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Abstract. Regularization has been introduced to electron tomography
for enhancing the reconstruction quality. Since over-regularization smears
out sharp edges and under-regularization leaves the image too noisy, find-
ing the optimal regularization strength is crucial. To this end, one can
either manually tune regularization parameters by trial and error, or
compute reconstructions for a large set of candidate values and compare
them to a reference image. Both are cumbersome in practice. In this
paper, we propose an image quality metric Q to quantify the reconstruc-
tion quality for automatically determining the optimal regularization
parameter λ without a reference image. Specifically, we use the oriented
structure strength described by the highest two responses in orientation
space to simultaneously measure the sharpness and noisiness of recon-
struction images. We demonstrate the usefulness of Q on a recently intro-
duced total nuclear variation regularized reconstruction technique using
simulated and experimental datasets of core-shell nanoparticles. Results
show that it can replace the full-reference correlation coefficient to find
the optimal λ. Moreover, observing that the curve of Q versus λ has
a distinct maximum attained for the best quality, we adopt the golden
section search for the optimum to effectively reduce the computational
time by 85%.

Keywords: Image quality assessment · Electron tomography ·
X-ray spectroscopy · Image reconstruction

1 Introduction

Electron tomography enables materials scientists to characterize nanoparticles in
three dimensions (3D) [12]. Scanning transmission electron microscopy (STEM)
has many imaging modes such as high-angle annular dark-field (HAADF) [12], in
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which the sample under study is exposed to a focused electron beam and tilted
to obtain two-dimensional (2D) projections at different angles. In tomography,
the collection of projections is called a tilt-series, from which we can recon-
struct a 3D image that represents the sample. Although HAADF tomography
can clearly reveal the inner structure of the sample, it cannot explicitly provide
its compositional information. To better understand samples with more com-
plex chemical compositions, spectral imaging techniques like energy dispersive
X-ray spectroscopy (EDS) [19] must be pursued. EDS tomography, however, is
currently hampered by slow data acquisition, resulting in a limited number of
elemental maps with low signal-to-noise ratio (SNR) [19].

Electron tomography is an ill-posed inverse problem whose solution is not
stable and unique. Therefore, l1 regularizations (e.g., total variation (TV) [8] and
higher order total variation (HOTV) [16,17]) have been introduced to enhance
the reconstruction quality. However, regularizations, especially the common TV,
inevitably aggravate jaggy edges and staircase artifacts when being applied to
the (noisy) EDS datasets. To alleviate such artifacts yet still benefiting from
regularization, Zhong et al. incorporated the HAADF-STEM projections with
high SNR into EDS maps using total nuclear variation (TNV) to enforce anti-
/parallel gradients and common edges in joint reconstructions [21]. Like other
regularization-based approaches, TNV also requires a fine-tuning parameter λ
to determine the strength of regularization. The “best” λ is now chosen by
computing reconstructions for a large set of candidate values and comparing
them to a reference image with the correlation coefficient [21]. Since this is
infeasible if the reference is unavailable, we need to automatically measure the
reconstruction quality for determining the optimal λ.

So far, many no-reference quality assessment algorithms have been proposed
to set appropriate parameters for inverse problems. For instance, Zhu and Milan-
far developed a structure tensor based image content index to optimize denoising
algorithms [22]. Since this index is easy to compute, it has also been adopted to
determine the optimal regularization parameter for the TV reconstruction tech-
nique [11]. Applications dedicated to electron tomography also exist [9,13]. For
example, Okariz et al. derived the optimal number of iterations for simultaneous
iterative reconstruction technique (SIRT) by statistically analyzing the edge pro-
file of reconstructions [13]. Furthermore, we recently proposed a non-distortion-
specific image quality metric to quantify the cross-atomic contamination and
noise so as to select the optimal weighting factor for bimodal tomography [9].
However, automatically selecting parameters for regularized electron tomogra-
phy has still not been widely investigated to the best of our knowledge.

In this paper, we aim to automatically find the optimal regularization param-
eter λ for TNV in the absence of a reference image. Specifically, we extend the
concept of image content index [22] to orientation space (OS) [5], in which we
develop a metric Q to assess the reconstruction quality regarding the sharpness
and noisiness. We demonstrate our Q on simulated and experimental datasets of
core-shell nanoparticles containing gold and silver. Results show that this OS-
based Q is more robust to noise than the original tensor-based version. Moreover,
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it can replace the full-reference correlation coefficient used in [21] to determine
the optimal λ. In Sect. 2, we introduce the TNV-regularized reconstruction tech-
nique and its relations to TV. Section 3 elaborates the orientation space as prior
work, followed by our quality assessment framework for parameter determina-
tion. We present the experiments and results in Sect. 4, and summarize our work
in Sect. 5.

2 TNV Regularized Electron Tomography

Originally proposed for color images [10], total nuclear variation (TNV) has later
been applied to multi-channel spectral CT data for encouraging common edge
locations and a shared gradient direction among the different channels [15]. Let
us assume that an arbitrary 3D image A has a number of L channels, in which
An = [A(1)

n , · · · , A
(L)
n ]T ∈ R

L×1 is the intensity value tuple of its n-th voxel.
Denote the Jacobian matrix of A as JnA [21], then TNV of A is

TNV(A) =
∑

n

‖JnA‖� (1)

where ‖JnA‖�, the nuclear norm of JnA, is the sum of its singular values [15].
When L = 1, TNV reduces to the isotropic (l2-norm) TV [21].

We consider a specimen with a number of E different chemical elements.
Each element e = 1, · · · , E has its EDS map p(e) ∈ R

Me×1, and is associated
with one unknown reconstruction volume x(e) ∈ R

N×1. Me is the number of
pixels in the map and N the number of discretized voxels to be reconstructed.
Similarly, let ph ∈ R

Mh×1 and xh ∈ R
N×1 be the projection and volumetric

reconstruction of HAADF, respectively. Note that Mh, the number of pixels in
the HAADF projection, is not equal to Me if the HAADF tilt-series has more
acquisition angles than the EDS.

Given An as a two-channel image An = [x(e)
n , xh

n]T , i.e., one element of
interest plus HAADF, the TNV-regularized EDS and HAADF joint tomography
is [21]

x(e)∗,xh∗ = arg min
x(e),xh

∥
∥
∥p

(e) − W(e)x(e)
∥
∥
∥

2

2
+

∥
∥
∥p

h − Whxh
∥
∥
∥

2

2
+ λTNV(x(e),xh). (2)

Extending An to multiple channels with more than one element is also possible,
as long as they share common edges [21]. In Eq. (2), W(e) ∈ R

Me×N and Wh ∈
R

Mh×N are the projection matrices of the EDS and HAADF, respectively, whose
entries w

(e)
mn and wh

mn are determined by the intersected area between the m-th
ray integral and n-th voxel. When the HAADF term is removed and An = x

(e)
n ,

Eq. (2) reduces to the TV-regularized EDS tomography [8].
The parameter λ in Eq. (2) determines the strength of TNV regularization.

A large λ may blur sharp edges and produce an over-smoothed reconstruction,
whereas a small one may make the regularization ineffective. To choose this
crucial parameter, Zhong et al. computed the reconstructions x(e)∗ for a large
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set of λ (e.g., 100 values uniformly sampled from 10−3 to 101 on the logarithmic
scale) and compared them to a noise-free image using the correlation coefficient
[21]. Since this is infeasible in industry, we need a no-reference quality metric to
quantify the reconstruction quality so as to (blindly) determine the optimal λ.

3 No-Reference Regularization Parameter Determination

Considering that the effect of regularization varies spatially, we propose to use
the local oriented structure strength (OSS) to measure the image quality; it
has large values for well structured patches containing lines and edges and small
values for blurry/noisy ones. In this section, we first introduce the concept of ori-
entation space [5], from which we then present our OSS-based quality assessment
framework.

3.1 Orientation Space

The linear orientation space of a 3D input image I(x) can be constructed as

Ih(x, φ, θ) = I(x) ∗ h(x;φ, θ) (3)

where x is the Cartesian coordinate tuple containing x, y and z. Operator ∗
denotes convolution. h(x;φ, θ) is obtained by rotating an elongated template
filter h(x) over angles φ and θ in a unit sphere. φ ∈ [0, 2π) is the counter-
clockwise angle measured from the positive x-axis in the xy-plane; θ ∈ [0, π)
is the angular distance from the positive z-axis [5]. One promising candidate
for h(x) is a Gabor filter [4]; however, it cannot produce a zero response to a
constant signal. Therefore, we use a similar filter which is zero for a constant
signal [5].

According to van Ginkel et al., the choice of the template filter h(·) is largely
free, as long as the scale and orientation can be dealt with separately [7]. To
this end, Faas and van Vliet constrained the Fourier transform of h(x) to have
separable radial and angular parts, that is, F{h(x)} = H(f) = Hrad(f)Hang(φ, θ)
where f is the polar coordinate tuple containing f , φ and θ in the Fourier domain
[5]. The radial component Hrad(f ; fc, bf ) is a Gaussian-like bandpass filter where
fc and bf are the central frequency and bandwidth of the Gaussian profile,
respectively. It reaches its maximum for f = fc and goes to zero for f = 0.
The angular component Hang(φ, θ;N) relies on a parameter N to control the
orientation selectivity, which is the number of orientations in the upper half of
the unit sphere formed by φ and θ. For details of mathematical expressions see
[5]. When θ is removed, H(f) becomes the 2D filterbank presented in [7].

Ih(x, φ, θ) has a number of peaks: the amplitude of the strongest peak
A1(x) = maxφ,θ |Ih(x, φ, θ)| captures highly regular regions with one single ori-
entation; the amplitude of the second strongest peak A2(x) highlights special
patterns such as deformation and bifurcation; the remaining peaks and noise are
described by a residue term R(x, φ, θ) which reflects chaotic regions [7]. Intu-
itively, a large A1 and a small A2 indicate a prominent elongated structure.
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3.2 Reconstruction Quality Assessment Using Orientation Space

Our patch-based quality assessment algorithm consists of three steps: (i) con-
struct an orientation space; (ii) compute the local and (iii) global quality metrics,
see Fig. 1. Note that this method is currently implemented and discussed here
in 2D in a first result.

Fig. 1. Framework for reconstruction quality assessment. Details in Sect. 3.2.

Construct Orientation Space. For each reconstruction slice I(x, y), we first
construct its orientation space Ih(x, y, φ) using Eq. (3). Then, we extract the
amplitudes of the two strongest peaks A1(x, y) and A2(x, y). Throughout this
paper, Ih(x, y, φ), A1(x, y) and A2(x, y) are computed with the open source
DIPimage toolbox [1]. Moreover, we set fc = 0.25, bf = 0.8fc and N = 8, so
that the template filter h(x, y; fc, bf , N) behaves as a line/edge detector [7].

Compute Local Metric. Divide I(x, y) into a number of K non-overlapped
rectangular patches Pk, k = 1, · · · ,K; each goes through two modules: structure
detector and strength estimator. The structure detector determines whether Pk

contains any prominent structure (e.g., edges) by measuring its contrast. To
eliminate outliers such as noise, we define the contrast of Pk as the interquartile
range (75 percentile minus 25 percentile) rather than the full range (maximum
minus minimum) of its pixel intensities. We set is struk = 1 if the contrast of Pk

is larger than the average intensity of I(x, y), and is struk = 0 otherwise. The
strength estimator quantifies the saliency of patch Pk, for which the gradient
structure tensor has been considered earlier. For instance, Zhu and Milanfar
proposed the image content index [22]

q = s1
s1 − s2
s1 + s2

(4)

where s1 and s2 are the singular values of the 2×2 tensor matrix. In this paper,
we replace s1 and s2 by the amplitudes A1 and A2, because the latter two
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are more sensitive to fine structures under noise [6]. Consequently, the oriented
structure strength of Pk is given by

OSSk = 1 − geomean{qi}
mean{qi} , qi = A1,i

A1,i − A2,i

A1,i + A2,i
, i ∈ Pk, (5)

in which geomean{·} and mean{·} represent the geometric- and arithmetic mean,
respectively. The underlying rationale is that the more “spiky” q is, the stronger
the oriented structure in Pk. Moreover, if Pk is constant or exactly at the bound-
ary between two orientation fields (i.e., A1,i = A2,i = 0, or A1,i = A2,i, ∀i ∈ Pk

[7]), we set OSSk = 0. Finally, we compute the local quality metric by multiply-
ing the outputs of the two independent modules: Qk = is struk × OSSk.

Compute Global Metric. We define the global quality metric Q as the
geometric mean of all nonzero Qk, that is, Q = geomean{Qk}, Qk �= 0,
k = 1, · · · ,K. We do not consider the arithmetic mean because it (unwanted)
gives higher weight to Qk with larger numeric range.

4 Experiments and Results

In this section, we demonstrate that our quality metric Q can select a close-
to-optimal λ for the TNV-regularized reconstruction technique. Hereinafter, we
consider simulated and experimental datasets of core-shell nanoparticles con-
taining gold (Au) in the core and silver (Ag) in the shell. These two chemical
elements have distinct atomic numbers (ZAu = 79, ZAg = 47), and hence can
produce high Z-contrast HAADF-STEM projections for the TNV to augment
EDS maps. Moreover, the TNV-regularized tomography was realized by Douglas-
Rachford primal-dual splitting algorithm with the operator discretization library
[2]. We set 400 iterations to guarantee convergence, and sampled 100 points for
λ which were uniformly distributed between 0.001 and 1.0 on the logarithmic
scale.

4.1 Simulated Dataset

To begin with, we simulated a noise-free multislice dataset using a AuAg
nanoparticle in a box with a size of 40 nm × 40 nm × 40 nm, see Fig. 2(a). For
details of simulation see [3]. HAADF-STEM projections and EDS maps with
a size of 128 pixel × 128 pixel (≈4Å/pixel) were simulated in every 2.5◦ over
[0◦, 180◦). We used a focused electron beam normalized to an intensity of 1, a
convergence angle of 10 mrad, and a detector with an inner angle of 90 mrad and
outer 230 mrad. Since we did not include any (spherical) aberration, we set the
accelerating voltage to 120 kV rather than 200 kV [19] for a broader beam.

Then, we introduced several post-processing steps to make this noiseless
dataset more realistic. HAADF-STEM projections were blurred by Gaussian
smoothing (σ = 1.0 pixel), and corrupted by Poisson noise with a mean of
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the number of electron counts (up to 105 per pixel) and Gaussian noise with a
standard deviation of 0.2. Projections suffering from the channelling effect were
removed [18]. For EDS maps, we set the maximum X-ray count per pixel to 4
for Au and 3 for Ag, so that the total number of X-ray counts per angle were
comparable to real experimental data [19]. Since EDS maps were much noisier,
we employed a Gaussian filter (σ = 1.0 pixel) for denoising. Finally, we sub-
sampled the EDS tilt-series by a factor of 2, as in practice the number of EDS
maps is typically smaller than HAADF projections due to acquisition time. The
resulting HAADF-STEM and EDS data are shown in Fig. 2.

AuAg

xy
z

(a) Atomic design

10 nm

(b) HAADF (c) EDS map

Fig. 2. (a) Atomic design of a core-shell nanoparticle consisting of gold (Au, yellow)
and silver (Ag, white). (b) Simulated HAADF-STEM projection and (c) superposed
EDS map at 7.5◦. (Color figure online)

y

x
15 nm

Au

6 8
10 12

1 4

11

Ag

(a) Ground truth

13 16
(b) λ = 0.001 (c) λ = 0.1233 (d) λ = 0.1748

Fig. 3. Au (upper) and Ag (lower) xy-slices for the simulated dataset at z = 24. (a)
Ground truth, hand-segmented from SIRT reconstructions with 100 iterations using
72 elemental maps between [0, 180◦); (b)–(d) TNV reconstructions with regularization
parameter λ ∈ {0.001, 0.1233, 0.1748}. The size of the reconstruction volume is 128 ×
128 × 128 pixels. (Color figure online)
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Figure 3 illustrates the xy-slices of Au and Ag at z = 24, which are recon-
structed with TNV using different λ. Two binary images in Fig. 3(a) are the
ground truth segmented from SIRT reconstructions with 100 iterations given
the full-view noiseless EDS maps. Figure 3(b) shows 16 patches with four dif-
ferent types of structures: foreground (P11), background (P4, P16), background
with streak artifacts (P1, P13), and edge (P6, P8, P10, P12). For λ = 0.001, a
weak regularization leads to an overall noisy reconstruction. However, when λ is
increased up to a certain level (e.g., λ = 0.1748), strong regularization starts to
nonuniformly degrade the sharp edges, see yellow circles in Fig. 3(d).

Fig. 4. Oriented structure strength OSSk and local quality metric Qk versus λ for four
patches Pk in Fig. 3. P1: background with streak artifacts; P4: background; P6: edge;
P11: foreground. Results are averaged over ten noise realizations.

Figure 4(a) plots the oriented structure strength (OSS) as a function of λ
for four patches selected from Fig. 3. OSS curves of the background patches
P1 and P4 (w/ and w/o perceptible streak artifacts) are decreasing when λ
is increasing, because stronger regularization can more effectively suppress the
noise. In addition, OSS curves of the edge (P6) and foreground (P11) patches are
similar, whereas the former has a clearer unique maximum. Figure 4(b) shows
the corresponding local quality metrics, in which only Q6 with is stru6 = 1 is
nonzero.

Figure 5 depicts our main result, in which we plot the global quality metric Q
and correlation coefficient (CC) as a function of λ. Q is derived either from our
orientation space (OS) or from the structure tensor (ST) [22]; CC is calculated
by comparing reconstructions to the binary segmentation of the noiseless SIRT
reconstruction. It can be observed that our OS-based Q has a very good agree-
ment with CC for the optimal λ, i.e., λ values around the maxima of OS-based
Q and CC are almost the same. Moreover, our OS-based Q has a higher dynamic
range than the ST-based version especially for Ag, see Fig. 5(b). As a result, it
would be more robust to small fluctuations such as noise in practice.
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Fig. 5. Global quality metric Q and correlation coefficient versus λ for the simulated
dataset at z = 24. Q is derived either from the orientation space (OS) or structure
tensor (ST); CC is obtained by comparing reconstructions to the ground truth in
Fig. 3(a). Results are averaged over ten noise realizations.

Note that TNV is an iterative technique that takes significant amount of time
for reconstruction. For example, it took 10 h to compute reconstructions for 100
different λ. Many efficient one-dimensional search algorithms are available for
time reduction, and we choose the golden section search [14]. This algorithm
assumes that the objective function is unimodal within a certain range, and
evaluates it at triples of points whose values form the golden ratio [14]. Since the
golden section search can narrow the original 100 values of λ down to no more
than 15, it would effectively reduce the total computational time by approxi-
mately 85%.

4.2 Experimental Dataset

Our experimental AuAg core-shell nanoparticle was scanned in a FEI Tecnai
Osiris microscope which was operated with an accelerating voltage of 120 kV
and equipped with four Super-X energy dispersive silicon drift detectors [20].
HAADF-STEM projections with a size of 300 pixels × 300 pixels were acquired
at 31 tilt angles, ranging from −75◦ to +75◦ with an increment of 5◦. In addi-
tion, one X-ray spectral image has also been recorded at each angle for 300 sec-
onds. The raw dataset was then processed before reconstruction. The HAADF-
STEM tilt-series was aligned using cross-correlation; X-ray spectral images were
denoised by principal component analysis and deconvolved into two equi-sized
elemental maps, one for Au and the other for Ag [20]. Figure 6 gives an example
of the post-processed experimental dataset, for which we hand-segmented the
HAADF reconstruction to obtain the ground truth of EDS.
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50 nm

-45 +45

(a) HAADF-STEM

AuAg-45 +45º

(b) EDS map

Fig. 6. Experimental (a) HAADF-STEM projections and (b) superposed EDS maps
of a Au-Ag core-shell nanoparticle at −45◦ and +45◦.

Figure 7 shows the variation of the optimal λ w.r.t. different slices. λ values
found by our no-reference metric Q and the full-reference metric CC are com-
parable, considering that the search space spans over 3 orders of magnitude.
Moreover, golden section search and exhaustive search lead to the same λ most
of the time, though the former may terminate at the local maximum before
reaching the global one (e.g., slice number 81 in Fig. 7(a)). Note that Fig. 7(b)
has two “outliers”, and we show the details of slice number 91 in Fig. 8. It is
obvious that the Ag reconstruction computed from Q maintains finer structure
than the one from CC, especially at the edges of the outer ring. From Fig. 8(d)
we can see that the curve of CC strangely “jumps” after a certain λ, even though
the underlying structures have already been smeared out. This shows that even
using CC as a metric to choose the optimal λ for the TNV-regularized electron
tomography is not always reliable.

Fig. 7. Optimal regularization parameter λ versus slice index for the experimental
dataset. The size of the reconstruction volume is 300 × 300 × 300 pixels.
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Fig. 8. (a) Ag TNV reconstructions at z = 91 with λ found by quality metric Q and
correlation coefficient (CC), compared to the hand-segmented ground truth (GT). The
corresponding curves of Q and CC versus λ are shown in (b).

5 Discussion and Conclusion

In this paper, we developed a no-reference quality metric Q to score the ori-
ented structure strength of reconstruction images for detecting over- and under-
regularization. Based on simulated and experimental datasets of AuAg core-shell
nanoparticles, we demonstrated that our Q can replace the full-reference correla-
tion coefficient to automatically determine the optimal regularization parameter
λ for the recently proposed TNV reconstruction technique. Since the original
experimental dataset was noisy, we further binned the tilt-series by a factor of
3 to increase the SNR. Consequently, the size of the reconstruction volume was
reduced from 300 × 300 × 300 pixels to 100 × 100 × 100 pixels, for which Q still
achieved a relatively high accuracy in terms of parameter determination. More
interestingly, the optimal λ found in this case became larger, probably because
the dataset with less noise did not produce severe paintbrush/staircase artifacts
under a stronger regularization.

Compared to the iterative TNV reconstruction, time spent for the quality
assessment is minor, e.g., 10 h versus 5 min for 100 different λ on a desktop
equipped with eight Intel Xeon X5550 CPU cores (24 GB memory) and one
NVIDIA GeForce GTX670 GPU (4 GB memory). Considering that the curve
of reconstruction quality versus λ is unimodal with a distinct maximum, we
adopted the golden section search to “predict” the optimal λ, which effectively
reduced the total computational time (reconstruction plus assessment) by 85%.

As for future work, we consider testing the applicability of our quality metric
to other iterative reconstruction techniques with (e.g., TV and HOTV) and/or
without (e.g., SIRT) regularizations. Moreover, we will also extend the current
framework to 3D.
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