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Abstract. Working with large quantities of digital images can often lead
to prohibitive computational challenges due to their massive number of
pixels and high dimensionality. The extraction of compressed vectorial
representations from images is therefore a task of vital importance in the
field of computer vision. In this paper, we propose a new architecture for
extracting such features from images in an unsupervised manner, which
is based on convolutional neural networks. The model is referred to as the
Unsupervised Convolutional Siamese Network (UCSN), and is trained to
embed a set of images in a vector space, such that local distance structure
in the space of images is approximately preserved. We compare the UCSN
to several classical methods by using the extracted features as input to
a classification system. Our results indicate that the UCSN produces
vectorial representations that are suitable for classification purposes.

1 Introduction

An inherent property of digital images is their large, and often varying dimension-
ality. A typical image can contain thousands, or even millions of pixels, meaning
that the curse of dimensionality [2] can be devastating if not handled properly.
This fact has led to the development of a multitude of techniques for computing
compressed representations of images, that attempt to retain important infor-
mation in the representation. Moreover, it is often required that for a database
of images, the pairwise similarities between images are approximately preserved
through the extraction process. This is vital for the performance of image classi-
fication systems, which rely on the quantitative viewpoint provided by a collec-
tion of representations. In general, it is easier to design and train a classification
system which uses less complex decision functions (e.g. linear), as opposed to
systems that rely on more complex decision functions. Hence, a feature extrac-
tion technique which is suitable for classification should transform an image
database such that the categories one wishes to distinguish form compact and
linearly separable “clusters” in the feature space.

Many of the widely used feature extraction techniques are based on the idea
of one or more image descriptors, that can be computed either over the whole
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image (globally), or from certain subregions of the image (locally). An example
of a global descriptor is the Histogram of Oriented Gradients (HOG), which
has been successfully applied to human recognition and tracking [8]. Examples
of local descriptors include the Scale Invariant Feature Transform (SIFT) [15],
Speeded Up Robust Features (SURF) [1], and Gradient Location and Orientation
Histogram (GLOH) [17].

With these local descriptors, the main idea is to identify points of interest in
the input image, and then compute vectorial descriptors based on neighborhoods
around these points. The SIFT algorithm identifies keypoints by locating minima
or maxima in a scale space, which is constructed by convolving the input image
with discretized Laplacian of Gaussians at different scales. The SURF algorithm
is based on a similar approach, in which the scale space is constructed using
box-filters of varying widths, instead of Gaussians.

Once a set of local descriptors has been computed for an image, these have
to be further quantized into a single vector representing the entire image. This
can be achieved using the Bag of Visual-words (BOV) [7], in which all descriptors
from the entire dataset are clustered with k-means, thus creating a vocabulary of
visual-words. The feature vector for a given image is then the histogram produced
when assigning each of its descriptors to one of the visual-words. Another approach
to quantization is the Improved Fisher Vector (IFV) [11], which fits a Gaussian
mixture model to the complete set of descriptors. Then, for a given image, the
feature vector is constructed based on the average gradient of the mixture’s log-
likelihood, evaluated at each of the descriptors extracted from the image.

Recently, the image processing community has seen a shift in methodology
with the introduction of models based on deep learning. The convolutional neural
network (CNN) [14] has received much attention due to advancements in training
strategies and computational capacity [13]. Although a vast majority of the CNN-
based models are applied to supervised problems, there are no direct restrictions
within the CNN architecture on performing unsupervised tasks. In other words, a
modification in the training regime can be adopted to train a CNN-based model
for feature extraction in an unsupervised manner.

In an unsupervised feature-extracting CNN, the learned feature vector – and
therefore also its quality with respect to the task at hand will depend on the large
number of parameters contained in the network. The development of training
strategies, and more specifically, loss functions, for training deep learning archi-
tectures in an unsupervised manner is a field of research which still is in its early
stages. Notable contributions within this field include loss functions designed
for joint feature learning and clustering [26,27], as well as the Convolutional
Autoencoder (CAE) [16].

The CAE consists of two CNNs, referred to as the encoder and decoder,
respectively. The task of the encoder is to embed the input image in a vector
space, while the task of the decoder is to reconstruct the input image based
only on the embedded representation. These networks are trained together to
minimize the mean squared reconstruction error, causing the encoder to learn
a mapping which aims to preserve as much information about the input image
as possible. When the training process terminates, the decoder is discarded and
the encoder can be used as a feature extractor.
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In this article, we propose the Unsupervised Convolutional Siamese Network
(UCSN). It is a new deep learning based feature extractor which consists of a
convolutional neural network that is trained end-to-end to learn an adaptive
neighborhood embedding in an unsupervised manner, similarly to the weakly
supervised Siamese Networks [6]. In contrast to the convolutional autoencoder
[16], our model does not rely on a decoder network during training.

The rest of the paper is structured as follows: In Sect. 2, we provide an
in-depth explanation of the proposed architecture. In Sect. 3, we explain the
details of our experiments. In Sects. 4 and 5 we present and discuss our results,
respectively. Finally, we provide some concluding remarks in Sect. 6.

2 Method

In this section we introduce the concept of siamese networks, and provide a
detailed explanation of our proposed Unsupervised Convolutional Siamese Net-
work.

2.1 Siamese Networks

Feature extraction can be regarded as learning a mapping from some input space
X to an output space Y :

fθ : X → Y ⊆ R
D

where f denotes the parameterized mapping, and θ is a vector of parameters. D
denotes the dimensionality of the extracted features, and depends on the design
of the function f . In a siamese network [6,10,20], f is parameterized by either
a fully-connected neural network or by a convolutional neural network. In both
these cases, the final layer is responsible for producing the extracted feature. The
chosen network is trained to minimize the contrastive loss function:

Lc =
n−1∑

i=1

n∑

j=i+1

(
aij ||yi − yj ||2 + (1 − aij)max(0, c − ||yi − yj ||)2

)
, (1)

where c is a hyperparameter, || · || denotes the Euclidean norm on Y , yi = fθ (xi)
is the feature extracted from the input observation xi, and aij is an indicator
variable defined as

aij =

{
1, (i, j) is a positive pair
0, (i, j) is a negative pair

.

Two observations constitute a positive pair if they belong to the same class
or category. Minimizing the contrastive loss function in Eq. (1) causes the net-
work to learn a discriminative embedding by minimizing the distance within
embedded positive pairs, while ensuring that the distance within negative pairs
is sufficiently large. Thus, the network learns to embed points from the same
class close to each other, while ensuring a large distance between points from
different classes. The dependency on the aij in the loss function means that a
siamese network requires weakly labeled data in the training process, making it
a supervised model.
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Fig. 1. Outline of the proposed architecture. The loss function considers distance struc-
ture in both the input space and the output space, ensuring that similar images are
mapped to similar points, and vice versa. For more details on the exact CNN architec-
ture, please see Table 4, Appendix A.

2.2 The Unsupervised Convolutional Siamese Network

To eliminate the need for weakly labeled data, we propose to construct positive
and negative pairs based on a distance function in the input space. An overview
of the architecture is provided in Fig. 1. The CNN receives as input a set of n
images x1, . . . ,xn ∈ X, and produces the learned features y1, . . . ,yn ∈ Y . The
model is trained by minimizing the loss function in Eq. (1), however the aij are
now constructed in an unsupervised manner.

More specifically, the aij are constructed by labeling a pair as positive if the
distance between them is less than ε, and negative otherwise:

aij =

{
1, d(xi,xj) < ε

0, d(xi,xj) ≥ ε
,

where d is a suitable symmetric distance function on X, and ε was chosen such
that the probability of two random training points being marked as a positive
pair was approximately 0.02. This choice resulted in well-separated embeddings.

Note that this modification was previously done in [21], but they only con-
sidered the pixel-wise Euclidean distance. To construct a more robust distance
function, we compute the Euclidean distance between HOG descriptors extracted
from the respective images:

d(xi,xj) = ||HOG(xi) − HOG(xj)||.

3 Experiment Setup

3.1 Classifier

To quantitatively assess the performance of the extracted features with respect to
classification, we train a linear support vector machine (SVM) [3,22] to classify
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the learned features. The linear SVM was chosen as it is a linear classifier which
is fast to train, and has been successfully applied to many classification tasks
[23], making it a suitable classification component in the benchmarking process.
We use a one-vs-rest SVM from the scikit-learn Python module, with default
hyperparameters.

3.2 Models

In our experiments we evaluate two different versions of the UCSN. UCSN-
Euc uses the Euclidean distance to determine positive and negative pairs, while
UCSN-HOG uses the distance between HOG-features. We compare the proposed
models to several state-of-the-art methods for image feature extraction [5]:

– SIFT-BOV : SIFT descriptors encoded with the bag of visual words (BOV)
encoding, with a vocabulary size of 4096 visual words. The 128 dimensional
descriptors were transformed to 80 dimensional vectors using PCA, before
running k-means. The dimensionality reduction has been empirically found
to improve the classification accuracy in similar models [4]. Each of the trans-
formed descriptors were augmented with the normalized position of their
respective keypoints, i.e. (x/W, y/H), where (x, y) is the position of the key-
point in the image, and (W,H) is the width and height of the image, respec-
tively.

– SIFT-IFV : SIFT descriptors encoded using the improved Fisher vector (IFV)
encoding with 256 mixture components. Similarly to SIFT-BOV, the descrip-
tors were reduced in dimensionality and augmented before fitting the Gaus-
sian mixture model.

– SURF-BOV : Same as SIFT-BOV, but with SURF descriptors instead. Note
that the 128 dimensional extended SURF descriptor was used. Dimensionality
reduction with PCA, and position augmentation was done before running k-
means.

– SURF-IFV : Same as SIFT-IFV, but with the 128 dimensional extended
SURF descriptor. Dimensionality reduction with PCA, and position augmen-
tation was done before fitting the Gaussian mixture model.

– HOG : The HOG descriptor.
– CAE : A fully convolutional autoencoder as described in [16]. Note that we

train the model end-to-end instead of layer-wise, and use standard upsampling
layers in the decoder, instead of the pooling scheme suggested in [16]. These
modifications were made to reduce the computational complexity associated
with training the model.

The dimensionality of the extracted features for the models can be found in
Table 1, and the complete list of hyperparameter values for all models can be
found in Table 4, AppendixA.

Note that the dimensionality of the extracted features is very large for some
of the models and datasets. For the models based on local descriptors, the dimen-
sionality can be adjusted by tuning either the number of clusters in BOV, or the
number of mixture components in IFV. However, as pointed out in [4], values lower
than 4096 clusters, or 256 mixture components, can lead to a drop performance.
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Table 1. Dimensionalities of the extracted features. The last column indicates whether
the dimensionality is a hyperparameter in the model.

Model Dataset Parameter

SVHN [18] Fashion-MNIST [25] Cats and dogs [9]

HOG 1764 1296 142884 ✘

SIFT-BOV 4094 4096 4096 ✔

SIFT-IFV 41984 41984 41984 ✔

SURF-BOV 4094 4096 4096 ✔

SURF-IFV 41984 41984 41984 ✔

CAE 64 64 64 ✔

UCSN-Euc/HOG 64 64 64 ✔

Table 2. Properties of the different datasets used for evaluation.

SVHN [18] Fashion-MNIST [25] Cats and dogs [9]

Image size 32 × 32 28 × 28 256 × 256

Color RGB Grayscale RGB

# Samples 99289 60000 8192

# Classes 10 10 2

Contents Natural images of
house numbers

Clothing items Natural images of
cats and dogs

3.3 Datasets

The datasets chosen for evaluation are listed in Table 2. These constitute a range
of object recognition tasks, without introducing auxiliary challenges, like multi-
ple labels, large amounts of noise, and very high resolutions. Each dataset was
randomly split into a training set, validation set, and test-set. 80 % of the images
were used for training, 10 % were used for hyperparameter validation, while the
last 10 % were used for performance evaluation. Note that the training set was
used to train both the feature extractors and the corresponding SVMs.

3.4 Implementation

The experiments were implemented using the Python programming language,
with the NumPy and SciPy modules for numerical computations. The HOG, SIFT
and SURF descriptors were computed using the OpenCV module, while BOV and
IFV were implemented on top of the KMCuda and scikit-learn modules, respec-
tively. The SVM from the scikit-learn module was used, while the UCSN and
the CAE were implemented and trained using the TensorFlow framework. Both
these models were trained for 200 iterations, using stochastic mini-batches of
size 1024 and the Adam optimizer [12].
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Table 3. Classification accuracies for the different models and datasets.

Model Dataset

SVHN Fashion-MNIST Cats and dogs

HOG 0.77 0.89 0.70

SIFT-BOV 0.50 0.74 0.69

SIFT-IFV 0.60 0.82 0.68

SURF-BOV 0.69 0.75 0.69

SURF-IFV 0.60 0.70 0.71

CAE 0.66 0.86 0.62

UCSN-Euc 0.38 0.80 0.59

UCSN-HOG 0.78 0.86 0.62

4 Results

The classification accuracies obtained from the different models and datasets are
shown in Table 3. These indicate that the performance of the UCSN-HOG is com-
parable to the benchmark models. For the SVHN dataset, we observe that both
UCSN-HOG and HOG outperform the rest of the models. This indicates that
the HOG descriptors are suitable for discriminating between classes, and that
the UCSN-HOG is able to exploit this information when extracting its features.
This is not observed with the UCSN-Euc model, which performs significantly
worse than all other models.

For the Fashion-MNIST dataset, UCSN-Euc is not as far behind, but still
performs worse than UCSN-HOG, HOG, and the CAE. This again implies that
these three models are able to extract features with better discriminative proper-
ties. On the other hand, the results for the Cats and Dogs dataset show that all
deep learning based models perform worse than the other benchmark methods.
Interestingly, this is opposite to what is commonly observed for fully super-
vised models, where CNN-based classifiers regularly outperform the classical
approaches [5,13].

To further evaluate the validity of our results, the Fashion-MNIST features
were projected to two dimensions using t-SNE [24] for selected models. Figure 2
shows the transformed features. These plots reveal a large difference in class
separability, with the SURF-IFV features being significantly less separable than
the other three. The classes are more separated by the CAE’s representation,
however, the features provided by HOG and UCSN-HOG still show better class
separability. There is also a noticeable similarity between the HOG features and
the UCSN-HOG features, which is expected since the UCSN-HOG is trained to
preserve local HOG distances.

Figure 3 shows image pairs extracted from the SVHN and Cats and Dogs
datasets, respectively. The normalized distances in the tables to the right are com-
puted as dnorm = d

dmax
where d is the distance between feature vectors extracted

from the two images for the given model, and dmax is the maximum observed dis-
tance between any two extracted feature in the dataset, for the given model.
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Fig. 2. Plots of the features extracted using the HOG, SURF-IVF, CAE, and UCSN-
HOG feature extractors. Note the large difference in class separability. The features
were transformed to two dimensions using t-SNE [24].

HOG SIFT-BOV
0.53 0.40
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0.69 0.71

SURF-IFV CAE
0.79 0.48
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0.47 0.18

(a)
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0.90 0.86
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0.85 0.40

SURF-IFV CAE
0.71 0.62

UCSN-Euc UCSN-HOG
0.58 0.91

(b)

Fig. 3. Image-pairs and their corresponding normalized distances. The distances are
normalized by dividing the distance between extracted features, with the maximum
observed distance, for each model and dataset.
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The pair in Fig. 3a shows two images that are both labeled as “1”. Note that
the distance between UCSN-HOG embeddings is small, even though the image
backgrounds are quite dissimilar, and the rightmost image contains an additional
“4” which acts as a distraction. This indicates that UCSN-HOG has learned to
recognize the “1” in the images. However, in Fig. 3b the cats depicted in the
images are quite similar, but the distance between UCSN-HOG embeddings is
large. This shows that UCSN-HOG is unable to pick up the similarities between
these two images. This is also the case for most of the benchmark models, with
the exception of UCSN-Euc and SURF-BOV.

5 Discussion

Although the CNN-based models, i.e. CAE and our proposed UCSN, perform
well on the SVHN and Fashion-MNIST datasets, this was not observed with
the Cats and Dogs dataset, where both these models performed worse than the
other benchmark methods. This indicates that, when trained in an unsupervised
manner, the filters learned by the CAE and the UCSN do not produce suffi-
ciently discriminative representations in the output space. It is possible that
this problem can be alleviated by employing different initialization techniques,
for instance, through transfer learning [19], where the CNN is pre-trained as a
classifier on a different dataset where ground truth labels are available. After
pre-training, the network can be fine-tuned to the task at hand using the loss
function in Eq. (1). Another option is to consider different distance functions in
the image space, as this governs the local similarity structure of the extracted
features. We emphasize that the proposed architecture can work with any sym-
metric distance function, making it applicable to a diverse set of domains. The
exploration of these potential modifications is left as future work.

6 Conclusions

In this article, we outline a new architecture for image feature extraction that
is based on convolutional neural networks. The proposed Unsupervised Convolu-
tional Siamese Network (UCSN) is trained to embed a set of images in a vector
space such that local distance structure is approximately preserved. We compare
the UCSN model to several classical models by using the extracted features as
input to a classification system. The overall results obtained from three differ-
ent datasets indicate that the UCSN produces vectorial representations that are
suitable for classification purposes. In the end, we suggest possible techniques
that can be used for improving the performance of UCSN for feature extraction
applications.
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A Hyperparameters

Table 4. A summary of all the hyperparameters in all the models. Please consult the
OpenCV documentation for an explanation of the HOG, SIFT and SURF hyperparam-
eters.

Model Parameter Dataset
SVHN Fashion-MNIST Cats and Dogs

HOG

blockSize 8 8 8
blockStride 4 4 4
cellSize 4 4 4
nbins 9 9 9

SIFT-BOV

nfeatures 64 64 32
sigma 0.8 0.8 1.6

nOctaveLayers 3 3 5
contrastThreshold 0.001 0.001 0.004

k 4096 4096 4096

SIFT-IFV

nfeatures 64 64 32
sigma 0.8 0.8 1.6

nOctaveLayers 3 3 5
contrastThreshold 0.001 0.001 0.004

k 256 256 256

SURF-BOV

hessianThreshold 0.0 0.0 200
nOctaves 5 5 4

nOctaveLayers 5 5 3
extended True True True

k 4096 4096 4096

SURF-IFV

hessianThreshold 0.0 0.0 200
nOctaves 5 5 4

nOctaveLayers 5 5 3
extended True True True

k 256 256 256

CAE layers

Conv 5× 5× 32
ReLU

MaxPool 2× 2
Conv 5× 5× 32

ReLU
MaxPool 2× 2

Dense 64

Conv 5× 5× 32
ReLU

MaxPool 2× 2
Conv 5× 5× 32

ReLU
MaxPool 2× 2

Dense 64

MaxPool 2× 2
Conv 7× 7× 16

ReLU
MaxPool 2× 2
Conv 5× 5× 8

ReLU
MaxPool 2× 2

Dense 64

UCSN layers

Conv 5× 5× 32
ReLU

MaxPool 2× 2
Conv 5× 5× 32

ReLU
MaxPool 2× 2

Dense 64

Conv 5× 5× 32
ReLU

MaxPool 2× 2
Conv 5× 5× 32

ReLU
MaxPool 2× 2

Dense 64

MaxPool 2× 2
Conv 7× 7× 16

ReLU
MaxPool 2× 2
Conv 5× 5× 8

ReLU
MaxPool 2× 2

Dense 64
c 1 1 1

ε (Euc/HOG) 12.41/5.10 5.86/3.39 110.56/48.1
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