
Engaging Programming Students Through
Simpler User Interfaces

Blessing Leonard and Giovanni Vincenti(&)

University of Baltimore, Baltimore, MD, USA
{blessing.leonard,gvincenti}@ubalt.edu

Abstract. We used line_explorer, a novel programming instructional tool to
administer tests, which involved assigning a math problem based on a pro-
gramming concept (loops) and the accompanying instructions for solving it to
students. There were two display options for the instructions: the first provided
all instructional information at once, while the other displayed the instructional
information in phases. Findings from the study confirmed that an interface can
affect the comfort level of the user, and thus can influence the effectiveness of
the tool. Results from the research will aid in identifying parameters that need to
be improved or adapted to line_explorer and other programming instructional
tools, to encourage better comprehension of programming concepts, as well as
improve the willingness of students to use these instructional tools.

Keywords: Human-centered design � Cognitive load � CS education

1 Introduction

Background. Human-centered design can be defined as the process of involving basic
human functionalities in the design process, rather than waiting until the product is
completed to force users to act according to its will. This approach ensures the users
have a pleasant first experience with the program and thus are willing to keep using it.
line_explorer aims to provide a comfortable user interface that will help reduce the
discomfort associated with programming by allowing “the user to act as the code
compiler and step through each line of code seeing the logic flow and what values get
assigned to variables in the program.” [1].

Findings from a line_explorer pre-design survey [2] suggests that although the
average student is not excited about programming, they are able to get the work done; and
while they were fine with accessing instructional videos on their mobile devices, students
preferred computer-based platforms to mobile-based ones for interactive instructional
tools. line_explorer is expected to function as a support tool for instructors of beginner to
intermediate courses, and for students to review the material on their own before coming
to class [1], therefore effectively creating an interactive support system that can be used to
implement the flipped classroom model [3] in computer programming courses.

Project Goals. The goal of this research was to identify the impact (if any), of different
amounts of information displayed to students as they work through a programming
concept. Given that this is the second phase of testing line_explorer, some features were

© Springer Nature Switzerland AG 2020
W. Karwowski et al. (Eds.): AHFE 2019, AISC 963, pp. 113–121, 2020.
https://doi.org/10.1007/978-3-030-20135-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20135-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20135-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20135-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-20135-7_11

changed and tested against the initial version to look for any differences (positive or
negative) in the reception of the programming tool. The hypothesis was that a reduction
in the amount of information displayed to the student at the launch of the program would
positively affect their reception of its usefulness. It should be noted that this research
focused solely on line_explorer’s evaluation mode. To help decide the kind of changes
necessary to test the hypothesis, some research was done on the effect of cognitive load
on interfaces and instructional tools. A demonstration mode—used for instructional
purposes—also exists. This mode is discussed towards the end of the manuscript.

2 Cognitive Load

Oviatt defines cognitive load as the “mental resources a person has available for solving
problems or completing tasks at a given time.” [4]. Including cognitive load theory in
the designing phase ensures the creation of interfaces that will decrease the amount of
resources used on peripheral processing, so that the bulk of the mental resources used
will be directed towards the main task at hand.

The first concept that was at the core of the redesign process was the need to
provide only the number of features required to get the work done, as unnecessary
features often act as a form of distraction [4]. For instance, the presence of a multi-
colored pen on an interface where the color of the pen does not affect the result of the
task at hand, can lead to the mind being occupied with figuring out: how many colors
there are, which colors it likes best, what each color means, if and how the functionality
of the cursor changes depending on its color, etc. before even trying to focus on the
task itself. In this case, there is a high cognitive load as the working memory is fully
engaged, but not because of the work at hand.

The second element that drove this project’s redesign is the need to keep the
interface of the new tool as close as possible to that which the students (users) are
already familiar with [4]. The importance of not jarring the students with a completely
different interface is to prevent the distraction of processing the difference(s) between
what they are used to, and the new design before them. Hence, making it harder to
concentrate on the main task, and resulting in a negative toll on the time and quality of
the task completion.

The article also suggested that users’ ability to communicate multimodally be
considered [4]. For instance, an audio-visual or verbal-visual demanding tool will be
easier to use compared to an audio-verbal demanding tool. This is because the same
processor manages the audio and verbal mental resources, while a different processor in
the working memory manages the visual demands. Thus, cross modality was advocated
for over intra-modality.

3 Methodology

To test the hypothesis that less information leads to more productivity, we created a
modified version of line_explorer, and tested it by comparing the users’ performance
and reactions with the preexisting version. Figure 1 shows the original interface

114 B. Leonard and G. Vincenti

(Interface A) while Fig. 2 shows the modified version (Interface B). The new interface
focused on increasing the amount of information displayed based on the user’s progress
in solving the given problem. Both interfaces were preloaded with the same concept: a
for loop requiring five iterations and whose statements were a set of instructions for
solving the math problem contained in the loop. The test required basic programming
and math skills—such as addition and multiplication—to work through the example.

The revised model removed some features completely, starting from the progress
log and its controls (at the bottom of the screen). This feature’s original purpose was to
give students a way to trace their work, but users did not utilize it at all in previous tests
[5]. Then, we moved the Make Loop function from every line to the last line of each
iteration. The original purpose of this feature was to test whether the students would
know when a new iteration of the loop would begin. In previous tests users did not use
this feature as well, other than when appropriate [5].

The 59 test subjects were students enrolled in three courses within the Applied
Information Technology program at the University of Baltimore: COSC 151 (Computer
Programming I), COSC 251 (Computer Programming II), and COSC 351 (Object-
Oriented Programming). The first two courses are modeled after typical CS1/CS2
courses, and the last course covers up to linear data structures. All classes include a
lecture and in-class coding practice, and students participated in this experiment after
loops were introduced. Participants were enrolled in the following academic programs:
Applied Information Technology (AIT): 24 students, Digital Communication (DCOM):
one student, Psychology (PSYC): two students, Forensic Science (FSCS): two students,

Fig. 1. Original interface used for the control group (Interface A).

Engaging Programming Students Through Simpler User Interfaces 115

Information Science/Systems (INSS): six students, Business Administration (BUAD):
one student, Simulation and Game Design (SGD): 19 students, Information and Inter-
action Design (IID): one student, and three unknown majors.

Prior to the commencement of the test, each participant received an access code
after a verbal explanation of the purpose of line_explorer, the reason for the test, and
the need to go through five iterations of the loop. The test experience included a
questionnaire, an instructional video that went through the first iteration of the tested
interface (based on the access code entered), the test itself, an instructional video of the
untested interface, and finally a poll to vote on the preferred interface and provide
feedback on the experience and line_explorer. The tests looked to measure the amount
of time taken to complete the test, the accuracy of the final answer, the interface with
the highest votes, and the impact of factors such as major, experience, and comfort
level on these measurements.

4 Results and Discussion

For COSC151, three voted for Interface A, and out of the three, two rated themselves as
having mid-level programming experience (rated at 3 out of 5) and low comfort level
(rated at 2 out of 5) while the third had low experience (rated at 1 out of 5) with a
slightly higher comfort level (rated at 2 out of 5). Major did not influence decisions, as

Fig. 2. Modified interface used for the experimental group (Interface B).

116 B. Leonard and G. Vincenti

the majors were diverse. However, two INSS majors preferred Interface A—one of
them was the participant with the lower experience. There were 20 total entries, five of
them did not report a preference, and the remaining 12 were for Interface B, as reported
in Table 1.

The comfort and experience rating range for those who voted for Interface B was
between low and mid-level, but for the two exceptions of higher comfort ratings
(averaging around 4). Table 2 provides a visual representation of the average experi-
ence and comfort level ratings per major for COSC 151.

For COSC251, 6 out of 17 voted for Interface A, one did not vote, and the
remaining 10 voted for Interface B (Table 3). This group consisted mainly of Applied
Information Technology (AIT) majors (12 students), three Simulation and Game
Design (SGD), one Information and Interaction Design, and one unspecified major.

Those that voted for Interface A had mid to high experience and comfort levels (3-5
for experience, and up to 4 for comfort level) except one with a rating of 2 for both.
All SGD majors voted for Interface B. The highest experience and comfort level (5 for
both) was an Information and Interaction Design major and the participant voted for

Table 1. UI preference by major for the course COSC 151.

Major Interface A Interface B No answer

AIT 1 5 1
DCOM 0 1 0
PSYC 0 1 1
FSCS 0 1 1
Unknown 0 1 0
INSS 2 1 1
BUAD 0 1 0
SGD 0 1 1

Table 2. Average experience and comfort level ratings by major for the course COSC 151 on a
scale of 1 (low) to 5 (high).

Major Experience Comfort

AIT 2.29 2.86
DCOM 3 2
PSYC 1.5 1.5
FSCS 1 1
Unknown 1 3
INSS 2.2 2.2
BUAD 1 3
SGD 1 1

Engaging Programming Students Through Simpler User Interfaces 117

Interface B. All but the unknown major that voted for interface A were AIT majors.
Table 4 provides a visual representation of the average experience and comfort level
ratings per major for COSC 251.

Out of the 22 participants from COSC 351, four voted for Interface A, 15 for
Interface B, and three did not vote, as reported in Table 5. All four that voted for
Interface A tested Interface B, two of the nonvoters tested Interface B, and 11 of those
who voted for Interface B tested Interface A. SGD made up most of the class and had
the highest acceptance rate (11 votes) for Interface B (save for INSS’ 100% acceptance
rate from their two votes). Three participants successfully completed the task and all
tested Interface A but voted for Interface B. The recurring reasons for selecting
Interface B over A were the fact that it was “clean”, less intimidating, and less
distracting.

Only one of the eight (overall) successful candidates voted for Interface A, thereby
supporting the finding that students tend to deliver expected products regardless of
circumstances but are open to new and more relatable processes of learning pro-
gramming concepts. Five out of these eight participants gave themselves higher ratings

Table 3. UI preference by major for the course COSC 251.

Major Interface A Interface B No answer

AIT 5 6 1
Unknown 1 0 0
IID 0 1 0
SGD 0 3 0

Table 4. Average experience and comfort level ratings by major for the course COSC 251 on a
scale of 1 (low) to 5 (high).

Major Experience Comfort

AIT 2.75 2.75
Unknown 4 4
IID 5 5
SGD 2.33 3.33

Table 5. UI preference by major for course COSC 351.

Major Interface A Interface B No answer

AIT 2 2 1
INSS 0 2 0
SGD 2 11 1
Unknown 0 0 1

118 B. Leonard and G. Vincenti

for comfort while their experience ratings fluctuated between low and high, and par-
ticipants from COSC 251 and 351 seemed to spend substantially more time trying to
solve the problem than those from COSC 151. The average, minimum, and maximum
time spent—in seconds—on problem solving for each of the three courses are reported
in Table 6.

Although the results slightly derailed from the initial hypothesis (the impact of
interface layout on the effectiveness of line_explorer due to cognitive load), it was able
to confirm that the interface affects the comfort level of the user, and thus can influence
the effectiveness of the tool. These findings, as shown in Table 7 also suggest the
provision of more information (as seen in Interface A) for intermediate users, and less
information (as seen in Interface B) for novices and users that are more proficient with
basic programming knowledge.

In the suggested improvements section of the post-test questionnaire, students
provided the following suggestions for improving line-explorer:

• Ability to shuffle between iterations;
• Removing interactivity components from lines that do not contain instructions, such

as lines with opening or closing braces;
• Restricting the effects of the undo button to a line—so that correcting an error on a

previous line does not erase all progress made after that line;
• Clearer instructions; and
• Creating a function to allow the review of instructional videos while working on the

problem.

Table 6. Time spent (in seconds) on problem-solving by course.

Course Average Minimum Maximum

COSC 151 141.19 41 389
COSC 251 379.82 103 737
COSC 351 256.58 29 622

Table 7. UI preference by course.

Class Interface A Interface B No answer

COSC 151 3 12 5
COSC 251 6 10 1
COSC 351 4 15 3
Total 13 37 9

Engaging Programming Students Through Simpler User Interfaces 119

5 Demonstration Mode

The Demonstration mode, reported in Fig. 3, allows students to practice interpreting
code by giving them the option to enter expected values contained in variables for each
line. The overall look is very much in line with what we already described in the
Evaluation mode, with the instructions panel above the work area, lines of code clearly
labeled and easily readable, and a series of input boxes where students can enter
expected values for each variable.

An important element focuses on teaching students about the scoping of variables.
On the right side of the panel, users will be able to enter an input only for variables that
actually exist. This should allow users to visualize how scoping works, and when
variables exist or do not exist. Since the main goal of Demonstration mode is to allow
students to explore lines, and people have different learning preferences, we have added
two “Help” features, shown in Fig. 4, which the user can toggle at any point.

The icons that appear are of a sound speaker and a stylized eye. By pressing the
sound speaker, the system will utilize the voice synthesizer available in the browser to
vocalize the verbal description of each line. By selecting the eye icon, the system will
instead display the same verbal description on a screen overlay, shown in Fig. 5.

Fig. 3. The updated interface of line_explorer in Demonstration mode.

Fig. 4. Help features available in Demonstration mode.

120 B. Leonard and G. Vincenti

As we intend to keep both visual and functional consistencies between the two
modes, we will apply the changes reported to the Demonstration mode to the Evalu-
ation one.

6 Conclusions

Since all participants that provided the correct final answer were from the COSC 251
and 351 pools, we can infer that problem-solving progress and final answer accuracy
depend more on experience and familiarity than on cognitive load. A sense of comfort
on the part of the user is also projected to play a major role in the effectiveness of this
tool, perhaps even more than experience; and based on time spent on the assigned task,
it can be inferred that experience and comfort level also play a role in the user’s desire
to work with line_explorer. As testing and data analysis continues, we expect to build
future work on findings and feedback from this and previous testing results.

References

1. Vincenti, G., Braman, J., Hilberg, J.S.: Teaching introductory programming through reusable
learning objects: a pilot study. J. Comput. Sci. Coll. 28(3), 38–45 (2013)

2. Vincenti, G., Hilberg, J.S., Braman, J.: Student preferences and concerns about supplemental
instructional material in CS0/CS1/CS2 courses. Int. J. E-Learn. 16(4), 417–441 (2017)

3. Tucker, B.: The flipped classroom. Educ. Next 12(1), 82–83 (2012)
4. Oviatt, S.: Human-Centered Design Meets Cognitive Load Theory: Designing Interfaces that

Help People Think, Journal of the Impossible (2006). https://dl.acm.org/citation.cfm?id=
1180831. Accessed 21 Feb 2018

5. Vincenti, G., Hilberg, J.S., Braman, J., Satzinger, M., Cao, L.: Assessing the Usability of a
Novel System for Programming Education. https://arxiv.org/abs/1711.05649. Accessed 13
Feb 2018

Fig. 5. Visual description of a line of code that the students can access through the Help feature
available in Demonstration mode.

Engaging Programming Students Through Simpler User Interfaces 121

https://dl.acm.org/citation.cfm?id=1180831
https://dl.acm.org/citation.cfm?id=1180831
https://arxiv.org/abs/1711.05649

	Engaging Programming Students Through Simpler User Interfaces
	Abstract
	1 Introduction
	2 Cognitive Load
	3 Methodology
	4 Results and Discussion
	5 Demonstration Mode
	6 Conclusions
	References

