other types of expression data. We are also planning to
conduct more accurate variable and sample filtering, as well as more deep result
interpretation, including enrichment of non-miRNA sRNAs and contaminants.
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Abstract. Opioid abuse epidemics is a major public health emergency
in the US. Social media platforms have facilitated illicit drug trading,
with significant amount of drug advertisement and selling being carried
out online. In order to understand dynamics of drug abuse epidemics
and design efficient public health interventions, it is essential to extract
and analyze data from online drug markets. In this paper, we present a
computational framework for automatic detection of illicit drug ads in
social media, with Google+ being used for a proof-of-concept. The pro-
posed SVM- and CNN-based methods have been extensively validated
on the large dataset containing millions of posts collected using Google+
API. Experimental results demonstrate that our methods can efficiently
identify illicit drug ads with high accuracy. Both approaches have been
extensively validated using the dataset containing millions of posts col-
lected using Google+ API. Experimental results demonstrate that both
methods allow for accurate identification of illicit drug ads.

Keywords: Illicit drug ads · Social media · Text mining ·
Deep learning

1 Introduction

The opioid abuse epidemic is a national crisis seriously affecting public health,
causing preventable harm and premature death, and devastating communities.
In 2017, 70,467 Americans died of drug overdoses that year, representing an
increase of 10 percent over the 63,938 opioid overdose deaths recorded in 2016
[1].

The drug abuse epidemic has been facilitated by modern information tech-
nology and the rise of illicit drug trading platforms. With an estimated 4.1
billion persons worldwide regularly using the Internet in 2018 [2], drug ven-
dors can efficiently and effectively reach drug consumers via online social media
c© Springer Nature Switzerland AG 2019
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platforms. Online drug trading is both more efficient and less risky than tradi-
tional drug market exchanges, since the buyer does not need to connect with
the seller in person. An open question concerns the extent to which the cur-
rent opioid abuse epidemic is facilitated by the proliferation of social media.
In our research, we found that most social media platforms are used exten-
sively for illicit drug advertising. Figure 1 shows two sample posts collected from
Google+. Many ads contain vendors’ phone numbers, emails, Wickr IDs, and
websites. Buyers can contact drug vendors using these communication methods
to order drugs for delivery to a specified pickup location. Purchasing illicit drugs
online seemingly has become as straightforward as making an Amazon purchase.
It is therefore of paramount importance that public health and law enforcement
personnel have access to efficient tools for monitoring online drug transactions
using traditional epidemiological surveillance methods to inform the design of
appropriate response strategies.

Fig. 1. Examples of illicit drug advertisements from Google+

In this paper, we develop a computational framework for detecting illicit
ads in Google+, one of the largest social media platforms. We first captured
relevant data posts via Google+ APIs, and then applied binary classification
methods to analyze the text data in the posts. The textual analyses were used
to identify illicit drug ads. We employed two methods in our approach: 1. the
support vector machine (SVM) and 2. the convolutional neural network (CNN).
The SVM-based method allowed for term frequency-inverse document frequency
(TF-IDF) extraction of terms, which were subsequently applied to SVM for
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prediction [3,4]. The CNN-based methodology was applied to social media posts
for text classification [5]. The first approach (SVM) required a precursory feature
selection, while the second approach (CNN) automatically learns features from
the text data.

2 Related Work

Illicit online drug trade has been the subject of several epidemiological and
sociological studies. In particular, Mackey et al. [6] created a fictitious adver-
tisement, offering consumers a way to buy drugs without a prescription. The
advertisement was posted on four social media platforms: Facebook, Twitter,
MySpace and Google+. Eventually one of these accounts was blocked due to
suspicious activity, but the remaining fake illicit drug advertisements were easily
accessible during the duration of the experiment. A study conducted by Stroppa
et al. [7] revealed that one-fifth of collected posts advertise counterfeit and/or
illicit products online. Their research emphasized that detection of illegal cyber-
vendors and online tactics requires development and application of sophisticated
and tailored screening/detection methods.

On the computational side, development of tools for detection of malicious
and/or undesired advertisements in social media has been a subject of sev-
eral studies. Hu et al. [8] provided a framework for detection of spammers on
microblogging. Zheng and colleagues [9] proposed a SVM-based machine learning
model to detect spammer behavior on Sina Weibo. Agrawal et al. [10] introduced
an unsupervised method called Reliability-based Stochastic Approach for Link-
Structure Analysis, which can be used to detect topical posts on social media.
Jain et al. [11] used convolutional and long short-term memory (LSTM) neural
networks to detect spam in social media, while addressing the challenges of text
mining on short posts.

In contrast to the previous studies, we specifically focus on detection of illicit
drug ads within social media platforms, with the aim of applying epidemiological
methods to investigate online enabling structures associated with opioid abuse.

3 Methods

In this section, we describe two methods for classifying social media posts based
on Support Vector Machine (SVM) and Convolutional Neural Network (CNN)
approaches. For both methods, the inputs are text data extracted from Google+
posts, and the outputs are the predicted labels indicating whether each post is
an illicit drug ad.

3.1 The SVM-Based Method

The proposed method pipeline consists of two stages: pre-processing and classi-
fication.
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Pre-processing Steps. At this stage, text posts collected from social media are
transformed into numerical feature vectors, which are further used as the inputs
for the SVM classifier. It is a crucial part of traditional text mining methods
because the selected features affect the performance of the classifier. Figure 2
shows the general scheme of the pre-processing stage.

Fig. 2. Pre-processing steps

Pre-processing consists of three steps. In the first step, the stop words con-
sidered noise are removed. In the second step, the root of a word is isolated
by removing tenses of verbs, which is also referred to as stemming [12]. In the
third step, the term frequency-inverse document frequency (TF-IDF) features
are determined [13]. The TF-IDF is the product of two statistics: term-frequency
and inverse document frequency. The term frequency is calculated based on the
raw count of a term (word). The inverse document frequency is a measure of
how much information the word provides.

Support Vector Machine (SVM) Classification. TF-IDF features com-
puted at the pre-processing step are used to train an SVM model that can be
further used to predict labels of new posts. SVM is a classical supervised learning
method, which constructs a hyperplane in a multidimensional euclidean space
to serve as a separator for feature vectors from two classes. We used the radial
basis function (RBF) kernel SVM classifier, whose accuracy was assessed using a
ten-fold cross-validation process on a labeled post text dataset manually curated
by human experts.

3.2 The CNN-Based Method

This method uses the TextCNN approach [5], which first computes a word
embedding and then applies the convolutional neural networks (CNN) to per-
form the classification. TextCNN does not require the removal of stop words or
stemming.

Word Embedding. Word embedding which maps words or phrases to numer-
ical vectors, was utilized to allow neural networks to process the text data. We
used Word2vec, a commonly used word embedding model [14] that relies on the
combination of skip-grams and continuous bag-of-words (CBOW) procedures
[15]. CBOW generates a word based on the context, while skip-grams generates
the context from a word. For example, if we treat {“Washington D.C.”, “is”, “the
United States”} as a context, then CBOW will generate the word “capital”. If
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given the word “capital”, skip-grams will be able to predict the following words:
“Washington D.C.”, “is”, “the United States”. The numerical vectors generated
by word2vec are used as the input of CNN.

Convolutional Neural Networks. TextCNN contains a single layer of neu-
ral net, which allows it to be highly scalable yet sensitive in performing text
classification. Figure 3 shows the general scheme of TextCNN [16]. Let d be the
dimension of word vector. Given a sentence “Buy drugs on social media with-
out prescription” and d = 5, we can generate a sentence matrix in Fig. 3. Then
feature maps are generated by filters operating convolutions on the sentence
matrix. Here we set the region sizes to 2, 3 and 4, and each region size has two
filters. A max-pooling operation is applied to the feature map to retrieve the
largest number. Therefore we can take six features from six feature maps and
concatenate them together to get a feature vector which will serve as the input
of the softmax layer. Finally, we complete a binary classification by using this
feature vector through softmax layer.

Fig. 3. Illustration of TextCNN
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4 Experimental Results

In this section, we will describe the data collection and data processing, and
then evaluate the performance of the SVM-based and CNN-based methods. All
tools have been implemented in Python 2.7, and run on a DELL workstation
with Intel Xeon E5-1603 2.80 GHz CPU, 32G memory, and Ubuntu 18.04 OS.

4.1 Data Collection

The data have been collected using Google+ API. The analyzed dataset has
been formed by posts containing at least one of the following 30 keywords [17]:

opioid, alprazolam, amphetamine, antidepressant, benzodiazepine, buprenor-
phine, cocaine, diazepam, fentanyl, heroin, hydrocodone, meth, methadone, mor-
phine, naloxone, narcan, opana, opiate, overdose, oxycodone, oxymorphone, per-
cocet, suboxone, subutex, pill, rehab, sober, withdrawal, shooting up, track
marks

In total, 1,162,445 posts published from 2018/01/01 to 2018/10/31 have been
collected. We labeled all the posts manually. The following examples illustrate
examples of illicit drug ads from the dataset. Ads 1–3 are selling illicit drugs
while ad 4 is a normal post.

1. Buy pain pills and other research chemicals. We do offer discount as well to
bulk buyers. Overnight Shipping with tracking numbers provided. Stay to
enjoy our services. Overnight shipping with a tracking number provided for
your shipment (Fast, safe and reliable delivery). We ship within USA, AUS-
TRALIA, CANADA, GERMANY, POLAND, SWEDEN, NEW ZEALAND
and many other countries not listed here.

2. Hello we supply high quality medication and high rated pharmaceutical opioid
at affordable prices. Dear buyers we bring you The Best Of real pharmaceuti-
cal product such as oxycodone, nembutal powder, fentanyl patch and fentanyl
powder, subutex, adderal, demerol, hydrocodone MDMA etc, and only serious
buyers should contact please.

3. Hello, I am a vendor in high quality pharmaceutical products like Xanax,
Oxycodone, Fentanyl patch, Viagra, Diazapam, Percoset, Opana, Methadone,
etc and also high quality medical marijuana strains like Og kush, Sativa, Kief,
S hatter, Girls Scott, Lemon haze, Moon rock, Afghan kush, Purple haze etc,
my packaging is very safe and discreet, also my delivery is 100% assured as
we do refund or resend the same order immediately in case of any unforeseen.

4. Highlighting concerns with the pharmaceutical supply chain, the Food and
Drug Administration warned McKesson, one of the nation’s largest whole-
salers, for failing to properly handle episodes where pharmacies received tam-
pered medicines, including three . . .
FDA scolds McKesson for naproxen in tampered oxycodone bottles -STAT-
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4.2 Effectiveness Evaluation

We use precision, recall and F-score as metrics to evaluate the accuracy of the
classification methods [18]. Precision is defined as the ratio of predicted and
ground-truth illicit ads among all predicted illicit ads, i.e., Prec = tp/(tp + fp).
Recall is defined as the ratio of predicted and ground-truth illicit ads among all
ground-truth illicit ads, i.e., Recall = tp/(tp + fn). The F-score is the harmonic
mean of precision and recall: F-score = 2 · Prec · Recall/(Prec + Recall). We use
10-fold cross-validation procedures to evaluate the accuracy of both the SVM
and CNN based methods.

In TextCNN, we set the parameters as follows: max sequence length 20,
embedding dim 200, validation split 0.16, test split 0.2 [16]. Table 1 shows the
precision, recall, and F-score for SVM and TextCNN. From Table 1, we can see
that TextCNN outperforms SVM in all metrics.

Table 1. Accuracy of the SVM based method and TextCNN

Methods Pre Recall F-score

SVM based method 0.65 0.81 0.72

TextCNN 0.97 0.90 0.93

Table 2 shows the running time. In Table 2, the training time represents the
average running times for training ten SVM or CNN models during the ten-fold
cross-validation procedure. The number of posts in the input dataset for training
each model is 1,046,200, which is 90% of the total of 1,162,445 posts. The testing
time represents the average running time of predicting the label of a single post.
In each iteration of the ten-fold cross-validation, the input number of posts is
116,244 posts. We measure the average time for each post. From Table 2, we
can see that the SVM based method takes less than 1 hour while the TextCNN
method takes 11 hours for training. Both methods take less than 0.05 second for
prediction.

Table 2. Running time of the SVM based method and TextCNN

Methods Training time Testing time

SVM based method 2,469 s 0.023 s

TextCNN 3,936 s/epoch, 10 epoch 0.034 s

5 Conclusion

Social media platforms have facilitated illicit drug trading and may be an impor-
tant driver of the current opioid epidemic. Thus tools for monitoring and anal-
ysis of online drug markets are needed to advance epidemiological studies and
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develop intervention applications. In this paper, we used the Google+ platform
as a proof-of-concept to demonstrate that machine-learning-based methods allow
for efficient identification of illicit drug advertisements from social media posts.
Our tools could be used by health care practitioners, law enforcement officials
and researchers to extract and analyze the data related to the opioid abuse epi-
demic, which can be examined to better understand dynamics of online drug
markets, trade, and behaviors. These insights are essential in the development
of tailored recommendations and public health intervention strategies that are
responsive to social media and online environments.
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Abstract. With ever growing amounts of omics data, the next chal-
lenge in biological research is the interpretation of these data to gain
mechanistic insights about cellular function. Dynamic models of cellular
circuits that capture the activity levels of proteins and other molecules
over time offer great expressive power by allowing the simulation of the
effects of specific internal or external perturbations on the workings of
the cell. However, the study of such models is at its infancy and no large
scale analysis of the robustness of real models to changing conditions has
been conducted to date. Here we provide a computational framework to
study the robustness of such models using a combination of stochastic
simulations and integer linear programming techniques. We apply our
framework to a large collection of cellular circuits and benchmark the
results against randomized models. We find that the steady states of
real circuits tend to be more robust in multiple aspects compared to
their randomized counterparts.

1 Introduction

Protein-protein interaction (PPI) networks have been mapped for over a decade
using techniques such as yeast two hybrid and co-immunoprecipitation. Compre-
hensive maps are available for multiple species, including yeast and human, with
hundreds of thousands of interactions in each (see, e.g., the BioGrid database [1]).
As we and others have shown, substantial portions (over 40%) of those maps are
spanned by signaling interactions [2]. Thus, protein networks have been exten-
sively used for interpreting genome-wide screens in the context of a phenotype of
interest. Previous work in this regard can be broadly categorized into topology-
based and logic-based. The first category includes the vast majority of current
studies. It aims to characterize a given phenotype by: (i) the location of its
affected proteins in a network, identifying network regions, or modules, that are
associated with the phenotype [3–10]; and (ii) the network-based attributes of
the proteins, such as degree of connectivity and more [11,12].
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The second, logic-based category aims to provide mechanistic models for the
phenotype of interest [13]. While a variety of models can be employed, most
prior works focus on logical (Boolean) models or variations thereof [14], thanks
to the rich history of these models in the biological domain [15]. These works
include Boolean modeling of fundamental systems such as EGFR signaling [16,
17] and MAPK signalling [18]; algorithms to optimize Boolean models against
experimental data [19–21]; algorithms to traverse the state space of a model [22–
24]; and generalizations of these models to multi-valued [25,26], constraint-based
[27,28] and probabilistic [29] ones.

The advantage of the latter logic-based models is that they allow simulating
a process of interest under different genetic and environmental perturbations. In
recent years, a concentrated community effort has led to the curation of dozens
of logic models for a diverse array of cellular processes [3], providing for the first
time the opportunity to study the properties of these circuits at large scale.

Since biological processes need to operate consistently in a noisy environment,
they must be robust to perturbations, such as stochastic changes in molecu-
lar concentrations and protein activity. Extensive research has been done on
empirical stability of biological processes [30,31], as well as stability of Boolean
models [32–35] and alternative modelling frameworks [36,37].

However, there are few studies that compare the robustness of real networks
to those of random networks with similar structural properties. Indeed, random
networks can be artificially selected for robustness, affecting their structural
properties [33,34]. We are aware of only a single work that directly compares
real networks to topologically-similar random ones. Specifically, Daniels et al. [38]
compared 67 biological models with topologically- and functionally-similar ran-
dom models, identifying a node-based sensitivity measure that differs between
the two types of models.

Here, for the first time, we compare real and similar random models in terms
of their dynamical properties. Since the space of model states is exponentially
large, mapping its attractors and basins of attraction is very costly. To tackle this
computational problem we design novel integer linear programming (ILP) for-
mulations for model learning and attractor computations. We apply our method-
ology to a set of 30 curated models covering fundamental biological processes in
multiple species with up to 62 nodes. We analyze their steady state (attractor)
properties and their robustness to small perturbations. As a benchmark we use
randomized models that maintain the topology and logical complexity of the real
models. We find that real models tend to be more robust than random models
in several aspects that concern the steady state changes in response to intrinsic
noise in the system or due to small perturbations to its logic.

2 Preliminaries

For a cell circuit of interest, a Boolean model is a pair (G,F ), where G = (V,E)
is a directed graph representing the circuit topology with n = |V | nodes and F
is a collection of Boolean functions over V . In order to define F let us denote,
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for each vi ∈ V , the ordered set p(vi) = (vj : (vj , vi) ∈ E), with an arbitrary
order over V . Let fi : {0, 1}|p(vi)| → {0, 1} be a Boolean function representing
the activity of vi in terms of its predecessors p(vi).

An assignment of binary activity levels to each node defines a state of the
model. We assume a synchronous model, where for each discrete time point t
and vertex vi, vi,t ∈ {0, 1} defines the vertex activity at time t, for an arbitrary
starting value vi,0. Denote pt(vi) = (vj,t : vj ∈ p(vi)), then the model is updated
as follows (for all vi ∈ V and t ≥ 0):

vi,(t+1) = f(vi,t) :=

{
vi,t |p(vi)| = 0
fi(pt(vi)) otherwise

(1)

An attractor for G is a simple cycle of network states. Formally, a state path A
of length T is a tuple (Vt : 0 ≤ t ≤ T ) where each Vt = (vi,t : vi ∈ V ) represents
a state and (1) holds for each 0 ≤ t < T . We say that A is an attractor if VT = V0

and for all other t, Vt �= V0. By definition, every state in a synchronous model is
followed by exactly one state, hence every state leads to a single attractor. For
a given attractor, we call the set of states that lead to this attractor its basin
of attraction, and use the notation s → A to mean that s is in the basin of
attraction of A.

3 Methods

In order to test the robustness of a given model we examine the impact of small
perturbations on its dynamics. Specifically, we consider two types of perturba-
tions: (i) changing k bits in the truth tables of one or more of its functions, where
k is a small constant; (ii) switching from any state to another state whose Ham-
ming distance to the original is at most k. We study the impact of such changes
on the set of model attractors by quantifying for each change the percent of
model states that lead to a different attractor in the perturbed model/state.

Since the space of model states is exponentially large, mapping its attractors
and basins of attraction is very costly. To tackle this computational problem we
combine novel integer linear programming (ILP) formulations for model learning
and attractor computations with stochastic simulations for estimating the size of
each basin of attraction. To describe our formulation for attractor representation,
we first describe a set of sub-programs that form its building blocks.

3.1 State Comparisons

The representation of attractor states requires efficient means to compare them
to one another to make sure that they represent a cyclic path of distinct states
and that no two attractors share the same state. One way to tackle this problem
as well as remove degrees of freedom from solutions is to assign a unique numeric
key to each possible network state. The resulting order can then be used to
implement equality and inequality constraints.
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A natural key for a state is the binary number it represents, but the repre-
sentation size may exceed the number of bits in a computer word. Instead, we
implement this representation by assuming an arbitrary upper bound of M bits
per word and splitting the number into �+1 pieces, where � :=

⌈
|V |
M

⌉
−1. For any

two states a, b ∈ {0, 1}|V | represented by x0, . . . x� and y0, . . . , y�, respectively, to
implement an indicator for an inequality such as a > b, we use auxiliary binary
variables (z0, . . . , z�) and, for convenience, denote z−1 = 0. We introduce the
following constraints for all 0 ≤ j ≤ �:

(2M + 1)zj ≥ xj − yj + zj−1

(2M + 1)zj ≤ xj − yj + zj−1 + 2M .
(2)

It holds that z0 = 1 iff x0 > y0 and for j ≥ 1:

zj = 1 ⇐⇒ xj > yj ∨ (xj = yj ∧ zj−1 = 1)

This implies that z� = 1 iff a > b, and we can denote Ia>b = z�. Using
z−1 = 1 captures a weak ordering, and allows us to implement the indicators
Ia=b and Ia�=b as well.

We can use these indicators to implement a set membership indicator Ia∈A

representing whether a state a belongs to a set of states A, with the formulation:

∀a′ ∈ A : Ia∈A ≥ Ia=a′

Ia∈A ≤
∑
a′∈A

Ia=a′

3.2 Path Constraints

Let a0, . . . , aT be ordered sets of binary vector variables, representing graph
states, such that ∀t, at = (v1,t, . . . , vn,t). Let F (at) = (f(v1,t), . . . , f(vn,t)), then
we can enforce the ordered set of states to represent a path by requiring at+1 =
F (at) for all t < T . We follow the technique used in [39] as detailed below.

For an input node vi such that |p(vi)| = 0, we only require vi,t+1 = vi,t.
Otherwise, denote by ij the index of the j’th node in p(vi). For each binary
vector r ∈ {0, 1}|p(vi)|, representing a possible input, we create an auxiliary non-
negative variable sr whose value is 0 iff r is the input vector to vi at time t + 1,
i.e., r = pt(vi):

sr = |p(vi)| −
∑

j

(
1 − rj + vij ,t(2rj − 1)

)
vi,t+1 ≥ fi(r) − sr

vi,t+1 ≤ fi(r) + sr

(3)

We call this sub-program PATH(a0, . . . , aT ). For the case of a length-1 path,
we use the simpler expression a1 = F (a0) to refer to this sub-program. We can
also derive a formulation for requiring the states not to form a path, which we
denote by PATH(a0, . . . , aT ).
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3.3 Attractor Learning

We are now ready to present our formulations for attractor learning under various
constraints. Using fixed values for the outputs of F , we can use such formula-
tions to compute the attractors of a given model. By substituting the outputs of
F with binary variables, we get a formulation whose solution represents a pos-
sible model on G and its attractors. For brevity, in the following formulations
whenever we write an indicator as a constraint, we require its value to be 1.
All formulation depend on specifying in advance upper bounds on the number
and length of the model’s attractors. For clarity, we assume at first that there
are exactly K attractors of length T each. We apply the conditional constraint
mechanism below to generalize the formulations to the case that K and T are
upper bounds. Let {ak,t}1≤k≤K,0≤t≤T denote ordered sets of binary vector vari-
ables representing the K attractors. That is, each ak,t is a vector of n binary
variables denoting the state of attractor k at time t. These variables can be
populated using the following formulation (with empty objective):

Max ∅ s.t.
∀k ≤ K : PATH(ak,0, . . . , ak,T )
∀k ≤ K : Iak,0=ak,T

∀k ≤ K, t > 0 : Iak,T >ak,t

∀k < K : Iak+1,T >ak,T
(4)

where degrees of freedom in attractor representation are eliminated by forcing
the final state of each attractor to be the largest in terms of its associated numeric
value, and the final states of different attractors to be ordered as well.

To generalize the program from T,K being exact numbers to upper bounds,
we introduce activity variables wk,t for each state ak,t, with wk,−1 = 0 for all k.
These activity variables affect which constraints are in effect and what variables
are zeroized. Their application to the program requires a conditioning construct
which enforces a constraint conditioned on the value of the activity variables.
Such conditioning can be constructed by inequality constraints that take effect
iff the condition is met. For example, we can formulate the constraint a → b ≥ c,
which requires b ≥ c iff a = 1, by the modified constraint b ≥ c − (1 − a). The
generalized formulation is as follows:

Max ∅ s.t.
∀k, t < T : (wk,t ∧ wk,t+1) → ak,t+1 = F (ak,t)
∀k, t < T : (wk,t ∧ ¬wk,t−1) → Iak,0=ak,T

∀k, t > 0 : wk,t → Iak,T >ak,t

∀k < K : (wk,T ∧ wk+1,T ) → Iak+1,T >ak,T

∀k, t < T − 1 : wk,t ≤ wk,t+1

∀k < K : wk,T ≤ wk+1,T

∀k : wk,T−1 = wk,T

∀k, t : ¬wk,t → Iak,t=0n (5)
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where 0n denotes a vector of n zeros and the last constraint results in zeroizing
variables that are not in use.

3.4 Robustness to State Perturbations

To quantify robustness, we first consider the sensitivity of a model to small
perturbations to its current state, similar to [33,34,40]. As attractors represent
the steady states or behaviors of the system under study, it is natural to consider
the ability of a perturbation to alter the system’s behavior. Such perturbations
could occur due to the inherent noise in the biological system.

Let (G,F ) be a given model with a set ATT of attractors. Given a state a
of an attractor A, we consider a perturbations of k of its bits corresponding to a
set S of nodes. We denote the perturbed state by XOR(a, S). We say that a is
sensitive to S if XOR(a, S) �→ A. We say that A is sensitive to S if there exists
such a ∈ A.

We evaluate the robustness of a model by a weighted average of its sensitive
attractors, where attractors are weighted by their basin size estimate and the
result is averaged over multiple choices of S, constrained to have cardinality k.
The procedure is as follows:

Algorithm 1. Stochastic state sensitivity score
1. Calculate model attractors.
2. Sample a state s and a node set S uniformly at random.
3. Simulate the model from s to derive its attractor A.
4. Sample a state a ∈ A uniformly at random.
5. Simulate the model from XOR(a, S) to determine A’s sensitivity to S.
6. Repeat steps (1-5) 200 times and average the sensitivity results.

As an alternative sensitivity measure, we use an ILP formulation to compute
an upper bound rather than an average on sensitivity. That is, we find the
maximal weighted average of attractors that are sensitive to a set S of a given
cardinality. Denote the relative basin size of attractor A ∈ ATT by wA := |{s ∈
{0, 1}n : s → A}|/2n. We can use the stochastic procedure above to estimate wA

for each a ∈ ATT . For the formulation, we further assume that any state reaches
its attractor after at most P steps. We denote the set of attractor states by R.
We represent the perturbed set S by binary variables s1, . . . , sn, and formulate
the following program:

Max
∑

A∈ATT

wA · IbAP ∈R\A s.t.

∑
i

si ≤ k

∀A ∈ ATT : IaA∈A

∀A ∈ ATT : IbA0 =XOR(aA,S)

∀A ∈ ATT : PATH(bA
0 , . . . , bA

P )
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3.5 Robustness to Logic Perturbations

An orthogonal way to measure the robustness of a model is by the effects of
perturbing its logical functions on the model’s attractors [31,34]. As before, we
assume that up to k bits are changed in the truth tables of the Boolean functions.

Let (G,F ) be a source model with a set ATT of attractors and let (G,F ′)
be the perturbed model with a set ATT ′ of attractors. We consider the per-
cent of model states whose associated attractors were eliminated by the change:∑

A∈ATT\ATT ′ wA. For brevity, we omit the constraint regarding the number of
bit changes.

Max
∑

A∈ATT

wA · IA s.t.

∀A ∈ ATT : IA = 1 → PATH(A)
∀A ∈ ATT : IA = 0 → PATH(A)

To estimate the average rather than maximum sensitivity to changes, we use a
stochastic procedure similar to the above.

4 Results

4.1 Data Retrieval and Implementation Details

We downloaded 76 Boolean models from the CellCollective repository [41], using
the truth tables export features. We excluded 3 models with missing information
or could not be parsed and 3 acyclic models (hence, no dynamic behavior).

For each model we applied four scoring variants quantifying the sensitivity
of the model to state changes (stochastic and ILP-based variants) and attractor
elimination due to function changes (stochastic and ILP-based variants). We
used 1000 iterations to estimate each model’s attractors and their basin sizes.
For stochastic measures we used 200 iterations per model. For optimization
variants we set the bound on the path length to an attractor to be P = 1 (the
results were qualitatively similar for P = 10). We explored different values of
the number k of bit changes. The results followed similar trends when k ranged
from 1 to 4, we focus the description on k = 1.

We benchmarked the sensitivity of the different models against randomized
models in which both topology and logic functions are randomized. Specifically,
the topology was randomized while preserving in- and out-degrees using the
switching method with 10n switch attempts; the Boolean functions were ran-
domized while preserving the number of 1’s in their truth tables by permuting
table rows. We generated 40 random models for each real model.

We split the processing jobs among five servers. Two with 72 CPUs
(2300 MHz) and 258 GB RAM, and the remaining three with 40 CPUs
(2800 MHz) and 258 GB RAM. When running the stochastic algorithms we ran
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iterations in parallel, and let the ILP solver (Gurobi) utilize all cores. Table 1
provides running time statistics. Running times varied considerably between
models, thus we set a timeout of 90 min (in addition to ILP problem setup time)
for running the different scoring methods on each model and discarded the results
for models on which the computation was not completed within the given time
bound. Overall, we collected results for 30 of the 70 models.

Table 1. Running times in seconds of the different scoring variants.

Variant Median Mean Max

Model change, ILP 0 1 11

Model change, stochastic 27 83 1917

State change, ILP 14 322 6728

State change, stochastic 6 38 1371

4.2 Real Models are More Robust than Their Randomized
Counterparts

We applied our robustness computation pipeline to the 30 models described
above1 and compared the results to those obtained on randomized models. When
applying the ILP-based sensitivity analysis of model changes we observed that
in almost all cases (for both real and random models) a single bit change was
enough to eliminate the entire attractor space of a model. Thus, we computed
an alternative score where the change is constrained to a specific node at a time,
producing a sensitivity score for each of the model’s nodes.

The distributions of the five score variants (3 model-based and 2 node-based)
on real and random models are given in Fig. 1. Evidently, real models have lower
sensitivity scores than random models across all score variants. To quantify the
deviation of the real models from the corresponding distributions of random
scores, we used a Wilcoxon signed-rank test, where the score of each real model
was paired with the mean score of its random counterparts. For the node-based
model perturbation scores, we paired the mean score of vertices in a real model
with the mean scores of nodes in its random counterparts.

The comparison results are summarized in Table 2, revealing that in all cases
the real models are more robust to changes than their randomized instances.
These differences were significant for all score types (p < 0.05), and especially
for the state changes (p < 0.005), as also evident from the box plots in Fig. 2.

1 The source code used for the analysis can be found at github.com/arielbro/
attractor learning, commit hash 83474950c9fc3aa61277d5535a142aad90ff7eed.

https://github.com/arielbro/attractor_learning
https://github.com/arielbro/attractor_learning
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Fig. 1. Distribution of model scores for each score variant, comparing real and random
models. (a) ILP per-node scores for model perturbation. (b) Stochastic per-node scores
for model perturbation. (c) Stochastic scores for model perturbation. (d) ILP scores
for state perturbation. (e) Stochastic scores for state perturbation.

4.3 Stochastic vs. Optimization-Based Sensitivity Analysis

It is interesting to compare the stochastic scores that measure the mean sensitiv-
ity to a change vs. the ILP-based optimization scores that measure the extremes.
As an example, nearly all models had an optimization score of 1 for attractor
elimination, while not for the stochastic scores, suggesting that there is a marked
difference between a random perturbation to the logic of a model and a targeted
one. For individual nodes, there was a correlation of 0.20 between the stochastic
and ILP-based variants. For state perturbations, there was a strong correlation
(0.74) between the stochastic and ILP-based variants. These relationships are
visualized in Fig. 3. The ILP-based scores are not a perfect upper bound for
the stochastic ones since they assume a restricted path length to a modified
attractor, but are almost always higher for the same model.

Table 2. Comparison of mean sensitivity scores for real and random models.

Variant Real Random p-value

Model change, ILP (nodes) 0.837 0.863 0.049

Model change, stochastic (nodes) 0.311 0.339 0.017

Model change, stochastic 0.154 0.168 0.013

State change, ILP 0.226 0.416 3.89e−03

State change, stochastic 0.073 0.126 8.35e−04
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Fig. 2. Box plots showing the distribution of sensitivity scores for each base network.
Whiskers denote furthest datapoint within 1.5 IQR from median. Red dots denote the
real models, and for per-node scores the mean of real model node scores. (a) ILP per-
node scores for model perturbation. (b) Stochastic per-node scores for model perturba-
tion. (c) Stochastic scores for model perturbation. (d) ILP scores for state perturbation.
(e) Stochastic scores for state perturbation. (Color figure online)

Fig. 3. Scatter plots comparing ILP-based and stochastic-based scores across all mod-
els. Real models appear in red and randomized models in blue. (a) Per-node model
perturbation scores. (b) State perturbation scores. (Color figure online)

5 Conclusions

We have presented a first analysis of the attractor landscape of Boolean models
of cellular circuits and its sensitivity to state and logic changes. Our analysis
combined novel ILP formulations with stochastic simulations to overcome the
inherent complexity of the problem. We found that real models are more robust
than their randomized counterparts with respect to both state and logic changes.
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While the analysis could be successfully applied to dozens of circuits with
up to 62 nodes each, the optimization problem remains challenging for larger
circuits, especially when allowing longer paths from a state to its associated
attractor. Another interesting problem the generalization of the methods pre-
sented to asynchronous update schemes.

Acknowledgements. RS was supported by a research grant from the Israel Science
Foundation (no. 715/18).
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Abstract. The Double Pushout (DPO) approach for graph transfor-
mation naturally allows an abstraction level of biochemical systems in
which individual atoms of molecules can be traced automatically within
chemical reaction networks. Aiming at a mathematical rigorous approach
for isotopic labeling design we convert chemical reaction networks (rep-
resented as directed hypergraphs) into transformation semigroups. Sym-
metries within chemical compounds correspond to permutations whereas
(not necessarily invertible) chemical reactions define the transformations
of the semigroup. An approach for the automatic inference of informative
labeling of atoms is presented, which allows to distinguish the activity of
different pathway alternatives within reaction networks. To illustrate our
approaches, we apply them to the reaction network of glycolysis, which
is an important and well understood process that allows for different
alternatives to convert glucose into pyruvate.

Keywords: Glycolysis · Isotopic labeling · Hypergraphs ·
Double pushout

1 Introduction

The study of semigroups has provided essential insight into the analysis of decom-
posability of systems. One of the most important contributions is the Krohn-
Rhodes theory (or algebraic automata theory) [17] which allows to decompose
any semigroup into simpler components (similar to the Jordan-Holder decompo-
sition for groups). While conceptually very powerful, its application in life sci-
ences is quite limited. A notable exception is a series of scientific contributions
to analyse biological systems, more specifically metabolic and gene regulatory
networks [10]. Based on semigroup theoretical approaches, subsystems and their
hierarchical relations are identified within several biochemical systems, including
the lac operon, the Krebs cycle, and the p53-mdm2 genetic regulatory pathway.
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An essential tool for these studies is the analysis of an associated algebraic struc-
ture based on the Krohn-Rhodes decomposition. The hierarchical decomposition
is also used as a way of assessing structural complexity changes of biological sys-
tems. However, for the Krohn-Rhodes complexity [17] (i.e., the least number
of groups in a wreath product) it is still unknown if its computation is even
decidable. Furthermore, it is also practically a very difficult problem to solve [9].
Therefore an alternative decomposition approach, the holonomy decomposition,
[14] has been promoted. Holonomy decomposition allows to analyse large(r) sys-
tems. The decomposition approaches as well as most other methods that aim
to analyse metabolic networks (e.g., Flux Balance Analysis (FBA) or Elemen-
tary Flux Modes (EFM) [16,19]) are based on a fixed set of abstracted molecular
structures and rules (named reactions) that transform molecules into each other.
In the decomposition approaches a biological system is represented as a state
automata, where subsets of substrates correspond to states in the state set A
and a transition function δ : A×X → A describes for which “input” a transition
is performed. An input can, e.g., encode the presence of a specific enzyme. In
FBA, EFM, and similar approaches the central object for the analysis is the
stoichiometric matrix of the system, where rows encode compounds and rows
encode reactions. The null spaces of the stoichiometric matrix are used in order
to characterise the system under consideration.

We follow a more chemically motivated (and direct) modelling approach
with several important differences. (i) Being the most natural approach, we
model chemical reaction networks as directed multi-hypergraphs [20], where the
directed hyper-edges correspond to chemical reactions. (ii) Molecules are not
modelled as abstract entities, but as undirected graphs, with vertices repre-
senting atoms, and edges representing the chemical bonds between them. (iii)
Hypergraphs are generated by methods based on graph transformation [3]. This
level of abstraction allows to trace each individual atom through a single or a
series of reactions. (iv) We employ a mathematical framework in which pathways
are rigorously defined as integer-hyperflows on directed multi-hypergraphs [4].

In the following we introduce a semigroup approach in order to assist in the
design of (stable) isotopic labeling experiments. A typical labeling experiment
uses a isotope-labelled educt molecule, for instance glucose with a single or sev-
eral labelled atoms (e.g. carbon-13, 13C, in place of a 12C) at a specific position of
the molecule. These compounds are then used for some experiment, for instance
the glucose is ingested or by other means transformed into the product molecules.
By extracting the product molecules and analysing at which position the labeled
atoms ended up (e.g. by using mass spectrometry), the original labeling might
have been informative or not, i.e., it might or might not be possible to learn
something about the chemical process involved, or to allow for quantification of
different pathway alternatives. We present a framework to automatically infer if a
specific labeling experiment is informative or not. Besides introducing a theoreti-
cal framework, we also aim to support the cross-fertilisation of different scientific
communities, including biology, chemistry and theoretical computer science. In
order to make such a bridge viable we borrow many techniques from algorithmic



198 J. L. Andersen et al.

engineering [18] as all the methods presented are efficiently implemented and eas-
ily accesible to scientists with a limited background in computer science. E.g., as
an efficient inference of the automorphism group molecular graphs is essential for
our approach, we employ our state-of-the-art algorithmic engineering approach
for inference of the automorphism group of a graph [5].

2 Basic Definitions

We will keep our mathematical notation brief. For details wrt. transformation
semigroups, we refer the reader, e.g., to [13].

2.1 Semigroup Theory

Definitions. (Group, Semigroup, Monoid, Transformation Semigroup,
Orbit). A group is a set G together with a operation •. The operation takes
two elements of G and returns an element of G. A group must satisfy the four
group axioms; closure, associativity, identity, and invertibility. A semigroup must
satisfy only two requirements: (i) (closure) if g, h ∈ G, then g•h must be in G, and
(ii) (associativity) for all g, h, k ∈ G, it must hold that (g • h) • k = g • (h • k). If
a semigroup includes an identity element it is called a monoid. A transformation
t is a function that maps a set Ω to itself, i.e., t : Ω → Ω. A transformation
semigroup on a finite set Ω is a set of transformations which is closed under
composition. If every transformation is bijective, then the semigroup is also a
permutation group. It is well know that any semigroup can be realised as a
transformation semigroup of some set. The orbit of a point ω ∈ Ω is all the
points that can be reached via (semi)group actions. We write it as OrbG(ω) =
{g(ω) | g ∈ G} ⊆ Ω. The orbit can also be defined for tuples: let ω = (ω1, . . . , ωk)
be a group element from Ωk, then OrbG(ω) = {(g(ω1), . . . , g(ωk)) | g ∈ G}. A
generating set (or generating system) S is a subset of G such that every element
of G can be expressed as a finite product of elements of S. We write G = 〈S〉. If
S = {s1, s2, . . . , sk}, it is also common to write G = 〈s1, s2, . . . , sk〉.

Many problems involving semigroups of a finite set of generators are hard.
It can be shown that determining any “sensible” property of such semigroups is
even undecidable and, e.g., that membership testing in commutative transfor-
mation semigroups is NP-complete [8] (while being polynomial in permutation
groups). Despite these results, the computational runtime needed for the results
of this contribution will not be dominated by semigroup computations.

2.2 Graph Transformations

Definitions (Molecule, Reaction, Span, Double Pushout Approach,
Atom Maps, Derivation, Derivation Graph). A molecule is a simple con-
nected graph G = (V,E). Vertices of V are annotated with an attribute describ-
ing the atom type and its charge. The edges E are annotated with the bond
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type, e.g., single bond (−), double bond (=), or aromatic bond. With molecules
represented as graphs a chemical reaction from a set of educt graphs to a set of
product graphs can naturally be defined as graph transformations. To this end,
we employ the double pushout (DPO) formalism [7]. In DPO, the rewriting of the
educt pattern L into the product pattern R is specified as a span L ← K → R,
where K denotes the subgraph of L that remains unchanged during the rewrit-
ing operation (hence it is also a subgraph of R). The rule L ← K → R can
be applied to a graph G if and only if (i) the pattern (precondition) L can be
embedded in G (by means of a suitable graph morphism m) and (ii) there are
objects D and H with so-called pushouts such that the diagram

L K R

G D H

m

l r

commutes [11]. The objects D and H are guaranteed to be unique if they exist.
The graph H is the product obtained by rewriting the educt G with respect to
the rule L ← K → R and the matching morphism m. For a graph rewriting rule
to be chemical we require in addition that (i) all graph morphisms are injective
(i.e., they describe subgraph relations), (ii) the restriction of l and r to the
vertices is bijective (ensuring the atoms are preserved), and (iii) that changes
in edges (chemical bonds) and charges conserve the total number of electrons.
The first two conditions ensure that all reactions are logically reversible [1].
Furthermore, they ensure that given m : L → G, the atom map of every reaction
is well-defined, i.e., given m : L → G, there is a bijection ϕ : V (G) → V (H)
between the vertices (atoms) of the educt graph G and the product graph H.
The third condition captures much of the semantics of chemistry, which views
chemical reactions as rearrangements of the electron pairs that form the chemical
bonds. We call the application of a graph transformation rule a direct derivation
from G to H via rule p and morphism m, written G

p,m
==⇒ H or G

p
=⇒ H if the

morphism is unimportant. An example DPO diagram for a chemical reaction
called inverse aldol addition is depicted in Fig. 1. Note that for two different

morphisms m and m′ it might hold G
p,m
==⇒ H and G

p,m′
==⇒ H, i.e., the same rule

might transform a set of molecules G into a set of molecules H using different
atom maps. A derivation graph (DG) is a directed hypergraph H = (V,E)
consisting of vertices V and hyperedges E. Each vertex in the DG contains a
molecule-graph. A hyperedge e = (e+, e−) is a multiset of tail-vertices e+ to a
multiset of head-vertices e−. In the case of the DG, hyperedges correspond to
DPO rule applications which in turn correspond to chemical reactions. The DG
might be given or can be computed by starting with an initial set of molecules
and then applying rules following some strategy, for instance apply all rules
repeatedly, until no new molecules are produced. In [4] a pathway corresponds to
an integer hyperflow within a DG. Here, as we are interested if a specific reaction
is either active or not within a pathway, we conveniently define a pathway to be a
(sub)set of hyperedges of a given DG (which could easily be inferred by all edges
of an integer hyperflow according to [4], for which there is a non-zero flow).
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Fig. 1. A chemical example of a DPO diagram with the application of a rule (inverse
aldol addition). The graph transformation corresponds to an edge in the derivation
graph.

3 The Hypergraph Semigroup Approach

The overarching goal of an isotopic labeling experiment is to be able to distin-
guish different pathways (or quantify their activity level). In the first step of
our approach we construct a hypergraph-semigroup based on a DG that covers
different pathway alternatives. This semigroup will be used to compute orbits
of atoms. Based on the orbits, we will define a pathway table where rows are
potentially active pathways to be distinguished, and columns are the informa-
tive candidates for atom labeling and the entries are results of orbit calculations.

3.1 Forward Approach

Definitions (Atomic Linearisation, Hypergraph Semigroup). Let n be
the total number of all atoms of all molecular graphs in a DG, and let Ω =
{1, 2, . . . , n}. An atomic linearisation of a DG is an ordered list [1, 2, . . . , n] of
ids corresponding to all the atoms of all molecules1. The hypergraph semigroup
of a derivation graph H = (V,E) is a semigroup G = 〈SΩ〉 acting on Ω, where
the generators SΩ are defined by the union of (partial) transformations and
automorphisms, i.e., SΩ = TΩ ∪ AΩ . More precisely, TΩ =

⋃
e∈E T (e) is the

union of all atom maps (resulting from a chemical reaction, i.e., from a direct
derivation using graph transformation) of all hyperedges in the DG. These atom
maps correspond to partial transformations of the semigroup acting on Ω. The
generators based on the automorphisms (i.e, the symmetries) of the molecular
graphs are defined as AΩ =

⋃
v∈V av, where av is a set of generators of the

automorphism group of the molecular graph v, i.e., AΩ describes all symmetries
of all molecular graphs in the DG. Note, that 〈av〉 corresponds to a permutation
group.
1 Note: The linearisation ids are 1-indexed since they will be used in a semigroup

where the tradition is to use the range 1 to n.
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Fig. 2. A DG for the Formose reaction. To reduce clutter we restrict Ω to the 22 carbon
atoms in the DG. Integers 1 to 22 correspond to the ids of an atomic linearisation. For
the derivation {p0,2} p,m

==⇒ {p0,0, glycolaldehyde} (based on an inverse aldol addition)
the corresponding partial transformation is {8 �→ 14, 11 �→ 15, 9 �→ 12, 10 �→ 13}. The
only symmetry within a molecular graph is found in p0,0, i.e., AΩ = ap0,0 = {(14 15)}.

An example based on a DG for the so-called Formose reaction is depicted in
Fig. 2. For modelling details and the 4 graph transformation rules (an aldol-
addition reaction, a keto-enol tautomerisation reaction, and their inverses) used
to compute the DG see [1]. We restrict Ω to carbon atoms to reduce clutter of
the illustration. While every hyperedge in the DG defines a transformation of
the hypergraph semigroup, (14 15) is the only automorphism found (in cycle
notation) in all molecular graphs (an inclusion of hydrogens would significantly
increase the number of automorphisms). We depict the partial transformation
t := {8 
→ 14, 11 
→ 15, 9 
→ 12, 10 
→ 13} and note, that this is also a partial
permutation as an inverse is always well defined. This is true for any partial
transformation resulting from an edge in the DG, and simply reflects the fact,
that any chemical reaction can theoretically be inverted. Additional constraints,
e.g., from thermodynamics, might make this inversion very unlikely or impossi-
ble in reality, and therefore the corresponding hyperedge might not exist in the
DG. In the depicted DG all chemical reactions are indeed reversible (in mathe-
matical terms: all inverses of the partial permutations are also generators of the
semigroup), which is usually not the case.



202 J. L. Andersen et al.

In order to (i) verify the correctness of our DG (i.e., the model of the chemical
system) and (ii) design an isotopic labeling experiment that allows to distinguish
pathway activity, we bridge in the following wet-lab isotopic labeling experimen-
tation and semigroup theory (for an overview of model checking approaches in
Systems Biology, see e.g. [6]).

Forward Approach. Let G be a hypergraph semigroup of a DG covering a
set of different pathways and let a single atom k of an educt molecule be
labelled. Assume, that a (wet-lab) isotopic labeling experiment leads to a prod-
uct molecule with an isotopic label at vertex with id i. If i /∈ OrbG(k), then the
pathway leading to the isotopic labelled product is not included in the DG.

While not observing i in the orbit of k allows us to conclude that the DG
(i.e., the model) is not correct, this approach can also be used to distinguish
activity of different pathways by computing the orbits within different pathways
in a DG, as is shown later.

3.2 Inverted Hypergraph Semigroup Approach

Consider Fig. 2, let glycolaldehyde be the educt molecule and p0,6 be the product
molecule for the sake of the example (we underline that this makes no sense
chemically). Assume that an isotopic labeling experiment is run with the atom
corresponding to linearisation id 13 is labelled and p0,6 is an observed product
(with labeled atoms corresponding to linearisation ids 0, 2, and 3). Without even
thinking about pathways, it would be desirable to be able to tell if the model
is correct – should it even be possible to observe this labeling of (0, 2, 3)? Using
the inverted hypergraph semigroup, we can answer in this case it is not.

Definition (Inverted Hypergraph Semigroup). For a given DG, let G =
〈SΩ〉 = 〈TΩ ∪ AΩ〉 be a hypergraph semigroup acting on Ω, where t ∈ TΩ

are partial permutations defined by the atom maps of a DG and a ∈ AΩ are
permutations describing the automorphisms of the molecular graphs in the DG.
The inverted hypergraph semigroup G−1 of G is a semigroup G−1 =

〈
T−1

Ω ∪ AΩ

〉

where T−1
Ω = {t−1 | t ∈ TΩ}.

Note, that t−1 with t ∈ TΩ is not modelling the action of a chemical reaction,
but is used in order to infer a precondition that must hold in order to make t
applicable. Using the orbit of tuples this leads to the following approach in order
to answer the question raised earlier.

Inverted Semigroup Approach. Let G be a hypergraph semigroup of a DG cov-
ering a set of different pathways and let a single atom k of an educt molecule
be labelled. Assume, that a (wet-lab) isotopic labeling experiment leads to a
product molecule with isotopic labels at vertexes (i1, . . . , in). If (k, . . . , k) �∈
OrbG−1((i1, . . . , in)) then the pathways leading to the isotopic labeled product
is not included in the DG.

The inverted approach underlines an insight that can be used to distinguish
pathways: if some atoms have a similar or even identical orbit in two different
pathways, using the inverted orbit can potentially disambiguate the two. To this
end, we will introduce pathway tables.
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Table 1. An example of a pathway table.

Atom label

Pathway 0, C 1, C 2, C

1 0, 1, 3, 4 2 1, 3

2 0, 1, 2, 4 3 2, 4

3 1, 2, 3, 4 0 1, 2, 3, 4

4 0, 1, 2, 3, 4

DG 0, 1, 2, 3, 4 0, 2, 3 0, 1, 2, 3, 4

4 Pathway Tables for Isotopic Labeling Design

Suppose we have a set of potential pathways, P , and we aim to distinguish them.
For simplicity, we assume that each pathway has a single educt molecule S and
a single product molecule T . Let SV be the set of atoms in S. Let A ⊆ SV be
the set of atoms that are candidates for isotopic labeling. Assume the DG is
also a pathway, corresponding to the union of all pathways under consideration.
Consider Table 1 which depicts an automatically inferred P × A table, where
each cell (p, a) ∈ P × A contains the subset of OrbGp

(a) that is contained in
the product molecule T (to reduce clutter we omit the subscript, details of the
underlying pathways are omitted). The columns are labelled with the local ids
(not linearisation ids) of A, referring to atoms of the educt molecule S. The atom
type is also shown to ease the reading of the table. The rows are the four potential
pathways of P as well as the pathway “DG” which is the union of all pathways.
Each table entry is a comma-separated list of local ids (not linearisation ids) that
correspond to the orbit of the specific column in the product molecule T , in other
words, the part of the orbit that reaches T . The reason that the local (instead
of linearisation) ids of molecules are used is convenience for a biologist/chemist
when analysing the information.

We will use the following notation to easier relate the ids to where they
are coming from: iS means the carbon with local id i in educt molecule S. For
example, 1S corresponds to the carbon with local id 1 in S, i.e., the column from
Table 1 called “1, C”. We use a similar notation iT for ids in product molecule T .

Mass spectrometry (MS) is an analytical standard technique in order to mea-
sure masses of chemical compounds. Together with stable isotope labeling exper-
imentation this is an extremely powerful tool for the analysis of (bio)chemical
systems. Note, that is much easier and cheaper to detect whether some molecule
analysed via MS has zero or one labelled atoms (mass difference) compared to
determining where the labelled atoms are located in a molecule (position). In
contrast to inferring the mass of a compound (via so-called MS1 experimen-
tation), the inference of the position of a labelled atom usually requires the
fragmentation of the compound (via MS2 experiments), or the fragmentation of
fragments (MS3), and so on. The fragmentation process of a compound leads to
a series of MSk spectra, which can be used as input for inferring the position of
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a labelled atom. As it is much easier to determine if there are no labels versus
if there are some labels, it is preferred to look for mass-distinguishing factors
over positions. In the table above, we see such an example. If someone carries
out an isotopic labeling experiment where carbon 1S of S is labelled and not
any labels at all are observed in T then we know that pathway 4 cannot have
been active. To distinguish pathways 1, 2, and 3 based on a 1S labeling requires
determination of the location of the label in the target.

In the example, consider labeling 0S (1st column). Each entry has a lot
of ids in common with the rest of the entries, but it can still be used. For
instance, observing 3T would exclude pathway 2. The inverted semigroup app-
roach analyses inverted orbits: consider a pair of atoms that pathway 1 and
3 have in common, for instance (1T , 3T ). Now compute the inverted orbit for
this pair in both pathway 1 and 3: OrbG−1

p1
((1T , 3T )) = {. . . , (0S , 2S), (2S , 0S),

OrbG−1
p3

((1T , 3T )) = {. . . , (0S , 2S), (2S , 2S), (0S , 0S), (2S , 0S)}. The “. . . ” repre-
sents the part of the orbit not in molecule S, which is not relevant for this part
of the analysis. We know that we started with a label only at 0S , thus both ele-
ments of the tuple (1T , 3T ) must have originated from 0S . The only of the two
pathways where this could have happened is pathway 3 because of the (0S , 0S).
Therefore, if we ever observe (1T , 3T ), we can exclude pathway 1. Note, that
it is straightforward to remove non-informative columns (where all entries are
identical) and to merge identical lines (i.e., non-distinguishable pathways) of a
pathway table.

5 A Chemical Example

We have applied our approach to several chemical examples and will present here
the analysis of alternative glycolysis pathways. Glycolysis is a process that con-
verts one glucose molecule into two pyruvate molecules. There are two glycolysis
types that achieve this: The Entner-Doudoroff (ED) and the Embden-Meyerhoff-
Parnass (EMP) pathway [12]. Using the graph transformation rules for glycolysis
as presented in [2], it is possible to determine what carbons in glucose are infor-
mative in order to distinguish the ED and EMP pathway by labeling. Figure 3
depicts the derivation graph which is an union of the two pathways depicted
with green (ED) and blue (EMP) arrows. Figure 4 shows the source molecule
(glucose) and the target molecule (pyruvate) and the local atom ids as used in
the pathway table.

Table 2 depicts the pathway table of the two pathways as well as their union.
The columns correspond to all informative atoms, i.e., all atoms that allow to
distinguish different pathways. Ignoring hydrogens, it turns out that there are
six atoms in glucose that can be used to distinguish the EMP and ED pathways.
For instance, if an isotopic labeling experiment is carried out with a 13C in the
place of the normal 12C at position 6 in the glucose molecule, and the mass
spectrometry results show only pyruvates with 13C at positions different from 2,
then we can conclude that the EMP pathway was not active. The orbit of the
oxygens with internal id 0 or 13 (not so 7 or 12) does not include any atoms
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Fig. 3. A combined DG for the ED and EMP pathways. Not all compounds are depicted
in order to reduce clutter (e.g., cofactors NADH, ATD, ADP, and water molecules are
not depicted).
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O
〈0〉

〈1〉

〈2〉

O 〈3〉

OH
〈4〉

CH3

〈5〉

Fig. 4. Glucose and pyruvate molecules where the local ids can be seen.

Table 2. Pathway table for two pathways (EMP and ED) realising glycolysis.

Atom label

Pathway 0, O 6, C 7, O 12, C 13, O 15, O

EMP 2 3 5 0

ED 0 5 0 2 3 4

Both 0 2, 5 0, 3 2, 5 0, 3 0, 4
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in pyruvate if only the EMP pathway is active. Note, that we can furthermore
conclude, that a corresponding oxygen labeling experiment does not require to
verify the position of the labelled oxygen, as the existence of a label in pyruvate
(verified by mass only) is enough to determine that the ED pathway was active.

In order to exemplify the inverted hypergraph semigroup approach we chose
t = (3T , 0T ). We infer the orbit of t in the inverted semigroup: OrbG−1

EMP
(t) =

{(4, 15), (7, 10)}. Semantically this means, we ask how the atoms with id 3 and 0
can become labelled simultaneously. In EMP this is only possible if in the educt
molecule glucose either atoms 4 and 15, or 7 and 10 were labelled. Consider the
orbit of any possible t = (iT , jT ). As for all possible t it holds that (kS , kS) is
neither element of OrbG−1

EMP
(t) nor element of OrbG−1

ED
(t) (and also not element

of OrbG−1
Both

(t)), we can conclude that using an isotopic labelled glucose can not
lead to a single pyruvate molecule that has two labelled atoms at the same time.
If this would be observed in a wet-lab experiment (verified via mass), then we
would have to conclude that the modelling of the presented EMP and the ED
is not sufficient, and that another pathway must be active. If (k, k) would have
been an element in only one of both inverted semigroup orbits, we could have
used the labeling of atom k in glucose to distinguish pathways.

6 Conclusion

We introduced an approach based on transformation semigroups to automat-
ically design isotopic labeling experiments. All approaches have been imple-
mented and will be integrated in an open source framework for chemically
inspired graph transformation [3]. A natural next step is to apply the decom-
position results known for semigroups. While the modelling approach in [9] is
applied on a different level of abstraction (the transformations of a semigroup
map chemical compounds onto each other, in contrast to our approach where
atoms are mapped), there is an interesting similarity: In [15] local substructures
that exhibit symmetry on a network level are found to be permutation groups.
Such permutation groups are considered as natural and important subsystems (a
“pool of local reversibility”). In our approach local substructures are permutation
groups that describe natural symmetries: the automorphisms of any molecular
graph will describe a permutation group as a substructure of a semigroup. In
our future work we will apply the decomposition approaches to gain a deeper
understanding of the atom transition networks by a hierarchical decomposition.
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Abstract. Alignment-free classification of sequences has enabled high-
throughput processing of sequencing data in many bioinformatics
pipelines. Much work has been done to speed-up the indexing of k-mers
through hash-table and other data structures. These efforts have led to
very fast indexes, but because they are k-mer based, they often lack sen-
sitivity due to sequencing errors or polymorphisms. Spaced seeds are a
special type of pattern that accounts for errors or mutations. They allow
to improve the sensitivity and they are now routinely used instead of k-
mers in many applications. The major drawback of spaced seeds is that
they cannot be efficiently hashed and thus their usage increases substan-
tially the computational time.

In this paper we address the problem of efficient spaced seed hash-
ing. We propose an iterative algorithm that combines multiple spaced
seed hashes by exploiting the similarity of adjacent hash values in order
to efficiently compute the next hash. We report a series of experiments
on HTS reads hashing, with several spaced seeds. Our algorithm can
compute the hashing values of spaced seeds with a speedup of 6.2x, out-
performing previous methods. Software and Datasets are available at
ISSH

Keywords: k-mers · Spaced seeds · Gapped q-gram ·
Efficient hashing

1 Introduction

In computational biology, sequence classification is a common task with many
applications such as phylogeny reconstruction [16], protein classification [20],
metagenomic [11,18,21]. Even if sequence classification is addressable via align-
ment, the scale of modern datasets has stimulated the development of faster
alignment-free similarity methods [1,3,4,16,23].

The most common alignment-free indexing methods are k-mer based. Large-
scale sequence analysis often relies on cataloguing or counting consecutive k-mers
(substring of length k) in DNA sequences for indexing, querying and similarity
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searching. A common step is to break a reference sequence into k-mers and
indexing them. An efficient way of implementing this operation is through the
use of hash based data structures, e.g. hash tables. Then, to classify sequences
are also broken into k-mers and queried against the hash table to check for shared
k-mers.

In [17] it has been shown that requiring the matches to be non-consecutive
increases the chance of finding similarities and they introduced spaced seeds.
They are a modification to the standard k-mer where some positions on the k-
mer are set to be “don’t care” or wildcard to catch the spaced matches between
sequences. In spaced seeds, the matches are distributed so as to maximize the
sensitivity, that is the probability to find a local similarity.

Spaced seeds are widely used for approximate sequence matching in bioinfor-
matics and they have been increasingly applied to improve the sensitivity and
specificity of homology search algorithms [15,19]. Spaced seeds are now routinely
used, instead of k-mers, in many problems involving sequence comparison like:
multiple sequence alignment [5], protein classification [20], read mapping [22],
phylogeny reconstruction [16], metagenome reads clustering and classification
[2,8,21].

In all these applications, the use of spaced seeds, as opposed to k-mers, has
been reported to improve the performance in terms of sensitivity and speci-
ficity. However, the major drawback is that the computational cost increases.
For example, when k-mers are replaced by spaced seeds, the metagenomic clas-
sification of reads of Clark-S [21] increases the quality of classification, but it
also produces a slowdown of 17x with respect to the non-seed version. A similar
reduction in time performance when using spaced seeds is reported also in other
applications [2,20,22].

The main reason is that k-mers can be efficiently hashed. In fact, the hashing
of a k-mer can be easily computed from the hashing of its predecessor, since they
share k − 1 symbols. For this reason, indexing all consecutive k-mers in a string
can be a very efficient process. However, when using spaced seeds these observa-
tions do not longer hold. Therefore, improving the performance of spaced seed
hashing algorithms would have a great impact on a wide range of bioinformatics
applications. The first attempt to address this question was in the Thesis of R.
Harris [13], but hard coding was used to speed-up a non linear packing. Recently,
we develop an algorithm based on the indexing of small blocks of runs of match-
ing positions that can be combined to obtain the hashing of spaced-seeds [9].
In [6,10] we proposed a more promising direction, based on spaced seed self-
correlation, in order to reuse part of the hashes already computed. We showed
how the hash at position i can be computed based on one best previous hash.
Despite the improvement in terms of speedup, the number of symbols that need
to be encoded in order to complete the hash could still be high. In this paper we
solved this problem through: (1) a better way to use previous hashes, maximiz-
ing re-use; (2) an iterative algorithm that combines multiple previous hashes.
In fact, our algorithm arranges multiple previous hashes in order to recover all
k− 1 symbols of a spaced seed, so that we only need to encode the new symbol,
like with k-mer hashing.
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2 Methods: Iterative Spaced Seed Hashing

2.1 Spaced Seed Hashing: Background

A spaced-seed Q (or just a seed) is a string over the alphabet {1, 0} where the 1s
correspond to matching positions and 0 to non-matching positions or wildcards,
e.g. 1011001. A spaced seed Q can be represented as a set of non negative integers
corresponding to the matching positions (1s) in the seed, e.g. Q = {0, 2, 3, 6}, a
notation introduced in [14]. The weight of a seed, denoted as |Q|, corresponds to
the number of 1s, while the length, or span s(Q), is equal to max(Q) + 1.

Given a string x, the positioned spaced seed x[i + Q] identifies a string of
length |Q|, where 0 ≤ i ≤ n−s(Q). The positioned spaced seed x[i + Q], also
called Q-gram, is defined as the string x[i + Q] = {xi+k, k ∈ Q}.

Example 1. Given the seed 1011001, defined as Q = {0, 2, 3, 6}, with weight
|Q| = 4 and span s(Q) = 7. Let us consider the string x = AATCACTTG.

x A A T C A C T T G
Q 1 0 1 1 0 0 1

x[0 + Q] A T C T
The Q-gram at position 0 of x is defined as x[0 +Q] = ATCT . Similarly the

other Q-grams are x[1 + Q] = ACAT , and x[2 + Q] = TACG.

In this paper, for ease of discussion, we will consider as hashing function
the simple encoding of a string, that is a special case of the Rabin-Karp rolling
hash. Later, we will shown how more advanced hashing function can be imple-
mented at no extra cost. Let’s consider a coding function from the DNA alpha-
bet A = {A,C,G, T} to a binary codeword, encode : A → {0, 1}log2|A|, where
encode(A) = 00, encode(C) = 01, encode(G) = 10, and encode(T ) = 11. Fol-
lowing the above example, we can compute the encodings of all symbols of the
Q-gram x[0 + Q] as follows:

x[0 + Q] A T C T
encodings 00 11 01 11

Finally, the hashing value of the Q-gram ATCT is 11011100, that is the
merge of the encodings of all symbols using little-endian notation. More formally,
a standard approach to compute the hashing value of a Q-gram at position i of
the string x is the following function h(x[i + Q]):

h(x[i + Q]) =
∨

k∈Q

(encode(xi+k) � m(k) ∗ log2|A|) (1)

Where m(k) is the number of matching positions that appears to the left of
k. The function m is defined as m(k) = |{i ∈ Q, such that i < k}|. In other
words, given a position k in the seed, m stores the number of shifts that we
need to apply to the encoding of the k-th symbols in order to place it into the
hashing. The vector m is important for the computation of the hashing value of
a Q-gram.
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Example 2. In this example, we report an example of hashing value computation
for the Q-gram x[1 + Q].

x A A T C A C T T G
Q 1 0 1 1 0 0 1
m 0 1 1 2 3 3 3

shifted encodings 00�0 01�2 00�4 11�6
00

0100

000100

hashing value 11000100

The above example shows how the hashing value of x(1 +Q) can be computed
through the function h(x[1+Q]) = h(ACAT ) = 11000100. The hashing value of
the other Q-gram can be determined with a similar procedure, i.e. h(x[2+Q]) =
h(TACG) = 10010011. The hashing function h(·) is a special case of the Rabin-
Karp rolling hash. However, more advanced hashing functions can be defined in
a similar way. For example, the cyclic polynomial rolling hash can be computed
by replacing: shifts with rotations, OR with XOR, and the function encode(·)
with a table, where DNA characters are mapped to random integers.

In this paper we want to address the following problem.

Problem 1. Let us consider a string x = x0x1 . . . xi . . . xn−1, of length n, a spaced
seed Q and a hash function h that maps strings into a binary codeword. We want
to compute all hashing values H(x,Q) for all the Q-grams of x, starting from
the first position 0 of x to the last n − s(Q).

H(x,Q) = 〈h(x[0 + Q]), h(x[1 + Q]), . . . h(x[n − s(Q)])〉
To compute the hash of a contiguous k-mer it is possible to use the hash of

its predecessor. In fact, given the hashing value at position i, the hashing for
position i + 1 can be obtained with two operations, a shift and the insertion
of the encoding of the new symbol, since the two hashes share k − 1 symbols.
However, if we consider the case of a spaced seed Q, we can clearly see that
this observation does not hold. In fact, in the above example, two consecutive
Q-grams, like x[0 + Q] = ATCT and x[1 + Q] = ACAT , do not necessarily
have much in common. Since the hashing values are computed in order, the idea
is to speed up the computation of the hash at a position i by reusing part of
the hashes already computed at previous positions. In this paper we present a
solution for Problem1 that maximizes the re-use of previous hashes so that only
one symbol needs to be encoded in the new hash, as with k-mers hashing.

2.2 Iterative Spaced Seed Hashing

In the case of spaced seeds, one can reuse part of previous hashes to compute
the next one, however we need to explore not only the hash at the previous
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position, as with k-mers, but the s(Q) − 1 previous hashes. A first attempt to
solve this problem was recently proposed in [10], where the hash at position i is
computed based on one best previous hash. Despite the improvement in terms
of speedup with respect to the standard hashing method, the number of symbols
that need to be read in order to complete the hash could still be high. In this
paper we reduced this value to just one symbol by working in two directions: (1)
we devise a better way to use a previous hash, maximizing re-use (2) we propose
an iterative algorithm that combines multiple previous hashes.

Let us assume that we want to compute the hashing value at position i and
that we already know the hashing value at position i − j, with j < s(Q). We
can introduce the following definition of Cg,j = {k ∈ Q : k + j ∈ Q ∧ m(k) =
m(k + j) − m(j) + m(g)} as the positions in Q that after j shifts are still in
Q with the propriety that k and k + j positions are both in Q and they are
separated by j − g − 1 (not necessarily consecutive) ones. In other words if we
are processing the position i of x and we want to reuse the hashing value already
computed at position i − j, Cg,j represents the symbols, starting at position g
of h(x[i − j + Q]), that we can keep while computing h(x[i + Q]).

Example 3. Let’s consider Q = {0, 1, 2, 4, 6, 8, 10}. If we know the first hashing
value h(x[0 + Q]) and we want to compute the second hash h(x[1 + Q]), the
following example show how to construct C0,1.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�1 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+1)−m(1)+m(0) −1 0 1 2 2 3 3 4 4 5 5
C0,1 0 1

The symbols at positions C0,1 = {0, 1} of the hash h(x[1 + Q]) have already
been encoded in the hash h(x[0+Q]) and we can keep them. In order to complete
h(x[1 + Q]), the number of remaining symbols are |Q| − |C0,1| = 5.

In the paper [10] we use only the symbols in C0,j , that is g was always 0.
As we will see in the next examples, if we are allowed to remove the first g
symbols from the hash of h(x[i− j +Q]), we can recover more symbols in order
to compute h(x[i + Q]).

Example 4. Let us consider the hash at position 2 h(x[2 + Q]), and the hash at
position 0 h(x[0 + Q]). In this case we are interested in C0,2.

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)−m(2)+m(0) −2 −1 0 1 1 2 2 3 3 4 4
C0,2 0
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Thus, the only position that we can recover is C0,2 = {0}. On the other hand,
if we are allowed to skip the first position of the hash h(x[0 + Q]) and consider
C1,2, instead of C0,2, we have:

k 0 1 2 3 4 5 6 7 8 9 10
Q 1 1 1 0 1 0 1 0 1 0 1

Q�2 1 1 1 0 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5 6 6

m(k+2)−m(2)+m(1) −1 0 1 2 2 3 3 4 4 5 5
C1,2 2 4 6 8

Where, we can re-use the symbols C1,2 = {2, 4, 6, 8} of h(x[0 + Q]) in order
to compute h(x[2 + Q]). This example shows how the original definition of Cj

in [10], that in this work corresponds to C0,2 = {0}, was not optimal and more
symbols could be recovered from the same hash with C1,2 = {2, 4, 6, 8}.

In [10], the hash value at a given position was reconstructed starting from the
best previous hash. However, the number of symbols to be inserted to complete
the hash could still be high. In this paper we propose a new method that not
only consider the best previous hash, but all previous hashes at once. For a given
hash to be computed hi, we devised an iterative algorithm that is able to find
a combination of the previous hashes that covers all symbols of hi, apart from
the last one. That is, we can combine multiple hashes in order to recover |Q|− 1
symbols of hi, so that we only need to read the new symbol, like with k-mer
hashing.

Let’s assume that we have already computed a portion of the hash hi, and
that the remaining symbols are Q′ ⊂ Q. We can search the best previous hash
that covers the largest number of positions of Q′. To this end, we define the
function BestPrev(s,Q′) that searches for this best previous hash:

BestPrev(s,Q′) = argmaxz∈[0,s−1],k∈[1,s]|Cz,k ∩ Q′|
This function will return a pair (g, j) that identifies the best previous hash

at position hi−j from which, after removing the first g symbols, we can recover
|Cg,j∩Q′| symbols. In order to extract these symbols from hi−j we define a mask,
Maskg,j , that filters these positions. The algorithm iteratively searches the best
previous hashes, until all |Q| − 1 symbols have been recovered. An overview of
the method is shown below:

Our iterative algorithm scans the input string x and computes all hash-
ing values according to the spaced seed Q. In order to better understand the
amount of savings we evaluate the algorithm by counting the number of sym-
bols that are read and encoded. First, we can consider the input string to be
long enough so that we can discard the transient of the first s(Q) − 1 hashes.
Let us continue to analyze the spaced seed 11101010101, that corresponds to
Q = {0, 1, 2, 4, 6, 8, 10}. If we use the standard function h(x[i + Q]) to compute
all hashes, each symbol of x is read |Q| = 7 times.
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Algorithm 1. Iterative Spaced Seed Hashing
1: Compute Cg,k and Mask(g, k) ∀g, k;
2: h0 := compute h(x[0 + Q]) ;
3: for i := 1 to s(Q) − 1 do
4: Q′ = Q;
5: while |Q′| �= 1 do
6: (g, k) = BestPrev(i, Q′);
7: if (Q′ ∩ Cg,k) == ∅ then
8: Exit while;
9: else

10: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
11: Q′ = Q′ − Cg,k ;
12: end if
13: end while
14: for all k ∈ Q′ do
15: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
16: end for
17: end for
18: for i := s(Q) to |x| − s(Q) do
19: Q′ = Q;
20: while |Q′| �= 1 do
21: (g, k) = BestPrev(s(Q) − 1, Q′);
22: hi := hi OR ((hi−k AND Mask(g, k)) >> k ∗ log2|A|) ;
23: Q′ = Q′ − Cg,k ;
24: end while
25: insert encode(xi+s(Q)−1) at last position of hi ;
26: end for

In the first iteration of our algorithm (lines = 19–25) Q′ = Q and the best
previous hash BestPrev(s(Q) − 1, Q′) = (1, 2) is C1,2 = {2, 4, 6, 8}. Thus, while
computing hi we can recover these 4 symbols from hi−2. At the end of the
first iteration Q′ is updated to {0, 1, 10}. During the second iteration the best
previous hash BestPrev(s(Q) − 1, Q′) = (0, 1) is C0,1 = {0, 1}. As above, we
can append these two symbols from hi−1 to the hash hi. Now, we have that
Q′ = {10}, that is only one symbol is left. The last symbol is read and encoded
into hi, and the hash is complete. In summary, after two iterations all |Q| − 1
symbols of hi have been encoded into the hash, and we only need to read one
new symbol from the sequence. Moreover, if one needs to scan a string with a
spaced seed and to compute all hashing values, the above algorithm guarantees
to minimize the number of symbols to read. In fact, with our algorithm, we can
compute all hashing values while reading each symbol of the input string only
once, as with k-mers.
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3 Results and Discussion

In this section we will present the results of some experiments in which ISSH is
compared against two other approaches available in literature: FISH [9] (block-
based) and FSH [10] (overlap-based).

3.1 Experimental Settings

We use the same settings as in previous studies [9,10]. The spaced seeds belong
to three different types of spaced seeds, according to the objective function used
to generate them: maximizing the hit probability [21]; minimizing the overlap
complexity [12]; and maximizing the sensitivity [12]. We tested three spaced
seeds for each type, all with weight W = 22 and length L = 31 (see Appendix
of [9]). Furthermore, we used other sets of spaced seeds, built with rashbari
[12], which have weights from 11 to 32 and the same length. The complete list
of the spaced seeds used is reported in the Appendix of [9]. The datasets of
metagenomic reads to be hashed were taken from previous papers on binning
and classification [7,11,23]. All the experiments have been performed on a laptop
equipped with an Intel i7-3537U CPU at 2 GHz and 8 GB of RAM.

3.2 Analysis of the Time Performances

The first comparison we present is between the performances of ISSH, FISH and
FSH in terms of speedup with respect to the standard hash computation (i.e.
applying Eq. 1 to each position). Figure 1 shows the average speedup among all
datasets, for each of the spaced seeds Q1–Q9, obtained by the three different
methods.

Fig. 1. The average speedup obtaind by ISSH, FISH and FSH with respect to the
standard computation.
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It can be seen that ISSH is much faster than both FISH and FSH for all the
spaced seeds. In terms of actual running time, the standard approach (Eq. 1)
requires about 14 min to compute the hashes for a single spaced seed on all
datasets. ISSH takes just over 2 min with an average speedup of 6.2. As for the
other two approaches, FISH and FSH, they compute the hashes in 6 and 9 min
respectively, with an average speedup of 2 (FISH) and 1.5 (FSH).

We also notice that the variation among the speedups, relative to different
spaced seeds using the same method, are lower for ISSH, for which the speedups
are in the range [6.05–6.25] while for FISH and FSH the range is [1.89–2.16]
and [1.18–1.58], respectively. For all the tested methods there is a correlation
between the spaced seed structure and the time needed for the computation.
FISH depends on the number of blocks of 1s, while both ISSH and FSH depend
on the spaced seed self-correlation. ISSH performances are also sensitive to the
number of iterations. However, the experiments show that, even if FSH performs
a single iteration, the time required to naively compute the hash for all the non-
overlapping positions is more than the time required by ISSH to perform more
iterations. Moreover, for all the tested spaced seeds the number of iterations
needed by ISSH was on average 4.

Figure 2 gives an insight on the performance of ISSH with respect to each
spaced seed and each datasets considered.

Fig. 2. Speedup of ISSH of all the single spaced seeds for each of the considered
datasets, ordered by reads length.

First of all, we notice that the performances are basically independent on
the spaced seed used. Next, for what concerns the datasets characteristics, it
can be observed that the speedup increases with the reads length, reaching the
highest values for the datasets R7, R8 and R9, which have the longest reads.
This behavior is expected: when considering longer reads the slowdown caused
by the initial transient – in which more than one symbol has to be encoded – is
less relevant with respect to the total running time.
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In Fig. 3 we report the speedups on each datasets obtained by Q7, a typical
spaced seed (the other spaced seeds performances are similar) using ISSH, FISH
and FSH.

Fig. 3. Details of the speedup on the spaced seed Q7 on each datasets, ordered by
reads length, using ISSH, FISH and FSH.

All the results are compatible with the above observations: ISSH, if compared
to FISH and FSH, allows to compute the hashing values faster for all the datasets.
Futhermore, by using ISSH, the improvement on long reads datasets is larger
than the improvement obtained with FISH or FSH.

3.3 Effect of Spaced Seeds Weight on Time Performances

The experiments presented here point out the connection between the density
of a spaced seed and the speedup. We considered four sets of nine spaced seeds,
generated with rasbhari [12], with weights 14, 18, 22 and 26 and a fixed length
of 31.

In Fig. 4 we compare the average speedup of ISSH, FISH and FSH for these
sets of spaced seeds as a function of the weight W . We notice that the speedup
grows as the weight increases. This phenomenon is consistent among all the
methods we analyzed. It is reasonable to think that such difference is due to how
the hashes are computed with the standard method using Eq. 1 (against which all
methods are compared), because denser spaced seeds imply hashes with a larger
number of symbols that need to be encoded and joined together. Moreover, for
ISSH we have that denser spaced seeds have more chances of needing fewer
previously calculated hashes to compute each of the |Q|−1 symbols, thus saving
further iterations.

Both these effects are emphasized when looking at the actual running times
needed by the least dense group (W = 14) and by the most dense group (W = 26)
of spaced seeds. The standard method requires 9.73 and 15.11 min, respectively,
while ISSH spends only 2.75 and 2.16 min to perform the same task.
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Fig. 4. The speedup of ISSH, FISH and FSH as a function of the spaced seeds density
(L = 31 and W = 14, 18, 22, and 26).

4 Conclusions

In this paper we present ISSH (Iterative Spaced Seed Hashing), an iterative algo-
rithm that combines multiple previous hashes in order to maximize the re-use
of already computed hash values. The average speedup of ISSH with respect to
the standard computation of hash values is in range of [3.5x–7x], depending on
spaced seed density and reads length. In all experiments ISSH outperforms pre-
viously proposed algorithms. Possible directions of research are the combination
of multiple spaced seeds and the investigation of global optimization schemes.
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Abstract. The ‘missing wedge’ of single tilt in electron tomography
introduces severely artifacts into the reconstructed results. To reduce
the ‘missing wedge’ effect, a widely used method is ‘multi-tilt reconstruc-
tion’, which collects projections using multiple different axes. However,
as the number of tilt series increases, its computing and memory costs
also rises. While the demand to speed up its reconstruction procedure
grows, the huge memory requirement from the 3D structure and strong
data dependencies from projections heavily limit its parallelization. In
our work, we present a new fully distributed multi-tilt reconstruction
framework named DM-SIRT. To improve the parallelism of the recon-
struction process and reduce the memory requirements of each process,
we formulate the multi-tilt reconstruction as a consensus optimization
problem and design a distributed multi-tilt SIRT algorithm. To improve
the reconstruction resolution, we applied a multi-agent consensus equi-
librium (MACE) with a new data division strategy. Experiments show
that along with the visually and quantitatively improvement in resolu-
tion, DM-SIRT can acquire a 5.4x speedup ratio compared to the raw
multi-tilt reconstruction version. It also has 87% decrease of memory
overhead and 8 times more scalable than the raw reconstruction version.

Keywords: Cryo-electron Tomography · Parallel computing ·
Consensus optimization · Multi-tilt reconstruction · TxBR

1 Introduction

Recently, Cryo-electron Tomography (Cryo-ET) is gaining popularity among
structural biologists. One great superiority of Cryo-ET is its ability to reveal
the three-dimensional (3D) structure of cellular or macromolecular assemblies in
near-native state at nanometer scale [1,2]. Electron tomography tilts the samples
to generate a series of two-dimensional (2D) projection images (also called tilt
c© Springer Nature Switzerland AG 2019
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series) and reconstructs 3D structure from these tilt series. Due to physical
limitations of microscopes, the sample is tilted around a single fixed axis with a
range from −70◦ to +70◦. The absence of projection from orientations from 70◦

to 90◦ and −70◦ to −90◦ leads to a ‘missing wedge’ in Fourier space, which will
lead to severe ray artifacts for the reconstructed tomograms.

There are currently two mainstream methods to solve the problem of
‘missing wedge’. The first one is based on the single tilt series. These algo-
rithms apply prior constraints or compressed sensing framework to the recon-
structed tomogram to compensate the missing wedge such as Discrete Algebraic
Reconstruction Technique (DART) [3], Iterative Compressed-sensing Optimized
NUFFT Reconstruction (ICON) [4] and Model-Based Iterative Reconstruction
(MBIR) [5]. Another kind of method is using multiple tilt series taken by rotat-
ing the sample in a plane, which is called multiple axes acquisition strategies. In
the popular double axes acquisition, the sample is rotated 90◦ to obtain two tilt
series [6]. What’s more, the strategy can be extended to 8-tilt series or 16-tilt
series by rotating the sample in a series of uniformly sampled orientations It can
effectively reduce the ‘missing wedge’ effect to a ‘missing pyramid’ of data, or
even to a ‘missing cone’ [7].

IMOD [8], TxBR [9] and AuTom-dualx [10] all provide the complete pro-
cessing procedure for double axes data. However, as the data size increases, the
process of multiple axes data encountered several obstacles. The first one is that
the degree of parallelism is limited by the existing parallel strategies. For single
tilt data series, one common parallel strategy is to split the reconstructed volume
along the tilting axis such as Y-axis. But, as the geometry in TxBR is non-linear
and the Y-axis varies while X-axis rotating, splitting reconstructed volume along
Y-axis to perform the parallelization is not applicable. For multi-axis data col-
lection, they usually split the reconstructed volume along Z-axis [11]. Due to the
physical limitations of electron microscope, the thickness of the sample is quite
limited, which can severely restrict the parallel degree. The second obstacle is the
huge memory requirement from reconstruction results. Comparing with the sin-
gle tilt series, the 16-tilt data collection owns almost 2000 projection views. For
the iterative method, the updating requires assessing the whole projection series
in each iteration, which means each thread needs to access the whole projection
series. Taking the 4096*4096 projection series as an example, each thread needs
to access 242 GB memory in each iteration. Its memory requirement cannot be
fulfilled for most multi-core computers.

To address these challenges of multiple tilts reconstruction in cryo-ET, we
present a new fully Distributed Multi-tilt Simultaneous Iterative Reconstruc-
tion Technique named DM-SIRT. In the framework, we formulate the multi-tilt
reconstruction as a consensus optimization problem. We divide the multi-tilt
data into multiple subsets, which will be processed separately. Then we apply a
multi-agent consensus equilibrium (MACE) approach [12] to optimize the results
of each subset through updating the global result iteratively. This approach has
been proved to be converged to the global optimal result. To our knowledge, this
is the first multi-tilt reconstruction method based on consensus optimization.



222 Z. Wang et al.

What’s more, we use two hierarchies parallel method to reduce the communi-
cation overhead and use new data division strategy to prevent the overfitting
during reconstruction.

Our proposed method owns some advantages in computing and memory
costs. First of all, the distributed data can improve the parallelism of the recon-
struction process because we adopted a new data partitioning strategy. Secondly,
the strategy reduces the number of processed projection data so it can reduce the
memory requirements and adjust the number of projections processed according
to the memory of the real environment. Finally, we use two hierarchies paral-
lel method to reduce the communication overhead and improve the scalability
of DM-SIRT. Benefiting from these strategies, multi-tilt reconstruction can be
done in high efficiency.

The rest of the paper is organized as follows. Section 2 shows backgrounds
about the multi-tilt reconstruction and multi-agent consensus equilibrium.
Section 3 presents the process and implementation of our new distributed frame-
work DM-SIRT. In Sects. 4 and 5, we test the resolution, time and scalability
performance of DM-SIRT by comparing it with widely used methods. Finally,
Sect. 6 presents our conclusion.

2 Related Work

2.1 Multi-tilt Reconstruction

The multi-tilt data acquisition is similar to the single axis tomography. In double-
tilt also known as dual-axis tomography, the sample will be rotated 90◦ in the
XOY plane and obtain a combination of two tilt series, showed in Fig. 1(a). The
multi-tilt series is a direct extension of the single tilt series. According to the
number of rotation angles, multi-tilt can be named as double-tilt, 4-tilt, 8-tilt
or 16-tilt data showed in Fig. 1(b). Along with the increase of the number of
tilt, the reconstruction artifacts caused by the ‘missing wedge’ will be gradually
weakened.

Once the tilt series has been acquired, the first step is the alignment of images
within data set. This step can adjust the data to a single global coordinate
system to ensure the accuracy of reconstruction [13]. There are some methods
of multi-tilt data alignment including IMOD, TxBR and AuTom-dualx. After
the process of alignment, the data is ready to be reconstructed. As direct back
projection method can not make full use of the relation of multi-tilt data, most
current reconstruction methods for multi-axis data are based on the iterative
method SIRT [14] such as ADA-SIRT [13], combined dual-axis SIRT [15], and
W-SIRT [7].

2.2 Multi-agent Consensus Equilibrium

Consensus Equilibrium. The simplest form of the statistical reconstruction
method is:

x∗ = argmin
x

{f(x) + h(x)} (1)
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(a) Single-axis and dual-axis
data acquisition method.

(b) Multi-tilt data acquisition method.

Fig. 1. Data acquisition of cryo-electron tomography

where f is the data fidelity function (minimizing the difference between recon-
struction and real data), h is the regularizing function (suppression of noise data)
and x is our reconstruction result. In more general settings, if the data collected
from multi-modal data collection or using different fidelity functions, the cost
function can be written as

minimize f(x) =
N∑

i=1

fi(x) (2)

where variable x ∈ R
n and fi : Rn → R ∪ {+∞}. In the consensus optimiza-

tion, the minimization of the original cost function with the constraint that the
separate variables must share a common value.

minimize f(x) =
N∑

i=1

fi(x) subject to xi = x, i = 1, ..., N (3)

Buzzard et al. in [12] propose a general framework named Multi-Agent Consen-
sus Equilibrium (MACE) to solve the consensus optimization problem such as
Eq. (3). The framework can handle multiple heterogeneous models come from
physical sensors or learned from data. Like the Eq. (4) proposed by ADMM [16],
it maps Eq. (3) to a auxiliary function to solving the consensus equilibrium. After
mapping, it reformulates the optimization function as a fixed point problem and
uses iteration framework to achieve convergence. A more detailed description for
the framework and convergence proof can be found in [12].

Fi(zi) = argmin
vi

{
fi(vi) +

‖vi − zi‖2
2σ2

}
(4)
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3 Methods

3.1 Distributed Multi-tilt SIRT

To solve the discussed problem, we first analyzed the reconstruction method.
Let n denote the total number of voxels in the 3D volume and x ∈ R

n represent
the voxel values of the 3D volume. p ∈ R

m contains all tilt series generated from
x and m represents the total number of projections in different angles. Using
these definitions, we can write the tomographic acquisition process as a linear
equation:

Wx = p (5)

The W is defined as the projection matrix. In the matrix W , the element Wij

specifies the contribution of voxel Xj to projection Pi. The algebraic reconstruc-
tion methods solve the Eq. (5) by minimizing the norm of the residuals vectors
in Eq. (6). Through this, it can find the model x as similar as possible to the
experimentally projections.

x = argmin
x

‖Wx − p‖2 (6)

In multi-tilt reconstruction, we often use the family of iterative algebraic recon-
struction algorithms like ADA-SIRT, W-SIRT mentioned before. Within one
iteration, their updating strategies are similar. For the kth iteration, the con-
crete updating strategy is:

xk+1 = xk + αWT
(
p − Wxk

)
(7)

W is the projection matrix from all the orientations and p is projections from
all angles. It uses all projection data in one iteration which severely limits degree
of parallelism and costs huge memory. Because each tilt is highly independent
and has the same optimization target, we can rewrite the Eq. (6) as minimizing
the sum norm of each tilt i and add the consensus constraint:

fi(xi) = argmin
xi

‖Wixi − pi‖2 (8)

minimize f(x) =
N∑

i=1

fi(xi) subject to xi = x, i = 1, ..., N (9)

Some papers have proved that the SIRT update scheme is guaranteed to converge
to a weighted least squares solution [14,17,18]. So we rewrite the Eq. (7) as the
optimizer for each tilt proximal map F :

xk+1
i = xk

i + αiW
T
i

(
pi − Wixk

i

)
(10)

We apply the consensus equilibrium framework for multi-tilt electron tomogra-
phy reconstruction and parallelize the SIRT to improve efficiency and reduce
memory consumption. It is named as DM-SIRT and the detail of the algorithm
is shown in Algorithm 1.
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Algorithm 1. DM-SIRT: Distributed Multi-tilt Simultaneous Iterative Recon-
struction Technique
Input: N : the number of different subsets, k: the number of iteration number, p:

multiple tilt series projection data, Wi: the different tilt angle projection geometry
matrix from TxBR, x0: init value of x∗, w̄: the average result of all subsets, vk

i :
the kth iteration result of subset xi, zk

i : the kth update result after merged in each
iteration.

Output: x∗: The reconstruction volume
1: k ← 0, w̄k ← x0, wk

i ← x0

2: while not converged do
3: for i ∈ 1 to N do
4: zk

i ← 2w̄k − wk
i

5: vk
i ← zk

i + αiW
T
i

(
pi − Wiz

k
i

) {SIRT for subset(inner loop)}
6: wk+1

i ← ρ(2vk
i − zk

i ) + (1 − ρ)wk
i {Mann Iteration in MACE}

7: w̄k+1 ← (wk
1 + wk

i + ... + wk
N )/N

8: end for
9: k ← k + 1

10: end while
11: Solution: x∗ ← w̄k {Consensus solution}

3.2 Two Hierarchies Parallel Strategy

From the above analysis, we parallel DM-SIRT on two hierarchies. As for the
first level, projection images are divided according to the multi-tilt projection
angle (usually N can be 4, 8 or 16...). We divide the whole angles into N subsets
to parallel. In the second level, the reconstructed volume is divided along Z-axis.
Because of the geometry in TxBR is non-linear, we must divide the whole volume
along Z-axis and use as many processes as possible to calculate the Eq. (7).
In general, we adopted the master-slave process hierarchy. Different from the
traditional master-slave architecture, to make the best of computing resources,
all the processes including master process participate in computing.

Based on the two parallel hierarchies, we also mark processes as two types to
reduce the communication overhead between processes and show the relationship
in Fig. 2. The first type of process is responsible for the update of variables in the
outer loop of DM-SIRT such as zi, wi and w̄ in Algorithm 1. Each subset only
has one process with this type so it can reduce the communication processes
while updating these variable. The second type of process is responsible for
the update of vk in the inner loop of DM-SIRT. The communication between
different subsets is independent. To reduce memory consumption, we designed a
customized data structure, which only sustains the needed by each process. The
first type of process using Reduce and Bcast to synchronize with global data.
The second type of process using Scatter and Gather to communicate the need
data. These strategies can not only improve communication efficiency but also
reduce the memory occupancy of each process.



226 Z. Wang et al.

Subset1 Subset2 SubsetN

whole master
group master

Calcula on 

Fig. 2. The two hierarchies parallel
strategy for DM-SIRT
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Fig. 3. The data division strategy for
DM-SIRT

3.3 Overlapped Data Division Strategy

In the consensus equilibrium method, they often use a round-robin method to
divide data. However, it is not suitable for multi-tilt reconstruction. Although
we have adjusted multi-tilt data to the same geometry, there is still existing
difference between different axis projection. We divided the data in the same
tilt into the same subset which can contribute to updating faster in the inner
loop of DM-SIRT. Within the scope of the same axis, there are existing more
commonness in the adjacent angle. In addition, each subset need contain some
overlapped angles to avoid the overfitting in the inner loop of DM-SIRT.

Based on these observations, we group the adjacent angles in the same tilt
together. Figure 3 shows our new data division strategy in DM-SIRT and the
overlap angle number is set to 2. When dividing a subset, it is prior to ensure that
the data of the same tilt is divided together so we first separate the projection
angle from A, B axis. After that, dividing the angle of the same tilt, we group the
adjacent angles together like subset1 including −70◦, −69◦ and subset2 including
−68◦, −67◦. To avoid overfitting, each subset will get some overlap angles from
the next subset like subset1 has −68◦ and −67◦ in subset2.

4 Experimental Setup

Datasets. We use the cryo-ET data named EEL-Crosscut were taken using an
FEI Titan operated at 300kV from National Center for Microscopy and Imaging
Research (NCMIR) and the micrography was produced using a 4096*4096 CCD
camera. The tilt series includes two axes a, b and the acquisition method is
shown in Fig. 1(b). The tilt angles of the projection images in each axis range
from −60◦ to 60◦ at 1-degree interval. There are 121 images in the tilt series of
each axis. The size of each projection image is 4096*4096 with a pixel size of
1.36 nm. In this paper, to ensure all methods can work, we binned the tilt series
with factors four to generate a dataset of size is 1024*1024. The tilt series are
aligned using TxBR and the size of reconstruction result is 1024*1024*66.
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Computing Platform. Experiments were performed on a cluster with 16 work-
ing nodes in total. Each node equipped with two 16-core 2.3 GHz AMD Opteron
(TM) 6376 processors and 64 GB of RAM. All programs in this paper were
implemented and compiled with Intel MPI 5.0.

Experimental Setup. We use four methods as the comparison to analyze
the performance of our method. First one is the conventional method named
RAW-SIRT which uses full angles to reconstruct the volume. The second is the
simple reconstruction method named Filtered-back Projection (FBP) [19]. The
third method is our proposed named DM-SIRT. The last method is dividing the
projection angle, reconstruct independently without using consensus framework,
combining the result directly named DirectCombine-SIRT. All iterative methods
use the same relax factor 0.3 [20], and the whole iteration time is set to 100.
The inner iteration time of DM-SIRT is set to 10, and outer iteration time is
also set to 10 which makes 100 iterations in total equal to the iteration number
of RAW-SIRT so that we can ensure the fairness of comparison. We use eight
subsets for DM-SIRT and the overlap number is set to 2.

5 Results

In this section, we describe our results of experiments. First of all, we compare
the reconstruction result of RAW-SIRT, FBP, DM-SIRT, and DirectCombine-
SIRT. Next, we compare the timing and memory performance of RAW-SIRT
and DM-SIRT. Finally, we analyze the scalability of DM-SIRT.

(a) The RAW-SIRT reconstruction slice (b) The DM-SIRT reconstruction slice

Fig. 4. The reconstruction results using multi-tilt data
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5.1 Reconstruction Precision

Figure 4 shows the center slice of the reconstructed volume of the EEL-Crosscut
dataset. In the red box, we can find DM-SIRT generate much clear edge infor-
mation than RAW-SIRT based on the visual assessment. However, more area
looks similar so we use the normalized correlation coefficient (NCC) showed in
Eq. (11) between the reprojections of different reconstruction methods with the
original tilt series (axis A in this paper) to analyze the quantized accuracy.

NCC(x1,x2) =
∑

(x1 − μx1)(x2 − μx2)√∑
(x1 − μx1)2

√∑
(x2 − μx2)2

(11)

From Fig. 5, we can find that the DM-SIRT performance is the best on the
NCC result overall tilt angle. RAW-SIRT as the standard method not performed
well in the high angle comparing with DM-SIRT, but in the low angle slightly
better than DM-SIRT. Based on our experiments, the accuracy of FBP and
DirectCombine-SIRT is worse compared to DM-SIRT and RAW-SIRT which
justified the previous discussion that these methods are not usually used due to
their bad performance.

Fig. 5. The NCC comparing with different reconstruction methods

5.2 Performance Results

We test the time of RAW-SIRT and DM-SIRT to quantify the overall perfor-
mance on a cluster. Table 1 lists reconstruction time at the different number of
nodes which each node has 32 cores. In these tests result, we can find the ‘Out-
Mem’ and ‘NA’ mark indicates the two shortcomings of RAW-SIRT. First of all,
RAW-SIRT only can divide the data along Z-axis so the degree of parallelism
is limited by Z-axis thickness. The result ‘NA’ in the last three columns repre-
sents that the RAW-SIRT can not scale up to 128 cores because of the Z-axis
thickness is 66. The other shortcoming is that each process needs to handle the
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whole projection data leading to high memory occupancy. However, reducing
memory occupancy by increasing the number of process on one node is still not
applicable, it will cause memory overflow as shown in the first column in Table 1.

Our method DM-SIRT improves the parallelism by dividing the projection
angle so it can scale to the entire cluster with 512 cores. In addition, due to
the data division strategy, the memory consumption of each process will also
be reduced and the detail data showed in Sect. 5.3. From the Table 1, DM-SIRT
achieves 74 min reconstruction time at 512 nodes. It is 5.4 times faster than the
RAW-SIRT performance on 64 nodes and is 8 times more scalable than RAW-
SIRT.

Table 1. The speedups of DM-SIRT compared to RAW-SIRT

Nodes 2 Nodes 4 Nodes 4 Nodes 8 Nodes 16 Nodes

Cores 64 64 128 256 512

RAW-SIRT (min) OutMem 403 NA NA NA

DM-SIRT (min) 411 411 236 135 74

5.3 Memory Overhead

We analyze the memory overhead in each process. The main memory consump-
tion includes the reconstructed result and the projection data needed by each
process. As RAW-SIRT only divides the reconstruct volume, each process needs
to handle the whole projection series. We use subset 0 to represent RAW-SIRT
method in Fig. 6. The number of the subset is two, four and eight represents the
different number of subset adopted by DM-SIRT. Based on the results shown
in Fig. 6, with the increase of the subset number, the memory consumption of
each process decrease accordingly. When DM-SIRT adopts 8 subsets, it has 87%
decrease of memory overhead as comparing with RAW-SIRT.

5.4 Scalability Performance

In the scalability test, we fixed the total number of tasks in all nodes. We tested
the scalability with the mentioned reconstruction data size 1024*1024*66. We
only increased the number of the process from 64 to 512. From Fig. 7, we can
observe that the parallel efficiency decreased to 87% when using 128 processes
and decreased further to 70% when using 512 processes. The observed degrada-
tion of scalability efficiency is acceptable.
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Fig. 6. The memory overhead in differ-
ent subset

Fig. 7. The scalability performance

6 Conclusion

In this work, we present a new fully distributed multi-tilt reconstruction frame-
work named DM-SIRT. We are the first to formulate the reconstruction as a
consensus optimization problem in Cryo-ET. With the help of multi-agent con-
sensus equilibrium approach, we improve the parallelism of the reconstruction
process and reduce the memory requirements through reducing the number of
projection data which each process needed. We also proposed the two hierar-
chies parallel method to improve the scalability of DM-SIRT and use overlapped
data division strategy to prevent the overfitting during reconstruction. Benefit-
ing from these strategies, multi-tilt reconstruction can be done with the visually
and quantitatively improvement in resolution. Experiments also show that our
proposed method has a high degree of parallelism, low memory consumption,
and high scalability.
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Abstract. ChIP-Seq blacklists contain genomic regions that frequently
produce artifacts and noise in ChIP-Seq experiments. To improve signal-
to-noise ratio, ChIP-Seq pipelines often remove data points that map
to blacklist regions. Existing blacklists have been compiled in a manual
or semi-automated way. In this paper we describe PeakPass, an effi-
cient method to generate blacklists, and present evidence that black-
lists can increase ChIP-Seq data quality. PeakPass leverages machine
learning and attempts to automate blacklist generation. PeakPass uses
a random forest classifier in combination with genomic features such as
sequence, annotated repeats, complexity, assembly gaps, and the ratio
of multi-mapping to uniquely mapping reads to identify artifact regions.
We have validated PeakPass on a large dataset and tested it for the
purpose of upgrading a blacklist to a new reference genome version. We
trained PeakPass on the ENCODE blacklist for the hg19 human refer-
ence genome, and created an updated blacklist for hg38. To assess the
performance of this blacklist we tested 42 ChIP-Seq replicates from 24
experiments using the Relative Strand Correlation (RSC) metric as a
quality measure. Using the blacklist generated by PeakPass resulted in a
statistically significant increase in RSC over the existing ENCODE black-
list for hg38 – average RSC was increased by 50% over the ENCODE
blacklist, while only filtering an average of 0.1% of called peaks.

Keywords: ChIP-seq · Classification · Quality control · Blacklist

1 Introduction

ChIP-Seq is an experimental technique to determine protein-DNA interaction
sites within the genome. During a ChIP-Seq experiment, fragments of DNA
crosslinked to proteins are enriched by antibodies that bind to a protein of inter-
est, and then isolated and sequenced. The resulting sequence reads are mapped to
a reference genome, and clusters of mapped reads are used to infer potential pro-
tein binding sites. Typically, ChIP-Seq is used to identify epigenetic alterations
such as histone modifications, and the binding sites of transcription factors and
other DNA-binding proteins.

ChIP-Seq blacklists contain genomic regions that frequently produce artifacts
and noise in ChIP-Seq experiments. To improve data quality, ChIP-Seq pipelines
c© Springer Nature Switzerland AG 2019
Z. Cai et al. (Eds.): ISBRA 2019, LNBI 11490, pp. 232–243, 2019.
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often remove data points that map to blacklist regions. Artifact regions are fre-
quently associated with errors in the underlying genome assembly, sequence
repeats, or increased genomic variability, but often the exact cause of the
observed artifacts remains elusive [1]. Genome-wide blacklists are a key part
of ChIP-Seq pipelines, and they are usually created using a time-consuming,
semi-automated process [2]. A recently published regression model based on
mappability features has the potential to simplify this procedure, but so far, a
validation using ChIP-Seq experiments is still missing [3,4]. Our PeakPass algo-
rithm uses a supervised learning approach: starting from artifact regions derived
from the ENCODE blacklist, and a large set of genomic features we apply fea-
ture selection in combination with classification to produce a new genome-wide
blacklist. Subsequently, we evaluate the quality of our blacklist using a large
number of ChIP-Seq experiments.

In our validation experiments we apply different blacklist and control treat-
ments to various ChIP-Seq replicates and measure their effects on quality.
One quality metric of particular interest is the RSC signal-to-noise estimate,
which is related to unmappable positions within the genome [5]. RSC shows up
in stranded cross-correlation plots as the ratio of correlation at the fragment
length (signal) to correlation at read length (noise). A correlation spike at the
read length is known as the “phantom peak”, and represents suboptimal RSC.
Ramachandran and colleagues have shown that controlling for alignability during
cross-correlation analysis reduces the phantom peak [6]. Carroll and colleagues
found that plotting cross-correlation of only duplicated reads results in both
read length and fragment length correlation peaks. However, cross-correlation of
reads in blacklist regions results in only a read length peak [5]. Therefore, the
reduction of the phantom peak height after blacklist treatment is one metric to
assess the effectiveness of a blacklist.

In the remaining parts of this paper, we describe our PeakPass approach and
illustrate how PeakPass can be used to update a previous blacklist (ENCODE
hg19 blacklist) to a new genome version (hg38). Finally, we compare the newly
generated blacklist with the corresponding ENCODE hg38 blacklist by com-
puting RSC on multiple ChIP-Seq datasets downloaded from the ENCODE
database [7]. Average RSC increased by 50% over the ENCODE hg38 blacklist
when applying the PeakPass blacklist. We also compare the repeat composition
of the blacklists, and measure how many peaks from the ENCODE ChIP-Seq
sets intersect with the new blacklist regions.

2 Methods

Starting from a small training set of artifact regions, PeakPass uses supervised
learning (classification) to generate a blacklist that covers the entire genome.
To identify a suitable classifier, we compared the performance of 6 algorithms:
random forest [8], K-Nearest Neighbor (KNN) [9], Support Vector Machines
(SVM) [10] with radial and linear kernels, Neural Networks [11], and Naive Bayes
[12] using a blacklist from an earlier human reference genome version (hg19).
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Each algorithm was tested on its ability to predict hg19 blacklist regions set aside
from the training data; the random forest classifier outperformed all competitors
(see the Results section) and was adopted as the PeakPass classification engine.
Subsequently, we used PeakPass to predict a blacklist for the most recent genome
version hg38. Many assembly errors and gaps in hg19 have been fixed in hg38.
The new blacklist for hg38 was tested for its impact on ChIP-Seq quality metrics
and called peaks.

We start by dividing the hg19 reference genome into windows of size 1kbp.
Subsequently, features were computed for each window as shown in Fig. 1. If 70%
or more of the window overlaps with an ENCODE blacklist region the window
is labeled as a blacklist region in the learning dataset, otherwise the window is
treated as a “normal” region. The resulting data set consists of 8,517 blacklist
regions and 2,566,611 normal regions.

Fig. 1. Windowed regions of the genome are used to compute machine learning features
and labels for supervised learning. Windows that significantly overlap with a blacklist
region are labeled as “blacklist” class windows.

PeakPass uses a variety of genomic features to predict artifact regions. We use
two alignability based features (similar to DangerTrack [3]): alignability averaged
across each window and the number of positions in the window with alignability
below 0.1. Alignability measures how often a certain k-mer sequence aligns to
the genome. For a specific genomic interval of length k the alignability is defined
as the inverse of the number of different matches of the interval in the genome,
see Derrien et al. for a more detailed description [13]. Similar to the Kundaje’s
blacklist candidate generator, PeakPass also uses ratio of multi-mapping loci
to uniquely-mapping loci. Repeat-based features include the number of Repeat-
Masker [14] repeats that intersect the window and the number of softmasked
base pairs. In addition, several complexity-based features (the number of unique
4-mers, number of 2-mer tandem repeats, and A, T, C, and G content), distance
to the nearest gene, and distance to the nearest assembly gap are used.

Several features such as unique 3-mers, number of loci with alignability over
0.9, and monomer repeats were removed from the feature set because they were
highly correlated with other features, and model performance did not decrease
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after their removal. In addition, we decided to not use some features because
they were not available for certain genome assemblies. These include nearest
assembly gap type and gap size. The annotated repeat-types also differed widely
between organisms, so this feature was excluded as well. The final list of features
we used is shown in Table 1.

Table 1. PeakPass features and feature importance using random forest’s out-of-bag
feature importance estimate. The importance score of a feature is the mean decrease
in accuracy when scrambling this feature in out-of-bag data.

Feature Importance score

Distance to nearest assembly gap 89.0

Frequency of unique 4-mers in window 44.2

Frequency of softmasked base pairs in window 38.0

Distance to nearest gene 35.5

Frequency of loci with alignability <0.1 19.8

G content of window 17.9

C content of window 17.5

Average alignability on window 17.2

Frequency of 2-mer tandem repeats in window 17.2

T content of window 15.4

A content of window 14.6

Frequency of repeats measured by RepeatMasker 14.2

Ratio of multi-mapping to uniquely-mapping reads in window 13.3

We split the labeled data derived from the ENCODE hg19 blacklist into inde-
pendent training and test data sets. The training data set was further subdivided
into independent parts for hyperparameter tuning (via 10-fold cross-validation,
parameters were selected to maximize AUCROC, tuning was performed with the
caret library for R [15]), model training, and model comparison (via multiple iter-
ations of sub-sampling). Training sets were undersampled to 2000 observations
of each class label. Using the test data set we evaluated the performance of the
best classifier. All data sets were disjoint on both window location and blacklist
item, this means that windows from the same blacklist item or genomic loca-
tion cannot appear in both a training and corresponding validation or test set.
Finally, we used the fully trained algorithm to predict a new blacklist for hg38.

Because Kundaje’s blacklist indicates that some regions are blacklisted due
to the presence of certain repeats types, the repeat composition of the PeakPass
blacklist was measured [2]. Each blacklist was intersected with the set of Repeat-
Masker repeats, and the frequency of each repeat type was computed. In order
to normalize repeat frequencies between blacklists of different sizes, we report
repeat frequency per kilobase. The results are shown in Table 6.
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Next, the blacklists were compared to determine their effect on Relative
Strand Correlation (RSC) and Normalized Strand Coefficient (NSC). We selected
42 replicates from 24 transcription factor ChIP-Seq experiments from ENCODE
that exhibited a phantom peak and evaluated them under different blacklist
treatments. We used the ENCODE cross-correlation implementation to measure
RSC. Additional details about the composition of the ChIP-Seq data are shown
in Table 2.

Table 2. A variety of different transcription factor ChIP-Seq experiments were used
to validate the PeakPass blacklist. Blacklists are not biased toward a specific protein
of interest or cell line.

Property Number of distinct
observations

Replicates 42

Experiments 24

Protein target 22

Cell line 12

Laboratory 9

Replicates from the following ENCODE experiment accession IDs were used:

– ENCSR920BLG
– ENCSR000BRU
– ENCSR000BNO
– ENCSR286PCG
– ENCSR000FBC
– ENCSR000FAZ
– ENCSR000EZW
– ENCSR945NSF

– ENCSR519QAA
– ENCSR051DXE
– ENCSR000DON
– ENCSR000DNQ
– ENCSR000DNN
– ENCSR892DRK
– ENCSR000AOA
– ENCSR549NPZ

– ENCSR384LYW
– ENCSR000DSZ
– ENCSR000EXZ
– ENCSR000EUZ
– ENCSR000EVX
– ENCSR000EWI
– ENCSR000DNI
– ENCSR000DKR

Table 3 shows library complexity and PCR bottle-necking quality metrics for
the ChIP-Seq datasets we used. We selected these metrics due to their association
with ChIP-Seq artifacts. Quality thresholds and rating terminology used in the
table below are taken from ENCODE [16].

Finally, the blacklists are intersected with the peaks called by the ENCODE
pipeline to measure number of the peaks that are filtered by the blacklists. IDR
thresholded peak sets were downloaded from the ENCODE database when avail-
able. We report the percentage of called peaks that intersect with the PeakPass
blacklist, as these peaks would be filtered by the blacklist.

PeakPass consists of a set of R, Python, and Bash scripts that can be executed
in a Unix environment. The PeakPass algorithm, instructions, and the PeakPass
hg38 blacklist can be downloaded from our GitHub repository: https://github.
com/ewimberley/peakPass.

https://github.com/ewimberley/peakPass
https://github.com/ewimberley/peakPass
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Table 3. The quality of a replicate may influence the effectiveness of blacklist treatment
on that replicate. Therefore, we have listed the quality of the replicates used. The NRF
(Non Redundant Fraction) is the number of reads after duplicate removal divided by
the number of reads before duplicate removal. PBC1 (PCR Bottlenecking Coefficient
1) is the number of mapped loci with 1 uniquely mapped read divided by the number
of loci with one or more uniquely mapped reads.

Metric Rating Number of observations

NRF Poor (0–0.5) 4 (9%)

Moderate (0.5–0.8) 15 (36%)

High (<0.8) 23 (55%)

PBC1 Severe (0–0.5) 4 (9%)

Moderate (0.5–0.8) 9 (22%)

Mild (0.8–0.9) 11 (26%)

None (>0.9) 18 (43%)

3 Results

Table 4 compares model performance for different learning algorithms using 32
randomly sampled training and validation sets. Sensitivity and specificity are
measured at a threshold of 0.5. We used AUC precision/recall as our metric for
model selection because of its good performance on imbalanced data.

Table 4. Performance of the different classification algorithms. Classifier performance
values are computed on our validation datasets, whereas performance of the final model
is based on the test dataset. The standard deviation of each performance metric is
shown in parenthesis next to the mean of the measurement.

Algorithm Sensitivity Specificity AUC P/R AUCROC

Random forest 0.920 (0.038) 0.966 (0.007) 0.627 (0.061) 0.988 (0.003)

KNN 0.895 (0.035) 0.947 (0.011) 0.531 (0.041) 0.970 (0.011)

SVM (Radial) 0.842 (0.047) 0.963 (0.009) 0.445 (0.085) 0.977 (0.005)

ANN 0.901 (0.056) 0.931 (0.029) 0.299 (0.152) 0.951 (0.021)

SVM (Linear) 0.913 (0.036) 0.948 (0.011) 0.201 (0.060) 0.976 (0.005)

Näıve Bayes 0.906 (0.036) 0.926 (0.018) 0.095 (0.030) 0.960 (0.011)

Final model 0.978 0.963 0.858 0.995

Random forest was selected as the best performing model, and was bench-
marked on the test set (286,446 windows of 1kbp each). Our random forest has
2000 trees with a maximum of 10 nodes each. The final model performance on
the testing dataset is shown in the last row of the table above. The rest of the
results are based on a blacklist created with this model.
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Fig. 2. Strand Cross-Correlation plots for 2 different treatments of the ENCFF900RPG
replicate from the ENCODE database. Top: No treatment with RSC 0.708. Maximum
correlation is at the phantom peak. Bottom: The PeakPass blacklist with RSC 1.405.
Maximum correlation is at the fragment length. Blue vertical lines indicate phantom
peak estimates, and red vertical lines indicate fragment length estimates. (Color figure
online)
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Our blacklist is considerably larger than the ENCODE blacklist: it contains
5,078 regions, with an average length of 14,500bp. In comparison, the ENCODE
blacklist for hg38 contains 38 regions with an average length of 450bp. Blacklist
regions cluster around assembly gaps, GRC incidents, anomalous mappability
regions, centromeres, and telomeres.

After investigating cross-correlation plots of various data sets, we observed
that PeakPass greatly improves RSC, but has little impact on NSC. The Peak-
Pass treatment decreases both minimum and maximum cross-correlation. The
cross-correlation curve itself appears smoother after PeakPass treatment. Exam-
ple strand cross-correlation plots with different treatments are shown in Fig. 2.

RSC measurements after treatment with different blacklists are shown in
Fig. 3. The ENCODE blacklist slightly increases the average RSC. By compari-
son, the PeakPass blacklist increases the average RSC by 50%.

Fig. 3. This violin plot shows the distribution of RSC scores for 42 hg38 ChIP-Seq repli-
cates by treatment. The hg38 ENCODE blacklist has little impact on RSC compared
to the PeakPass blacklist. Average RSC for each treatment is shown above its box.

To determine the statistical significance of this effect, we performed a paired
Holm’s post-hoc test [17]. Our hypotheses are that replicates treated with the
ENCODE blacklist have a higher RSC value than without, and that PeakPass
treatment results in a higher RSC value than either ENCODE treatment or no
treatment. Table 5 contains the p-values for each hypothesis. PeakPass showed
a significant improvement over the ENCODE blacklist and the control.

For the replicates listed below, treatment with PeakPass pushes the replicate
over the ENCODE recommended RSC threshold of 0.8 [18]. After PeakPass
treatment, these replicates could now be used in subsequent analysis steps. Pub-
lications using these replicates may want to attempt to reproduce their results
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Table 5. P-values from Holm’s pairwise hypothesis test. The treatment in each row is
hypothesized to have a greater RSC value than the treatments listed in the columns.

No treatment ENCODE blacklist treatment

After ENCODE treatment 0.074 N/A

After PeakPass treatment 6e-11 6e-11

using the PeakPass blacklist, and investigate differentially called peaks in order
to reduce false positive peak calls.

– ENCFF000XOH
– ENCFF038NOW
– ENCFF061RFH
– ENCFF369TPH
– ENCFF534VEA

– ENCFF629GVZ
– ENCFF693TLQ
– ENCFF701IFH
– ENCFF706HJC
– ENCFF743AGP

– ENCFF877JAH
– ENCFF900RPG
– ENCFF919IIQ

Figure 4 shows the percentage of called peaks that overlap with the PeakPass
blacklist. We took the conservatively called peaks from experiments that contain
replicates demonstrating a phantom peak and intersected them with the Peak-
Pass blacklist. These intersecting peaks would be filtered out if the PeakPass

Fig. 4. Percentage of final ChIP-Seq peaks intersecting with PeakPass blacklist regions
for 25 conservatively filtered peak sets. Note that one outlier with 10% overlap (the
peak set with ENCODE id ENCFF452WYE) does not appear on this graph due to
the zoom level. This experiment appears to be an outlier in terms of low quality. The
RSC for the replicates from this experiment were less than 0.25, and less than 0.5 after
blacklist treatment.
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blacklist was used. For most replicates, approximately 0.1% of peaks would have
been filtered by PeakPass.

Blacklist regions are associated with repeat elements [2]. The number of
repeats per kilobase was measured for both the ENCODE blacklist and the
PeakPass predicted blacklist as shown in Table 6. Four of the top five repeats
from the hg39 ENCODE blacklist are centromeric repeats, some of which are also
enriched in the hg19 ENCODE blacklist [19]. The PeakPass blacklist contains
fewer repeats per kilobase, but contains a larger variety of different repeat types
(93 different repeat types in the PeakPass blacklist vs 15 different repeat types
in the ENCODE blacklist).

Table 6. Relative frequencies (per kbp) of the 5 most frequent repeats in ENCODE
and PeakPass blacklists for hg38.

ENCODE blacklist Frequency/Kbp PeakPass blacklist Frequency/Kbp

All 1.4671 All 0.62

(GGAAT)n 0.2934 L1/LINE 0.1490

(TCCAT)n 0.2347 Alu/SINE 0.1208

ALR/Alpha 0.2347 Simple Repeats 0.0937

(GAATG)n 0.1173 MER 0.0411

(GAATGGAATC)n 0.1173 ALR/Alpha 0.0364

4 Conclusion

ChIP-Seq experiments are often plagued by genomic regions that produce arti-
facts and noise. The underlying cause of this phenomenon is often unclear and
therefore, quality control is an important step in every ChIP-seq experiment.
Our PeakPass algorithm uses classification to generate genome-scale blacklists
that try to protect against such problematic genomic regions. Due to the extreme
class imbalance, this task is challenging for most algorithms and we have com-
pared six different classifiers to identify a suitable algorithm. The random forest
classifier has outperformed the other classifiers in most of the assessed metrics,
and it has shown the best performance for classifying genomic regions as black-
list regions using the features we selected. Hence, we have selected this algorithm
as PeakPass’ classification engine.

To evaluate the quality of PeakPass predictions we have generated a black-
list for the current version of the human genome (hg38) and compared it to a
corresponding ENCODE blacklist. The PeakPass blacklist is considerably larger
and increases RSC above the ENCODE blacklist for hg38 by approximately
50%. This increase is statistically significant. However, not all datasets benefit
equally from blacklisting. We have observed, not surprisingly, that data sets of
lower quality show the highest improvements.
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Both the PeakPass blacklist and ENCODE blacklist contain an enrichment of
different types of genomic repeats. While the ENCODE contains mostly satellite
and centromeric repeats, the PeakPass blacklist contains more retrotransposons
such as L1/LINE and Alu/SINE repeats. These types of retrotransposons are
frequent in the human genome [20].

There are several avenues of future research. We plan to investigate alterna-
tive quality metrics such as the Standardized Standard Deviation (SSD) and per-
centage of duplicated reads within blacklist regions [5], tune and validate Peak-
Pass on histone ChIP-Seq experiments, and apply PeakPass to create blacklists
for additional species. Another intriguing research direction focuses on a better
understanding of the underlying causes of artifact regions. We hypothesize that
alignability problems, as well as highly polymorphic genomic regions are often
responsible for the spurious ChIP-Seq peaks.

Acknowledgments. This work was supported in part by the National Science Foun-
dation (grant no. IOS1355019). We thank Robert G. Franks and Miguel Flores-Vergara
(both NC State University) for extremely valuable discussions and advice. We are
grateful for the ENCODE datasets we used for validating PeakPass. These data were
produced by: Michael Snyder, Richard Myers, Sherman Weissman, Xiang-Dong Fu,
Kevin Struhl, Bradley Bernstein, John Stamatoyannopoulos, Peggy Farnham, and
Vishwanath Iyer.

References

1. Degner, J., et al.: Effect of read-mapping biases on detecting allele-specific expres-
sion from RNA-sequencing data. Bioinformatics 25(24), 3207–3212 (2009)

2. Kundaje, A.: A comprehensive collection of signal artifact blacklist regions in the
human genome. http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/
hg19-human/hg19-blacklist-README.pdf. Accessed 28 Mar 2019

3. Dolgalev, I., Sedlazeck, F., Busby, B.: DangerTrack: A scoring system to detect
difficult-to-assess regions. F1000Research. 6(443) (2017)

4. Wimberley, C.: PeakPass: a machine learning approach for ChIP-Seq blacklisting.
Master’s thesis, North Carolina State University (2018)

5. Carroll, T.S., Liang, Z., Salama, R., Stark, R., de Santiago, I.: Impact of artifact
removal on ChIP quality metrics in ChIP-seq and ChIP-exo data. Front. Genet. 5,
75 (2014)

6. Ramachandran, P., Palidwor, G., Porter, C., Perkins, T.: MaSC: mappability-
sensitive cross-correlation for estimating mean fragment length of single-end short-
read sequencing data. Bioinformatics 29(4), 444–450 (2013)

7. The ENCODE Project Consortium: An integrated encyclopedia of DNA elements
in the human genome. Nature 489(7414), 57–74 (2012)

8. Ho, T.: Random decision forests. In: Proceedings of the Third International Con-
ference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

9. Fix, E., Hodges, J.: Discriminatory analysis nonparametric discrimination: consis-
tency properties (1951)

10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human/hg19-blacklist-README.pdf
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg19-human/hg19-blacklist-README.pdf


PeakPass: Automating ChIP-Seq Blacklist Creation 243

11. Farley, B., Clark, W.: Simulation of self-organizing systems by digital computer.
Trans. IRE Prof. Group Inf. Theory 4(4), 76–84 (1954)

12. John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers.
In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 338–345 (2013)

13. Derrien, T., et al.: Fast computation and applications of genome mappability. PLoS
One 7(1), e30377 (2012)

14. Smit, A., Hubley, R., Green, P.: RepeatMasker Open-4.0 (2013-2015). http://www.
repeatmasker.org

15. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw.
28(5), 1–26 (2008)

16. The ENCODE Project Consortium: Transcription Factor ChIP-seq Data
Standards and Processing Pipeline. https://www.encodeproject.org/chip-seq/
transcription factor/

17. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6(2), 65–70 (1979)

18. Landt, S., et al.: ChIP-seq guidelines and practices of the ENCODE and modEN-
CODE consortia. Genome Res. 22(9), 1813–1831 (2012)

19. Altemose, N., Miga, K.H., Maggioni, M., Willard, H.F.: Genomic characterization
of large heterochromatic gaps in the human genome assembly. PLOS Comput. Biol.
10(5), e1003628 (2014)

20. Kojima, K.: Human transposable elements in Repbase: genomic footprints from
fish to humans. Mobile DNA. 9(2) (2018)

http://www.repeatmasker.org
http://www.repeatmasker.org
https://www.encodeproject.org/chip-seq/transcription_factor/
https://www.encodeproject.org/chip-seq/transcription_factor/


Maximum Stacking Base Pairs: Hardness
and Approximation by Nonlinear

LP-Rounding

Lixin Liu1, Haitao Jiang2,5(B), Peiqiang Liu3,5, Binhai Zhu4, and Daming Zhu2

1 School of Software, Shandong University, Jinan 250100, Shandong, China
201500301266@mail.sdu.edu.cn

2 School of Computer Science and Technology, Shandong University,
Qingdao 266237, Shandong, China

{htjiang,dmzhu}@sdu.edu.cn
3 School of Computer Science and Technology,

Shandong Technology and Business University, Yantai 264006, Shandong, China
liupeiqiang@gmail.com

4 Gianforte School of Computing, Montana State University,
Bozeman, MT 59717, USA

bhz@montana.edu
5 Co-innovation Center of Shandong Colleges and Universities:
Future Intelligent Computing, Yantai 264005, Shandong, China

Abstract. Maximum stacking base pairs is a fundamental combinato-
rial problem from RNA secondary structure prediction under the energy
model. The basic maximum stacking base pairs problem can be described
as: given an RNA sequence, find a maximum number of base pairs such
that each chosen base pair has at least one parallel and adjacent partner
(i.e., they form a stacking). This problem is NP-hard, no matter whether
the candidate base pairs follow the biology principle or are given explic-
itly as input. This paper investigates a restricted version of this problem
where the base pairs are given as input and each base is associated with
at most k (a constant) base pairs. We show that this restricted version is
still APX-hard, even if the base pairs are weighted. Moreover, by a non-
linear LP-rounding method, we present an approximation algorithm with

a factor 32(k−1)3e3

8(k−1)e−1
. Applying our algorithms on the simulated data, the

actual approximation factor is in fact much better than this theoretical
bound.

1 Introduction

An Ribonucleic acid (RNA) is single-stranded and can be viewed as a sequence
of nucleotides (also known as bases, denoted by A, C, G and U). It plays an
important role in regulating genetic and metabolic activities according to the
central dogma of biology. To understand the biological functions of RNAs elab-
orately, we should know their structures at first. The primary structure of an
RNA strand is formed by the order of the nucleotides. An RNA folds into a three
c© Springer Nature Switzerland AG 2019
Z. Cai et al. (Eds.): ISBRA 2019, LNBI 11490, pp. 244–256, 2019.
https://doi.org/10.1007/978-3-030-20242-2_21
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dimensional structure by forming hydrogen bonds between nonconsecutive bases
that are complementary, such as the Watson-Crick pairs C-G and A-U and the
wobble pair G-U . The three-dimensional arrangement of the atoms in the folded
RNA molecule is the tertiary structure; the collection of base pairs in the ter-
tiary structure is the secondary structure. Actually, the secondary structure can
tell us where there are additional connections between the bases, and where the
RNA molecule could be folded. In the paper [1], the author claimed that “the
folding of RNA is hierarchical, since secondary structure is much more stable
than tertiary folding”, which results in that, the tertiary folding would obey the
secondary structure mostly. Since the 3-dimensional structure determines the
function of the RNA to some extent, predicting the secondary structure of RNA
becomes a key problem to study RNA in a larger and deeper scope.

In 1978, Nussinov et al. [2] began considering the computational study of
RNA secondary structure prediction, but this problem is still not well solved
yet. The biggest impediment is the existing of pseudoknots, which is composed
of two interleaving base pairs provided when we arrange the RNA sequence in a
linear order.

Lyngsø and Pedersen [8] have proven that determining the optimal secondary
structure possibly with pseudoknots is NP-hard under special energy functions.
And Akutsu [9] has shown that it remains NP-hard, even if the secondary struc-
ture requires to be planar. There are a lot of positive works where there are no
pseudoknot. [2–7] have computed the optimal RNA secondary structure in O(n3)
time and O(n2) space by the method of dynamic programming. Akutsu in [9],
Rivas and Eddy in [10], and Uemura et al. in [11] have presented a polynomial-
time algorithm when the types of pseudoknots is limited.

To predict secondary structures with pseudoknots, most research focus on
the base pairs individually. The nearest neighbor energy model was studied pop-
ularly [8,9,13,14]: the energy of each base pair depends not only on its two bases
but also on the other adjacent base pairs. According to the Tinoco model [12]: an
RNA structure can recursively be decomposed into loops with independent free
energy; the energy of each loop is an affine function in the number of unpaired
bases and the number of interior base pairs. The only type of loops without
unpaired bases are formed by two adjacent and parallel base pairs, which is called
a stacking; the negative energy of such stackings stabilizes the RNA structure.
In [14], Lyngsø initiated the study for the maximum stacking base pairs problem.
He showed this problem to be NP-hard, and devised a polynomial-time exact
algorithm over a fixed-size alphabet Σ and with a subset of Σ × Σ of legal pair
types. Unfortunately, this algorithm has very high complexities of Ω(n80) time
and Ω(n80) space even for the canonical alphabet {A,C,G,U}.

Among all the above results, the base pairs are given implicit, that is, under
some fix biology principle, e.g., Watson-Crick base pairs: A-U and C-G, any
such two bases can form a base pair. As an alternative, the set of candidate
base pairs may be given explicitly as input, because there could be additional
conditions from comparative analysis which prevent two bases forming a pair. It
would generalize the maximum stacking base pairs problem with explicit base
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pairs, so the problem remains NP-hard. Jiang [15] improved the approximation
factor for the maximum stacking base pairs problem with explicit base pairs to
5/2. Zhou et al. [17] further improved the approximation factor to 7/3 by a local
search method. Once the candidate base pairs are taken as the input for this
problem, naturally, we can put restriction and generalization on it. Similar to
the research on graph problems, one basic restriction is to bound the degree of
each base, that is, we require each base to associate with at most a constant of
k candidate base pairs. This problem is called k-MSBP. Also, in light that the
optimal secondary structure has the minimum negative energy, we generalize
this problem to the weighted version, where we give each base pair a weight
(representing energy) and the problem becomes computing a maximum weight
stacking base pairs, this problem is called k-MWSBP. So far as we know, there
is no results on k-MWSBP.

The main contributions of this paper are: (1) We show that k-MSBP is APX-
hard for k ≥ 2; (2) We devise an approximation algorithm with a factor of
32(k−1)3e3

8(k−1)e−1 for k-MWSBP (and k-MSBP) by the nonlinear LP-rounding method.
For k-MSBP, although the approximation factor in [15] and [17] are better, the
time complexity is as high as O(n14), while our algorithm takes linear time
besides solving a linear program. Moreover, our simulations show a much better
practical performance compared with this theoretical bound.

2 Preliminaries

Let S = s1s2 · · · sn be an RNA sequence of n bases. A base pair is a pair of two
nonconsecutive bases, say si, sj , where |i − j| > 1, and is denoted by (si, sj).
The degree of a base si is the number of base pairs that are associated with si.
Two base pairs are compatible if they do not share a common base. A secondary
structure of S is a set of mutually compatible base pairs (si1 , sj1), (si2 , sj2),
. . . , (sir , sjr ). Two base pairs, such as (si, sj) and (si+1, sj−1) are mutually
adjacent. A stacking is constituted by two mutually adjacent base pairs.

A feasible secondary structure FS(S) of an RNA sequence S fulfills that if
(si, sj) is a base pair in FS(S), then either (si+1, sj−1) or (si−1, sj+1) or both
are base pairs in FS(S), which implies that a feasible secondary structure is
composed of helices.

Now we present the formal definition of the problems studied in this paper.

Definition 1. Maximum Stacking Base Pairs with Degree Bounded, k-MSBP.
Input: An RNA sequence S, and a set of candidate base pairs BP , where the
degree of each base is bounded by k.
Output: A feasible secondary structure FS(S) such that the number of the base
pairs is maximized.

Definition 2. Maximum Weighted Stacking Base Pairs with Degree Bounded,
k-MWSBP.
Input: An RNA sequence S, and a set of candidate base pairs BP , where the
degree of each base is bounded by k.
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Output: A feasible secondary structure FS(S) such that the total weight of the
base pairs is maximized.

k-MSBP is a special case of k-MWSBP with all base pairs having a weight of
1. In the next section, we will prove that k-MSBP is APX-hard which implies
that k-MWSBP is also APX-hard. Note that an approximation algorithm for
k-MWSBP also works on k-MSBP.

3 Hardness Results

In this section, we will show that k-MSBP is APX-hard by a reduction from the
Maximum Independent Set Problem on Cubic Graphs (3-MIS).

Theorem 1. It is NP-hard to approximate 3-MIS within 140
139 − ε [18].

For the sake of simplicity, we just prove that 2-MSBP is NP-hard and then
APX-hard, which means k-MSBP is also APX-hard for all k ≥ 2.

Given a cubic graph G = (V,E) as an input for 3-MIS, for each vertex v ∈ V ,
we construct an RNA subsequence of 32 bases: A1

v, A
2
v, . . . , A

18
v , U1

v , . . . , U14
v , and

18 candidate base pairs: (A1
v, U5

v ), (A2
v, U4

v ), (A3
v, U2

v ), (A4
v, U1

v ), (A7
v, U8

v ), (A8
v,

U7
v ), (A11

v , U14
v ), (A12

v , U13
v ), (A15

v , U11
v ), (A16

v , U10
v ), (A4

v, U9
v ), (A5

v, U8
v ), (A6

v,
U4
v ), (A7

v, U3
v ), (A8

v, U12
v ), (A9

v, U11
v ), (A10

v , U7
v ), (A11

v , U6
v ). See Fig. 1 for an

example. There are two feasible secondary structures of this RNA subsequence:
the first 10 base pairs (which is maximum, see the solid matching edges in Fig. 1)
and the last 8 base pairs (see the dotted matching edges). The RNA sequence
RG is the concatenation of all the subsequences which are split by peg bases.

Fig. 1. The RNA subsequence and base pairs corresponding to a vertex.

We can orient the edges of G in such a way that each vertex has at most two
incoming edges and at most two outgoing edges. This can be done as follows:
iteratively find edge-disjoint cycles in G, and in each cycle, orient the edges to
form a directed cycle. The remaining edges form a forest. For each tree in the
forest, choose one of its nodes of degree one to be the root, and orient all edges
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in the tree away from the root. This orientation will clearly satisfy the desired
properties.

For each vertex v, we name A1
v, A3

v as two incoming interfaces, A12
v , A16

v as
two outgoing interfaces. Initially all interfaces are free. Let (u, v) be an edge
from u to v in G.

Construct new base pairs as follows:

1. If A12
u is a free outgoing interface of u and A1

v is a free incoming interface of
v. Then delete the two bases pairs: (A1

v, U5
v ), (A2

v, U4
v ), and make two new

base pairs: (A12
u , U5

v ), (A13
u , U4

v ).
2. If A12

u is a free outgoing interface of u and A3
v is a free incoming interface of

v. Then delete the four bases pairs: (A3
v, U2

v ), (A4
v, U1

v ), (A4
v, U9

v ), (A5
v, U8

v ),
and make four new base pairs: (A12

u , U2
v ), (A13

u , U1
v ), (A13

u , U9
v ), (A14

u , U8
v ).

3. If A16
u is a free outgoing interface of u and A1

v is a free incoming interface of
v. Then delete the two bases pairs: (A1

v, U5
v ), (A2

v, U4
v ), and make two new

base pairs: (A16
u , U5

v ), (A17
u , U4

v ).
4. If A16

u is a free outgoing interface of u and A3
v is a free incoming interface of

v. Then delete the four bases pairs: (A3
v, U2

v ), (A4
v, U1

v ), (A4
v, U9

v ), (A5
v, U8

v ),
and make four new base pairs: (A16

u , U2
v ), (A17

u , U1
v ), (A17

u , U9
v ), (A18

u , U8
v ).

Lemma 1. Let G be a cubic graph on N vertices. Then, there exists an inde-
pendent set of size l in G if and only if there exists a feasible secondary structure
of size 8N + 2l.

Proof. From our construction, each RNA subsequence can have a feasible sec-
ondary structure with either 10 base pairs or 8 base pairs. The crucial observation
is that, if there is an edge (u, v) between two vertices in G, then the RNA subse-
quence corresponding to u and v can not both have feasible secondary structures
with 10 base pairs.

So, if there is an independent set I of size l in G, for u ∈ I, choose a feasible
secondary structure with 10 base pairs, for u /∈ I, choose a feasible secondary
structure with 8 base pairs, then we can obtain a feasible secondary structure
with 8N + 2l base pairs.

Conversely, if there is a feasible secondary structure FS(RG) of size f , let I
consist of all vertices u such that the subsequence corresponding to u contributes
10 base pairs, it is obvious that I is an independent set, and f = 8(N − |I|) +
10|I| = 8N + 2|I|. ��
Theorem 2. 2-MSBP is APX-hard.

Proof. Note that the maximum stacking base pairs instance we construct from
an instance of 3-MIS is actually an 2-MSBP. Let I be an instance of 3-MIS and
OPT(I) be its optimal solution. Let f(I) be an instance of 2-MSBP constructed
from I and OPT (f(I)) be its optimal solution. Let y′ be a solution of f(I) and
g(y′) be the corresponding solution of I. The reduction is an L-reduction since
it fulfills the following two conditions:

1. |OPT (f(I))| = 8N + 2OPT (I) ≤ 34 · OPT (I), since OPT (I) ≥ N/4.
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2. |OPT (I)|−|g(y′)| = (|OPT (f(I))|−8N)/2−(|y′|−8N)/2 = (|OPT (f(I))|−
|y′|)/2.

This completes the proof. ��

4 Approximation Algorithms for k-MWSBP
by LP-Rounding

In this section, we will design an approximation algorithms for k-MWSBP by a
nonlinear LP-rounding method. Firstly, we formulate k-MWSBP as a 0–1 Integer
Linear Program (ILP). Let S = s1s2 · · · sn be an RNA sequence of n bases, let
BP be the set of candidate base pairs. For each base pair (si, sj), we define a
0–1 variable xi,j , if (si, sj) is chosen into the feasible secondary structure, then
xi,j = 1, otherwise xi,j = 0.

ILP-(1):

MAX.
∑

(si,sj)∈BP

ωi,jxi,j

S.T.
n∑

j=1

(xi,j + xj,i) ≤ 1, for i = 1, ..., n (1)

xi,j − (xi−1,j+1 + xi+1,j−1) ≤ 0, for i ≤ j (2)
xi,j ∈ {0, 1}

Constraints (1) guarantee that the chosen base pairs are mutually compatible.
Constraints (2) require that each chosen base pair must have at least one adjacent
partner. Relaxing ILP-(1) to the linear programming formulation.

LP-(2):

MAX.
∑

(si,sj)∈BP

ωi,jxi,j

S.T.

n∑

i=1

(xi,j + xj,i) ≤ 1, for j = 1, ..., n

xi,j − (xi−1,j+1 + xi+1,j−1) ≤ 0, for i ≤ j

0 ≤ xi,j ≤ 1

Algorithm 1. Nonlinear LP-rounding
1: Solving LP-(2) and obtain an optimal solution xi,j = x∗

i,j .

2: Rounding Strategy: Pr(x′
i,j=1)=1 - e

−a
√

x∗
i,j .

3: Chose the base pair (si, sj) if and only if x′
i,j=1.
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Theorem 3. Algorithm-1 is an approximation algorithm for 2-MWSBP with an
expected factor of 32e3

8e−1 .

Proof. To obtain a feasible secondary structure, every chosen base pair must be
compatible with each other, we say that such base pairs are effective. Let Ai,j

be the event that the base pair (si, sj) is effective. Assume that there are three
such base pairs: (si, sj), (sk, si), (sj , sl). To make (si, sj) effective, it requires
x′
i,j = 1, x′

k,i = 0, and x′
k,l = 0. Thus,

Pr(Ai,j) = (1 − e−a
√

x∗
i,j ) × e−a

√
x∗
k,i × e−a

√
x∗
j,l

≥ (1 − e−a
√

x∗
i,j ) × e−2a

√
1−x∗

i,j

≥ c
√

x∗
i,j

where c is a constant, to be determined later. To make an effective base pairs (si,
sj) chosen into the feasible secondary structure, it also requires at least one of
(si−1, sj+1) and (si+1, sj−1) to be effective. Let Bi,j be the event that the base
pair (si, sj) take part in constituting stacking and let zi,j be an 0–1 variable,
where zi,j = 1 if Bi,j happens, and zi,j = 0 if not.

Pr(zi,j = 1) = Pr(Ai,j)[1 − (1 − Pr(Ai−1,j+1))(1 − Pr(Ai+1,j−1))]

≥ c
√

x∗
i,j · [1 − (1 − c

√
x∗
i−1,j+1)(1 − c

√
x∗
i+1,j−1)]

≥ c
√

x∗
i,j

{
1 − [

2 − c(
√

x∗
i−1,j+1 +

√
x∗
i+1,j−1)

2
]2

}

Since
√

x∗
i−1,j+1+

√
x∗
i+1,j−1 ≥ √

x∗
i−1,j+1 + x∗

i+1,j−1, and by constraint (2), we
have x∗

i−1,j+1 + x∗
i+1,j−1 ≥ x∗

i,j , then,
√

x∗
i−1,j+1 +

√
x∗
i+1,j−1 ≥ √

x∗
i,j .

Pr(zi,j = 1) ≥ c
√

x∗
i,j · [1 − (

2 − c
√

x∗
i,j

2
)2]

≥ c
√

x∗
i,j · (c

√
x∗
i,j − c2x∗

i,j

4
)

≥ x∗
i,j · (c2 − c3

4
)

Let APP denote the size of the output solution of Algorithm1, OPT denote the
size of the optimal solution, which is also the optimal solution of ILP-(1), and
OPT (LP ) denote the optimal solution of LP-(2). Obviously, OPT (LP ) ≥ OPT
then we have,
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E(APP ) = E(
∑

(si,sj)∈BP

ωi,j · zi,j)

=
∑

(si,sj)∈BP

ωi,jPr(zi,j = 1)

≥
∑

(si,sj)∈BP

[
ωi,j · x∗

i,j · (c2 − c3

4
)
]

= (c2 − c3

4
) ·

∑

(si,sj)∈BP

ωi,jx
∗
i,j

= (c2 − c3

4
) · OPT (LP )

≥ (c2 − c3

4
) · OPT

Let t =
√

x∗
i,j , the function F (t) = (1−e−at)e−2a

√
1−t2

t , (0 < a ≤ 1, 0 ≤ t ≤ 1),
reaches its minimum value, when t trends to 0:

lim
t→0

F (t) = lim
t→0

(1 − e−at)e−2a
√
1−t2

t
=

a

e2a
.

By setting a = 1
2 and c = 1

2e , we obtain the best approximation ratio of 32e3

8e−1
for 2-MWSBP.

Theorem 4. Algorithm1 is an approximation algorithm for k-MWSBP with an
expected factor of 32(k−1)3e3

8(k−1)e−1 .

Proof. The difference between k-MWSBP and 2-MWSBP is the degree of bases.
In an k-MWSBP instance, a base pair (si, sj) is not compatible with (st1 , si) ,
(st2 , si),. . . , (stk−1 , si) and (sj , sl1), (sj , sl2),. . . , (sj , slk−1). Then the probability
that (si, sj) is effective is

Pr(Ai,j) = (1 − e−a
√

x∗
i,j ) · e

−a
√

x∗
t1,i · · · e−a

√
x∗
tk−1,i · e

−a
√

x∗
j,l1 · · · e−a

√
x∗
j,lk−1

by constraint (1), x∗
t1,i

+ ... + x∗
tk−1,i

+ x∗
i,j ≤ 1 and x∗

i,j + x∗
j,l1

+ ... + x∗
j,lk−1

≤ 1.
Thus,

Pr(Ai,j) = (1 − e−a
√

x∗
i,j ) · e

−a
√

x∗
t1,i · · · e−a

√
x∗
tk−1,i · e

−a
√

x∗
j,l1 · · · e−a

√
x∗
j,lk−1

≥ (1 − e−a
√

x∗
i,j ) × e−(2k−2)a

√
1−x∗

i,j

≥ c
√

x∗
i,j
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The probability that (si, sj) takes part in constituting stacking is

Pr(zi,j = 1) = Pr(Ai,j)[1 − (1 − Pr(Ai−1,j+1))(1 − Pr(Ai+1,j−1))]

≥ c
√

x∗
i,j · [1 − (1 − c

√
x∗
i−1,j+1)(1 − c

√
x∗
i+1,j−1)]

≥ c
√

x∗
i,j

{
1 − [

2 − c(
√

x∗
i−1,j+1 +

√
x∗
i+1,j−1)

2
]2

}

≥ c
√

x∗
i,j · [1 − (

2 − c
√

x∗
i,j

2
)2]

= c
√

x∗
i,j · (c

√
x∗
i,j − c2x∗

i,j

4
)

≥ x∗
i,j · (c2 − c3

4
)

Let t =
√

x∗
i,j , the function F (t) = (1−e−at)e−(2k−2)a

√
1−t2

t , (0 < a ≤ 1, 0 ≤ t ≤ 1),
reaches its minimum value, again when t trends to 0:

lim
t→0

F (t) = lim
t→0

(1 − e−at)e−(2k−2)a
√
1−t2

t
=

a

e(2k−2)a
.

By setting a = 1
2k−2 and c = 1

(2k−2)e , we obtain the best approximation ratio

of 32(k−1)3e3

8(k−1)e−1 for k-MWSBP. ��

5 Simulations

In this section, we show some experiments on randomly generated simulated
data. In the simulated data, the length of the RNA sequences ranges from n =
100 to n = 1000, we choose three values for k: k = 2, k = 3, k = 4. For
comparison, besides running the LP-rounding approximation algorithm, we also
run the ILP-(1) to obtain the optimal solutions (though when n gets large, the
running time gets really high). The performance are summarized as follows.

5.1 Performance Evaluation

For k = 2, the experimental results are shown in Table 1. As what is stated
in Theorem 2, the approximation factor for 2-MWSBP is about 31. From the
experimental results in Table 1, the actual approximation factor is about 4.8,
which is much better than the theoretical bound.

For k = 3, the experimental results are shown in Table 2. Similarly, the actual
approximation factor is about 6.07. Again, the experimental results show much
better performance compared with the theoretical results.

For k = 4, the experimental results are shown in Table 3. While the practi-
cal approximation factor fluctuates more in the case, the average approximation
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Table 1. Values of optimal solution (OPT(I)), approximation solution (APP(I)) and
the approximation factor, when k = 2.

n OPT(I) APP(I) Approximation ratio

100 52 13 4.00

200 113 25 4.52

300 163 31 5.26

400 225 39 5.77

500 313 73 4.29

600 358 69 5.19

700 424 94 4.51

800 455 111 4.10

900 543 130 4.18

1000 632 170 3.72

factor is about 7.44. From our experimental results, we can conclude that the
actual performance of our algorithm is much better than the corresponding the-
oretical bound, the reason is probably due to that the theoretical result is base
on the worst-case analysis.

5.2 Runtime Analysis

As discussed before, solving the integer linear program ILP-(1) takes quite some
time when n gets large. Hence, we compare the running time of solving the ILP
and our LP-rounding approximation algorithm. The results are summarized in
Table 4 and Fig. 2.

Table 2. Values of optimal solution (OPT(I)), approximation solution (APP(I)) and
the approximation factor, when k = 3.

n OPT(I) APP(I) Approximation ratio

100 80 22 3.64

200 170 31 5.48

300 235 32 7.34

400 340 53 6.42

500 475 58 8.19

600 534 81 6.59

700 640 128 5.00

800 708 131 5.40

900 813 123 6.61

1000 955 158 6.04
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Table 3. Values of optimal solution (OPT(I)), approximation solution (APP(I)) and
the actual approximation factor, when k = 4.

n OPT(I) APP(I) Approximation ratio

100 103 22 4.68

200 229 59 3.88

300 332 39 8.51

400 454 37 12.27

500 642 60 10.70

600 707 121 5.84

700 846 128 6.61

800 924 122 7.57

900 1108 166 6.67

1000 1252 163 7.68

Table 4. The running time (seconds) of solving the ILP and the LP-rounding approx-
imation algorithm.

n k = 2 k = 3 k = 4

ILP LP-rounding ILP LP-rounding ILP LP-rounding

100 3.11 3.78 3.46 3.90 3.62 3.22

200 11.63 11.91 11.85 11.69 11.69 11.78

300 23.84 25.08 23.90 24.77 24.10 24.91

400 47.26 46.40 46.43 45.88 47.24 46.23

500 147.24 78.16 216.74 78.57 324.22 79.60

600 135.81 117.65 145.16 119.15 354.60 117.45

700 207.78 170.22 209.67 170.00 1403.68 169.49

800 243.78 199.27 216.44 198.71 276.14 199.02

900 258.93 217.81 4096.56 216.48 48420.51 217.05

1000 2642.49 243.57 6683.80 243.70 73952.46 247.81

As shown in Fig. 2, solving the ILP takes much more time as n increases, while
the running time of our approximation algorithm is very stable. This is probably
due to that the ILP solver takes exponential time, while the approximation
algorithm takes polynomial time.
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Fig. 2. The plot graph of the running times of the ILP and LP-rounding algorithms.

6 Concluding Remarks

In this paper, we studied a restricted version of the maximum stacking base pairs
problem, which originates from RNA secondary structure prediction. Regardless
of whether the base pairs are weighted or not, we show that this problem is APX-
hard, when the degree of each base is bounded by a constant k. Also, we design
the first approximation algorithm for this problem with a factor of 32(k−1)3e3

8(k−1)e−1 for
k-MWSBP by a nonlinear LP-rounding method. Our experimental results indi-
cate a much better performance compared with this theoretical approximation
factor and our algorithm is much faster than the exponential time of solving
ILP. How to improve the approximation factor for k-MWSBP is an interesting
open problem.
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Abstract. Gene partitioning is a very common task in genomics, based
on several criteria such as gene function, homology, interactions, and
more. Given two such partitions, a metric to compare them is called for.
One such metric is based on multi symmetric difference and elements
are removed from both partitions until identity is reached. While such a
task can be done accurately by a maximum weight bipartite matching,
in common settings in comparative genomics, the standard algorithm
to solve this problem might become impractical. In previous works we
have studied the universal pacemaker (UPM) where genes are clustered
according to mutation rate correlation, and suggested a very fast and
greedy procedure for comparing partitions. This procedure is guaranteed
to provide a poor approximation ratio of 1/2 under arbitrary inputs.

In this work we give a probabilistic analysis of this procedure under a
common and natural stochastic environment. We show that under mild
size requirements, and a sound model assumption, this procedure returns
the correct result with high probability. Furthermore, we show that in
the context of the UPM, this natural requirement holds automatically,
rendering statistical consistency of this fast greedy procedure. We also
discuss the application of this procedure in the comparative genomics
rudimentary task of gene orthology where such a solution is imperative.

1 Introduction

Gene partitioning and clustering is ubiquitous in comparative, evolutionary
genomics [8,11,22]. Partition is done based on functions, mutation rates, inter-
action networks, and more. Clustering is commonly performed by statistical,
geometric approaches, where kmeans is among the most popular [7,12]. Never-
theless, different approaches, different parameters, data quantities, all may lead
to differences in partitioning. The latter calls for a metric over the set of par-
titions. Under such metric, we can define distances and determine whether two
partitions are close or far apart and what is the likelihood (p-value) of obtaining
such a distance by chance.

One such metric is based on the symmetric difference measure between
sets. Elements from the ground set on which the partitions are defined, are
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removed from both partitions, until identity is reached. Such an identity induces
a matching (subsets bijection) under which subsets (parts) from both partitions
are matched (where, in case of unequal sized partitions, unmatched parts are
matched to empty sets), and the symmetric difference between the matched sets
is calculated. In [6] Gusfield noted that this task can be casted as an assignment
problem [3,10] and hence be solved by a maximum flow in a bipartite graph in
time O(mn + n2 log n) [1]. As the graphs at hand are complete, this turns to
be θ(n3) and for biological instances of several thousands nodes (e.g. bacterial
genomes harbour around 5000 genes) this solution is impractical. A possible rem-
edy to the latter is the use of heuristic approaches that may return sub optimal
solutions. These solutions return matchings that imply the removal of excessive
number of elements (compared to optimal solutions). Therefore the accuracy of
the matching is crucial. In [16] we used a very simple O(|E| log |V |)-time greedy
heuristic for the problem, that we denoted Greedy PartDist. While the algorithm
was shown to provide a poor 1/2-approximation ratio in the general case [15],
it exhibited good performance in practice (let alone the asymptotic speedup of
almost an order of magnitude).

Motivated by this latter result, in this work we set to explain analytically this
improved performance of the Greedy PartDist algorithm. The problem of finding
the partition distance is presented as a convex recoloring problem [14,14] where
element’s color indicates original partition membership and we require the target,
output, partition to be colored convexly, that is, each part is monochromatic and
distinct from all other parts. We define an underlying random setting resembling
a wide array of biological settings where errors in clustering follow a random
distribution. The analysis is conveyed via the universal pacemaker (UPM) realm
in which we first tackled this clustering problem [16,17]. While the handling
is generic and is not confined to any specific context, the UPM setting confers
more intuition to the analysis, and we briefly describe it here. The UPM concept
was introduced in the context of molecular evolution to account for variation in
gene’s mutation rate [18–20] as opposed to the Molecular Clock (MC) [9,23]
model, where gene mutation rate is constant. Under the UPM model, genes
belonging to the same pacemaker change their mutation rate in correlation. The
difference between the two models is depicted in Fig. 2. This gene correlation
induces a partition over the gene set where part/subset membership is defined
by pacemaker membership which is based either on the level of evolutionary rate
or rate correlation [4,5,16].

Our first result is general and shows that when elements have even a slight
tendency (i.e. constant, independent of the problem’s size), to maintain their
original membership (or equivalently, color), it is enough to have even a small
(logarithmic in the problem’s size) number of elements in each part. We first
prove this by conditioning all parts to be of equal magnitude, and subsequently
relax this condition with additional, yet constant, increase in the average part
size. Then, we return to the UPM setting and show that our mild assumption
holds automatically. This in turns furnishes the desirable property of statistical
consistency of the Greedy PartDist algorithm under the UPM model. Finally,
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as a further research direction, we describe the application of the algorithm to
the fundamental task in comparative genomic of determining gene orthology
clustering.

Comment: Due to space considerations, several proofs were omitted and will
appear in the journal version.

2 The Evolutionary Model

As the central part of this work is conveyed via an evolutionary setting, we
provide here a brief description of this model. An evolutionary tree is a tree
T = (V,E) where the set of species are mapped to the leaves of T and the edges
represent ancestry relationships. Each edge j is associated with a time period
{tj} that indicates the time between ancestor to the respected descendant (see
Fig. 1(a)). All genes evolve along T by acquiring mutations proportionally to the
time along the various edges. As all genes evolve on T in an identical manner,
and since we are concerned only in the actual time periods, henceforth we will
identify these time periods with tree edges and completely ignore the topological
information of T .

Under the molecular clock (MC) each gene gi tends to evolve at an intrinsic
rate ri that is constant along time but deviates randomly along the time periods.
Let ri,j be the actual (or observed) rate of gene i at period j. Then ri,j = rie

αi,j

where 0 < eαi,j is a multiplicative error factor. The number of mutations in gene
gi along period j is hence �i,j = ri,jtj , commonly denoted as the branch length
of gene gi at period j. Throughout the text, we will reserve the letters i and j
(and their derivatives) to index genes and periods respectively (eg. gi and tj).

Fig. 1. (a) A phylogenetic (evolutionary) tree over the species {A, B, C, D}. (b) A
scheme of a spatial representation of three pacemakers (red big balls) and their asso-
ciated genes (small blue balls) centered around them (Color figure online)

We now extend this model to the UPM model that include a pacemaker,
accelerating or decelerating a gene gi, relative to its intrinsic rate ri. Formally,
a pace maker (or simply PM) Pk is a set of τ paces βk,j , 1 ≤ j ≤ τ where βj
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is the relative pace of PM during time period j. We reserve k to index PMs.
Under the UPM model, a gene gi that is associated with PM Pk has actual rate
at period j: ri,j = rie

αi,j eβk,j . In Fig. 2 we demonstrate the difference between
the two models - the MC (left) and the UPM (right). In both models, the same
ratio between the genes’ evolutionary rate is maintained at all times, only that
under the UPM rates change according to the pacemaker’s rate whereas under
the MC there is no pacemaker and rates are constant.

Fig. 2. Left: two genes of different intrinsic rates maintain the same rate along all lin-
eages of a tree. Right: the genes change their intrinsic rate but by the same proportion.
In both cases, the same ratio (constant relative rate) is kept at all times.

We assume that every gene is associated with some PM and let PM(gi) be
the PM of gene gi. Then the latter defines a partition over the set of genes G,
where genes gi and gi′ are in the same part if PM(gi) = PM(gi′) (see Fig. 1(b)
for illustration). while this is not essential to the current work, It is important to
note that gene rates, as well as pace makers paces, are hidden and that we only
see for each gene gi, its set of edge lengths �i,j . Additionally, the presence of two
genes in the same part (PM) does not imply anything about their magnitude of
rates, rather on their unison of rate divergence. In [16] we defined and studied
PM Partition identification Problem that aims at reconstructing the original
gene partition based on observed edge lengths solely.

Nevertheless, we can exploit some statistical random structure on the given
setting that was observed in nature [21]. This randomness will provide us with
signal to distinguish between the objects. By [21] we say that for all genes gi and
periods j, αi,j ∼ N(0, σ2

G), and for all PMs Pk and periods j, βk,j ∼ N(0, σ2
P ).

In [17] we have provided sufficient conditions to reconstruct the pacemaker par-
tition, in terms of these parameters (the PM and gene variances, and the number
of genes/PMs).

3 The Partition Distance Algorithm

While the previous discussion dealt with the partition induced by the PMs and
our ability reconstruct it, sometimes we are unable to correctly reconstruct the
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original partition, whether for reasons of insufficient data, unexpected statistical
errors, and more. This calls for the task to assess the quality of reconstruction, or
more generally, measure the partition distance, defined as the minimal removal
of elements from both partitions until they are identical. The task is inherently
different than before as we are only concerned with returning a correct answer.
One way to look at it is as a recoloring problem [13,14]. The PM identity is a
color c ∈ C so that every gene is colored with the color of its original PM. The
coloring function C maps a gene gi to its PM (equivalent to PM(gi) above) and
C−1(P ) returns the set of genes of (or associated with) PM P . Given another
partition P ′ defined over a colored element set, where the coloring is as defined
by P , the goal is to recolor the least number of elements in P ′ such that every
part is monochromatic and the colors of every two parts are distinct. Therefore,
henceforth we will use the notions of PM identity and a color interchangeably.
In [6] Gusfield noted that the partition distance problem can be casted as an
assignment problem [3,10] and hence be solved by a maximum flow in a bipartite
graph in time O(mn + n2 log n) [1]. In the graph G = (P,P ′, E,w), each node
u ∈ P is a part (PM) in the original partition, and a node v ∈ P ′ is a part in the
partition returned by the classifier. For e = (u, v) ∈ E, w(e) is the size of the
intersection C−1(u) ∩ C−1(v). Note that in P, each part u is monochromatic as
it corresponds to an original PM.

In [16] a very simple O(|E| log |V |) heuristic for the problem is provided. The
algorithm, denoted here Greedy PartDist, simply sorts the edges in the bipartite
graph and then recursively chooses the heaviest edge to the matching, removes all
edges adjacent to the chosen edge, and continues in the recursion. This algorithm
was shown by Preis to be a 1/2-approximation even for the general case [15]
(non bipartite). Here we show that under our probabilistic model this algorithm
returns the correct result (as opposed to an approximated one). We first provide
the algorithm.

Greedy PartDist (P,P ′):

– Construct the bipartite graph B(P,P ′, E,w) with w(p, p′) = s(p, p′) for
every p ∈ P and p′ ∈ P ′ s.t. s(p, p′) > 0

– sort E according to w by descending order and use it as a stack to fetch
elements.

– MG ← ∅
– while E is not empty

• (p0, p′
0) ← pop(E)

• MG ← MG ∪ (p0, p′
0)

• Remove all (p0, pj) and (pi, p
′
0) items from E

– match arbitrarily zero-degree elements from P with zero-degree elements
from P ′ and add to MG

– Return MG
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3.1 Probabilistic Analysis of Algorithm Greedy PartDist

Before we portray the main result of this section, we explain the setting. We
assume an initial assignment of equal number of genes per each PM. This
assumption is natural but also necessary as we cannot expect that if some PM
has a single gene (or very few genes), that gene will with high probability choose
that PM. Next, we assume a constant probability α in which a gene chooses its
new part, and this constant is determined by the variances σG and σP that are
also constant parameters in our setting. Therefore, this is the main theorem of
this part:

Theorem 1. Given m PMs and n genes such that n = Ω(m log m). Assume
all PMs are associated with the same number of genes, and each gene (even
slightly) prefers its own PM with probability 0 < α ≤ 1, then for m large enough,
Algorithm PartDist returns the correct result.

Proof. The proof follows by first showing under which condition Algorithm Part-
Dist is correct, and then shows this condition holds with high probability. We
start with a useful definition.

Definition 1. We say that a color d is correctly clustered if most of the d-
colored genes in P, choose their original color (PM) in P ′. We say that a colored
partition P is correctly clustered by another partition P ′ if every color in P is
correctly clustered.

In [16] it was shown that if every color is correctly clustered, then Greedy
PartDist returns the correct result.

Lemma 1. Assume all PMs have the same number of genes - n/m. Assume
every gene chooses its own color with probability 0 < α ≤ 1 and with probability
1 − α chooses uniformly any PM (including its own). Then with probability at
least 1 − 2me− α2

16
n
m every color is correctly clustered.

Proof. In our model here every node in P, as well as in P ′ corresponds to a single
color, and all colors are distinct; that is, there is a bijection C : V (P) → C, and
the same bijection holds also for V (P ′). A gene gi with some original color (i.e. in
P), chooses a new color in P ′ and moves to that new node (without changing its
original color). Consider a specific color d and let vd be the node corresponding
to the d-color in the partition P ′. For a color c and a node v in P ′, denote
by C−1

c (v) the set of c-genes (i.e. with original color/PM c) that chose the PM
represented by v in P ′ (or equivalently, the weight of the edge linking between
the c-PM in P to v in P ′). Therefore, C−1

d (vd) is the set of d-colored genes that
chose their original color. For a node v ∈ P ′ and a color c, we denote v as the
majority node for c if |C−1

c(v)| ≥ |C−1
c(v′)| for any other v′ ∈ P ′. By our assumptions,

there are n/m d-colored genes, therefore each retains the d color with probability
p where

p = α + (1 − α)/m, (1)
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and the expected number of genes retaining color d is,

E [C−1
d (vd)] =

n

m

(
α +

1 − α

m

)
. (2)

We note that we are interested only in the number of genes with original color d
who retained d as a color. The final number of genes with color d may be larger
for genes with original color other than d who chose d.

We now pursue the following technique to prove a lower bound on the prob-
ability for correct clustering. For a given color d (equivalently part or PM), we
set a threshold t and require that no color d′ �= d is chosen by at least t d-genes,
and that at least t d-genes retain their color. As this implies correct clustering,
its probability serves as a lower bound for the latter.

We follow the above idea by bounding from above the probability of the
complementary case. The following observation that is given without a proof,
formalizes that.

Observation 1. If there exists v′ ∈ P ′ other than vd, such that |C−1
d (v′)| >

|C−1
d (vd)| (or in words, vd is not the majority for the d-genes), then for any t,

either (a) |C−1
d (vd)| < t or (b) |C−1

d (v′)| > t.

In other words, if neither events (a) or (b) occur, then vd is the majority node
for color d. We now show that events (a) and (b) from Observation 1 occur in
low probability. For this we need to set a concrete value for t and the value we
choose is n

m

(
α/2 + 1−α

m

)
. Then, events (a) and (b) from Observation 1 become

the following condition.

Condition 1. It is a sufficient condition for correct clustering for a color d, if
both sub conditions below do not occur.

a. |C−1
d (vd)| < n

m

(
α/2 + 1−α

m

)
, or

b. |C−1
d (v′)| > n

m

(
α/2 + 1−α

m

)
.

The following requirement for 1/m < α is sound as for small m’s the probability
of some v �= vd to be the majority node for color d is relatively high and we
require α, the color retention preference, to be relatively high.

Claim. Assume 1/m < α. Then, Conditions (1.a) and (1.b) occur with proba-
bility at most 2e− α2

16
n
m .

The proof of this Claim 3.1 is technical and involved and therefore deferred to
the journal version.

As there are m PMs, the probability that events (a) and (b) from Observa-
tion 1 occur for some PM is bounded by 2me− α2

16
n
m . This completes the proof of

Lemma 1.

Corollary 1. If there are m PMs and n = Ω(m log m) genes, then with proba-
bility 1 − o(1) Algorithm Greedy PartDist returns the correct result.
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Proof. Let n = c1m log m where c1 is a constant. Then by Claim 3.1, a single
PM is not correctly clustered with probability at most 2e− α2

16
n
m . As there are

m PMs, by the union bound, the probability that some PM is not correctly
clustered is bounded by:

2me− α2
16

n
m

= 2me− α2
16

c1m log m
m

= 2m1−c1
α2
16

= o(1),

for c1 > 16
α2 .

This completes the proof of Theorem 1.

3.2 Extension to Fully Random Model

We now extend the model above to a fully random model. Recall that in the
derivation above (Sect. 3.1), we assumed all PMs possess the same number of
genes - n/m. We now extend the model to a fully random model. Under this
model, a gene not only chooses its target PM, rather also its source (host) PM
and therefore its color. Now, the uniform assumption is not valid anymore and
we should account for variable number of genes under any color. To cope with
this situation, we give a bound on the number of genes under each PM and
incorporate that bound into our analysis. For the sake of simplicity, we assume
a uniform distribution over the PMs, that is, a gene chooses each one of the
m colors with probability p = 1/m, and we note that this can trivially be
expanded to any other constant probability set [pi]i≤m where

∑
i pi = 1. Under

this setting, the number of genes under each PM follow a standard multinomial
distribution and the expected number of genes under the uniform distribution
is E [|C−1(P )| = n/m as our previous assumption (Sect. 3.1). We want now to
guarantee that the number of genes under each PM P is at least (1−ε)n/m. while
this can be done accurately by the cumbersome inclusion/exclusion principle, we
can get a good enough bound using the Chernoff lower bound, Theorem [2, Thm
A.1.13] .

Pr
[
|C−1(P )| < (1 − ε)

n

m

]

= Pr
[
|C−1(P )| − E [|C−1(P )| < −ε

n

m

]

< e−ε2( n
m )2/(2 n

m )

= e− ε2
2 ( n

m ). (3)

Again, to account this is correct for all PMs, we use the union bound and obtain
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Observation 2. Under the fully stochastic model, all PMs have at least (1−ε) n
m

genes, with probability at least

1 − me− ε2
2 ( n

m ). (4)

It remains now only to incorporate this bound, i.e. the lower bound on the
minimum number of genes at each part (PM, color) into our bounds for correct
clustering. A close look, with analysis similar to the one before, rather without
the assumption of constant size partitions, reveals that we just need to adjust
the exponent in the equation by multiplying with (1 − ε) as n/m is replaced by
(1 − ε)n/m. This yields

e− (1−ε)
2

nα2
m (5)

and
e−(1−ε)( α

16
n
m ). (6)

After combining both (5) and (6) we obtain

e− (1−ε)
2

nα2
m + e−(1−ε)( α

16
n
m )

≤ 2e−(1−ε)α2
16

n
m . (7)

Again we multiply by m to account for m PMs, leading to

Observation 3. Under the fully stochastic model, all PMs are correctly clus-
tered with probability at least

1 − 2me−(1−ε)α2
16

n
m . (8)

Finally, we need to account that both events, that each color (PM) is chosen by
at least 1 − ε genes, and that each color is retained, occur with high probability.
It is easy to see that this entails multiplying Eqs. (4) and (8) and keeping the
product close to one. Hence we obtain:

Corollary 2. For m number of PMs large enough, and O(m log m) genes, cor-
rect clustering is obtained with high probability under the fully random model.

The proof is omitted.

4 Specialization to the Universal Pacemaker Setting

The analysis in the previous section, although expressed in the UPM jargon,
was general and theoretical and assumed a constant, even small, α for which
each gene prefers to retain its original color. However, under our working model
of the UPM, we can relax that rigid assumption and instead rely on the model
to provide for such a natural preference. Therefore, for the UPM model we can
state a significantly stronger assertion. We now show that such an α indeed exists
under the UPM model, i.e. a gene indeed prefers to stay closer to its PM, and
provide some rough lower bound to it.
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Lemma 2. Under the UPM model, at every time period tj, there is a constant,
i.e. independent of n and m, positive probability for a gene to prefer its own PM.

Proof. Recall that under this model, a gene sets its rate at some period, around
its own PM, i.e. the value (pace) of the PM at that given period. We aim at
translating this property into our model. As this part is fairly involved, Fig. 3
illustrates the situation pictorially. Consider two PMs P and P ′ with paces
βk,j and βk′,j respectively, evolving τ periods, and let gi be a gene associated
with PM P - meaning its values (rates, ri,j) distribute normally around βk,j . We
concentrate now in the first period. Let d1 be the average of the PMs values at the
first period, and WLOG assume βk,1 > βk′,1, that is d1 = βk′,1 + 1

2 (βk,1 −βk′,1).
Also let d2 be its antipodal point with respect to βk,1 - specifically d2 = βk,1 +
1
2 (βk,1 − βk′,1). Now, it is easy to see that every point p1 from d1 toward (and
beyond) βk′,1 (i.e. (−∞, d1)) is closer to βk′,1 than to βk,1 and if gi will fall at
this interval, i.e. ri,1 ∈ (−∞, d1), it will end up closer to P ′ than to P at this
first period. However, for each such point p1, there is an equiprobable point p2
on the opposite side of βk,1 and right to d2 that is closer to βk,1 and that cancels
its reciprocal point. The opposite however, is not true. There are the points
along the interval between d1 and βk,1. These are all closer to βk,1 and have no

Fig. 3. Consistency of the Greedy PartDist algorithm under the UPM Model: in the
figure we see two PMs, red and blue with βk,1 = 3, βk′,1 = 0 respectively, and hence d1

is set in the middle, i.e. d1 = 1.5 and d2 is symmetric with respect to βk,1, i.e. d2 = 4.5.
Without loos of generality, original genes’ color is red and therefore choose coordinates
(values) according to the red distribution, i.e. normal βk,1 = 3. All genes with values
in the interval (d1, d2) will choose the red color (PM), and yet have no equiprobable
interval that prefers the blue PM. (Color figure online)
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reciprocals that are closer to βk′,1, on the contrary - their antipodal points are
in the interval (βk,1, d2] and are also closer to βk,1. Therefore, the probability of
gi (i.e. ri,1) falling in that interval (d1, bk,1] is

1
2

− Φ(d1 − βk,1), (9)

where Φ is the normal density function.
Now, the value in Eq. (9) is always non negative and constant as it depends

only on the difference βk,1 − βk′,1, since d1 < βk,1, yielding Φ(d1 − βk,1) < 1/2.

The argumentation above is demonstrated in Fig. 3 where we set βk′,1 = 0, βk,1 =
3, and hence d1 = 1.5 and d2 = 4.5. Original genes’ color is red and therefore
choose coordinates (values) according to the red distribution, i.e. normal around
βk,1 = 3. All genes with values in the interval (d1, d2) will choose the red color
(PM), and yet have no equiprobable interval that prefers the blue PM.

Now, Lemma 2 refers to a single time period. However since this holds for
every period j (although with different βk,1 and βk′,1), the probability of falling
closer to P increases with every period. Therefore, the probability of gi falling
in the interval [d1, βk,1] serves as a lower bound for α.

We can now state our main claim for this part. An algorithm A is considered
statistically consistent under a (statistical) model M if the more data A is given
(or “sees”) from M , the greater the probability to return the correct answer, and
as a special case, this probability tends to 1 at the infinity. The above discussion
leads to the following conclusion.

Corollary 3. Algorithm Greedy PartDist is statistically consistent under the
UPM stochastic model.

5 Concluding Remarks and Further Research

In this work we have provided a probabilistic study of the greedy PartDist algo-
rithm, that runs a fast, greedy matching on a bipartite graph. We specialized on
the universal pacemaker paradigm but the analysis is generic and can apply to
a host of probabilistic settings and partitioning. While the algorithm provides
a relatively poor guarantee of 1/2 under a general setting, we here prove that
under a relatively sound assumptions, it returns the correct result. Moreover,
we show that in a natural stochastic setting, this assumption holds with high
probability.

We start by describing the UPM setting where genes are partitioned accord-
ing to their pacemaker that in turn controls their mutation rate changes. Subse-
quently we turn to a seemingly unrelated problem of computing distance between
partitions and cast it as a recoloring problem. We show that under a stochastic
setting and a mild natural assumption, the algorithm greedy PartDist returns
the correct result. This is done in two stages where in the first stage we assume
for simplicity constant size parts, and we later relax this assumption to a fully
random model. Finally we revert to the UPM setting and show that the natural
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assumption from the previous section, holds. This in turn yields a strong con-
clusion of statistical consistency regarding the greedy PartDist algorithm under
the UPM model.

For further research and a proof for the utility and generality of the result, we
would mention that the same need for such an analysis arose in a different setting
of gene orthology detection, where orthologs between two genomes are sought.
Here similarity-based bipartite matching is employed to detect orthologs. For
the size of the problem’s inputs, the fast greedy PartDist algorithm is a sound
compromise. The result presented here has a promising role also in that latter
context.
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