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Abstract Zara holds a clearance period for several weeks after each of its two
annual selling seasons. Due to restrictions in shipping capacity, allocation decisions
for the remaining warehouse inventory start 4—6 weeks prior to the clearance
period. Our work addresses the problem of dynamically coordinating inventory
and pricing decisions for unsold merchandise during the last month of the regular
season and then clearance sales. The inventory allocation prior to markdowns
is particularly challenging because it is a large-scale optimization problem and
countries “compete” for scarce inventory. Moreover, there are many business rules
that must be satisfied. Until recently, the decision process used by Zara for end-
of-season inventory allocation and clearance pricing was essentially manual and
based on managerial judgment. We propose a model-based approach that builds
on a deterministic approximation. The deterministic problem is still too large so it
is further broken down into an aggregate master plan and a store-level model per-
country with feedback recourse between the two levels. After a working prototype of
the new tool was completed, we performed a controlled field experiment during the
2012 summer clearance to estimate the model’s impact. The controlled experiment
showed that the model increased revenue by 2.5%, which is equivalent to $24M in
additional revenue. Given that unsold inventory is sunk at the time of clearance sales,
the additional revenue translates directly into profits. The implementation of the tool
coincided with the launch of Zara’s online portal. We discuss how the model-based
process was adjusted to accommodate this new channel.
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1 Introduction

With nearly 1700 stores in 70+ countries and €9.8B in annual sales (2012), Zara
is the flagship chain of Spain’s Inditex Group, one of the most recognized global
brands worldwide, and the world’s leading fast-fashion retailer. The key defining
feature of Zara’s fast-fashion retail model consists of novel product development
processes and a supply chain architecture relying more heavily on local cutting,
dyeing and/or sewing, in contrast with the traditional outsourcing of these activities
to developing countries. While local production increases labor costs, it also
provides greater supply flexibility and market responsiveness: Zara continuously
changes the assortment of products displayed in its stores, and offers on average
8000 articles in a given year, compared to only 2000—4000 items for key competitors
(Caro 2012). This increases Zara’s appeal to customers, who are reported to visit its
stores 17 times per year on average, compared to 3—4 visits per year for competing
(non fast-fashion) chains.

Zara holds a clearance period for several weeks after each of its two annual
selling seasons. Due to restrictions in shipping capacity, allocation decisions for
the remaining warehouse inventory start 4—6 weeks prior to the clearance period.
Our work addresses the problem of dynamically coordinating inventory and pricing
decisions for unsold merchandise during the last month of the regular season and
then clearance sales. This problem is both important and challenging: Because of
Zara’s short design-to-shelf lead times, clearance sales admittedly account for a
smaller fraction (15%) of total revenue compared to more traditional retailers. This
fraction of sales is comparable to Zara’s relative net margin however, so that the
success of clearance sales has a substantial impact on Zara’s profits in any given
season. While Zara’s end-of-season problem thus shares common features with that
of a traditional retailer, it is however more challenging in some respects. Namely,
the number of articles for which inventory and markdown decisions must be made is
larger, with each individual article initially available in smaller quantities, and there
is less historical price response data due to a lack of promotions during the regular
season. The inventory allocation prior to markdowns is particularly challenging
because of problem size and countries “compete” for scarce inventory. Moreover,
there are many business rules that must be satisfied.

Until recently, the decision process used by Zara for end-of-season inventory
allocation and clearance pricing was essentially manual and based on managerial
judgment. The inventory decisions were centralized and made based on previous
year sales and the markdowns in each country were handled by the country manager.
There was no model supporting the inventory decision, and though all countries
followed the same guidelines and were supervised by the same pricing team
(which included Zara’s CFO), the markdown decisions still largely depended on the
experience of individual country managers. The origins of these guidelines were
mostly historical rather than being based on revenue maximization. In fact, the
information made available to decision makers (e.g., days’ worth of sales left in
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inventory for each category) tended to promote instead the objective of minimizing
unsold inventory at the end of the clearance period.

In our model-based approach, we first formulated a dynamic program corre-
sponding to the multi-period and multi-product inventory and pricing coordination
problem for a product group within a given country using revenue maximization as
the objective. To overcome the curse of dimensionality, we then used the certainty
equivalent technique to approximate the profit-to-go (see Gallego and van Ryzin
1994; Smith and Achabal 1998). The problem was still too large so it was further
broken down into an aggregate master plan and a store-level model per-country
with feedback recourse between the two levels. This approximation reduced the
formulation to a sequence of linear mixed-integer programs with a shortest-path
structure that could be solved efficiently by a commercial solver. The second step
in our methodology was to build a price response forecasting model feeding into
the optimization module. The forecast follows a two-stage procedure similar to
the method described in Smith et al. (1994). For each article, first we determine
the regular season demand rate using a regression model where the explanatory
variables are the size of the initial purchase, the number of weeks since the product
introduction, the demand rate from the previous period, and the aggregate inventory
level. In the second stage, we obtain the demand residual that cannot be explained
by regular season variables and regress it against the price markdowns to obtain the
demand elasticity. To predict sales in the first week of the clearance period, we use
the elasticity determined with data from the two most recent years. For subsequent
periods, the elasticity can be computed using current data.

After a working prototype of the new pricing tool was completed, a controlled
field experiment was performed during the 2012 summer clearance to estimate the
model’s impact. The pilot showed that the model increased revenue by 2.5%, which
is equivalent to $24M in additional revenue if the model had been used for all
countries and products in 2012. This financial impact is explained by the model’s
ability, relative to the legacy process, of maximizing revenue rather than getting
rid of stock. Given that unsold inventory is sunk at the time of clearance sales,
the additional revenue translates directly into profits. The pilot was followed by
the implementation of a decision support system (DSS), which coincided with the
growth of the online channel that had been launched in September of 2010 (see Caro
2012). The emergence of this new channel posed some challenges that are discussed
in Sect. 5.5 and it represented Zara’s first steps into omnichannel retailing.

There are several streams of literature related to our work. At the core, there is
the interplay between inventory and pricing. Elmaghraby and Keskinocak (2003)
and Chan et al. (2004) provide well-cited surveys on pricing with inventory
considerations. Most of the early work has been theoretical for a single item and
a single location, such as in Federgruen and Heching (1999) and Chen and Simchi-
Levi (2004). One notable exception is Bitran et al. (1998), which considers a single
item but allows for inventory transfers across stores and the model was tested in
a real setting, though it did not lead to an implementation. More recently, Craig
and Raman (2016) report the implementation of a markdown model to aid store
liquidation. Interestingly, this model is formulated in terms of inventory value
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rather than units, similar to Zara’s legacy process described in Sect. 2, and it allows
for inventory consolidation and store closures. Smith and Agrawal (2017) study a
similar problem for a single item and multiple stores with inventory consolidation
assuming continuous deterministic demand.

The classic revenue management literature is also relevant. In this stream, pricing
policies account for the remaining inventory, which gets depleted with demand but
otherwise it is not an endogenous decision. Here there has been progress in modeling
customer choice across multiple products. For instance, Dong et al. (2009), Akcay
et al. (2010), and Li and Huh (2011) consider pricing with product substitution for a
single store. Finally, the literature on transshipments ignores pricing decisions and
instead focuses on inventory balancing across multiple locations in a network (see
Paterson et al. 2011; Meissner and Senicheva 2018 and the references therein).

The contributions of this work to the retail operations literature can be summa-
rized as follows:

1. This work constitutes an application of inventory control and revenue manage-
ment to the retail business strategy of fast-fashion adopted by companies that
include Zara, H&M, and Mango. This strategy involves continuously changing
assortments, small production batches, and minimal in-season promotions. Its
clearance pricing problem is thus particularly challenging because it involves
comparatively more different articles of unsold inventory with less price data
points than other retailers.

2. Our model coordinates inventory and pricing for multiple products and multiple
locations. The implementation spans Zara’s entire product assortment and
network of stores. We are unaware of any other documented implementation at a
similar scale. The development and deployment of the model coincided with the
launch of Zara’s online portal, which added an omnichannel dimension with its
corresponding challenges.

3. Similar to Caro et al. (2010), the methodology followed to estimate the imple-
mentation impact involved a live pilot implementation experiment that was
carefully designed to control for external factors. This rigorous methodology is
remarkable because the impact of publicly described Operations Research (OR)
practice work is usually estimated with more questionable “before versus after”
comparisons which completely ignore the fact that many other factors besides
the OR work being described may also be affecting the difference in performance
observed in the “after” period.

4. The model has also had a substantial qualitative impact on the way country
managers think about end-of-season sales, and the model output generates new
discussions in which managers need to justify their inventory allocation and
price decisions with stronger arguments. Finally, from a cultural standpoint this
work has triggered a realization of the strategic importance of OR and revenue
management within Zara/Inditex; a telling fact is that other brands within Inditex,
such as Pull & Bear, are interested in using a similar tool.

The chapter is organized as follows. In Sect.2 we describe the legacy process
that Zara used to allocate inventory prior to clearance sales. In Sect. 3 we explain the
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demand estimation approach, and then in Sect. 4 we introduce the main optimization
model to coordinate inventory and pricing decisions. In Sect.5 we discuss several
business rules and implementation challenges that had to be considered. The impact
of the model is reported in Sect. 6 and we conclude in Sect. 7. Some of the data
presented in this paper has been disguised to protect its confidentiality, and we
emphasize that the views presented in this paper do not necessarily represent those
of the companies and institutions with which its authors are affiliated. In particular,
the financial and operational impact estimations provided here were performed
independently by the paper’s authors and do not engage the responsibility of the
Inditex Group, which advises that any forward-looking statement is subject to risk
and uncertainty and could thus differ from actual results.

2 Project Genesis and the Legacy Inventory Distribution
Process

The collaboration between Zara and academia started in August of 2005. The
relationship was initiated by the first author of this chapter. It began with a project
on how to allocate inventory during the regular season and since then it has led
to several other projects that have advanced the use of business analytics in retail
operations. As part of the collaboration, Zara became a member of MIT’s Leaders
for Global Operations (LGO) program and more than a dozen LGO students have
spent time at Zara’s headquarters working on analytics as part of their internship.
More details of this collaboration between industry and academia are given in Caro
et al. (2010).

Until 2012, Zara was using a manual process to allocate inventory prior to
clearance sales. Here we formalize this legacy process, which was used as a
benchmark for the model-based process that is introduced in the next sections.
Note that the legacy distribution process takes into account customers’ price
sensibility and future markdown decisions implicitly through its input parameters
(for instance, see the effort estimation below). In other words, the interaction
between inventory and pricing decisions is acknowledged but these decisions are
not explicitly coordinated nor optimized simultaneously.

The inventory distribution process takes place prior to clearance sales. It usually
starts roughly 1month in advance during the regular season and ends at the
beginning of clearance sales. For simplicity, this inventory planning period that
overlaps with the regular season is denoted period 0. We first introduce the notation
and define the parameters used in the legacy process. Note that this process is
repeated weekly during period O and the parameters are updated as clearance sales
approaches.
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2.1 Indices and Index Sets

e m € M: countries in the distribution network.

e j € J: stores. Let m(j) denote the country of a store j. Let 7 (m) C J denote
the set of stores in county m.

e a € A(m): local warehouses in country m.

e r € R:individual articles aggregated at the model/quality level.

2.2 Parameters

. U}) = Z p;( i Iroj: inventory available at store j (Ig.) valued at regular season

reR
prices (pl ) of the respective country m(j), where T denotes the regular season.
. U0 = Z Z pL 10 - inventory available at the local warehouses (1) in
acA(m)reR

country m valued at regular season prices in that country.
- U0 = Z pI 19: inventory available at the central warehouses (1°) valued at

reR
regular season prices in Spain (here m = Spain).

* M ;: estimated shrinkage (in Spanish merma) at store j valued in EUR.

J.prev 4

Jsprev
weeks prior to clearance sales. V]Q is computed by cross-multiplication (rule

of three). For instance, suppose the regular season has 20 weeks and there are

3 weeks left before clearance sales start. Then, V]Q prev AT€ previous year sales in

the last 3 weeks of the regular season, ij4 are sales in the most recent 4 weeks,

vy
. V]Q = V0 <_j—) estimated sales (in EUR) at store j in the remaining

i.e., weeks 14—17 of the current regular season, and ij;‘rev are sales in the same
4 weeks but in the previous year.
vt
e Vii=V;prev < f 7} ): estimated sales (in EUR) at store j during clearance

,prev
sales, valued at regjufar season prices. V; is computed by cross-multiplication just
like VJQ except that V; .y is the actual inventory sold in clearance sales in the
previous year, valued at full price.
* Ej: effort assigned to store j, i.e., the amount of revenue that store j should
generate during clearance sales (valued at regular season prices).
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2.3 Determining the Effort per Store

The amount of stock available in the entire network usually exceeds the total
estimated sales. Therefore, all the stores are expected to make an effort and are
loaded with a surplus of inventory. The load factor ¢ is computed as follows:

U0+ ZmEM Ur(r)i + Zjej (U;) - Vj(') - Mj)
¢ = > 1, (1)
E:je;7 Vi

and the effort for store j is given by
AV 0_ 1,0 _
Ej_¢Vj—(Uj—Vj—Mj). 2)

Let B, denote the total amount of inventory that should be shipped from the
central warehouses to country m. From the previous definitions we have that

Bu= Y Ej-UJ. 3)
JET (m)

If B,, < 0, then country m already has enough inventory. It should not receive
any further shipments from the central warehouse, and therefore, it is blocked. All
the blocked countries are removed from the distribution process and are treated
separately.

In order to take into account store sales capacity as well as the interaction
between inventory and markdown decisions, a final adjustment is made to the stores

in non-blocked countries. For each store j, if ¢V; > max{U;.), U ]1 or ov1» Where
U} is the stock (in EUR) that was available at the beginning of clearance sales
in the previous year, then V; is decreased by 3%. If ¢ V; < min{UlQ, U jl prev}, then
V; is increased by 3%. After removing the blocked stores and making the final

adjustments to V;, Egs. (1) and (2) are recomputed.

,prev

2.4 Mathematical Formulation

Once the efforts per store have been computed, the next step is to decide how
much will be procured from the central warehouses and how much from the local
warehouse or from other stores that have a “negative effort.” Zara did not have an
explicit rule for this, but in general transshipments were considered undesirable so
they were avoided as much as possible. Here we present an optimization model
that finds the solution that minimizes transshipments under the legacy process. The
decision variables are denoted f; to denote the flow of inventory (in EUR) from
the central warehouses to store j. Similarly, fy, represents the flow of inventory
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(in EUR) from x to y, where x and y are nodes in the distribution network given
by local warehouses and stores. The mathematical formulation of the model is the
following:

(LGCY) min Y Y fiy

meM j,j €T (m)

4
s.t. ul= > f (5)
jeJ
Un= > fn VmeM (6)
€T (m)
fi+ fmipj+ Z fij = Ej+ Z fij VieJd (1)
JoJ'€T () JoJ'€Tm(j)
fis fmj» fijr =20 Vi jed meM. (8

The objective function (4) is the total inventory transshipments valued at regular
season prices (recall that the flows are given in EUR). Note that only transhipment
within stores of the same country are allowed, though this could be easily relaxed.
Constraint (5) ensures that the shipments from the central warehouses do not
exceed the inventory available. The same is imposed in constraint (6) for the local
warehouses. Finally, constraint (7) makes sure that the inflow to each store is greater
or equal than the respective effort assigned to that store plus the outflow.

The advantage of the legacy approach was its simplicity, which facilitated
its implementation. However, it had several shortcomings: (1) it was based on
aggregate revenue, not on unit sales by group; (2) it ignored subsequent decisions,
markdowns in particular; (3) it mostly reproduced the same allocation pattern
from previous years, which was not necessarily optimal; and (4) it aimed to
minimize inventory transshipments rather than maximize overall network profits.
These limitations motivated the development of the model-based solution that is
described next.

3 Demand Estimation

The proposed model-based solution is represented in Fig. 1. The approach consists
of demand estimates that are the input to an optimization model. In this section we
describe the former.

Demand is estimated at the article level r and for each country independently. To
simplify the notation, in this section we omit the country subindex m. The estimation
procedure is similar to Caro and Gallien (2012). Let w = 0 denote the remainder
of the regular season, i.e., the weeks prior to clearance sales when the inventory
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Levers
» Clearance duration

* Minimum shipments to
country and store

#% of inventory to
salvage

Forecast Optimization Model
End of
Season II1. Store
Demand - ] ' Store Shipment by
Shipment Group-Cluster
Clea radnce )
Demand per Maximize Maximize
Price Point Profit Profit

Costs 7
« OC to country Transportation Costs

shipments » DC to stores
* DC-to-DC shipments * DC-to-DC
Prices * Store to store

* Regular season, » Warehouse to store
discounts, salvage Inventory levels

Inventory levels + DC's, local
= DC's & country warehouses, stores

Unit Sales Store ratios
* Current & new stores + Sales & inventory

Fig. 1 Model-based solution for coordinating inventory and markdown decisions. Figure taken
from Verdugo (2010)

(re)allocation takes place. Let w > 1 denote the periods of clearance sales. Zara
starts inventory planning for clearance sales about 4 weeks in advance. Therefore,
period w = 0 can be roughly 1 month, whereas the periods w > 1 during clearance
sales are usually 1 week. Let ’)t;”k be the demand rate in period w at price py given
by the equation

~'r”k=/):;”-exp (,gff’ln (min{l,£}>+ﬂ~§”ln <p—;)) 9)
f I

where ')Tﬁ“ represents the base demand, i’” is an estimate of the inventory level at
time w that is discussed in Sect. 5.4, prT is the regular season price, and f is a
broken assortment parameter as in Smith and Achabal (1998).

We call ’):ﬁ” the base demand because it has no broken assortment and pricing
effects. It is updated using the recursion:

30 = exp (Bor + B In(C) + Boa? + B nG))) (10)
T = exp (Eor 4 BiIn(C) + B A + Bs 1n@;”*1)) w1, (D)
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where C, is the size of the initial purchase, AY is the number of days since article
r was introduced at the stores and A, AT is the average demand rate over the regular
selling season. Note that A0 A; should be smaller than AT, in Wthh case the base
demand sequence ):}U decreases with w (this is assuming that ,32 < 0and 0 <
,33 < 1). Note that By, /3 1 ,32, ,33 are parameters computed from the current regular
season, whereas E}f’, E;” are the parameters for period w obtained from previous
season data. See Caro and Gallien (2012) for more details on the estimation of these
coefficients.

A key parameter in the optimization model presented in the next section is the
expected sales for article 7 in period w at price pi, denoted E (py). To estimate
EY(pr), let S(r) denote the size-color combinations available for article r € R.
We assume that customers demanding SKU rs at price pi at store j in period
w arrive according to a Poisson process with arrival rate o jkrk, where )J"k is
given by the forecast formula (9) and «,,; is the sales weight of SKU rs at store
J (see Sect.5.3 for a discussion on computing this parameter). Let E” (pk)

ZseS(r) E[SaleerJ
Then, we have that E (py) = Zjej et Y (pr). For w = 0 the price is fixed at the

regular-season price p,T , SO we write E?l. and E? and the calculation relies on the

w
Dk I” ]] where I"] 1s again an estimate of the inventory level.

actual inventory levels I, j

The estimation of sales for every article, period, and country is computationally
intensive. The computation can be simplified by identifying a group of represen-
tative articles with ample inventory available. For this subset, the sales estimates
EY (pi) are computed for every period and then country-specific decay factors are
obtained by minimizing

et EP(ON
2 (K - E}(p/a) ' (12

rk,2w>2

To avoid confusion, note that k*~! represents « to the power w — 1 (in contrast
with the rest of the notation, here w is not a superscript). The interpretation of the
parameter « is the decay in sales from one period to the next when the price does
not change. Once « is computed, the sales estimate for the other articles can be
approximated by E}” (px) =~ /cw’lE,1 (pr).

In general, the quality of the forecast generated substantial debate at Zara. In fact,
initially, the forecast error received most of the attention in the meeting discussions,
but it gradually gave way to the actual inventory and pricing decisions which was the
original purpose of the model. This transition was facilitated by showing through a
few simple simulations that, even with an imperfect forecast, the model would still
make inventory allocations that were near optimal in terms of revenue. This idea has
been studied further in Besbes et al. (2010) and Elmachtoub and Grigas (2017).
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4 Optimization Model

4.1 Multiple-Item Discrete-Price Formulation

The multiple-item model builds on the open-loop formulation (47) given in the
appendix. The open-loop formulation is a starting point but it ignores many practical
considerations that are relevant to Zara, which are here enumerated:

* There is a discrete set of prices pg < p1 < ... < pgk, where pg is the salvage
value at the end of clearance sales. The number of feasible prices K is in the
order of 40 for a typical product group.

* Items are shipped from the central distribution centers located in Spain and there
is a shipping cost associated that is given as a percentage cys of the selling price.

* The inventory allocation takes place 3—4 weeks prior to the beginning of clear-
ance sales. Therefore, the regular-season sales that take place during that
remaining month must be taken into account because they deplete the inventory
that will be available for clearance.

* The inventory that is already at the store must be taken into account. Similarly,
some countries might have a local warehouse that holds inventory.

e There are multiple items in a product group. Items that had the same regular-
season price form a product cluster, which is the unit of analysis for the purpose
clearance sales. The price of a cluster can only decrease over time. The price
hierarchy among clusters must be maintained throughout clearance sales. In other
words, if cluster n had a higher regular-season price than cluster 7', then the price
of cluster n’ is always equal or lower than the price of cluster n during clearance
sales.

4.2 Master Problem and Discussion

The formulation of the master problem (M P) here below is for a single product
group across all countries. A product group (e.g., T-shirts or woman blazers) is
partitioned into product clusters n € A. A cluster n corresponds to all the articles
r € R, that were sold at the same price during the regular season. We use
the following notation: w = 1 and w = W represent the first and last periods
of clearance sales. We use MR as a shorthand notation for M x R. Also, let
Wi={weN:1l<w<WlandK:={keN:1<w<K}.

For the decision variables, x,’jjnk € {0, 1} indicates whether cluster n in country
m should be sold at clearance price p; or lower during pricing period w € W,
with x”ﬁno = 0, for all (m,n, w) € MNW. The auxiliary variable v € {0, 1}
indicates whether cluster # in country m should be sold at clearance price py during
period w; Ay, represents the expected sales for article r in country m in period
w € W if sold at price py; Af;,, has a similar interpretation but for the regular



322 F. Caro et al.

season; and /. represents the inventory level of article r in country m in period
w. In contrast to the legacy process, in this distribution model the inventory flow is
expressed in terms of units (as it actually occurs in practice) instead of EUR.

(MP) max > (phoe D Pt Poly —cuphy dnr)  (13)
meM, wew,
reR ke
s.t.
> gmr <1 VreR (14)
meM
W <EY Y(mr)e MR (15)

ok < En Py Y (m,n, k, w) € MNKW, r € R, (16)
YO = x? XV Y ok w) e MNKW  (17)

Xpk—1 = Xy Ym0k, w) € MNKEW (18)
X <X Y(mon k,w) € MNKW (19)
X < xP Y (myn, k, w) € MVKEW (20)
1 = 1,,2, + Gur — A2V (m,r) e MR (21)
iy L (merk) V(m.rw)e MRW  (22)
k>1
W Mt Lot e = 0 YV (m,r k, w) € MREW (23)
Xpnks Ymnk € (0,1} Y (m,n, k,w) e MNKW. (24)

The objective function (13) is the total expected revenue until the end of clearance
sales minus the shipment cost from the central warehouses. Constraint (14) ensures
that the shipments made from the central warehouses do not exceed the inventory
available. Constraints (15) and (16) make sure that expected sales does not exceed
expected demand. Constraints (17) and (18) follow from the definition of the y, .
and x, . variables. Constraint (19) ensures that the initial ordering of clusters
by prices is maintained throughout the clearance period. Constraint (20) ensures
that the clearance sales price for any cluster decreases over time. Constraints (21)
and (22) implement the inventory dynamics. Note that the initial inventory I°
is an input value to the optimization model and corresponds to the inventory
available of article r in country m, i.e., [0, = ZaeA(m) AT Z/ET(m) .. Finally,
constraints (23) and (24) impose the nonnegative and binary requlrements for the
decision variables.

The master problem (M P) does not explicitly consider product substitution, but
some of these effects are indirectly accounted for in the model. On the one hand,
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horizontally differentiated products within a group usually have the same regular
season price, so in the model they are indistinguishable because they belong to
the same cluster n. On the other hand, vertically differentiated products belong to
different clusters because the quality is different, and therefore, the regular season
prices are different. Constraint (19) preserves the relation among clusters making
sure that higher quality products are never cheaper than lower quality products. Note
that this is consistent with the optimal structure of the pricing policy when there is
substitution across vertically differentiated products, see Akgay et al. (2010).

There are some additional constraints that Zara considered to be optional for the
purpose of planning the inventory allocation prior to clearance sales:

¢ Minimum shipment. For some countries, there could be a minimum shipment
O, e.g., to justify a full truckload: Z qmr = Om, Ym € M.

reR
¢ Broken assortment effect. This constraint captures the effect that the demand

rate of an article usually declines when the inventory goes below a certain level
f that could be country dependent:

w

1
e = (1= 1 + um$)F;fr<pk> Y (m,r.kw) e MRKW, (25

where F% (p) = Ef, (pi)/(min{1, T4 /£ HPn and 1, = (3p2+90m)/ 205+
60m +4) with p,, = B4, . See Caro and Gallien (2012) for more details on this
constraint.

¢ Forced liquidation. This constraint is a way to ensure that the model liquidates
at least a fraction v of the total stock available in the network:

S aw)+ X mhsa-w ([ X0+ Y1,

reR meM (m,r)e MR reR (m,r)e MR
(26)

Zara has stores in more than 70 countries and each product group can have
hundreds of articles in a given season. Moreover, the combinations of prices and
clearance periods are in the order of 400, which makes the model (M P) a large-
scale optimization problem. Common aggregation techniques can be used to reduce
the size of the model. For instance, constraints (14)—(16) and (21) and (22) can be
aggregated by cluster, or at least the articles within a cluster that have little inventory
available can be aggregated into a “meta article” (see Sect.5.1). Alternatively,
the number of feasible prices K can be reduced from 40 to about half. Note
also that constraint (14) can be relaxed in a Lagrangian fashion and then the
model decomposes into smaller subproblems per country. Zara used some of these
techniques to speed up the computational time.
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5 Business Rules and Implementation Challenges

5.1 Balanced Distribution

During the development of this project, Zara was concerned that a pure profit
maximization approach could hinder fairness/equity among stores. This tension is
well-documented in distribution problems, see Mandell (1991). Moreover, prelimi-
nary runs of the model showed that it had a tendency to ship most of the remaining
inventory to just a few countries. Therefore, additional constraints were added to the
optimization (M P) to achieve a more balanced distribution.

At the end of the season there tends to be a few articles that represent most
of the inventory in each cluster. Therefore, it is important to avoid solutions that
send to much inventory of the same article to a particular store. Here we will use
r to represent an article for which there is abundant inventory at the warehouse. A
simple rule to identify these articles would be to check whether the initial inventory
at the warehouse 10 is greater than the number of store times the number of sizes in
which r is available (intuitively, this means that there is enough inventory to send a
full set of sizes—maybe of different colors—to each store). The remaining articles
that do not have abundant inventory are grouped in a meta article in each cluster
that we denote by » = 0. In other words, article 0 in each cluster represents the true
leftovers. As an example, consider the table here below that is taken from one of
the product groups. Assume that there are 1659 stores. The articles in the table are
available in four sizes, so the cutoff to qualify as an article with abundant stock is
1659 x 4 = 6639. Therefore, in cluster 1590 there are only leftovers (R 1590 = {0}),
whereas in cluster 1990 there are four abundant articles plus the leftovers (R 1999 =
{0, 1509/120, 264 /967, 5646/200, 5646/201}) (Fig. 2).

cluster model quality| stock cluster model quality| stock
1590 6873 20 290 1990 1509 120, 186017
6873 22 244 5646 103 1852
6873 23 28 2339 116 2534
5646 16 79 5755 110 1041
5646 21 58 264 967 12779
2339 115 2566 6350 27 234
1494 20 148 5618 856 1665
5584 50 130 2339 30 45
5584 55 329 5747 29 8
2339 12 18 5646 200 35614
2339 13 70 5646 201] 80425
5747 24 241
5747 25 73
367 104 198
2619 45 45
2619 75 16

Fig. 2 Example of two clusters. An article corresponds to a model-quality pair
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For each article r, let i, be the percentage of the initial purchase that has been
sold during the regular season. For the meta article, o can be computed as a
weighted average of the individual percentages. Let Sales,; be the regular season
sales of article r at store j. Then, we define the overall and the country-specific
share of store j for article r as follows:

— D ieT ) Salesy;
dpr = pr =2———— (1 - d;, 27
mr = Mr Zj/ej Sales,j/ + ( Hr) Z (27)

JeT (m)
_ Sales,;
dmrj = tir = + (1 = tr)d;, (28)
2 jireTm Sales,j
PrevClearSales PrevClearSales;

and

where d; = s dmi =
! Zj/ej PrevClearSales " Zj/eT(m) PrevClearSales

can be replaced by similar quantities at the product group level if they are available.
Note that in Egs. (27) and (28), if u, is close to one, then more weight is given to
recent sales, whereas if p, is closer to zero, then last year’s performance has more
weight.

We can now define the maximum country allocation for article r:

+
by = |:<Ir0 + Z Ir(r)l’r>3mr - In(ir:| Vim e M. (29)
m'eM

If by, is less than the minimum shipment quantity, then we redefine it and make
it equal to the minimum shipment. If b,,, = 0, then that country is removed from
the allocation. For the countries that remain, we recompute by, using Eq. (29). The
balanced distribution is attained by adding the following constraint to the model
(MP):

Gmr = (I +0)bu, Y (m,r) e MR, (30)

where the parameter o was added as a lever to allow the user to expand the feasible
set if desired. Note that if a country has plenty of stock, i.e., I,(,)l , 1s very high, then it
is effectively blocked, which is similar to the rationale of blocking countries in the
legacy process (see Sect. 2) but at the article level.

5.2 Disaggregation Model

The disaggregation model (DG,,,) here below must be solved for each article r
within a product group, and for each country m (it could also be solved at a more
aggregate level for each cluster n). In what follows, we consider a fixed pair (m, r)
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and let n(r) be the cluster of article r. The additional parameters, decision variables,
and the model formulation are introduced next.

Additional Parameters

Yynnj: historical realized income for cluster n at store j in previous clearance

sales. The realized income measures the ratio of the actual revenue from

clearance sales to the maximum revenue achievable by selling the inventory at

regular season prices, see Caro and Gallien (2012).

E,j = Z Z E} (pr) y,’;ll(‘})n(r)k: expected sales of article r at store j during
w>1 kel

the markdown period, where y* ", comes from the solution of the master problem

(MP).

g, total shipment quantity allocated to country m. This parameter comes from

the solution to the aggregate master problem (M P).

r

+
byj = |:<q;;r + Ir?l(j)r>gm(j)rj — IO/:| : maximum store allocation of article r

to store j, where Em,j is defined in Eq. (28).

Decision Variables

qrj: shipment quantity (in units) for article  from the central warehouses to store
J-

qmrj: shipment quantity (in units) for article 7 from the local warehouses in
country m (if they exist) to store j.

qjrj: transhipment quantity for article r between stores j and j'.

29 A, j: sales of article r at store j in period w = 0 and during clearance sales,

rj’ i
respectively.

Formulation
(DG ) -
max Z przr()"?j + Ymn(r)j)”rj) — M Z (er + erj)
JeT (m) JET (m)
e Y (1)
J.J' €T (m)

S.t.

Y oami= Y I (32)

JjeT (m) acA(m)
Qg' =qrj +qmrj + Z (Qj’rj - erj’) Vj e T(m)
J'€T (m)
(33)
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Lj=1%+q) =1, VjeTm) (34)

W, <E) YjeTm) 35)

Aj <E;j VjeTm) (36)

Arj <Ly Y jeTm) (37)

q9j <b; VjeT(m) (38)

Y a4 <aqp (39)

JET (m)
Ao M5 e Qe Qe Irj 2 0 Y, j' € T(m). (40)

The disaggregation model is a maximization problem that accounts for store
transhipment, similar in spirit to the legacy model (LGCY). The objective func-
tion (31) is the expected revenue minus the total transportation and handling cost
due to shipping from the warehouses (cjs) and transshipments between stores
(cs). Constraint (32) ensures that the shipments from the local warehouses do not
exceed the inventory available. Constraint (33) defines qﬁ)j, which is an auxiliary
variable that represents the net quantity of article r received at store j (note
that this variable could be negative meaning that store j sends inventory rather
than receives). Constraint (34) is an inventory balance equation. Equations (35)—
(37) are newsvendor-type constraints for sales. Constraint (38) ensures a balanced
distribution as discussed in Sect. 5.1. Constraint (39) dictates that the total amount
shipped to the stores cannot exceed the quantity allocated to country m according to
the solution of the master problem (M P). Finally, the nonnegativity of the decision
variables is imposed in constraint (40).

Note that the disaggregation model could be formulated at the SKU (color/size)
level. However, Zara opted to solve it at the article level and then the warehouse
team would use its own procedure to break down the quantities to color and sizes.
Either way, the output of the disaggregation step is the inventory allocation g, y for
each store.

5.3 Disaggregation Factors

The demand rate estimation in Sect. 3 is for each article r. This rate needs to be
disaggregated to the store and SKU (color/size) level. For that, the idea is to capture
the stores that do better during clearance sales, which are not always the same
than those that sell well during the regular season. Note that for a new stores, an
equivalent store has to be defined.

Let PrevClearSales; be the sales by store j in the previous clearance sales a
year ago. The disaggregation factors that are used to disaggregate the demand rate
to the store and SKU level are the following:
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Zw<w,je,7 Sales;”sj PrevClearSales;

ar_yj e )
Dw<ivseSer), jeg Sales)s; g PrevClearSales;

(41)

where w is the current (or most recent) regular season period and S(r) represents the
set of color-size combinations available for article . Note that the rightmost ratio
depends only on j so it can be computed separately for all SKUs. A few remarks:

* The quantity PrevClearSales; represents sales in units, but it could also be
defined in terms of EUR, which would be closer to how it is done in the legacy
process described in Sect. 2.

* One could also define PrevClearSales,; as the previous year sales for each
group g at store j and use this value in the rightmost ratio in Eq. (41). For new
stores one would have to define equivalent stores at the group level.

* An alternative is to define PrevClearSales; as the clearance sales in the past
2 years. Again, the complication would be those stores that have been open less
than 2 years.

* For articles that have little sales data, i.e., for which most of the inventory is still
at the warehouse, the disaggregation factor can be redefined in the following way:

Iros + Zw<w,jej Sales}”sj PrevClearSales

Orsj = : .
Yosese) I + Xw<isese), jeg Sales); 3 jcq PrevClearSales;
(42)

Note that the sum ) T Orsj still adds to one for all r € R.

seS(r),je

5.4 Iterative Allocation

Obtaining an estimate of the inventory 7;“’ at time w is a significant challenge. A first
approximation is to replace sales with its expected value at regular season prices, in
which case 1Y = max {I"~! — E*~!(p!), 0}. This approximation ignores the
inventory allocation that takes place prior to clearance sales. Therefore, the solution
of the model ¢* can be used to update 7, = max {10 + ¢ — E?, 0}, and then the
model can be run again (recall that the country subindex m is omitted in Sect. 3 so
q; stands for g, ).

The computation of ?}? j is even more involved. A simple but somewhat crude

approach is to apply the disaggregation factors «,; to the inventory estimates 7;“)
An alternative, that was favored by Zara, is to first assume that inventory levels
will remain constant at the initial levels, i.e., 7;“5 = Iros., for all periods. This
first approximation again ignores the inventory (re)allocation from the optimization

model. Therefore, a re-estimation is necessary, at least for the first period. Namely,
71 = max [10 + qr*sj — E[Sales?SAp;(j)r, 1°

rsj rsj rsj

the disaggregation step described in Sect. 5.2.

], 0], where g ; is the output of
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The iterative procedure described above essentially assumes an inventory tra-
jectory ?;w and produces an inventory allocation g,, which is then used to update
the estimated inventory levels. Hence, the procedure can be seen as solving a fixed
point problem in g,. We did not explore the theoretical validity of this approach,
but in practice it worked very well. In fact, in our runs in the test pilot the inventory
allocation did not change much after the second iteration. Therefore, in the final
implementation only two iterations of the procedure were performed.

5.5 Online Stores

In 2010 Zara launched its online channel. That happened right in the middle of
the project on coordinating inventory and clearance sales markdowns described in
this chapter. Therefore, there was the challenge of incorporating the new channel
in the model-based process. At the time, Zara had three warehouses for online
sales: EZ-Japan, EZ-Usa, and EZ-Rest. Initially, each one of these warehouses was
treated as another store in Spain, and therefore in the model they were subject to
the prices and markdowns suggested for Spain. However, as more country-specific
warehouses were opened, Zara started treating each one of these inventory locations
as an additional store in the corresponding country. This strategic decision meant
that prices in both channels (online and offline) would be the same within each
country.

In the past, product returns had been accounted as negative sales that were
subtracted from the total sales. However, returns increased with the introduction
of the online channel, so it became important to separate returns from actual sales.
Otherwise, the model would allocate too little inventory to the online stores. For this
reason, extra safety stock was added in the initial years for precaution.

The addition of the online channel to the model happened seamlessly. Remark-
ably, most of the online sales in the initial years came from cities or towns that did
not have Zara stores, which meant that there was little cannibalization between the
online and brick-and-mortar channels. Eventually, there could be some degree of
channel shift as online shopping becomes more prevalent, but this effect is likely
to be outweighed by the potential synergistic benefits of omnichannel retailing, as
shown in Gallino and Moreno (2014).

6 Model Impact

The first test of the model’s impact consisted in a dry run in which the model-
based solution was run in parallel to the legacy process described in Sect.2. We
compared the inventory allocations recommended by each approach as well as the
forecast errors across all the countries. The results are summarized in Fig. 3. There
are two main observations that stand out. First, in 67% of the countries the model-
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Fig. 3 Dry-run results.
Comparison of the
model-based solution versus
the legacy process
(percentages with respect to
the total number of countries)

Larger

1.4% 31.4%

Forecast Error

20.1% 47.1%

Smaller

Less More

Inventory Allocation

based solution had a smaller forecast error than the legacy process, which showed
a gain in prediction accuracy. Second, for about 79% of the countries the model-
based solution allocated more inventory than the legacy process. These were mostly
smaller countries, which showed the model’s ability to achieve a more balanced
distribution (see the discussion in Sect. 4).

After a working prototype of the new allocation tool was completed, a controlled
field experiment was performed during the 2012 summer clearance to estimate the
model’s impact. The overall product assortment was split in 20 groups. The model
was used to make inventory and pricing decisions for groups 1-12 for all the stores
in Belgium, whereas for groups 13-20 decisions were made manually using the
legacy process. We did the opposite in Holland—i.e., groups 13-20 were managed
using the model—in order to remove any factors specific to the group choice in
each country. Groups 1-12 can be described as classic designs for women above
twenty, whereas groups 13-20 are more fashionable products targeted to a younger
audience. Products in groups 1-12 are usually more expensive and are known to sell
better in winter clearance. In contrast, groups 13-20 have mostly cheaper products
and sales do better in summer. The legacy process was used for all groups in the rest
of the countries (i.e., all countries but Belgium and Holland).

Similar to Caro and Gallien (2012), the main metric used to measure performance
was the realized income ratio (Y), defined as the revenue generated during the
end of the season and clearance sales over the valuation of initial inventory at
regular season prices. For each store in Western Europe we computed the difference
between the total realized income ratio in groups 1-12 (denoted Y;_12) minus
the same metric in groups 13-20 (denoted Y13_7p). This allowed removing store-
specific factors that are not attributable to the model. We averaged the differences
across all stores in Belgium to remove random factors (e.g., due to the forecast
error). We did the same in Holland, and then for all the other stores in the rest of
Western Europe (RWE). The latter represented the baseline. Therefore, by taking the
difference between the averages in Belgium and in RWE we obtained an estimate
of the model’s impact in groups 1-12. Doing the same between Holland and RWE
gave the impact in the remaining groups.
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Table 1 Pilot results (in percentage points)

Season Country AY Baseline (RWE) Difference

Summer *12 Belgium —0.1 —-1.9 1.8
Holland —2.4 -1.9 -0.5

Winter *12 Belgium 5.7 5.1 0.6
Holland 3.9 5.1 —-1.2

AY is the average of Yj_12 — Y13_2¢ across stores. The baseline is AY for RWE. The last column
is the difference between the two preceding columns

The results of the pilot are shown in Table 1. The difference in the last column
is the main point of interest. As expected, this difference was positive for Belgium
and negative for Holland, and it showed that the model-based approach improved
the realized income ratio by 1.8 and 0.5 percentage points in Belgium and Holland,
respectively. The disparate magnitude of the effects (1.8 versus 0.5) was attributed
to the fact that groups 13-20 tend to sell better in summer as shown by the negative
baseline (—1.9). To confirm this hypothesis, the same experimental design was
repeated in 2012 winter clearance. The results of this second pilot are also shown
in Table 1. We observed that the baseline turned positive (5.1), the sign of the
difference in the last column remained the same for Belgium and Holland, but the
magnitude of the effects reversed between the two countries as we had expected.
Hence, the model had a higher impact (in percentage points) for the groups that
were harder to sell, i.e., groups 1-12 in summer and groups 13-20 in winter.

The pilot in summer 2012 showed that the model increased the Y metric by
1.2 percentage points on average, which was equivalent to a 2.5% increase in
overall revenues. This result motivated the full-scale implementation of a DSS,
which became operational in summer 2014; see Appendix 2 for some screenshots
of the system. In order to validate the impact of the model, we used data prior to
2014 to run a simple linear regression in which the dependent variable was the
inventory available for allocation (in EUR) divided by the total number of stores
and the independent variable was the revenue generated at the end of the season and
clearance sales divided by the total units shipped in preparation for the clearance
period. We used the estimated coefficients to predict the revenue in summer 2014
and compared it to the actual revenue. Remarkably, the latter was 2.6% higher
than the prediction, which confirmed the results obtained in the pilot. Another
important observation is that the inventory left over at the warehouse was small and
comparable to the amount that had to be salvaged in prior years under the legacy
process (Fig. 4).
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Actual revenue

2.6% increase

SEN

Predicted|revenue

Realized revenue per unit shipped

Inventory available for allocation per store

Fig. 4 Predicted versus actual revenue in summer 2014. Axis values are omitted for confidentiality
reasons

7 Conclusions

This chapter describes a model-based process to allocate stock in anticipation of
clearance sales. The model effectively coordinates inventory and pricing decisions.
The model’s impact versus the legacy process was estimated at 2.5% of revenues,
which led to the implementation of a DSS that is currently used at Zara.

There are several other differences and benefits of the model-based solution in
comparison with the legacy process. First, it finds the global optimum across all
countries and stores, instead of many local optima, and it has more granularity
because it makes shipment decisions at the article-store level. Second, the model
allocates inventory to maximize revenue (as opposed to just liquidating stock)
and it incorporates differences in price and elasticity across countries. The model
also provides a scalable process and homogeneous decision criteria. Finally, Zara’s
strategic choice of in-house model development has strengthened the company’s
business analytics capabilities.

Our model, as any model, is an approximation and is based on assumptions.
Therefore, we hope that this chapter can stimulate future research on inventory
and pricing coordination and related topics. One important area for further study is
explicitly incorporating substitution effects in the demand estimation and the opti-
mization model. Considering price-based substitution can already be challenging
because it requires more advanced choice models or estimating cross-elasticities.
Stockout-based substitution complicates matters even further as substitution can
happen within the same stores for different products or across stores for the same
product. The latter is studied in Ergin et al. (2018) for brick-and-mortar stores. With
the emergence of omnichannel retailing, substitution across channels will have to
be taken into account. A related open research question is whether pricing policies
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should be the same or should differ across channels. Zara opted for the former,
which facilitated the addition of the online channel to the allocation model, but the
pros and cons could be studied further (Caro et al. 2019).
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Appendix 1: Base Model: Single-Item Continuous
Formulation

To gain insights, we formulate a single-item base model in which inventory
decisions are treated as continuous variables. First, consider a single-period problem
with multiple countries that are sourced from the same central depot. Let F;, (p,,) be
the demand in country m at price p,,. Here we assume that demand is deterministic

7/3m
and given by F,(pm) = Cun (p_?) where p,?l > 0 is the regular-season

m
price for the item, B, is the constant price elasticity, and C,, > 0 is a country

specific constant that is proportional to the market size in country m. We assume
that B,, > 1. The case with 8,, < 1 is not interesting for our purposes because
the revenue increases with price, which means that the retailer has no incentive to
introduce markdowns and would rather keep the regular-season price pl A

Let g, be the inventory allocated to country m and let J,(gn) :=
max , >0 Pm Min { Fyy (Pm), gm } be the maximum revenue obtained by optimizing
the price p,,. Note that when B, > 1 the (unconstrained) revenue p,, F,,,(pn,) is
convex so standard results such as Proposition 1 in Bitran and Caldentey (2003) do
not apply. However, the (constrained) revenue p,, min {Fm (Pm), qm} is a unimodal
function in p,,. In fact, the revenue increases until the price is such that supply
exactly matches demand and then it decreases. In other words, the revenue has

a unique maximizer that satisfies Fy,,(p,) = gm. Hence, the optimal price is
1
Cp \ P o . L .
P Gm) = p,{l (—m> . Substituting the optimal price in the revenue function we

m
1

1
obtain J,, (g;,) = p£ chn q,L Pm which is concave in qm-
Let 7° be the total inventory available at the central depot. In the absence of
additional business requirements or constraints, the inventory allocation problem
faced by the retailer can be formulated as follows:

"When B,, = 1 the revenue is constant so the pricing decision is irrelevant.
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max Z I (qm) (43)
meM

s.t. Z gm < 1°

meM
gn >0 Vme M.

I

0 1 L L
Since — = (1 — —)ng,f;"‘ qmﬁ’” > 0, Vm € M, it follows that the
gm Bm

constraint ) g qm < 1 9 must be binding. Let v be its Lagrangian multiplier or
shadow price. From the Karush-Kuhn-Tucker conditions (Bertsekas 1999) it follows
that the optimal quantities are given by

1 pT Bm
* — _—\&m
% = Cp ((1 ﬂm) - ) Vm e M. (44)

Equation (44) shows that g, is increasing in C,, and p! . Therefore, all other things
being equal, it is optimal to allocate more inventory to countries with larger market
size and higher regular-season price. If there is ample inventory 7° at the depot
such that v < p,i, then g, is also increasing in f,, so ceteris paribus, it is optimal
to allocate more inventory to countries where demand is more elastic. Note that
gm > 0 for all m meaning that all countries get a positive allocation. Of course, this
last observation hinges on fractional inventory being allowed.

Now consider a multi-period version of the single-item problem described above.
Letw e W= {w:1 < w < W} denote a period and let /; be the inventory in
country m at the beginning of period w. An important feature in a multi-period
setting is that the retailer can choose to “save” inventory for a future period. To
capture this decision, we introduce the variable A}, that represents the amount of
inventory withdrawn from /Y and allocated to period w in country m. Since there is
no incentive to allocate inventory that will not sell, it follows that A}, will be equal to
the sales in period w, which is the interpretation we give to that variable in Sect. 4.2

With the additional variables, the pricing problem in country m can be formulated
as the following dynamic program

JUIY) = max p2min {FY(pl), A2} + 2 et (45)
R

puAL, VH >0,

2To see thiﬁ, in the formulation_ (45) replace min {F,};"(p,';j), )J,f;} with a variable X;ﬁ and the
constraints A}, < F(p») and A}, < A;’. With no loss of optimality one can assume that this
last constraint is active because otherwise the leftover inventory (A — 1) can be added to [%*!

so it can be sold in the next period.
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where F (py) is the (deterministic) demand in country m for the price p)» in period
w > 1. Then, allocating the inventory at the depot across countries corresponds to
solving

max Z J,,11 (qm) (46)
meM

s.t. Z gm =< 1°

meM
gn >0 Vme M.

Given that the problem is deterministic, the sequential (closed-loop) optimization
has an equivalent simultaneous (open-loop) formulation that is given by:

max Y Y pemin {F¥(py). Ma) (47)
meM weW

st Ih =g, YmeM
P =Y — A%V (m, w) € MW

ZQmEIO

meM
PEAE I =0 ¥ (m, w) € MW,

Note that the inventory variables [, in the formulation above can be omitted and
the non-negative constraint /) > 0, V(m, w) € MW, can be replaced by g, <
Zwew A, ¥Ym € M. Moreover, with no loss of optimality one can assume that
qm = Zw W Ay Ym € M, so the optimization problem (47) can be reformulated
as

max Y > TrGm (48)

meM weW

sty > o<1’

meM weW
Ay =0 V(m,w) e MW,

where J¥ (%) = max o plmin {F2(p¥), 1% }. The optimization problem (48)
has the same structure as the single-period problem (43). In particular, suppose
that for country m there exists a parameter 0 < k,, < 1 such that F,’(p,) =

_ﬂm
KR (pYy = kPe, <p_,;> for w > 1. Similar to Caro and Gallien
m

3In a slight abuse of notation, Kk, represents k,, to the power of w. Everywhere else, we use w as
a superscript to denote the period.
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(2012), the parameter «, represents a discount factor that captures how prices age,
regardless of the inventory level. Then, from Eq. (44) the quantity allocated to
country m is given by

1— KW—] 1 PT Bm
* wo_ m _ m
q = EEW: I = G ((1 —ﬂm)—v ) Vme M. (49)

w

Therefore, the insights from the single-period problem carry over to the multi-period
case. Namely, the allocation g}, to a given country m increases with the market size

Cy, the regular-season price pﬁ, and the elasticity B, (when v < p,ﬁ). Of course,
q, is also increasing in the parameter «,.

Appendix 2: System Snapshots
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