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Abstract. In this paper we introduce a fast and robust structure-less
alternative to full bundle adjustment. The method is based on optimizing
algebraic errors for trilinear constraints from triplets of views. It is shown
that the error generated by a triplet of views can be described by a fixed
triangular 27× 27 matrix regardless of the number of feature correspon-
dences between the views. The method has been evaluated on various
real and synthetic datasets and shows good convergence properties with
a large convergence basin and solutions that are close to the optimal
solution. The method has been compared to Global Epipolar Adjust-
ment, GEA, which is based on the bilinear constraint. It will be shown
that the method can handle the degenerate configurations of GEA.
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1 Introduction

Structure from motion [10], is the problem of estimating the parameters of scene
structure and of camera motion using image features. Assuming that feature
position errors are zero-mean Gaussian, the maximum likelihood estimate is that
of minimizing the sum of squares of the residuals. The theory and methods go
back to the developments of Gauss and Legendre, cf. [8,15]. In the photogram-
metry and computer vision literature this process is denoted bundle adjustment,
where ‘bundle’ refers to the bundle of light rays connecting each camera with
each 3D point. For an overview of the literature and theory see [25]. For examples
of bundle adjustment in photogrammetry see [9].

Bundle adjustment is almost always used both as a final step for the esti-
mation of the parameters, and as an intermediary steps e.g. during tracking,
where it has been demonstrated to reduce failures, [6,14]. There are several soft-
ware packages for bundle adjustment, e.g. SBA [18], Bundler [23,24], and general
optimization packages such as Ceres [1]. Many of these take advantage of recent
developments in making large scale bundle adjustment fast using e.g. the spar-
sity and the structure of the problem, [3,4]. This has made it possible to solve
large scale bundle adjustment problems as shown in [2,5,20,23]. It has also been
shown how bundle adjustment can be used in real-time as a component of SLAM
systems using autonomous vehicles.
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Despite these development, many of these algorithms still need to go through
all data at each step. This limits how fast the bundle adjustment can be. As an
alternative there are structure less approaches, which although approximate can
give satisfactory results at a much increased speed. One example of this is the
approach of Global Epipolar Adjustment [17,22], in which a simplified error
metric based on the linear constraint on the epipolar constraints for each pair
of images. Another is incremental light bundle adjustment, iBLA, [13] in which
an error metric based on a combination of epipolar constraints and a variant of
the trifocal constraint is used.

In this paper we introduce a method based on the trifocal constraint from
each image triplet. One argument for this is the fact that bilinearities do not
restrict the image correspondences fully as shown in [12], whereas trilinearities
are sufficient. Another argument is that bilinearites does not restrict camera
motions, e.g. if the camera motion is linear. As will be demonstrated in the
paper it turns out that using trilinearities gives a larger basin of convergence
as compared to using bilinearities. Contrary to iBLA, the proposed method can
significantly reduce the number of residuals that need to be evaluated to a fix 27
residuals per triplet of views regardless of the number of feature correspondences.
In iBLA each feature correspondence in three views would result in a residual.
This makes the computational cost dependent on the number of correspondences
which typically is in the order of hundreds.

2 The Bundle Adjustment Problem

A widely accepted model of image formation is the pinhole camera model
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⎡
⎣

γf s x0
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X = PX, (2)

where X =
[
X Y Z 1

]T denotes homogeneous object coordinates, x =
[
x y 1

]T

homogeneous image coordinates, λ depth, rotation matrix R and translation
vector T are the extrinsic parameters and K contains the intrinsic parameters.

Given an initial set of cameras Pi, object points Xp and observations of
these xip, bundle adjustment seeks to minimize the total re-projection error in
all views

e =
∑

i

∑
p

‖xip − 1
λip

PiXp‖2 (3)

by optimizing over the cameras and object points. This error function can be
minimized using iterative algorithms. Several fast algorithms exists that exploit
the sparse structure of the problem.
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Typically the number of object points greatly exceed the number of cameras.
To avoid having to include all the object points in the bundle adjustment, the
global epipolar adjustment method [17,22], GEA, exploits the epipolar, also
called bilinear, constraint between camera pairs. This constraint only depends
on the camera parameters and the observed features and do not include object
points. This allows the adjustment method to only optimize over the camera
parameters allowing for structure-less bundle adjustment.

The epipolar constraint between view i and j is expressed as

xT
ipEijxjp = xT

ipRi

[
Tj − Ti

‖Tj − Ti‖

]

×
RT

j xjp = 0, (4)

where Ri, Rj represents the rotations and Ti, Tj the camera center of cameras i
and j. Here xip and xjp represents the observations of object point p in camera i
and j. By collecting all the epipolar constraints between possible pairs of views

Ce =
∑
i,j

∑
p

(xT
ipEijxjp)2 (5)

the cost function used in GEA is found. This cost function can be rewritten as

Ce =
∑
i�=j

eT
ijM

T
ijMijeij , (6)

where eij is a vectorized column matrix of Eij and Mij is the Jacobian of the
constraints between view i and j with respect to eij . The matrix Mij is of size
nij × 9 where nij is the number of corresponding points between the views.
The matrix can be reduced to an equivalent 9 × 9 matrix M̃ij in the sense that
the error eT

ijM
T
ijMijeij = eT

ijM̃
T
ijM̃ijeij will be the same for all eij . M̃ can be

calculated using QR factorization of Mij . This greatly reduces the number of
residuals that need to be evaluated at each iteration.

The matrices Mij and M̃ij are independent of the camera parameters and
can be computed once and then be reused in future iterations.

3 The Trifocal Tensor

While GEA uses the bilinear constraint to perform optimization, GTA uses the
trilinear constraint involving three cameras instead of two. The constraint can
be expressed as [11]

1
2
εii′i′′εjj′j′′εkk′k′′ det

⎡
⎢⎢⎣

Ai′

Ai′′

Bj

Ck

⎤
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Bxk′

C = 0j′′k′′ , (7)

where A, B and C denote the three camera matrices and xA, xB and xC

the observations of an object point. Ai corresponds to the i:th row of A and
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xA =
[
x1

A x2
A x3

A

]T . Here εii′i′′ denotes the permutation symbol, j′′ and k′′

denotes free indices and can be selected from ∈ [1, 2, 3]. From these 9 constraints
only 4 are linear independent.

Using the trifocal tensor
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the constraint can be expressed as

JK
I T jk

i xi
Iεjj′j′′xj′

J εkk′k′′xk′
K = 0j′′k′′ . (9)

This constraint is linear in the components of the trifocal tensor, which makes
it possible to estimate it using linear methods. By vectorizing the tensor JK

I T jk
i

into a 27×1 column-vector t and forming the Jacobian matrix A of the trilinear
constraints with respect to t, the equation system

At = 0 (10)

can be formed. The tensor can now be found by solving this equation system.
Next, the camera matrices can be extracted from the tensor. For a more com-
prehensive description of how to form A, see [21]. In the rest of the paper, A will
be called cost matrix.

Besides the trilinear constraint on point correspondences, there exists con-
straints involving line correspondences and combinations of lines and points, see
[11] and [21].

4 Global Trifocal Adjustment

One issue with using linear methods to solve for the trifocal tensor is, that due
to noise in the feature correspondences, the solution may not result in a valid
tensor. Instead of directly solving for the trifocal tensors and then extracting
the camera matrices, we propose to parameterize the trifocal tensors with the
rotation and translation of the cameras and solving the minimization problem

Θ = arg min
(θ1,··· ,θn)

∑
(i,j,k)∈Q

W 2
ijk‖Aijktijk(θi, θj , θk)‖2, (11)

Wijk =
1

‖Ti − Tj‖ +
1

‖Ti − Tk‖ +
1

‖Tk − Tj‖ (12)

using an iterative scheme such as Levenberg-Marquardt (LM) [16,19]. We use Q
to denote the set of triplets of cameras, Aijk is the cost matrix for the triplet and
tijk is the vectorized trifocal tensor of the triplet. Here θi = (Ri, Ti) parameterize
the rotation and camera center of camera i respectively. The first camera in
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the set of all the cameras defines the coordinate system and the distance to the
second camera is constrained to one to fix the scale. Using this parameterization,
we can ensure that all estimated trifocal tensors are valid at every iteration. Wijk

has been added to prevent the system form converging to the trivial solution
where all camera centres coincide.

It is important to notice that several cameras are optimized jointly in (11)
and Q is the set of triplets of these cameras, where one camera can belong to
several triplets. The set Q can be formed in several ways, ranging from forming
all possible triplets of the involved cameras to a minimum of connected triplets
of cameras.

4.1 Reducing the Number of Residuals

Each cost matrix Aijk is of size Nijk × 27. Here Nijk depends on the number
of corresponding features between the three views and the number of linear
independent constraints that can be generated from each correspondence, e.g.
for a point correspondence there exists 4 independent constraints. Similar to the
procedure in GEA, the Aijk matrix can be replaced by an equivalent reduced
matrix Ãijk, this time of dimensions 27 × 27.

Considering the error of one triplet of cameras

e = ‖Aijktijk‖2 (13)

= tT
ijkAT

ijkAijktijk, (14)

QR decomposition of Aijk = QR can be performed. Substituting in the above
expression we get

e = tT
ijkAT

ijkAijktijk = tT
ijkRT QT QRtijk (15)

= tT
ijkRT Rtijk = tT

ijk

[
RT

1 0
] [

R1

0

]
tijk (16)

= tT
ijkRT

1 R1tijk. (17)

Here R1 is of dimension 27 × 27. The reduced matrix can thus be selected as
Ãijk = R1. This matrix will be equivalent to Aijk in the sense that they will
generate the same error tT

ijkAT
ijkAijktijk = tT

ijkÃT
ijkÃijktijk for all tijk.

The large reduction in the dimensions of the cost matrix greatly reduces the
amount of computations needed in each iteration. Since neither Aijk nor Ãijk

depend on the parameters of the cameras i, j and k, they need only be evaluated
once and can be reused in the next iterations. This is of benefit in incremental
structure form motion, since only a handful of new cost matrices need to be
calculated at the insert of a new keyframe. The rest can be reused.
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5 Experimental Validation

The method has been evaluated using both real and synthetic datasets. Each
dataset contains initial camera poses, object points and a ground “truth”. For
the synthetic datasets, the ground truths consist of the simulated tracks and for
the real datasets, the ground truths are generated by bundle adjustment. The
termination criterion used to determine convergence is the norm of the gradient
and the norm of the delta update should be smaller than selected thresholds.
The thresholds are the same for all of the methods.

Besides investigating and comparing GTA and GEA, a combination of the
epipolar and trifocal constraints called Global Epipolar and Trifocal Adjustment
(GETA) will also be investigated. In this version the cost-matrices in GEA and
GTA are used simultaneously.

5.1 Real Datasets

The real datasets consist of the publicly available VGG datasets [26] Corridor
and Model House, and a two new datasets Long Corridor and Dining Hall,
illustrated in Fig. 1.

Fig. 1. Sample image from the four datasets: top-left Corridor, top-left Model House,
bottom-left Long Corridor, bottom-right Dining Hall.

VGG Datasets Corridor and Model House. The VGG datasets provide
point and line correspondences, initial camera matrices and 3d structure. How-
ever, only the point correspondences and the calibration matrices retrieved from
the initial camera matrices are used.
Datasets Long Corridor andDining Hall. Two longer datasets Long Corri-
dor and Dining Hall were collected. The Long Corridor dataset captures motion
along a long straight corridor, while Dining Hall captures a more general motion.
The datasets were collected using a Samsung Galaxy s7 mobile phone camera
with a resolution of 1512 × 2016 pixels and variable focus. A structure from
motion system based on [7] was used to find the initial structure of the datasets.
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The program assumes fixed calibration and to account for varying focal length,
bundle adjustment was applied.

Constraint History. The average error of the solutions when varying the num-
ber of previous cameras a camera is allowed to form constraints with, is illus-
trated in Fig. 2. This will be called the constraint history. From the plot it can
be seen that GEA requires a longer constraint history to achieve a low position
error compared to GTA and GETA. The latter methods achieve a low error even
for the shortest constraint history. Furthermore, a clear minimum error can be
observed where additional constraints degrade the solution. The rotation error
decreases for both of the methods as the constraints increase.
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Fig. 2. The error on the corridor dataset relative to the optimal solution varying to
the number of previous cameras a camera is allowed to form constraints with, starting
at 3. The rotation error is small regardless of constraint history, while GTA and GETA
both have much smaller position error compared to GEA for short histories.

Rotational and Positional Error. The position and rotation error of the
methods relative to the bundle adjustment solution is displayed in Figs. 4. It
can be seen that GTA and GETA has a lower position error compared to GEA
in both datasets. Figure 3 illustrates how close GEA and GTA converges to the
bundle adjustment solution in the Model House dataset. A significant overlap
can be seen indicating close convergence to the bundle adjustment solution.

We studied the number of iterations needed for convergence and similar to
the previous dataset, few iterations are required and the three methods worked
equally well in this respect.

Sensitivity to Noise. The average error when increasing the observation noise
is displayed in Fig. 5. It can be seen that the performance of GEA deteriorate
significantly compared to GTA, even at low noise levels, when subject motion
along a corridor.
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Fig. 3. Superimposed solutions of the Model House dataset using GEA, GTA and
bundle adjustment. Initial pose (black), bundle adjustment (green), GEA (red), GTA
(blue) (Color figure online)
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Fig. 4. Error relative to bundle adjustment solution in the Model House and Dining
Hall datasets. GEA has a larger position error compared to the others.

Convergence Basin. If the initial guess is not very close to the optimum GEA
has problems converging, which is illustrated in the convergence histograms in
Fig. 6. The histograms shows the percentage of times GEA and GTA converged
when initialized with various perturbation of the optimal solution. The conver-
gence at each combination of rotation and translation perturbation is tested
independently 10 times, such that spurious convergence and divergence can be
seen.

From the histogram it can be seen that GEA quickly becomes unstable when
the initial guess is perturbed from the optimal solution. In contrast, GTA has
a much larger convergence region and does not suffer from the same instability
issues on the dataset.

6 Synthetic Validation

To study the behavior of GEA and GTA in the case of collinear and near collinear
movement, synthetic rooms and trajectories have been generated. The trajec-
tory is generated by starting in one end of a room with a constant velocity and
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Fig. 5. The average error relative to the optimal solution at different noise level on the
Long Corridor datasets. The resolution has been divided with 2x. Highest resolution
1512 × 2016, lowest 189 × 252. Here it can be seen that the GEA solution quickly
deteriorates when the noise increases, while GTA and GETA are largely unaffected.
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Fig. 6. A histogram over the number of times GEA (top) and GTA (bottom) converged
when the solution is perturbed different amounts in rotation and translation from the
ground truth for the Long Corridor dataset. It can be seen that GEA quickly fails
when perturbed from the optimal solution, whereas GTA converges for a wider range
of perturbations.

applying an constant acceleration acting perpendicular to the initial velocity
direction. The amplitude of the acceleration is determined by a parameter called
curvature. This generates curves similar to those in the Corridor and Long Cor-
ridor datasets, where a smaller value will generate a straighter trajectory while
larger values generate a more curved trajectory. Several such datasets have been
generated with varying curvature, observation noise and perturbations form the
ground truth. GEA and GTA have then been applied to the datasets. The results
can be seen in Fig. 7 where the median of the mean position error has been plot-
ted as a function of the curvature and observation noise.

Here the position error for GEA grows large as the curvature decreases and
the noise increases. For small curvatures the error grows significantly when the
noise is increased. As the curvature grows larger the dependency on noise become
less prominent. In contrast to GEA, the error of GTA is shows no large depen-
dency of the curvature and depends only on the observation noise.
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Fig. 7. The average error of GEA (left) and GTA (right) on the syntactic dataset
with varying degrees of collinearity and observation noise. A large dependency on the
curvature parameter can be seen for GEA, whereas GTA is largely independent of the
curvature parameter.

7 Discussion

7.1 General Motion

In the setting of general motion, both GEA and GTA have a large convergence
basin and tend to converge close to the bundle adjustment solution. Moreover
the methods typically only require few iterations to convergence, despite poor
initial guesses and large amounts of cameras. A pattern can be observed where
GTA tends to have a lower position error compared to GEA.

7.2 Near Collinear Motion

GEA showed a significant performance decrease in the near collinear case. If the
observation noise is sufficiently low, the constraint history is long enough and
that the initial guess is very close to the optimal solution, GEA could converge.
However, if these conditions are not met, the solution quickly deteriorates or
diverge. This issue was described in [22] where isolated chains of cameras with
collinear camera centers could gain additional degrees of freedom.

This is expected behavior since if only the bifocal constraint is used and
the cameras have moved on a line, the camera translations can theoretically
not be resolved [12]. In contrast, this is no restriction when using the trifocal
constraint, which can resolve even collinear cameras. This explains why GTA
performed better in the near collinear case compared to GEA.

7.3 Relation to Constraint History

Considering the relationship between the errors and the constraint history it can
be seen that GEA consistently has a larger position error for short constraint
histories compared to GTA, which is largely unaffected by the constraint history.

If the constraint history is restricted, the local camera configuration will
become more collinear. If the constraint history is progressively restricted, the
cameras may eventually become too collinear in relation to the noise for GEA
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to accurately estimate the translations. As stated before, GTA does not suffer
from the collinearity problem and performs equally well in the exact collinear
case as in the case of more general case. This explain why GTA is not affected
as much by the constraint history.

8 Conclusions

In this paper a novel extension to the Global Epipolar Adjustment method
has been presented called Global Trifocal Adjustment, which is based on the
well known trifocal constraint. It has been shown that the method has a large
convergence basin, can handle the degenerate configurations of GEA, is less
sensitive to the constraint history compared to GEA and in general only require
few iterations to converge close to the bundle adjustment solution. Furthermore
GTA can, in addition to points, also use lines and combinations of linens and
points to form the cost matrices, while GEA is restricted to using only points.

The method is completely structure-less leading to a vast reduction in the
optimization parameters compared to bundle adjustment. Furthermore the num-
ber of residuals can be reduced to 27 residuals per trifocal constraint irrespective
of the number of feature correspondences. The cost matrices are independent of
the camera parameters and need only be evaluated once and can be reused in
future computations. The combination of decreased number of parameters, the
large reduction in residuals and the constant cost matrices, leads to a potentially
fast method well suited to real-time slam systems.
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3. Byröd, M., Åström, K.: Efficient bundle adjustment using conjugate gradients with
multiscale preconditioning. In: British Machine Vision Conference (2009)
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