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Abstract The contemporary results concerning supersymmetries in generalized
Schrödinger equations are presented. Namely, position dependent mass Schrödinger
equations are discussed as well as the equations with matrix potentials. An
extended number of realistic quantum mechanical problems admitting extended
supersymmetries are described.
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1 Introduction

In seventieth of the previous century a qualitatively new symmetry in physics had
been discovered and called supersymmetry (SUSY) see, e.g. [1] but also [2] where
the idea of SUSY was formulated in somewhat rudimentary form. Its rather specific
property is the existence of symmetry transformations mixing bosonic and fermionic
states. In other words transformations which connect fields with different statistics
have been introduced.

Among the many attractive features of SUSY is that it provides an effective
mechanism for the cancelation of the ultraviolet divergences in quantum field theory.
In addition, it opens new ways to unify space-time symmetries (i.e., relativistic
invariance) with internal symmetries and to construct unified field theories, includ-
ing all types of interactions, refer, e.g. [3, 4] and [5].
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Mathematically, SUSY requests using of the graded Lie algebras instead of the
usual ones, and the corresponding group parameters are not numbers but Grassmann
variables. The essential progress in the related fields of mathematics was induced
exactly by the needs of SUSY.

Unfortunately, till now we do not have convincing experimental arguments for
introducing SUSY as a universal symmetry principle realized in Nature. Neverthe-
less, it is possible to find a number of realistic physical systems which admit this nice
symmetry. Moreover, SUSY presents effective tools for understanding the relations
between spectra of different Hamiltonians as well as for explaining degeneracy
of their spectra, for constructing exactly or quasi-exactly solvable systems, for
justifying formulations of initial and boundary problems, etc.; see, e.g., surveys
[3, 6] and [7]. In other words, SUSY is realized in Nature at least in a rather extended
number of particular physical systems.

The present work is concentrated on quantum mechanical systems since they
provide a ground for testing the principal question: whether SUSY is realized in
Nature or not, free of the complexities of field theories. Examples of such systems
(like interaction of spin 1/2 particle with the Coulomb or constant and homogeneous
magnetic field) which admit exact N = 2 SUSY are well known [8, 9] (see also
Refs. [6, 7] and the references therein). However, we will concentrate on systems
admitting more extended SUSY.

Let us remain that the supersymmetric quantum mechanics was created by Witten
[10] as a toy model for illustration of global properties of the quantum field theory.
But rather quickly it becomes a fundamental field attracting the interest of numerous
physicists and mathematicians. In particular the SSQM presents powerful tools
for explicit solution of quantum mechanical problems using the shape invariance
approach [11]. The number of problems satisfying the shape invariance condition
is rather restricted but includes the majority of exactly solvable Schrödinger
equations. The well-known exceptions are exactly solvable Schrödinger equations
with Natanzon potentials [12] which are formulated in terms of implicit functions.

A very important application of SUSY in quantum mechanics is classification of
families of isospectral Hamiltonians. And there is a number of systems isospectral
with the basic exactly solvable SEs. In the standard SUSY approach with the first
order intertwining operators the problem of description of such families is reduced
to constructing general solutions of the Riccati equations. More refined approaches
can include intertwining operators of higher order [13], the N-fold supersymmetry
[14], and the hidden nonlinear supersymmetry [15]. One more relevant subject of
contemporary SUSY are the so-called exceptional orthogonal polynomials [16, 17].

Let us mention that other generalized supersymmetries which include the usual
SUSY have been discussed also, among them the so-called parasupersymmetry [18–
20], which also has good ruts in real physical problems. However, the standard
SUSY is seemed to be more fundamental.

Just in quantum mechanics SUSY presents powerful tools for constructing
exact solutions of Schrödinger equation (SE). And we will present a survey of
contemporary results belonging to this field. We will not discuss generalizations
of the standard SUSY in quantum mechanics like the ones mentioned above, but
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restrict ourselves to the standard SUSY quantum mechanics with the first order
intertwining operators [21]. However, the systems with extended SUSY as well as
systems including SEs with Pauli and spin-orbit couplings, with position dependent
mass and with abstract matrix potentials will be considered. Notice that just these
fields are the subjects of current interest of numerous investigators.

Let us stress that there are two faces of SUSY in quantum mechanics. First,
there exist QM systems like the charged particle with spin 1/2 in the constant
and homogeneous magnetic field which admit exact SUSY. Such systems admit
constants of motion forming superalgebras. Second, it is possible to indicate the QM
systems with “hidden” SUSY like the hydrogen atom, and just these systems can be
solved exactly using the shape invariance of the related Schrödinger equations. We
will discuss both types of SUSY. The realistic physical systems which admit exact
SUSY will be considered in the next section, while the shape invariant systems are
discussed in Sects. 3–6.

An inspiring example of QM problem with a shape invariant potential was
discovered by Pron’ko and Stroganov [22] who studied a motion of a neutral non-
relativistic fermion, e.g., neutron, interacting with the magnetic field generated by a
current carrying wire. A relativistic version of such problem was discussed in [23].

The specificity of the PS problem is that it includes a matrix superpoten-
tial, while in the standard SUSY in quantum mechanics the superpotential is a
scalar function. Matrix potentials and superpotentials naturally appear in quantum
mechanical models including particles with spin (see, e.g. [24], Sections 10 and 11)
and in multidimensional models of SSQM [25, 26]. Particular examples of such
superpotentials were discussed in [27–31]. In papers [32] such superpotentials were
used for modeling the motion of a spin 1

2 particle in superposed magnetic and
scalar fields. In paper [29] a certain class of such superpotentials was described,
while more extended classes of them were classified in [33, 34]. In any case just
systems matrix superpotentials belong to an interesting research field which makes
it possible to find new coupled systems of exactly solvable Schrödinger equations.
The contemporary results in this field will be discussed in the following.

In addition to SUSY, some SEs can possess one more nice property called
superintegrability (SI). By definition, the quantum system is called superintegrable
if it admits more integrals of motion than the degrees of freedom. Like SUSY, the
SI can cause the exact solvability of the related SE, especially in the case when it is
the maximal SI when the number of integrals of motion is equal to 2n + 1 where n

is the number of degrees of freedom.
There exists a tight connection between the SI and SUSY, and many QM systems

are both supersymmetric and superintegrable. In fact the maximal SI induces SUSY
and vice versa, in spite of that this fact was never proven for generic QM systems.

The superintegrable systems which are also supersymmetric will be a special
subject of our discussion. Moreover, there will be systems with position dependent
masses which are discussed in Sect. 6.
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2 QM Systems with Exact SUSY

2.1 System with N = 2 SUSY

Let us start with the well-known and important physical system, i.e., the spinning
and charged particle interacting with an external magnetic field. The corresponding
QM Hamiltonian can be written in the following form:

H = π2

2m
+ e

2m
σiBi, (2.1)

where π2 = π2
1 + π2

2 + π2
3 , πi = −i ∂

∂xi
− eAi, i = 1, 2, 3, Bi = εijk

∂Aj

∂k
, σi

are Pauli matrices, Bi and Ai are components of the external magnetic field and the
corresponding vector-potential, and summation is imposed over the repeating index
i.

In contrast with the standard Schrödinger Hamiltonian, operator (2.1) includes
the Pauli term e

2m
σiBi describing the interaction of the particle spin with the external

magnetic field. The related stationary Schrödinger equation has the standard form:

Hψ = Eψ (2.2)

with E being the Hamiltonian eigenvalues.
In the case of the constant and homogeneous magnetic field directed along the

third coordinate axis the vector-potential can be reduced to the form:

A1 = −1

2
x2B3, A2 = 1

2
x1B3 A3 = 0, (2.3)

and by definition B1 = B2 = 0, B3 = B = const. Thus Hamiltonian (2.1) can be
rewritten in the following form:

H = H1 + H2, H1 = p2
3

2m
, H2 = (σ1π1 + σ2π2)

2

2m
(2.4)

with p3 = −i ∂
∂x3

.
The immediate consequence of representation (2.4) is that our Hamiltonian

commutes with the three operators:

Q1 = σ1π1 + σ2π2, Q2 = iσ3Q1, Q3 = p3, (2.5)

which satisfy the following algebraic relations:

[Q3,Q1] = [Q3,Q2] = [Q3,H ] = 0, (2.6)

{Qμ,Qν} = 2δμνH2, [Qμ,H2] = 0, (2.7)
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where μ, ν independently takes the values 1, 2, δμν is the Kronecker delta, and the
symbols [.,.] and {.,.} denote the commutator and anticommutator correspondingly.

Thus the considered Hamiltonian admits three constants of motion, one of which,
i.e., Q3, commutes with the two others. On the other hand, Q1 and Q2 are not in
involution, but satisfy more complicated relations (2.7), which characterize a Lie
superalgebra.

Just this specific supersymmetry can be treated as the reason of the twofold
degeneration of the Landau levels, i.e., the non-ground energy levels of a spin 1/2
particle interacting with the constant and homogeneous magnetic field.

Generally speaking, superalgebra is a graded algebra. In the simplest case of the
Z2 grading the elements of the superalgebra belong to two different classes, say, odd
or even. The multiplication laws for even and odd elements are different. In our case
Q1 and Q2 are odd, while Q3, H1, and H2 are even. The product of two algebra
elements is defined as the commutator if at least one of them is even and as the
anticommutator if both the elements are odd. In SUSY quantum mechanics the odd
elements are called supercharges. Since we have indicated two supercharges then it
is possible to say about N = 2 SUSY.

2.2 Extended SUSY

The considered system is only a particular (albeit very important) example of realis-
tic physical problem admitting exact supersymmetry. In particular, it is obvious that
the presented SUSY is valid for arbitrary Hamiltonian admitting representation (2.1)
provided one component of the vector-potential of the external field is identically
zero.

We will discuss also another examples, but first let us note that in fact Eq. (2.2)
with Hamiltonian (2.4) admits a more extended SUSY.

In analogy with the above we can construct a supercharge valid for Eq. (2.1) in
the case of arbitrary external magnetic field:

Q̃1 = σiπi (2.8)

since Q̃2
1 = H .

Let us show that it is possible to find three more supercharges provided the
external field is given by relations (2.3). To do it we exploit the fact that Eq. (2.4) is
invariant w.r.t. the following three discrete transformations:

ψ → R3ψ, ψ → CR1ψ, ψ → CR2ψ, (2.9)

where Ra (a = 1, 2, 3) are the space reflection transformations

Raψ(x) = σaθaψ(x), θaψ(x) = ψ(rax). (2.10)
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Here

r1x = (−x1, x2, x3), r2x = (x1,−x2, x3), r3x = (x1, x2,−x3), (2.11)

and C = iσ2c, where c is the operator of complex conjugation

cψ(x) = ψ∗(x). (2.12)

Note that operators (2.9) satisfy the following relations:

{Ra, σiπi} = {Ra,C} = {CR1, σiπi} = {CR2, σiπi} = 0,

R2
a = −C2 = 1, a = 1, 2, 3.

(2.13)

Using (2.8 ), (2.13) we can see that the operators

Q̃1 = σiπi Q2 = iR3Q̃1, Q3 = CR1Q̃1, Q4 = CR2Q̃1 (2.14)

fulfill the following relations:

{Qk,Ql} = 2gklĤ ,
[
Qk, Ĥ

]
= 0, (2.15)

where k, l = 1, 2, 3, 4, g11 = g22 = −g33 = −g44 = 1; gkl = 0, k �= l. In other
words, operators (2.14) are supercharges generating the N = 4 extended SUSY.

Let us note that the main trick for constructing the extended SUSY was using
the discrete involutive symmetries, i.e., reflections (2.10), (2.11). We will see that in
analogous way it is possible to find extended SUSY for rather generic Eqs. (2.2).

2.3 Extended SUSY with Arbitrary Vector-Potentials

The results of the previous section can be generalized to extended class of arbitrary
potentials with well-defined parities. Starting with reflections (2.10) we find that the
corresponding parity properties of vector-function A(x) (2.3) are of the form:

A(r1x) = −r1A(x), A(r2x) = −r2A(x), A(r3x) = r3A(x). (2.16)

Relations (2.16) are satisfied by a large class of potentials which includes (2.3)
as a particular case. For all such potentials the corresponding Eq. (2.2) is invariant
w.r.t. involutions (2.9) and so admits the extended SUSY generated by super-
charges (2.14). Moreover, Eq. (2.1) for g = 2 and an arbitrary uniform magnetic
field, i.e., the field

A1 = A1(x1, x2), A2 = A2(x1, x2), A3 = 0, (2.17)
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admits all internal symmetries described in the previous section provided A(x)
satisfies relations (2.16).

Other systems with extended SUSY can be found by extending reflections (2.11)
to the eight-dimensional group of involutions, i.e., by adding the fixed rotation
transformations

r12x = (−x1,−x2, x3), r31x = (−x1, x2,−x3),

r23x = (x1,−x2,−x3), r123x = (−x1,−x2,−x3), Ix = x.
(2.18)

Let the vector-potential A(x) has definite parities w.r.t. a subset of transforma-
tions (2.11) and (2.18). Then it is possible to construct supercharges which generate
extended N = 4 and even N = 5 SUSY [35].

Thus we present a number of SE admitting extended SUSY. Let us stress then
among them there is a lot of systems with a clear exact physical meaning, see [36]
for discussion of this aspect.

3 SUSY in One Dimension and Shape Invariance

The models considered in the above were two or three dimensional in spatial
variables and include systems of coupled Shcrödinger equations. However, many of
them can be reduced to one dimensional systems using the separation of variables.
Moreover, these systems can be decoupled.

Returning to Eq. (2.2) for a charged particle interacting with the constant and
homogeneous magnetic field we can exploit its rotational invariance and search
for solutions in separated radial and angular variables, i.e., to represent the wave
function ψ as

ψ = 1

r̃
R(r̃)enϕ, (3.1)

where r̃ =
√

x2
1 + x2

2 , ϕ = arctan x2
x1

. As a result we come to the following equation
for the radial functions:

H̃R ≡
(

− ∂2

∂r̃2 − m(m + 1)

r̃2 + ωσ3 + ω2r̃2
)

R = ẼR, (3.2)

where m = n − 1
2 , ω = 2mα, and Ẽ = 2mE + q2

3 + ωn.
Alternatively, using the gauge transformation it is possible to pass from vector-

potential (2.3) to the following ones: A1 = eHx2, A2 = A3 = 0. Then,
representing the wave function in the form ψ = exp[i(p1x1 + p3x3)]φ(x2) and
setting x2 = 1

αB
(p1 + √

αBy) we obtain the following equation for φ:

Ĥφ = Êφ, (3.3)
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where

Ĥ = − ∂2

∂y2
+ σ3ω + ω2x2, Ê = 2mE − p2

3. (3.4)

Equation (3.4) defines the supersymmetric oscillator, while (3.2) is rather similar
to the “3d supersymmetric oscillator” but includes half-integer parameter m while
in the 3d oscillator this parameter is integer. Both the mentioned equations are
decoupled to direct sums of equations since the related Hamiltonians H̃ and Ĥ have
the following form:

H̃ =
(

H̃+ 0
0 H̃−

)
, Ĥ =

(
Ĥ+ 0
0 Ĥ−

)
, (3.5)

where

H̃± = − ∂2

∂r̃2
+ n(n ∓ 1)

r̃2
+ ω2r̃2 ± ω, Ĥ± = − ∂2

∂ỹ2
+ ω2ỹ2 ± ω. (3.6)

Hamiltonians Ĥ± have two nice properties. First, they can be factorized:

Ĥ+ = a+a, Ĥ− = aa+, (3.7)

where a+ and a− are the first order differential operators:

a+ = − ∂

∂y
+ W, a− = ∂

∂y
+ W

with W = ωy. Second, these Hamiltonians coincide up to a constant term: Ĥ+ =
Ĥ− + 2ω.

Hamiltonians H̃± are factorizable too:

H̃− = a+
κ a−

κ + cκ , H̃+ = a−
κ a+

κ + cκ+1, (3.8)

where

a−
κ = ∂

∂x
+ Wκ, a+

κ = − ∂

∂x
+ Wκ, (3.9)

and cκ = (2κ − 1)ω. Moreover these Hamiltonians satisfy the following relation:

H̃+(κ) = H̃−(κ + 1) + Cκ (3.10)
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with Cκ = 2ω. In other words, Hamiltonians H̃±(κ) are shape invariant [11].
The same is true for Hamiltonians Ĥ±(κ), which, however, do not include variable
parameter κ .

Thus our analysis of the realistic quantum mechanical system having a clear
physical meaning (charged particle with spin 1/2 interacting with the constant
and homogeneous magnetic field) makes it possible to discover its nice hidden
symmetry, i.e., the shape invariance. It happens that this symmetry is valid for
many other important QM systems like the hydrogen atom, and causes their exact
solvability [11].

To be shape invariant, Hamiltonian should be factorizable, i.e., to admit rep-
resentation (3.8), (3.9) for H̃−(κ) with some function W called superpotential.
In addition, it should satisfy condition (3.10) together with the corresponding
Hamiltonian H̃+(κ) which is called superpartner. If so, the related eigenvalue
problem (2.2) is exactly solvable, and its solutions can be found algorithmically.

The shape invariance condition can be formulated as a condition for the potential.
Considering the 1d Hamiltonian H = − ∂2

∂x2 + V (κ, x) with a given potential V

dependent on x and parameter κ and representing V (κ, x) as

V = W 2
κ + W ′

κ , (3.11)

where W ′
κ = ∂Wκ

∂x
, and superpotential is a solution of the Riccati equation (3.11).

Then we construct a superpartner potential

Ṽ = W 2
κ − W ′

κ . (3.12)

The corresponding stationary Schrödinger equation is shape invariant provided
Ṽ (κ, x) = V (κ + 1) + Cκ , where Cκ is a constant. In terms of the superpotential
this condition looks as follows:

W 2
κ − W ′

κ = W 2
κ + W ′

κ + Cκ. (3.13)

A natural question arises whether it is possible to formulate the shape invariance
condition with another transformation law for potential parameters. The answer
is yes, but the rule κ → κ + 1 can be treated as general up to redefinition of
these parameters. In other words, we always can change these parameters by some
functions of them in such a way that their transformations will be reduced to shifts
[37].
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4 Matrix Superpotentials

4.1 Pron’ko–Stroganov Problem

The supersymmetric systems considered in the above include matrix potentials.
However, when speaking about shape invariance, we deal with scalar potentials and
superpotentials, refer to Eqs. (3.6). Let us show that the concept of shape invariance
can be extended to the case of matrix superpotentials.

Like in Sect. 2 we will start with a well-defined QM system which includes
a matrix potential and appears to be shape invariant. Namely, let us consider a
neutral QM particle with non-trivial dipole momentum (e.g., neutron), interacting
with the magnetic field generated by a straight line current directed along the third
coordinate axis (Pron’ko–Stroganov problem [22]) The corresponding Schrodinger–
Pauli Hamiltonian looks as follows:

H = p2
1 + p2

2

2m
+ λ

σ1x2 − σ2x1

r̃2 , (4.1)

where λ is the integrated coupling constant, and σ1 and σ2 are Pauli matrices.
The last term in (4.1) is the Pauli interaction term λσiHi where the magnetic field

H has the following components which we write ignoring the constant multiplier
included into the parameter λ:

H1 ∼ y

r2
, H2 ∼ − x

r2
, H3 = 0. (4.2)

Hamiltonian (4.1) commutes with the third component of the total orbital
momentum J3 = x1p2 − x2p1 + 1/2σ3; thus, the corresponding stationary
Schrödinger equation (2.2) admits solutions in separated variables. Moreover, the
equation for radial functions takes the following form:

Ĥκψ = Eκψ, (4.3)

where Ĥκ is a Hamiltonian with a matrix potential, Eκ and ψ are its eigenvalue
and eigenfunction correspondingly, moreover, ψ is a two-component spinor. Up to
normalization of the radial variable r̃ the Hamiltonian Ĥκ can be represented as

Ĥκ = − ∂2

∂r̃2 + κ(κ − σ3)
1

r̃2 + σ1
1

r̃
, (4.4)

where σ1 and σ3 are Pauli matrices and κ is a natural number. In addition, solutions
of Eq. (4.3) must be normalizable and vanish at x = 0.

Hamiltonian Ĥκ can be factorized as in (3.8) where

a−
κ = ∂

∂x
+ Wκ, a+

κ = − ∂

∂x
+ Wκ, cκ = − 1

(2κ + 1)2
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and W is a matrix superpotential

Wκ = 1

2x
σ3 − 1

2κ + 1
σ1 − 2κ + 1

2x
. (4.5)

It is easily verified that the superpartner of Hamiltonian Ĥκ satisfies relation (3.10).
In other words, Eq. (4.3) admits supersymmetry with shape invariance and can be
solved using the standard technique of SSQM exposed, e.g., in survey [24].

4.2 Generic Matrix Superpotentials

Following a natural desire to find other shape invariant matrix potentials we
return to conditions (3.13) which should be satisfied by the corresponding matrix
superpotentials.

Assume Wk(x) is Hermitian. Then the corresponding potential Vk(x) and its
superpartner V +

k (x) are Hermitian too.
The problem of classification of shape invariant superpotentials, i.e., n × n

matrices whose elements are functions of x, k satisfying conditions (3.13), was
formulated and partially solved in papers [33] and [34]. Here we present the
completed classification results for a special class of superpotentials being 2 × 2
matrices.

Consider superpotentials of the following special form:

Wk = kQ + 1

k
R + P, (4.6)

where P , R, and Q are Hermitian matrices depending on x.
Substituting (4.6) into (3.13) we obtain the following equations for P , R, and Q:

Q′ = α(Q2 + νI), (4.7)

P ′ − α

2
{Q,P } + �I = 0, (4.8)

{R,P } + λI = 0, (4.9)

R2 = ω2I, (4.10)

where Q′ = dQ
dx

, {Q,P } = QP +PQ is an anticommutator of matrices Q and P ,
I is the unit matrix, and �, λ, ω are constants. Thus the problem of classification
of matrix superpotentials is reduced to solution of Eqs. (4.8)–(4.10) for unknown
matrices Q and P , R.
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4.3 Scalar Superpotentials

First we consider the scalar case when Q,P , and R in (4.6) are 1 × 1 “matrices.”
The corresponding Eqs. (4.7)–(4.10) can be integrated rather easily, refer to [34]
for detailed calculations. As a result we obtain the well-known list of scalar
superpotentials:

W = −κ

x
+ ω

κ
(Coulomb), (4.11)

W = λκ tan λx + ω

κ
(Rosen 1), (4.12)

W = λκ tanh λx + ω

κ
(Rosen 2), (4.13)

W = −λκ coth λx + ω

κ
(Eckart), (4.14)

W = μx(Harmonic Oscillator), (4.15)

W = μx − κ

x
(3D Oscillator), (4.16)

W = λκ tan λx + μ sec λx(Scarf I), (4.17)

W = λκ tanh λx + μsechλx(Scarf 2), (4.18)

W = λκ coth λx + μcosechλx(Pöschl-Teller), (4.19)

W = κ − μ exp(−x) (Morse). (4.20)

Thus we recover the known list of superpotentials (4.11)–(4.20) which generate
classical additive shape invariant potentials, in a straightforward and very simple
way. The corresponding potentials Vκ can be found using definition (3.11).

4.4 Matrix Superpotentials of Dimension 2 × 2

Here we consider the case when superpotentials are x-dependent 2 × 2 matrices of
form (4.6).

Supposing that Q(x) is diagonal (like in (4.5)), it is possible to specify five
inequivalent solutions of Eqs. (3.13):

Wκ,μ = ((2μ + 1) σ3 − 2κ − 1)
1

2x
+ ω

2κ + 1
σ1, μ > −1

2
, (4.21)

Wκ,μ = λ
(
−κ + μ exp(−λx)σ1 − ω

κ
σ3

)
, (4.22)

Wκ,μ = λ
(
κ tan λx + μ sec λxσ3 + ω

κ
σ1

)
, (4.23)
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Wκ,μ = λ
(
−κ coth λx + μ csch λxσ3 − ω

κ
σ1

)
, μ < 0, ω > 0, (4.24)

Wκ,μ = λ
(
−κ tanh λx + μ sech λxσ1 − ω

κ
σ3

)
, (4.25)

where we introduce the rescaled parameter κ = k
α
. These superpotentials are defined

up to translations x → x + c, κ → κ + γ , and up to unitary transformations
Wκ,μ → UaWκ,μU

†
a , where U1 = σ1, U2 = 1√

2
(1±iσ2), and U3 = σ3. In particular

these transformations change signs of parameters μ and ω in (4.22)–(4.25) and of
μ + 1

2 in (4.21), thus without loss of generality we can set

ω > 0, μ > 0 (4.26)

in superpotentials (4.22)–(4.25).
Notice that the transformations k → k′ = k + α correspond to the following

transformations for κ:

κ → κ ′ = κ + 1. (4.27)

If μ = 0 and ω = 1, then operator (4.21) coincides with the superpotential for
PS problem given by Eq. (4.5). For μ �= 0 superpotential (4.21) is not equivalent
to (4.5). The other presented matrix superpotentials were found in [33] for the first
time.

The corresponding potentials Vκ can be found starting with (4.21)–(4.24) and
using definition (3.11):

V̂κ =
(
μ(μ + 1) + κ2 − κ(2μ + 1)σ3

) 1

x2
− ω

x
σ1, (4.28)

V̂κ = λ2
(
μ2 exp(−2λx) − (2κ − 1)μ exp(−λx)σ1 + 2ωσ3

)
, (4.29)

V̂κ = λ2
(
(κ(κ − 1) + μ2) sec2 λx + 2ω tan λxσ1

+μ(2κ − 1) sec λx tan λxσ3) , (4.30)

V̂κ = λ2
(
(κ(κ − 1) + μ2) csch2(λx) + 2ω coth λxσ1

+μ(1 − 2κ) coth λx csch λxσ3) , (4.31)

V̂κ = λ2
(
(μ2 − κ(κ − 1)) sech2 λx + 2ω tanh λxσ3

−μ(2κ − 1) sech λx tanh λxσ1) . (4.32)

Potentials (4.28), (4.29), (4.30), (4.31), and (4.32) are generated by superpoten-
tials (4.21), (4.22), (4.23), (4.24), and (4.25), respectively. All the above potentials



146 A. G. Nikitin

are shape invariant and give rise to exactly solvable problems for systems of
Schrödinger–Pauli type.

It was proven in [33] that n × n matrix superpotentials of the form (4.6) with
a diagonal matrix Q and n > 2 can be reduced to direct sums of operators fixed
in (4.21) and scalar superpotentials specified in Eqs. (4.11)–(4.20). Thus in fact we
present a complete description of superpotentials (4.6) being matrices of arbitrary
dimension, provided matrix Q is diagonal.

The case of non-diagonal matrices Q has been examined in paper [34]. The
classifying Eqs. (4.7)–(4.10) have been solved for the cases of superpotentials being
2 × 2 or 3 × 3 matrices. In the first case the following list of superpotentials was
obtained:

W(1)
κ = λ

(
κ (σ+ tan(λx + c) + σ− tan(λx − c)) (4.33)

+μσ1

√
sec(λx − c) sec(λx + c) + 1

κ
R

)
, (4.34)

W(2)
κ = λ

(
−κ(σ+ coth(λx + c) + σ− coth(λx − c)) (4.35)

+μσ1

√
csch(λx − c) csch(λx + c) + 1

κ
R

)
, (4.36)

W(3)
κ = λ

(
−κ(σ+ tanh(λx + c) + σ− tanh(λx − c)) (4.37)

+μσ1

√
sech(λx − c) sech(λx + c) + 1

κ
R

)
, (4.38)

W(4)
κ = λ

(
−κ(σ+ tanh(λx + c) + σ+ coth(λx − c)) (4.39)

+μσ1

√
sech(λx + c) csch(λx − c) + 1

κ
R

)
, (4.40)

W(5)
κ = λ

(
−κ(σ+ tanh(λx) + σ−) + μσ1

√
sech(λx) exp(−λx) + 1

κ
R

)
,

W(6)
κ = λ

(
−κ(σ+ coth(λx) + σ−) + μσ1

√
csch(λx) exp(−λx) + 1

κ
R

)
,

W(7)
κ = −κ

(
σ+

x + c
+ σ−

x − c

)
+ μσ1√

x2 − c2
+ 1

κ
R, (4.41)

W(8)
κ = −κ

σ+
x

+ μσ1
1√
x

+ 1

κ
R, (4.42)

W(9)
κ = λ

(
−κI + μ exp(−λx)σ1 − ω

κ
σ3

)
. (4.43)
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Here

σ± = 1

2
(σ0 ± σ3), R = r3σ3 + r2σ2, (4.44)

ra are constants satisfying r2
2 + r2

3 = ω2, and κ, μ, λ, and c �= 0 are arbitrary
parameters.

4.5 Matrix Superpotentials of Dimension 3 × 3

In analogy with the above we can find superpotentials realized by irreducible 3 × 3
matrices which are presented in the following formulae:

W = (S2
1 − 1)

κ

x + c1
+ (S2

2 − 1)
κ

x + c2
+ (S2

3 − 1)
κ

x

+ S1
μ1√

x(x + c1)
+ S2

μ2√
x(x + c2)

+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x
+ (S2

2 − 1)
κ

x + c1
+ S1

μ2√
x

+ S2
μ1√

x + c1
+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x + c1
+ (S2

3 − 1)
κ

x
+ S1

μ2√
x

+ S3
μ1√

x(x + c1)
+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x
+ S1c + S2

μ1√
x

+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x + c1
+ (S2

2 − 1)
κ

x + c2
+ (S2

3 − 1)
κ

x

+ S1
μ1√

x(x + c1)
+ S2

μ2√
x(x + c2)

+ S3
μ3√

(x + c1)(x + c2)
,

W = (S2
1 − 1)

κ

x
+ (S2

2 − 1)
κ

x + c2
+ S1

μ1√
x

+ S2
μ2√

x + c2
+ S3

μ3√
x(x + c2)

,

W = (S2
1 − 1)

κ

x
+ S1c + S3

μ1√
x

+ S2
μ2√

x
,

where c, c1, c2, μ1, and μ2 are integration constants, and

S1 =
⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , S2 =

⎛
⎝

0 0 i
0 0 0
−i 0 0

⎞
⎠ , S3 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ (4.45)

are matrices of spin s = 1.
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The hermiticity condition generates the following restrictions:

x > 0, if μ2
1 + μ2

2 > 0; ci < 0 if μi �= 0. (4.46)

Formulae (4.34)–(4.43) give the completed list of the certain class of matrix
potentials. Note that they give rise to many realistic QM models described by
coupled systems of Schrödinger equations, see the following section.

4.6 Shape Invariant QM Systems with Matrix Potentials

The discussed matrix superpotentials naturally appear in realistic QM systems. The
entire collection of such system can be found in [38, 39] and [40]. Here we present
two examples only.

Consider the following Hamiltonian:

H = p2

2m
+ λ

2m
σiBi + V, (4.47)

where σi are Pauli matrices, Bi = Bi(x) are vector components of magnetic field
strength, V = V (x) is a potential, and vector x represents independent variables. In
addition, λ denotes the constant of anomalous coupling which is usually represented
as λ = gμ0, where μ0 is the Bohr magneton and g is the Landé factor.

Formula (4.47) presents a generalization of the Pron’ko–Stroganov Hamiltonian
for the case of arbitrary external field. And some Schrödinger equations with
Hamiltonians (4.47) appear to be shape invariant. The example is given by the
following equation:

Hψ ≡ (−∇2 + λ(1 − 2κ) exp(−x2)(σ1 cos x1 − σ2 sin x1)

+ λ2 exp(−2x2))ψ = Êψ.
(4.48)

Here λ is the integrated coupling constant, and independent variables are rescaled
to obtain more compact formulae.

Hamiltonian H in (4.48) admits integral of motion Q = p1 − σ3
2 . Thus it is

possible to expand solutions of (4.48) via eigenvectors of Q which look as follows:

ψp =
(

exp(i(p + 1
2 )x1)ϕ(x2)

exp(i(p − 1
2 )x1)ξ(x2)

)
(4.49)

and satisfy the condition Qψp = pψp.
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Substituting (4.49) into (4.48) we come to Eq. (5.1) where

V̂κ = λ2 exp(−2y) − λ(2κ − 1) exp(−y)σ1 − pσ3,

y = x2, E = Ẽ − p2 − 1

4
, ψ =

(
ϕ

ξ

)
.

(4.50)

Potential V̂κ (4.50) belongs to the list of shape invariant matrix potentials
presented in the above, see Eq. (4.29). Thus Eq. (4.48) can be solved exactly
using tools of SUSY quantum mechanics [39]. Notice that this equation is also
superintegrable [38].

Let us present an analog of the PS model for particle of spin 1. This model is
both superintegrable and shape invariant. It is based on the following Hamiltonian:

Hs = p2
1 + p2

2

2m
+ 1

r
μs(n), (4.51)

where

μs(n) = μ1(n) = μ(2(S × n)2 − 1) + λ(2(S · n)2 − 1). (4.52)

Here μ and λ are arbitrary real parameters, S · n = S1n2 + S2n1, and S × n =
S1n2 − S2n1, n1 = x1√

x2
1+x2

2

, n2 = x2√
x2

1+x2
2

, S1 and S2 are matrices of spin 1 given

by formula (4.45).
It is the Hamiltonian defined by Eqs. (4.1) and (4.2) that generalized the Pron’ko–

Stroganov model for the case of spin one. This Hamiltonian leads to shape invariant
radial equations with matrix potential being the direct sum of a modified Coulomb
potential and potential (4.28).

4.7 Dual Shape Invariance

Starting with (4.21)–(4.24) we found the related potentials (4.28)–(4.31) in a
unique fashion. But there is an interesting inverse problem: to find possible
superpotentials corresponding to given potentials. Formally speaking, this means
to find all solutions of the Riccati equation (3.11) for W . However, such solutions
depend on two arbitrary parameters (κ and the integration constant), and there is
some ambiguity in choosing such of them which should be changing to generate the
superpartner potential. Notice that the mentioned inverse problem is very interesting
since it opens a way to generate families of isospectral Hamiltonians [24].

In the case of matrix superpotentials this business is even more important since
in some cases there exist two superpotentials compatible with the shape invariance
condition. And both these superpotential can be requested to generate solutions of
the related eigenvalue problem.
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To find the mentioned additional superpotentials we use the invariance of
potentials (4.28), (4.30), and (4.31) with respect to the simultaneous change of
arbitrary parameters:

μ → κ − 1

2
, κ → μ + 1

2
. (4.53)

This means that in addition to the shape invariance w.r.t. shifts of κ poten-
tials (4.28), (4.30), and (4.31) should be shape invariant w.r.t. shifts of parameter
μ too.

Thus, it is possible to represent potentials (4.21), (4.23), and (4.24) in the
following alternative form:

W̃ 2
μ,κ − W̃ ′

μ,κ = V̂μ + cμ, (4.54)

where V̂μ = V̂κ , and

W̃μ,κ = κσ3 − μ − 1

x
+ ω

2(μ + 1)
σ1, cμ = ω2

4(μ + 1)2
(4.55)

for V̂k given by Eq. (4.28)

W̃μ,κ = λ

2

(
(2μ + 1) tan λx + (2κ − 1) sec λxσ3 + 4ω

2μ + 1
σ1

)
(4.56)

for potential (4.30), and

W̃μ,κ = λ

2

(
−(2μ + 1) coth λx + (2κ − 1) csch λxσ3 − 4ω

2μ + 1
σ1

)
(4.57)

for potential (4.31). The related constant cμ is

cμ = λ2
(

±1

4
(2μ + 1)2 + 4ω2

(2μ + 1)2

)
, (4.58)

where the sign “+” and “−” correspond to the cases (4.56) and (4.57), respectively.
We stress that superpartners of potentials (4.54) constructed using superpoten-

tials W̃μ,κ , i.e.,

V̂ +
μ = W̃ 2

μ,κ + W̃ ′
μ,κ , (4.59)

satisfy the shape invariance condition since

V̂ +
μ = V̂μ+1 + Cμ

with Cμ = cμ+1 − cμ.
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Thus potentials are shape invariant w.r.t. shifts of two parameters, namely, κ

and μ. More exactly, superpartners for potentials (4.28), (4.30), and (4.31) can
be obtained either by shifts of κ or by shifts of μ, while simultaneous shifts are
forbidden. We call this phenomena dual shape invariance.

5 Exact Solutions of Shape Invariant Schrödinger Equations

5.1 Generic Approach and Energy Values

An important consequence of the shape invariance is the nice possibility to construct
exact solutions of the related stationary Schrödinger equation. The procedure of
construction of exact solutions for the case of scalar shape invariant potentials is
described in various surveys, see, e.g. [24]. Here we present this procedure for the
more general case of matrix potentials.

Consider the stationary Schrödinger equation

Ĥκψ ≡
(

− ∂2

∂x2
+ V̂κ

)
ψ = Eκψ, (5.1)

where Ĥκ = a+
κ,μa−

κ,μ + cκ and V̂κ is a shape invariant potential. An algorithm for
construction of exact solutions of supersymmetric and shape invariant Schrödinger
equations includes the following steps (see, e.g. [24]):

– To find the ground state solutions ψ0(κ, μ, x) which are proportional to square
integrable solutions of the first order equation

a−
κ,μψ0(κ, μ, x) ≡

(
∂

∂x
+ Wκ,μ

)
ψ0(κ, μ, x) = 0. (5.2)

Function ψ0(κ, μ, x) solves Eq. (5.1) with

Eκ = Eκ,0 = −cκ . (5.3)

– To find a solution ψ1(κ, μ, x) for the first excited state which is defined by the
following relation:

ψ1(κ, μ, x) = a+
κ,μψ0(κ + 1, μ, x) ≡

(
− ∂

∂x
+ Wκ,μ

)
ψ0(κ + 1, μ, x).

(5.4)

Since a±
κ and Ĥκ satisfy the intertwining relations

Ĥκa+
κ,μ = a+

κ,μĤκ+1 (5.5)
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function (5.4) solves Eq. (5.1) with Eκ = Eκ,1 = −cκ+1.
– Solutions for the second excited state can be found as ψ2(κ, μ, x) = a+

κ,μψ1(κ +
1, μ, x), etc. Finally, solutions which correspond to nth exited state for any
admissible natural number n > 0 can be represented as

ψn(κ, μ, x) = a+
κ,μa+

κ+1,μ · · · a+
κ+n−1,μψ0(κ + n,μ, x). (5.6)

The corresponding eigenvalue Eκ,n is equal to −cκ+n.
– For systems admitting the dual shape invariance it is necessary to repeat the steps

enumerated above using alternative (or additional) superpotentials.

All matrix potentials presented in the above generate integrable models with
Hamiltonian (5.1). However, it is necessary to examine their consistency, in
particular, to verify that there exist square integrable solutions of Eq. (5.2) for the
ground states.

In the following sections we find such solutions for all superpotentials given
by Eqs. (4.21)–(4.24) and (4.55)–(4.57). However, to obtain normalizable ground
state solutions it is necessary to impose certain conditions on parameters of these
superpotentials.

Let us present the energy spectra for models (5.1) with potentials (4.28)–(4.31)
which can be found by applying the presented algorithm:

E = − ω2

(2N + 1)2
(5.7)

for potential (4.28),

E = −λ2
(

N2 + ω2

N2

)
(5.8)

for potentials (4.29), (4.31), (4.32), and

E = λ2
(

N2 − ω2

N2

)
(5.9)

for potentials (4.30).
Here N is the spectral parameter which can take the following values:

N = n + κ, (5.10)

and (or)

N = n + μ + 1

2
, (5.11)
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where n = 0, 1, 2, . . . are natural numbers which can take any values for
potentials (4.28)–(4.30). For potentials (4.29), (4.32), and (4.31) with a fixed k < 0
the admissible values of n are bound by the condition (k + n)2 > |ω|.

5.2 Ground State Solutions

To find the ground state solutions for Eqs. (5.1) with potentials (4.28)–(4.31) it is
sufficient to solve Eqs. (5.2), where Wκ,μ are superpotentials (4.21)–(4.24), and
analogous equation with superpotentials (4.55)–(4.57). This can be done for all the
mentioned cases, but we present here only two of them.

The corresponding solutions should be square integrable two-component func-
tions which we denote as

ψ0(κ, μ, x) =
(

ϕ

ξ

)
. (5.12)

Consider the superpotential defined by Eq. (4.21). Substituting (4.21) and (5.12)
into (5.2) we obtain

∂ϕ

∂x
+ (μ − κ)

ϕ

x
+ ω

2κ + 1
ξ = 0, (5.13)

∂ξ

∂x
− (μ + κ + 1)

ξ

x
+ ω

2κ + 1
ϕ = 0. (5.14)

Solving (5.14) for ϕ, substituting the solution into (5.13) and making the change

ξ = yκ+1ξ̂ (y), y = ωx

2k + 1
, (5.15)

we obtain the equation

y2 ∂2ξ̂

∂y2
+ y

∂ξ̂

∂y
−

(
y2 + μ2

)
ξ̂ = 0, (5.16)

whose square integrable solution is proportional to the modified Bessel function:

ξ̂ = cKμ(y). (5.17)

Substituting (5.17) into (5.15) and using (5.14) we obtain

ϕ = yκ+1Kμ+1(y), ξ = yκ+1K|μ|(y), (5.18)

where y is the variable defined in (5.15), ωx/(2κ + 1) ≥ 0.
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Functions (5.18) are square integrable provided parameter κ is positive and
satisfies the following relation:

κ − μ > 0. (5.19)

If this condition is violated, i.e., κ − μ ≤ 0 solutions (5.18) are not square
integrable. But since potential (4.28) admits the dual shape invariance, it is possible
to make an alternative factorization of Eq. (5.1) using superpotential (4.55) and
search for normalizable solutions of the following equation:

ã−
μ,κ ψ̃0(μ, κ, x)ψ̃0(μ, κ, x) = 0. (5.20)

where ã−
μ,κ = ∂

∂x
+ W̃μ,κ . Indeed, solving (5.20) we obtain a perfect ground state

vector:

ψ̃0(μ, κ, x) =
(

ϕ̃

ξ̃

)
, ϕ̃ = yμ+ 3

2 K|ν| (y) , ξ̃ = yμ+ 3
2 K|ν−1| (y) , (5.21)

where y = ωx
2(μ+1)

and ν = κ + 1/2. The normalizability conditions for
solution (5.21) are

κ − μ < 1, if κ ≥ 0, and κ + μ > 1, if κ < 0. (5.22)

Analogously, considering Eq. (5.2) with superpotential (4.22) and representing
its solution in the form (5.12) with

ξ = y
1
2 −κ ξ̂ (y), ϕ = y

1
2 −κ ϕ̂(y), y = μ exp(−λx),

we find the following solutions:

ϕ = y
1
2 −κK|ν|(y), ξ = −y

1
2 −κK|ν−1|(y) (5.23)

where ν = ω/κ + 1/2 and parameters ω and κ should satisfy the conditions

κ < 0, κ2 > ω. (5.24)

Since potential (4.29) does not admit the dual shape invariance, there are no other
ground state solutions.

In analogous manner we find solutions of Eqs. (5.2) and (5.20) for the remaining
superpotentials (4.22)–(4.24), refer to [33] for details. Solutions which correspond
to nth energy level can be obtained by applying Eq. (5.6). Under certain conditions
on spectral parameters all such solutions are square integrable and reduce to zero at
x = 0 [33].
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5.3 Isospectrality

Let us note that for some values of parameters μ and κ potentials (4.28)–(4.32) are
isospectral with direct sums of known scalar potentials.

Considering potential (4.28) and using its dual shape invariance it is possible to
show that for half-integer μ Vκ can be transformed to a direct sum of scalar Coulomb
potentials. In analogous way we can show that potentials (4.30) with half-integer κ

or integer μ is isospectral with the potential

V̂κ = λ2
(
r(r − 1) sec2 λx + 2ω tan λxσ1

)
, r = 1

2
± μ or r = κ, (5.25)

which is equivalent to the direct sum of two trigonometric Rosen–Morse potentials.
Under the same conditions for parameters μ and κ potential (4.32) is isospectral
with the direct sum of two Eckart potentials. Finally, potential (4.32) is isospectral
with direct sum of two hyperbolic Rosen–Morse potentials.

In other words, for some special values of parameters μ and κ there exist the
isospectrality relations of matrix potentials (4.28)–(4.32) with well-known scalar
potentials. However, for another values of these parameters such relations do not
exist.

6 Shape Invariant Systems with Position Dependent Mass

SE with position dependent mass are requested for description of various
condensed-matter systems such as semiconductors, quantum liquids and metal
clusters, quantum dots, etc. However, in contrast with standard QM systems, their
symmetries, supersymmetries, and integrals of motion were never investigated
systematically.

The systematic study of symmetries of the position dependent mass SEs was
started recently. In particular, the completed group classification of such equations
in two and three dimensions has been carried out in [41, 42] and [43]. Here we
present the classification of all rotationally invariant systems admitting second order
integrals of motion [44] which appear to be shape invariant and exactly solvable.

6.1 Rotationally Invariant Systems

We will study stationary Schrödinger equations with position dependent mass,
which formally coincide with (4.3), but include Hamiltonians with variable mass
parameters:

Ĥ = paf (x)pa + Ṽ (x). (6.1)



156 A. G. Nikitin

Here V (x) and f (x) = 1
2m(x)

are arbitrary functions associated with the effective
potential and inverse effective PDM, and summation from 1 to 3 is imposed over
the repeating index a. In addition, x = (x1, x2, x3) denotes a 3d space vector.

In paper [41] all Hamiltonians (6.1) admitting first order integrals of motion
are classified. In particular, the rotationally invariant systems include the following
functions f and V :

f = f (x), Ṽ = Ṽ (x), x =
√

x2
1 + x2

2 + x2
3 . (6.2)

In accordance with [41] there are four Hamiltonians with a more extended
symmetry. They are specified by the following inverse masses and potentials:

f = x2, Ṽ = 0, (6.3)

f = (1 + x2)2, Ṽ = −6x2, (6.4)

f = (1 − x2)2, Ṽ = −6x2, (6.5)

f = x4, Ṽ = −6x2. (6.6)

PDM systems admitting second order integrals of motion are classified in [44].
There are two subclasses of such systems. One class includes the systems admitting
vector integrals of motion while in the second one we have the tensor integrals. All
these systems are shape invariant, and are presented in the classification Tables 1
and 2.

In the third columns of the tables the effective radial potentials are indicated
which appear after the separation of variables. All radial potentials are scalar
and shape invariant, i.e., can be expressed in the form (3.11) where the related
superpotentials Wκ are enumerated in formulae (4.11)–(4.20). The kinds of the
superpotentials is fixed in the fifth columns. The content of the terms presented
in the fourth columns is explained in the next section.

We see that there exist exactly 20 superintegrable systems invariant with respect
to 3d rotations. Moreover, the majority of them is defined up to one arbitrary
parameter, while there exist four systems dependent on two parameters, see Items 9
and 10.

6.2 Two Strategies in Construction of Exact Solutions

Let us consider Eqs. (4.3) where H are Hamiltonians (6.1) whose mass and potential
terms are specified in the presented tables. We will search for square integrable
solutions of these systems vanishing at x = 0.

First let us transform (4.3) to the following equivalent form:

H̃Ψ = EΨ, (6.7)
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Table 1 Functions f and V specifying non-equivalent Hamiltonians (6.1)

No f V Solution approach Effective potentials

1. x αx Direct or two-step 3d oscillator or
Coulomb

2. x4 αx Direct or two-step Coulomb or 3d
oscillator

3. x(x − 1)2 αx

(x + 1)2 Direct or two-step Eckart or hyperbolic
Pöschl–Teller

4. x(x + 1)2 αx

(x − 1)2 Direct or two-step Eckart or trigonometric
Pöschl–Teller

5. (1 + x2)2 α(1 − x2)

x
Direct Trigonometric

Rosen–Morse

6. (1 − x2)2 α(1 + x2)

x
Direct Eckart

7.
x

x + 1

αx

x + 1
Two-step Coulomb

8.
x

x − 1

αx

x − 1
Two-step Coulomb

9.
(x2 − 1)2x

x2 − 2κx + 1

αx

x2 − 2κx + 1
Two-step Eckart

10.
(x2 + 1)2x

x2 − 2κx − 1

αx

x2 − 2κx − 1
Two-step Trigonometric

Rosen–Morse

where

H̃ = √
f H

1√
f

= fp2 + V, Ψ = √
f ψ. (6.8)

Then, introducing spherical variables and expanding solutions via spherical
functions Y l

m

Ψ = 1

x

∑
l,m

φlm(x)Y l
m, (6.9)

we obtain the following equation for radial functions:

−f
∂2φlm

∂x2 +
(

f l(l + 1)

x2 + V

)
φlm = Eφlm. (6.10)

Let us present two possible ways to solve Eq. (6.10). They can be treated as
particular cases of Liouville transformation (refer to [45] for definitions) and include
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Table 2 Functions f and V specifying non-equivalent Hamiltonians (6.1) which admit tensor
integrals of motion

No f V Solution approach Effective radial potential

1.
1

x2

α

x2 Direct or two-step Coulomb or 3d oscillator

2. x4 − α

x2 Direct or two-step 3d oscillator or Coulomb

3. (x2 − 1)2 αx2

(x2 + 1)2 Direct or two-step Eckart or hyperbolic
Pöschl–Teller

4. (x2 + 1)2 αx2

(x2 − 1)2 Direct or two-step Eckart or trigonometric
Pöschl–Teller

5.
(x4 − 1)2

x2

α(x4 + 1)

x2 Direct Eckart

6.
(x4 + 1)2

x2

α(x4 − 1)

x2 Direct Trigonometric
Rosen–Morse

7.
1

x2 + 1

α

x2 + 1
Two-step 3d oscillator

8.
1

x2 − 1

α

x2 − 1
Two-step 3d oscillator

9.
(x4 − 1)2

x4 − 2κx2 + 1

αx2

x4 − 2κx2 + 1
Two-step Eckart

10.
(x4 + 1)2

x4 − 2κx2 − 1

αx2

x4 − 2κx2 − 1
Two-step Trigonometric

Rosen–Morse

commonly known steps. But it is necessary to fix them as concrete algorithms to
obtain shape invariant potentials presented in the tables.

The first way (which we call direct) includes consequent changes of independent
and dependent variables:

φlm → Φlm = f
1
4 φlm,

∂

∂x
→ f

1
4

∂

∂x
f − 1

4 = ∂

∂x
+ f ′

4f
(6.11)

and then

x → y(x), (6.12)

where y solves the equation ∂y
∂x

= 1√
f

. As a result Eq. (6.9) will be reduced to a
more customary form:

−∂2Φlm

∂y2 + Ṽ Φlm = EΦlm, (6.13)
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where Ṽ is an effective potential

Ṽ = V + f

(
l(l + 1)

x2
−

(
f ′

4f

)2

−
(

f ′

4f

)′)
, x = x(y). (6.14)

Equations (6.7), (6.8) with functions f and V specified in Items 1–6 of both
Tables 1 and 2 can be effectively solved using the presented reduction to radial
Eq. (6.13). All the corresponding potentials (6.14) appear to be shape invariant, and
just these potentials are indicated in the fifth columns of the tables. The related
Eqs. (6.13) are shape invariant too and can be solved using the SUSY routine.

However, if we apply the direct approach to the remaining systems (indicated in
Items 7–10 of both tables), we come to Eqs. (6.13) which are not shape invariant and
are hardly solvable, if at all. To solve these systems we need a more sophisticated
procedure which we call two-step approach. To apply it we multiply (6.10) by αV −1

and obtain the following equation:

−f̃
∂2φlm

∂x2 +
(

f̃ l(l + 1)

x2 + Ṽ

)
φlm = Eφlm, (6.15)

where f̃ = αf
V

, Ṽ = −αE
V

, and E = −α. Then treating E as an eigenvalue and
solving Eq. (6.15) we can find α as a function of E, which defines admissible energy
values at least implicitly. To do it, it is convenient to make changes (6.11) and (6.12),
where f → f̃ .

The presented trick with a formal changing the roles of constants α and E is
well known. Our point is that any of the presented superintegrable systems can be
effectively solved using either the direct approach presented in Eqs. (6.8)–(6.14)
or the two-step approach. Moreover, some of the presented systems can be solved
using both the direct and two-step approaches, as indicated in the fourth columns of
Tables 1 and 2. In all cases we obtain shape invariant effective potentials and can
use tools of SUSY quantum mechanics.

6.3 System Dependent on Two Parameters

Let us consider the systems specified in Item 10 of Table 2. The corresponding
Hamiltonian (6.8) and radial Eq. (6.10) have the following form:

H = (x4 + 1)2

x4 − 2κx2 − 1
p2 + αx2

x4 − 2κx2 − 1
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and

(
− (x4 + 1)2

x4 − 2κx2 − 1

(
∂2

∂x2
− l(l + 1)

x2

)
+ αx2

x4 − 2κx2 − 1

)
φlm = Eφlm.

(6.16)

Multiplying (6.16) from the left by x4−2κx2−1
x2 we come to the following equation:

(
− (x4 + 1)2

x2

(
∂2

∂x2
− l(l + 1)

x2

)
+ α̃(x4 − 1)

x2

)
φlm = Eφlm, (6.17)

where

α̃ = −E and E = −α − 2κE. (6.18)

Notice that Eq. (6.17) with α̃ → α and E → E is needed also to find eigenvectors
of the Hamiltonian whose mass and potential terms are specified in Item 6 of
Table 2.

Making transformations (6.11) and (6.12) with f = (x4+1)2

x2 and y =
1
2 arctan(x2) we reduce Eq. (6.17) to the following form:

−∂2Φlm

∂y2 +
(
μ(μ − 4) csc2(4y) + 2α̃ cot(4y)

)
Φlm = ẼΦlm, (6.19)

where

Ẽ = E + 4, μ = 2l + 3. (6.20)

Thus we come to equation with a shape invariant (Rosen–Morse I) potential. It is
consistent provided parameters α̃ and μ are positive. Solving this equation using the
standard tools of SUSY QM we can easily find its eigenfunctions and eigenvalues;
the corresponding eigenvalues for Eq. (6.16) are given by the following formula
[44]:

En = (2l + 3 + 4n)2

(
κ −

√
κ2 + 1 + α − 4

(2l + 3 + 4n)2

)
, (6.21)

where both n and l are integers.
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7 Discussion

To construct QM systems with extended SUSY we essentially use discrete symme-
tries, i.e., reflections and rotations to the fixed angles.

The idea itself to apply reflections to construct N = 2 SUSY was proposed in
paper [46]. Then it was applied to generate extended supersymmetries [35, 36, 47,
48], moreover, in the latter paper the discrete rotations were applied also. In addition,
using these discrete symmetries, it is possible to make a reduction of SUSY algebras
as it was shown in paper [49] and some others.

We start our discussion with presenting of these old results in order to stress that
SUSY has strong roots in quantum mechanics since a lot of important QM models
do be supersymmetric. Moreover, even the simplest SUSY model, i.e., the charged
particle interacting with the uniform magnetic field, in fact admits the extended
supersymmetry with four supercharges [35].

But the main content of the present survey are some modern trends in SUSY
quantum mechanics. They are the matrix formulation of the shape invariance which
is requested for description of QM particles with spin interacting with external
fields, and supersymmetries of Schrödinger equations with position dependent
masses. And we believe that the presented results can be treated as a challenge
to generalize various branches of SUSY to the case of matrix superpotentials. And
it is nice that some elements of such generalizations can be already recognized in
literature, see, e.g. [50–55].

References

1. Y.A. Gol’fand, E.P. Lichtman, Sov. Phys. JETP Lett. 13, 452 (1971); D.V. Volkov, V.P. Akulov,
Phys. Lett. B 46, 109 (1973); J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)

2. J. Lipkin, Phys. Lett. 9, 203 (1964); J. Schwinger, Phys. Rev. 152, 1219 (1966); G.L. Stavraki,
in High Energy Physics and the Theory of Elementary Particles, Naukova Dumka, Kiev (1966),
p. 296 (in Russian); Preprint ITP 67-21, Kiev, 1967; H. Migazawa, Progr. Theor. Phys. 36,
1266 (1968), Phys. Rev. 170, 1586 (1968); M. Flato; P. Hillon, Phys. Rev. D 1, 1667 (1970);
A. Neveu, J.M. Schwartz, Nucl. Phys B 31, 86 (1971); J.L. Gervais, B. Sakita, Nucl. Phys.
B 34, 633 (1971); A. Joseph, Nuovo Cimento A 8, 217 (1972); Y. Aharonov, A. Casher, L.
Susskind, Phys. Lett. B 35, 512 (1974)

3. V.A. Kostelecky, D.K. Campbell, Phys. D 15, 3 (1985)
4. M.B. Green, J.H. Schwartz, E. Witten, Superstring theory, in 2 vols (Cambridge University

Press, Cambridge, 1987); M. Kaku, Strings, Conformal Field Theory and Topology (Springer,
New York, 1989)

5. N. Seiberg, E. Witten, Nucl. Phys. B 426, 19 (1994); N. Seiberg, Phys. Rev. D 49, 6857 (1994)
6. L.E.Gendenshtein, I.V. Krive, Usp. Fiz. Nauk 146, 553 (1985)
7. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 211, 268 (1995)
8. S.V. Sukhumar, J. Phys. A 18, L697 (1985)
9. F. Ravndal, Phys. Rev. D 21, 2461 (1980); A. Khare, J. Maharana, Nucl. Phys. B 244, 409

(1984)
10. E. Witten, Nucl. Phys. B 185, 513 (1981); 202, 253 (1982)
11. L. Gendenshtein, JETP Lett. 38, 356 (1983)



162 A. G. Nikitin

12. G.A. Natanzon, Vestnik Leningrad Univ. 10, 22 (1971); Teor. Mat. Fiz. 38, 146 (1979)
13. A.A. Andrianov, M.V. Ioffe, J. Phys. A 45, 503001 (2012)
14. T. Tanaka, Nucl. Phys. B 662, 413 (2003)
15. F. Correa, V. Jakubsky, M.S. Plyushchay, J. Phys. A: Math. Theor. 41, 485303 (2008)
16. C. Quesne, SIGMA 3, 067 (2007)
17. V.Y. Novokshenov, SIGMA 14, 106 (2018)
18. V.A. Rubakov, V.P. Spiridonov, Mod. Phys. Lett. A 3, 1337 (1988)
19. J. Beckers, N. Debergh, Nucl. Phys. B 340, 767 (1990)
20. J, Beckers, N. Debergh, A.G. Nikitin, Mod. Phys. Let A 8, 435 (1993)
21. J. Beckers, N. Debergh, A.G. Nikitin, J. Math. Phys. 33, 152 (1992)
22. G.P. Pron’ko, Y.G. Stroganov, Sov. Phys. JETP 45, 1075 (1977)
23. E. Ferraro, N. Messina, A.G. Nikitin, Phys. Rev. A 81, 042108 (2010)
24. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)
25. A.A. Andrianov, N.V. Borisov, M. V. Ioffe, Theor. Math. Phys. 61, 1078 (1984)
26. M.V. Ioffe, SIGMA 6, 075 (2010)
27. A.A. Andrianov, M.V. Ioffe, Phys. Lett. B 255, 543 (1991); A.A. Andrianov, M.V. Ioffe, V.P.

Spiridonov, L. Vinet, Phys. Lett. B 272, 297 (1991)
28. A.A. Andrianov, F. Cannata, M.V. Ioffe, D.N. Nishnianidze, J. Phys. A: Math. Gen. 30, 5037

(1997)
29. T. Fukui, Phys. Lett. A 178, 1 (1993)
30. M.V. Ioffe, S. Kuru, J. Negro, L.M. Nieto, J. Phys. A 39, 6987 (2006)
31. R. de Lima Rodrigues, V.B. Bezerra, A.N. Vaidyac, Phys. Lett. A 287, 45 (2001)
32. V.M. Tkachuk, P. Roy, Phys. Lett. A 263, 245 (1999); V.M. Tkachuk, P. Roy, J. Phys. A 33,

4159 (2000)
33. A.G. Nikitin, Y. Karadzhov, Matrix superpotentials. J. Phys. A Math. Theor. 44, 305204 (2011)
34. A.G. Nikitin, Y. Karadzhov, Enhanced classification of matrix superpotentials. J. Phys. A Math.

Theor. 44, 445202 (2011)
35. J. Niederle, A.G. Nikitin, J. Math. Phys. 40, 1280 (1999)
36. A.G. Nikitin, J. Mod. Phys. A 14, 885 (1999)
37. Y. Karadzhov, Matrix superpotentials, Thesis, Kiev, Institute of Mathematics, 2015
38. A.G. Nikitin, J. Math. Phys. 53, 122103 (2012)
39. A.G. Nikitin, Superintegrable and supersymmetric systems of Schrödinger equations, in

Proceedings of the Sixth International Workshop on Group Analysis of Differential Equations
and Integrable Systems, June 17–21, 2012, Protaras, Cyprus. University of Cyprus, Nikosia,
2013, pp.154–169

40. A.G. Nikitin, J. Phys. A: Math. Theor. 45, 225205 (2012)
41. A.G. Nikitin, T.M. Zasadko, J. Math. Phys. 56, 042101 (2015)
42. A.G. Nikitin, T.M. Zasadko, J. Phys. A 49, 365204 (2016)
43. A.G. Nikitin, J. Math. Phys. 58, 083508 (2017)
44. A.G. Nikitin, J. Phys. A 48, 335201 (2015)
45. F.W. Olver , Asymptotics and Special Functions (Academic Press, New York, 1974)
46. L.E. Gendenshtein, JETP Lett. 39, 234 (1984)
47. V.M. Tkachuk, S.I. Vakarchuk, Phys. Lett. A 228, 141 (1997)
48. A.G. Nikitin, in Problems of quantum field theory, JINR E2-96-369 (Dubna, 1996), p. 509
49. J. Beckers, N. Debergh, A.G. Nikitin, Int. J. Theor. Phys. 36, 1991 (1997)
50. T. Tanaka, Mod. Phys. Lett. A 27, 1250051 (2012)
51. A.V. Sokolov, J. Phys. A 48, 085202 (2015)
52. A.V. Sokolov, Phys. Lett. A 377, 655 (2013)
53. A.A. Andrianov, A.V. Sokolov, Phys. Lett. A 379, 279 (2015)
54. A.A. Andrianov, A.V. Sokolov, Theor. Math. Phys. 186, 2 (2016)
55. M.V. Ioffe, E.V. Kolevatova, D.N. Nishnianidze, Phys. Lett. A 380, 3349 (2016)


	Supersymmetries in Schrödinger–Pauli Equations and in Schrödinger Equations with Position Dependent Mass
	1 Introduction
	2 QM Systems with Exact SUSY
	2.1 System with N=2 SUSY
	2.2 Extended SUSY
	2.3 Extended SUSY with Arbitrary Vector-Potentials

	3 SUSY in One Dimension and Shape Invariance
	4 Matrix Superpotentials
	4.1 Pron'ko–Stroganov Problem
	4.2 Generic Matrix Superpotentials
	4.3 Scalar Superpotentials
	4.4 Matrix Superpotentials of Dimension 22
	4.5 Matrix Superpotentials of Dimension 33
	4.6 Shape Invariant QM Systems with Matrix Potentials 
	4.7 Dual Shape Invariance 

	5 Exact Solutions of Shape Invariant Schrödinger Equations
	5.1 Generic Approach and Energy Values
	5.2 Ground State Solutions
	5.3 Isospectrality

	6 Shape Invariant Systems with Position Dependent Mass
	6.1 Rotationally Invariant Systems
	6.2 Two Strategies in Construction of Exact Solutions
	6.3 System Dependent on Two Parameters

	7 Discussion
	References


