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Preface

The 6th International Workshop on New Challenges in Quantum Mechanics:
Integrability and Supersymmetry was organized in Valladolid (Spain) on June 27–
30, 2017, in honor of Prof. Véronique Hussin. The conference was very successful;
it attracted more than 60 researchers from different countries, and about 45 talks
were delivered.

Prof. Hussin is an internationally recognized expert in many branches of
mathematical physics. Her career started in her native city of Liège (Belgium);
afterward she moved to Montréal, where she has stayed ever since at Université de
Montréal and at CRM (Centre de Recherches Mathématiques). However, Véronique
Hussin has had numerous stays in different research centers collaborating with
many colleagues and friends. In particular, we want to mention her regular visits
to Durham University (England), CINVESTAV (Mexico), and the University of
Valladolid (Spain) where, besides her scientific activity, due to her open character,
she made many friends. She has made remarkable contributions to several areas, like
coherent and squeezed states, supersymmetry, sigma models, nonlinear equations,
and other topics that show her wide range of interests.

The workshop program paid special attention to the topics in which Prof. Hussin
has been working. Based on this conference, but open to scientists in these fields,
we considered a good opportunity to edit a contributed book published by Springer
Nature, under the title “Integrability, Supersymmetry and Coherent States”. The
book is devoted in part to review papers on the three main topics, whose authors
are well-known experts in their fields and where the objective is to take a personal
approach on some attractive aspects of these subjects. A second part is made up of

Special thanks are due to the University of Valladolid, where the meeting in honor of Prof.
Véronique Hussin 6th International Workshop on New Challenges in Quantum Mechanics:
Integrability and Supersymmetry was held.

Partial financial support from Junta de Castilla y León and FEDER (Projects VA057U16,
VA137G18, and BU229P18) and Ministerio de Economía y Competitividad of Spain (Project
MTM2014-57129-C2-1-P) is acknowledged.
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vi Preface

a list of contributions related to these topics. All the papers have satisfied a strict
refereeing process by anonymous specialists before publishing.

It is a pleasure, for all of us, to dedicate this volume to Véronique Hussin on the
occasion of her 60th birthday.

Ankara, Turkey Şengül Kuru
Valladolid, Spain Javier Negro
Valladolid, Spain Luis M. Nieto
March 31, 2019
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Curvature as an Integrable Deformation

Ángel Ballesteros, Alfonso Blasco, and Francisco J. Herranz

Abstract The generalization of (super)integrable Euclidean classical Hamiltonian
systems to the two-dimensional sphere and the hyperbolic space by preserving
their (super)integrability properties is reviewed. The constant Gaussian curvature
of the underlying spaces is introduced as an explicit deformation parameter, thus
allowing the construction of new integrable Hamiltonians in a unified geometric
setting in which the Euclidean systems are obtained in the vanishing curvature limit.
In particular, the constant curvature analogue of the generic anisotropic oscillator
Hamiltonian is presented, and its superintegrability for commensurate frequencies is
shown. As a second example, an integrable version of the Hénon–Heiles system on
the sphere and the hyperbolic plane is introduced. Projective Beltrami coordinates
are shown to be helpful in this construction, and further applications of this approach
are sketched.

Keywords Integrable systems · Curvature · Sphere · Hyperbolic plane ·
Integrable perturbations · Oscillator potential · Hénon–Heiles

1 Introduction

The aim of this contribution is to review some new recent results related to a seem-
ingly elementary issue in the theory of finite-dimensional integrable systems [1–5],
whose solution presents quite a number of interesting features. The problem can
explicitly be stated as follows.
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2 Á. Ballesteros et al.

Let us consider a certain Liouville integrable natural Hamiltonian system for
a particle with unit mass moving on the two-dimensional (2D) Euclidean space
endowed with the standard bracket {qi, pj } = δij in terms of canonical coordinates
and momenta, namely

H = T + V = 1

2
(p2

1 + p2
2) + V(q1, q2), (1)

where T is the kinetic energy and V is the potential. The Liouville integrability of
this system will be provided by a constant of the motion given by a globally defined
function I(p1, p2, q1, q2) such that {H, I} = 0.

The proposed problem consists in finding a one-parameter integrable deforma-
tion of H of the form

Hκ = Tκ(p1, p2, q1, q2) + Vκ(q1, q2), κ ∈ R,

with integral of the motion given by the smooth and globally defined function
Iκ(p1, p2, q1, q2) (therefore {Hκ , Iκ } = 0), and such that the following two
conditions hold:

1. The smooth function Tκ is the kinetic energy of a particle on a 2D space whose
constant curvature is given by the parameter κ , i.e. the 2D sphere S2 will arise in
the case κ > 0 and the hyperbolic plane H2 when κ < 0.

2. The Euclidean system H given by (1) has to be smoothly recovered in the zero-
curvature limit κ → 0, namely

H = lim
κ→0

Hκ , I = lim
κ→0

Iκ .

If these two conditions are fulfilled, we will say that Hκ is an integrable curved
version of H on the sphere and the hyperbolic space. We stress that within this
framework the Gaussian curvature κ of the space enters as a deformation parameter,
and the curved system Hκ can be thought of as smooth integrable perturbation of the
flat one H in terms of the curvature parameter. Therefore, integrable Hamiltonian
systems on S2 (κ > 0), H2 (κ < 0) and E2 (κ = 0) will be simultaneously
constructed and analysed.

Moreover, it could happen that the initial Hamiltonian H is not only integrable
but superintegrable, i.e. another globally defined and functionally independent
integral of the motion K(p1, p2, q1, q2) does exist such that

{H, I} = {H,K} = 0, {I,K} �= 0.

In that case we could further impose the existence of the curved (and functionally
independent) analogue Kκ of the second integral such that

K = lim
κ→0

Kκ .
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If we succeed in finding such second integral fulfilling

{Hκ , Iκ } = {Hκ ,Kκ } = 0, {Iκ ,Kκ } �= 0,

we will say that we have obtained a superintegrable curved generalization of the
Euclidean superintegrable Hamiltonian H.

The explicit curvature-dependent description of S2 and H2 is well known in
the literature and can be found, for instance, in [6–28] (see also the references
therein) where it has been mainly considered in the classification and description
of superintegrable systems on these two spaces. In this contribution we will present
several recent works in which this geometric framework has been applied for non-
superintegrable systems where the lack of additional symmetries forces to make use
of a purely integrable perturbation approach. Moreover, this perturbative viewpoint
shows that the uniqueness of this construction is not guaranteed, since in general
different Vκ integrable potentials (and their associated Iκ integrals) having the same
κ → 0 limit could exist and be found. As an outstanding example of this plurality,
we will present the construction of different integrable curved analogues on S2

(κ > 0) and H2 (κ < 0) of some anisotropic oscillators.
The second novel technical aspect to be emphasized in the results here presented

is that in some cases projective coordinates turn out to be helpful in order to
construct the (super)integrable deformations Hκ , since when these coordinates
are considered on S2 and H2 then the curved kinetic energy Tκ is expressed as
a polynomial in the canonical variables describing the projective phase space.
Therefore, some of the examples here presented can be thought of as instances of
integrable projective dynamics, in the sense of [29, 30].

The structure of the paper is as follows. In the next section we review the
description of the geodesic dynamics on the sphere and the hyperboloid by making
use of the above-mentioned curvature-dependent formalism. In particular, ambient
space coordinates as well as geodesic parallel and geodesic polar coordinates for
S2 and H2 will be introduced. In Sect. 3 the projective dynamics on the sphere and
the hyperboloid in terms of Beltrami coordinates will also be summarized, thus
providing a complete set of geometric possibilities for the description of dynamical
systems on these curved spaces. In Sect. 4 we recall the (super)integrability
properties of the 2D anisotropic oscillator with arbitrary frequencies and also with
commensurate ones, and in Sect. 5 the explicit construction of the Hκ Hamiltonian
defining its curved analogue will be presented. Section 6 will be devoted to recall
the three integrable versions of the well-known (non-integrable) Hénon–Heiles
Hamiltonian. In Sect. 7 the construction of the curved version on S2 and H2 of an
integrable Hénon–Heiles system related to the KdV hierarchy will be constructed,
thus exemplifying the usefulness of the approach here presented for the obtention of
new integrable systems on curved spaces. Furthermore, the full Ramani–Dorizzi–
Grammaticos series of integrable polynomial potentials will also be generalized to
the curved case. Finally, a section including some remarks and open problems under
investigation closes the paper.
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2 Geodesic Dynamics on the Sphere and the Hyperboloid

Let us consider the one-parametric family of 3D real Lie algebras soκ(3) =
span{J01, J02, J12} with commutation relations given by (in the sequel we follow
the curvature-dependent formalism as presented in [31, 32]):

[J12, J01] = J02, [J12, J02] = −J01, [J01, J02] = κJ12, (2)

where κ is a real parameter. The Casimir invariant, coming from the Killing–Cartan
form, reads

C = J 2
01 + J 2

02 + κJ 2
12. (3)

The family soκ(3) comprises three specific Lie algebras: so(3) for κ > 0, so(2, 1) �
sl2(R) for κ < 0, and iso(2) ≡ e(2) = so(2)⊕SR

2 for κ = 0. Note that the value of
κ can be reduced to {+1, 0,−1} through a rescaling of the Lie algebra generators;
therefore setting κ = 0 in (2) can be shown to be equivalent to applying an Inönü–
Wigner contraction [33].

The involutive automorphism defined by

Θ(J01, J02, J12) = (−J01,−J02, J12),

generates a Z2-grading of soκ(3) in such a manner that κ is a graded contraction
parameter [34], and Θ gives rise to the following Cartan decomposition of the Lie
algebra:

soκ(3) = h ⊕ p, h = span{J12} = so(2), p = span{J01, J02}.

We denote SOκ(3) and H the Lie groups with Lie algebras soκ(3) and h,
respectively, and we consider the 2D symmetrical homogeneous space defined by

S2
κ = SOκ(3)/H, H = SO(2) = 〈J12〉. (4)

This coset space has constant Gaussian curvature equal to κ and is endowed with
a metric having positive definite signature. The generator J12 leaves a point O
invariant, the origin, so generating rotations around O, while J01 and J02 generate
translations which move O along two basic orthogonal geodesics l1 and l2.

Therefore S2
κ (4) covers the three classical 2D Riemannian spaces of constant

curvature:

S2+ : Sphere S2
0 : Euclidean plane S2− : Hyperbolic space

S2 = SO(3)/SO(2) E2 = ISO(2)/SO(2) H2 = SO(2, 1)/SO(2)
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We recall that these three spaces (and their motion groups SOκ(3)) are contained
within the family of the so-called 2D orthogonal Cayley–Klein geometries [6, 35,
36], which are parametrized in terms of two graded contraction parameters κ ≡ κ1
and κ2 [34].

In what follows we describe the metric structure and the geodesic motion on the
above spaces in terms of several sets of coordinates that will be used throughout the
paper. We stress that all the resulting expressions will have always a smooth and
well-defined flat limit (contraction) κ → 0 reducing to the corresponding Euclidean
ones.

2.1 Ambient Space Coordinates

The vector representation of soκ(3) is provided by the following faithful matrix
representation ρ : soκ(3) → End(R3) [8, 9]

ρ(J01) =
⎛
⎝

0 −κ 0
1 0 0
0 0 0

⎞
⎠ , ρ(J02) =

⎛
⎝

0 0 −κ

0 0 0
1 0 0

⎞
⎠ , ρ(J12) =

⎛
⎝

0 0 0
0 0 −1
0 1 0

⎞
⎠ , (5)

which satisfies

ρ(Jij )
T
Iκ + Iκρ(Jij ) = 0, Iκ = diag(1, κ, κ). (6)

The matrix exponentiation of (5) leads to the following one-parametric subgroups
of SOκ(3):

eαρ(J01) =
⎛
⎜⎝

Cκ(α) −κSκ(α) 0

Sκ(α) Cκ(α) 0

0 0 1

⎞
⎟⎠ , eγρ(J12) =

⎛
⎜⎝

1 0 0

0 cos γ − sin γ

0 sin γ cos γ

⎞
⎟⎠ ,

eβρ(J02) =
⎛
⎜⎝

Cκ(β) 0 −κSκ(β)

0 1 0

Sκ(β) 0 Cκ(β)

⎞
⎟⎠ ,

(7)

where we have introduced the κ-dependent cosine and sine functions [6, 8]

Cκ(x) :=
∞∑
l=0

(−κ)l
x2l

(2l)! =
⎧⎨
⎩

cos
√
κ x κ > 0

1 κ = 0
cosh

√−κ x κ < 0
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Sκ(x) :=
∞∑
l=0

(−κ)l
x2l+1

(2l + 1)! =

⎧⎪⎨
⎪⎩

1√
κ

sin
√
κ x κ > 0

x κ = 0
1√−κ

sinh
√−κ x κ < 0

.

The κ-tangent function is defined as

Tκ(x) := Sκ(x)

Cκ (x)
.

These curvature-dependent trigonometric functions coincide with the circular and
hyperbolic ones for κ = ±1, while under the contraction κ = 0 they reduce to
the parabolic functions: C0(x) = 1 and S0(x) = T0(x) = x. Some trigonometric
relations read [8]

C2
κ(x) + κS2

κ(x) = 1, Cκ(2x) = C2
κ(x) − κS2

κ(x), Sκ(2x) = 2Sκ (x)Cκ (x)

and their derivatives are given by [9]

d

dx
Cκ(x) = −κSκ(x),

d

dx
Sκ(x) = Cκ(x),

d

dx
Tκ(x) = 1

C2
κ(x)

.

Therefore, under the matrix realization (7), the Lie group SOκ(3) becomes a
group of isometries of the bilinear form Iκ (6),

gT Iκ g = Iκ , ∀g ∈ SOκ(3),

acting on a 3D linear ambient space R
3 = (x0, x1, x2) through matrix multiplica-

tion. The subgroup eγρ(J12) (7) is the isotropy subgroup of the point O = (1, 0, 0),
which is taken as the origin in the homogeneous space S2

κ (4). The orbit of O is
contained in the “κ-sphere” determined by Iκ (6):

Σκ : x2
0 + κ

(
x2

1 + x2
2

) = 1. (8)

The connected component of Σκ is identified with the space S2
κ and the action of

SOκ(3) is transitive on it. The coordinates (x0, x1, x2) satisfying the constraint (8)
are called ambient space or Weierstrass coordinates. Notice that for κ > 0 we
recover the sphere, if κ < 0, we find the two-sheeted hyperboloid, and in the
flat case with κ = 0 we get two Euclidean planes x0 = ±1 with Cartesian
coordinates (x1, x2). Since O = (1, 0, 0), we identify the hyperbolic space H2 with
the connected component corresponding to the sheet of the hyperboloid with x0 ≥ 1,
and the Euclidean space E2 with the plane x0 = +1.



Curvature as an Integrable Deformation 7

The metric on S2
κ comes from the flat ambient metric in R

3 divided by the
curvature κ and restricted to Σκ :

(ds)2κ = 1

κ

(
dx2

0 + κ
(

dx2
1 + dx2

2

) )∣∣∣∣
Σκ

= κ (x1dx1 + x2dx2)
2

1 − κ
(
x2

1 + x2
2

) +dx2
1 +dx2

2 . (9)

Isometry vector fields in ambient coordinates for soκ(3), fulfilling (2), are directly
obtained from the vector representation (5):

J01 = κ x1∂0 − x0∂1, J02 = κ x2∂0 − x0∂2, J12 = x2∂1 − x1∂2, (10)

where ∂μ = ∂/∂xμ (μ = 0, 1, 2).
Now we consider the ambient momenta πμ conjugate to xμ fulfilling the

canonical Poisson bracket {xμ, πν} = δμν subjected to the constraint (8). The
vector fields (10) give rise to a symplectic realization of soκ(3) in terms of ambient
variables by setting ∂μ → −πμ:

J01 = x0π1 −κ x1π0, J02 = x0π2 −κ x2π0, J12 = x1π2 −x2π1, (11)

which close the Poisson brackets defining the Lie–Poisson algebra soκ(3)

{J12, J01} = J02, {J12, J02} = −J01, {J01, J02} = κJ12.

The metric (9) provides the free Lagrangian Lκ with ambient velocities ẋμ for a
particle with unit mass, so determining geodesic motion on S2

κ :

Lκ = 1

2κ

(
ẋ2

0 + κ
(
ẋ2

1 + ẋ2
2

))∣∣∣∣
Σκ

= κ (x1ẋ1 + x2ẋ2)
2

2
(
1 − κ

(
x2

1 + x2
2

)) + 1

2

(
ẋ2

1 + ẋ2
2

)
. (12)

Thus the corresponding momenta πμ = ∂Lκ/∂ẋμ read

π0 = ẋ0/κ, π1 = ẋ1, π2 = ẋ2. (13)

The time derivative of the constraint (8) provides the relation

Σκ : x0π0 + x1π1 + x2π2 = 0.

Finally, by introducing (13) in (12) we obtain that the kinetic energy Tκ in ambient
variables is given by

Tκ = 1

2

(
κ π2

0 + π2
1 + π2

2

)∣∣∣∣
Σκ

= κ (x1π1 + x2π2)
2

2
(
1 − κ

(
x2

1 + x2
2

)) + 1

2

(
π2

1 + π2
2

)
. (14)
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Notice that the contraction κ = 0 is well defined in the r.h.s. of Eqs. (9), (12),
and (14) yielding the Euclidean expressions

(ds)20 = dx2
1 + dx2

2 , L0 = 1
2 (ẋ

2
1 + ẋ2

2), T0 = 1
2 (π

2
1 + π2

2 ).

2.2 Geodesic Parallel and Polar Coordinates

The ambient coordinates (8) can also be parametrized in terms of two intrinsic
variables of geodesic type. For our purposes let us consider the so-called geodesic
parallel (x, y) and geodesic polar (r, φ) coordinates of a point Q = (x0, x1, x2) ∈
S2
κ [7, 9], which are defined through the following action of the one-parametric

subgroups (7) on the origin O = (1, 0, 0):

(x0, x1, x2)
T = exp(xρ(J01)) exp(yρ(J02))O

T

= exp(φρ(J12)) exp(rρ(J01))O
T ,

which gives

x0 = Cκ(x)Cκ(y) = Cκ(r),

x1 = Sκ(x)Cκ (y) = Sκ(r) cosφ,

x2 = Sκ(y) = Sκ(r) sinφ.

(15)

In this construction, the variable r is the distance between the origin O and the point
Q measured along the geodesic l that joins both points, while φ is the angle of l with
respect to a base geodesic l1 (associated with the translation generator J01). Let Q1
be the intersection point of l1 with its orthogonal geodesic l′2 through Q. Then x is
the geodesic distance between O and Q1 measured along l1 and y is the geodesic
distance between Q1 and Q measured along l′2. On E2 with κ = 0, the relations (15)
lead to x0 = 1 and (x1, x2) = (x, y) = (r cosφ, r sinφ) so reducing to Cartesian
and polar coordinates.

These coordinates are shown in Fig. 1 for S2 and H2. In these pictures, l2 is
the base geodesic orthogonal to l1 through O, so related to J02, and Q2 is the
intersection point of l2 with its orthogonal geodesic l′1 through Q.

We substitute (15) in the ambient metric (9) and in the free Lagrangian (12),
finding that

(ds)2κ = C2
κ(y)dx

2 + dy2 = dr2 + S2
κ(r)dφ

2,

Lκ = 1
2

(
C2
κ(y)ẋ

2 + ẏ2) = 1
2

(
ṙ2 + S2

κ(r)φ̇
2).
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Fig. 1 Ambient (x0, x1, x2), geodesic parallel (x, y) and geodesic polar (r, φ) coordinates of a
point Q on the sphere S2 with κ = +1 and on the hyperbolic space H2 with κ = −1 and x0 ≥ 1.
The origin of the space in ambient coordinates is O = (1, 0, 0). Note that on S2, O1 = (0, 1, 0)
and O2 = (0, 0, 1)

Now, we denote (px, py) and (pr , pφ) the conjugate momenta of the coordinates
(x, y) and (r, φ), respectively, and the free Hamiltonian (kinetic energy) turns out
to be

Tκ = 1

2

(
p2
x

C2
κ(y)

+ p2
y

)
= 1

2

(
p2
r + p2

φ

S2
κ(r)

)
. (16)

According to (15) and avoiding singularities in (16), we find that the domain of
the geodesic coordinates on S2 and H2 reads (always φ ∈ [0, 2π))

S2 (κ > 0) : − π√
κ
< x ≤ π√

κ
, − π

2
√
κ
< y <

π

2
√
κ
, 0 < r <

π√
κ
.

H2 (κ < 0) : −∞ < x < ∞, −∞ < y < ∞, 0 < r < ∞. (17)

3 Beltrami Coordinates and Projective Dynamics

The quotients (x1/x0, x2/x0) ≡ (q1, q2) of the ambient coordinates (8) are just
the Beltrami coordinates of projective geometry for the sphere and the hyperbolic
plane. They are obtained by applying the central stereographic projection with pole
(0, 0, 0) ∈ R

3 of a point Q = (x0, x1, x2) onto the projective plane with x0 = 1 and
coordinates (q1, q2):

(x0, x1, x2) ∈ Σκ → (0, 0, 0) + μ (1, q1, q2) ∈ Σκ,
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giving rise to the expressions

x0 = μ = 1√
1 + κ(q2

1 + q2
2 )

, xi = μqi = qi√
1 + κ(q2

1 + q2
2 )

,

qi = xi

x0
, q2

1 + q2
2 = 1 − x2

0

κx2
0

, i = 1, 2.

(18)

Thus the origin O = (1, 0, 0) ∈ Σκ goes to the origin (q1, q2) = (0, 0) in the
projective space S2

κ .
The domain of (q1, q2) depends on the value of the curvature κ . We write κ in

terms of the radius R of the space as κ = ±1/R2 and we find that in the sphere
S2 with κ = 1/R2 > 0, qi ∈ (−∞,+∞). The points in the equator in Σκ with
x0 = 0 (x2

1 + x2
2 = R2) go to infinity, so that the projection (18) is well defined

for the hemisphere with x0 > 0. In the hyperbolic or Lobachevski space H2 with
κ = −1/R2 < 0 and x0 ≥ 1 it is satisfied that

q2
1 + q2

2 = x2
0 − 1

|κ|x2
0

< R2,

which is the Poincaré disk in Beltrami coordinates and

qi ∈ ( − 1/
√|κ|,+1/

√|κ|) = (−R,+R) .

The points at the infinity in H2 (x0 → ∞) are mapped onto to the circle q2
1 +

q2
2 = R2. Finally, in the Euclidean plane E2, with κ = 0 (R → ∞), the Beltrami

coordinates are just the Cartesian ones xi = qi ∈ (−∞,+∞).
By introducing (18) in the ambient metric (9) and in the free Lagrangian (12) we

obtain that

(ds)2κ = (1 + κ q2)dq2 − κ(q · dq)2

(1 + κ q2)2
, Lκ = (1 + κ q2)q̇2 − κ(q · q̇)2

2(1 + κ q2)2
, (19)

where q = (q1, q2) and hereafter we shall use the following notation for any 2-
vectors a = (a1, a2) and b = (b1, b2):

a2 = a2
1 + a2

2, a · b = a1b1 + a2b2.

The Beltrami momenta p = (p1, p2) conjugate to the coordinates q, such that
{qi, pj } = δij , come from pi = ∂Lκ/∂q̇i

pi = (1 + κ q2)q̇i − κ(q · q̇)qi
(1 + κ q2)2

, q̇i = (1 + κ q2)
(
pi + κ(q · p)qi

)
. (20)
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Table 1 Expressions for the ambient variables (xμ, πμ), free Hamiltonian Tκ and symplectic
realization of the Lie–Poisson generators Jμν of soκ (3) in terms of Beltrami, geodesic parallel
and geodesic polar canonical variables

Beltrami (q,p) Geodesic parallel (x, y, px, py) Geodesic polar (r, φ, pr , pφ)

x0
1

(1 + κq2)1/2
Cκ (x)Cκ (y) Cκ (r)

x1
q1

(1 + κq2)1/2
Sκ (x)Cκ (y) Sκ (r) cosφ

x2
q2

(1 + κq2)1/2 Sκ (y) Sκ (r) sinφ

π0 −
√

1 + κq2 (q · p) − Sκ (x)

Cκ (y)
px − Cκ (x)Sκ (y)py −Sκ (r) pr

π1

√
1 + κq2 p1

Cκ (x)

Cκ (y)
px − κSκ (x)Sκ (y)py Cκ (r) cosφ pr − sinφ

Sκ (r)
pφ

π2

√
1 + κq2 p2 Cκ (y)py Cκ (r) sinφ pr + cosφ

Sκ (r)
pφ

Tκ
1

2
(1 + κq2)(p2 + κ(q · p)2)

1

2

(
p2
x

C2
κ (y)

+ p2
y

)
1

2

(
p2
r + p2

φ

S2
κ (r)

)

J01 p1 + κ(q · p)q1 px cosφ pr − sinφ

Tκ (r)
pφ

J02 p2 + κ(q · p)q2 Cκ (x)py + κSκ (x)Tκ (y)px sinφ pr + cosφ

Tκ (r)
pφ

J12 q1p2 − q2p1 Sκ (x)py − Cκ (x)Tκ (y)px pφ

The specific expressions for S2, H2 and E2 correspond to set κ > 0, κ < 0 and κ = 0, respectively

And by inserting these expressions into Lκ (19) we get the free Hamiltonian

Tκ = 1
2 (1 + κ q2)

(
p2 + κ(q · p)2

)
. (21)

By introducing (18) and (20) in (13) we obtain the ambient momenta written
in terms of the Beltrami variables, πμ(q,p), and from this result a symplectic
realization of the Lie–Poisson generators (11) in these variables is directly found.
These expressions are displayed in Table 1. Notice that the kinetic energy (21) can
also be recovered by computing the symplectic realization of the Casimir (3) of
soκ(3) in Beltrami variables as Tκ ≡ 1

2C. Likewise the ambient momenta πμ and
symplectic realization of the Lie–Poisson generators Jμν can be computed in the
geodesic variables introduced in Sect. 2.2, and these are also presented in Table 1.

We recall that a similar procedure can be performed with Poincaré coordi-
nates [37] which come from the stereographic projection with pole (−1, 0, 0). The
resulting expressions can be found in [32].
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4 Anisotropic Oscillators on the Euclidean Plane

To start with, let us consider the Hamiltonian determining the anisotropic oscillator
with unit mass and frequencies ωx and ωy on the Euclidean plane in Cartesian
coordinates (x, y) ∈ R

2 and conjugate momenta (px, py):

H = 1

2
(p2

x + p2
y) + 1

2
(ω2

xx
2 + ω2

yy
2). (22)

Clearly, this Hamiltonian is always integrable due to its separability in Cartesian
coordinates so that it Poisson commutes with the (quadratic in the momenta)
integrals of motion

Ix = 1

2
p2
x + 1

2
ω2
xx

2, Iy = 1

2
p2
y + 1

2
ω2
yy

2,

which are not independent since

H = Ix + Iy.

Furthermore, it is also well known that for commensurate frequencies ωx : ωy the
Hamiltonian (22) provides a superintegrable system [38–40], in such a manner that
an “additional” (in general higher order in the momenta) integral of motion does
exist.

The (super)integrability properties of the commensurate oscillator will be
sketched by following the approach given in [41, 42], which is based on a classical
factorization formalism (see [43–47] and the references therein). If we denote

ωx = γωy, ωy = ω, γ ∈ R
+/{0}, (23)

then H (22) can be written in terms of the parameter γ and frequency ω as

H = 1

2
(p2

x + p2
y) + ω2

2

(
(γ x)2 + y2

)
. (24)

Next we introduce new canonical variables

ξ = γ x, pξ = px/γ, ξ ∈ R, (25)

giving rise to

H = 1

2
p2
y + ω2

2
y2 + γ 2

(
1

2
p2
ξ + ω2

2γ 2
ξ2
)
. (26)
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Therefore we obtain two 1D Hamiltonians Hξ and Hy given by

Hξ = 1

2
p2
ξ + ω2

2γ 2 ξ
2, Hy = 1

2
p2
y + ω2

2
y2, H = Hy + γ 2Hξ , (27)

which are two integrals of the motion for H . The 1D Hamiltonian Hξ (27) can then
be factorized in terms of “ladder functions” B± as

Hξ = B+B−, B± = ∓ i√
2
pξ + 1√

2

ω

γ
ξ , (28)

fulfilling

{Hξ ,B±} = ∓i
ω

γ
B±, {B−, B+} = −i

ω

γ
.

The remaining 1D Hamiltonian Hy (27) can also be factorized through “shift
functions” A± in the form

Hy = A+A−, A± = ∓ i√
2
py − ω√

2
y , (29)

so that

{Hy,A±} = ±iωA±, {A−, A+} = iω.

Notice that the sets of functions (Hξ , B±, 1) and (Hy,A±, 1) span a Poisson–
Lie algebra isomorphic to the harmonic oscillator Lie algebra h4. Hence, the 2D
Hamiltonian (26) can finally be expressed in terms of the above ladder and shift
functions as

H = A+A− + γ 2B+B−, {H,B±} = ∓iγ ωB±, {H,A±} = ±iωA± .

The remarkable fact now is that if we consider a rational value for γ ,

γ = ωx

ωy

= m

n
, m, n ∈ N

∗, (30)

we obtain two additional complex constants of the motion X± for H (26)

X± = (B±)n(A±)m , X̄+ = X−, (31)

which are of (m + n)th-order in the momenta. Real-valued integrals of the motion
can be defined through the expressions

X = 1

2
(X+ + X−), Y = 1

2i
(X+ − X−). (32)
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The final result can be summarized as follows [41, 42].

1. The Hamiltonian H (26) is always integrable for any value of the real parameter
γ , since it is endowed with a quadratic constant of the motion given by either Hξ

or Hy (27).
2. When γ = m/n is a rational parameter (30), the Hamiltonian (26) defines a

superintegrable anisotropic oscillator with commensurate frequencies ωx : ωy

and the additional constant of the motion is given by either X or Y in (32). The
sets (H,Hξ ,X) and (H,Hξ , Y ) are formed by three functionally independent
functions.

3. When (m + n) is even, the highest order constant of the motion in the momenta
is X being of (m + n)-degree, while Y is of lower order (m + n − 1). When
(m+n) is odd, the highest (m+n)-degree integral is Y while X is of lower order
(m + n − 1).

It is worth recalling that the Hamiltonian (22) can be enlarged by adding two
Rosochatius (or Smorodinsky–Winternitz) terms as

Hλ = 1

2
(p2

x + p2
y) + 1

2
(ω2

xx
2 + ω2

yy
2) + λ1

x2
+ λ2

y2
, (33)

where λ1 and λ2 are real parameters, which provide centrifugal barriers when
both constants are positive ones. In the 3D case, the resulting Hamiltonian, called
“caged anisotropic oscillator”, has been solved in [48] (for both classical and
quantum systems), and the general ND case has been fully studied in [40]. Despite
the introduction of the λi-potentials, the Hamiltonian (33) is again (maximally)
superintegrable for commensurate frequencies (in any dimension).

We also remark that any m : n oscillator (labelled by γ ) is equivalent to the n : m
one (with 1/γ ) via the interchanges x ↔ y and γω ↔ ω. Consequently, according
to the above statement the only anisotropic oscillators which are quadratically
superintegrable correspond to the cases with γ = 1 and γ = 2 (so also γ = 1/2),
in agreement with the classifications on superintegrable Euclidean systems given
in [7, 49, 50]. In the sequel, we will illustrate the previous general results by working
out these two particular cases.

4.1 The γ = 1 or 1:1 (Isotropic) Oscillator

We set m = n = 1 so that the relations (23) and (25) simply give ωx = ωy = ω and
ξ = x and pξ = px . Thus we recover the isotropic oscillator

H 1:1 = 1

2
(p2

x + p2
y) + ω2

2
(x2 + y2), (34)
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and the constants of the motion (32) reduce to

X = − 1
2 (pxpy + ω2xy), Y = − 1

2ω(xpy − ypx). (35)

Since (m + n) = 2 is even, we find a quadratic integral X, which is one of the
components of the Demkov–Fradkin tensor [51, 52], and a first-order one Y which
is proportional to the angular momentum

J = xpy − ypx. (36)

We recall that if we add the two “centrifugal” λi-terms (33), then we get the
2D version of the so-called Smorodinsky–Winternitz system [53] which has been
widely studied (see, e.g., [12, 15, 50, 54–56] and the references therein).

4.2 The γ = 2 or 2:1 Oscillator

If we take m = 2 and n = 1, then ωx = 2ωy = 2ω, ξ = 2x and pξ = px/2. The
Hamiltonian (26) and the integrals (32) turn out to be

H 2:1 = 1

2
p2
y + ω2

2
y2 + 4

(
1

2
p2
ξ + ω2

8
ξ2
)

= 1

2
(p2

x + p2
y) + ω2

2

(
4x2 + y2

)
,

X = − ω

4
√

2

(
py(ξpy − 4ypξ ) − ω2ξy2

)
= − ω

2
√

2

(
pyJ − ω2xy2

)
, (37)

Y = 1

2
√

2

(
pξp

2
y + ω2y(ξpy − ypξ )

)
= 1

4
√

2

(
pxp

2
y + ω2y(4xpy − ypx)

)
.

In this case (m + n) = 3 is odd, so that we find a cubic integral Y and a quadratic
one X, which involves the angular momentum J (36); the latter is the integral of
the motion which is usually considered in the literature (see, e.g., [7, 57]) and shows
that the 2:1 oscillator can be regarded as a superintegrable system with quadratic
constants of the motion.

Notice that if we add a single Rosochatius–Winternitz potential λ2/y
2 (by setting

λ1 = 0) the generalized system remains quadratically superintegrable [7], but if both
λi-terms are introduced, the additional integral turns out to be of sixth-order in the
momenta [40].
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5 Anisotropic Oscillators on S2 and H2

Let us recall that the classification of all possible superintegrable systems on S2 and
H2 with quadratic integrals of the motion was performed in [7], where two curved
superintegrable oscillator potentials were found:

– The isotropic Higgs oscillator [58], whose Euclidean limit is the 1:1 isotropic
oscillator (34).

– The curved version of the superintegrable Euclidean 2:1 oscillator (37).

The aim of this section is to present the construction of the constant-curvature
Hamiltonian analogue Hκ of the anisotropic Euclidean Hamiltonian H (24) with
arbitrary commensurate frequencies. The idea is to introduce appropriately the
curvature parameter κ by requiring to keep the same (super)integrability properties
as given in the previous section for (24) (or (26)) and, simultaneously, allowing
for a smooth and well-defined flat limit κ → 0 of the curved Hamiltonian and its
constants of the motion.

This result has been achieved in [41] by using the geodesic parallel variables
described in Sect. 2.2, so with kinetic term Tκ given by (16). Explicitly, the curved
Hamiltonian Hκ has been shown to be of the form

Hκ = Tκ + Uγ
κ = 1

2

(
p2
x

C2
κ(y)

+ p2
y

)
+ ω2

2

(
T2
κ(γ x)

C2
κ(y)

+ T2
κ(y)

)
. (38)

By taking into account (17) and the presence of the κ-tangent Tκ(γ x) in the
potential Uγ

κ , we find that the domain of the geodesic parallel coordinates (x, y)
is restricted to

S2 (κ > 0) : − π

2
√
κ
< γx <

π

2
√
κ
, − π

2
√
κ
< y <

π

2
√
κ
, γ ≥ 1

2
.

H2 (κ < 0) : x, y ∈ R, γ ∈ R
+/{0}.

Now we assume that κ �= 0 and since 1 + κ T2
κ(u) = 1/C2

κ(u) we rewrite the
Hamiltonian Hκ (38) as

Hκ = p2
y

2
+ 1

C2
κ(y)

(
p2
x

2
+ ω2

2κC2
κ(γ x)

)
− ω2

2κ
, κ �= 0. (39)

Next we introduce the canonical variables (ξ, pξ ) (25) finding that

Hκ = p2
y

2
+ γ 2

C2
κ(y)

(
p2
ξ

2
+ ω2

2κγ 2 C2
κ(ξ)

)
− ω2

2κ
, κ �= 0.
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And the curved Hamiltonian (39) is finally expressed as

Hκ = p2
y

2
+ γ 2H

ξ
κ

C2
κ(y)

− ω2

2κ
, Hξ

κ = p2
ξ

2
+ ω2

2κγ 2 C2
κ(ξ)

, κ �= 0, (40)

where Hξ
κ is a constant of the motion. Notice that in this form, the 1D Hamiltonians

H
ξ
κ and Hκ correspond to Pöschl–Teller systems [44]. Consequently, Hκ determines

an integrable system for any value of ω and γ .
In the sequel, we factorize the 1D Hamiltonians Hξ

κ and Hκ (40) (see [41, 42, 44]
for details). On the one hand, the Hamiltonian H

ξ
κ is factorized in terms of ladder

functions as

Hξ
κ = B+

κ B
−
κ + ω2

2κγ 2
, B±

κ = ∓ i√
2

Cκ(ξ) pξ + Eκ√
2

Sκ(ξ), (41)

where Eκ is a constant of the motion defined by

Eκ(pξ , ξ) :=
√

2κHξ
κ . (42)

Thus we get the Poisson algebra

{Hξ
κ , B

±
κ } = ∓i Eκ B±

κ , {B−
κ , B

+
κ } = −i Eκ ,

so that

{Hκ,B
±
κ } = ∓i

γ 2Eκ
C2
κ(y)

B±
κ .

On the other hand, Hκ is factorized by means of shift functions in the form

Hκ = A+
κ A

−
κ + 1

2κ

(
γ 2E2

κ − ω2
)
, A±

κ = ∓ i√
2
py − γ Eκ√

2
Tκ(y), (43)

closing on the Poisson algebra

{Hκ,A
±
κ } = ±i

γ Eκ
C2
κ(y)

A±
κ , {A−

κ , A
+
κ } = i

γ Eκ
C2
κ(y)

.

As in the Euclidean case, when γ takes a rational value (30), two additional
complex integrals of motion arise for Hκ (38) (under the change of variable (25)),
namely

X±
κ = (B±

κ )
n(A±

κ )
m, X̄+

κ = X−
κ . (44)
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Nevertheless, in order to obtain real constants of the motion, Xκ and Yκ , we are
now led to distinguish between two situations [47] (due to the presence of powers
of Eκ (42) in (44)):

When m + n is even: X±
κ = ±i EκYκ + Xκ.

When m + n is odd: X±
κ = EκXκ ± i Yκ .

(45)

Summing up, the generalization to S2 and H2 of the anisotropic oscillator can be
stated as follows [41].

1. For any value of γ , the Hamiltonian Hκ (38) always determines an integrable
anisotropic curved oscillator on S2 and H2, with quadratic constant of motion
given by H

ξ
κ (40).

2. When γ is a rational parameter (30), the Hamiltonian Hκ defines a superinte-
grable anisotropic curved oscillator and the additional constant of the motion is
given by either Xκ or Yκ in (45). The sets (Hκ,H

ξ
κ ,Xκ) and (Hκ,H

ξ
κ , Yκ) are

formed by three functionally independent functions.
3. The integrals Xκ and Yκ are polynomial in the momenta, whose degrees are (m+

n) and (m + n − 1) when (m + n) is even, and (m + n − 1) and (m + n) when
(m + n) is odd, respectively.

Some remarks are in order. Firstly, although the (flat) Euclidean limit κ → 0 is
precluded for Hκ written in the forms (39) and (40), it is actually well defined in all
the remaining expressions. To perform the contractions one has to take into account
the following flat limit of the integrals Hξ

κ (40) and Eκ (42)

lim
κ→0

κHξ
κ = ω2

2γ 2 , lim
κ→0

Eκ = ω

γ
. (46)

Therefore, it can be easily checked that when κ → 0, the curved Hamiltonian
Hκ (38) reduces to H (24), the curved ladder functions B±

κ (41) to B± (28), the
curved shift functions A±

κ (43) to A± (29) and so the curved integrals X±
κ (44) to

X± (31).
Secondly, as in the Euclidean system (33), the curved Hamiltonian Hκ (38) can

be generalized by adding two curved Rosochatius–Winternitz potentials which in
ambient coordinates (15) adopt a very simple expression [12, 15]. Explicitly, the
corresponding potential reads

U
γ
κ,λ = Uγ

κ + λ1

x2
1

+ λ2

x2
2

=
(

T2
κ(γ x)

C2
κ(y)

+ T2
κ(y)

)
+ λ1

S2
κ(x)C2

κ (y)
+ λ2

S2
κ(y)

. (47)

Then the corresponding Hamiltonian Hκ,λ = Tκ + U
γ
κ,λ can be written as (with

κ �= 0)

Hκ,λ = p2
y

2
+ λ2

S2
κ(y)

+ 1

C2
κ(y)

(
p2
x

2
+ ω2

2κC2
κ(γ x)

+ λ1

S2
κ(x)

)
− ω2

2κ
,
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to be compared with (39). Consequently, Hκ,λ defines an integrable system for any
value of ω, γ , λ1 and λ2.

Now it could be expected that if γ is a rational number, Hκ,λ should be again
superintegrable but, to the best of our knowledge, this property has not been proven
in general (except for γ = 1). We also point out that each λi-term gives rise to a
centrifugal barrier on H2 when λi > 0, as in the Euclidean system but, surprisingly
enough, both λ1- and λ2-potentials can be interpreted as noncentral 1D curved
oscillators on S2 with centres at the points O1 = (0, 1, 0) and O2 = (0, 0, 1),
respectively [10–13, 31, 59] (see Fig. 1).

Thirdly, it can be seen from Hκ (38) that, in general, Uγ
κ and U

1/γ
κ determine

two different systems, in contradistinction with the Euclidean case (recall that the
equivalence was provided by the interchanges x ↔ y and γω ↔ ω). However
when κ = 0 both potentials reduce to equivalent Euclidean potentials. This clearly
illustrates the fact that given a flat Hamiltonian system there could be not a single but
several curved generalizations (or curvature integrable deformations) which would
be non-equivalent in the sense that no canonical change of variables exists between
them.

Fourthly, according to the results previously presented, the only anisotropic
curved oscillators which are quadratically superintegrable correspond to the same
values of γ as in the Euclidean system [7, 60, 61]: γ = 1, γ = 2 and (now the non-
equivalent) γ = 1/2. In what follows we shall present the corresponding results for
these three cases.

And finally, we recall that other integrable anisotropic oscillators on the spheres
and hyperbolic spaces can be found in [62–65] (see also the references therein).

5.1 The γ = 1 or 1:1 Curved (Isotropic) Oscillator

This case is also known as the Higgs oscillator [58, 66] and it has been widely
studied in the literature (see [7, 16, 31, 67–70] and the references therein).

We set γ = m = n = 1 so that ξ = x and pξ = px . The Hamiltonian Hκ (38)
reduces to

H 1:1
κ = 1

2

(
p2
x

C2
κ(y)

+ p2
y

)
+ ω2

2

(
T2
κ(x)

C2
κ(y)

+ T2
κ(y)

)
= p2

y

2
+ Hx

κ

C2
κ(y)

− ω2

2κ
,

where the quadratic integral Hx
κ ≡ H

ξ
κ (40) is given by

Hx
κ = p2

x

2
+ ω2

2κC2
κ(x)

.
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Since (m + n) = 2 is even the constants of the motion (45) read

Xκ = −1

2

(
Cκ(x)pxpy + E2

κ Sκ(x)Tκ (y)
)
,

Yκ = −1

2

(
Sκ(x)py − Cκ(x)Tκ (y)px

)
.

The integral Yκ is proportional to the (curved) angular momentum Jκ which in
geodesic parallel and polar variables is given by [7, 9]

Jκ = Sκ(x)py − Cκ(x)Tκ (y)px = pφ.

The flat limit κ → 0 of all the above expressions leads to the results of the Euclidean
isotropic oscillator given in Sect. 4.1. In particular, provided that Eκ → ω (46), the
integrals Xκ , EκYκ and the curved angular momentum Jκ reduce to (35) and (36).

Notice that the potential of H 1:1
κ is expressed in terms of ambient and geodesic

polar coordinates (15) as

U1:1
κ = ω2

2

(
x2

1 + x2
2

x2
0

)
= ω2

2
T2
κ(r).

If we consider the two λi-potentials (47), we recover the curved Smorodinsky–
Winternitz system

U1:1
κ,λ = ω2

2

(
x2

1 + x2
2

x2
0

)
+ λ1

x2
1

+ λ2

x2
2

,

which is known to be quadratically superintegrable [7, 12, 13, 15, 31, 71].

5.2 The γ = 2 or 2:1 Curved Oscillator

We set γ = m = 2 and n = 1 so that ξ = 2x and pξ = px/2. The Hamiltonian
Hκ (38) reads

H 2:1
κ = 1

2

(
p2
x

C2
κ(y)

+ p2
y

)
+ ω2

2

(
T2
κ(2x)

C2
κ(y)

+ T2
κ(y)

)
= p2

y

2
+ 4Hξ

κ

C2
κ(y)

− ω2

2κ
,

where

Hξ
κ = p2

ξ

2
+ ω2

8κC2
κ(ξ)

= p2
x

8
+ ω2

8κC2
κ(2x)

.
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Now (m + n) = 3 is odd so that the constants of the motion (45) turn out to be

Xκ = − 1

2
√

2

([
Sκ(2x)py − 2Cκ (2x)Tκ (y)px

]
py − 4E2

κ Sκ(2x)T2
κ (y)

)
,

Yκ = 1

4
√

2

(
Cκ(2x)pxp

2
y + 4E2

κ Tκ(y)
[
2Sκ(2x)py − Cκ(2x)Tκ (y)px

])
,

that is Xκ is quadratic in the momenta, while Yκ is cubic; this means that H 2:1
κ is

a quadratically superintegrable system. The limit κ → 0 (46) gives Eκ → ω/2,
hence the Hamiltonian H 2:1

κ and the integrals EκXκ and Yκ reduce to (37), thus
reproducing the results of Sect. 4.2.

In terms of ambient and geodesic polar coordinates (15), the potential of H 2:1
κ

adopts the (cumbersome) expressions

U2:1
κ = ω2

2

(
4x2

0x
2
1

(x2
0 + κx2

1)(x
2
0 − κx2

1)
2

+ x2
2

(1 − κx2
2)

)

= ω2

2

(
4T2

κ (r) cos2 φ(
1 − κS2

κ(r) sin2 φ
) (

1 − κT2
κ(r) cos2 φ

)2
+ S2

κ(r) sin2 φ

1 − κS2
κ(r) sin2 φ

)

the latter is the one formerly introduced in [7].
In this case it is only possible to add a single λi-potential (47) keeping the

quadratic superintegrability of the system [7]

U2:1
κ,λ = U2:1

κ + λ2

x2
2

,

which has been studied in detail in [31, 32]. In this respect, we remark that an
equivalent superintegrable system can be obtained by interchanging the ambient
coordinates x1 ↔ x2 (so the role of the geodesics l1 ↔ l2 in Sect. 2.2) which means
that the geodesic parallel coordinates are mapped as (x, y) → (y′, x′), that is,

x0 = Cκ(x
′)Cκ (y

′), x1 = Sκ(x
′), x2 = Cκ(x

′)Sκ(y
′).

In fact, the coordinates (x′, y′) are just the so-called geodesic parallel coordinates
of type II [9]. These transformations provide the equivalent system

H ′2:1
κ = Tκ + ω2

2

(
x2

1

(1 − κx2
1)

+ 4x2
0x

2
2

(x2
0 + κx2

2)(x
2
0 − κx2

2)
2

)

= 1

2

(
p2
x′ + p2

y′

C2
κ(x

′)

)
+ ω2

2

(
T2
κ(x

′) + T2
κ(2y

′)
C2
κ(x

′)

)
. (48)

This is exactly the expression for the 2:1 curved oscillator considered in [31, 32].
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5.3 The 1
2:1 Curved Oscillator

We set γ = 1/2, m = 1 and n = 2, so that ξ = x/2, pξ = 2px . Thus the
Hamiltonian Hκ (38) is

H
1
2 :1
κ = 1

2

(
p2
x

C2
κ(y)

+ p2
y

)
+ ω2

2

(
T2
κ(

x
2 )

C2
κ(y)

+ T2
κ(y)

)
= p2

y

2
+ H

ξ
κ

4C2
κ(y)

− ω2

2κ
,

where

Hξ
κ = p2

ξ

2
+ 2ω2

κC2
κ(ξ)

= 2p2
x + 2ω2

κC2
κ(

x
2 )
.

The sum (m + n) = 3 is again odd, and the additional integrals (45) read

Xκ = − 1

4
√

2

(
4
[

Sκ(x)py − C2
κ(

x
2 )Tκ(y)px

]
px + E2

κ S2
κ(

x
2 )Tκ(y)

)
,

Yκ = 1

2
√

2

(
4C2

κ (
x
2 )p

2
xpy − E2

κ

[
S2
κ(

x
2 )py − Sκ(x)Tκ (y)px

])
,

which shows that H
1
2 :1
κ is again a quadratically superintegrable system.

As a consequence, when both Hamiltonians H 2:1
κ and H

1
2 :1
κ are considered

altogether, one finds a particular issue where the curvature-deformation approach
gives rise to two non-equivalent systems starting from the common “seed” given

by the Euclidean system H 2:1 � H
1
2 :1 (37) described in Sect. 4.2. Therefore,

the plurality of possible integrable curved generalizations of a given Euclidean

system becomes evident, and a deeper analysis of the curved system H
1
2 :1
κ seems

to be needed, since—to the best of our knowledge—it has not been appropriately
considered in the literature so far.

6 Integrable Hénon–Heiles Systems

By making use of the results described in the previous sections, our aim now will
be to present the generalization to the 2D sphere and the hyperbolic space of the
integrable Hénon–Heiles Hamiltonian given by

H = 1

2
(p2

1 + p2
2) + Ω

(
q2

1 + 4q2
2

)
+ α

(
q2

1q2 + 2q3
2

)
, (49)
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where Ω and α are real constants. Such curved Hénon–Heiles Hamiltonian will
be constructed by considering it as an integrable cubic perturbation of the 1:2
anisotropic oscillator that we have introduced in the previous Sect. 5.2, in the
form (48), although in this case projective Beltrami coordinates of Sect. 3 will be
the ones that are naturally adapted to the construction of the curved system.

We recall that the original (non-integrable) Hénon–Heiles system

H = 1

2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2 ) + λ

(
q2

1q2 − 1

3
q3

2

)
,

was introduced in [72] in order to model a Newtonian axially symmetric galactic
system. When the following generalization containing adjustable parameters was
studied

H = 1

2
(p2

1 + p2
2) + Ω1q

2
1 + Ω2q

2
2 + α

(
q2

1q2 + βq3
2

)
,

it was found that the only Liouville-integrable members of this family of generalized
Hénon–Heiles Hamiltonians were given by three specific choices of the real
parameters Ω1, Ω2, α and β (see [73–85]):

– The Sawada–Kotera system, given by β = 1/3 and Ω1 = Ω2 = Ω:

H = 1

2
(p2

1 + p2
2) + Ω

(
q2

1 + q2
2

)
+ α

(
q2

1q2 + 1

3
q3

2

)
. (50)

This system is separable in rotated Euclidean coordinates, and therefore its
integral of the motion is quadratic in the momenta.

– The Korteweg–de Vries (KdV) system, with β = 2 and (Ω1,Ω2) arbitrary
parameters:

H = 1

2
(p2

1 + p2
2) + Ω1q

2
1 + Ω2q

2
2 + α

(
q2

1q2 + 2q3
2

)
, (51)

which is separable in parabolic coordinates and has also a quadratic integral of
the motion.

– The Kaup–Kupershdmit system, with β = 16/3 and Ω2 = 16Ω1 = 16Ω:

H = 1

2
(p2

1 + p2
2) + Ω

(
q2

1 + 16q2
2

)
+ α

(
q2

1q2 + 16

3
q3

2

)
, (52)

whose integral is quartic in the momenta.

Hence the particular KdV case (51) arising when Ω2 = 4Ω1 gives the Hamil-
tonian (49) and this is connected to the so-called Ramani–Dorizzi–Grammaticos
(RDG) series of integrable potentials [86, 87], which are just the polynomial



24 Á. Ballesteros et al.

potentials on the Euclidean plane that can be separated in parabolic coordinates
and can freely be superposed by preserving integrability [78, 88]. Moreover, such
separability in parabolic coordinates explains why a large collection of integrable
rational perturbations can be added to the RDG potentials (see [88–92] and the
references therein).

In the sequel we review the main results concerning the flat KdV Hénon–Heiles
Hamiltonian (51) with Ω2 = 4Ω1 along with its associated RDG potentials. And
in the next Sect. 7 we will sketch its integrable curved analogue on the 2D sphere
S2 and the hyperbolic (or Lobachevski) space H2 which was constructed in [93],
together with the full curved counterpart of the integrable RDG series of potentials.
The corresponding integrable perturbations of the curved KdV system can be found
in [85].

6.1 An Integrable KdV Hénon–Heiles System on the Euclidean
Plane

Le us consider the integrable (albeit non-superintegrable) Hamiltonian system (49)
defined on E2 whose constant of motion is quadratic in the momenta and given by

I = p1(q1p2 − q2p1) + q2
1

(
2Ωq2 + α

4
(q2

1 + 4q2
2 )
)
. (53)

This system can be regarded as an integrable cubic perturbation of the 1:2 oscillator
with frequencies (ω, 2ω) once the identification ω2 = 2Ω is performed (see
Sect. 4.2).

The potential functions included in both the Hamiltonian (49) and its invari-
ant (53) are directly connected to the so-called RDG series of integrable potentials,
which consists of the homogeneous polynomial potentials of degree n given
by [86, 87]

Vn(q1, q2) =
[ n2 ]∑
i=0

2n−2i
(
n − i

i

)
q2i

1 qn−2i
2 , n = 1, 2, . . .

Namely, the four members of this family read

V1(q1, q2) = 2q2,

V2(q1, q2) = q2
1 + 4q2

2 ,

V3(q1, q2) = 4q2
1q2 + 8q3

2 ,

V4(q1, q2) = q4
1 + 12q2

1q
2
2 + 16q4

2 .
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It is straightforward to realize that the quadratic and cubic potentials in the
Hamiltonian (49) are just the second- and the third-order RDG potentials V2 and V3,
respectively. Moreover, the integral I (53) contains the linear V1 and the quadratic
V2 RDG potentials. Therefore, the integrable system (49) is constructed through the
building block functions V1, V2 and V3.

In fact, it can be straightforwardly proven that a Hamiltonian Hn containing the
RDG potential Vn, namely,

Hn = 1

2

(
p2

1 + p2
2

)
+ αnVn,

is always Liouville integrable, with integral of the motion Ln involving the Vn−1
potential in the form

Ln = p1(q1p2 − q2p1) + αnq
2
1Vn−1, {Hn,Ln} = 0. (54)

Note that formula (54) holds provided that the 0-th order RDG potential is defined
as the constant V0 := 1, and the first integrable Hamiltonian system within the RDG
series reads

H1 = 1

2
(p2

1 + p2
2) + α1(2q2), L1 = p1(q1p2 − q2p1) + α1q

2
1 .

Furthermore, all RDG potentials can freely be superposed by preserving integrabil-
ity [87, 91, 92]. More explicitly, the Hamiltonian

H(M) = 1

2

(
p2

1 + p2
2

)
+

M∑
n=1

αnVn

= 1

2

(
p2

1 + p2
2

)
+

M∑
n=1

[ n2 ]∑
i=0

αn2n−2i
(
n − i

i

)
q2i

1 qn−2i
2 , (55)

where M = 1, 2, . . . and αn are arbitrary real constants, has the following integral
of the motion:

L(M) = p1(q1p2 − q2p1) + q2
1

M∑
n=1

αnVn−1

= p1(q1p2 − q2p1) + q2
1

⎛
⎜⎝

M∑
n=1

[ n−1
2 ]∑

i=0

αn2n−1−2i
(
n − 1 − i

i

)
q2i

1 qn−1−2i
2

⎞
⎟⎠.

(56)
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Therefore, the KdV Hénon–Heiles Hamiltonian H (49) and its integral I (53) can
be thought of as the Hamiltonian H(M) (55) and the integral L(M) (56) by setting

M = 3, α1 = 0, α2 = Ω, α3 = α/4, (57)

since in that case we obtain that

H(3) = 1

2
(p2

1 + p2
2) + α2V2 + α3V3,

L(3) = p1(q1p2 − q2p1) + q2
1 (α2V1 + α3V2) .

As we will see in the sequel, this integrability structure associated with the RDG
potentials can be fully generalized after introducing the integrable deformation
generated by the curvature parameter.

7 An Integrable KdV Hénon–Heiles System on S2 and H2

The curved counterpart of the KdV Hénon–Heiles system (49) was constructed
in [93] by making use of the approach we advocate in this paper, which can be
summarized as follows. Given an integrable Euclidean Hénon–Heiles system

H = T + V = 1

2
(p2

1 + p2
2) + V2(q1, q2) + V3(q1, q2),

an integrable generalization of this system to S2 and H2 of the form

Hκ = Tκ(p1, p2, q1, q2) + Vκ,2(q1, q2) + Vκ,3(q1, q2), (58)

is constructed through the following steps:

1. Use the projective coordinates presented in Sect. 3 in order to describe the free
motion on S2 and H2 (so such kinetic energy term Tκ is known and given
by (21)).

2. Take the integrable curved anisotropic 1:2 oscillator and its integral of the motion
given in Sect. 5.2 in the form (48) as the initial data in order to construct the
curved family of RDG potentials.

3. Construct the full family of integrable curved RDG potentials on S2 and H2 (that
we shall denote as Vκ,n) through a recurrence procedure.

4. Show that the curved RDG potentials can be superposed by preserving integra-
bility.

5. Obtain the curved 1:2 KdV Hénon–Heiles system as the particular case (58) of
the latter curved RDG system.
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Two important comments concerning this approach have to be pointed out: firstly,
that projective coordinates will be the suitable ones in order to construct the curved
RDG potentials and, secondly, that the integrability properties of Vκ,2 will be our
“initial conditions” that will guide the construction of the full integrability structure.

By following this procedure (see [93] for details), the RDG potentials on the
sphere S2 and the hyperbolic space H2 can be defined in terms of projective Beltrami
coordinates (q1, q2) as

Vκ,n =
(

1 + κq2

1 − κq2
2

)2

×
[ n2 ]∑
i=0

2n−2i
(
n − i

i

)(
q1√

1 + κq2

)2i

×
(

1 − i

n − i

[
κq2

1

1 + κq2

])(
q2

1 + κq2

)n−2i

with n = 1, 2, . . . . It is straightforward to prove that each curved RDG Hamiltonian

Hκ,n = Tκ + αnVκ,n,

is integrable, with integral of motion Lκ,n being quadratic in the momenta and given
by

Lκ,n = J01J12 + αn
q2

1

1 + κq2Vκ,n−1, {Hκ,n,Lκ,n} = 0,

where Tκ is the kinetic energy (21) and J01, J12 are the functions given in Table 1 in
Beltrami variables. We stress that in order to get a suitable recurrence relation, the
0-term Vκ,0 in the curved RGD series of potentials is by no means a constant and it
has to be defined as the function

Vκ,0 := (1 + κq2
2 )(1 + κq2)

(
1 − κq2

2

)2 .

Note that the quadratic curved RDG Hamiltonian, Hκ,2 = Tκ + α2Vκ,2, is just
the superintegrable curved 1:2 oscillator (48), formerly introduced in [7] and further
studied in [31, 32].

It is convenient to recall that in terms of the ambient coordinates (x0, x1, x2),
subjected to the constraint (8), the first curved RDG potentials turn out to be

Vκ,0 = 1 − κx2
1

(x2
0 − κx2

2)
2
,

Vκ,1 = 2x0x2

(x2
0 − κx2

2)
2
,
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Vκ,2 = x2
1(1 − κx2

1) + 4x2
0x

2
2

(x2
0 − κx2

2)
2

,

Vκ,3 = 4x0x
2
1x2(1 − 1

2κx
2
1) + 8x3

0x
3
2

(x2
0 − κx2

2)
2

,

and the general formula for the curved RGD potentials is given by

Vκ,n = 1

(x2
0 − κx2

2)
2

[ n2 ]∑
i=0

2n−2i
(
n − i

i

)
x2i

1

(
1 − i

n − i
κx2

1

)
(x0x2)

n−2i .

Obviously, from these expressions these potentials can be written in any other
coordinate system. Notice also that Vκ,2 is exactly the potential written in (48) due
to the relation (8).

As in the Euclidean case the curved RDG potentials can be superposed and
therefore expressions (55) and (56) can be generalized to the curved case [93]. In
this way, it can straightforwardly be shown that the Hamiltonian

Hκ,(M) = Tκ +
M∑
n=1

αnVκ,n , M = 1, 2, . . .

Poisson commutes with the function

Lκ,(M) = J01J12 + q2
1

1 + κq2

M∑
n=1

αnVκ,n−1 ,

where J01, J12 and Tκ are again given in Table 1.
Finally, the integrable curved counterpart of the Hénon–Heiles KdV Hamilto-

nian (49) on S2 and H2 arises as a straightforward corollary of the previous result
as the particular case Hκ,(3) and by considering (57). Explicitly,

Hκ = Tκ + Vκ = Tκ + Ω Vκ,2 + α

4
Vκ,3 ,

and the curved analogue of the Hénon–Heiles KdV potential is so given by

Vκ = Ω
q2

1 (1 + κq2
2 ) + 4q2

2

(1 − κq2
2 )

2
+ α

q2
1q2(1 + κq2 − 1

2κq
2
1 ) + 2q3

2

(1 − κq2
2 )

2(1 + κq2)
.
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The associated integral of the motion comes from Lκ,(3) and reads

Iκ = J01J12 + q2
1

1 + κq2

(
Ω Vκ,1 + α

4
Vκ,2

)

= (p1 + κ(q · p)q1) (q1p2 − q2p1)

+ q2
1

1 + κq2

(
Ω

2q2(1 + κq2)

(1 − κq2
2 )

2
+ α

q2
1 (1 + κq2

2 ) + 4q2
2

4(1 − κq2
2 )

2

)
.

We stress that, by construction, the κ → 0 limit of all these expressions leads
smoothly to their Euclidean counterparts (49) and (53) we started with.

8 Remarks and Open Problems

In this contribution we have intended to provide a summary of recent results
concerning the construction of new (super)integrable systems on 2D spaces of con-
stant curvature as (super)integrable deformations of the corresponding Euclidean
systems, where the Gaussian curvature of the space plays the role of the parameter
for an integrable deformation theory.

This approach can be developed in different coordinate systems, and we have
stressed the fact that projective Beltrami coordinates are computationally very useful
from the viewpoint of algebraic integrability, since in these coordinates the curved
kinetic energy is just a polynomial in the canonical projective variables and the
curved integrable potentials so obtained can be expressed as rational functions.
As a summarizing example illustrating this fact we recall that the Higgs oscillator
Hamiltonian H1:1

κ [58, 94] (this is just the 1:1 oscillator on S2 and H2 presented
in Sect. 5.1) is expressed, respectively, in terms of ambient, geodesic polar and
Beltrami canonical variables as follows:

H1:1
κ = κ (x1π1 + x2π2)

2

2
(
1 − κ

(
x2

1 + x2
2

)) + 1

2

(
π2

1 + π2
2

) + δ
x2

(1 − κx2)
,

= 1

2

(
p2
r + p2

φ

S2
κ(r)

)
+ δT2

κ(r) ,

= 1
2 (1 + κ q2)

(
p2 + κ(q · p)2

) + δ q2 .

The computational advantages of the projective dynamics approach become evident
from these expressions, specially for the search of curved analogues of non-
superintegrable systems (like Hénon–Heiles ones) where the lack of additional
symmetries implies the need of making use of a purely computational approach.
We also recall that in terms of Beltrami coordinates the superintegrable Kepler–
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Coulomb potential on S2 and H2 is given by VKC = k/
√

q2 (see [15, 19]),
where again the potential in projective coordinates coincides formally with its
corresponding Euclidean expression, and all the dynamical modifications arising
from a non-vanishing curvature are concentrated in the kinetic energy term.

It should also be stressed that both anisotropic Euclidean oscillators and the
integrable Hénon–Heiles Hamiltonian here considered preserve their integrability
under the addition of some centrifugal terms, and the curved analogues of these
“centrifugally perturbed” Hamiltonians can also be constructed. On the other hand,
the wide applicability of the method here presented is currently being used in order
to construct the curved analogue of the KdV Hénon–Heiles system (51) for arbitrary
Ω1 and Ω2 parameters, as well as the curved analogue of the Sawada–Kotera
case (50) as an integrable curvature perturbation of the Higgs 1:1 oscillator. Also,
the construction of the curved Kaup–Kupershdmit Hénon–Heiles Hamiltonian (52)
should be based on the constant curvature analogue of the superintegrable 1:4 curved
oscillator, and is currently under investigation.

Finally, two further generalizations of the approach here presented should be
mentioned. The first of them is the construction of integrable curved analogues of
Minkowskian (instead of Euclidean) integrable systems, which could be addressed
by following the same curvature-deformation approach, but considering the corre-
sponding relativistic geometries with constant curvature (see [6, 8, 9, 14, 95] and
the references therein). The second one deals with the construction of integrable
systems on spaces with non-constant curvature, which in some cases can also
be considered as (quantum) deformations of known (super)integrable systems on
the Euclidean space. In these cases, a quite similar approach based on integrable
perturbations in terms of a parameter related with the curvature has led to the
obtention of new superintegrable oscillator and Kepler–Coulomb potentials on
Darboux III and Taub-NUT spaces (see [96–105] for further details and references
on integrability on spaces with non-constant curvature).
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Trends in Supersymmetric Quantum
Mechanics

David J. Fernández C.

Abstract Along the years, supersymmetric quantum mechanics (SUSY QM) has
been used for studying solvable quantum potentials. It is the simplest method to
build Hamiltonians with prescribed spectra in the spectral design. The key is to pair
two Hamiltonians through a finite order differential operator. Some related subjects
can be simply analyzed, as the algebras ruling both Hamiltonians and the associated
coherent states. The technique has been applied also to periodic potentials, where the
spectra consist of allowed and forbidden energy bands. In addition, a link with non-
linear second-order differential equations, and the possibility of generating some
solutions, can be explored. Recent applications concern the study of Dirac electrons
in graphene placed either in electric or magnetic fields, and the analysis of optical
systems whose relevant equations are the same as those of SUSY QM. These issues
will be reviewed briefly in this paper, trying to identify the most important subjects
explored currently in the literature.

Keywords Supersymmetric quantum mechanics · Coherent states · Painlevé
equations · Painlevé transcendents · Polynomial Heisenberg algebras ·
Factorization method · Exact solutions · Spectral design · Graphene

1 Introduction

The birth of supersymmetric quantum mechanics (SUSY QM) in 1981, as a toy
model to illustrate the properties that systems involving both bosons and fermions
have, was a breakthrough in the study of solvable quantum mechanical models [1].
One of the reasons is that SUSY QM is tightly related to other approaches used
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in the past to address this kind of systems, e.g., the factorization method, Darboux
transformation, and intertwining technique [2–27].

On the other hand, it is well known that the factorization method was introduced
by Dirac in 1935, to derive algebraically the spectrum of the harmonic oscillator
[28]. The next important advance was done by Schrödinger in 1940, who realized
that the procedure can be also applied to the Coulomb potential [29, 30]. Later on,
Infeld and his collaborators push forward the technique [31, 32], supplying a general
classification scheme including most of the exactly solvable Schrödinger Hamilto-
nians known up to that time [2]. As a consequence, the idea that the factorization
method was essentially exhausted started to spread among the scientific community.

However, in 1984 Mielnik proved that this belief was wrong, by generalizing
simply the Infeld–Hull factorization method when he was seeking the most general
first-order differential operators which factorize the harmonic oscillator Hamilto-
nian in a certain given order [33]. The key point of his approach was that if the
ordering of the generalized factorization operators is interchanged, then a new
Hamiltonian is obtained which is intertwined with the oscillator one.

It is worth to stress that Mielnik’s work represented the next breakthrough in
the development of the factorization method, since it opened the way to look for
new solvable quantum potentials. In particular, this generalization was immediately
applied to the Coulomb problem [34]. Meanwhile, Andrianov’s group [35, 36]
and Nieto [37] identified the links of the factorization method with Darboux
transformation and supersymmetric quantum mechanics, respectively. In addition,
Sukumar indicated the way to apply Mielnik’s approach to arbitrary potentials
and factorization energies [38, 39], setting up the general framework where the
factorization method would develop for the next decade [33, 34, 40–64].

Let us mention that up to the year 1993 the factorization operators, which at the
same time are intertwining operators in this case, were first-order differential ones.
A natural generalization, pursued by Andrianov and collaborators [65, 66], consists
in taking the intertwining operators of order greater than one. This proposal was
important, since it helped to circumvent the restriction of the first-order method,
that only the energy of the initial ground state can be modified. Moreover, it made
clear that the key of the generalization is the analysis of the intertwining relation
rather than the factorized expressions. Let us note also that in 1995 Bagrov and
Samsonov explored the same technique in a different but complementary way [67].

Our group got back to the subject in 1997 [68–72], although some works
related with the method had been done previously [73]. In particular, several
physically interesting potentials were addressed through this technique, as the
standard harmonic oscillator [33, 69, 70], the radial oscillator, and Coulomb
potentials [34, 73, 74], among others [75–77]. In addition, the coherent states
associated to the SUSY partners of the harmonic oscillator were explored [78–81],
and similar works dealing with more general one-dimensional Hamiltonians were
done [82, 83]. Another important contribution has to do with the determination
of the general systems ruled by polynomial Heisenberg algebras and the study of
particular realizations based on the SUSY partners of the oscillator [80, 84–87].
The complex SUSY transformations involving either real or complex factorization
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“energies” were implemented as well [88–92]. In addition, the analysis of the
confluent algorithm, the degenerate case in which all the factorization energies tend
to a single one, was also elaborated [74, 93–101]. The SUSY techniques for exactly
solvable periodic potentials, as the Lamé and associated Lamé potentials, have been
explored as well[102–109].

Some other groups have addressed the same subjects through different view-
points, e.g., the N -fold supersymmetry by Tanaka and collaborators [110–114], the
hidden non-linear supersymmetry by Plyushchay et al. [115–119], among others.

Especially important is the connection of SUSY QM with non-linear second-
order ordinary differential equations, as KdV and Painlevé IV and V equations, as
well as the possibility of designing algorithms to generate some of their solutions
[81, 84–86, 90, 92, 120–135].

Another relevant subject related to SUSY QM is the so-called exceptional
orthogonal polynomials (EOP) [136–150]. In fact, it seems that most of these new
polynomials appear quite naturally when the seed solutions which are employed
reduce to polynomial solutions of the initial stationary Schrödinger equation [144].

Recently, the SUSY methods started to be used also in the study of Dirac
electrons in graphene and some of its allotropes, when external electric or magnetic
fields are applied [151–161]. It is worth to mention as well some systems in optics,
since there is a well-known correspondence between Schrödinger equation and
Maxwell equations in the paraxial approximation, which makes that the SUSY
methods can be applied directly in some areas of optics [162–169].

As we can see, the number of physical systems which are related with supersym-
metric quantum mechanics is large enough to justify the writing of a new review
paper, in which we will present the recent advances in the subject. If the reader
is looking for books and previous review papers addressing SUSY QM from an
inductive viewpoint, we recommend Refs. [5–27].

2 Supersymmetric Quantum Mechanics

In this section we shall present axiomatically the supersymmetric quantum mechan-
ics, as a tool for generating solvable potentials Ṽ (x) departing from a given initial
one V (x).

The supersymmetry algebra with two generators introduced by Witten in 1981
[1]

[Qi,Hss] = 0, {Qi,Qj } = δijHss, i, j = 1, 2, (1)
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when realized in the following way:

Q1 = Q+ + Q√
2

, Q2 = Q+ − Q

i
√

2
, (2)

Q =
(

0 0
B 0

)
, Q+ =

(
0 B+
0 0

)
, (3)

Hss = {Q,Q+} =
(
B+B 0

0 BB+
)

(4)

is called supersymmetric quantum mechanics, where Hss is the supersymmetric
Hamiltonian, while Q1, Q2 are the supercharges. The kth order differential
operators B, B+ intertwine two Schrödinger Hamiltonians

H̃ = −1

2

d2

dx2 + Ṽ (x), H = −1

2

d2

dx2 + V (x), (5)

in the way

H̃B+ = B+H, HB = BH̃ . (6)

There is a natural link with the factorization method, since the following relations
are fulfilled:

B+B =
k∏

j=1

(H̃ − εj ), BB+ =
k∏

j=1

(H − εj ), (7)

where εj , j = 1, . . . , k are k factorization energies associated to k seed solutions
required to implement the intertwining (see Eqs. (5) and (6) and Sects. 2.1
and 2.2). Taking into account these expressions, it turns out that the supersymmetric
Hamiltonian Hss is a polynomial of degree kth in the diagonal matrix operator Hp
which involves the two Schrödinger Hamiltonians H and H̃ as follows:

Hss =
k∏

j=1

(Hp − εj ), Hp =
(
H̃ 0
0 H

)
. (8)

In particular, if k = 1 the standard (first-order) supersymmetric quantum mechanics
is recovered, for which Hss is a first degree polynomial in Hp, Hss = Hp − ε1.
For k > 1, however, we will arrive to the so-called higher-order supersymmetric
quantum mechanics, in which Hss is a polynomial of degree greater than one in Hp
(see, for example, [23]).
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2.1 Standard SUSY Transformations

Let us suppose now that we select k solutions uj of the initial stationary Schrödinger
equation for k different factorization energies εj , j = 1, . . . , k,

Huj = εjuj , (9)

which are called seed solutions. From them we implement the intertwining transfor-
mation of Eq. (6), leading to a new potential Ṽ (x) which is expressed in terms of
the initial potential and the seed solutions as follows:

Ṽ (x) = V (x) − [logW(u1, . . . , uk)]′′, (10)

where W(u1, . . . , uk) denotes the Wronskian of uj , j = 1, . . . , k. The eigenfunc-
tions ψ̃n and eigenvalues En of H̃ are obtained from the corresponding ones of H ,
ψn, and En, as follows:

ψ̃n = B+ψn√
(En − ε1) · · · (En − εk)

∝ W(u1, . . . , uk, ψn)

W(u1, . . . , uk)
. (11)

Moreover, H̃ could have additional eigenfunctions ψ̃εj for some of the factorization
energies εj (at most k, depending on either they fulfill or not the required boundary
conditions) which are given by:

ψ̃εj ∝ W(u1, . . . , uj−1, uj+1, . . . , uk)

W(u1, . . . , uk)
. (12)

We can conclude that, given the initial potential V (x), its eigenfunctions ψn,
eigenvalues En, and the k chosen seed solutions uj , j = 1, . . . , k, it is possible to
generate algorithmically its kth order SUSY partner potential Ṽ (x) as well as the
associated eigenfunctions and eigenvalues through expressions (10)–(12).

It is important to stress that the seed solutions must be carefully chosen in
order that the new potential will not have singularities additional to those of the
initial potential V (x). When this happens, we say that the transformation is non-
singular. If the initial potential is real, and we require the same for the final potential,
then there are some criteria for choosing the real seed solutions uj according to
their number of nodes, which also depend on the values taken by the associated
factorization energies εj (see, for example, [23]). Although non-exhaustive, let us
report next a list of some important criteria, which will make the final potential Ṽ (x)
to be real and without any extra singularity with respect to V (x).

– If k = 1 (first-order SUSY QM), the factorization energy ε1 must belong to the
infinite energy gap ε1 < E0 in order that u1 could be nodeless inside the x-
domain of the problem, where E0 is the ground state energy of H . Moreover,
since in this ε1-domain the seed solution u1 could have either one node or none,
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then we additionally require to identify the right nodeless solution. With these
conditions, the transformation will be non-singular and the spectrum of the new
Hamiltonian H̃ will have an extra level ε1 with respect to H (creation of a new
level). Note that also it is possible to select the seed solution with a node at one
of the edges of the x-domain; thus, the SUSY transformation will be still non-
singular but the factorization energy ε1 will not belong to the spectrum of H̃
(isospectral transformation).

– If k = 1, ε1 = E0, and u1 = ψ0 (the seed solution is the ground state, which has
one node at each edge of the x-domain), then the SUSY transformation will be
non-singular and the spectrum of the new Hamiltonian will not have the level E0
(deletion of one level).

– If k = 2 (standard second-order SUSY QM), first of all both ε1 and ε2 must
belong to the same energy gap, either to the infinite one below E0 or to a finite
gap defined by two neighbor energy levels (Em,Em+1). Let us order the two
factorization energies in the way ε2 < ε1. In order that the Wronskian of u1 and
u2 would be nodeless, the seed solution u2 associated to the lower factorization
energy ε2 should have one extra node with respect to the solution u1 associated
to the higher factorization energy ε1 [23]. In particular, in the infinite gap u2
should have one node and u1 should be nodeless. On the other hand, when both
factorization energies are in the finite gap (Em,Em+1) the seed solutions u2 and
u1 should have m+ 2 and m+ 1 nodes, respectively. In both cases the spectrum
of the new Hamiltonian will contain two extra eigenvalues ε1, ε2 (creation of two
levels). Moreover, the seed solutions can be chosen such that the transformation
is still non-singular but either ε1, ε2 or both will not belong to the spectrum of H̃
(either creation of one new level or isospectral transformation).

– If k = 2, ε2 = Em, u2 = ψm, ε1 = Em+1, u1 = ψm+1, then the SUSY
transformation will be non-singular and the spectrum of the new Hamiltonian
will not have the two levels Em,Em+1 (deletion of two levels).

– If k > 2, the corresponding non-singular SUSY transformation can be expressed
as the product of a certain number of first and second-order SUSY transforma-
tions, each one having to be consistent with any of the previous criteria to be
non-singular.

2.2 Confluent SUSY Transformations

An important degenerate case of the SUSY transformation for k ≥ 2 appears when
all the factorization energies εj , j = 1, . . . , k tend to a fixed single value ε1 [74, 93–
101, 170–172]. Let us note that the expression for the new potential of Eq. (10) is
still valid, but the seed solutions have to be changed if non-trivial modifications in
the new potential are going to appear. In fact, the seed solutions uj , j = 1, . . . , k
instead of being just normal eigenfunctions of H should generate a Jordan chain of
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generalized eigenfunctions for H and ε1 as follows:

(H − ε1)u1 = 0, (13)

(H − ε1)u2 = u1, (14)

...

(H − ε1)uk = uk−1. (15)

First let us assume that the seed solution u1 satisfying Eq. (13) is given, then we
need to find the general solution for uj , j = 2, . . . , k (precisely in that order!) in
terms of u1. There are two methods essentially different to determine such a general
solution: the first one is known as integral method, in which through the technique
of variation of parameters one simplifies each inhomogeneous equation in the chain
and when integrating the resulting equation every solution uj is found. In fact, by
applying this procedure the solution to the inhomogeneous equations

(H − ε1)uj = uj−1, j = 2, . . . , k, (16)

is given by

uj (x) = −2u1(x) vj (x), (17)

vj (x) = vj (x0) +
ˆ x

x0

wj(y)

u2
1(y)

dy, (18)

wj(x) = wj(x0) +
ˆ x

x0

u1(z) uj−1(z)dz, (19)

where x0 is a point in the initial domain of the problem. Thus, Eq. (19) with j = 2
determines w2, by inserting then this result in Eq. (18) with j = 2 we find v2 which
in turn fixes u2 through Eq. (17) [74]. By using then this expression for u2 it is found
w3 through Eq. (19) and then v3 and u3 by means of Eqs. (18) and (17), respectively
[95]. We continue this process to find at the end the expression for uk , and then we
insert all the uj , j = 1, . . . , k in Eq. (10) in order to obtain the new potential [170].

An alternative is the so-called differential method, in which one identifies in
a clever way (through parametric differentiation with respect to the factorization
energy ε1) one particular solution for each inhomogeneous equation of the chain
[96, 100]. It is straightforward then to find the general solution for each uj , j =
2, . . . , k. Instead of supplying the resulting formulas for arbitrary k > 1, let us
derive the results just for the simplest case with k = 2.
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2.2.1 Confluent Second-Order SUSY QM

For k = 2 we just need to solve the following system of equations:

(H − ε1)u1 = 0, (20)

(H − ε1)u2 = u1. (21)

The result for the integral method in this case is achieved by making k = 2 in
Eqs. (17)–(19), which leads to [74]:

u2(x) = −2u1(x) v2(x), (22)

v2(x) = v2(x0) +
ˆ x

x0

w2(y)

u2
1(y)

dy, (23)

w2(x) = w2(x0) +
ˆ x

x0

u2
1(y)dy. (24)

Thus we obtain:

W(u1, u2) = −2w2(x). (25)

Up to a constant factor, this is the well-known formula generated for the first time
in [94], which will induce non-trivial modifications in the new potential Ṽ (x) (see
Eq. (10)).

Let us solve now the system of Eqs. (20)–(21) through the differential method
[96]. If we derive Eq. (20) with respect to ε1, assuming that the Hamiltonian H does
not depend explicitly on ε1, we obtain a particular solution of the inhomogeneous
Eq. (21), namely

(H − ε1)
∂u1

∂ε1
= u1. (26)

Thus, the general solution for u2 we were looking for becomes:

u2(x) = c2 u1 + d2 u1

ˆ x

x0

dy

u2
1(y)

+ ∂u1

∂ε1
. (27)

Hence:

W(u1, u2) = d2 + W

(
u1,

∂u1

∂ε1

)
. (28)

Let us note that both methods have advantages and disadvantages, as compared
with each other. For instance, in the integral method often it is hard to find explicit
analytic solutions for the involved integrals, then in such cases we can try to use
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the differential method. However, for numerical calculation of the new potential
it is simple and straightforward to use the integral formulas. On the other hand,
there are not many potentials for which we can calculate in a simple way the
corresponding derivative with respect to the factorization energy. At the end both
methods turn out to be complementary to each other. A final remark has to be done:
the family of new potentials generated through both algorithms (the integral and
differential one) is the same, but if we want to generate a specific member of the
family through both methods we need to be sure that we are using the same pair
of seed solutions u1, u2. In practice, given u1, u2, with u2 generated, for example,
through the integral method (which means that we have fixed the constants v2(x0)

and w2(x0) of Eqs. (23), (24)) we have to look for the appropriate coefficients c2
and d2 of Eq. (27) in order to guarantee that the same seed solution u2 is going to
be used for the differential algorithm (see the discussion in [99]).

As in the non-confluent SUSY approach, once again we have to choose carefully
the seed solution u1 in order that the new potential will not have extra singularities
with respect to V (x). In the case of the second-order confluent algorithm, the way
of selecting such a seed solution is the following [94]:

– In the first place u1 must vanish at one of the two edges of the x-domain. If this
happens, then there will be some domain of the parameter w2(x0) for which the
key function w2 of Eq. (24) will not have any node.

– The above requirement can be satisfied, in principle, by seed solutions u1
associated to any real factorization energy; thus, we can create an energy level at
any place on the energy axis.

– In particular, any eigenfunction of H satisfies the conditions to produce non-
singular confluent second-order SUSY transformations, and the corresponding
energy eigenvalue can be also kept in the spectrum of the new Hamiltonian
(isospectral transformations).

– When an eigenfunction of H is used, a zero for w2 could appear at one of the
edges of the x domain. In such a case, the SUSY transformation stays non-
singular, but the corresponding eigenvalue will disappear from the spectrum of
H̃ (deletion of one level).

3 SUSY QM and Exactly Solvable Potentials

The methods discussed previously can be used to generate, from an exactly solvable
potential, plenty of new exactly solvable Hamiltonians with spectra quite similar to
the initial one. In this section we will employ the harmonic oscillator to illustrate the
technique. Although in this case the spectrum consists of an infinite number of non-
degenerate discrete energy levels, the method works as well for Hamiltonians with
mixed spectrum (discrete and continuous) or even when there is just a continuous
one (see, e.g., [173]). This is what happens for periodic potentials [102–109],
where the spectrum consists of allowed energy bands separated by forbidden gaps.
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Moreover, the technique has been applied also to a very special system whose
spectrum is the full real line, with each level being doubly degenerate: the so-called
repulsive oscillator [128].

3.1 Harmonic Oscillator

The harmonic oscillator potential is given by:

V (x) = x2

2
. (29)

In order to apply the SUSY methods, it is required to find the general solution u(x)

of the stationary Schrödinger equation for an arbitrary factorization energy ε:

−1

2
u′′(x) + x2

2
u(x) = ε u(x). (30)

Up to a constant factor, the general solution to this equation is a linear combination
(characterized by the parameter ν) of an even and odd linearly independent
solutions, given by [80]:

u(x) = e− x2
2

[
1F1

(
1 − 2ε

4
,

1

2
; x2

)
+ 2ν

Γ ( 3−2ε
4 )

Γ ( 1−2ε
4 )

x 1F1

(
3 − 2ε

4
,

3

2
; x2

)]
(31)

=e
x2
2

[
1F1

(
1 + 2ε

4
,

1

2
;−x2

)
+ 2ν

Γ ( 3−2ε
4 )

Γ ( 1−2ε
4 )

x 1F1

(
3 + 2ε

4
,

3

2
;−x2

)]
.

In order to produce non-singular SUSY transformations we need to know the
number of nodes that u has, according to the position of the parameter ε on the
energy axis. Let us note first of all that, if ε is any real number, u will have an even
number of nodes for |ν| < 1, while this number will be odd for |ν| > 1. This implies
that, when ε is in the infinite energy gap ε < E0, this solution will have one node for
|ν| > 1 and it will be nodeless for |ν| < 1. On the other hand, if Em < ε < Em+1
with m even, then u will have m+ 2 nodes for |ν| < 1 and it will have m+ 1 nodes
for |ν| > 1, while for odd m it will have m + 2 and m + 1 nodes for |ν| > 1 and
|ν| < 1, respectively.

Now, although the SUSY methods can supply an infinity of new exactly solvable
potentials, their expressions become in general too long to be explicitly reported.
The simplest formulas appear when the factorization energies become either some
of the eigenvalues En = n + 1

2 , n = 0, 1, . . . of H or some other special values,
defined by the sequence Em = −(m + 1

2 ),m = 0, 1, . . . In both cases it is possible

to reduce the Schrödinger solution u to the product of one exponential factor e±x2/2
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times a Hermite polynomial, either of a real variable when one of the En is taken
or of an imaginary one when any of the Em is chosen [80]. We supply next some
explicit expressions for exactly solvable potentials, generated through the SUSY
methods for such special values of the factorization energies. Let us note that we
have sticked strictly to the criteria pointed out at Sect. 1 for producing non-singular
SUSY transformations on the full real line. It is just for the first-order transformation
that we have employed one general solution to show explicitly the simplest family
of exactly solvable potential generated through SUSY QM.

3.1.1 First-Order SUSY Partners of the Oscillator

For k = 1, ε1 = − 1
2 , |ν1| < 1 it is obtained (see also [33]):

Ṽ (x) = x2

2
−
(

2 ν1 e
−x2

√
π [1 + ν1 erf(x)]

)′
− 1, (32)

where erf(x) is the error function.
For k = 1, ε1 = − 5

2 , ν1 = 0 we get:

Ṽ (x) = x2

2
−
(

4x

2x2 + 1

)′
− 1. (33)

For k = 1, ε1 = − 9
2 , ν1 = 0 it is obtained:

Ṽ (x) = x2

2
−
[

8x(2x2 + 3)

4x4 + 12x2 + 3

]′
− 1. (34)

Let us note that in all these three cases the spectrum of the new Hamiltonian H̃ ,
besides having the eigenvalues of H , will contain also a new energy level at ε1.

3.1.2 Second-Order SUSY Partners of the Oscillator

For k = 2, ε1 = − 5
2 , ν1 = 0, ε2 = − 7

2 , ν2 → ∞ it is obtained:

Ṽ (x) = x2

2
−
(

16x3

4x4 + 3

)′
− 2. (35)

For k = 2, ε1 = − 9
2 , ν1 = 0, ε2 = − 11

2 , ν2 → ∞ we get:

Ṽ (x) = x2

2
−
[

32x3(4x4 + 12x2 + 15)

16x8 + 64x6 + 120x4 + 45

]′
− 2. (36)



48 D. J. Fernández C.

For k = 2, ε1 = − 5
2 , ν1 = 0, ε2 = − 11

2 , ν2 → ∞ it is obtained:

Ṽ (x) = x2

2
−
[

4x(12x4 + 20x2 + 5)

8x6 + 20x4 + 10x2 + 5

]′
− 2. (37)

Once again, in all these cases the spectrum of the new Hamiltonian H̃ will have two
new levels at ε1, ε2, besides the eigenvalues En of H .

On the other hand, when deleting two neighbor energy levels of H in order to
create H̃ we could obtain again some of the potentials reported above, up to an
energy shift to align the corresponding energy levels (see, e.g., [174]). For instance,
if we delete the first and second excited states of H we recover the potential given in
Eq. (33), if we delete the second and third excited states we get again the potential
in Eq. (35). Let us generate now a new potential by deleting the third and fourth
excited states, which leads to:

Ṽ (x) = x2

2
−
[

12x(4x4 − 4x2 + 3)

8x6 − 12x4 + 18x2 + 9

]′
+ 2. (38)

Note that the corresponding Hamiltonian H̃ will not have the levels E3 =
7/2, E4 = 9/2.

In order to present some potentials obtained through the confluent second-order
SUSY QM, let us use once again the eigenstates of H . If the ground state is taken
to implement the transformation, it is generated the same family of potentials of
Eq. (32). However, if the first excited state is employed, the following one-parameter
family of potentials isospectral to the oscillator is gotten (see Eqs. (10), (24), (25)):

Ṽ (x) = x2

2
−
[

4x2

√
π(2b2 + 1)ex2 + √

πex
2 erf(x) − 2x

]′
, (39)

where b2 ≡ w2(−∞). For b2 > 0 the new Hamiltonian H̃ is isospectral to H .
However, if b2 = 0 the level E1 will disappear from the spectrum of H̃ .

Let us note that if a general eigenfunction ψn(x) of H is used to perform the
confluent second-order transformation, an explicit expression for the key function
w2(x) has been obtained, which will induce non-trivial modifications in the new
potential [94].

4 Algebraic Structures of H , ˜H , and Coherent States

In this section we are going to analyze the kind of algebra that the SUSY partner
Hamiltonian H̃ will inherit from the initial one H . We are going to suppose that
H has an algebraic structure general enough to include the most important one-
dimensional Hamiltonians appearing currently in the literature, as the harmonic
oscillator [82].
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4.1 Algebraic Structure of H

Let us suppose that the initial Schrödinger Hamiltonian H has an infinite discrete
spectrum whose non-degenerate energy levels En, n = 0, 1, . . . are ordered as
usual, En < En+1. Moreover, there is an explicit functional dependence between
the eigenvalues En and the index n, i.e., En = E(n), where E(n) is well defined on
the non-negative integers. For example, for the harmonic oscillator it turns out that
E(n) = n+ 1

2 . In this section we will use Dirac notation, so that the eigenstates and
eigenvalues satisfy:

H |ψn〉 = En|ψn〉, n = 0, 1, . . . (40)

The number operator N is now introduced as

N |ψn〉 = n|ψn〉. (41)

It can be defined now a pair of ladder operators of the system through

a−|ψn〉 = r(n)|ψn−1〉, (42)

a+|ψn〉 = r∗(n + 1)|ψn+1〉, (43)

r(n) = eiτ(En−En−1)
√
En − E0, τ ∈ R, (44)

where r∗(n) denotes the complex conjugate of r(n). Thus, the intrinsic algebra of
the system is defined by:

[N, a±] = ±a±, (45)

a+a− = E(N) − E0, (46)

a−a+ = E(N + 1) − E0, (47)

[a−, a+] = E(N + 1) − E(N) ≡ f (N), (48)

[H, a±] = ±f (N − 1/2 ∓ 1/2)a±. (49)

Let us note that, depending on the key function E(n) associated to the initial
Hamiltonian, the system could be ruled by a Lie algebra, in case that E(n) is either
linear or quadratic in n. However, it could be also ruled by non-Lie algebras, when
E(n) has a more involved dependence with n.

Once we have characterized the algebra for the initial Hamiltonian, it is possible
to analyze the corresponding structure for its SUSY partner Hamiltonians H̃ .
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4.2 Algebraic Structure of ˜H

The most important properties of H̃ come from its connection with the initial
Hamiltonian H through the intertwining operators (see Eq. (6)). In fact, from these
expressions it is simple to identify the natural ladder operators for H̃ as follows
[33, 78, 80, 82]:

ã± = B+a±B. (50)

Its action on the eigenstates of H̃ can be straightforwardly calculated, leading to:

ã±|ψ̃εj 〉 = 0, (51)

ã−|ψ̃n〉 = r̃(n)|ψ̃n−1〉, (52)

ã+|ψ̃n〉 = r̃ ∗(n + 1) |ψ̃n+1〉, (53)

r̃(n) =
[

k∏
i=1

[E(n) − εi][E(n − 1) − εi]
] 1

2

r(n). (54)

In order to simplify the discussion, from now on we will assume that none of the
εj , j = 1, . . . , k coincide with some eigenvalue of H , and that k new energy levels
are created for H̃ at εj , j = 1, . . . , k. It is important as well to define the number
operator Ñ for the system ruled by H̃ , through its action on the corresponding
energy eigenstates:

Ñ |ψ̃εj 〉 = 0, (55)

Ñ |ψ̃n〉 = n|ψ̃n〉. (56)

The natural algebra of the system is now defined by:

[Ñ, ã±] = ±ã±, (57)

[̃a−, ã+] = [̃
r ∗(Ñ + 1) r̃(Ñ + 1) − r̃ ∗(Ñ) r̃(Ñ)

] ∞∑
n=0

|ψ̃n〉 〈ψ̃n|, (58)

where r̃(n) is given by Eqs. (54), (44).

4.3 Coherent States of H and ˜H

We have just identified the annihilation and creation operators for the SUSY partner
Hamiltonians H and H̃ . The coherent states for such systems can be looked for as
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eigenstates of the annihilation operator with complex eigenvalues z, namely:

a−|z, τ 〉 = z|z, τ 〉, (59)

ã−|z̃, τ 〉 = z|z̃, τ 〉. (60)

If we expand the coherent states in the basis of energy eigenstates, substitute them in
Eqs. (59), (60) to obtain a recurrence relation for the coefficients of the expansion,
and express such coefficients in terms of the first one and normalize them, we arrive
at the following expressions:

|z, τ 〉 =
( ∞∑
m=0

|z|2m
ρm

)− 1
2 ∞∑
m=0

e−iτ (Em−E0)
zm√
ρm

|ψm〉, (61)

ρm =
{

1 if m = 0

(Em − E0) · · · (E1 − E0) if m > 0
(62)

and

|z̃, τ 〉 =
( ∞∑
m=0

|z|2m
ρ̃m

)− 1
2 ∞∑
m=0

e−iτ (Em−E0)
zm√
ρ̃m

|ψ̃m〉, (63)

ρ̃m =

⎧⎪⎨
⎪⎩

1 if m = 0

ρm
k∏

i=1
(Em − εi)(Em−1 − εi)

2 . . . (E1 − εi)
2(E0 − εi) if m > 0.

(64)

It is important to ensure that our coherent states fulfill a completeness relation,
in order that an arbitrary state can be decomposed in terms of them. In our case the
two completeness relations are:

ˆ
|z, τ 〉〈z, τ |dμ(z) = 1, (65)

dμ(z) = 1

π

( ∞∑
m=0

|z|2m
ρm

)
ρ(|z|2) d2z, (66)

and

k∑
i=1

|ψ̃εi 〉〈ψ̃εi | +
ˆ

|z̃, τ 〉〈z̃, τ | dμ̃(z) = 1, (67)

dμ̃(z) = 1

π

( ∞∑
m=0

|z|2m
ρ̃m

)
ρ̃(|z|2) d2z. (68)
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They will be fulfilled if we would find two measure functions ρ(y) and ρ̃(y) solving
the following moment problems [78, 80, 175–177]:

ˆ ∞

0
ymρ(y) dy = ρm, (69)

ˆ ∞

0
ymρ̃(y) dy = ρ̃m, m = 0, 1, . . . . (70)

The fact that two coherent states of a given family in general are not orthogonal is
contained in the so-called reproducing kernel, which turns out to be:

〈z1, τ |z2, τ 〉 =
( ∞∑
m=0

|z1|2m
ρm

)− 1
2
( ∞∑
m=0

|z2|2m
ρm

)− 1
2
( ∞∑
m=0

(z̄1z2)
m

ρm

)
, (71)

〈z̃1, τ |z̃2, τ 〉 =
( ∞∑
m=0

|z1|2m
ρ̃m

)− 1
2
( ∞∑
m=0

|z2|2m
ρ̃m

)− 1
2
( ∞∑
m=0

(z̄1z2)
m

ρ̃m

)
. (72)

Concerning dynamics, the coherent states evolve as follows:

U(t)|z, τ 〉 = exp(−itH)|z, τ 〉 = e−itE0 |z, τ + t〉, (73)

Ũ (t)|z̃, τ 〉 = exp(−itH̃ )|z̃, τ 〉 = e−itE0 | ˜z, τ + t〉. (74)

Let us note that, while the eigenvalue z = 0 of a− is non-degenerate (if z = 0
is made in Eq. (61) the ground state of H is achieved), for ã− this eigenvalue is
(k+1)th degenerate, since all states ψ̃εi , i = 1, . . . , k are annihilated by ã− and for
z = 0 Eq. (63) reduces to the eigenstate |ψ̃0〉 of H̃ associated to E0.

4.4 Example: Harmonic Oscillator

The simplest system available to illustrate the previous treatment is the harmonic
oscillator. In this case there is a linear relation between the number operator and the
Hamiltonian H , H = E(N) = N +1/2. In addition, the function characterizing the
action of a± onto the eigenstates of H becomes:

r(n) = √
En − E0 = √

n, (75)

where, since the phase factors of Eq. (44) are independent of n, we have fixed
them by taking τ = 0. The function characterizing the commutator between the
annihilation and creation operators is now (see Eq. (48)):

f (N) = E(N + 1) − E(N) = 1. (76)
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Thus, the commutation relations for the intrinsic algebra of the oscillator become:

[N, a±] = ±a±, (77)

[a−, a+] = 1, (78)

which is the well-known Heisenberg–Weyl algebra.
On the other hand, for the SUSY partner Hamiltonian H̃ we have that:

r̃(n) =
[

k∏
i=1

(En − εi − 1) (En − εi)

] 1
2

r(n). (79)

If we insert this expression in Eq. (58) it is obtained a polynomial Heisenberg
algebra, since in this case the commutator of ã− and ã+ is a polynomial of degree
2k either in H̃ or in Ñ .

Concerning coherent states, in the first place the coefficients ρm and ρ̃m, which
are also the moments arising in Eqs. (69), (70), become:

ρm = m!, (80)

ρ̃m = m!
k∏

i=1

(
1

2
− εi

)

m

(
3

2
− εi

)

m

, (81)

where (c)m = Γ (c + m)/Γ (c) is a Pochhammer’s symbol. It is straightforward to
find now the explicit expressions for the coherent states:

|z〉 = e− |z|2
2

∞∑
m=0

zm√
m! |ψm〉, (82)

|̃z〉 =
∞∑
m=0

zm|ψ̃m〉√
0F2k

(
1
2 −ε1,

3
2 −ε1,...,

1
2 −εk,

3
2 −εk;|z|2

)
m!

k∏
i=1

(
1
2 −εi

)
m

(
3
2 −εi

)
m

. (83)

The solutions to the moment problems of Eqs. (69), (70) are given by:

ρ(y) = exp (−y) , (84)

ρ̃(y) =
G2k+1 0

0 2k+1

(
y|0,−ε1 − 1

2 , . . . ,−εk − 1
2 ,

1
2 − ε1, . . . ,

1
2 − εk

)

k∏
i=1

Γ
(

1
2 − εi

)
Γ
(

3
2 − εi

) , (85)
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where G is a Meijer G-function [80]. The reproducing kernel in both cases turns out
to be:

〈z1|z2〉 = exp
[
− 1

2 (|z1|2 + |z2|2 − 2z ∗
1 z2)

]
, (86)

〈z̃1|z̃2〉= 0F2k

(
1
2 −ε1,

3
2 −ε1,...,

1
2 −εk,

3
2 −εk;z ∗

1 z2

)
√

0F2k

(
1
2 −ε1,

3
2 −ε1,...,

1
2 −εk,

3
2 −εk;|z1|2

)
0F2k

(
1
2 −ε1,

3
2 −ε1,...,

1
2 −εk,

3
2 −εk;|z2|2

) . (87)

As we can see, the coherent states for the initial Hamiltonian H are the standard
ones, which minimize the Heisenberg uncertainty relation, namely (ΔX)(ΔP) =
1/2. It would be important to know if the coherent states associated to H̃ have
also this property. However, the calculation of (ΔX)(ΔP) for general SUSY
transformations, with arbitrary factorization energies and associated constants
εj , νj , j = 1, . . . , k involved in the Schrödinger solution of Eq. (31), is difficult.
Such an uncertainty can be analytically calculated in the harmonic oscillator limit
for an arbitrary k. In particular, for k = 1, ε1 = − 1

2 , ν1 = 0 it is obtained [78]
(r = |z|):

(ΔX)(ΔP) =
√{

3
2 − [Re(z)]2ξ1(r)

} {
3
2 − [Im(z)]2ξ1(r)

}
, (88)

ξ1(r) = 2
[

0F2(2,2;r2)

0F2(1,2;r2)

]2 −
[

0F2(2,3;r2)

0F2(1,2;r2)

]
, (89)

while for k = 2, (ε1, ε2) = (− 1
2 ,− 3

2 ), (ν1, ν2) = (0,∞) we arrive at [80]:

(ΔX)(ΔP) =
√{

5
2 − [Re(z)]2ξ2(r)

} {
5
2 − [Im(z)]2ξ2(r)

}
, (90)

ξ2(r) = 1
2

[
0F4(2,2,3,3;r2)

0F4(1,2,2,3;r2)

]2 − 1
6

[
0F4(2,3,3,4;r2)

0F4(1,2,2,3;r2)

]
. (91)

Plots of the Heisenberg uncertainty relations of Eqs. (88) and (90) as functions of z
are shown in Figs. 1 and 2, respectively. It is seen that these coherent states are no
longer minimum uncertainty states. However, for k = 1 there are some directions
in the complex plane for which the minimum value (ΔX)(ΔP) = 1/2 is achieved
when |z| → ∞ (see Fig. 1).

5 SUSY QM and Painlevé Equations

In a general context, the polynomial Heisenberg algebras (PHA) of degree m

are deformations of the Heisenberg–Weyl algebra for which the commutators of
the Hamiltonian H (of form given in Eq. (5)) with (m + 1)th order differential
ladder operators L± are standard, while the commutator between L− and L+ is a
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Fig. 1 Uncertainty relation (ΔX)(ΔP ) for the coherent states |̃z〉 with k = 1 in the harmonic
oscillator limit, when ε1 = − 1

2 , ν1 = 0

Fig. 2 Uncertainty relation (ΔX)(ΔP ) for the coherent states |̃z〉 with k = 2 in the harmonic
oscillator limit, when (ε1, ε2) = (− 1

2 ,− 3
2 ), (ν1, ν2) = (0,∞)

polynomial of degree mth in H [85], i.e.,

[H,L±] = ±L±, (92)

[L−, L+] = qm+1(H + 1) − qm+1(H) = pm(H), (93)

L+L− = qm+1(H) =
m+1∏
j=1

(H − Ej ), (94)

L−L+ = qm+1(H + 1) =
m+1∏
j=1

(H − Ej + 1). (95)
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Systems ruled by PHA of degree m have m+1 extremal states ψEj , j = 1, . . . , m+
1, which are annihilated by L− and are formal eigenstates of H associated to Ej .

Previously it was shown that the SUSY partner Hamiltonians of the harmonic
oscillator are ruled by PHA of degree 2k, with their natural ladder operators being
of order 2k+1 (see Eq. (50)). Hence, the first-order SUSY partners of the harmonic
oscillator are ruled by second-degree polynomial Heisenberg algebras generated
by third-order ladder operators, and so on. Thus, through SUSY QM plenty of
particular realizations of such algebras can be supplied. However, it would be
important to identify the general Hamiltonians H , of form given in Eq. (5), which
have (m+1)th order differential ladder operators. This question has been addressed
recurrently in the past, and nowadays there are some definite answers: if m = 0
the general potential having first-order ladder operators is the harmonic oscillator,
while for m = 1 (second-order ladder operators) it is the radial oscillator. On the
other hand, for m = 2 (m = 3) the general potential with third-order (fourth-order)
ladder operators is expressed in terms of a function which satisfies the Painlevé IV
(V) equation [85].

This connection suggests the possibility of going in the inverse direction, so if
we could identify a Hamiltonian with third-order (fourth-order) ladder operators,
perhaps we could use some information (the extremal state expressions and
associated factorization energies Ej ) to generate solutions to the Painlevé IV (V)
equation (also called Painlevé IV (V) transcendents). This is in fact what happens;
thus, the game reduces to find Hamiltonians with third-order (fourth-order) ladder
operators for generating Painlevé IV (V) transcendents through the extremal states
of the system [85, 90, 129, 132].

Let us present next these statements as two algorithms to generate solutions for
such non-linear second-order ordinary differential equations.

5.1 Generation of Painlevé IV Transcendents

Let us suppose that we have identified a Hamiltonian of the form given in Eq. (5),
which has third-order differential ladder operatorsL± satisfying Eqs. (92)–(95) with
m = 2, as well as its three extremal states ψEj and associated factorization energies
Ej , j = 1, 2, 3. Thus, a solution to the Painlevé IV (PIV) equation

g′′ = g′2

2g
+ 3

2
g3 + 4xg2 + 2(x2 − α)g + β

g
(96)

is given by

g(x) = −x − {ln[ψE3(x)]}′, (97)
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where the parameters α, β of the PIV equation are related with E1, E2, E3 in the
way

α = E1 + E2 − 2E3 − 1, β = −2(E1 − E2)
2. (98)

Let us note that, if the indices assigned to the extremal states are permuted cyclically,
we will obtain three PIV transcendents, one for each extremal state when it is labeled
as ψE3 .

Summarizing, our task has been reduced to identify systems ruled by second-
degree PHA and the corresponding extremal states [85, 90]. The harmonic oscillator
supplies several such possibilities, for instance, the two operator pairs {a3, (a+)3},
{a+a2, (a+)2a} are third-order ladder operators satisfying Eqs. (92)–(95) (the level
spacing has to be adjusted in the first case), and it is simple to identify the
corresponding extremal states. On the other hand, the first-order SUSY partners
of the oscillator also have natural third-order ladder operators, and well-identified
extremal states. For the SUSY partners of the oscillator with k ≥ 2 the natural ladder
operators are not of third order (they are in general of order 2k + 1). However, it
is possible to induce a reduction process, by choosing connected seed solutions
uj+1 = auj , εj+1 = εj − 1, j = 1, . . . , k − 1 instead of general seed solutions,
so that the (2k + 1)th order ladder operators reduce to third-order ones.

Some examples of real PIV transcendents associated to real PIV parameters α, β,
which are generated through this algorithm, are presented next.

5.1.1 Harmonic Oscillator

If we take the ladder operators L− = a3, L+ = (a+)3 for the harmonic oscillator
Hamiltonian we get the PIV transcendents reported in Table 1 [178]. Note that in
order that the level spacing induced by this pair of ladder operators coincides with
the standard one (ΔE = 1) of Eqs. (92)–(95), we need to change variables y = √

3x
and scale the factorization energies (dividing by 3). Remember also that ψj (x) are
the eigenfunctions of the harmonic oscillator associated to the first three energy
levels Ej = j + 1/2, j = 0, 1, 2.

Table 1 PIV transcendents
generated from the harmonic
oscillator Hamiltonian with
L− = a3, L+ = (a+)3

ψE3 ψ0(x) ψ1(x) ψ2(x)

E3
1
2

3
2

5
2

g(y) − 2y
3 − 2y

3 − 1
y

− 2y
3 − 4y

2y2−3

α 0 −1 −2

β − 2
9 − 8

9 − 2
9
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Table 2 PIV transcendents
generated from the first-order
SUSY partner Hamiltonian H̃

with L− = B+aB, L+ =
B+a+B

ψE3
1
u1

B+ψ0 B+a+u1

E3 − 5
2

1
2 − 3

2

g(x) 4x
1+2x2 − 4x4+3

4x5+8x3+3x
8x5+6x
1−4x4

α 3 −6 0

β −8 −2 −18

Table 3 PIV transcendents generated from the second-order SUSY partner Hamiltonian H̃ and
the third-order ladder operators obtained by reducing L− = B+aB, L+ = B+a+B

ψE3
u1

W(u1,u2)
B+ψ0 B+a+u1

E3 − 7
2

1
2 − 3

2

g(x)
4x
(
4x4+4x2−3

)
8x6+4x4+6x2+3

− 4x
(
16x8+72x2+27

)
32x10+48x8+96x6+54x2−27

−16x8+32x6−48x4+9
x(2x2−3)(4x4+3)

α 5 −7 −1

β −8 −8 −32

5.1.2 First-Order SUSY Partner of the Harmonic Oscillator

For ε1 = − 5
2 , ν1 = 0, and the third-order ladder operators L− = B+aB, L+ =

B+a+B of H̃ , we get the PIV transcendents reported in Table 2. The seed solution

employed is u1(x) = e
x2
2 (1 + 2x2).

5.1.3 Second-Order SUSY Partner of the Harmonic Oscillator

For ε1 = − 5
2 , ν1 = 0, and the third-order ladder operators of H̃ obtained from

the reduction of the fifth-order ones L− = B+aB, L+ = B+a+B, we get the
PIV transcendents reported in Table 3. Once again, the seed solution u1 employed

is u1(x) = e
x2
2 (1 + 2x2) and u2 = au1.

5.2 Generation of Painlevé V Transcendents

Let us suppose now that the Hamiltonian H we have identified has fourth-order
ladder operators and satisfy Eqs. (92)–(95) with m = 3. We know also its four
extremal states ψEj and associated factorization energies Ej , j = 1, 2, 3, 4. Thus,
one solution to the Painlevé V (PV) equation

w′′ =
(

1
2w − 1

w−1

)
(w′)2 − w′

z
+ (w−1)2

z2

(
α w + β

w

)
+ γ w

z
+ δ

w(w+1)
w−1 (99)
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is given by

w(z) = 1 +
√
z

g(
√
z)
, (100)

g(x) = −x − d

dx

{
ln
[
W(ψE3(x), ψE4(x))

]}
, (101)

where the prime in Eq. (99) means derivative with respect to z, and the PV
parameters α, β, γ, δ are related with E1, E2, E3, E4 through

α = (E1−E2)
2

2 , β = − (E3−E4)
2

2 , γ = E1+E2
2 − E3+E4+1

2 , δ = − 1
8 . (102)

Note that if the indices of the extremal states are permuted, we will obtain at the end
six PV transcendents (in principle different), one for each pair of extremal states
when they are labeled as ψE3, ψE4 [132].

Once again, now we require just to identify systems ruled by third degree
PHA and their four extremal states. The harmonic oscillator also supplies some
possibilities, the simplest one through the fourth order ladder operators {L− =
a4, L+ = (a+)4}, which satisfy Eqs. (92)–(95) if we change variables and adjust the
levels spacing, with the extremal states being the eigenstates associated to the four
lowest energy levels of the oscillator. Another system closely related to PV equation
is the radial oscillator, for which its ladder operators b± are of second order [132].
Thus, the second powers of such operators are also fourth order ladder operators
that will give place to PV transcendents. Concerning SUSY partners, those of the
radial oscillator give place to PHA of degree 2k + 1, with natural ladder operators
of order 2k + 2. Thus, the first-order SUSY partners of the radial oscillator have
natural fourth-order ladder operators and well-identified extremal states. For k ≥ 2,
it is possible to produce again a reduction process, by connecting the seed solutions
in the way uj+1 = b−uj , εj+1 = εj − 1, j = 1, . . . , k − 1, so that the (2k + 2)th
order natural ladder operators reduce to fourth-order ones [132]. Remember that the
first-order SUSY partners of the harmonic oscillator also have fourth-order ladder
operators, given by L− = B+a2B, L+ = B+(a+)2B, but we will have to change
variables and adjust the level spacing to stick to the standard convention ΔE = 1.

Some examples of real PV transcendents associated to real parameters
α, β, γ, δ, generated through this algorithm, are now presented.

5.2.1 Harmonic Oscillator

If we take L− = a4, L+ = (a+)4 as ladder operators, we generate the PV
transcendents reported in Table 4. Note that here z = 4x2 and ψj (x), j = 0, 1, 2, 3
are the eigenfunctions for the four lowest eigenvalues of the harmonic oscillator. We
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Table 4 PV transcendents
generated from the harmonic
oscillator Hamiltonian and
L− = a4, L+ = (a+)4

Permutation α β γ w(z)

1234 1
32 − 1

32 0 −1

4231 1
8 − 1

8 − 1
4

2−z
z+2

1432 1
32 − 9

32 − 1
2

6−z
z+2

3241 9
32 − 1

32 − 1
2

2−z
z+6

3142 1
8 − 1

8 − 3
4

6−z
z+6

3412 1
32 − 1

32 −1 − (z−6)(z−2)
(z+2)(z+6)

Table 5 PV transcendents
generated from the first-order
SUSY partner Hamiltonian H̃

of the oscillator and L− =
B+a2B, L+ = B+(a+)2B

Permutation α β γ w(z)

1234 1
8 − 1

2
3
4 − 2

z−1

4231 1
2 − 9

8
1
4

z+3
2

1432 1
8 −2 − 1

4
z2+2z−1

z−1

3241 2 − 1
8 − 3

4
z+3

z2+2z+3

3142 9
8 − 1

2 − 5
4

2
(
z2+2z−1

)
z3+z2+z−3

3412 1
2 − 1

8 − 7
4 − z3+5z2+5z−3

2(z2+2z+3)

initially order the extremal states as

ψE1(x) = ψ2(x), E1 = 5
2 , (103)

ψE2(x) = ψ3(x), E2 = 7
2 , (104)

ψE3(x) = ψ0(x), E3 = 1
2 , (105)

ψE4(x) = ψ1(x), E4 = 3
2 , (106)

and this permutation will be denoted as 1234. We do not include the parameter δ in
this table since it is constant (δ = − 1

8 ).

5.2.2 First-Order SUSY Partner of the Harmonic Oscillator

For ε1 = − 5
2 , ν1 = 0, and the fourth-order ladder operators L− = B+a2B, L+ =

B+(a+)2B of H̃ , we will get the PV transcendents reported in Table 5, where z =
2x2. The seed solution employed is u1(x) = e

x2
2 (1 + 2x2). The initial order for the

extremal states, denoted as 1234 in the table, is

ψE1(x) = W(u1, ψ0)

u1
, E1 = 1

2
, (107)

ψE2(x) = W(u1, ψ1)

u1
, E2 = 3

2
, (108)
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ψE3(x) = 1

u1
, E3 = −5

2
, (109)

ψE4(x) = B+(a+)2u1, E4 = −1

2
. (110)

We conclude this section by stating that an infinity of PIV and PV transcendents
can be derived through the techniques described here. It is an open question to
determine if any exact solution to such equations that exists in the literature can
be derived through these methods. However, the algorithms are so simple and
direct that we felt it was the right time to try to make them known to a wider
and diversified community, not just to people working on solutions to non-linear
differential equations.

6 Recent Applications of SUSY QM

Some recent interesting applications of SUSY QM are worth of some discussion.
We would like to mention in the first place the motion of electrons in graphene,
a single layer of carbon atoms arranged in a hexagonal honeycomb lattice. Since
close to the Dirac points in the Brillouin zone there is a gapless linear dispersion
relation, obtained in the low energy regime through a tight binding model, one ends
up with an electron description in terms of the massless Dirac–Weyl equation, with
Fermi velocity vF ≈ c/300 instead of the speed of light c. If the graphene layer is
subject to external magnetic fields orthogonal to its surface (the x − y plane), the
Dirac–Weyl equation reads:

HΨ (x, y) = υFσ ·
[

p + eA
c

]
Ψ (x, y) = EΨ (x, y), (111)

where vF ∼ 8 × 105 m/s is the Fermi velocity, σ = (σx, σy) are the Pauli matrices,
p = −ih̄(∂x, ∂y)

T is the momentum operator in the x − y plane, −e is the electron
charge, and A is the vector potential leading to the magnetic field through B =
∇ × A. For magnetic fields which change just along x-direction, B = B(x)êz, in
the Landau gauge we have that A = A(x)êy, B(x) = A′(x). Since there is a
translational invariance along y axis, we can propose

Ψ (x, y) = eiky
[
ψ+(x)
iψ−(x)

]
, (112)

where k is the wave number in the y direction and ψ±(x) describe the electron
amplitudes on two adjacent sites in the unit cell of graphene. Thus we arrive to:

(
± d

dx
+ e

ch̄
A + k

)
ψ∓(x) = E

h̄υF
ψ±(x). (113)
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By decoupling these set of equations it is obtained:

H±ψ±(x) = Eψ±(x), E = E2

h̄2υ2
F

, (114)

H± = − d2

dx2 + V ± = − d2

dx2 +
(
eA
ch̄

+ k

)2

± e

ch̄

dA
dx

. (115)

Let us note that these expressions are characteristic of the first-order SUSY QM. In
fact, through the identification1:

B± = ∓ d

dx
+ W(x), (116)

where

W(x) = eA(x)
ch̄

+ k (117)

is the superpotential, it turns out that

B∓ψ∓(x) = √
Eψ±(x). (118)

The SUSY partner Hamiltonians H± thus satisfy:

H± = B∓B±, V ±(x) = W2 ± W ′, (119)

H±B∓ = B∓H∓. (120)

By comparing these expressions with the formalism of Sect. 2, one realizes that
H± can be identified with any of the two SUSY partner Hamiltonians H and H̃

(up to a constant factor), depending on which one will be taken as the departure
Hamiltonian. Moreover, by deriving the superpotential with respect to x it is
obtained:

B(x) = ch̄

e

dW
dx

. (121)

This formula suggests a method to proceed further: the magnetic field B(x) has
to be chosen cleverly, in order to arrive to a pair of exactly solvable potentials
V ±. In particular, it has been chosen in several different ways but taking care that
V ± are shape invariant potentials [151]. An important case of this type appears
for constant homogeneous magnetic fields: in such a situation both V ± become

1We choose here a notation consistent with Sect. 2. Please do not confuse the intertwining operators
of Eq. (116) with the magnetic field B, its magnitude B(x), or any of its components.
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harmonic oscillator potentials. It is worth to mention also that the shape invariance
condition has been generalized, thus supplying a method for generating magnetic
fields which are deformed with respect to the chosen initial one, but leading once
again to an exactly solvable problem [157].

Let us note that the SUSY methods have been applied also to other carbon
allotropes, as the carbon nanotubes, and it has been successfully implemented when
electrostatic fields are applied, with or without static magnetic fields. In addition,
the coherent state methods have been started to be applied recently to graphene
subject to static homogeneous magnetic fields [179]. As can be seen, the SUSY
methods applied to Dirac materials is a very active field which surely will continue
its development in the near future [151–161].

At this point, it is worth to mention also the applications of SUSY QM to optical
system, since there is a well-known correspondence between Schrödinger equation
and Maxwell equations in the paraxial approximation. Thus, it seems natural to think
that many techniques successfully used to deal with quantum mechanical problems
can be directly applied to optical systems in an appropriate approximation. In a way,
we are dealing with the optical analogues of quantum phenomena, which have been
realized, for example, in waveguide arrays, optimization of quantum cascade lasers,
among others. In particular, the optical analogues of SUSY QM is an emergent field
which could supply a lot of interesting physical information [162–169].

7 Conclusions

It has been shown that supersymmetric quantum mechanics is a simple powerful tool
for generating potentials with known spectra departing from a given initial solvable
one. Since the spectrum of the new Hamiltonian differs slightly from the initial one,
the method can be used to implement the spectral design in quantum mechanics.

In this direction, let us note that here we have discussed real SUSY transforma-
tions, by employing just real seed solutions which will produce at the end real SUSY
partner potentials Ṽ (x). However, most of these formulas can be used without any
change for implementing complex SUSY transformations. If we would introduce
this procedure gradually, in the first place we could use complex seed solutions
associated to real factorization energies in order to generate complex potentials with
real spectrum [90, 180]. This offers immediately new possibilities of spectral design
which were not available for real SUSY transformations, for example, through a
complex first-order SUSY transformation with real factorization energies a new
energy level can be created at any position on the real energy axis. In a second
step of this approach, one can use complex seed solutions associated to complex
factorization energies for an initial potential which is real [88], thus generating new
levels at arbitrary positions in the complex energy plane. The third step for making
complex the SUSY transformation is to apply the method to initial potentials which
are complex from the very beginning [92]. In all these steps we will get at the
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end new potentials which are complex, but the spectrum will depend on the initial
potential as well as of the kind of seed solutions employed.

We want to finish this paper by noting that the factorization method and
intertwining techniques have been also applied with success to some discrete
versions of the stationary Schrödinger equation [181–186]. The connections that
could be established between such problems and well-known finite difference
equations [187, 188] could contribute to the effort of classifying the known solutions
and generate new ones, as it has happened in the continuous case for more than 80
years.

As it was pointed out previously, one of our aims when writing this article was
to make a short review of the most recent advances of SUSY QM, either on purely
theoretical or applied directions. We hope to have succeeded; perhaps the reader
will find interesting and/or useful the ideas here presented.
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Coherent States in Quantum Optics:
An Oriented Overview

Jean-Pierre Gazeau

Abstract In this survey, various generalizations of Glauber–Sudarshan coherent
states are described in a unified way, with their statistical properties and their
possible role in non-standard quantizations of the classical electromagnetic field.
Some statistical photon-counting aspects of Perelomov SU(2) and SU(1, 1) coher-
ent states are emphasized.

Keywords Coherent states · Quantum optics · Quantization · Photon-counting
statistics · Group theoretical approaches

1 Introduction

The aim of this contribution is to give a restricted review on coherent states in
a wide sense (linear, non-linear, and various other types), and on their possible
relevance to quantum optics, where they are generically denoted by |α〉, for a
complex parameter α, with |α| < R, R ∈ (0,∞). Many important aspects of these
states, understood here in a wide sense, will not be considered, like photon-added,
intelligent, squeezed, dressed, “non-classical,” all those cat superpositions of any
type, involved into quantum entanglement and information, . . . . Of course, such a
variety of features can be found in existing articles or reviews. A few of them [1–6]
are included in the list of references in order to provide the reader with an extended
palette of various other references.

We have attempted to give a minimal framework for all various families of
|α〉’s which are described in the present review. Throughout the paper we put
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h̄ = 1 = c, except if we need to make precise physical units. In Sect. 2 we recall
the main characteristics of the Hilbertian framework (one-mode) Fock space with
the underlying Weyl–Heisenberg algebra of its lowering and raising operators, and
the basic statistical interpretation in terms of detection probability. In Sect. 3 we
introduce coherent states in Fock space as superpositions of number states with
coefficients depending on a complex number α. These “PHIN” states are requested
to obey two fundamental properties, normalization and resolution of the identity
in Fock space. The physical meaning of the parameter α is explained in terms of
the number of photons, and may or not be interpreted in terms of classical optics
quadratures. A first example is given in terms of holomorphic Hermite polynomials.
We then define an important subclass AN in PHIN. Section 4 is devoted to the
celebrated prototype of all CS in class AN, namely the Glauber–Sudarshan states.
Their multiple properties are recalled, and their fundamental role in quantum optics
is briefly described by following the seminal 1963 Glauber paper. We end the section
with a description of the CS issued from unitary displacement of an arbitrary number
eigenstate in place of the vacuum. The latter belong to the PHIN class, but not in
the AN class. The so-called non-linear CS in the AN class are presented in Sect. 5,
and an example of q-deformed CS illustrates this important extension of standard
CS. In Sect. 6 we adapt the Gilmore–Perelomov spin or SU(2) CS to the quantum
optics framework and we emphasize their statistical meaning in terms of photon
counting. We extend them also these CS to those issued from an arbitrary number
state. We follow a similar approach in Sect. 7 with Perelomov and Barut–Girardello
SU(1, 1) CS. Section 8 is devoted to another type of AN CS, named Susskind–
Glogower, which reveal to be quite attractive in the context of quantum optics. We
end in Sect. 9 this list of various CS with a new type of non-linear CS based on
deformed binomial distribution. In Sect. 10 we briefly review the statistical aspects
of CS in quantum optics by focusing on their potential statistical properties, like
sub- or super-Poissonian or just Poissonian. The content of Sect. 11 concerns the
role of all these generalizations of CS belonging to the AN class in the quantization
of classical solutions of the Maxwell equations and the corresponding quadrature
portraits. Some promising features of this CS quantization are discussed in Sect. 12.

2 Fock Space

In their number or Fock representation, the eigenstates of the harmonic oscillator
are simply denoted by kets |n〉, where n = 0, 1, . . . , stands for the number
of elementary quanta of energy, named photons when the model is applied to a
quantized monochromatic electromagnetic wave. These kets form an orthonormal
basis of the Fock Hilbert space H. The latter is actually a physical model for all
separable Hilbert spaces, namely the space �2(N) of square summable sequences.
For such a basis (actually for any Hilbertian basis {en , n = 0, 1, . . . }), the lowering
or annihilation operator a, and its adjoint a†, the raising or creation operator, are
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defined by

a|n〉 = √
n|n − 1〉 , a†|n〉 = √

n + 1|n + 1〉 , (2.1)

together with the action of a on the ground or “vacuum” state a|0〉 = 0. They obey
the so-called canonical commutation rule (ccr) [a, a†] = I . In this context, the
number operator N̂ = a†a is diagonal in the basis {|n〉, n ∈ N}, with spectrum N:
N̂ |n〉 = n|n〉.

3 General Setting for Coherent States in a Wide Sense

3.1 The PHIN Class

A large class of one-mode optical coherent states can be written as the following
normalized superposition of photon number states:

|α〉 =
∞∑
n=0

φn(α)|n〉 , (3.1)

where the complex parameter α lies in some bounded or unbounded subset S of C.
Its physical meaning will be discussed below in terms of detection probability. Note
that the adjective “coherent” is used in a generic sense and should not be understood
in the restrictive sense it was given originally by Glauber [7]. The complex-valued
functions α �→ φn(α), from which the name “PHIN class,” obey the two conditions

1 =
∞∑
n=0

|φn(α)|2 , α ∈ S , (normalisation) (3.2)

δnn′ =
ˆ
S

d2αw (α) φn(α) φn′(α) , (orthonormality) , (3.3)

where w (α) is a weight function, with support S in C. While Eq. (3.2) is necessary,
Eq. (3.3) might be optional, except if we request resolution of the identity in the
Fock Hilbert space spanned by the number states:

ˆ
S

d2αw (α) |α〉〈α| = I . (3.4)

A finite sum in (3.1) due to φn = 0 for all n larger than a certain nmax may be
considered in this study.
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If the orthonormality condition (3.3) is satisfied with a positive weight function,
it allows us to interpret the map

α �→ |φn(α)|2 ≡ �n(α) (3.5)

as a probability distribution, with parameter n, on the support S of w in C, equipped
with the measure w (α) d2α.

On the other hand, the normalization condition (3.2) allows to interpret the
discrete map

n �→ �n(α) (3.6)

as a probability distribution on N, with parameter α, precisely the probability to
detect n photons when the quantum light is in the coherent state |α〉. The average
value of the number operator

n̄ = n̄(α) := 〈α|N̂ |α〉 =
∞∑
n=0

n�n(α) (3.7)

can be viewed as the intensity (or energy up to a physical factor like h̄ω) of the state
|α〉 of the quantum monochromatic radiation under consideration. An optical phase
space associated with this radiation may be defined as the image of the map

S � α �→ ξα = √
n̄(α) ei argα ∈ C . (3.8)

A statistical interpretation of the original set S is made possible if one can invert
the map (3.8). Two examples of such an inverse map will be given in Sects. 6 and
7.1, respectively, with interesting statistical interpretations.

3.2 A First Example of PHIN CS with Holomorphic Hermite
Polynomials

These coherent states were introduced in [8]. Given a real number 0 < s < 1, the
functions φn;s are defined as

φn;s(α) := 1√
bn(s)Ns(α)

e−α2/2 Hn(α) , α ∈ C . (3.9)

The non-holomorphic part lies in the expression of Ns

Ns(α) = s−1 − s

2π
e−s X2+s−1 Y 2

, α = X + iY .
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The constant bn(s) is given by

bn(s) = π
√
s

1 − s

(
2

1 + s

1 − s

)n

n! .

The function Hn(α) is the usual Hermite polynomial of degree n [9], considered
here as a holomorphic polynomial in the complex variable α. The corresponding
normalized coherent states

|α; s〉 =
∞∑
n=0

φn;s(α)|n〉 (3.10)

solve the identity in H,

s−1 − s

2π

ˆ
C

d2α |α; s〉〈α; s| = I . (3.11)

Thus, in the present case we have the constant weight w (α) = s−1−s
2π . This

resolution of the identity results from the orthogonality relations verified by the
holomorphic Hermite polynomials in the complex plane:
ˆ
C

dX dY Hn(X + iY )Hn′(X + iY ) exp

[
− (1 − s)X2 −

(
1

s
− 1

)
Y 2

]
= bn(s)δnn′ .

(3.12)

Note that the map α �→ n̄(α) = ∑
n n

∣∣∣e−α2/2Hn(α)

∣∣∣2 is not rotationally invariant.

3.3 The AN Class

Particularly convenient to manage and mostly encountered are coherent states |α〉
for which the functions φn factorize as

φn(α) = αn hn(|α|2) ,
∞∑
n=0

|α|2n|hn(α)|2 = 1 , |α| < R , (3.13)

where R can be finite or infinite. All coherent states of the above type lie in the so-
called AN class (AN for “αn”). Then, due to Fourier angular integration in (3.3), the
orthonormality condition holds if there exists an isotropic weight function w such
that the hn’s solve the following kind of moment problem on the interval [0, R2]:

ˆ R2

0
duw(u) un|hn(u)|2 = 1 , n ∈ N . (3.14)
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This w is related to the above w through

w (α) = w(|α|2)
π

. (3.15)

Note that the probability (3.6) to detect n photons when the quantum light is in such
a AN coherent state |α〉 is expressed as a function of u = |α|2 only

n �→ �n(α) ≡ Pn (u) = un (hn(u))
2 . (3.16)

Hence, the map α �→ n̄ is here rotationally invariant: n̄ = n̄(u). On the other hand,
the probability distribution on the interval [0, R2], for a detected n, that CS |α〉 have
classical intensity u is given by

u �→ �n(α) ≡ Pn (u) . (3.17)

4 Glauber–Sudarshan CS

4.1 Definition and Properties

They are the most popular, of course, among the AN families, and historically the
first ones to appear in QED with Schwinger [10], and in quantum optics with the
1963 seminal papers by Glauber [7, 11, 12] and Sudarshan [13]. See also some key
papers like [14–16] for further developments in quantum optics and quantum field
theory. They were introduced in quantum mechanics by Schrödinger [17] and later
by Klauder [18–20]. They correspond to the Gaussian

hn(u) = e−u/2

√
n! , (4.1)

and read

|α 〉 = e−|α|2/2
∞∑
n=0

αn√
n! |n〉. (4.2)

Here, the parameter, i.e., the amplitude, α = X + iY represents an element of
the optical phase space. Its Cartesian components X and Y in the Euclidean plane
are called quadratures. In complete analogy with the harmonic oscillator model,
the quantity u = |α|2 is considered as the classical intensity or energy of the
coherent state |α〉. The corresponding detection distribution is the familiar Poisson
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distribution

n �→ Pn(u) = e−u u
n

n! , (4.3)

and the average value of the number operator is just the intensity.

n̄(α) = |α|2 = u . (4.4)

Hence, the detection distribution is written in terms of this average value as

Pn(u) = e−n̄ n̄
n

n! . (4.5)

From now on the states (4.2) will be called standard coherent states. They are
called harmonic oscillator CS when we consider the |n〉’s as eigenstates of the
corresponding quantum Hamiltonian Hosc = (

P 2 + Q2
)
/2 = N̂ + 1/2 with

Q = a + a†

√
2

and P = a − a†

i
√

2
. They are exceptional in the sense that they obey

the following long list of properties that give them, on their whole own, a strong
status of uniqueness.

P0 The map C � α → |α〉 ∈ H is continuous.
P1 |α〉 is eigenvector of annihilation operator: a|α〉 = α|α〉.
P2 The CS family resolves the unity:

´
C

d2α
π

|α〉〈α| = I .

P3 The CS saturate the Heisenberg inequality : ΔXΔY = ΔQΔP = 1/2.
P4 The CS family is temporally stable : e−iHosct |α〉 = e−it/2|e−it α〉.
P5 The mean value (or “lower symbol” ) of the Hamiltonian Hosc mimics the

classical relation energy-action: Ȟosc(α) := 〈α|Hosc|α〉 = |α|2 + 1
2 .

P6 The CS family is the orbit of the ground state under the action of the Weyl
displacement operator: |α〉 = e(αa

†−ᾱa)|0〉 ≡ D(α)|0〉.
P7 The unitary Weyl–Heisenberg covariance follows from the above:

U(s, ζ )|α〉 = ei(s+Im(ζ ᾱ))|α + ζ 〉, where U(s, ζ ) := eis D(ζ ).
P8 From P2 the coherent states provide a straightforward quantization scheme:

Function f (α) → Operator Af = ´
C

d2α
π

f (α) |α〉〈α| .
These properties cover a wide spectrum, starting from the “wave-packet” expres-
sion (4.2) together with Properties P3 and P4, through an algebraic side (P1), a
group representation side (P6 and P7), a functional analysis side (P2) to end with the
ubiquitous problematic of the relationship between classical and quantum models
(P5 and P8). Starting from this exceptional palette of properties, the game over the
past almost seven decades has been to build families of CS having some of these
properties, if not all of them, as it can be attested by the huge literature, articles,
proceedings, special issues, and author(s) or collective books, a few of them being
[21–32].
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4.2 Why the Adjective Coherent? (Partially Extracted
from [30])

Let us compare the two equations :

a|α〉 = α|α〉 , a|n〉 = √
n|n − 1〉 . (4.6)

Hence, an infinite superposition of number states |n〉, each of the latter describing a
determinate number of elementary quanta, describes a state which is left unmodified
(up to a factor) under the action of the operator annihilating an elementary
quantum. The factor is equal to the parameter α labeling the considered coherent
state.

More generally, we have f (a)|α〉 = f (α)|α〉 for an analytic function f . This
is precisely the idea developed by Glauber [7, 11, 12]. Indeed, an electromagnetic
field in a box can be assimilated to a countably infinite assembly of harmonic
oscillators. This results from a simple Fourier analysis of Maxwell equations. The
(canonical) quantization of these classical harmonic oscillators yields the Fock
space F spanned by all possible tensor products of number eigenstates

⊗
k |nk〉 ≡

|n1, n2, . . . , nk, . . . 〉, where “k” is a shortening for labeling the mode (including the
photon polarization )

k ≡
⎧⎨
⎩

k wave vector,
ωk = ‖k‖c frequency,
λ = 1, 2 helicity,

(4.7)

and nk is the number of photons in the mode “k.” The Fourier expansion of the
quantum vector potential reads as

−→
A (r, t) = c

∑
k

√
h̄

2ωk

(
akuk(r)e−iωkt + a

†
kuk(r)eiωkt

)
. (4.8)

As an operator, it acts (up to a gauge) on the Fock space F via ak and a†
k defined by

ak0

∏
k

|nk〉 = √
nk0 |nk0 − 1〉

∏
k �=k0

|nk〉 , (4.9)

and obeying the canonical commutation rules

[ak, ak′ ] = 0 = [a†
k , a

†
k′ ] , [ak, a†

k′ ] = δkk′ I . (4.10)
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Let us now give more insights on the modes, observables, and Hamiltonian. On
the level of the mode functions uk the Maxwell equations read as

Δuk(r) + ω2
k

c2
uk(r) = 0 . (4.11)

When confined to a cubic box CL with size L, these functions form an orthonormal
basis ˆ

CL

uk(r) · ul (r) d3r = δkl ,

with obvious discretization constraints on “k.” By choosing the gauge ∇ ·uk(r) = 0,
their expression is

uk(r) = L−3/2ê(λ)eik·r , λ = 1 or 2 , k · ê(λ) = 0 , (4.12)

where the ê(λ)’s stand for polarization vectors. The respective expressions of the
electric and magnetic field operators are derived from the vector potential:

−→
E = −1

c

∂
−→
A

∂t
,

−→
B = −→∇ × −→

A .

Finally, the electromagnetic field Hamiltonian is given by

He.m. = 1

2

ˆ (
‖−→E ‖2 + ‖−→B ‖2

)
d3r = 1

2

∑
k

h̄ωk

(
a

†
kak + aka

†
k

)
.

Let us now decompose the electric field operator into positive and negative
frequencies

−→
E = −→

E (+) + −→
E (−),

−→
E (−) = −→

E (+)
†
,

−→
E (+)(r, t) = i

∑
k

√
h̄ωk

2
akuk(r)e−iωkt . (4.13)

We then consider the field described by the density (matrix) operator :

ρ =
∑
(nk)

c(nk)
∏
k

|nk〉〈nk| , c(nk) ≥ 0 , tr ρ = 1 , (4.14)

and the derived sequence of correlation functions G(n). The Euclidean tensor
components for the simplest one read as

G
(1)
ij (r, t; r′, t ′) = tr

{
ρE

(−)
i (r, t)E(+)

j (r′, t ′)
}
, i, j = 1, 2, 3 . (4.15)
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They measure the correlation of the field state at different space-time points. A
coherent state or coherent radiation |c.r.〉 for the electromagnetic field is then
defined by

|c.r.〉 =
∏
k

|αk〉 , (4.16)

where |αk〉 is precisely the standard coherent state for the “k” mode :

|αk〉 = e− |αk |2
2

∑
nk

(αk)
nk

√
nk! |nk〉 , ak|αk〉 = αk|αk〉 , (4.17)

with αk ∈ C. The particular status of the state |c.r.〉 is well understood through the
action of the positive frequency electric field operator

−→
E (+)(r, t)|c.r.〉 = −→E (+)(r, t)|c.r.〉 . (4.18)

The expression
−→E (+)(r, t) which shows up is precisely the classical field expres-

sion, solution to the Maxwell equations

−→E (+)(r, t) = i
∑
k

√
h̄ωk

2
αkuk(r)e−iωkt . (4.19)

Now, if the density operator is chosen as a pure coherent state, i.e.,

ρ = |c.r.〉〈c.r.| , (4.20)

then the components (4.15) of the first order correlation function factorize into
independent terms :

G
(1)
ij (r, t; r′, t ′) = E (−)

i (r, t)E (+)
j (r′, t ′) . (4.21)

An electromagnetic field operator is said “fully coherent” in the Glauber sense
if all of its correlation functions factorize like in (4.21). Nevertheless, one should
notice that such a definition does not imply monochromaticity.

A last important point concerns the production of such states in quantum optics.
They can be manufactured by adiabatically coupling the e.m. field to a classical
source, for instance, a radiating current j(r, t). The coupling is described by the
Hamiltonian

Hcoupling = −1

c

ˆ
dr

−→
j (r, t) · −→

A (r, t) . (4.22)
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From the Schrödinger equation, the time evolution of a field state supposed to be
originally, say at t0, the state |vacuum〉(no photons) is given by

|t〉 = exp

[
i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · −→

A (r, t ′) + iϕ(t)
]

|vacuum〉 , (4.23)

where ϕ(t) is some phase factor, which cancels if one deals with the density operator
|t〉〈t | and can be dropped. From the Fourier expansion (4.8) we easily express the
above evolution operator in terms of the Weyl displacement operators corresponding
to each mode

exp

[
i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · −→

A (r, t ′)
]

=
∏
k

D(αk(t)) , (4.24)

where the complex amplitudes are given by

αk(t) = i
h̄c

ˆ t

t0

dt ′
ˆ

dr
−→
j (r, t ′) · uk(r)eiωkt ′ . (4.25)

Hence, we obtain the time-dependent e.m. CS

|t〉 = ⊗k|αk(t)〉 . (4.26)

4.3 Weyl–Heisenberg CS with Laguerre Polynomials

The construction of the standard CS is minimal from the point of view of the action
of the Weyl unitary operator D(α) on the vacuum |0〉 (Property P6). More elaborate
states are issued from the action of D(α) on other states |s〉, s = 1, 2, . . . , of the
Fock basis, which might be considered as initial states in the evolution described
by (4.23). Hence, let us define the family of CS

|α; s〉 = D(α)|s〉 =
∞∑
n=0

Dns(α)|n〉 . (4.27)

The coefficients in this Fock expansion are the matrix elements Dns = 〈n|D(α)|s〉
of the displacement operator. They are given in terms of the generalized Laguerre
polynomials [9] as

Dns(α) :=
√
s!
n! e

− |α|2
2 αn−s L(n−s)

s

(
|α|2

)
for s ≤ n ,

=
√
n!
s! e

− |α|2
2 (−ᾱ)s−n L(s−n)

n

(
|α|2

)
for s > n . (4.28)
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As matrix elements of a projective square-integrable UIR of the Weyl–Heisenberg
group they obey the orthogonality relations

ˆ
C

d2α

π
Dns(α)Dn′s′(α) = δnn′ δss′ . (4.29)

Like for the general case presented in (3.3)–(3.4) this property validates the
resolution of the identity

ˆ
C2

d2α

π
|α; s〉〈α; s| = I . (4.30)

The corresponding detection distribution is the “Laguerre weighted” Poisson distri-
bution

n �→ Pn(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−u us−n

(s − n)!

(
L
(s−n)
n (u)

)2

(
s
n

) n ≤ s

e−u un−s

(n − s)!

(
L
(n−s)
s (u)

)2

(
n
s

) n ≥ s

. (4.31)

Of course, the optical phase space made of the complex
√
n̄(α)ei argα is here less

immediate.
We notice that for s > 0, these CS |α; s〉 do not pertain to the AN class, since

we find in the expansion a finite number of terms in ᾱn besides an infinite number
of terms in αn. On the other hand, there exist families of coherent states in the AN
class (or their complex conjugate) which are related to the generalized Laguerre
polynomials in a quasi-identical way [33, 34].

5 Non-linear CS

5.1 General

We define as non-linear CS those AN CS for which the functions hn(u) assume the
simple form

hn(u) = λn√
N (u)

, N (u) =
∞∑
n=0

|λn|2un . (5.1)
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5.2 Deformed Poissonian CS

They are particular cases of the above. All λn form a strictly decreasing sequence of
positive numbers tending to 0:

λ0 = 1 > λ1 > · · · λn > λn+1 > · · · , λn → 0 . (5.2)

We now introduce the strictly increasing sequence

xn =
(
λn−1

λn

)2

, x0 = 0 . (5.3)

It is straightforward to check that

λn = 1√
xn! , with xn! := x1x2 · · · xn . (5.4)

Then N (u) is the generalized exponential with convergence radius R2

N (u) =
∞∑
n=0

un

xn! , (5.5)

and the corresponding CS take the form extending to the non-linear case the familiar
Glauber–Sudarshan one

|α〉 = 1√
N (|α)|2)

∞∑
n=0

αn√
xn! |n〉 . (5.6)

The orthonormality condition (3.3) is completely fulfilled if there exists a weight
w(u) solving the moment problem for the sequence (xn!)n∈N

xn! =
ˆ R2

0
du

w(u)

N (u)
un . (5.7)

The detection probability distribution is the deformed Poisson distribution:

n �→ Pn(u) = 1

N (u)

un

xn! . (5.8)

The average value of the number operator n̄ is given by

n̄
(
|α|2

)
) = 〈α|N̂ |α〉 = u

d logN (u)

du

∣∣∣∣
u=|α|2

. (5.9)
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5.3 Example with q Deformations of Integers

These coherent states have been studied by many authors, see [35], that we follow
here, and the references therein. They are built from the symmetric or bosonic q-
deformation of natural numbers:

xn = [s][n]q = qn − q−n

q − q−1
= [s][n]q−1 , q > 0 . (5.10)

|α〉q = 1√
Nq(|α|2)

∞∑
n=0

αn√
[s][n]q !

|n〉 , (5.11)

where its associated exponential is one of the so-called q exponentials [36]

Nq(u) = eq(u) ≡=
+∞∑
n=0

un

[s][n]q ! . (5.12)

This series defines the analytic entire function eq(z) in the complex plane for any
positive q. The CS |α〉q in the limit q → 1 goes to the standard CS |α〉. The solution
to the moment problem (3.14) for 0 < q < 1 is given by

ˆ ∞

0
duwq(u)

un

eq(u) [s][n]q ! = 1

with positive density

wq(t) = (q−1 − q)

∞∑
j=0

gq

(
t
q−1 − q

q2j

)
Eq

(
− q2j

q−1 − q

)
.

The function gq is given by

gq(u) = 1√
2π | ln q| exp

⎡
⎢⎣−

[
ln
(

u√
q

)]2

2| ln q|

⎤
⎥⎦ ,

and a second q-exponential [36] appears here

Eq(u) :=
∞∑
n=0

q
n(n+1)

2
un

[s][n]q ! .
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Its radius of convergence is ∞ for 0 < q ≤ 1 (it is equal to 1/(q − q−1) for q > 1).
There results the resolution of the identity

ˆ
C

d2αwq (α) |α〉qq〈α| = I , wq (α) = wq(|α|2)
π

. (5.13)

More exotic families of non-linear CS are, for instance, presented in [37].

6 Spin CS as Optical CS

These states are an adaptation to the quantum optical context of the well-known
Gilmore or Perelomov SU(2)-CS, also called spin CS [22, 23]. The Fock space
reduces to the finite-dimensional subspace Hj , with dimension nj + 1 := 2j + 1,
for j positive integer or half-integer, consistently with the fact that the functions hn,
given here by

hn(u) =
√(

nj

n

)
(1 + u)−

nj
2 ,

(
nj

n

)
= nj !

n!(nj − n)! , (6.1)

cancel for n > nj . The corresponding spin CS read

|α; nj 〉 =
(

1 + |α|2
)− nj

2
nj∑
n=0

√(
nj

n

)
αn |n〉 . (6.2)

They resolve the unity in Hnj in the following way:

nj + 1

π

ˆ
C

d2α

(1 + |α|2)2 |α; nj 〉〈α; nj | = I . (6.3)

The detection probability distribution is binomial:

n �→ Pn(u) = (1 + u)−nj

(
nj

n

)
un . (6.4)

There results the average value of the number operator

n̄(u) = nj
u

1 + u
⇔ u = n̄/nj

1 − n̄/nj
. (6.5)
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Thus the probability (6.4) is expressed in terms of the ratio p := n̄/nj as

Pn(u) ≡ P̃n(p) =
(
nj

n

)
(1 − p)nj−n pn , (6.6)

which allows to define the optical phase space as the open disk of radius
√
nj ,

D√
nj =

{
ξα =

√
n̄
(|α|2)ei argα , |ξα| < √

nj

}
.

The interpretation of Pn(u) together with the number nj in terms of photon
statistics (see Sect. 10 for more details) is luminous if we consider a beam of
perfectly coherent light with a constant intensity. If the beam is of finite length L

and is subdivided into nj segments of length L/nj , then P̃n(p) is the probability of
finding n subsegments containing one photon and (nj − n) containing no photons,
in any possible order [38]. A more general statistical interpretation of (6.4) or (6.6)
is discussed in [39].

Note that the standard coherent states are obtained from the above CS at the limit
nj → ∞ through a contraction process. The latter is carried out through a scaling of
the complex variable α, namely α �→ √

nj α. Then the binomial distribution P̃n(p)

becomes the Poissonian (4.5), as expected.
Actually, these states are the simplest ones among a whole family issued from the

Perelomov construction [22, 30, 40], and based on spin spherical harmonics. For our
present purpose we modify their definition by including an extra phase factor and

delete the factor
√

2j+1
4π . For j ∈ N/2 and a given −j ≤ σ ≤ j , the spin spherical

harmonics are the following functions on the unit sphere S
2:

σYjμ(Ω) := (−1)(j−μ)

√
(j − μ)!(j + μ)!
(j − σ)!(j + σ)!×

× 1

2μ
(1 + cos θ)

μ+σ
2 (1 − cos θ)

μ−σ
2 P

(μ−σ,μ+σ)
j−μ (cos θ) e−i(j−μ)ϕ ,

(6.7)

where Ω = (θ, ϕ) (polar coordinates), −j ≤ μ ≤ j , and the P (a,b)
n (x) are Jacobi

polynomials [9] with P
(a,b)
0 (x) = 1. Singularities of the factors at θ = 0 (resp.

θ = π ) for the power μ − σ < 0 (resp. μ + σ < 0) are just apparent. To remove
them it is necessary to use alternate expressions of the Jacobi polynomials based on
the relations:

P (−a,b)
n (x) =

(
n+b
a

)
(
n
a

)
(
x − 1

2

)a

P
(a,b)
n−a (x) . (6.8)



CS in Quantum Optics 85

The functions (6.7) obey the two conditions required in the construction of coherent
states

2j + 1

4π

ˆ
S2

dΩ σYjμ(Ω) σYjμ′(Ω) = δμμ′ (orthogonality) (6.9)

j∑
μ=−j

|σYjμ(Ω)|2 = 1 (normalisation) . (6.10)

At j = l integer and σ = 0, μ = m we recover the spherical harmonics Ylm(Ω) (up

to the factor (−1)le−ijϕ
√

2l+1
4π ). We now consider the parameter α in (6.2) as issued

from the stereographic projection S
2 � Ω �→ α ∈ C:

α = tan
θ

2
e−iϕ , with dΩ = sin θdθdϕ = 4d2α

(1 + |α|2)2 . (6.11)

In this regard, the probability p = n̄/nj is equal to sin θ/2, while ϕ = argα. With
the notations nj = 2j ∈ N, n = j − μ = 0, 1, 2, . . . , nj , 0 ≤ s = j − σ ≤ nj ,
adapted to the content of the present paper, and from the expression of the Jacobi
polynomials, we get the functions (6.7) in terms of α ∈ C:

σYjμ(Ω) = αn hn;s
(
|α|2

)
, (6.12)

where

hn;s(u) =
√
n!(nj − n)!
s!(nj − s)! (1 + u)−

nj
2

min(n,s)∑
r=max(0,n+s−nj )

(
s

r

)(
nj − s

n − r

)
(−1)r us/2−r .

(6.13)

The corresponding “Jacobi” CS are in the AN class and read

|α; nj ; s〉 =
nj∑
n=0

αn hn;s
(
|α|2

)
|n〉 . (6.14)

They solve the identity as

nj + 1

π

ˆ
C

d2α

(1 + |α|2)2 |α; nj ; s〉〈α; nj ; s| = I. (6.15)

The states (6.2) are recovered for s = 0. Similarly to CS (4.27) states (6.14) can
be also viewed as displaced occupied states. Indeed, they can be written in the
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Perelomov way as

|α; nj ; s〉 = Dnj /2 (ζα) |s〉 , (6.16)

where ζα =
( (

1 + |α|2)−1/2 (
1 + |α|2)−1/2

α

− (
1 + |α|2)−1/2

ᾱ
(
1 + |α|2)−1/2

)
is the element of SU(2)which

brings 0 to α under the homographic action

α �→
(
a b

−b̄ ā

)
· α := aα + b

−b̄α + ā

of this group on the complex plane, and Dnj /2 is the corresponding nj + 1-
dimensional UIR of SU(2). Let us write Dnj /2 (ζα) as a displacement operator
similar to the Weyl–Heisenberg one (propriety P6) and involving the usual angular
momentum generators J± for the representation Dnj /2

Dnj /2 (ζα) = eςαJ+−ς̄αJ− ≡ Dnj (ςα) , ςα = − tan−1 |α| e−i argα . (6.17)

Note that we could have adopted here the historical approaches by Jordan, Holstein,
Primakoff, Schwinger [41–43] in transforming these angular momentum operators
in terms of “bosonic” a and a†. Nevertheless this QFT artificial flavor is not really
useful in the present context.

7 SU(1, 1)-CS as Optical CS

7.1 Perelomov CS

These states are also an adaptation to the quantum optical context of the Perelomov
SU(1, 1)-CS [22, 23, 30, 44]. They are yielded through a SU(1, 1) unitary action on a
number state. The Fock Hilbert space H is infinite-dimensional, while the complex
number α is restricted to the open unit disk D := {α ∈ C , |α| < 1}. Let  >

1/2 and s ∈ N. We then define the ( ; s)-dependent CS family as the “SU(1, 1)-
displaced s-th state”

|α;  ; s〉 = U (p(ᾱ))|s〉 =
∞∑
n=0

U 
ns(p(ᾱ))|n〉 ≡

∞∑
n=0

φn; ;s(α) |n〉 , (7.1)

where the U 
ns(p(ᾱ))’s are matrix elements of the UIR U of SU(1, 1) in its discrete

series and p(ᾱ) is the particular matrix

( (
1 − |α|2)−1/2 (

1 − |α|2)−1/2
ᾱ(

1 − |α|2)−1/2
α

(
1 − |α|2)−1/2

)
∈ SU(1, 1) . (7.2)
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They are given in terms of Jacobi polynomials as

U 
ns(p(ᾱ)) =

(
n<!Γ (2 + n>)

n>!Γ (2 + n<)

)1/2 (
1 − |α|2

) 
(sgn(n − s))n−s ×

× P (n>−n< , 2 −1)
n<

(
1 − 2|α|2

)
×
{
αn−s if n> = n

ᾱs−n if n> = s
(7.3)

with n>
<

=
{

max
min

(n, s) ≥ 0. The states (7.1) solve the identity:

2 − 1

π

ˆ
D

d2α(
1 − |α|2)2 |α;  ; s〉〈α;  ; s| = I . (7.4)

The simplest case s = 0 pertains to the AN class

|α;  ; 0〉 ≡ |α;  〉 =
∞∑
n=0

αn hn; 
(
|α|2

)
|n〉 , hn; (u) :=

√(
2 − 1 + n

n

)
(1 − u) .

(7.5)

The corresponding detection probability distribution is negative binomial

n �→ Pn(u) = (1 − u)2 
(

2 − 1 + n

n

)
un . (7.6)

The average value of the number operator reads as

n̄(u) = 2 
u

1 − u
⇔ u = n̄/2 

1 + n̄/2 
. (7.7)

By introducing the “efficiency” η := 1/2 ∈ (0, 1) the probability (7.6) is expressed
in terms of the corrected average value N̄ := ηn̄ as

Pn(u) ≡ P̃n(N̄) = (1 + N̄)−1/η
(

1/η − 1 + n

n

) (
N̄

1 + N̄

)n

. (7.8)

It is remarkable that such a distribution reduces to the celebrated Bose–Einstein one
for the thermal light at the limit η = 1, i.e., at the lowest bound  = 1/2 of the
discrete series of SU(1, 1). For η < 1, the difference might be understood from
the fact that we consider the average photocount number N̄ instead of the mean
photon number n̄ impinging on the detector in the same interval [38]. For a related
interpretation within the framework of thermal equilibrium states of the oscillator
see [45].
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Note that the above CS, built from the negative binomial distribution, were also
discussed in [39].

Like for CS (4.27), the CS |α;  ; s〉 in (7.1) do not pertain to the AN class for
s > 0. In their expansion there are s terms in ᾱs−n, s > n, besides an infinite
number of terms in αn−s , s ≤ n. Finally, like for the Weyl–Heisenberg and SU(2)
cases, the representation operator U (p(ᾱ)) used in (7.1) to build the SU(1, 1) CS
can be given the following form of a displacement operator involving the generators
K± for the representation Uκ [23]:

Uκ(p(ᾱ)) = e"α K+−"̄α K− ≡ Dκ("α) , "α = tanh−1 |α| ei argα . (7.9)

7.2 Barut–Girardello CS

These non-linear CS states [46, 47] pertain to the AN class. They are requested to
be eigenstates of the SU(1, 1) lowering operator in its discrete series representation
U ,  > 1/2. The Fock Hilbert space H is infinite-dimensional, while the complex
number α has no domain restriction in C. With the notations of (5.6) they read

|α;  〉BG = 1√
NBG(|α|2)

∞∑
n=0

αn√
xn! |n〉 , xn = n(2 + n − 1) , xn! = n!Γ (2 + n)

Γ (2 )
,

(7.10)

with

NBG(u) = Γ (2 )
∞∑
n=0

un

n!Γ (2 + n)
= Γ (2 ) u− I2 −1(2

√
u), (7.11)

where Iν is a modified Bessel function [9]. In the present case the moment
problem (3.14) is solved as

ˆ ∞

0
duwBG(u)

un

NBG(u) xn! = 1 , wBG(u) = NBG(u)
2

Γ (2 )
u −1/2 K2 −1(2

√
u) ,

(7.12)

where Kν is the second modified Bessel function. The resolution of the identity
follows:

ˆ
C

d2αwBG (α) |α;  〉BGBG〈α;  | = I , wBG(u) = wBG(u)

π
. (7.13)
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8 Adapted Susskind–Glogower CS

Let us examine the Susskind–Glogower CS [48] presented in [49]. These normal-
ized states read for real α ≡ x ∈ R

|x〉SG =
∞∑
n=0

(n + 1)
Jn+1(2x)

x
|n〉 , (8.1)

where the Bessel function Jν is given by

Jν(z) =
( z

2

)ν ∞∑
m=0

(−1)m
(
z
2

)2m

m!Γ (ν + m + 1)
. (8.2)

The normalization implies the interesting identity (E. Curado, private communica-
tion)

∞∑
n=1

n2 (Jn(2x))
2 = x2 . (8.3)

The above expression allows us to extend the formula (8.1) in a non-analytic way to
complex α as

(n + 1)
Jn+1(2x)

x
�→ αn (n + 1)

∞∑
m=0

(−1)m|α|2m
m!Γ (n + m + 2)

≡ αn hSG
n (|α|2) , (8.4)

i.e.,

hSG
n (u) = (n + 1)

1

u
n+1

2

Jn+1(2
√
u) , (8.5)

and thus

|α〉SG =
∞∑
n=0

αn hSG
n (|α|2) |n〉 . (8.6)

The moment Eq. (3.14) reads here

ˆ ∞

0
du

w(u)

u

(
Jn(2

√
u)
)2 = 2

ˆ ∞

0
dt

w(t2)

t
(Jn(2t))

2 = 1

n2 . (8.7)
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Let us examine the following integral formula for Bessel functions [9]:

ˆ ∞

0

dt

t
(Jn(2t))

2 = 1

2n
. (8.8)

This leads us to replace the SG-CS of (8.1) by the modified

|α〉SGm =
∞∑
n=0

αn hSGm
n (|α|2) |n〉 , hSGm

n (u) =
√
n + 1

N (u)

1

u
n+1

2

Jn+1(2
√
u) ,

(8.9)
with

N (u) = 1

u

∞∑
n=1

n
(
Jn(2

√
u)
)2

. (8.10)

Then the formula (8.8) allows us to prove that the resolution of the identity is
fulfilled by these |α〉SGm with w(u) = N (u). More details, particularly those
concerning statistical aspects, are given in [50].

9 CS from Symmetric Deformed Binomial Distributions
(DFB)

In [51] (see also the related works [52–54]) was presented the following generaliza-
tion of the binomial distribution:

p
(n)
k (ξ) = xn!

xn−k!xk!qk(ξ)qn−k(1 − ξ) , (9.1)

where the {xn}’s form a non-negative sequence and the qk(ξ) are polynomials of
degree k, while ξ is a running parameter on the interval [0, 1]. The p

(n)
k (ξ) are

constrained by

(a) the normalization

∀n ∈ N, ∀ξ ∈ [0, 1],
n∑

k=0

p
(n)
k (ξ) = 1, (9.2)

(b) the non-negativeness condition (requested by statistical interpretation)

∀n, k ∈ N, ∀ξ ∈ [0, 1], p
(n)
k (ξ) ≥ 0. (9.3)
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These conditions imply that q0(ξ) = ±1. With the choice q0(ξ) = 1 one
easily proves that the non-negativeness condition (9.3) is equivalent to the non-
negativeness of the polynomials qn on the interval [0, 1]. Hence the quantity p

(n)
k (ξ)

can be interpreted as the probability of having k wins and n− k losses in a sequence
of correlated n trials. Besides, as we recover the invariance under k → n − k and
ξ → 1−ξ of the binomial distribution, no bias (in the case ξ = 1/2) can exist favor-
ing either win or loss. The polynomials qn(ξ) are viewed here as deformations of
ξn. We now suppose that the generating function for the polynomials qn, defined as

F(ξ ; t) :=
∞∑
n=0

qn(ξ)

xn! tn , (9.4)

can be expressed as

F(ξ ; t) = e
∑∞

n=1 ant
n

with a1 = 1 , an = an(ξ) ≥ 0 ,
∞∑
n=1

an < ∞ . (9.5)

It is proved in [51] that conditions of normalization (a) and non-negativeness (b) on
p
(n)
k (ξ) are satisfied. We now define

fn =
ˆ ∞

0
qn(ξ) e

−ξ dξ and bm,n =
ˆ 1

0
qm(ξ) qn(1 − ξ) dξ . (9.6)

The fn and bm,n are deformations of the usual factorial and beta function,
respectively, deduced from their usual integral definitions through the substitution
ξn �→ qn(ξ). The following properties are proven in [51]:

qn(ξ) ≥ 0 ∀ξ ∈ R
+ , xn! ≤ fn ,

∞∑
n=0

qn(ξ)

fn
< ∞ ∀ξ ∈ R

+ , and bm,n ≥ xm!xn!
(m + n + 1)! .

(9.7)

Then let us introduce the function N (z) defined on C as

∀z ∈ C N (z) =
∞∑
n=0

qn(z)

fn
. (9.8)

This definition makes sense since from Eq. (9.7)

∞∑
n=0

∣∣∣∣
qn(z)

fn

∣∣∣∣ ≤
∞∑
n=0

qn(|z|)
fn

< ∞. (9.9)

The above material allows us to present below two new generalizations of standard
and spin coherent states.
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9.1 DFB Coherent States on the Complex Plane

They are defined in the Fock space as

|α〉dfb = 1√
N (|α|2)

∞∑
n=0

1√
fn

√
qn(|α|2) ei n arg(α)|n〉 . (9.10)

These states verify the following resolution of the unity:

ˆ
C

d2α

π
e−|α|2N (|α|2) |α〉dfbdfb〈α| = I . (9.11)

They are a natural generalization of the standard coherent states that correspond
to the special polynomials qn(ξ) = ξn. The latter are associated to the generating
function F(t) = et that gives the usual binomial distribution.

9.2 DFB Spin Coherent States

These states can be considered as generalizing the spin coherent states (6.2)

|α; nj 〉dfb = 1√
N (|α|2)

nj∑
n=0

√√√√qn

(
1

1+|α|2
)
qnj−n

( |α|2
1+|α|2

)

bn,nj−n

ei arg(α)|n〉 , (9.12)

where the bm,n are defined in Eq. (9.6) and N (u) is given by

N (u) =
nj∑
n=0

qn

(
1

1+u

)
qnj−n

(
u

1+u

)

bn,nj−n

. (9.13)

The family of states (9.12) resolves the unity:

ˆ
C

d2αw (α) |α; nj 〉dfbdfb〈α; nj | = I , w (α) = N
(|α|2)

π
(
1 + |α|2)2 . (9.14)

10 Photon Counting: Basic Statistical Aspects

In this section, we mainly follow the inspiring chapter 5 of Ref. [38] (see also the
seminal papers [55–57] on the topic, the renowned [58], the pedagogical [59], and
the more recent [60–62]). In quantum optics one views a beam of light as a stream of
discrete energy packets named “photons” rather than a classical wave. With a photon
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counter the average count rate is determined by the intensity of the light beam,
but the actual count rate fluctuates from measurement to measurement. Whence,
one easily understands that two statistics are in competition here, on one hand the
statistical nature of the photodetection process, and on the other hand, the intrinsic
photon statistics of the light beam, e.g., the average n̄(α) for a CS |α〉. Photon-
counting detectors are specified by their quantum efficiency η, which is defined as
the ratio of the number of photocounts to the number of incident photons. For a
perfectly coherent monochromatic beam of angular frequency ω, constant intensity
I , and area A, and for a counting time T

η = N(T )

ΦT
, (10.1)

where the photon flux is Φ = IA

h̄ω
≡ P

h̄ω
, P being the power. Thus the

corresponding count rate is R = ηP

h̄ω
counts s−1. Due to a “dead time” of ∼ 1μs

for the detector reaction, the count rate cannot be larger than ∼ 106 counts s−1, and
due to weak values η ∼ 10% for standard detectors, photon counters are only useful
for analyzing properties of very faint beams with optical powers of ∼ 10−12W or
less. The detection of light beams with higher powers requires other methods.

Although the average photon flux can have a well-defined value, the photon
number on short time-scales fluctuates due to the discrete nature of the photons.
These fluctuations are described by the photon statistics of the light.

One proves that the photon statistics for a coherent light wave with constant
intensity (e.g., a light beam described by the electric field E(x, t) = E0 sin(kx −
ωt + φ) with constant angular frequency ω, phase φ, and intensity E0) is encoded
by the Poisson distribution

n �→ Pn(n̄) = e−n̄ (n̄)
n

n! , (10.2)

This randomness of the count rate of a photon-counting system detecting individual
photons from a light beam with constant intensity originates from chopping the
continuous beam into discrete energy packets with an equal probability of finding
the energy packet within any given time subinterval.

Let us introduce the variance as the quantity

Varn(n̄) ≡ (Δn)2 =
∞∑
n=0

(n − n̄)2Pn(n̄) .

Thus, for a Poissonian coherent beam, Δn = √
n̄. There results that three

different types of photon statistics can occur: Poissonian, super-Poissonian, and sub-
Poissonian. The two first ones are consistent as well with the classical theory of
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light, whereas sub-Poissonian statistics is not and constitutes direct confirmation of
the photon nature of light. More precisely

(i) if the Poissonian statistics holds, e.g., for a perfectly coherent light beam with
constant optical power P , we have

Δn = √
n̄ , (10.3)

(ii) if the super-Poissonian statistics, e.g., classical light beams with time-varying
light intensities, like thermal light from a black-body source, or like partially
coherent light from a discharge lamp, we have

Δn >
√
n̄ , (10.4)

(iii) finally, the sub-Poissonian statistics is featured by a narrower distribution than
the Poissonian case

Δn <
√
n̄ . (10.5)

This light is “quieter” than the perfectly coherent light. Since a perfectly
coherent beam is the most stable form of light that can be envisaged in classical
optics, sub-Poissonian light has no classical counterpart.

In this context popular useful parameters are introduced to account for CS statistical
properties, e.g., the Mandel parameter Q = (Δn)2/n̄− 1, where (Δn)2 = n2 − n̄2,
which is <0 (resp. >0, =0) for sub-Poissonian (resp. super-Poissonian, Poissonian),
the parameter Q/n̄+ 1 which is >1 for “bunching” CS and <1 for “anti-bunching”
CS, etc.

The aim of the quantum theory of photodetection is to relate the photocount
statistics observed in a particular experiment to those of the incoming photons,
more precisely the average photocount number N̄ to the mean photon number
n̄ incident on the detector in a same time interval. The quantum efficiency η of
the detector, defined as η = N̄/n̄ is the critical parameter that determines the
relationship between the photoelectron and photon statistics. Indeed, consider the
relation between variances (ΔN)2 = η2 (Δn)2 + η (1 − η) n̄.

– If η = 1, we have ΔN = Δn: the photocount fluctuations faithfully reproduce
the fluctuations of the incident photon stream.

– If the incident light has Poissonian statistics Δn = √
n̄, then (ΔN)2 = η n̄ for

all values of η: photocount is Poisson.
– If η � 1, the photocount fluctuations tend to the Poissonian result with (ΔN)2 =

η n̄ = N̄ irrespective of the underlying photon statistics.

Observing sub-Poissonian statistics in the laboratory is a delicate matter since it
depends on the availability of single-photon detectors with high quantum efficien-
cies.
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11 AN CS Quantization

11.1 The Quantization Map and Its Complementary

If the resolution of the identity (3.4) is valid for a given family of AN CS determined
by the sequence of functions h := (hn(u)), it makes the quantization of functions
(or distributions) f (α) possible along the linear map

f (α) �→ Ah
f =
ˆ

|α|<R
d2α

π
w(|α|2) f (α) |α〉〈α| , (11.1)

together with its complementary map, likely to provide a “semi-classical” optical
phase space portrait, or lower symbol, of Ah

f through the map (3.8)

〈α|Ah
f |α〉 =

ˆ
|β|<R

d2β

π
w(|β|2) f (β) |〈α|β〉|2 ≡ |f h(α) . (11.2)

Since for fixed α the map β �→ w(|β|2) |〈α|β〉|2 is a probability distribution on

the centered disk DR of radius R, the map f (α) �→ |f h(α) is a local, generally
regularizing, averaging, of the original f .

The quantization map (11.1) can be extended to cases comprising geometric
constraints in the optical phase portrait through the map (3.8), and encoded by
distributions like Dirac or Heaviside functions.

11.2 AN CS Quantization of Simple Functions

When applied to the simplest functions α and ᾱ weighted by a positive n
(|α|2), the

quantization map (11.1) yields lowering and raising operators

α �→ ah =
ˆ

|α|<R
d2α

π
w̃(|α|2) α |α〉〈α| =

∞∑
n=1

ah
n−1n|n − 1〉〈n| , (11.3)

ᾱ �→
(
ah
)† =

∞∑
n=0

ah
nn+1|n + 1〉〈n| , (11.4)

where w̃(u) := n(u)w(u). Their matrix elements are given by the integrals

ah
n−1n :=

ˆ R2

0
du w̃(u) un hn−1(u) hn(u) , (11.5)

and ah|0〉 = 0.
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The lower symbol of ah and its adjoint read, respectively:

|ah(α) = 〈α|ah|α〉 = α τ
(
|α|2

)
,

~

(
ah
)†
(α) = |ah(α) , (11.6)

in which the “weighting” factor is given by τ(u) = ∑
n≥0 a

h
nn+1 u

n hn(u) hn+1(u).
In the above, as it was mentioned in Sect. 3 and, as it occurred in the spin case,

the involved sums can be finite, and a finite number of matrix elements (11.5) are
not zero. As a generalization of the number operator we get in the present case

ah
(
ah
)† = Xh

N̂+I
,

(
ah
)†

a = Xh
N̂
,

[
ah,

(
ah
)†
]

= Xh
N̂+I

− Xh
N̂
, (11.7)

with the notations

Xh
n = |ah

n−1n|2 , Xh
0 = 0 , Xh

N̂
|n〉 = Xh

n |n〉 , Xh
N̂+I

|n〉 = Xh
n+1|n〉 . (11.8)

When all the hn’s are real, the diagonal elements in (11.7) are given by the product
of integrals

Xh
n+1 − Xh

n =
[ˆ R2

0
du w̃(u) un hn(u) (uhn+1(u) − hn−1(u))

]

×
[ˆ R2

0
du w̃(u) un hn(u) (uhn+1(u) + hn−1(u))

]
.

(11.9)

The quantum version of u = |α|2 and its lower symbol read as

Ah
u =

∑
n

〈u〉n|n〉〈n| , 〈u〉n :=
ˆ R2

0
du w̃(u) un+1 hn(u)

〈α|Ah
u |α〉 = 〈〈u〉n〉α (u) :=

∑
n

〈u〉n un |hn(u)|2 =
∑
n

〈u〉n Ph
n .

(11.10)

We notice here an interesting duality between classical (〈·〉n) and quantum (〈·〉α)
statistical averages.

11.3 AN CS as a-Eigenstates

One crucial property of the Glauber–Sudarshan CS is that they are eigenstates of
the lowering operator a. Imposing this property to AN CS leads to a supplementary
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condition on the functions hn.

ah|α〉 = α|α〉 ⇒ hn(u) = hn+1(u)

ˆ R2

0
dt w̃(t) tn+1 hn(t) hn+1(t) . (11.11)

Let us examine the particular case of non-linear CS of the deformed Poissonian
type (5.6). In this case, Xn = xn, and whence the construction formula

|α〉 = N (αah†
)√

N (|α|2) |0〉 . (11.12)

Moreover (11.11) imposes that the sequence xn! derives from the following moment
problem:

xn! =
ˆ R2

0
du

w(u)

N (u)
un . (11.13)

Now, instead of starting from a known sequence (xn), one can reverse the game

by choosing a suitable function f (u) = w(u)

N (u)
to calculate the corresponding

xn! (from which we deduce the xn’s), the resulting generalized exponential N (u)

(and checking the finiteness of the convergence radius), and eventually the weight
function w(u) = f (u)N (u). There are an infinity of “manufactured” products in
this non-linear CS factory!

11.4 AN CS from Displacement Operator

One can attempt to build (other?) AN CS by following the standard procedure

involving the unitary “displacement” operator built from ah and ah†
and acting

on the vacuum

|ᾰ〉disp := Dh(ᾰ) |0〉 =
∞∑
n=0

ᾰn h
disp
n (|ᾰ|2) |n〉 , Dh(ᾰ) := eᾰa

h†−ᾰah
,

(11.14)

where the notation ᾰ is used to make the distinction from the original α. Of
course, Dh

†(ᾰ) = Dh
−1(ᾰ) is not equal in general to Dh(−ᾰ). Besides the two

examples (6.17) and (7.9) encountered in the SU(2) and SU(1, 1) CS constructions,
for which the respective weights n(u) can be given explicitly, another recent
interesting example is given in [63].

So an appealing program is to establish the relation between the original hn’s
and these (new?) hdisp

n ’s, through a suitable choice of the weight n(u), actually a
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big challenge in the general case! More interesting yet is the fact that these new
CS’s might be experimentally produced in the Glauber’s way (4.23), once we accept

that the ah and ah†
appearing in the quantum version (4.8) of the classical e.m.

field are yielded by a CS quantization different from the historical Dirac (canonical)
one [64]. Hence one introduces a kind of duality between two families of coherent
states, the first one used in the quantization procedure f (α) �→ Ah

f , producing

the operators n(u)α �→ ah and n(u)ᾱ �→ ah†
, and so the unitary displacement

Dh(ᾰ) := eᾰa
h†−ᾰah

, while the other one uses this Dh(ᾰ) to build potentially
experimental CS yielded in the Glauber’s way.

12 Conclusion

We have presented in this paper a unifying approach to build coherent states in a
wide sense that are potentially relevant to quantum optics. Of course, for most of
them, their experimental observation or production comes close to being impossible
with the current experimental physics. Nevertheless, when one considers the way
quantum optics has emerged from the golden 1920s of quantum mechanics, nothing
prevents us to enlarge the Dirac quantization of the classical e.m. field in order
to include all these deformations (non-linear or others) by adopting the consistent
method exposed in the previous section.

Acknowledgements This research is supported in part by the Ministerio de Economía y Com-
petitividad of Spain under grant MTM2014-57129-C2-1-P and the Junta de Castilla y León (grant
VA137G18). The author is also indebted to the University of Valladolid. He thanks M. del Olmo
(UVA) for helpful discussions about this review. He addresses special thanks to Y. Hassoumi
(Rabat University) and to the Organizers of the Workshop QIQE’2018 in Al-Hoceima, Morocco,
for valuable comments and questions which allowed to improve significantly the content of this
review.

References

1. A.H. El Kinani, M. Daoud, Generalized intelligent states for an arbitrary quantum system. J.
Phys. A Math. Gen. 34, 5373–5387 (2001)

2. E.E. Hach III, P.M. Alsing, C.C. Gerry, Violations of a Bell inequality for entangled SU(1, 1)
coherent states based on dichotomic observables. Phys. Rev. A 93, 042104-1–042104-8 (2016)

3. S. Cruz y Cruz, Z. Gress, Group approach to the paraxial propagation of Hermite-Gaussian
modes in a parabolic medium. Ann. Phys. 383, 257–277 (2017)

4. S.E. Hoffmann, V. Hussin, I. Marquette, Y.-Z. Zhang, Non-classical behaviour of coherent
states for systems constructed using exceptional orthogonal polynomials. J. Phys. A Math.
Theor. 51, 085202-1–085202-16 (2018)

5. K. Górska, A. Horzela, F.H. Szafraniec, Coherence, squeezing and entanglement: an example
of peaceful coexistence, in J.-P. Antoine, F. Bagarello, J.P. Gazeau, eds. Coherent States and
their applications: a contemporary panorama, in Proceedings of the CIRM Workshop, 13–18
Nov 2016. Springer Proceedings in Physics (SPPHY), vol. 205 (2018), pp. 89–117



CS in Quantum Optics 99

6. E.E. Hach, R. Birrittella, P.M. Alsing, C.C. Gerry, SU(1, 1) parity and strong violations of a
Bell inequality by entangled Barut-Girardello coherent states. J. Opt. Soc. Am. B 35, 2433–
2442 (2018)

7. R.J. Glauber, Photons correlations. Phys. Rev. Lett. 10, 84–86 (1963)
8. J.-P. Gazeau, F.H. Szafraniec, Holomorphic Hermite polynomials and a non-commutative

plane. J. Phys. A Math. Theor. 44, 495201-1–495201-13 (2011)
9. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of

Mathematical Physics (Springer, Berlin, 1966)
10. J. Schwinger, The theory of quantized fields. III. Phys. Rev. 91, 728–740 (1953)
11. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)
12. R.J. Glauber, Coherent and incoherent states of radiation field. Phys. Rev. 131, 2766–2788

(1963)
13. E.C.G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of

statistical light beams. Phys. Rev. Lett. 10, 277–279 (1963)
14. L. Mandel, E. Wolf, Coherence properties of optical fields. Rev. Mod. Phys. 37, 231–287

(1965)
15. K.E. Cahill, R.J. Glauber, Ordered expansions in Boson amplitude operators. Phys. Rev. 177,

1857–1881 (1969)
16. B.S. Agarwal, E. Wolf, Calculus for functions of noncommuting operators and general phase-

space methods in quantum mechanics. Phys. Rev. D 2, 2161–2186 (I), 2187–2205 (II), 2206–
2225 (III) (1970)

17. E. Schrödinger, Der stetige Übergang von der Mikro- zur Makromechanik. Naturwiss 14, 664
(1926)

18. J.R. Klauder, The action option and the Feynman quantization of spinor fields in terms of
ordinary c-numbers. Ann. Phys. 11, 123 (1960)

19. J.R. Klauder, Continuous-representation theory I. Postulates of continuous-representation
theory. J. Math. Phys. 4, 1055–1058 (1963)

20. J.R. Klauder, Continuous-representation theory II. Generalized relation between quantum and
classical dynamics. J. Math. Phys. 4, 1058–1073 (1963)

21. J.R. Klauder, B.S. Skagerstam (ed.), Coherent States. Applications in Physics and Mathemati-
cal Physics (World Scientific, Singapore, 1985)

22. A.M. Perelomov, Coherent states for arbitrary lie group. Commun. Math. Phys. 26, 222–236
(1972)

23. A.M. Perelomov, Generalized Coherent States and Their Applications (Springer, Berlin, 1986)
24. W.-M. Zhang, D.H. Feng, R. Gilmore, Coherent states: theory and some applications. Rev.

Mod. Phys. 26, 867–927 (1990)
25. D.H. Feng, J.R. Klauder, M. Strayer (ed.) Coherent States: Past, Present and Future, in

Proceedings of the 1993 Oak Ridge Conference (World Scientific, Singapore, 1994)
26. S.T. Ali, J.-P Antoine, J.-P. Gazeau, Coherent States, Wavelets and their Generalizations

(2000), 2d edn., Theoretical and Mathematical Physics (Springer, New York, 2014)
27. V.V. Dodonov, ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75

years. J. Opt. B Quantum Semiclass. Opt. 4, R1 (2002)
28. V.V. Dodonov, V.I. Man’ko (ed.), Theory of Nonclassical States of Light (Taylor & Francis,

London, 2003)
29. A. Vourdas, Analytic representations in quantum mechanics. J. Phys. A 39, R65 (2006)
30. J.-P. Gazeau, Coherent States in Quantum Physics (Wiley-VCH, Berlin, 2009)
31. S.T. Ali, J.P. Antoine, F. Bagarello, J.P. Gazeau, Special issue on coherent states: mathematical

and physical aspects. J. Phys. A Math. Theor. 45 (2012)
32. J.-P. Antoine, F. Bagarello, J.P. Gazeau, Coherent States and their applications: a contemporary

panorama, in Proceedings of the CIRM Workshop, 13–18 Nov 2016. Springer Proceedings in
Physics (SPPHY), vol. 205 (2018)

33. N. Cotfas, J.-P. Gazeau, K. Górska, Complex and real Hermite polynomials and related
quantizations. J. Phys. A Math. Theor. 43, 305304-1–305304-14 (2010)



100 J.-P. Gazeau

34. S.T. Ali, F. Bagarello, J.-P. Gazeau, Quantizations from reproducing kernel spaces. Ann. Phys.
332, 127–142 (2012)

35. J.-P. Gazeau, M.A. del Olmo, Pisot q-coherent states quantization of the harmonic oscillator.
Ann. Phys. 330, 220–245 (2013)

36. A. De Sole, V. Kac, On integral representations of q-gamma and q-beta functions. Rend. Mat.
Acc. Lincei 9, 11–29 (2005). ArXiv: math.QA/0302032

37. M. El Baz, R. Fresneda, J.-P. Gazeau, Y. Hassouni, Coherent state quantization of paragrass-
mann algebras. J. Phys. A Math. Theor. 43, 385202-1–385202-15 (2010); Corrigendum J. Phys.
A Math. Theor. 45, 079501-1–079501-2 (2012)

38. M. Fox, Quantum Optics: An Introduction (Oxford University, New York, 2006)
39. S.T. Ali, J.-P. Gazeau, B. Heller, Coherent states and Bayesian duality. J. Phys. A Math. Theor.

41, 365302-1–365302-22 (2008)
40. J.-P. Gazeau, E. Huguet, M. Lachièze-Rey, J. Renaud, Fuzzy spheres from inequivalent

coherent states quantizations. J. Phys. A Math. Theor. 40, 10225–10249 (2007)
41. P. Jordan, Der Zusammenhang der symmetrischen und linearen Gruppen und das Mehrkörper-

problem". Z. Phys. 94, 531–535 (1935)
42. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098–1113 (1940)
43. J. Schwinger, On Angular Momentum, Unpublished Report, Harvard University, Nuclear

Development Associates, Inc., United States Department of Energy (through predecessor
agency the Atomic Energy Commission), Report Number NYO-3071 (1952).

44. J.-P. Gazeau, M. del Olmo, Covariant integral quantization of the unit disk, submitted (2018).
ArXiv:1810.10399 [math-ph]

45. Y. Aharonov, E.C. Lerner, H.W. Huang, J.M. Knight, Oscillator phase states, thermal equilib-
rium and group representations. J. Math. Phys. 14, 746–755 (2011)

46. A. O. Barut, L. Girardello, New “Coherent” states associated with non-compact groups.
Commun. Math. Phys. 21, 41–55 (1971)

47. J.-P. Antoine, J.-P. Gazeau, J.R. Klauder, P. Monceau, K.A. Penson, J. Math. Phys. 42, 2349–
2387 (2001)

48. L. Susskind, J. Glogower, Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1 1,
49–61 (1964)

49. H.M. Moya-Cessa, F. Soto-Eguibar, Introduction to Quantum Optics (Rinton, Paramus, 2011)
50. E.M.F. Curado, S. Faci, J.-P. Gazeau, D. Noguera, in progress.
51. H. Bergeron, E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Symmetric generalized

binomial distributions. J. Math. Phys. 54, 123301-1–123301-22 (2013)
52. E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Nonlinear coherent states for optimizing

quantum information. Phys. Scr. 82, 038108-1–038108-9 (2010)
53. E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, On a generalization of the binomial

distribution and its Poisson-like limit. J. Stat. Phys. 146, 264–280 (2012)
54. H. Bergeron, E.M.F. Curado, J.-P. Gazeau, Ligia M.C.S. Rodrigues, Generating functions for

generalized binomial distributions. J. Math. Phys. 53, 103304-1–103304-22 (2012)
55. L. Mandel, Fluctuations of photons beams and their correlations. Proc. Phys. Soc. (London)

72, 1037–1048 (1958); Fluctuations of photon beams: the distribution of photoelectrons. Proc.
Phys. Soc. 74, 233–243 (1959)

56. L. Mandel, E. Wolf, Selected Papers on Coherence and Fluctuations of Light, vols. 1, 2 (Dover,
New York, 1970)

57. D.N. Klyshko, Observable signs of nonclassical light. Phys. Lett. A 213, 7–15 (1996)
58. R. Loudon, The Quantum Theory of Light, 3rd edn. (Oxford University, Oxford 2000)
59. P. Koczyk, P. Wiewior, C. Radzewicz, Photon counting statistics - undergraduate experiment.

Am. J. Phys. 64(1996), 240–245 (1996)
60. C. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University, Cambridge, 2004)
61. H.A. Bachor, T.C. Ralph, A Guide to Experiments in Quantum Optics (Wiley-VCH, Weinheim,

2004)



CS in Quantum Optics 101

62. M.D. Eisaman, J. Fan, A. Migdall, S.V. Polyakov, Single-photon sources and detectors (Invited
Review Article). Rev. Sci. Instrum. 82, 071101-25 (2011)

63. C. Huerta Alderete, Liliana Villanueva Vergara, B.M. Rodríguez-Lara, Nonclassical and
semiclassical para-Bose states. Phys. Rev. A 95, 043835-1–043835-7 (2017)

64. P.A.M. Dirac, The quantum theory of emission and absorption of radiation. Proc. R. Soc. Lond.
A 114, 243–265 (1927)



Higher Order Quantum
Superintegrability: A New “Painlevé
Conjecture”

Higher Order Quantum Superintegrability

Ian Marquette and Pavel Winternitz

Abstract We review recent results on superintegrable quantum systems in a two-
dimensional Euclidean space with the following properties. They are integrable
because they allow the separation of variables in Cartesian coordinates and hence
allow a specific integral of motion that is a second order polynomial in the momenta.
Moreover, they are superintegrable because they allow an additional integral of order
N > 2. Two types of such superintegrable potentials exist. The first type consists
of “standard potentials” that satisfy linear differential equations. The second type
consists of “exotic potentials” that satisfy nonlinear equations. For N = 3, 4, and
5 these equations have the Painlevé property. We conjecture that this is true for all
N ≥ 3. The two integrals X and Y commute with the Hamiltonian, but not with
each other. Together they generate a polynomial algebra (for any N ) of integrals of
motion. We show how this algebra can be used to calculate the energy spectrum and
the wave functions.

Keywords Superintegrable systems · Painlevé transcendents · Polynomial
algebras · Exact solvability · Higher order integrals · Chazy class

PACS 03.65.Fd

I. Marquette (�)
School of Mathematics and Physics, The University of Queensland, Brisbane, St-Lucia, QLD,
Australia
e-mail: i.marquette@uq.edu.au

P. Winternitz
Centre de recherches mathématiques et Département de Mathématiques et de Statistique,
Université de Montréal, Montréal, QC, Canada
e-mail: wintern@CRM.UMontreal.CA

© Springer Nature Switzerland AG 2019
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1 Introduction

Let us first consider a classical system in an n-dimensional Riemannian space with
Hamiltonian

H =
n∑

i,k=1
j,k≥0

gik(x)pipk + V (x) , x ∈ R
n. (1)

The system is called integrable (or Liouville integrable) if it allows n − 1 Poisson
commuting integrals of motion (in addition to H )

Xa = fa(x,p) , a = 1, . . . , n − 1,

dXa

dt
= {H,Xa}p = 0 , {Xa,Xb}p = 0, (2)

where {, }p is the Poisson bracket, and pi are the momenta canonically conjugate to
the coordinates xi .

This system is superintegrable if it allows further integrals

Yb = fb(x,p) , b = 1, . . . , k 1 ≤ k ≤ n − 1,

dYb

dt
= {H,Yb}p = 0 . (3)

In addition, the integrals must satisfy the following requirements:

1. The integrals H,Xa, Yb are well-defined functions on phase space, i.e., poly-
nomials or convergent power series on phase space (or an open submanifold of
phase space).

2. The integrals H,Xa are in involution, i.e., Poisson commute as indicated in (2).
The integrals Yb Poisson commute with H but not necessarily with each other
nor with Xa .

3. The entire set of integrals is functionally independent, i.e., the Jacobian matrix
satisfies

rank
∂(H,X1, . . . , Xn−1, Y1, . . . , Yk)

∂(x1, . . . , xn, p1, . . . , pn)
= n + k. (4)

In quantum mechanics we define integrability and superintegrability in the same
way; however, in this case, H,Xa , and Yb are operators. The condition on the
integrals of motion must also be modified, e.g., as follows:

1. H,Xa , and Yb are well-defined Hermitian operators in the enveloping algebra of
the Heisenberg algebra Hn ∼ {x,p, h̄} or some generalization thereof.

2. The integrals satisfy the Lie bracket relations

[H,Xa] = [H,Yb] = 0 , [Xi,Xk] = 0. (5)
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3. No polynomial in the operators H,Xa, Yb formed entirely using Lie anticommu-
tators (i.e., Jordan polynomials) should vanish identically.

The two best known superintegrable systems are the Kepler-Coulomb system
with potential V (r) = α

r
and the isotropic harmonic oscillator V (r) = αr2

[10, 32, 75, 84]. In both cases the integrals Xa correspond to angular momentum,
the additional integrals Ya to the Laplace–Runge–Lenz vector for V (r) = α

r
and

to the quadrupole tensor Tik = pipk + αxixk , for V (r) = βr2. No further
ones were discovered until a 1940 paper by Jauch and Hill [49] on the rational
anisotropic harmonic oscillator V (x) = α

∑n
i=1 nix

2
i , ni ∈ Z. A systematic search

for superintegrable systems was started in 1965 [33, 58, 100] and a real proliferation
of them was observed during the last few years [74]. This research program
remains very active [8, 16, 17, 25, 27–31, 45–47, 54, 57, 59–61, 78, 79, 85, 87, 90].
The search has also been extended to systems with spin, magnetic fields, and
monopoles. Many families of superintegrable systems have been constructed using
combinations of approaches such as the co-algebra [6, 7, 91] and the recurrence
method [9, 52, 64, 66, 74]. Let us just list some of the reasons why superintegrable
systems are interesting both in classical and quantum physics.

1. In classical mechanics, superintegrability restricts trajectories to an n− k dimen-
sional subspace of phase space [76]. For k = n−1 (maximal superintegrability),
this implies that all finite trajectories are closed and motion is periodic.

2. Moreover, at least in principle, the trajectories can be calculated without any
calculus.

3. Bertrand’s theorem states that the only spherically symmetric potentials V (r) for

which all bounded trajectories are closed are
α

r
and αr2 [11, 38]; hence, no other

maximally superintegrable systems are spherically symmetric.
4. The algebra of integrals of motion {H,Xa, Yb} is a non-Abelian and interesting

one. Usually it is a finitely generated polynomial algebra, only exceptionally a
finite dimensional Lie algebra. In the special case of quadratic superintegrability
(all integrals of motion are at most quadratic polynomials in the moment), second
order integrability is related to separation of variables in the Hamilton–Jacobi
equation.

In quantum mechanics,

1. Superintegrability leads to an additional degeneracy of energy levels, sometimes
called “accidental degeneracy.” The term was coined by Fock [32] and used by
Moshinsky and Smirnov [75], though the point of their studies was to show
that this degeneracy is certainly no accident. Quadratic integrability is related
to separation of variables to the corresponding Schrodinger equation. Quadratic
superintegrability implies multiseparability of the Schrodinger equation.

2. A conjecture, born out by all known examples, is that all maximally superinte-
grable systems are exactly solvable [94]. If the conjecture is true, then the energy
levels can be calculated algebraically. The wave functions are polynomials (in
appropriately chosen variables) multiplied by some overall gauge factor.
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3. The non-Abelian polynomial algebra of integrals of motion has been obtained
for various models [12, 26–28, 35–37, 41, 45–47, 54, 56, 57]. In many cases
rank polynomial algebras. They provide energy spectra and information on wave
functions via Casimir operators and representation theory. Moreover, it has been
demonstrated how Inonu–Wigner and more generally Bocher contractions of
quadratic algebras play a role [28, 54] in connecting all quadratically superin-
tegrable models in conformally flat spaces. Interesting relations exist between
superintegrability and supersymmetry in quantum mechanics [64] and even more
generally other types of operator algebras appear [71].

4. Relation to special function theory: multivariable orthogonal polynomials, new
“nonclassical” orthogonal polynomials, Askey–Wilson classification [54, 98],
and exceptional orthogonal polynomials [39, 40, 65, 89].

The theory of superintegrable systems has also been formulated in the context
of Lie theory and generalized symmetries [77, 93]. As a comment, let us mention
that superintegrability has also been called non-Abelian integrability. From this
point of view, infinite dimensional integrable systems (soliton systems) described,
e.g., by the Korteweg–de-Vries equation, the nonlinear Schrödinger equation,
the Kadomtsev–Petviashvili equation, etc. are actually superintegrable [80–82].
Indeed, the generalized symmetries of these equations form infinite dimensional
non-Abelian algebras (the Orlov–Shulman symmetries) with infinite dimensional
Abelian subalgebras of commuting flows. There is another connection between
superintegrable systems in quantum mechanics and soliton theory [1], namely the
important role of the Painlevé property and Painlevé transcendents (of second and
higher order) in both.

The paper is organized as follows: In Sect. 2, we present the case of second
order superintegrable systems in two-dimensional Euclidean space. In Sect. 3, we
present a summary of results for integrals of motion of order N in E2. In Sect. 4,
we review the case of N = 4 with exotic potentials and separable in Cartesian
coordinates and present the connection with the Chazy class of equations. We
present a summary of the classification of exotic potentials with fourth order
integrals separable in Cartesian coordinates in Sect. 5. Section 6 is devoted to a
discussion of the algebraic derivation of the spectrum using a cubic algebra. In
Sect. 7 we discuss the connection with supersymmetric quantum mechanics.

2 Second Order Superintegrability

Let us consider the Hamiltonian (1) in the Euclidian space E2 and search for second
order integrals of motion [33, 74, 100]. We have

H = 1

2

(
p2

1 + p2
2

) + V (x1, x2), X =
2∑

j+k=0

{
fjk(x1, x2), p

j

1p
k
2

}
, (6)
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where j, k ∈ Z ≥ 0 and {, } is the anti-commutator. In the quantum case we have

pj = −ih̄
∂

∂xj
, L3 = x1p2 − x2p1. (7)

The commutativity condition [H,X] = 0 implies that the even terms j + k = 0, 2
and odd terms j + k = 1 in X commute with H separately. Hence we can, with
no loss of generality, set f10 = f01 = 0. Further we find that the leading (second
order) term in X lies in the enveloping algebra of the Euclidian algebra e(2). Thus
we obtain

X = aL2
3 + b1(L3p1 + p1L3) + b2(L3p2 + p2L3) + c1(p

2
1 − p2

2) (8)

+2c2p1p2 + φ(x1, x2),

where a, bi, ci are constants. The terms c0(p
2
1 + p2

2) have been removed by linear
combinations with the Hamiltonian.

The function φ(x1, x2) must satisfy the determining equations

φx1 = −2(ax2
2 + 2b1x2 + c1)Vx1 + 2(ax1x2 + b1x1 − b2x2 − c2)Vx2

φx2 = −2(ax1x2 + b1x1 − b2x2 − c2)Vx1 + 2(−ax2
1 + 2b2x1 + c1)Vx2 . (9)

The compatibility condition φx1x2 = φx2x1 implies

(−ax1x2 − b1x1 + b2x2 + c2)(Vx1x1 − Vx2x2)

−(a(x2
1 + x2

2) + 2b1x1 + 2b2x2 + 2c1)Vx1x1

−(ax2 + b1)Vx1 + 3(ax1 − b2)Vx2 = 0. (10)

Equation (10) is exactly the same equation that we would have obtained if we
had required that the potential should allow the separation of variables in the
Schrödinger equation in one of the coordinate systems in which the Helmholtz
equation allows separation (V (x1, x2) = 0 in (6)). Another important observation
is that (9) and (10) do not involve the Planck constant. Indeed, if we consider the
classical functions H and X in (6) and require that they Poisson commute, we arrive
at exactly the same conclusions and to Eqs. (9) and (10). Thus for quadratic inte-
grability (and superintegrability) the potentials and integrals of motion coincide in
classical and quantum mechanics (up to a possible symmetrization of the integrals).
The Hamiltonian (1) is form-invariant under Euclidian transformations, so we can
classify the integrals X into equivalence classes under rotations, translations, and
linear combinations with H . There are two invariants in the space of parameters
a, bi, ci , namely

I1 = a, I2 = (2ac1 − b2
1 + b2

2)
2 + 4(ac2 − b1b2)

2. (11)
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Solving (6) for different values of I1 and I2 we obtain

I1 = I2 = 0 VC = f1(x1) + f2(x2)

I1 = 1, I2 = 0 VR = f (r) + 1

r2 g(φ) x1 = r cosφ, x2 = r sinφ

I1 = 0, I2 = 1 VP = f (ξ) + g(η)

ξ2 + η2
x1 = ξ2 − η2

2
, x2 = ξη

I1 = 1, I2 = l2 �= 0 VE = f (σ) + g(η)

cos2 σ − cosh2 ρ

x1 = l cosh ρ cos σ
x2 = l sinh ρ sin σ
0 < l < ∞.

(12)

We see that VC, VR, VP , and VE correspond to separation of variables in Cartesian,
polar, parabolic, and elliptic coordinates, respectively, and that second order inte-
grability (in E2) is equivalent to the separation of variables in the Hamilton–Jacobi
and the Schrodinger equation. For second order superintegrability, two integrals of
the form (9) exist and the Hamiltonian separates in at least two coordinate systems.
Four three-parameter families of superintegrable systems exist, namely

VI = α(x2 + y2) + β

x2 + γ

y2 , VII = α(x2 + 4y2) + β

x2 + γy

VIII = α

r
+ 1

r2

(
β

cos2 φ
2

+ γ

sin2 φ
2

)
, VIV = α

r
+ 1√

r

(
β cos

φ

2
+ γ sin

φ

2

)
.

(13)

The classical trajectories, quantum energy levels, and wave functions for all of
these systems are known. The potentials VI and VII are isospectral deformations
of the isotropic and an anisotropic harmonic oscillator, respectively, whereas VIII
and VIV are isospectral deformations of the Kepler-Coulomb potential. In n-
dimensional space En, a set of n commuting second order integrals corresponds to a
separable coordinate system. All of the above results on quadratic superintegrability
have been generalized to arbitrary dimensions, to spaces of constant curvature, and
to other real and complex spaces [51, 53, 73, 74].

3 Summary of Results for Integrals of Motion of Order
N in E2

In quantum mechanics on two-dimensional Euclidean space E2 the most general
N -th order integral has the form

X = 1

2

[N2 ]∑
l=0

N−2l∑
j=0

{fj,2l , pj1pN−j−2l
2 }, (14)
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where fj,2l are real functions of x,y and we set fj,2l = 0 for j, l < 0 or j > N−2l.
The brackets {, } denote a symmetrization. In classical mechanics the brackets are
inessential. The determining equations following from the commutativity relation
[H,X] = 0 were obtained in [88] for arbitrary N ≥ 2, both in the classical and
quantum cases. The equations are quite complicated but completely explicit.

A priori the Lie or Poisson commutator [H,X] is a polynomial of order N +1 in
the components of the momenta pi . The terms of order N + 1 are linear and do not
involve the potential V (x, y). All lower order terms are nonlinear since they involve
products of the unknown potential and the unknown coefficients fj,2l .

An analysis of the highest and second to highest order determining equations
provides several important results.

1. Even and odd parity terms in X commute with H separately, so all terms in (14)
have the same parity (this is already built into Eq. (14)).

2. The leading terms in X are polynomials of order N in the enveloping algebra of
the Euclidean Lie algebra, i.e.,

X = XL + l.o.t (15)

XL = 1

2

∑
0≤m+n≤N

AN−m−n,m,n{LN−m−n
3 , pm1 p

n
2 },

where the coefficient AN−m−n,m,n are real constants. Indeed the leading terms
are obtained for l = 0 in (14) and are polynomials

fj0 =
N−j∑
n=0

j∑
m=0

(
N − n − m

j − m

)
AN−n−m,m,nx

N−j−m(−y)j−m. (16)

3. The set of determining equations fj2 does involve the potential and is nonlinear.
However, the equations are in general incompatible. A compatibility condition
for arbitrary N is the linear PDE

N−1∑
j=0

∂
N−1−j
x ∂

j
y (−1)j [(j + 1)fj+1,0∂xV + (N − j)fj0∂yV ] = 0. (17)

This is a linear PDE for V alone, since the coefficients fj0 are already known in
terms of the constants AN−m−n,m,n. Other compatibility condition exists, but they
are nonlinear PDEs for the potential V (x, y) and are less useful than (17).

For N = 2 the condition (17) reduces to the condition (10) and provides the
connection between second order integrability and the separation of variables.

For N ≥ 3 Eq. (17) is also the starting point for all further studies. Right from
the beginning we distinguish two types of integrable potentials:

1. Standard potentials. For these the linear compatibility condition LCC (17) is
satisfied nontrivially. For N = 2 all integrable potentials are standard.
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2. Exotic potentials. These exist for N ≥ 3 and for them the LCC is satisfied triv-
ially, i.e., all coefficients AN−n−m,m,n that figure in the LCC vanish identically.
Surprisingly that does not imply that the integral X vanishes; it does however
greatly simplify.

Solving the remaining nonlinear PDEs is still a formidable task for any N ≥ 3,
especially in quantum mechanics. Instead of attempting this task we turn to a simpler
problem, namely construct superintegrable systems in E2 with two independent
integrals of motion X and Y , where X is of first or second order and Y is of the
order N . The integrals X implies that V (x, y) has one of the form given in (12).
The potential in (12) depends on two arbitrary functions of one variable. Hence
the LCC (17) is no longer a PDE but reduces to one or several ODEs. The most
interesting cases occur when the potential has the form VC and VR of (12), i.e.,
allows separation in Cartesian [3, 42, 43, 62, 63, 68–70, 92, 99] or polar coordinates
[29–31, 86, 95–97]. Let us now turn to the example of exotic potentials allowing
the separation of variables in Cartesian coordinates and admitting an additional
independent integral of order N = 4.

4 Fourth Order Superintegrability and Exotic Potentials

The article [70] is part of a general program, the aim of which is to derive,
classify, and solve the equations of motion of superintegrable systems with integrals
of motion that are polynomials of finite order N in the components of linear
momentum. The search has been performed in two-dimensional Euclidean space.
The study of Hamiltonians with integrals of motion of order N = 3 was started in
[43] and a classification of Hamiltonians separable in Cartesian coordinates with an
integrals of order N = 3 was performed [42]. The obtained classical and quantum
Hamiltonian systems have been studied in [62, 63, 68, 69, 99]. In [70] the case
N = 4 was considered and all exotic potentials have been classified. The connection
with the Painlevé property and Chazy class of equations was also highlighted. Partial
results which consist in classifying all doubly exotic potentials were performed for
N = 5 [3]. The results are known for systems with integrals of arbitrary order N
[92] and anisotropic oscillator complemented by Painlevé transcendents [64]. In this
review we concentrate on superintegrable systems with Hamiltonians of the form

H = 1

2
(p2

1 + p2
2) + V (x, y), (18)

in two-dimensional Euclidean space E2. In classical mechanics, p1 and p2 are the
canonical momenta conjugate to the Cartesian coordinates x and y. In quantum
mechanics, we have pi and Li in Eq. (7).

The determining equations for fourth order classical and quantum integrals of
motion were derived earlier and they are a special case of N th order ones given in
[88]. In the quantum case, the integral is Y (4) = Y :
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Y =
∑

j+k+l=4

Ajkl

2
{Lj

3, p
k
1p

l
2} + 1

2
({g1(x, y), p

2
1} (19)

+ {g2(x, y), p1p2} + {g3(x, y), p
2
2}) + l(x, y),

where Ajkl are real constants, the brackets {., .} denote anti-commutators,
and the Hermitian operators p1, p2, and L3 are given in (7). The functions
g1(x, y), g2(x, y), g3(x, y), and l(x, y) are real and the operator Y is self-adjoint.
Equation (19) is also valid in classical mechanics where p1, p2 are the canonical
momenta conjugate to x and y, respectively (and the symmetrization becomes
irrelevant). The commutation relation [H,Y ] = 0 with H in (18) provides the
determining equations

g1,x = 4f1Vx + f2Vy, (20a)

g2,x + g1,y = 3f2Vx + 2f3Vy, (20b)

g3,x + g2,y = 2f3Vx + 3f4Vy, (20c)

g3,y = f4Vx + 4f5Vy. (20d)

These four equations are linear PDEs and involve four unknown functions
g1, g2, g3, V . Furthermore we have the following two further equations:

�x =2g1Vx + g2Vy + h̄2

4

(
(f2 + f4)Vxxy − 4(f1 − f5)Vxyy − (f2 + f4)Vyyy

+ (3f2,y − f5,x)Vxx − (13f1,y + f4,x)Vxy − 4(f2,y − f5,x)Vyy

− 2(6A400x
2 + 62A400y

2 + 3A301x − 29A310y + 9A220 + 3A202)Vx

+ 2(56A400xy − 13A310x + 13A301y − 3A211)Vy

)
, (21a)

�y =g2Vx + 2g3Vy + h̄2

4

(
− (f2 + f4)Vxxx + 4(f1 − f5)Vxxy + (f2 + f4)Vxyy

+ 4(f1,y − f4,x)Vxx − (f2,y + 13f5,x)Vxy − (f1,y − 3f4,x)Vyy

+ 2(56A400xy − 13A310x + 13A301y − 3A211)Vx

− 2(62A400x
2 + 6A400y

2 + 29A301x − 3A310y + 9A202 + 3A220)Vy

)
.

(21b)

The quantities fi, i = 1, 2, .., 5 are polynomials in x and y. They are obtained from
the highest order terms in the condition [H,Y ] = 0.
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These two nonlinear PDEs for l, g1, g2, g3, V will give nonlinear compatibility
condition. Explicitly for these polynomials we have

f1 = A400y
4 − A310y

3 + A220y
2 − A130y + A040

f2 = −4A400xy
3 − A301y

3 + 3A310xy
2 + A211y

2 − 2A220xy − A121y

+ A130x + A031

f3 = 6A400x
2y2 + 3A301xy

2 − 3A310x
2y + A202y

2 − 2A211xy + A220x
2

− A112y + +A121x + A022

f4 = −4A400yx
3 + A310x

3 − 3A301x
2y + A211x

2 − 2A202xy + A112x

− A103y + A013

f5 = A400x
4 + A301x

3 + A202x
2 + A103x + A004,

(22)

with 15 constants Ajkl . For a known potential the determining Eqs. (20) and (21)
form a set of six linear PDEs for the functions g1, g2, g3, and l. If V is not known,
we have a system of six nonlinear PDEs for gi, l, and V . In any case the four
equations (20) are a priori incompatible. The compatibility equation is a fourth order
linear PDE for the potential V (x, y) alone, namely

∂yyy(4f1Vx + f2Vy) − ∂xyy(3f2Vx + 2f3Vy) + ∂xxy(2f3Vx + 3f4Vy) (23)

−∂xxx(f4Vx + 4f5Vy) = 0.

This is a special case of the N th order linear compatibility equation (17). We see
that Eq. (23) does not contain the Planck constant and is hence the same in quantum
and classical mechanics (this is true for any N ). The difference between classical
and quantum mechanics manifests itself in the two equations (21). They greatly
simplify in the classical limit h̄ → 0. Further compatibility conditions on the
potential V (x, y) can be derived for the systems (20) and (21), they will however be
nonlinear. We will not go further into the problem of the fourth order integrability
of the Hamiltonian (18). Instead, we turn to the problem of superintegrability
formulated in Sect. 1.

4.1 Potentials Separable in Cartesian Coordinates

We shall now assume that the potential in the Hamiltonian (18) has the form

V (x, y) = V1(x) + V2(y). (24)
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This is equivalent to saying that a second order integral exists which can be taken in
the form

X = 1

2
(p2

1 − p2
2) + V1(x) − V2(y). (25)

Equivalently, we have two one-dimensional Hamiltonians

H1 = p2
1

2
+ V1(x), H2 = p2

2

2
+ V2(y). (26)

We are looking for a third integral of the form (19) satisfying the determining
equations (20) and (21). This means that we wish to find all potentials of the
form (24) that satisfy the linear compatibility condition (23). Once (24) is substi-
tuted, (23) is no longer a PDE and will split into a set of ODEs which we will solve
for V1(x) and V2(y).

The task thus is to determine and classify all potentials of the considered form
that allow the existence of at least one fourth order integral of motion. As in every
classification we must avoid triviality and redundancy. Since H1 and H2 of (26) are
integrals, we immediately obtain 3 “trivial” fourth order integrals, namely H 2

1 ,H
2
2 ,

and H1H2. The fourth order integral Y of Eq. (19) can be simplified by taking linear
combination with polynomials in the second order integrals H1 and H2 of (26):

Y → Y ′ = Y+a1H
2
1 +a2H

2
2 +a3H1H2+b1H1+b2H2+b0, ai, bi ∈ R. (27)

Using the constants a1, a2, and a3 we set

A004 = A040 = A022 = 0, (28)

in the integral Y we are searching for. At a later stage we will use the constants b0 ,
b1, and b2 to eliminate certain terms in g1, g2, g3, and l.

Substituting (24) into the compatibility condition (23), we obtain a linear
condition, relating the functions V1(x) and V2(y)

(−60A310 + 240yA400)V
′
1(x) + (−20A211 + 60yA301

− 60xA310 + 240xyA400)V
′′
1 (x) + (−5A112 + 10yA202 − 10xA211

+ 30xyA301 − 15x2A310 + 60x2yA400)V
(3)
1 (x) + (−A013 + yA103

− xA112 + 2xyA202 − x2A211 + 3x2yA301 − x3A310 + 4x3yA400)V
(4)
1 (x)

+ (−60A301 − 2140xA400)V
′
2(y) + (20A211 − 60yA301 + 60xA310

− 240xyA400)V
′′
2 (y) + (−5A121 + +10yA211 − 10xA220 − 15y2A301

+ 30xyA310 − 60xy2A400)V
(3)
2 (y) + (A031 − yA121 + xA130 + y2A211

− 2xyA220 − y3A301 + 3xy2A310 − 4xy3A400)V
(4)
2 (y) = 0.

(29)
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It should be stressed that this is no longer a PDE, since the unknown functions
V1(x) and V2(y) both depend on one variable only.

We differentiate (29) twice with respect to x and thus eliminate V2(y) from the
equation. The resulting equation for V1(x) splits into two linear ODEs (since the
coefficients contain terms proportional to y0, and y1), namely

210A310V
(3)
1 (x) + 42(A211 + 3A310x)V

(4)
1 (x) + 7(A112 + 2A211x

+ 3A310x
2)V

(5)
1 (x) + (A013 + A112x + A211x

2 + A310x
3)V

(6)
1 (x) = 0,

(30a)

840A400V
(3)
1 (x) + (126A301 + 504A400x)V

(4)
1 (x) + 14(A202 + 3A301x

+ 6A400x
2)V

(5)
1 (x) + (A103 + 2A202x + 3A301x

2 + 4A400x
3)V

(6)
1 (x) = 0.

(30b)

Similarly, differentiating (29) with respect to y we obtain two linear ODEs for
V2(y)

210A301V
(3)
2 (y) − 42(A211 − 3A301y)V

(4)
2 (y) + 7(A121 − 2A211y

+ 3A301y
2)V

(5)
2 (y) − (A031 − A121y + A211y

2 − A301y
3)V

(6)
2 (y) = 0,

(31a)

840A400V
(3)
2 (y) − (126A310 − 504A400y)V

(4)
2 (y) + 14(A220 − 3A310y

+ 6A400y
2)V

(5)
2 (y) − (A130 − 2A220y + 3A310y

2 − 4A400y
3)V

(6)
2 (y) = 0.

(31b)

The compatibility condition �xy = �yx for (21a) and (21b) implies

− g2V
′′
1 (x) + g2V

′′
2 (y) + (2g1y − g2x)V

′
1(x) + (g2y − 2g3x)V

′
2(y)

+ h̄2

4

(
(f2 + f4)(V

(4)
1 −V

(4)
2 ) + (f2x−4f ′

1(y))V
(3)
1 + (4f ′

5(x) − 5f2y − f4y)V
(3)
2

+ (3f2yy + 4f4xx + 6A211 − 26A301y + 26A310x − 112A400xy)V
′′
1

− (4f2yy + 3f4xx + 6A211 − 26A301y + 26A310x − 112A400xy)V
′′
2

+ (84A310 − 360A400y)V
′
1 + (84A310 + 360A400y)V

′
2

)
= 0. (32)

This equation, contrary to (30) and (31), is nonlinear since it still involves the
unknown functions g1, g2, and g3 (in addition to V1(x) and V2(y)).
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4.2 ODEs with the Painlevé Property

In order to study exotic potentials V (x, y) = V1(x) + V2(y), allowing fourth order
integrals of motion in quantum mechanics we must first recall some known results
on Painlevé type equations [34, 48, 83]. Painlevé and Gambier showed that 50
classes of second order ODE exist that are single valued about their singular points.
Six of them are “‘irreducible,” i.e., cannot be solved in terms of linear ODEs or
elliptic functions, namely:

P ′′
1 (z) = 6P 2

1 (z) + z,

P ′′
2 (z) = 2P2(z)

3 + zP2(z) + α,

P3(z)
′′ = P ′

3(z)
2

P3(z)
− P ′

3(z)

z
+ αP 2

3 (z) + β

z
+ γP 3

3 (z) + δ

P3(z)
,

P4(z)
′′ = P

′2
4 (z)

2P4(z)
+ 3

2
P 3

4 (z) + 4zP 2
4 (z) + 2(z2 − α)P4(z) + β

P4(z)
,

P ′′
5 (z) =

(
1

2P5(z)
+ 1

P5(z) − 1

)
P ′

5(z)
2 − 1

z
P ′

5(z)

+ (P5(z) − 1)2

z2

(
αP 2

5 (z) + β

P5(z)

)
+ γP5(z)

z
+ δP5(z)(P5(z) + 1)

P5(z) − 1

P ′′
6 (z) = 1

2

(
1

P6(z)
+ 1

P6(z) − 1
+ 1

P6(z) − z

)
P ′

6(z)
2

−
(

1

z
+ 1

z − 1
+ 1

P6(z) − z

)
P ′

6(z) + P6(z)(P6(z) − 1)(P6(z) − z)

z2(z − 1)2

×
(
γ1 + γ2z

P6(z)2
+ γ3(z − 1)

(P6(z) − 1)2
+ γ4z(z − 1)

(P6(z) − z)2

)
.

(33)

An ODE has the Painlevé property if its general solution has no movable branch
points (i.e., branch points whose location depends on one or more constants of
integration). For a review and further developments see [19, 20, 44, 55]. Passing the
so called Painlevé [2] test is a necessary condition for having the Painlevé property.
We shall need it only for equations of the form

W(n) = F(y,W,W ′,W ′′, . . . ,W(n−1)), (34)

where F is polynomial in W,W ′,W ′′, . . . ,W(n−1) and rational in y.
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The general solution must have the form of a Laurent series with a finite number
of negative power terms

W = Σ∞
k=0dk(y − y0)

k+p, d0 �= 0, (35)

satisfying the requirements:

1. The constant p is a negative integer.
2. The coefficients dk satisfy a recursion relation of the form

P(k)dk = φk(y0, d0, d1, . . . , dk−1),

where P(k) is a polynomial that has n − 1 distinct nonnegative integer zeros.
The values of kj for which we have P(kj ) = 0 are called resonances and the
values of dk for k = kj are free parameters. Together with the position y0 of the
singularity we thus have n free parameters in the general solution (35) of the n-th
order ODE (34).

3. A compatibility condition, also called the resonance condition,

φk(y0, d0, d1, . . . , dk−1) = 0,

must be satisfied identically in y0 and in the values of dkj for all kj ; j =
1, 2, . . . , n − 1.

This test is a generalization of the Frobenius method used to study fixed
singularities of linear ODEs. Passing the Painlevé test is a necessary condition only.
To make it sufficient one would have to prove that the series (35) has a nonzero
radius of convergence and that the n free parameters can be used to satisfy arbitrary
initial conditions. A more practical procedure that we shall adopt is the following.
Once a nonlinear ODE passes the Painlevé test one can try to integrate it explicitly.

Let us first investigate the cases that may lead to “exotic potentials,” that is,
potentials which do not satisfy any linear differential equations. That means that
either (30) or (31) (or both) must be satisfied trivially. The linear ODEs (30) are
satisfied identically if we have

A400 = A310 = A301 = A211 = A202 = A112 = A103 = A013 = 0. (36)

The linear ODEs (31) are satisfied identically if we have

A400 = A310 = A301 = A211 = A220 = A121 = A130 = A031 = 0. (37)

If (36) and (37) both hold, then the only fourth order integrals are the trivial
ones H 2

1 ,H
2
2 , and H1H2. Their existence does not imply superintegrability, it is

simply a consequence of second order integrability. In other words, no fourth order
superintegrable systems, satisfying (36) and (37) simultaneously, exist. This means
that at most one of the functions V1(x) or V2(y) can be “exotic.” The other one will
be a solution of a linear ODE. For third order integrals both V1(x) and V2(y) can be
exotic.
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Let us consider the case when (37) is valid and (36) not. The leading-order term
for the nontrivial fourth order integral has the form

YL = A202{L2
3, p

2
2} + A112{L3, p1p

2
2} + A103{L3, p

3
2} + 2A013p1p

3
2. (38)

We proceed in several steps.

1. Let us classify the integrals (38) under translations (they leave the form of the
potential (24) invariant). The three classes are

I. A202 �= 0, A112 = A103 = 0.
I I. A202 = 0, A2

112 + A2
103 �= 0, A013 = 0,

I Ia. A103 �= 0,
I Ib. A103 = 0, A112 �= 0.

I I I. A202 = A112 = A103 = 0, A013 �= 0.

(39)

2. Let us solve the linear ODE for V (x)
The functions fi in (22) reduce to

f1 = f2 = 0,

f3(y) = A202y
2 − A112y,

f4(x, y) = −2A202xy + A112x − A103y + A013,

f5(x) = A202x
2 + A103x. (40)

We obtain two equations for V1(x), namely

5A112V
(3)
1 (x) + (A013 + A112x)V

(4)
1 (x) = 0, (41a)

10A202V
(3)
1 (x) + (A103 + 2A202x)V

(4)
1 (x) = 0. (41b)

(They replace Eq. (30)). These two equations imply V
(3)
1 = V

(4)
1 = 0 unless we

have

A112A103 − 2A202A013 = 0. (42)

The result is that V1(x) can have one of the following forms: V1(x) =
0, ax, ax2, a

x2 + bx + cx2.
3. Let us solve the nonlinear ODEs for V2(y). We first introduce an auxiliary

function:

W(y) =
ˆ

V2(y)dy,

W̃ ⇔ W + αy + β



118 I. Marquette and P. Winternitz

Case I A202 �= 0, A112 = 0;YL = A202{L2
3, p

2
2}.

Let A202 = 1. We obtain

1

2
h̄2yW(4) + 2h̄2W(3) − 6yW ′W ′′ − 2WW ′′ + 8

3
c2y

3W ′′ − 8W ′2

+ 16c2y
2W ′ + 16c2yW − 16

3
c2

2y
4 + k1 = 0, (43)

integrating once we get

h̄2y2W(3) + 2h̄2yW ′′−6y2W ′2 − 4yWW ′ +
(

16

3
c2y

4 − 2h̄2
)
W ′ + 2W 2

+ 32

3
c2y

3W − 16

9
c2

2y
6 + k1y

2 + k2 = 0. (44)

Equation (44) passes the Painlevé test. Substituting the Laurent series (35)
into (44), we find p = −1. The resonances are r = 1 and r = 6, and we
obtain d0 = −h̄2. The constants d1 and d6 are arbitrary, as they should be. We
now proceed to integrate (44). Using the results of Chazy, Bureau, Cosgrove, and
Scoufis [13, 14, 18, 21–24].

By the following transformation:

Y = y2, U(Y ) = − y

2h̄2W(y) + c2

6h̄2 y
4 + 1

16
,

we transform (44) to

Y 2U(3) = −2(U ′(3YU ′ − 2U) − c2

h̄2 Y (YU
′ − U) + k3Y + k4) − YU ′′, (45)

where k3 = −2k1−12c2h̄
2

64h̄4 , k4 = −k2
32h̄4 . Equation (45) is a special case of the Chazy

class I equation. It admits the first integral

Y 2U ′′2 = −4(U ′2(YU ′ − U) − c2

2h̄2 (YU
′ − U)2 + k3(YU

′ − U) + k4U
′ + k5),

(46)

where k5 is the integration constant. The equation is of the Chazy canonical form
SD-I .b.

When c2 and k3 are both nonzero the solution is

U = 1

4

(
1

P5

(
YP ′

5

P5 − 1
− P5

)2

− (1 − √
2α)2(P5 − 1) − 2β

P5 − 1

P5
+ γ Y

P5 + 1

P5 − 1

+2δ
Y 2P5

(P5 − 1)2

)
,
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U ′ = − Y

4P5(P5 − 1)

(
P ′

5−
√

2α
P5(P5 − 1)

Y

)2

− β

2Y

P5 − 1

P5
− 1

2
δY

P5

P5 − 1

− 1

4
γ, (47)

where P5 = P5(Y );Y = y2, satisfies the fifth Painlevé equation

P ′′
5 =

(
1

2P5
+ 1

P5 − 1

)
P ′2

5 − 1

Y
P ′

5 + (P5 − 1)2

Y 2

(
αP5 + β

P5

)
+ γ

P5

Y

+ δ
P5(P5 + 1)

P5 − 1
,

with

c2 = −h̄2δ, k3 = −1

4

(
1

4
γ 2 + 2βδ − δ(1 − √

2α)2
)
,

k4 = −1

4

(
βγ + 1

2
γ (1 − √

2α)2
)
,

k5 = − 1

32
(γ 2((1 − √

2α)2 − 2β) − δ((1 − √
2α)2 + 2β)2).

The solution for the potential up to a constant is

V (x, y) = c−2

x2
− δh̄2(x2 + y2)

+ h̄2
(

γ

P5 − 1
+ 1

y2
(P5 − 1)

(√
2α + α(2P5 − 1) + β

P5

)

+ y2

(
P ′2

5

2P5
+ δP5

)
(2P5 − 1)

(P5 − 1)2
− P ′

5

P5 − 1
− 2

√
2αP ′

5

)
+ 3h̄2

8y2
.

(48)

The list of exotic superintegrable quantum potentials in quantum case that admit
one second order Cartesian and one fourth order integral is given below. We also
give their fourth order integrals by listing the leading terms YL and the functions
gi(x, y); i = 1, 2, 3; and l(x, y). Each of the exotic potentials has a nonexotic part
that comes from V1(x). By construction V2(y) is exotic; however, in four cases a
nonexotic part proportional to y2 splits off from V2(y) and can be combined with
an x2 term in V1(x). We order the final list below in such a manner that the first two

potentials are isotropic harmonic oscillators (possibly with an additional
1

x2
term)
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with an added exotic part. The next two are 2 : 1 anisotropic harmonic oscillators,
plus an exotic part (in y).

Based on previous experience, we expect these harmonic terms to determine the

bound state spectrum. The remaining eight cases have either
a

x2 or c1x as their

nonexotic terms and we expect the energy spectrum to be continuous.
These results also highlight how the study of higher order Painlevé equations

plays a role in the classification of superintegrable systems with higher order
integrals of motion. Classes of such equations of third, fourth, and fifth order have
been studied by Chazy, Bureau, Cosgrove, and Scoufis [13, 14, 18, 21–24].

5 Summary of the Classification of Exotic Potentials with
Fourth Order Integrals Separable in Cartesian
Coordinates

In this section we give a list of some of these exotic potentials and their fourth order
integrals. There are 12 cases that are divided into three types. We present one case
among each of them.

1. Isotropic harmonic oscillator: Q1
1 : (YL = {L2

3, p
2
2})

V (x, y) = −δh̄2(x2 + y2) + a

x2

+ h̄2
(

γ

P5 − 1
+ 1

y2 (P5 − 1)

(√
2α + α(2P5 − 1) + β

P5

)
(49)

+ y2

(
P ′2

5

2P5
+ δP5

)
(2P5 − 1)

(P5 − 1)2
− P ′

5

P5 − 1
− 2

√
2αP ′

5

)
+ 3h̄2

8y2 .

g1(x, y) = 2y

(
yW ′ + W + 1

3
h̄2δy3

)
,

g2(x, y) = −2x

(
3yW ′ + W + 4

3
h̄2δy3

)

l(x, y) = h̄2x2
(

1

4
yW(4) + W(3)

)
− x2(3yW ′ + W)W ′′

− h̄2y

(
4

3
δx2y2 + 3

2

)
W ′′ +

(
4
( a

x2 − h̄2δx2
)
y2 − 3h̄2

)
W ′

+ 4y
( a

x2 − h̄2δx2
)
W + 4a

3x2 h̄
2δy4 − 2h̄2δx2

(
2

3
h̄2δy4 − h̄2

)

− 2h̄4δy2.
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W(y) = −h̄2

2y

(
1

P5

(
YP ′

5

P5 − 1
− P5

)2

− (1 − √
2α)2(P5 − 1) − 2β

P5 − 1

P5

+γ Y
P5 + 1

P5 − 1
+ 2δY 2P5

(P5 − 1)2

)
+ h̄2

8y
− δh̄2

3
y3,

where P5 = P5(Y ); Y = y2.
2. Anisotropic harmonic oscillator: Q1

2 : (YL = {L3, p1p
2
2})

V (x, y) = c2(x
2 + 4y2) + a

x2 − 4 4
√

2c3
2h̄

2yP4 + √
2c2h̄(εP

′
4 + P 2

4 ) (50)

g1(x, y) = −2yW ′ − W + 4

3
c2y

3, g2(x, y) = 3xW ′ − 4c2xy
2, g3(x, y)

= 2c2x
2y − 2a

y

x2 ,

l(x, y) = −1

8
h̄2x2W(4) + 3

2
x2W ′W ′′ −

(
2c2x

2y2 − 3

4
h̄2
)
W ′′

− 2
(

2a
y

x2 + 2c2x
2y
)
W ′ − 2

( a

x2 + c2x
2
)
W

+ 8

3
c2y

3
(
c2x

2 + a

x2

)
− 2c2h̄

2y.

W(y) = 4
√

8c2h̄
6
(

1

8P4
P ′2

4 − 1

8
P 3

4 − 1

2
YP 2

4 − 1

2
(Y 2 − α + ε)P4

+ 1

3
(α − ε)Y + β

4P4

)
+ 4c2

3
y3,

where P4 = P4(Y );Y = − 4
√

8c2
h̄2 y.

3. Potentials with no confining (harmonic oscillator) term: eight cases occur
involving P1, P2, P3, or elliptic functions.

For confining potentials the potentials involve P4 and P5. (P6 appears in the case
of separation in polar coordinates.)
Q1

3 : (YL = {L2
3, p

2
2})

V (x, y) = a

x2
+ h̄2

2

(
√
αP ′

3 + 3

4
α(P3)

2 + δ

4P 2
3

+ βP3

2y
+ γ

2yP3

− P ′
3

2yP3
+ P ′2

3

4P 2
3

)
. (51)

g1(x, y) = 2y2W ′ + 2yW, g2(x, y) = −6xyW ′ − 2xW,



122 I. Marquette and P. Winternitz

g3(x, y) = 4x2W ′ + 2a
y2

x2
,

l(x, y) = h̄2x2
(

1

4
yW(4) + W(3)

)
− x2(3yW ′ + W)W ′′ − 3

2
h̄2yW ′′

+
(

4
a

x2 y
2 − 3h̄2

)
W ′ + 4

a

x2 yW.

W(y) = − h̄2

2y

(
1

4

(
y
P ′

3

P3
− 1

)2

− 1

16
αy2P 2

3 − 1

8
(β + 2

√
α)yP3

+ γ

8P3
y + δ

16P 2
3

y2
)

+ h̄2

8y
.

The potentials Q2
1,Q

6
3, and Q7

3 are in the list of quantum potentials obtained by
Gravel [42], respectively, Q18,Q19,Q21. Among the integrals of motion we have
{L2

3, p
2
2} and {L3, p

3
2}. These cannot be obtained by commuting a third and a second

order integral. Let us mention that the classical limit h̄ → 0 cannot be taken in
the expressions for the potentials like (49), (50), and (51). The limit is singular
and must be taken in the original determining equations. In particular for N =
4 in Eq. (21) (the other determining equation (20) and their linear compatibility
equation (23) do not contain h̄). In the potentialQ1

1, the isotropic harmonic oscillator
term appears with the coefficient −δh̄2. In Q1

2 the coefficient of the anisotropic
harmonic oscillator is c2. We do not attach any importance to this fact since both c2
and δ are arbitrary real constants (h̄2 could be absorbed into δ). Moreover, as stated
above the limit h̄ → 0 is not allowed in these formulas.

For a complete list of exotic potentials of the form V (x, y) = V1(x) + V2(y)

with fourth order integrals we refer to the original article [70].
The results can be summed up as follows:

1. For N = 4 one of the two Va(a = 1, 2) must be standard, i.e., satisfy a linear
ODE. We choose V2(y) to be exotic.

2. The exotic part satisfies a nonlinear ODE that not only passes the Painlevé test
but actually has the Painlevé property. Moreover V2(y) can always be expressed
in terms of either elliptic functions or one of the original Painlevé-Gambier
transcendents P1,. . . ,P5. The sixth transcendent does not occur. However the
sixth Painlevé transcendent P6 plays a crucial role when the potential allows
separation in polar coordinates instead of Cartesian ones [28–30].

3. The exotic potentials may have a nonexotic part that makes them confining. For
N = 4 this occurs in one of the three versions

V (x, y) = a(x2 + y2) + b

x2
+ c

y2
+ VE(y)

V (x, y) = a(x2 + 4y2) + VE(y)

V (x, y) = a(x2 + y2) + VE(y),



Higher Order Quantum Superintegrability: A New “Painlevé Conjecture” 123

where VE is expressed in terms of P4 or P5. The nonexotic parts in other cases are
nonconfining like

V = a

x
+ VE(y), V = ax + VE(y)

with VE(y) expressed in terms of P1, P2, P3, or an elliptic function. We expect the
confining potentials to correspond to a bound spectrum in quantum mechanics.

6 Example of Schrödinger Equation with Painlevé Potential

Let us consider the example of an exotic potential expressed in terms of P4.
The Hamiltonian and two integrals of motion in this case are [62, 63]

H = 1

2

[
p2

1 + p2
2 + ω2(x2 + y2)

] + VE(x)

A = p2
1 − p2

2 + ω2(x2 − y2) + VE(x)

B = 1

2

{
L3, p

2
1

} + 1

2

{
ω2

2
x2y − 3xy − 3yV ′

E), p1

}

− 1

ω2

{
h̄2

4
V ′′′
E + (−ω2x2 − 3VE)(ωx + V ′

E), p1

}
(52)

with

VE = ε
h̄ω

2
P ′

4

(√
ω

h̄
x

)
+ ωh̄

2
P 2

4

(√
ω

h̄
x

)

+ω
√
h̄ωxP4

(√
ω

h̄
x

)
+ h̄ω

3
(−α + ε), ε = ±1

P4 = P4

(√
ω

h̄
x, α, β

)
. (53)

The integrals of motion form a polynomial (cubic) algebra, satisfying

[A,B] = C [A,C] = 16ω2h̄2B

[B,C] = −2h̄2A3 − 6h̄2HA2 + 8h̄2H 3

+ω2h̄4

3
(4α2 − 20 − 6β − 8εα)A − 8ω2h̄4H

+ h̄5ω3

27
(−8α3 − 24α − 36αβ + 24εα2 + 8ε + 36εβ), (54)
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K = −16h̄2H 4 + 4h̄4ω2

3
(4α2 − 8α + 4 − αβ)H 2

−4h̄5ω3

27
(8α3 − 24εα2 + 24α + 36αβ − 8ε − 36εβ)H

−4h̄6ω4

3
(4α − 8εα − 8 − 6β). (55)

The algebra has a Casimir operator that is a fourth order polynomial in
the Hamiltonian H (with constant coefficients). The representation theory of the
algebra (54) and its realization in terms of a deformed oscillator algebra is used
to calculate the energy spectrum and wave functions of the system. A connection
with “higher order supersymmetry” also gives the wave functions. One obtains three
series of states with energies

E1 = h̄ω
(
p + ε + 3

3
− α

3

)

E2 = h̄ω
(
p + −ε + 6

6
+ α

6
+
√−β

8

)
, β < 0

E3 = h̄ω
(
p + −ε + 6

6
+ α

6
−
√−β

8

)
, p = 0, 1, 2, 3, ... (56)

and 3 “zero modes,” all in terms of the Painlevé transcendent PIV .
It has been demonstrated that this construction may not provide the appropriate

number of degeneracies via algebraic approaches and these case are associated with
parameters of the fourth Painlevé transcendents related to exceptional orthogonal
polynomials. The connection has been established via generalized Hermite and
Okamoto polynomials [67]. Constructions involving other integrals and their higher
order polynomial algebras have been presented elsewhere [66]. It has been shown
how more complicated patterns of finite dimensional unitary representations can
provide the degeneracies in these cases [66].

7 SUSYQM Construction and Wave Functions

The wave functions can be calculated using another approach that is also in
essence algebraic. Supersymmetric quantum mechanics has been studied using
many approaches and the intertwining of differential operators can be traced back to
Darboux and Moutard [50]. Second order supersymmetric quantum mechanics has
been introduced in [4] and has been exploited to generate ladder operators of third
order [5, 15, 63, 64, 72].
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Let us present a construction using first and second order supersymmetry given
by the following intertwining relation:

H1q
† = q†(H2 + 2λ), H1M

† = M†H2. (57)

These relations correspond to a third order ladder operator

H1a
† = a†(H1 + 2λ), (58)

where a† and a are third order operators.

a† = q†M,a = M†q. (59)

Similarly

H2a
† = a†(H2 + 2λ), (60)

where a† and a are third order operators.

a† = Mq†, a = qM†. (61)

The explicit form is the following:

Hi = P 2
x

2
+ Vi(x),

q† =
√
h̄

2
∂ + W3(x),

q = −
√
h̄

2
∂ + W3(x),

M† =
(√

h̄

2
∂ + W1(x)

)(√
h̄

2
∂ + W2(x)

)
,

M =
(

−
√
h̄

2
∂ + W2(x)

)(
−
√
h̄

2
∂ + W1(x)

)
. (62)

The potentials V1 and V2 correspond up to an additive constant the one given by (53)
with ε = 1 and ε = −1. Moreover, the functions W1, W2, and W3 that appear in the
intertwining operators (or supercharges) are also expressed in terms of the fourth
Painlevé transcendent

W1,2 =
√
ω

8
P4

(√
ω

h̄
x

)
±
√
h̄

2
P ′

4

(√
ω

h̄
x

)
− 2

√−β

ω
,
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W3 =
√
ω

2
P4

(√
ω

h̄
x

)
− ω

2h̄
x. (63)

The spectrum is obtained for cases when normalizable zero modes of the annihila-
tion operator exist

aψ
(0)
k = 0.

The energy of the zero modes are for ε = 1 associated with the three solutions of
the cubic algebra

ψ0
a (x) = e

´√ 2
h̄
x
√

2
h̄
W3(x

′)dx′
,

ψ0
b (x) =

⎛
⎝
√

2

h̄
W2(x) −

√
2

h̄
W3(x)

⎞
⎠ e

− ´
√

2
h̄
x
√

2
h̄
W2(x

′)dx′
,

ψ0
c (x) =

⎛
⎝4

√−β

ω
+
⎛
⎝
√

2

h̄
W2(x) −

√
2

h̄
W3(x)

⎞
⎠

⎛
⎝
√

2

h̄
W1(x) +

√
2

h̄
W2(x)

⎞
⎠
⎞
⎠ e

− ´
√

2
h̄
x
√

2
h̄
W1(x

′)dx′
, (64)

with the corresponding zero modes for ε = −1

ψ0
a (x) =

⎛
⎝ω

h̄
(α − 1) − 2

√−β

ω
+
⎛
⎝
√

2

h̄
W1(x) +

√
2

h̄
W2(x)

⎞
⎠ ,

⎛
⎝
√

2

h̄
W1(x) −

√
2

h̄
W3(x)

⎞
⎠
⎞
⎠ e

´√ 2
h̄
x
√

2
h̄
W3(x

′)dx′
,

ψ0
b (x) = e

− ´
√

2
h̄
x
√

2
h̄
W2(x

′)dx′
,

ψ0
c (x) =

⎛
⎝
√

2

h̄
W1(x) +

√
2

h̄
W2(x)

⎞
⎠ e

− ´
√

2
h̄
x
√

2
h̄
W1(x

′)dx′
.

(65)

In both cases ε = 1 and ε = −1 the complete spectrum is recovered by acting
with the raising operators. In addition the raising ladder operators also admit zero
modes. However due to conflicting asymptotics we can have in total three, two, or
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one infinite sequence of levels. When a potential allows only one infinite sequence
of energies, this potential may also possess a singlet state or doublet states

a+ψ(x) = a−ψ(x) = 0, (a+)2ψ(x) = a−ψ(x) = 0. (66)

8 Conclusion

This review is devoted to superintegrable quantum systems with Hamiltonians of
the form (6) with a potential satisfying (24). They allow two integrals of motion
{X, Y } with X (of order 2) as in (25) and Y (of order N ) as in (14) and (15) (for
N = 4 see Eq. (19); for N arbitrary see Ref. [88]). So far the cases N = 3, 4, and 5
have been investigated in detail [3, 42, 43, 70, 71]. Some conclusions for general N
can be drawn. The general situation can be summed up as follows:

1. The commutator [H ,Y ] is a priori a linear differential operator of order N + 1.
The coefficients of all powers must vanish simultaneously. From terms of order
N + 1 we deduce that the terms of order N in Y are contained in the enveloping
algebra of the Euclidean Lie algebra e(2). Moreover, all terms in Y have the same
parity (after an appropriate symmetrization) [88].

2. Terms of order N−1 in the commutator provide nonlinear determining equations
for the potential V (x, y) = V1(x) + V2(y). However, for any N > 2 a linear
compatibility condition must be satisfied. It amounts to linear ODEs for V1(x)

and V2(y). These may be satisfied trivially (all coefficients equal to zero). Then
we obtain “exotic potentials.” If the linear compatibility condition is satisfied
nontrivially, we obtain “standard potentials.” So far, for N < 7 all standard
potentials are expressed in terms of elementary functions and all exotic ones
pass the Painlevé test [2]. We conjecture that this is true for all N .

3. For a different approach to superintegrable systems in E2 where such systems
separating in Cartesian coordinates are obtained from operator algebras in one
dimension we refer to [71].

4. For recent results on superintegrable systems inE2 separable in polar coordinates
we refer to the original articles [29–31].
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quantum mechanics. Phys. Lett. 16, 354 (1965)
34. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont

l’intégrale générale est à points critiques fixes. Acta Math. 33, 1 (1910)
35. V. Genest, I. Mourad, The Dunkl oscillator in the plane: I. Superintegrability, separated

wavefunctions and overlap coefficients. J. Phys. A: Math. Theor. 46, 14, 145201 (2013)
36. V. Genest, L. Vinet, A. Zhedanov, Superintegrability in two dimensions and the Racah-Wilson

algebra. Lett. Math. Phys. 104, 931 (2011)
37. V.X. Genest, L. Vinet, A. Alexei, Superintegrability in two dimensions and the Racah-Wilson

algebra. Lett. Math. Phys. 104, 8, 931 (2014)
38. H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison-Wesley, Reading, 2001)
39. D. Gomez-Ullate, N. Kamran, R. Milson, Exceptional orthogonal polynomials and the

Darboux transformation. J. Phys. A 43, 434016 (2010)
40. D. Gomez Ullate, Y. Grandati, R. Milson, Rational extensions of the quantum harmonic

oscillator and exceptional Hermite polynomials. J. Phys. A Math. Theor. 47, 015203 (2014)
41. Y. Granovskii, I. Lutzenko, A.Z. Zhedanov, Mutual integrability, quadratic algebras and

dynamic symmetry. Ann. Phys. 217, 1–20 (1992)
42. S. Gravel, Hamiltonians separable in Cartesian coordinates and third-order integrals of motion.

J. Math. Phys. 45, 1003–19 (2004)
43. S. Gravel, P. Winternitz, Superintegrability with third order integrals in quantum and classical

mechanics. J. Math. Phys. 43, 5902–5912 (2002)
44. A.N.W. Hone, Painlevé tests, singularity structure and integrability, in Integrability, pp. 245–

277 (Springer, Berlin, 2009)
45. M.F. Hoque, Superintegrable systems, polynomial algebra structures and exact derivations

of spectra, Ph.D. thesis, School of Mathematics and Physics, The University of Queensland,
Australia, January, 175 pages, 2018, arXiv:1802.08410

46. M.F. Hoque, I. Marquette, Y.-Z. Zhang, Quadratic algebra structure in the 5D Kepler system
with non-central potentials and Yang-Coulomb monopole interaction. Ann. Phys. 380, 121–
134 (2017)

47. P. Iliev, Symmetry algebra for the generic superintegrable system on the sphere. J. High Energy
Phys. 2, 44, 22 pp. (2018)

48. E.L. Ince, Ordinary Differential Equations, 574pp. (Dover, New York, 1956)
49. J.M. Jauch, E.L. Hill, The problem of degeneracy in quantum mechanics. Phys. Rev. 57, 641–

645 (1940)
50. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, New York,

1995)
51. E.G. Kalnins, Separation of Variables for Riemannian Spaces of Constant Curvature, p. 196

(Addison-Wesley, Reading, 1986)
52. E.G. Kalnins, J.M. Kress, W. Miller Jr., A recurrence relation approach to higher order quantum

superintegrability. SIGMA 7, 031 (2011)
53. E.G. Kalnins, J.M. Kress, W. Miller, Separation of Variables and Superintegrability: The

Symmetry of Solvable Systems (IOP, Bristol, 2018)
54. G.E. Kalnins, W. Miller Jr., S. Post, Contractions of 2D 2nd order quantum superintegrable

systems and the Askey scheme for hypergeometric orthogonal polynomials. SIGMA 9, 057,
28 pp. (2013)

55. M.D. Kruskal, P.A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for integrabil-
ity. Stud. Appl. Math. 86, 87–165 (1992)



130 I. Marquette and P. Winternitz

56. P. Letourneau, L. Vinet, Superintegrable systems, polynomial algebras and quasi-exactly
solvable Hamiltonian. Ann. Phys. 243, 1, 144 (1995)

57. Y. Liao, I. Marquette, Y.-Z. Zhang, Quantum superintegrable system with a novel chain
structure of quadratic algebras. J. Phys. A: Math. Theor. 51, 255201, 13pp. (2018)

58. A. Makarov, J. Smorodinsky, Kh. Valiev, P. Winternitz, A systematic search for non-relativistic
systems with dynamical symmetries. Nuovo Cimento A 52, 1061–1084 (1967)

59. A. Marchesiello, L. Šnobl, Superintegrable 3D systems in a magnetic field corresponding to
Cartesian separation of variables. J. Phys. A Math. Theor. 50, 245202 (2017)

60. A. Marchesiello, L. Šnobl, P. Winternitz, Three-dimensional superintegrable systems in a static
electromagnetic field. J. Phys. A 48, 395206 (2015)

61. A. Marchesiello, L. Šnobl, P. Winternitz, Spherical type integrable classical systems in a
magnetic field. J. Phys. A Math. Theor. 51, 135205 (2018)

62. I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and
supersymmetric quantum mechanics. I. Rational function potentials, J. Math. Phys. 50, 012101
(2009)

63. I. Marquette, Superintegrability with third order integrals of motion, cubic algebras, and
supersymmetric quantum mechanics. II. Painlevé transcendent potentials. J. Math. Phys. 50,
095202 (2009)

64. I. Marquette, An infinite family of superintegrable systems from higher order ladder operators
and supersymmetry. J. Phys. Conf. Ser. 284, 012047 (2011)

65. I. Marquette, C. Quesne, New families of superintegrable systems from Hermite and Laguerre
exceptional orthogonal polynomials. J. Math. Phys. 54, 042102 (2013)

66. I. Marquette, C. Quesne, Combined state-adding and state-deleting approaches to type III
multi-step rationally-extended potentials: applications to ladder operators and superintegra-
bility. J. Math. Phys. 55, 112103 (2014)

67. I. Marquette, C. Quesne, Connection between quantum systems involving the fourth Painleve
transcendent and k-step rational extensions of the harmonic oscillator related to Hermite EOP.
J. Math. Phys. 57, 052101 (2016)

68. I. Marquette, P. Winternitz, Polynomial Poisson algebras for classical superintegrable systems
with a third order integral of motion. J. Math. Phys. 48, 012902, 1–16 (2007). Erratum
49,019907

69. I. Marquette, P. Winternitz, Superintegrable systems with third order integrals of motion. J.
Phys. A. Math. Theor. 41, 303031 (2008)

70. I. Marquette, M. Sajedi, P. Winternitz, Fourth order superintegrable systems separating in
Cartesian coordinates I. Exotic quantum potentials. J. Phys. A 50, 315201 (2017)

71. I. Marquette, M. Sajedi, P. Winternitz, Two-dimensional superintegrable systems from operator
algebras in one dimension. J. Phys. A 52, 115202 (2019)

72. J. Mateo, J. Negro, Third-order differential ladder operators and supersymmetric quantum
mechanics. J. Phys. A Math. Theor. 41, 045204 (2008)

73. W. Miller, Symmetry and Separation of Variables, p. 285 (Addison-Wesley, Reading, 1977)
74. W. Miller, S. Post, P. Winternitz. Classical and quantum superintegrability with applications. J.

Phys. A 46, 423001 (2013)
75. M. Moshinsky, Yu.F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood

Academic, New York, 1996)
76. N.N. Nekhoroshev, Action-angle variables and their generalizations. Trans. Moscow Math.

Soc. 26, 180 (1972)
77. A.G. Nikitin, Higher-order symmetry operators for Schrödinger equation, in Superintegrability

in Classical and Quantum Systems. CRM Proceedings and Lecture Notes, vol. 37 (American
Mathematical Society, Providence, RI, 2004)

78. A.G. Nikitin, New exactly solvable systems with Fock symmetry. J. Phys. A Math. Theor. 45,
485204 (2012)

79. A.G. Nikitin, Laplace-Runge-Lenz vector for arbitrary spin. J. Math. Phys. 54, 123506 (2013)
80. Yu.A. Orlov, E.I. Shulman, Additional symmetries of the nonlinear Schrodinger equation.

Theor. Math. Phys. 64, 862 (1985)



Higher Order Quantum Superintegrability: A New “Painlevé Conjecture” 131

81. Yu.A. Orlov, E.I. Schulman, Additional symmetries for integrable equations and conformal
algebra representation. Lett. Math. Phys. 12, 171 (1986)

82. Yu.A. Orlov, P. Winternitz, Algebra of pseudodifferential operators and symmetries of
equations in the Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 38, 4644 (1997)

83. P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont
l’intégrale générale est uniforme. Acta Math. 25, 1–85 (1902)

84. W. Pauli, Uber das wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys.
36, 336 (1926)

85. I. Popper, S. Post, P. Winternitz, Third-order superintegrable systems separable in parabolic
coordinates. J. Math. Phys. 53, 062105 (2012)

86. S. Post, P. Winternitz, An infinite family of deformations of the Coulomb potential. J. Phys. A.
Math. Gen. 43, 222001 (2010)

87. S. Post, P. Winternitz, A nonseparable quantum superintegrable system in 2D real Euclidean
space. J. Phys. A. Math. Theor. 44, 162001 (2011)

88. S. Post, P. Winternitz, General Nth order integrals of motion in the Euclidean plane. J. Phys. A
48, 405201 (2015)

89. S. Post, S. Tsujimoto, L. Vinet, Families of superintegrable Hamiltonians constructed from
exceptional polynomials. J. Phys. A. Math. Theor. 45, 405202 (2012)

90. M.F. Ranada, Higher order superintegrability of separable potentials with a new approach to
the Post-Winternitz system. J. Phys. A-Math. Theor. 46, 125206 (2013)

91. D. Riglioni, O. Gingras, P. Winternitz, Superintegrable systems with spin induced by co-
algebra symmetry. J. Phys. A Math. Theor. 47, 122002 (2014)

92. M.A. Rodriguez, P. Tempesta, P. Winternitz, Reduction of superintegrable systems: the
anisotropic harmonic oscillator. Phys. Rev. E 78, 046608 (2008)

93. M.B. Sheftel, P. Tempesta, P. Winternitz, Recursion operators, higher order symmetries and
superintegrability in quantum mechanics. Czech J. Phys. 51, 392–399 (2001)

94. P. Tempesta, A.V. Turbiner, P. Winternitz, Exact solvability of superintegrable systems. J. Math.
Phys. 42, 4248–4257 (2001)

95. F. Tremblay, P. Winternitz, Third order superintegrable systems separating in polar coordinates.
J. Phys. A. Math. Theor. 43, 175206 (2010)

96. F. Tremblay, A.V. Turbiner, P. Winternitz, An infinite family of solvable and integrable
quantum systems on a plane. J. Phys. A. Math. Theor. 42, 242001 (2009)

97. F. Tremblay, A.V. Turbiner, P. Winternitz, Periodic orbits for a family of classical superinte-
grable systems. J. Phys. A. Math. Theor. 43, 015202 (2010)

98. L. Vinet, A. Zhedanov, A “missing” family of classical orthogonal polynomials. J. Phys. A.
Math. Theor. 44, 8, 085201 (2011)

99. P. Winternitz, Superintegrability with second and third order integrals of motion. Phys. Atom.
Nuclei 72, 875–882 (2009)
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with Position Dependent Mass
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Abstract The contemporary results concerning supersymmetries in generalized
Schrödinger equations are presented. Namely, position dependent mass Schrödinger
equations are discussed as well as the equations with matrix potentials. An
extended number of realistic quantum mechanical problems admitting extended
supersymmetries are described.
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1 Introduction

In seventieth of the previous century a qualitatively new symmetry in physics had
been discovered and called supersymmetry (SUSY) see, e.g. [1] but also [2] where
the idea of SUSY was formulated in somewhat rudimentary form. Its rather specific
property is the existence of symmetry transformations mixing bosonic and fermionic
states. In other words transformations which connect fields with different statistics
have been introduced.

Among the many attractive features of SUSY is that it provides an effective
mechanism for the cancelation of the ultraviolet divergences in quantum field theory.
In addition, it opens new ways to unify space-time symmetries (i.e., relativistic
invariance) with internal symmetries and to construct unified field theories, includ-
ing all types of interactions, refer, e.g. [3, 4] and [5].
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Mathematically, SUSY requests using of the graded Lie algebras instead of the
usual ones, and the corresponding group parameters are not numbers but Grassmann
variables. The essential progress in the related fields of mathematics was induced
exactly by the needs of SUSY.

Unfortunately, till now we do not have convincing experimental arguments for
introducing SUSY as a universal symmetry principle realized in Nature. Neverthe-
less, it is possible to find a number of realistic physical systems which admit this nice
symmetry. Moreover, SUSY presents effective tools for understanding the relations
between spectra of different Hamiltonians as well as for explaining degeneracy
of their spectra, for constructing exactly or quasi-exactly solvable systems, for
justifying formulations of initial and boundary problems, etc.; see, e.g., surveys
[3, 6] and [7]. In other words, SUSY is realized in Nature at least in a rather extended
number of particular physical systems.

The present work is concentrated on quantum mechanical systems since they
provide a ground for testing the principal question: whether SUSY is realized in
Nature or not, free of the complexities of field theories. Examples of such systems
(like interaction of spin 1/2 particle with the Coulomb or constant and homogeneous
magnetic field) which admit exact N = 2 SUSY are well known [8, 9] (see also
Refs. [6, 7] and the references therein). However, we will concentrate on systems
admitting more extended SUSY.

Let us remain that the supersymmetric quantum mechanics was created by Witten
[10] as a toy model for illustration of global properties of the quantum field theory.
But rather quickly it becomes a fundamental field attracting the interest of numerous
physicists and mathematicians. In particular the SSQM presents powerful tools
for explicit solution of quantum mechanical problems using the shape invariance
approach [11]. The number of problems satisfying the shape invariance condition
is rather restricted but includes the majority of exactly solvable Schrödinger
equations. The well-known exceptions are exactly solvable Schrödinger equations
with Natanzon potentials [12] which are formulated in terms of implicit functions.

A very important application of SUSY in quantum mechanics is classification of
families of isospectral Hamiltonians. And there is a number of systems isospectral
with the basic exactly solvable SEs. In the standard SUSY approach with the first
order intertwining operators the problem of description of such families is reduced
to constructing general solutions of the Riccati equations. More refined approaches
can include intertwining operators of higher order [13], the N-fold supersymmetry
[14], and the hidden nonlinear supersymmetry [15]. One more relevant subject of
contemporary SUSY are the so-called exceptional orthogonal polynomials [16, 17].

Let us mention that other generalized supersymmetries which include the usual
SUSY have been discussed also, among them the so-called parasupersymmetry [18–
20], which also has good ruts in real physical problems. However, the standard
SUSY is seemed to be more fundamental.

Just in quantum mechanics SUSY presents powerful tools for constructing
exact solutions of Schrödinger equation (SE). And we will present a survey of
contemporary results belonging to this field. We will not discuss generalizations
of the standard SUSY in quantum mechanics like the ones mentioned above, but
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restrict ourselves to the standard SUSY quantum mechanics with the first order
intertwining operators [21]. However, the systems with extended SUSY as well as
systems including SEs with Pauli and spin-orbit couplings, with position dependent
mass and with abstract matrix potentials will be considered. Notice that just these
fields are the subjects of current interest of numerous investigators.

Let us stress that there are two faces of SUSY in quantum mechanics. First,
there exist QM systems like the charged particle with spin 1/2 in the constant
and homogeneous magnetic field which admit exact SUSY. Such systems admit
constants of motion forming superalgebras. Second, it is possible to indicate the QM
systems with “hidden” SUSY like the hydrogen atom, and just these systems can be
solved exactly using the shape invariance of the related Schrödinger equations. We
will discuss both types of SUSY. The realistic physical systems which admit exact
SUSY will be considered in the next section, while the shape invariant systems are
discussed in Sects. 3–6.

An inspiring example of QM problem with a shape invariant potential was
discovered by Pron’ko and Stroganov [22] who studied a motion of a neutral non-
relativistic fermion, e.g., neutron, interacting with the magnetic field generated by a
current carrying wire. A relativistic version of such problem was discussed in [23].

The specificity of the PS problem is that it includes a matrix superpoten-
tial, while in the standard SUSY in quantum mechanics the superpotential is a
scalar function. Matrix potentials and superpotentials naturally appear in quantum
mechanical models including particles with spin (see, e.g. [24], Sections 10 and 11)
and in multidimensional models of SSQM [25, 26]. Particular examples of such
superpotentials were discussed in [27–31]. In papers [32] such superpotentials were
used for modeling the motion of a spin 1

2 particle in superposed magnetic and
scalar fields. In paper [29] a certain class of such superpotentials was described,
while more extended classes of them were classified in [33, 34]. In any case just
systems matrix superpotentials belong to an interesting research field which makes
it possible to find new coupled systems of exactly solvable Schrödinger equations.
The contemporary results in this field will be discussed in the following.

In addition to SUSY, some SEs can possess one more nice property called
superintegrability (SI). By definition, the quantum system is called superintegrable
if it admits more integrals of motion than the degrees of freedom. Like SUSY, the
SI can cause the exact solvability of the related SE, especially in the case when it is
the maximal SI when the number of integrals of motion is equal to 2n + 1 where n
is the number of degrees of freedom.

There exists a tight connection between the SI and SUSY, and many QM systems
are both supersymmetric and superintegrable. In fact the maximal SI induces SUSY
and vice versa, in spite of that this fact was never proven for generic QM systems.

The superintegrable systems which are also supersymmetric will be a special
subject of our discussion. Moreover, there will be systems with position dependent
masses which are discussed in Sect. 6.
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2 QM Systems with Exact SUSY

2.1 System with N = 2 SUSY

Let us start with the well-known and important physical system, i.e., the spinning
and charged particle interacting with an external magnetic field. The corresponding
QM Hamiltonian can be written in the following form:

H = π2

2m
+ e

2m
σiBi, (2.1)

where π2 = π2
1 + π2

2 + π2
3 , πi = −i ∂

∂xi
− eAi, i = 1, 2, 3, Bi = εijk

∂Aj

∂k
, σi

are Pauli matrices, Bi and Ai are components of the external magnetic field and the
corresponding vector-potential, and summation is imposed over the repeating index
i.

In contrast with the standard Schrödinger Hamiltonian, operator (2.1) includes
the Pauli term e

2mσiBi describing the interaction of the particle spin with the external
magnetic field. The related stationary Schrödinger equation has the standard form:

Hψ = Eψ (2.2)

with E being the Hamiltonian eigenvalues.
In the case of the constant and homogeneous magnetic field directed along the

third coordinate axis the vector-potential can be reduced to the form:

A1 = −1

2
x2B3, A2 = 1

2
x1B3 A3 = 0, (2.3)

and by definition B1 = B2 = 0, B3 = B = const. Thus Hamiltonian (2.1) can be
rewritten in the following form:

H = H1 + H2, H1 = p2
3

2m
, H2 = (σ1π1 + σ2π2)

2

2m
(2.4)

with p3 = −i ∂
∂x3

.
The immediate consequence of representation (2.4) is that our Hamiltonian

commutes with the three operators:

Q1 = σ1π1 + σ2π2, Q2 = iσ3Q1, Q3 = p3, (2.5)

which satisfy the following algebraic relations:

[Q3,Q1] = [Q3,Q2] = [Q3,H ] = 0, (2.6)

{Qμ,Qν} = 2δμνH2, [Qμ,H2] = 0, (2.7)
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where μ, ν independently takes the values 1, 2, δμν is the Kronecker delta, and the
symbols [.,.] and {.,.} denote the commutator and anticommutator correspondingly.

Thus the considered Hamiltonian admits three constants of motion, one of which,
i.e., Q3, commutes with the two others. On the other hand, Q1 and Q2 are not in
involution, but satisfy more complicated relations (2.7), which characterize a Lie
superalgebra.

Just this specific supersymmetry can be treated as the reason of the twofold
degeneration of the Landau levels, i.e., the non-ground energy levels of a spin 1/2
particle interacting with the constant and homogeneous magnetic field.

Generally speaking, superalgebra is a graded algebra. In the simplest case of the
Z2 grading the elements of the superalgebra belong to two different classes, say, odd
or even. The multiplication laws for even and odd elements are different. In our case
Q1 and Q2 are odd, while Q3, H1, and H2 are even. The product of two algebra
elements is defined as the commutator if at least one of them is even and as the
anticommutator if both the elements are odd. In SUSY quantum mechanics the odd
elements are called supercharges. Since we have indicated two supercharges then it
is possible to say about N = 2 SUSY.

2.2 Extended SUSY

The considered system is only a particular (albeit very important) example of realis-
tic physical problem admitting exact supersymmetry. In particular, it is obvious that
the presented SUSY is valid for arbitrary Hamiltonian admitting representation (2.1)
provided one component of the vector-potential of the external field is identically
zero.

We will discuss also another examples, but first let us note that in fact Eq. (2.2)
with Hamiltonian (2.4) admits a more extended SUSY.

In analogy with the above we can construct a supercharge valid for Eq. (2.1) in
the case of arbitrary external magnetic field:

Q̃1 = σiπi (2.8)

since Q̃2
1 = H .

Let us show that it is possible to find three more supercharges provided the
external field is given by relations (2.3). To do it we exploit the fact that Eq. (2.4) is
invariant w.r.t. the following three discrete transformations:

ψ → R3ψ, ψ → CR1ψ, ψ → CR2ψ, (2.9)

where Ra (a = 1, 2, 3) are the space reflection transformations

Raψ(x) = σaθaψ(x), θaψ(x) = ψ(rax). (2.10)
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Here

r1x = (−x1, x2, x3), r2x = (x1,−x2, x3), r3x = (x1, x2,−x3), (2.11)

and C = iσ2c, where c is the operator of complex conjugation

cψ(x) = ψ∗(x). (2.12)

Note that operators (2.9) satisfy the following relations:

{Ra, σiπi} = {Ra,C} = {CR1, σiπi} = {CR2, σiπi} = 0,

R2
a = −C2 = 1, a = 1, 2, 3.

(2.13)

Using (2.8 ), (2.13) we can see that the operators

Q̃1 = σiπi Q2 = iR3Q̃1, Q3 = CR1Q̃1, Q4 = CR2Q̃1 (2.14)

fulfill the following relations:

{Qk,Ql} = 2gklĤ ,
[
Qk, Ĥ

]
= 0, (2.15)

where k, l = 1, 2, 3, 4, g11 = g22 = −g33 = −g44 = 1; gkl = 0, k �= l. In other
words, operators (2.14) are supercharges generating the N = 4 extended SUSY.

Let us note that the main trick for constructing the extended SUSY was using
the discrete involutive symmetries, i.e., reflections (2.10), (2.11). We will see that in
analogous way it is possible to find extended SUSY for rather generic Eqs. (2.2).

2.3 Extended SUSY with Arbitrary Vector-Potentials

The results of the previous section can be generalized to extended class of arbitrary
potentials with well-defined parities. Starting with reflections (2.10) we find that the
corresponding parity properties of vector-function A(x) (2.3) are of the form:

A(r1x) = −r1A(x), A(r2x) = −r2A(x), A(r3x) = r3A(x). (2.16)

Relations (2.16) are satisfied by a large class of potentials which includes (2.3)
as a particular case. For all such potentials the corresponding Eq. (2.2) is invariant
w.r.t. involutions (2.9) and so admits the extended SUSY generated by super-
charges (2.14). Moreover, Eq. (2.1) for g = 2 and an arbitrary uniform magnetic
field, i.e., the field

A1 = A1(x1, x2), A2 = A2(x1, x2), A3 = 0, (2.17)
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admits all internal symmetries described in the previous section provided A(x)
satisfies relations (2.16).

Other systems with extended SUSY can be found by extending reflections (2.11)
to the eight-dimensional group of involutions, i.e., by adding the fixed rotation
transformations

r12x = (−x1,−x2, x3), r31x = (−x1, x2,−x3),

r23x = (x1,−x2,−x3), r123x = (−x1,−x2,−x3), Ix = x.
(2.18)

Let the vector-potential A(x) has definite parities w.r.t. a subset of transforma-
tions (2.11) and (2.18). Then it is possible to construct supercharges which generate
extended N = 4 and even N = 5 SUSY [35].

Thus we present a number of SE admitting extended SUSY. Let us stress then
among them there is a lot of systems with a clear exact physical meaning, see [36]
for discussion of this aspect.

3 SUSY in One Dimension and Shape Invariance

The models considered in the above were two or three dimensional in spatial
variables and include systems of coupled Shcrödinger equations. However, many of
them can be reduced to one dimensional systems using the separation of variables.
Moreover, these systems can be decoupled.

Returning to Eq. (2.2) for a charged particle interacting with the constant and
homogeneous magnetic field we can exploit its rotational invariance and search
for solutions in separated radial and angular variables, i.e., to represent the wave
function ψ as

ψ = 1

r̃
R(r̃)enϕ, (3.1)

where r̃ =
√
x2

1 + x2
2 , ϕ = arctan x2

x1
. As a result we come to the following equation

for the radial functions:

H̃R ≡
(

− ∂2

∂r̃2 − m(m + 1)

r̃2 + ωσ3 + ω2r̃2
)
R = ẼR, (3.2)

where m = n − 1
2 , ω = 2mα, and Ẽ = 2mE + q2

3 + ωn.
Alternatively, using the gauge transformation it is possible to pass from vector-

potential (2.3) to the following ones: A1 = eHx2, A2 = A3 = 0. Then,
representing the wave function in the form ψ = exp[i(p1x1 + p3x3)]φ(x2) and
setting x2 = 1

αB
(p1 + √

αBy) we obtain the following equation for φ:

Ĥφ = Êφ, (3.3)



140 A. G. Nikitin

where

Ĥ = − ∂2

∂y2
+ σ3ω + ω2x2, Ê = 2mE − p2

3. (3.4)

Equation (3.4) defines the supersymmetric oscillator, while (3.2) is rather similar
to the “3d supersymmetric oscillator” but includes half-integer parameter m while
in the 3d oscillator this parameter is integer. Both the mentioned equations are
decoupled to direct sums of equations since the related Hamiltonians H̃ and Ĥ have
the following form:

H̃ =
(
H̃+ 0
0 H̃−

)
, Ĥ =

(
Ĥ+ 0
0 Ĥ−

)
, (3.5)

where

H̃± = − ∂2

∂r̃2
+ n(n ∓ 1)

r̃2
+ ω2r̃2 ± ω, Ĥ± = − ∂2

∂ỹ2
+ ω2ỹ2 ± ω. (3.6)

Hamiltonians Ĥ± have two nice properties. First, they can be factorized:

Ĥ+ = a+a, Ĥ− = aa+, (3.7)

where a+ and a− are the first order differential operators:

a+ = − ∂

∂y
+ W, a− = ∂

∂y
+ W

with W = ωy. Second, these Hamiltonians coincide up to a constant term: Ĥ+ =
Ĥ− + 2ω.

Hamiltonians H̃± are factorizable too:

H̃− = a+
κ a

−
κ + cκ , H̃+ = a−

κ a
+
κ + cκ+1, (3.8)

where

a−
κ = ∂

∂x
+ Wκ, a+

κ = − ∂

∂x
+ Wκ, (3.9)

and cκ = (2κ − 1)ω. Moreover these Hamiltonians satisfy the following relation:

H̃+(κ) = H̃−(κ + 1) + Cκ (3.10)
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with Cκ = 2ω. In other words, Hamiltonians H̃±(κ) are shape invariant [11].
The same is true for Hamiltonians Ĥ±(κ), which, however, do not include variable
parameter κ .

Thus our analysis of the realistic quantum mechanical system having a clear
physical meaning (charged particle with spin 1/2 interacting with the constant
and homogeneous magnetic field) makes it possible to discover its nice hidden
symmetry, i.e., the shape invariance. It happens that this symmetry is valid for
many other important QM systems like the hydrogen atom, and causes their exact
solvability [11].

To be shape invariant, Hamiltonian should be factorizable, i.e., to admit rep-
resentation (3.8), (3.9) for H̃−(κ) with some function W called superpotential.
In addition, it should satisfy condition (3.10) together with the corresponding
Hamiltonian H̃+(κ) which is called superpartner. If so, the related eigenvalue
problem (2.2) is exactly solvable, and its solutions can be found algorithmically.

The shape invariance condition can be formulated as a condition for the potential.
Considering the 1d Hamiltonian H = − ∂2

∂x2 + V (κ, x) with a given potential V
dependent on x and parameter κ and representing V (κ, x) as

V = W 2
κ + W ′

κ , (3.11)

where W ′
κ = ∂Wκ

∂x
, and superpotential is a solution of the Riccati equation (3.11).

Then we construct a superpartner potential

Ṽ = W 2
κ − W ′

κ . (3.12)

The corresponding stationary Schrödinger equation is shape invariant provided
Ṽ (κ, x) = V (κ + 1) + Cκ , where Cκ is a constant. In terms of the superpotential
this condition looks as follows:

W 2
κ − W ′

κ = W 2
κ + W ′

κ + Cκ. (3.13)

A natural question arises whether it is possible to formulate the shape invariance
condition with another transformation law for potential parameters. The answer
is yes, but the rule κ → κ + 1 can be treated as general up to redefinition of
these parameters. In other words, we always can change these parameters by some
functions of them in such a way that their transformations will be reduced to shifts
[37].
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4 Matrix Superpotentials

4.1 Pron’ko–Stroganov Problem

The supersymmetric systems considered in the above include matrix potentials.
However, when speaking about shape invariance, we deal with scalar potentials and
superpotentials, refer to Eqs. (3.6). Let us show that the concept of shape invariance
can be extended to the case of matrix superpotentials.

Like in Sect. 2 we will start with a well-defined QM system which includes
a matrix potential and appears to be shape invariant. Namely, let us consider a
neutral QM particle with non-trivial dipole momentum (e.g., neutron), interacting
with the magnetic field generated by a straight line current directed along the third
coordinate axis (Pron’ko–Stroganov problem [22]) The corresponding Schrodinger–
Pauli Hamiltonian looks as follows:

H = p2
1 + p2

2

2m
+ λ

σ1x2 − σ2x1

r̃2 , (4.1)

where λ is the integrated coupling constant, and σ1 and σ2 are Pauli matrices.
The last term in (4.1) is the Pauli interaction term λσiHi where the magnetic field

H has the following components which we write ignoring the constant multiplier
included into the parameter λ:

H1 ∼ y

r2
, H2 ∼ − x

r2
, H3 = 0. (4.2)

Hamiltonian (4.1) commutes with the third component of the total orbital
momentum J3 = x1p2 − x2p1 + 1/2σ3; thus, the corresponding stationary
Schrödinger equation (2.2) admits solutions in separated variables. Moreover, the
equation for radial functions takes the following form:

Ĥκψ = Eκψ, (4.3)

where Ĥκ is a Hamiltonian with a matrix potential, Eκ and ψ are its eigenvalue
and eigenfunction correspondingly, moreover, ψ is a two-component spinor. Up to
normalization of the radial variable r̃ the Hamiltonian Ĥκ can be represented as

Ĥκ = − ∂2

∂r̃2 + κ(κ − σ3)
1

r̃2 + σ1
1

r̃
, (4.4)

where σ1 and σ3 are Pauli matrices and κ is a natural number. In addition, solutions
of Eq. (4.3) must be normalizable and vanish at x = 0.

Hamiltonian Ĥκ can be factorized as in (3.8) where

a−
κ = ∂

∂x
+ Wκ, a+

κ = − ∂

∂x
+ Wκ, cκ = − 1

(2κ + 1)2
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and W is a matrix superpotential

Wκ = 1

2x
σ3 − 1

2κ + 1
σ1 − 2κ + 1

2x
. (4.5)

It is easily verified that the superpartner of Hamiltonian Ĥκ satisfies relation (3.10).
In other words, Eq. (4.3) admits supersymmetry with shape invariance and can be
solved using the standard technique of SSQM exposed, e.g., in survey [24].

4.2 Generic Matrix Superpotentials

Following a natural desire to find other shape invariant matrix potentials we
return to conditions (3.13) which should be satisfied by the corresponding matrix
superpotentials.

Assume Wk(x) is Hermitian. Then the corresponding potential Vk(x) and its
superpartner V +

k (x) are Hermitian too.
The problem of classification of shape invariant superpotentials, i.e., n × n

matrices whose elements are functions of x, k satisfying conditions (3.13), was
formulated and partially solved in papers [33] and [34]. Here we present the
completed classification results for a special class of superpotentials being 2 × 2
matrices.

Consider superpotentials of the following special form:

Wk = kQ + 1

k
R + P, (4.6)

where P , R, and Q are Hermitian matrices depending on x.
Substituting (4.6) into (3.13) we obtain the following equations for P , R, and Q:

Q′ = α(Q2 + νI), (4.7)

P ′ − α

2
{Q,P } +  I = 0, (4.8)

{R,P } + λI = 0, (4.9)

R2 = ω2I, (4.10)

where Q′ = dQ
dx

, {Q,P } = QP+PQ is an anticommutator of matrices Q and P ,
I is the unit matrix, and  , λ, ω are constants. Thus the problem of classification
of matrix superpotentials is reduced to solution of Eqs. (4.8)–(4.10) for unknown
matrices Q and P , R.
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4.3 Scalar Superpotentials

First we consider the scalar case when Q,P , and R in (4.6) are 1 × 1 “matrices.”
The corresponding Eqs. (4.7)–(4.10) can be integrated rather easily, refer to [34]
for detailed calculations. As a result we obtain the well-known list of scalar
superpotentials:

W = −κ

x
+ ω

κ
(Coulomb), (4.11)

W = λκ tan λx + ω

κ
(Rosen 1), (4.12)

W = λκ tanh λx + ω

κ
(Rosen 2), (4.13)

W = −λκ coth λx + ω

κ
(Eckart), (4.14)

W = μx(Harmonic Oscillator), (4.15)

W = μx − κ

x
(3D Oscillator), (4.16)

W = λκ tan λx + μ sec λx(Scarf I), (4.17)

W = λκ tanh λx + μsechλx(Scarf 2), (4.18)

W = λκ coth λx + μcosechλx(Pöschl-Teller), (4.19)

W = κ − μ exp(−x) (Morse). (4.20)

Thus we recover the known list of superpotentials (4.11)–(4.20) which generate
classical additive shape invariant potentials, in a straightforward and very simple
way. The corresponding potentials Vκ can be found using definition (3.11).

4.4 Matrix Superpotentials of Dimension 2 × 2

Here we consider the case when superpotentials are x-dependent 2 × 2 matrices of
form (4.6).

Supposing that Q(x) is diagonal (like in (4.5)), it is possible to specify five
inequivalent solutions of Eqs. (3.13):

Wκ,μ = ((2μ + 1) σ3 − 2κ − 1)
1

2x
+ ω

2κ + 1
σ1, μ > −1

2
, (4.21)

Wκ,μ = λ
(
−κ + μ exp(−λx)σ1 − ω

κ
σ3

)
, (4.22)

Wκ,μ = λ
(
κ tan λx + μ sec λxσ3 + ω

κ
σ1

)
, (4.23)
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Wκ,μ = λ
(
−κ coth λx + μ csch λxσ3 − ω

κ
σ1

)
, μ < 0, ω > 0, (4.24)

Wκ,μ = λ
(
−κ tanh λx + μ sech λxσ1 − ω

κ
σ3

)
, (4.25)

where we introduce the rescaled parameter κ = k
α
. These superpotentials are defined

up to translations x → x + c, κ → κ + γ , and up to unitary transformations
Wκ,μ → UaWκ,μU

†
a , where U1 = σ1, U2 = 1√

2
(1±iσ2), and U3 = σ3. In particular

these transformations change signs of parameters μ and ω in (4.22)–(4.25) and of
μ + 1

2 in (4.21), thus without loss of generality we can set

ω > 0, μ > 0 (4.26)

in superpotentials (4.22)–(4.25).
Notice that the transformations k → k′ = k + α correspond to the following

transformations for κ:

κ → κ ′ = κ + 1. (4.27)

If μ = 0 and ω = 1, then operator (4.21) coincides with the superpotential for
PS problem given by Eq. (4.5). For μ �= 0 superpotential (4.21) is not equivalent
to (4.5). The other presented matrix superpotentials were found in [33] for the first
time.

The corresponding potentials Vκ can be found starting with (4.21)–(4.24) and
using definition (3.11):

V̂κ =
(
μ(μ + 1) + κ2 − κ(2μ + 1)σ3

) 1

x2
− ω

x
σ1, (4.28)

V̂κ = λ2
(
μ2 exp(−2λx) − (2κ − 1)μ exp(−λx)σ1 + 2ωσ3

)
, (4.29)

V̂κ = λ2
(
(κ(κ − 1) + μ2) sec2 λx + 2ω tan λxσ1

+μ(2κ − 1) sec λx tan λxσ3) , (4.30)

V̂κ = λ2
(
(κ(κ − 1) + μ2) csch2(λx) + 2ω coth λxσ1

+μ(1 − 2κ) coth λx csch λxσ3) , (4.31)

V̂κ = λ2
(
(μ2 − κ(κ − 1)) sech2 λx + 2ω tanh λxσ3

−μ(2κ − 1) sech λx tanh λxσ1) . (4.32)

Potentials (4.28), (4.29), (4.30), (4.31), and (4.32) are generated by superpoten-
tials (4.21), (4.22), (4.23), (4.24), and (4.25), respectively. All the above potentials
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are shape invariant and give rise to exactly solvable problems for systems of
Schrödinger–Pauli type.

It was proven in [33] that n × n matrix superpotentials of the form (4.6) with
a diagonal matrix Q and n > 2 can be reduced to direct sums of operators fixed
in (4.21) and scalar superpotentials specified in Eqs. (4.11)–(4.20). Thus in fact we
present a complete description of superpotentials (4.6) being matrices of arbitrary
dimension, provided matrix Q is diagonal.

The case of non-diagonal matrices Q has been examined in paper [34]. The
classifying Eqs. (4.7)–(4.10) have been solved for the cases of superpotentials being
2 × 2 or 3 × 3 matrices. In the first case the following list of superpotentials was
obtained:

W(1)
κ = λ

(
κ (σ+ tan(λx + c) + σ− tan(λx − c)) (4.33)

+μσ1

√
sec(λx − c) sec(λx + c) + 1

κ
R

)
, (4.34)

W(2)
κ = λ

(
−κ(σ+ coth(λx + c) + σ− coth(λx − c)) (4.35)

+μσ1

√
csch(λx − c) csch(λx + c) + 1

κ
R

)
, (4.36)

W(3)
κ = λ

(
−κ(σ+ tanh(λx + c) + σ− tanh(λx − c)) (4.37)

+μσ1

√
sech(λx − c) sech(λx + c) + 1

κ
R

)
, (4.38)

W(4)
κ = λ

(
−κ(σ+ tanh(λx + c) + σ+ coth(λx − c)) (4.39)

+μσ1

√
sech(λx + c) csch(λx − c) + 1

κ
R

)
, (4.40)

W(5)
κ = λ

(
−κ(σ+ tanh(λx) + σ−) + μσ1

√
sech(λx) exp(−λx) + 1

κ
R

)
,

W(6)
κ = λ

(
−κ(σ+ coth(λx) + σ−) + μσ1

√
csch(λx) exp(−λx) + 1

κ
R

)
,

W(7)
κ = −κ

(
σ+
x + c

+ σ−
x − c

)
+ μσ1√

x2 − c2
+ 1

κ
R, (4.41)

W(8)
κ = −κ

σ+
x

+ μσ1
1√
x

+ 1

κ
R, (4.42)

W(9)
κ = λ

(
−κI + μ exp(−λx)σ1 − ω

κ
σ3

)
. (4.43)
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Here

σ± = 1

2
(σ0 ± σ3), R = r3σ3 + r2σ2, (4.44)

ra are constants satisfying r2
2 + r2

3 = ω2, and κ, μ, λ, and c �= 0 are arbitrary
parameters.

4.5 Matrix Superpotentials of Dimension 3 × 3

In analogy with the above we can find superpotentials realized by irreducible 3 × 3
matrices which are presented in the following formulae:

W = (S2
1 − 1)

κ

x + c1
+ (S2

2 − 1)
κ

x + c2
+ (S2

3 − 1)
κ

x

+ S1
μ1√

x(x + c1)
+ S2

μ2√
x(x + c2)

+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x
+ (S2

2 − 1)
κ

x + c1
+ S1

μ2√
x

+ S2
μ1√
x + c1

+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x + c1
+ (S2

3 − 1)
κ

x
+ S1

μ2√
x

+ S3
μ1√

x(x + c1)
+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x
+ S1c + S2

μ1√
x

+ ω

κ
(2S2

3 − 1),

W = (S2
1 − 1)

κ

x + c1
+ (S2

2 − 1)
κ

x + c2
+ (S2

3 − 1)
κ

x

+ S1
μ1√

x(x + c1)
+ S2

μ2√
x(x + c2)

+ S3
μ3√

(x + c1)(x + c2)
,

W = (S2
1 − 1)

κ

x
+ (S2

2 − 1)
κ

x + c2
+ S1

μ1√
x

+ S2
μ2√
x + c2

+ S3
μ3√

x(x + c2)
,

W = (S2
1 − 1)

κ

x
+ S1c + S3

μ1√
x

+ S2
μ2√
x
,

where c, c1, c2, μ1, and μ2 are integration constants, and

S1 =
⎛
⎝

0 0 0
0 0 −i
0 i 0

⎞
⎠ , S2 =

⎛
⎝

0 0 i
0 0 0
−i 0 0

⎞
⎠ , S3 =

⎛
⎝

0 −i 0
i 0 0
0 0 0

⎞
⎠ (4.45)

are matrices of spin s = 1.
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The hermiticity condition generates the following restrictions:

x > 0, if μ2
1 + μ2

2 > 0; ci < 0 if μi �= 0. (4.46)

Formulae (4.34)–(4.43) give the completed list of the certain class of matrix
potentials. Note that they give rise to many realistic QM models described by
coupled systems of Schrödinger equations, see the following section.

4.6 Shape Invariant QM Systems with Matrix Potentials

The discussed matrix superpotentials naturally appear in realistic QM systems. The
entire collection of such system can be found in [38, 39] and [40]. Here we present
two examples only.

Consider the following Hamiltonian:

H = p2

2m
+ λ

2m
σiBi + V, (4.47)

where σi are Pauli matrices, Bi = Bi(x) are vector components of magnetic field
strength, V = V (x) is a potential, and vector x represents independent variables. In
addition, λ denotes the constant of anomalous coupling which is usually represented
as λ = gμ0, where μ0 is the Bohr magneton and g is the Landé factor.

Formula (4.47) presents a generalization of the Pron’ko–Stroganov Hamiltonian
for the case of arbitrary external field. And some Schrödinger equations with
Hamiltonians (4.47) appear to be shape invariant. The example is given by the
following equation:

Hψ ≡ (−∇2 + λ(1 − 2κ) exp(−x2)(σ1 cos x1 − σ2 sin x1)

+ λ2 exp(−2x2))ψ = Êψ.
(4.48)

Here λ is the integrated coupling constant, and independent variables are rescaled
to obtain more compact formulae.

Hamiltonian H in (4.48) admits integral of motion Q = p1 − σ3
2 . Thus it is

possible to expand solutions of (4.48) via eigenvectors of Q which look as follows:

ψp =
(

exp(i(p + 1
2 )x1)ϕ(x2)

exp(i(p − 1
2 )x1)ξ(x2)

)
(4.49)

and satisfy the condition Qψp = pψp.
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Substituting (4.49) into (4.48) we come to Eq. (5.1) where

V̂κ = λ2 exp(−2y) − λ(2κ − 1) exp(−y)σ1 − pσ3,

y = x2, E = Ẽ − p2 − 1

4
, ψ =

(
ϕ

ξ

)
.

(4.50)

Potential V̂κ (4.50) belongs to the list of shape invariant matrix potentials
presented in the above, see Eq. (4.29). Thus Eq. (4.48) can be solved exactly
using tools of SUSY quantum mechanics [39]. Notice that this equation is also
superintegrable [38].

Let us present an analog of the PS model for particle of spin 1. This model is
both superintegrable and shape invariant. It is based on the following Hamiltonian:

Hs = p2
1 + p2

2

2m
+ 1

r
μs(n), (4.51)

where

μs(n) = μ1(n) = μ(2(S × n)2 − 1) + λ(2(S · n)2 − 1). (4.52)

Here μ and λ are arbitrary real parameters, S · n = S1n2 + S2n1, and S × n =
S1n2 − S2n1, n1 = x1√

x2
1+x2

2

, n2 = x2√
x2

1+x2
2

, S1 and S2 are matrices of spin 1 given

by formula (4.45).
It is the Hamiltonian defined by Eqs. (4.1) and (4.2) that generalized the Pron’ko–

Stroganov model for the case of spin one. This Hamiltonian leads to shape invariant
radial equations with matrix potential being the direct sum of a modified Coulomb
potential and potential (4.28).

4.7 Dual Shape Invariance

Starting with (4.21)–(4.24) we found the related potentials (4.28)–(4.31) in a
unique fashion. But there is an interesting inverse problem: to find possible
superpotentials corresponding to given potentials. Formally speaking, this means
to find all solutions of the Riccati equation (3.11) for W . However, such solutions
depend on two arbitrary parameters (κ and the integration constant), and there is
some ambiguity in choosing such of them which should be changing to generate the
superpartner potential. Notice that the mentioned inverse problem is very interesting
since it opens a way to generate families of isospectral Hamiltonians [24].

In the case of matrix superpotentials this business is even more important since
in some cases there exist two superpotentials compatible with the shape invariance
condition. And both these superpotential can be requested to generate solutions of
the related eigenvalue problem.
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To find the mentioned additional superpotentials we use the invariance of
potentials (4.28), (4.30), and (4.31) with respect to the simultaneous change of
arbitrary parameters:

μ → κ − 1

2
, κ → μ + 1

2
. (4.53)

This means that in addition to the shape invariance w.r.t. shifts of κ poten-
tials (4.28), (4.30), and (4.31) should be shape invariant w.r.t. shifts of parameter
μ too.

Thus, it is possible to represent potentials (4.21), (4.23), and (4.24) in the
following alternative form:

W̃ 2
μ,κ − W̃ ′

μ,κ = V̂μ + cμ, (4.54)

where V̂μ = V̂κ , and

W̃μ,κ = κσ3 − μ − 1

x
+ ω

2(μ + 1)
σ1, cμ = ω2

4(μ + 1)2
(4.55)

for V̂k given by Eq. (4.28)

W̃μ,κ = λ

2

(
(2μ + 1) tan λx + (2κ − 1) sec λxσ3 + 4ω

2μ + 1
σ1

)
(4.56)

for potential (4.30), and

W̃μ,κ = λ

2

(
−(2μ + 1) coth λx + (2κ − 1) csch λxσ3 − 4ω

2μ + 1
σ1

)
(4.57)

for potential (4.31). The related constant cμ is

cμ = λ2
(

±1

4
(2μ + 1)2 + 4ω2

(2μ + 1)2

)
, (4.58)

where the sign “+” and “−” correspond to the cases (4.56) and (4.57), respectively.
We stress that superpartners of potentials (4.54) constructed using superpoten-

tials W̃μ,κ , i.e.,

V̂ +
μ = W̃ 2

μ,κ + W̃ ′
μ,κ , (4.59)

satisfy the shape invariance condition since

V̂ +
μ = V̂μ+1 + Cμ

with Cμ = cμ+1 − cμ.
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Thus potentials are shape invariant w.r.t. shifts of two parameters, namely, κ
and μ. More exactly, superpartners for potentials (4.28), (4.30), and (4.31) can
be obtained either by shifts of κ or by shifts of μ, while simultaneous shifts are
forbidden. We call this phenomena dual shape invariance.

5 Exact Solutions of Shape Invariant Schrödinger Equations

5.1 Generic Approach and Energy Values

An important consequence of the shape invariance is the nice possibility to construct
exact solutions of the related stationary Schrödinger equation. The procedure of
construction of exact solutions for the case of scalar shape invariant potentials is
described in various surveys, see, e.g. [24]. Here we present this procedure for the
more general case of matrix potentials.

Consider the stationary Schrödinger equation

Ĥκψ ≡
(

− ∂2

∂x2
+ V̂κ

)
ψ = Eκψ, (5.1)

where Ĥκ = a+
κ,μa

−
κ,μ + cκ and V̂κ is a shape invariant potential. An algorithm for

construction of exact solutions of supersymmetric and shape invariant Schrödinger
equations includes the following steps (see, e.g. [24]):

– To find the ground state solutions ψ0(κ, μ, x) which are proportional to square
integrable solutions of the first order equation

a−
κ,μψ0(κ, μ, x) ≡

(
∂

∂x
+ Wκ,μ

)
ψ0(κ, μ, x) = 0. (5.2)

Function ψ0(κ, μ, x) solves Eq. (5.1) with

Eκ = Eκ,0 = −cκ . (5.3)

– To find a solution ψ1(κ, μ, x) for the first excited state which is defined by the
following relation:

ψ1(κ, μ, x) = a+
κ,μψ0(κ + 1, μ, x) ≡

(
− ∂

∂x
+ Wκ,μ

)
ψ0(κ + 1, μ, x).

(5.4)

Since a±
κ and Ĥκ satisfy the intertwining relations

Ĥκa
+
κ,μ = a+

κ,μĤκ+1 (5.5)
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function (5.4) solves Eq. (5.1) with Eκ = Eκ,1 = −cκ+1.
– Solutions for the second excited state can be found as ψ2(κ, μ, x) = a+

κ,μψ1(κ+
1, μ, x), etc. Finally, solutions which correspond to nth exited state for any
admissible natural number n > 0 can be represented as

ψn(κ, μ, x) = a+
κ,μa

+
κ+1,μ · · · a+

κ+n−1,μψ0(κ + n,μ, x). (5.6)

The corresponding eigenvalue Eκ,n is equal to −cκ+n.
– For systems admitting the dual shape invariance it is necessary to repeat the steps

enumerated above using alternative (or additional) superpotentials.

All matrix potentials presented in the above generate integrable models with
Hamiltonian (5.1). However, it is necessary to examine their consistency, in
particular, to verify that there exist square integrable solutions of Eq. (5.2) for the
ground states.

In the following sections we find such solutions for all superpotentials given
by Eqs. (4.21)–(4.24) and (4.55)–(4.57). However, to obtain normalizable ground
state solutions it is necessary to impose certain conditions on parameters of these
superpotentials.

Let us present the energy spectra for models (5.1) with potentials (4.28)–(4.31)
which can be found by applying the presented algorithm:

E = − ω2

(2N + 1)2
(5.7)

for potential (4.28),

E = −λ2
(
N2 + ω2

N2

)
(5.8)

for potentials (4.29), (4.31), (4.32), and

E = λ2
(
N2 − ω2

N2

)
(5.9)

for potentials (4.30).
Here N is the spectral parameter which can take the following values:

N = n + κ, (5.10)

and (or)

N = n + μ + 1

2
, (5.11)
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where n = 0, 1, 2, . . . are natural numbers which can take any values for
potentials (4.28)–(4.30). For potentials (4.29), (4.32), and (4.31) with a fixed k < 0
the admissible values of n are bound by the condition (k + n)2 > |ω|.

5.2 Ground State Solutions

To find the ground state solutions for Eqs. (5.1) with potentials (4.28)–(4.31) it is
sufficient to solve Eqs. (5.2), where Wκ,μ are superpotentials (4.21)–(4.24), and
analogous equation with superpotentials (4.55)–(4.57). This can be done for all the
mentioned cases, but we present here only two of them.

The corresponding solutions should be square integrable two-component func-
tions which we denote as

ψ0(κ, μ, x) =
(
ϕ

ξ

)
. (5.12)

Consider the superpotential defined by Eq. (4.21). Substituting (4.21) and (5.12)
into (5.2) we obtain

∂ϕ

∂x
+ (μ − κ)

ϕ

x
+ ω

2κ + 1
ξ = 0, (5.13)

∂ξ

∂x
− (μ + κ + 1)

ξ

x
+ ω

2κ + 1
ϕ = 0. (5.14)

Solving (5.14) for ϕ, substituting the solution into (5.13) and making the change

ξ = yκ+1ξ̂ (y), y = ωx

2k + 1
, (5.15)

we obtain the equation

y2 ∂
2ξ̂

∂y2
+ y

∂ξ̂

∂y
−
(
y2 + μ2

)
ξ̂ = 0, (5.16)

whose square integrable solution is proportional to the modified Bessel function:

ξ̂ = cKμ(y). (5.17)

Substituting (5.17) into (5.15) and using (5.14) we obtain

ϕ = yκ+1Kμ+1(y), ξ = yκ+1K|μ|(y), (5.18)

where y is the variable defined in (5.15), ωx/(2κ + 1) ≥ 0.
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Functions (5.18) are square integrable provided parameter κ is positive and
satisfies the following relation:

κ − μ > 0. (5.19)

If this condition is violated, i.e., κ − μ ≤ 0 solutions (5.18) are not square
integrable. But since potential (4.28) admits the dual shape invariance, it is possible
to make an alternative factorization of Eq. (5.1) using superpotential (4.55) and
search for normalizable solutions of the following equation:

ã−
μ,κ ψ̃0(μ, κ, x)ψ̃0(μ, κ, x) = 0. (5.20)

where ã−
μ,κ = ∂

∂x
+ W̃μ,κ . Indeed, solving (5.20) we obtain a perfect ground state

vector:

ψ̃0(μ, κ, x) =
(
ϕ̃

ξ̃

)
, ϕ̃ = yμ+ 3

2K|ν| (y) , ξ̃ = yμ+ 3
2K|ν−1| (y) , (5.21)

where y = ωx
2(μ+1) and ν = κ + 1/2. The normalizability conditions for

solution (5.21) are

κ − μ < 1, if κ ≥ 0, and κ + μ > 1, if κ < 0. (5.22)

Analogously, considering Eq. (5.2) with superpotential (4.22) and representing
its solution in the form (5.12) with

ξ = y
1
2 −κ ξ̂ (y), ϕ = y

1
2 −κ ϕ̂(y), y = μ exp(−λx),

we find the following solutions:

ϕ = y
1
2 −κK|ν|(y), ξ = −y

1
2 −κK|ν−1|(y) (5.23)

where ν = ω/κ + 1/2 and parameters ω and κ should satisfy the conditions

κ < 0, κ2 > ω. (5.24)

Since potential (4.29) does not admit the dual shape invariance, there are no other
ground state solutions.

In analogous manner we find solutions of Eqs. (5.2) and (5.20) for the remaining
superpotentials (4.22)–(4.24), refer to [33] for details. Solutions which correspond
to nth energy level can be obtained by applying Eq. (5.6). Under certain conditions
on spectral parameters all such solutions are square integrable and reduce to zero at
x = 0 [33].
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5.3 Isospectrality

Let us note that for some values of parameters μ and κ potentials (4.28)–(4.32) are
isospectral with direct sums of known scalar potentials.

Considering potential (4.28) and using its dual shape invariance it is possible to
show that for half-integerμVκ can be transformed to a direct sum of scalar Coulomb
potentials. In analogous way we can show that potentials (4.30) with half-integer κ
or integer μ is isospectral with the potential

V̂κ = λ2
(
r(r − 1) sec2 λx + 2ω tan λxσ1

)
, r = 1

2
± μ or r = κ, (5.25)

which is equivalent to the direct sum of two trigonometric Rosen–Morse potentials.
Under the same conditions for parameters μ and κ potential (4.32) is isospectral
with the direct sum of two Eckart potentials. Finally, potential (4.32) is isospectral
with direct sum of two hyperbolic Rosen–Morse potentials.

In other words, for some special values of parameters μ and κ there exist the
isospectrality relations of matrix potentials (4.28)–(4.32) with well-known scalar
potentials. However, for another values of these parameters such relations do not
exist.

6 Shape Invariant Systems with Position Dependent Mass

SE with position dependent mass are requested for description of various
condensed-matter systems such as semiconductors, quantum liquids and metal
clusters, quantum dots, etc. However, in contrast with standard QM systems, their
symmetries, supersymmetries, and integrals of motion were never investigated
systematically.

The systematic study of symmetries of the position dependent mass SEs was
started recently. In particular, the completed group classification of such equations
in two and three dimensions has been carried out in [41, 42] and [43]. Here we
present the classification of all rotationally invariant systems admitting second order
integrals of motion [44] which appear to be shape invariant and exactly solvable.

6.1 Rotationally Invariant Systems

We will study stationary Schrödinger equations with position dependent mass,
which formally coincide with (4.3), but include Hamiltonians with variable mass
parameters:

Ĥ = paf (x)pa + Ṽ (x). (6.1)
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Here V (x) and f (x) = 1
2m(x) are arbitrary functions associated with the effective

potential and inverse effective PDM, and summation from 1 to 3 is imposed over
the repeating index a. In addition, x = (x1, x2, x3) denotes a 3d space vector.

In paper [41] all Hamiltonians (6.1) admitting first order integrals of motion
are classified. In particular, the rotationally invariant systems include the following
functions f and V :

f = f (x), Ṽ = Ṽ (x), x =
√
x2

1 + x2
2 + x2

3 . (6.2)

In accordance with [41] there are four Hamiltonians with a more extended
symmetry. They are specified by the following inverse masses and potentials:

f = x2, Ṽ = 0, (6.3)

f = (1 + x2)2, Ṽ = −6x2, (6.4)

f = (1 − x2)2, Ṽ = −6x2, (6.5)

f = x4, Ṽ = −6x2. (6.6)

PDM systems admitting second order integrals of motion are classified in [44].
There are two subclasses of such systems. One class includes the systems admitting
vector integrals of motion while in the second one we have the tensor integrals. All
these systems are shape invariant, and are presented in the classification Tables 1
and 2.

In the third columns of the tables the effective radial potentials are indicated
which appear after the separation of variables. All radial potentials are scalar
and shape invariant, i.e., can be expressed in the form (3.11) where the related
superpotentials Wκ are enumerated in formulae (4.11)–(4.20). The kinds of the
superpotentials is fixed in the fifth columns. The content of the terms presented
in the fourth columns is explained in the next section.

We see that there exist exactly 20 superintegrable systems invariant with respect
to 3d rotations. Moreover, the majority of them is defined up to one arbitrary
parameter, while there exist four systems dependent on two parameters, see Items 9
and 10.

6.2 Two Strategies in Construction of Exact Solutions

Let us consider Eqs. (4.3) where H are Hamiltonians (6.1) whose mass and potential
terms are specified in the presented tables. We will search for square integrable
solutions of these systems vanishing at x = 0.

First let us transform (4.3) to the following equivalent form:

H̃Ψ = EΨ, (6.7)
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Table 1 Functions f and V specifying non-equivalent Hamiltonians (6.1)

No f V Solution approach Effective potentials

1. x αx Direct or two-step 3d oscillator or
Coulomb

2. x4 αx Direct or two-step Coulomb or 3d
oscillator

3. x(x − 1)2
αx

(x + 1)2
Direct or two-step Eckart or hyperbolic

Pöschl–Teller

4. x(x + 1)2
αx

(x − 1)2
Direct or two-step Eckart or trigonometric

Pöschl–Teller

5. (1 + x2)2
α(1 − x2)

x
Direct Trigonometric

Rosen–Morse

6. (1 − x2)2
α(1 + x2)

x
Direct Eckart

7.
x

x + 1

αx

x + 1
Two-step Coulomb

8.
x

x − 1

αx

x − 1
Two-step Coulomb

9.
(x2 − 1)2x

x2 − 2κx + 1

αx

x2 − 2κx + 1
Two-step Eckart

10.
(x2 + 1)2x

x2 − 2κx − 1

αx

x2 − 2κx − 1
Two-step Trigonometric

Rosen–Morse

where

H̃ = √
fH

1√
f

= fp2 + V, Ψ = √
fψ. (6.8)

Then, introducing spherical variables and expanding solutions via spherical
functions Y l

m

Ψ = 1

x

∑
l,m

φlm(x)Y
l
m, (6.9)

we obtain the following equation for radial functions:

−f
∂2φlm

∂x2 +
(
f l(l + 1)

x2 + V

)
φlm = Eφlm. (6.10)

Let us present two possible ways to solve Eq. (6.10). They can be treated as
particular cases of Liouville transformation (refer to [45] for definitions) and include
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Table 2 Functions f and V specifying non-equivalent Hamiltonians (6.1) which admit tensor
integrals of motion

No f V Solution approach Effective radial potential

1.
1

x2

α

x2 Direct or two-step Coulomb or 3d oscillator

2. x4 − α

x2 Direct or two-step 3d oscillator or Coulomb

3. (x2 − 1)2
αx2

(x2 + 1)2
Direct or two-step Eckart or hyperbolic

Pöschl–Teller

4. (x2 + 1)2
αx2

(x2 − 1)2
Direct or two-step Eckart or trigonometric

Pöschl–Teller

5.
(x4 − 1)2

x2

α(x4 + 1)

x2 Direct Eckart

6.
(x4 + 1)2

x2

α(x4 − 1)

x2 Direct Trigonometric
Rosen–Morse

7.
1

x2 + 1

α

x2 + 1
Two-step 3d oscillator

8.
1

x2 − 1

α

x2 − 1
Two-step 3d oscillator

9.
(x4 − 1)2

x4 − 2κx2 + 1

αx2

x4 − 2κx2 + 1
Two-step Eckart

10.
(x4 + 1)2

x4 − 2κx2 − 1

αx2

x4 − 2κx2 − 1
Two-step Trigonometric

Rosen–Morse

commonly known steps. But it is necessary to fix them as concrete algorithms to
obtain shape invariant potentials presented in the tables.

The first way (which we call direct) includes consequent changes of independent
and dependent variables:

φlm → Φlm = f
1
4φlm,

∂

∂x
→ f

1
4
∂

∂x
f− 1

4 = ∂

∂x
+ f ′

4f
(6.11)

and then

x → y(x), (6.12)

where y solves the equation ∂y
∂x

= 1√
f

. As a result Eq. (6.9) will be reduced to a
more customary form:

−∂2Φlm

∂y2 + Ṽ Φlm = EΦlm, (6.13)
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where Ṽ is an effective potential

Ṽ = V + f

(
l(l + 1)

x2
−
(
f ′

4f

)2

−
(
f ′

4f

)′)
, x = x(y). (6.14)

Equations (6.7), (6.8) with functions f and V specified in Items 1–6 of both
Tables 1 and 2 can be effectively solved using the presented reduction to radial
Eq. (6.13). All the corresponding potentials (6.14) appear to be shape invariant, and
just these potentials are indicated in the fifth columns of the tables. The related
Eqs. (6.13) are shape invariant too and can be solved using the SUSY routine.

However, if we apply the direct approach to the remaining systems (indicated in
Items 7–10 of both tables), we come to Eqs. (6.13) which are not shape invariant and
are hardly solvable, if at all. To solve these systems we need a more sophisticated
procedure which we call two-step approach. To apply it we multiply (6.10) by αV −1

and obtain the following equation:

−f̃
∂2φlm

∂x2 +
(
f̃ l(l + 1)

x2 + Ṽ

)
φlm = Eφlm, (6.15)

where f̃ = αf
V
, Ṽ = −αE

V
, and E = −α. Then treating E as an eigenvalue and

solving Eq. (6.15) we can find α as a function of E, which defines admissible energy
values at least implicitly. To do it, it is convenient to make changes (6.11) and (6.12),
where f → f̃ .

The presented trick with a formal changing the roles of constants α and E is
well known. Our point is that any of the presented superintegrable systems can be
effectively solved using either the direct approach presented in Eqs. (6.8)–(6.14)
or the two-step approach. Moreover, some of the presented systems can be solved
using both the direct and two-step approaches, as indicated in the fourth columns of
Tables 1 and 2. In all cases we obtain shape invariant effective potentials and can
use tools of SUSY quantum mechanics.

6.3 System Dependent on Two Parameters

Let us consider the systems specified in Item 10 of Table 2. The corresponding
Hamiltonian (6.8) and radial Eq. (6.10) have the following form:

H = (x4 + 1)2

x4 − 2κx2 − 1
p2 + αx2

x4 − 2κx2 − 1
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and

(
− (x4 + 1)2

x4 − 2κx2 − 1

(
∂2

∂x2
− l(l + 1)

x2

)
+ αx2

x4 − 2κx2 − 1

)
φlm = Eφlm.

(6.16)

Multiplying (6.16) from the left by x4−2κx2−1
x2 we come to the following equation:

(
− (x4 + 1)2

x2

(
∂2

∂x2
− l(l + 1)

x2

)
+ α̃(x4 − 1)

x2

)
φlm = Eφlm, (6.17)

where

α̃ = −E and E = −α − 2κE. (6.18)

Notice that Eq. (6.17) with α̃ → α and E → E is needed also to find eigenvectors
of the Hamiltonian whose mass and potential terms are specified in Item 6 of
Table 2.

Making transformations (6.11) and (6.12) with f = (x4+1)2

x2 and y =
1
2 arctan(x2) we reduce Eq. (6.17) to the following form:

−∂2Φlm

∂y2 +
(
μ(μ − 4) csc2(4y) + 2α̃ cot(4y)

)
Φlm = ẼΦlm, (6.19)

where

Ẽ = E + 4, μ = 2l + 3. (6.20)

Thus we come to equation with a shape invariant (Rosen–Morse I) potential. It is
consistent provided parameters α̃ and μ are positive. Solving this equation using the
standard tools of SUSY QM we can easily find its eigenfunctions and eigenvalues;
the corresponding eigenvalues for Eq. (6.16) are given by the following formula
[44]:

En = (2l + 3 + 4n)2
(
κ −

√
κ2 + 1 + α − 4

(2l + 3 + 4n)2

)
, (6.21)

where both n and l are integers.
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7 Discussion

To construct QM systems with extended SUSY we essentially use discrete symme-
tries, i.e., reflections and rotations to the fixed angles.

The idea itself to apply reflections to construct N = 2 SUSY was proposed in
paper [46]. Then it was applied to generate extended supersymmetries [35, 36, 47,
48], moreover, in the latter paper the discrete rotations were applied also. In addition,
using these discrete symmetries, it is possible to make a reduction of SUSY algebras
as it was shown in paper [49] and some others.

We start our discussion with presenting of these old results in order to stress that
SUSY has strong roots in quantum mechanics since a lot of important QM models
do be supersymmetric. Moreover, even the simplest SUSY model, i.e., the charged
particle interacting with the uniform magnetic field, in fact admits the extended
supersymmetry with four supercharges [35].

But the main content of the present survey are some modern trends in SUSY
quantum mechanics. They are the matrix formulation of the shape invariance which
is requested for description of QM particles with spin interacting with external
fields, and supersymmetries of Schrödinger equations with position dependent
masses. And we believe that the presented results can be treated as a challenge
to generalize various branches of SUSY to the case of matrix superpotentials. And
it is nice that some elements of such generalizations can be already recognized in
literature, see, e.g. [50–55].
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Nonlinear Supersymmetry as a Hidden
Symmetry

Mikhail S. Plyushchay

Abstract Nonlinear supersymmetry is characterized by supercharges to be higher
order in bosonic momenta of a system, and thus has a nature of a hidden
symmetry. We review some aspects of nonlinear supersymmetry and related to
it exotic supersymmetry and nonlinear superconformal symmetry. Examples of
reflectionless, finite-gap and perfectly invisible PT -symmetric zero-gap systems,
as well as rational deformations of the quantum harmonic oscillator and conformal
mechanics, are considered, in which such symmetries are realized.

Keywords Hidden symmetry · Exotic supersymmetry · Nonlinear
superconformal symmetry · Reflectionless and finite-gap systems · Perfect
invisibility

1 Introduction

Hidden symmetries are associated with integrals of motion of higher-order in
momenta. They mix the coordinate and momenta variables in the phase space
of a system, and generate a nonlinear, W -type algebras [1]. The best known
examples of hidden symmetries are provided by the Laplace–Runge–Lenz vector
integral in the Kepler–Coulomb problem, and the Fradkin–Jauch–Hill tensor in
isotropic harmonic oscillator systems. Hidden symmetries also appear in anisotropic
oscillator with commensurable frequencies, where they underlie the closed nature
of classical trajectories and specific degeneration of the quantum energy levels.
Hidden symmetry is responsible for complete integrability of geodesic motion of
a test particle in the background of the vacuum solution to the Einstein’s equation
represented by the Kerr metric of the rotating black hole and its generalizations
in the form of the Kerr-NUT-(A)dS solutions of the Einstein–Maxwell equations
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[2]. Another class of hidden symmetries underlies a complete integrability of the
field systems described by nonlinear wave equations such as the Korteweg–de Vries
(KdV) equation. Those symmetries are responsible for peculiar properties of the
soliton and finite-gap solutions of the KdV system, whose equation of motion can
be regarded as a geodesic flow on the Virasoro-Bott group [3, 4].

Nonlinear supersymmetry [5–45] is characterized by supercharges to be higher
order in even (bosonic) momenta of a system, and thus has a nature of hidden
symmetry. Here, we review some aspects of nonlinear supersymmetry, and related
to it exotic supersymmetry and nonlinear superconformal symmetry.

Nonlinear supersymmetry appears, particularly, in purely parabosonic harmonic
oscillator systems generated by the deformed Heisenberg algebra with reflection
[12] as well as in a generalized Landau problem [15]. The peculiarity of super-
symmetric parabosonic systems shows up in the nonlocal nature of supercharges
to be of infinite order in the momentum operator as well as in the ladder operators
but anti-commuting for a polynomial in Hamiltonian being quadratic in creation-
annihilation operators. Similar peculiarities characterize hidden supersymmetry
and hidden superconformal symmetry appearing in some usual quantum bosonic
systems with a local Hamiltonian operator [20, 21, 24–26, 30–32, 35, 46–51]. Exotic
supersymmetry emerges in superextensions of the quantum systems described
by soliton and finite-gap potentials, in which the key role is played by the
Lax–Novikov integrals of motion [30–33, 42]. A structure similar to that of the
exotic supersymmetry of reflectionless and finite-gap quantum systems can also
be identified in the “SUSY in the sky” type supersymmetry [52–55] based on the
presence of the Killing–Yano tensors in the abovementioned class of the black hole
solutions to the Einstein–Maxwell equations. Nonlinear superconformal symmetry
appears in rational deformations of the quantum harmonic oscillator and conformal
mechanics systems [49, 51]. Both exotic supersymmetry and nonlinear superconfor-
mal symmetry characterize the interesting class of the perfectly invisible zero-gap
PT -symmetric systems, which includes the PT -regularized two-particle Calogero
systems and their rational extensions with potentials satisfying the equations of the
KdV hierarchy and exhibiting a behavior of extreme (rogue) waves [56, 57].

2 Nonlinear Supersymmetry and Quantum Anomaly

Classical analog of the Witten’s supersymmetric quantum mechanics [58–61] is
described by the Hamiltonian

H = p2 + W 2 + W ′N , (2.1)

where N = θ+θ− − θ−θ+, W = W(x) is a superpotential, x and p are even
canonical variables, {x, p} = 1, and θ+, θ− = (θ+)∗ are Grassmann variables with
the only nonzero Poisson bracket {θ+, θ−} = −i. System (2.1) is characterized by
the even, N , and odd, Q+ = (W + ip)θ+ and Q− = (Q+)∗, integrals of motion
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satisfying the algebra of N = 2 Poincaré supersymmetry

{Q+,Q−} = −iH , {H,Q±} = 0 , {N,H} = 0 , {N,Q±} = ±2iQ± .

(2.2)

For any choice of the superpotential, canonical quantization of this classical system
gives rise to the supersymmetric quantum system in which quantum supercharges
and Hamiltonian satisfy the N = 2 superalgebra given by a direct quantum analog
of the corresponding Poisson bracket relations, with the quantum analog of the
integral N playing simultaneously the role of the Z2-grading operator Γ = σ3 of
the Lie superalgebra.

A simple change of the last term in (2.1) for nW ′N with n taking any integer
value yields a system characterized by a nonlinear supersymmetry of order n

generated by the supercharges S+ = (W + ip)nθ+ and S− = (S+)∗ being the
integrals of order n in the momentum p. Their Poisson bracket {S+, S−} = −i(H)n

has order n in the Hamiltonian [12, 14, 62]

H = p2 + W2 + nW ′N . (2.3)

System (2.3) can be regarded as a kind of the classical supersymmetric analog of
the planar anisotropic oscillator with commensurable frequencies [63, 64]. Unlike
a linear case (2.1) with n = 1, canonical quantization of the system (2.3) with
n = 2, 3, . . . faces, however, the problem of quantum anomaly: for arbitrary form
of the superpotential, quantum analogs of the classical odd integrals S± cease
to commute with the quantum analog of the Hamiltonian (2.3). In [14], it was
found a certain class of superpotentials W(x) for which the supercharge S+ has
a polynomial structure in z = W + ip instead of monomial one so that the
corresponding systems admit an anomaly-free quantization giving rise to quasi-
exactly solvable systems [65–67].

If instead of the “holomorphic” dependence of the supercharge S+ on the
complex variable z we consider the supercharges with polynomial dependence on
the momentum variable p, the case of quadratic supersymmetry turns out to be a
special one. The Hamiltonian and supercharges then can be presented in the most
general form

H = zz∗ − C

W2 + 4W ′N + a , (2.4)

S+ =
(
z2 + C

W2

)
θ+ , S− = (S+)∗ . (2.5)

Here a and C are real constants, and we have

{S+, S−} = −i
(
(H − a)2 + C

)
. (2.6)
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Supersymmetry of the system (2.4), (2.5), (2.6) with an arbitrary superpotential
can be preserved at the quantum level if to correct the direct quantum analog of
the Hamiltonian and supercharges by adding to them the term quadratic in Plank
constant [14, 62]:

Ĥ − a = −h̄2 d2

dx2 + W2 − 2h̄σ3W ′ − C

W2 + Δ(W) , (2.7)

Ŝ+ = ŝ+σ+ , ŝ+ =
(
h̄
d

dx
+ W

)2

+ C

W2 − Δ(W) , (2.8)

Δ(W) = 1

2
h̄2

(
W ′′

W − 1

2

(W ′

W

)2
)

= h̄2 1√
W

(√
W
)′′

, (2.9)

where σ+ = 1
2 (σ1 + iσ2). The quantum term Δ(W) can be presented as a

Schwarzian, Δ = − 1
2 h̄

2S(ω(x)), S(ω(x)) = (ω′′/ω′)′− 1
2 (ω

′′/ω′)2, of the function
ω(x) = ´ x dy/W(y). The quadratic in h̄ terms in the quantum Hamiltonian (2.7)
can be unified and presented in a form similar to that of the kinetic term of the

quantum particle in a curved space: −h̄2 d2

dx2 +Δ(W) = P̂†P̂ , where P̂ = h̄ζ−1 d
dx
ζ ,

ζ = 1/
√
W . Analogously, the first and third terms in ŝ+ in (2.8) can be collected

and presented in the form ẑ2 − Δ(W) = (ζ ẑζ−1)(ζ−1ẑζ ), where ẑ = h̄ d
dx

+ W
[62].

3 Exotic Nonlinear N = 4 Supersymmetry

The anomaly-free prescription for quantization of the classical systems (2.3) with
supersymmetry of order higher than two in general case is unknown, but there exist
infinite families of the quantum systems described by supersymmetries of arbitrary
order. They can be generated easily by applying the higher order Darboux–Crum
(DC) transformations [68–70] to a given, for instance, exactly solvable quantum
system instead of starting from a classical supersymmetric system of the form (2.3)
followed by a search for the anomaly-free quantization scheme.

In general case the DC transformation of a given system described by the

Hamiltonian operator Ĥ− = − d2

dx2 + V−(x) is generated by selection of the set

of physical or non-physical eigenstates (ψ1, ψ2, . . . , ψn) of Ĥ− as the seed states.
Here and below we put h̄ = 1. If they are chosen in such a way that their Wronskian
W(ψ1, . . . , ψn) takes nonzero values in the region where V−(x) is defined, then the
new potential

V+ = V− − 2(lnW(ψ1, . . . , ψn))
′′ (3.1)
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will be regular in the same region as V−. Physical and non-physical eigenstates of

the new Hamiltonian operator Ĥ+ = − d2

dx2 + V+ are obtained from those of the

original system Ĥ− by the transformation

ψ+,λ = W(ψ1, . . . , ψn, ψλ)

W(ψ1, . . . , ψn)
= Anψλ , (3.2)

where ψλ is an eigenstate of Ĥ− different from eigenstates in the set of the seed
states with eigenvalue Eλ �= Ej , j = 1, . . . , n. The state ψ+,λ is of the same
eigenvalue of Ĥ+ as ψλ of Ĥ−, Ĥ−ψλ = λψλ ⇒ Ĥ+ψ+,λ = λψ+,λ, and vice
versa, from Ĥ+ψ+,λ = λψ+,λ it follows that Ĥ−ψλ = λψλ. Operator An in (3.2) is
a differential operator of order n,

An = An . . . A1 , Aj = (Aj−1ψj )
d

dx
(Aj−1ψj )

−1 , j = 1, . . . , n , A0 = 1 ,

(3.3)

which is constructed recursively from the selected seed states. Operators An and A
†
n

intertwine Hamiltonian operators Ĥ− and Ĥ+,

AnĤ− = Ĥ+An , A
†
nĤ+ = Ĥ−A†

n , (3.4)

and satisfy relations

A
†
nAn =

n∏
j=1

(Ĥ− − Ej) , AnA
†
n =

n∏
j=1

(Ĥ+ − Ej) , (3.5)

where Ej is eigenvalue of the seed eigenstate ψj . Relations (3.4) and (3.5)
underlie nonlinear supersymmetry of the extended system Ĥ = diag (Ĥ+, Ĥ−),
the supercharges of which are constructed from the operators An and A

†
n.

Using Eq. (3.2), one can prove the relation [71]

W(ψ∗, ψ̃∗, ψ1, . . . , ψn) = W(ψ1, . . . , ψn) . (3.6)

Here and in what follows equality between Wronskians is implied up to inessential
multiplicative constant; ψ∗ is some eigenstate of Ĥ− with eigenvalue E∗ different
from Ej , j = 1, . . . , n, and ψ̃∗ = ψ∗

´ x
dy/(ψ∗(y))2 is a linear independent

eigenstate with the same eigenvalue E∗ so that W(ψ∗, ψ̃∗) = 1.
Among supersymmetric quantum systems generated by DC transformations,

there exists special class of infinite subfamilies in which the corresponding superex-
tended systems are characterized simultaneously by supersymmetries of two dif-
ferent orders, one of which is of even order n = 2l, while another has some odd
order n = 2k + 1 [30–32, 36, 37, 42, 56]. This corresponds to supersymmetrically
extended finite-gap or reflectionless systems, which can be regarded as “instant
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photos” of solutions to the KdV equation [72] and are characterized by the presence
of a nontrivial Lax–Novikov integrals to be operators of the odd differential order
n = 2� + 1 ≥ 3 with � = l + k. Factorization of Lax–Novikov integrals into two
differential operators of orders 2l and 2k+1 is reflected in the presence of the exotic
nonlinear N = 4 Poincaré supersymmetry generated by supercharges of orders 2l
and 2k + 1 instead of linear or nonlinear N = 2 Poincaré supersymmetry obtained
usually via the Darboux or Darboux–Crum transformation construction.

A simple example of a system with exotic nonlinear N = 4 supersymmetry is
generated via the construction of Witten’s supersymmetric quantum mechanics with
superpotential W(x) = κ tanh κx, where κ is a parameter of dimension of inverse
length. The corresponding superextended system is described by the Hamiltonian

Ĥ = diag (Ĥ+, Ĥ−) with Ĥ− = − d2

dx2 + κ2, Ĥ+ = Ĥ− − 2κ2/ cosh2 κx, and first

order supercharges Q̂+ = ( d
dx

−W(x))σ+, Q̂− = (Q̂+)†. They generate the N = 2
Poincaré superalgebra via the (anti)commutation relations

{Q̂+, Q̂−} = Ĥ , [Ĥ, Q̂±] = 0 . (3.7)

This system can also be obtained via the construction of the n = 2 supersymmetry
by choosing W(x) = − 1

2κ tanh κx and C = − 1
16κ

4 [62]. In this case Δ =
− κ2

cosh2 κx
(1 + 1

4 sinh2 κx
), and the operator in the second order supercharge (2.8) is

factorized in the form

ŝ+ =
(
d

dx
− κ tanh κx

)
d

dx
. (3.8)

We have here

{Ŝ+, Ŝ−} =
(
Ĥ − 1

2
κ2
)2

− 1

16
κ4 , [Ĥ, Ŝ±] = 0 . (3.9)

The anti-commutators of the first and second order supercharges generate a
nontrivial even integral of motion,

{Ŝ+, Q̂−} = −{Ŝ−, Q̂+} = iL̂ , (3.10)

L̂ =
(
q̂+p̂ q̂†

+ 0
0 Ĥ−p̂

)
, (3.11)

where q̂+ = d
dx

− κ tanh κx. Operator (3.11) satisfies the commutation relations

[L̂, Q̂±] = [L̂, Ŝ±] = [L̂, Ĥ] = 0 , (3.12)

which mean that the integral L̂ is the central element of the nonlinear superalgebra
generated by Ĥ, Q̂±, Ŝ±, and L̂. The lower term in the diagonal operator L̂ is the



Nonlinear Supersymmetry as a Hidden Symmetry 169

momentum operator of a free quantum particle multiplied by Ĥ−, while the third
order differential operator q̂+p̂ q̂†

+ is the Lax–Novikov integral of reflectionless
system described by the Hamiltonian operator Ĥ+.

Operator L̂ plays essential role in the description of the system Ĥ: it detects
and annihilates a unique bound state in the spectrum of reflectionless subsystem

Ĥ+, which is described by the wave function Ψ0 =
(√

2κ−1 cosh κx, 0
)t

of zero

energy. It also annihilates the doublet of states Ψ+ = (tanh κx, 0)t and Ψ− =
(0, 1)t of the system Ĥ of energy E = κ2. Besides, operator L̂ distinguishes (with
the aid of the integral σ3) the states Ψ±k+ = (±ikx − κ tanh κx)e±ikx, 0)t and
Ψ±k− = (0, e±ikx)t in the four-fold degenerate scattering part of the spectrum of
Ĥ: L̂Ψ±k+ = ±k(κ2 + k2)Ψ±k+ , L̂Ψ±k− = ±k(κ2 + k2)Ψ±k− . Zero energy state Ψ0

is annihilated here by all the supercharges and by the Lax–Novikov integral L̂, and
thus the system realizes exotic supersymmetry in the unbroken phase [36, 42].

Within the framework of the Darboux–Crum construction, the described reflec-
tionless system Ĥ+ is obtained from the free particle system Ĥ0 = − d2

dx2 by taking

its non-physical eigenstate ψ1(x) = cosh κx of eigenvalue −κ2 as the seed state by
constructing the operator

Ĥ+ = Ĥ− − 2(lnW)′′ , (3.13)

where Ĥ− = Ĥ0 + κ2 and W = ψ1(x). The supercharge Q̂+ is constructed then
from the operator q̂+ = ψ1

d
dx

1
ψ1(x)

= d
dx

− κ tanh κx. The same superpartner

system Ĥ+ can be generated via relation (3.13) by changing W = ψ1(x) in it
for Wronskian of the set of eigenstates ψ0 = 1 and ψ1 = sinh κx, which is
equal, up to inessential multiplicative constant, to the same function W = ψ1(x):
W(1, sinh κx) = κ cosh κx. This second DC scheme generates the intertwining
operator (3.8) corresponding to the second order supercharge Ŝ+ via the chain of
relations ŝ+ = A2A1, where A1 = ψ0

d
dx

1
ψ0

= d
dx

, A2 = (A1ψ1)
d
dx

1
(A1ψ1)

= q̂+.

In this construction the third order Lax–Novikov integral q̂+p̂ q̂†
+ of the subsystem

Ĥ+ is the Darboux-dressed momentum operator of the free particle.
The described DC construction of superextended systems described by exotic

N = 4 supersymmetry is generalized for arbitrary case of the system of the form
Ĥ = diag (Ĥ+, Ĥ−), with reflectionless subsystems Ĥ+ and Ĥ− having an arbitrary
number and energies of bound states, but with identical continuous parts of their
spectra [42]. The key point underlying the appearance of the two supersymmetries
of different orders by means of which the partner systems Ĥ+ and Ĥ− are related
is that the same reflectionless system can be generated by two different Darboux–
Crum transformations. One transformation is generated by the choice of the set of
non-physical eigenstates

ψ1 = cosh κ1(x + τ1), ψ2 = sinh κ2(x + τ2), . . . , ψn (3.14)
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of the free particle system taken as the seed states. Here ψ2l+1 = cosh κ2l+1(x +
τ2l+1), ψ2l = sinh κ2l (x + τ2l ), 1 ≤ 2l < 2l + 1 ≤ n, and κj and τj ,
j = 1, . . . , n, are arbitrary real parameters with restriction 0 < κj < κj+1. The
indicated choice of eigenstates guarantees that the Wronskian of these states takes
nonzero values, and the potential produced via the Wronskian construction, V (x) =
−2(lnW(ψ1, . . . , ψn))

′′, will be nonsingular reflectionless potential maintaining n

bound states. The choice of the translation parameters τj in the form τj = x0j−4κ2
j t

promotes the potential into the n-soliton solution to the KdV equation [43, 73]

ut = 6uux − uxxx . (3.15)

Exactly the same reflectionless potential V (x) is generated by taking the following
set of eigenstates of the free particle Hamiltonian operator:

φ0 = 1, φ1 = sinh κ1(x + τ1), φ2 = cosh κ2(x + τ2), . . . , φn , (3.16)

as the seed states for the Darboux–Crum transformation. Here

φ2l+1 = sinh κ2l+1(x + τ2l+1), φ2l = cosh κ2l(x + τ2l ),

and modulo the unimportant multiplicative constant, we have

W(ψ1, . . . , ψn) = W(1, ψ ′
1 . . . , ψ

′
n) . (3.17)

When the number of bound states n in each partner reflectionless system Ĥ+
and Ĥ− is the same but all the discrete energies of one subsystem are different
from those of another subsystem, one pair of supercharges will have differential
order 2n while another pair will have differential order 2n + 1 independently on
the values of translation parameters τj of subsystems. This corresponds to the
nature of the described Darboux–Crum transformations. In this case one pair of
the supercharges is constructed from intertwining operators which relate the partner
system Ĥ+ via the “virtual” free particle system Ĥ0, and then Ĥ0 to Ĥ−. The
corresponding intertwining operators are composed from intertwining operators
obtained from the sets of the seed states of the form (3.14) used for the construction
of each partner system. Another pair of supercharges of differential order 2n + 1
is constructed from the intertwining operators of a similar form but with inserted
in the middle free particle integral d

dx
. This corresponds to the use of the set of

the seed states of the form (3.16) for one of the partner subsystems. The Lax–
Novikov integral being even generator of the exotic supersymmetry and having
differential order 2n + 1 is produced via anti-commutation of the supercharges of
different differential orders. It, however, is not a central charge of the nonlinear
superalgebra: commuting with one pair of supercharges it transforms them into
another pair of supercharges multiplied by certain polynomials in Hamiltonian Ĥ
of corresponding orders [42]. The structure of exotic supersymmetry undergoes a
reduction each time when some r discrete energies of one subsystem coincide with
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any r discrete energies of another subsystem. In this case the sum of differential
orders of two pairs of supercharges reduces from 4n+1 to 4n−2r+1, and nonlinear
superlagebraic structure acquires a dependence on r relative translation parameters
τ+
j − τ−

j ′ whose indexes j and j ′ correspond to coinciding discrete energy levels.
When all the discrete energy levels of one subsystem coincide with those of the
partner system, the Lax integral transforms into the bosonic central charge of the
corresponding nonlinear superalgebra [42].

Different supersymmetric systems of the described nature can also be related
by sending some of the translation parameters τj to infinity. In such a procedure
exotic supersymmetry undergoes certain transmutations, particularly, between the
unbroken and broken phases, and admits an interpretation in terms of the picture of
soliton scattering [74].

In the interesting case of a superextended system unifying two finite-gap periodic
partners described by the associated Lamé potentials shifted mutually for the half of
the period of their potentials, the two corresponding Darboux–Crum transformations
are constructed on the two sets of the seed states which correspond to the edges of
the valence and conduction bands, one of which is composed from periodic states
while another consists from antiperiodic states. One of such sets corresponding to
antiperiodic wave functions has even dimension, while another that includes wave
functions with the same period as the potentials has odd dimension. These sets
generate the pairs of supercharges of the corresponding even and odd differential
orders. On these sets of the states, certain finite-dimensional non-unitary represen-
tations of the sl(2,R) algebra are realized of the same even and odd dimensions
[30]. Lax–Novikov integral in such finite-gap systems with exotic nonlinear N = 4
supersymmetry has a nature of the bosonic central charge and differential order
equal to 2g + 1, where g is the number of gaps in the spectrum of completely
isospectral partners. The indicated class of the supersymmetric finite-gap systems
admits an interpretation as a planar model of a non-relativistic electron in periodic
magnetic and electric fields that produce a one-dimensional crystal for two spin
components separated by a half-period spacing [30]. Exotic supersymmetry in such
systems is in the unbroken phase with two ground states having the same zero
energy, particularly, in the case when one pair of the supercharges has differential
order one and corresponds to the construction of the Witten’s supersymmetric
quantum mechanics. The simplest case of such a system is given by the pair of
the mutually shifted for the half-period one-gap Lamé systems,

Ĥ± = − d2

dx2 + V±(x), V−(x) = 2sn2(x|k) − k2, V+(x) = V−(x + K),

(3.18)
where k is the modular parameter and 4K is the period of the Jacobi elliptic function
sn (x|k). The extended matrix system Ĥ is described by the first order supercharges
constructed on the base of the superpotential W(x) = −(ln dn x)′ generated by
the ground state dn x of the subsystem Ĥ− which has the same period 2K as the
potential V−(x). The second order supercharges are generated via the Darboux–
Crum construction on the base of the seed states cn x and sn x which change sign
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under the shift for 2K, and describe the states of energies 1 − k2 and 1 at the edges
of valence and conduction bands of Ĥ−, respectively.

The superextended system composed from the same one-gap systems but shifted
mutually for the distance less than half-period of their potentials is described
by exotic nonlinear N = 4 supersymmetry with supercharges to be differential
operators of the same first and second orders, and Lax–Novikov integral having dif-
ferential order three. But in this case supersymmetry is broken, the positive energy of
the doublet of the ground states depends on the value of the mutual shift, and though
the Lax–Novikov integral is the bosonic central charge, the structure coefficients of
the nonlinear superalgebra depend on the value of the shift parameter [37].

As was shown in [45], reflectionless and finite-gap periodic systems described
by exotic nonlinear supersymmetry can also be generated in quantum systems with
a position-dependent mass [75–78].

Very interesting physical properties are exhibited in the systems with the exotic
nonlinear N = 4 supersymmetry realized on finite-gap systems with soliton defects
[73, 79]. By applying Darboux–Crum transformations to a Lax pair formulation of
the KdV equation, one can construct multi-soliton solutions to this equation as well
as to the modified Korteweg–de Vries equation which represent different types of
defects in crystalline background of the pulse and compression modulation types.
These periodicity defects reveal a chiral asymmetry in their propagation. Exotic
nonlinear supersymmetric structure in such systems unifies solutions to the KdV
and modified KdV equations, it detects the presence of soliton defects in them,
distinguishes their types, and identifies the types of crystalline backgrounds [73].

4 Perfectly Invisible PT -Symmetric Zero-Gap Systems

Darboux–Crum transformations can be realized not only on the base of the physical
or non-physical eigenstates of a system, but also by including into the set of the seed
states of Jordan and generalized Jordan states [56, 57, 80–82], which, in turn, can be
obtained by certain limit procedures from eigenstates of a system. For instance,
one can start from the free quantum particle, and choose the set of the states
(x, x2, x3, . . . xn), xn = limk→0(sin kx/k)n. The first state x is a non-physical

eigenstate of Ĥ0 = − d2

dx2 of zero eigenvalue. The states x2l , x2l+1, l ≥ 1, are

the Jordan states of order l of Ĥ0: (Ĥ0)
l acting on both states transforms them into

zero energy eigenstates ψ0 = 1 and ψ1 = x = ψ̃0, respectively. The Wronskian of
these states is W(x, x2, x3, . . . , xn) = const · xn, and the system generated via the

corresponding Darboux–Crum transformation is Ĥn = − d2

dx2 + n(n+1)
x2 . Operator

Ĥn, however, is singular on the whole real line, and can be identified with the
Hamiltonian of the two-particle Calogero [83, 84] model with the omitted center of
mass coordinate, which requires for definition of its domain with x ∈ (0,+∞) the
introduction of the Dirichlet boundary condition ψ(0+) = 0. Systems Ĥ0 and Ĥn

are intertwined by differential operators An = An . . . A1 and A
†
n, AnĤ0 = ĤnAn,
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A
†
nĤn = Ĥ0A

†
n whereAl = d

dx
− l

x
, and construction of An corresponds to Eq. (3.3).

The systems Ĥ0 and Ĥn can also be intertwined by the operators Bn = An . . . A1A0
and B

†
n, where A0 = d

dx
, which are obtained by realizing the Darboux–Crum

transformation constructed on the base of the set of the states (x2, . . . , xn+1)

extended with the state ψ0 = 1. One could take then the extended system composed
from Ĥ+ = Ĥn and Ĥ− = Ĥ0 with Ĥ0 restricted to the same domain as
Ĥn, and construct the supercharge operators of differential orders n and n + 1
from the introduced intertwining operators. However, we find that the supercharge
constructed on the base of the intertwining operators Bn and B

†
n will be non-physical

as the intertwining operator Bn acting on physical eigenstates sin kx of Ĥ− of
energy k2 will transform them into non-physical eigenstates Bn sin kx of the system
Ĥ+ of the same energy but not satisfying the boundary condition ψ(0+) = 0. In
correspondence with this, differential operator of order 2n+ 1, L̂ = diag (L̂+, L̂−),
with L̂+ = BnA

†
n = An

d
dx
A

†
n and L̂− = A

†
nBn = (Ĥ−)n d

dx
formally commutes

with Ĥ, but it is not a physical operator for the system Ĥ as acting on its physical
eigenstates satisfying boundary condition at x = 0+, it transforms them into non-
physical eigenstates not satisfying the boundary condition. The situation can be
“PT -regularized” by shifting the variable x: x → ξ = x + iα, where α is a
nonzero real parameter [56]. The obtained in such a way superextended system can
be considered on the whole real line x ∈ R, and boundary condition at x = 0
can be omitted. The system Ĥ+(ξ) is PT -symmetric [85–91]: [PT, Ĥ+(ξ)] = 0,
where P is a space reflection operator, Px = −Px, and T is the operator defined
by T (x + iα) = (x − iα)T . Subsystem Ĥ+(ξ) has one bound eigenstate of zero
eigenvalue described by quadratically integrable on the whole real line function
ψ+

0 = ξ−n, which lies at the very edge of the continuous spectrum with E > 0.

System Ĥ+(ξ) therefore can be identified as PT -symmetric zero-gap system.
Moreover, it turns out that the transmission amplitude for this system is equal to one
as for the free particle system, and Ĥ+(ξ) can be regarded as a perfectly invisible
PT -symmetric zero-gap system. Exotic nonlinear supersymmetry of the system
Ĥ(ξ) will be described by two supercharges of differential order n constructed from
the intertwining operators An(ξ) and A

#
n(ξ) = A#

1 . . . A
#
n, A#

j = − d
dx

− j
ξ

, by
supercharges of the order n + 1 constructed from the intertwining operators Bn(ξ)

and B
#
n(ξ), and by the Lax–Novikov integral L̂(ξ) to be differential operator of order

2n + 1. Operator L̂(ξ) annihilates the unique bound state of the system Ĥ(ξ) and
the state ψ0 = 1 of zero energy in the spectrum of the free particle subsystem, and
distinguishes plane waves eikx in the spectrum of the free particle subsystem and
deformed plane waves An(ξ)e

ikξ in the spectrum of the superpartner system Ĥ+(ξ).
In the simplest case n = 1, the supercharges have the form

Q̂1 =
(

0 A1(ξ)

A#
1(ξ) 0

)
, Q̂2 = iσ3Q̂1 , (4.1)

Ŝ1 =
(

0 −A1(ξ)
d
dx

d
dx
A#

1(ξ) 0

)
, Ŝ2 = iσ3Ŝ1 , (4.2)
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where Q̂1 = Q̂+ + Q̂−, Ŝ1 = Ŝ+ + Ŝ−. The Lax–Novikov integral is

L̂ =
(−iA1(ξ)

d
dx
A#

1(ξ) 0
0 −i d

dx
Ĥ0

)
. (4.3)

Together with Hamiltonian Ĥ = diag (Ĥ1(ξ), Ĥ0) they satisfy the following
nonlinear superalgebra [56]:

[Ĥ, Q̂a] = 0 , [Ĥ, Ŝa] = 0 , (4.4)

{Q̂a, Q̂b} = 2δabĤ , {Ŝa, Ŝb} = 2δabĤ2 , (4.5)

{Q̂a, Ŝb} = 2εabL̂ . (4.6)

[L̂, Ĥ] = 0 , [L̂, Q̂a] = 0 , [L̂, Sa] = 0 . (4.7)

In the case of the superextended system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1)), where
ξj = x + iαj , j = 1, 2, and α1 �= α2, exotic nonlinear supersymmetry is
partially broken: the doublet of zero energy bound states is annihilated by the
second order supercharges Ŝa and by the Lax–Novikov integral L̂, but they are not
annihilated by the first order supercharges Q̂a [56]. The first order supercharges
Q̂a are constructed in this case from the intertwining operators A = d

dx
+ W ,

W = ξ−1
1 −ξ−1

2 −(ξ1 −ξ2)
−1, and A# = − d

dx
+W . The second order supercharges

Ŝa are composed from the intertwining operators A1(ξ2)A
#
1(ξ1) and A1(ξ1)A

#
1(ξ2).

In the limit α1 → ∞, the system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1) transforms into the
system given by the PT -symmetric Hamiltonian Ĥ = diag (Ĥ1(ξ2), Ĥ0), and
exotic nonlinear supersymmetry in the partially broken phase transmutes into the
supersymmetric structure corresponding to the unbroken phase [56].

It is interesting to note that if to use the appropriate linear combinations of the
Jordan states of the quantum free particle as the seed states for the Darboux–Crum
transformations, one can construct PT -symmetric time-dependent potentials which
will satisfy equations of the KdV hierarchy and will exhibit a behavior typical for
extreme (rogue) waves [56].

5 Nonlinear Superconformal Symmetry of the
PT -Symmetric Zero-Gap Calogero Systems

Free particle system is characterized by the Schrödinger symmetry generated by the
first order integrals P̂0 = p̂ = −i d

dx
and Ĝ0 = x + 2it d

dx
, and the second order

integrals Ĥ0 = − d2

dx2 , D̂0 = 1
4 {P̂0, Ĝ0} and K̂0 = Ĝ2

0. Operators Ĝ0 as well as D̂0

and K̂0 are dynamical integrals of motion satisfying the equation of motion of the
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form d
dt
Î = ∂

∂t
Î − [Ĥ0, Î ] = 0. These time-independent and dynamical integrals

generate the Schrödinger algebra

[D̂0,H0] = iĤ0 , [D̂0, K̂0] = −iK̂0 , [K̂0, Ĥ0] = 8iD̂0 , (5.1)

[D̂0, P̂0] = i
2 P̂0 , [̂D0, Ĝ0] = − i

2Ĝ0 , (5.2)

[Ĥ0, Ĝ0] = −2iP̂0 , [Ĥ0, P̂0] = 0 , (5.3)

[K̂0, P̂0] = 2iĜ0 , [K̂0, Ĝ0] = 0 , (5.4)

[Ĝ0, P̂0] = i I . (5.5)

Equations (5.1) and (5.5) correspond to the sl(2,R) and Heisenberg subalgebras,
respectively. If we make a shift x → ξ = x + iα, and make Darboux-
dressing of operators P̂0, Ĝ0, D̂0, and K̂0, we find the integrals of motion for
the perfectly invisible zero-gap PT -symmetric system Ĥ1(ξ). These are P̂1(ξ) =
A1(ξ)P̂0A

#
1(ξ), Ĝ1(ξ) = A1(ξ)Ĝ0A

#
1(ξ), and

D̂1(ξ) = − i

2

(
ξ
d

dx
+ 1

2

)
− tĤ1(ξ) , (5.6)

K̂1(ξ) = ξ2 − 8tD̂1(ξ) − 4t2Ĥ1(ξ) , (5.7)

where the dynamical integrals D̂1(ξ) and K̂1(ξ) have been extracted from the
corresponding Darboux-dressed operators by omitting in them the operator factor
Ĥ1(ξ) [57]. Operators Ĥ1(ξ), D̂1(ξ), and K̂1(ξ) generate the same sl(2,R) algebra
as in the case of the free particle. But now we have relations

[D1, P1] = 3

2
iP1 , [D1,G1] = i

2
G1 , [K1, P1] = 6iG1 , (5.8)

[G1, P1] = 3i(H1)
2 (5.9)

instead of the corresponding relations of the free particle system. In addition, two
new dynamical integrals of motion,

V1(ξ) = iξ2A#
1(ξ) − 4tG1(ξ) − 4t2P1(ξ) (5.10)

and

R1(ξ) = ξ3 − 6tV1(ξ) − 12t2G1(ξ) − 8t3ξ1 , (5.11)

are generated via the commutation relations

[K̂1, Ĝ1] = −4iV̂1 , [K̂1, V̂1] = −2iR̂1 , (5.12)
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and we obtain additionally the commutation relations

[V̂1, Ĥ1] = 4iĜ1 , [V̂1, D̂1] = i
2 V̂1 ,

[V̂1, P̂1] = 12iĤ1D̂1 − 6Ĥ1 , [V̂1, Ĝ1] = 12i(D̂1)
2 + 3

4 i I ,

[R̂1, Ĥ1] = 6iV̂1 , [R̂1, D̂1] = 3
2 iR̂1 , [R̂1, K̂1] = 0 ,

[R̂1, P̂1] = 36i D̂2
1 + 21

4 i I, [R̂1, Ĝ1] = 12i D̂1K̂1 − 6K̂1 , [R̂1, V̂1] = 3i K̂2
1 .

The Schrödinger algebra of the free particle is extended for its nonlinear general-
ization in the case of the PT -symmetric system Ĥ1(ξ), which is generated by the
operators Ĥ1(ξ), P̂1(ξ), Ĝ1(ξ), D̂1(ξ), K̂1(ξ), V̂1(ξ), R̂1(ξ), and central charge I

(equals to 1 in the chosen system of units). All these integrals are eigenstates of the
dilatation operator D̂1(ξ) with respect to its adjoint action.

Now we can consider the generalized and extended superconformal symmetry of
the system described by the matrix Hamiltonian operator Ĥ = diag (Ĥ1(ξ), Ĥ0).
Supplying the Hamiltonian Ĥ and Lax–Novikov integral (4.3) with the bosonic
integrals D̂ = diag (D̂1(ξ), D̂0(ξ)), K̂ = diag (K̂1(ξ), K̂0(ξ)), and commuting
them with supercharges (4.1) and (4.2), we obtain a nonlinear superalgebra that
describes the symmetry of the system Ĥ, which corresponds to some nonlinear
extension of the super-Schrödinger algebra. It is generated by the set of the even
(bosonic) integrals Ĥ, D̂, K̂, L̂, Ĝ, V̂ , R̂, P̂−, Ĝ−, Σ = σ3, Î = diag (1, 1), and by
the odd (fermionic) integrals Q̂a , Ŝa , and λ̂a , μ̂a and κ̂a , a = 1, 2, where

Ĝ = diag
(
Ĝ1(ξ),

1
2 {Ĝ0(ξ), Ĥ0}

)
, V = iξ2Aα#

1 I − 4tG − 4t2L , (5.13)

R̂ = ξ3I − 6tV̂ − 12t2Ĝ − 8t3L̂ , (5.14)

P̂− = 1
2 (1 − σ3)P̂0 , Ĝ− = 1

2 (1 − σ3)Ĝ0(ξ), (5.15)

λ̂1 =
(

0 iξ

−iξ 0

)
− 2tQ̂1 , λ̂2 = iσ3λ̂1 , (5.16)

μ̂1 =
(

0 ξP̂0

P̂0ξ 0

)
− 2tŜ1 , μ̂2 = iσ3μ̂1 , (5.17)

κ̂1 =
(

0 ξ2

ξ2 0

)
− 4tμ̂1 − 4t2Ŝ1 , κ̂2 = iσ3κ̂1 , (5.18)

and we use the notation Ĝ0(ξ) = Ĝ0(x + iα). Explicit form of the nonlinear
superalgebra generated by these integrals of motion of the system Ĥ is presented
in [57]. All the even and odd integrals here are eigenstates of the matrix dilatation
operator D̂.
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Essentially different generalized nonlinear superconformal structure appears in
the system described by the matrix Hamiltonian

Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1))

and characterized by the partially broken exotic nonlinear N = 4 supersymmetry.
In that case the number of the even and odd integrals of motion is the same as
in the system Ĥ = diag (Ĥ1(ξ), Ĥ0) in the phase with unbroken supersymmetry.
However, no odd (fermionic) integral of motion is eigenstate of the matrix dilatation
operator D̂ = diag (D̂1(ξ2), D̂1(ξ1)), and, as a result, the structure of the nonlinear
superalgebra has more complicated form. When one of the shift parameters, α1, is
sent to infinity, the system Ĥ = diag (Ĥ1(ξ2), Ĥ1(ξ1)) transforms into the system
Ĥ = diag (Ĥ1(ξ), Ĥ0) in the unbroken phase of the exotic nonlinear N = 4 super-
Poincaré symmetry, and all the integrals of the latter system can be reproduced from
the integrals of the former system. The relation between the integrals turns out to be
rather nontrivial and requires some sort of a “renormalization” [57].

6 Rationally Extended Harmonic Oscillator and Conformal
Mechanics Systems

Quantum harmonic oscillator (QHO) and conformal mechanics systems [92–122]
described by de Alfaro-Fubini-Furlan (AFF) model [92] are characterized by
conformal symmetry. In the case of harmonic oscillator, like in the free particle
case, it extends to the Schrödinger symmetry [93–95, 123]. Heisenberg subalgebra
in the free particle system is generated by the momentum operator being time-
independent integral of motion, and by generator of the Galilean boosts Ĝ0, which
is a dynamical integral of motion. In the case of the QHO, Heisenberg subalgebra
is generated by two dynamical integrals of motion to be linear in the ladder
operators. In correspondence with this, ladder operators are the spectrum-generating
operators of the QHO having discrete equidistant spectrum instead of the continuous
spectrum of the free particle. As a consequence of these similarities and differences
between the free particle and QHO, exotic supersymmetry can also be generated
by Darboux–Crum transformations applied to the latter system. Instead of the two
pairs of time-independent supercharge generators in superextended reflectionless
systems, in superextended systems constructed from the pairs of the rational
extensions of the QHO, only two supercharges are time-independent integrals,
while other two odd generators are dynamical integrals of motion. As a result,
instead of the exotic nonlinear N = 4 supersymmetry of the paired reflectionless
(and finite-gap) systems, in the case of the deformed oscillator systems there
appear some nonlinearly deformed and generalized super-Schrödinger symmetry.
The superextended systems composed from the AFF model (with special values
g = n(n + 1) of the coupling constant in its additional potential term g/x2) and
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its rational extensions are described by the nonlinearly deformed and generalized
superconformal symmetry [51].

Let us consider first in more detail the case of rational deformations of the
QHO system [5, 6, 49, 51, 71, 124–128]. To generate a rational deformation of the
QHO, it is necessary to choose the set of its physical or non-physical eigenstates
as seed states for the Darboux–Crum transformation so that their Wronskian will
take nonzero values. In this way we generate an almost isospectral quantum system
with difference only in finite number of added or eliminated energy levels. The

QHO Hamiltonian Ĥosc = − d2

dx2 + x2 possesses the same symmetry under the
Wick rotation as the quantum free particle system: if ψ(x) is a solution of the time-
independent Schrödinger equation Ĥosc(x)ψ(x) = Eψ(x), then ψ(ix) is a solution
of equation Ĥosc(x)ψ(ix) = −Eψ(ix). To construct a rational deformation of the
QHO described by a nonsingular on the whole real line potential, one can take
the following set of the non-physical eigenstates of Ĥosc as the seed states for the
Darboux–Crum transformation:

(ψ−
j1
, . . . , ψ−

j1+l1
), (ψ−

j2
, . . . , ψ−

j2+l2
), . . . , (ψ−

jr
, . . . , ψ−

jr+lr
), (6.1)

where j1 = 2g1, jk+1 = jk + lk + 2gk+1, gk = 1, . . . , lk = 0, 1, . . ., k =
1, . . . , r − 1. Here ψ−

n (x) = ψn(ix), n = 0, . . ., is a non-physical eigenstate of
Ĥosc of eigenvalue E−

n = −(2n + 1), obtained by Wick rotation from a (non-

normalized) physical eigenstate ψn(x) = Hn(x)e
−x2/2 of energy En = 2n + 1,

where Hn(x) is Hermite polynomial of order n. The indicated set of non-physical
eigenstates of Ĥosc guarantees that the Wronskian of the chosen seed states,
W = W(−nm, . . . ,−n1), takes nonzero values for all x ∈ R [129]. Here we
assume that nm > . . . > n1 > 0, and in what follows we use the notation for
physical and non-physical eigenstates n = ψn and −n = ψ−

n , respectively. The
DC scheme based on the set of the non-physical states having negative eigenvalues
was called “negative” in [71]. Wronskian W = W(−nm, . . . ,−n1) is equal to some
polynomial multiplied by exp(n−x2/2), where n− = (l1 + 1)+ · · · + (lr + 1) is the
number of the chosen seed states, and according to Eq. (3.1), the DC transformation
generates the system described by the harmonic term x2 extended by some rational
in x term. Transformation based on the negative scheme (−nm, . . . ,−n1) introduces
effectively into the spectrum of the QHO the n− bound states of energy levels
−2nm−1, . . ., −2n1−1. These additional energy levels are grouped into r “valence”
bands with lk + 1 levels in the band with index k, which are separated by gaps of
the size 4gk , with the first valence band separated from the infinite equidistant part
of the spectrum by the gap of the size 4g1. The same structure of the spectrum can
be achieved alternatively by eliminating n+ = 2(g1 + · · · + gr) energy levels from
the spectrum of the QHO by taking n+ physical states

(ψlr+1, . . . , ψlr+2gr ), . . . , (ψnm−2g1+1, . . . , ψnm), (6.2)

organized into n− groups.
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The duality of the negative and positive schemes based on the sets of the seed
states (6.1) and (6.2) can be established as follows. Applying Eq. (3.6) with ψ∗ =
−0, and equalities ψ−

0
d
dx

1
ψ−

0
= −a+, a+ψ̃−

0 = ψ0, a+(−n) = −(n − 1), where

a+ = − d
dx

+ x is the raising ladder operator of the QHO, we obtain the relation
[71]

W(−nm, . . . ,−n1) = W(−0, −̃0,−nm, . . . ,−n1)

= ex
2/2

W(0,−(nm − 1),−(n − 1)). (6.3)

It means that the negative scheme generated by the set of the n− non-physical seed
states (−nm, . . . ,−n1) and the “mixed” scheme based on the set of the seed states
(0,−(nm − 1),−(n − 1)) involving the ground eigenstate generate, according to
Eq. (3.1), the same quantum system but given by the Hamiltonian operator shifted
for the additive constant term: the potential obtained on the base of the indicated
mixed scheme will be shifted for the constant +4 in comparison with the potential
generated via the DC transformation based on the negative scheme. Eq. (6.3) is
analogous to the Wronskian relation (3.17) for the free particle states, with the state
ψ0 = 1 and operator ψ0

d
dx

1
ψ0

= d
dx

there to be analogous to the ground state
and raising ladder operator of the QHO here. In (3.17), however, the Wronskian
equality does not contain any nontrivial functional factor in comparison with the
exponential multiplier appearing in (6.3). As a result, as we saw before, in the
case of the free particle any reflectionless system can be generated from it by
means of the two DC transformations, which produce exactly the same Hamiltonian
operator. Consequently, we construct there two pairs of the supercharges for
the corresponding superextended system which are the integrals of motion not
depending explicitly on time. On the other hand, in the case of a superextended
system produced from the QHO we shall have two fermionic integrals to be
true, time-independent integrals of motion, but two other odd generators of the
superalgebra will be time-dependent, dynamical integrals of motion.

Applying repeatedly the procedure of Eq. (6.3), we obtain finally the relation [71]

W(−nm, . . . ,−n1) = e(nm+1)x2/2
W(n′

1, . . . , n
′
m = nm), (6.4)

where 0 < n′
1 < · · · < n′

m = nm. This relation means that the negative scheme
(−nm, . . . ,−n1) with n− seed states is dual to the positive scheme (n′

1, . . . , n
′
m =

nm) with n+ = nm + 1 − n− = 2(g1 + · · · + gk) seed states representing physical
eigenstates of the QHO. The two dual schemes can be unified in one “mirror”
diagram, in which any of the two schemes can be obtained from another by a kind
of a “charge conjugation,” see ref. [71]. In this way we obtain, as an example,
the pairs of dual schemes (−2) ∼ (1, 2) and (−2,−3) ∼ (2, 3). Eq. (6.4) means
that the dual schemes generate the same rationally extended QHO system but the
Hamiltonian corresponding to the positive scheme will be shifted in comparison to
the Hamiltonian produced on the base of the negative scheme for additive constant
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equal to 2(n+ + n−) = 2(nm + 1). One can also note that in comparison with the
free particle case, the total number of the seed states in both dual schemes can be
odd or even.

We denote by A
−
(−) the intertwining operator An− constructed on the base of

the negative scheme, and A
+
(−) ≡ (A−

(−))
†, see Eq. (3.3). These are differential

operators of order n−. Analogously, the intertwining operators constructed by
employing the dual positive scheme we denote as A−

(+), and A
+
(+) ≡ (A−

(+))
†; they

are differential operators of order n+. We denote by L̂(−) and L̂(+) the Hamiltonian
operators generated from the QHO Hamiltonian Ĥ− = Ĥosc by means of the
DC transformation realized on the base of the negative and positive dual schemes,
respectively. Then L̂(+) = L̂(−) + 2(n+ + n−), A−

(−)Ĥ− = L̂(−), A
−
(+)Ĥ− = L̂(+).

For the rationally deformed QHO system L̂(−) one can construct three pairs of the
ladder operators, two of which are obtained by Darboux-dressing of the ladder
operators of the QHO system A± = A

−
(−)a

±
A

+
(−), and B± = A

−
(+)a

±
A

+
(+),

while the third pair is obtained by gluing different intertwining operators, C− =
A

−
(+)A

+
(−), C+ = A

−
(−)A

+
(+). These ladder operators detect all the separated states

in the rationally deformed QHO system L̂(−) (or L̂(+)) organized into the valence
bands; they also distinguish the valence bands themselves, and any of the two sets
(C±,A±) or (C±,B±) represents the complete spectrum-generating set of the ladder
operators of the system L̂(−). The operators A±e∓2it , B±e∓2it , C±e±2(n++n−)it

are the dynamical integrals of motion of the system L(−). Being higher derivative
differential operators, they have a nature of generators of a hidden symmetry. If
we construct now the extended system Ĥ = diag (L̂(−), Ĥ−), the pair of the
supercharges constructed from the intertwining operators A

±
(−) will be its time-

independent odd integrals of motion, while from the intertwining operators A
±
(+)

we obtain a pair of the fermionic dynamical integrals of motion. Proceeding from
these odd integrals of motion and the Hamiltonian Ĥ, one can generate a nonlinearly
deformed generalized super-Schrödinger symmetry of the superextended system Ĥ.
In the superextended system Ĥ = diag (L̂(+), Ĥ−), the pair of the time-independent
supercharges is constructed from the pair of intertwining operators A

±
(+), while

the dynamical fermionic integrals of motion are obtained from the intertwining
operators A

±
(−). This picture with the nonlinearly deformed generalized super-

Schrödinger symmetry can also be extended for the case of a superextended system
Ĥ composed from any pair of the rationally deformed quantum harmonic oscillator
systems.

In [71], it was shown that the AFF model Ĥg = − d2

dx2 + x2 + g

x2 with special
values g = n(n + 1) of the coupling constant can be obtained by applying the
appropriate CD transformation to the half-harmonic oscillator obtained from the
QHO by introducing the infinite potential barrier at x = 0. As a consequence,
rational deformations of the AFF conformal mechanics model can be obtained
by employing some modification of the described DC transformations based on
the dual schemes applied to the QHO system. The corresponding superextended
systems composed from rationally deformed versions of the conformal mechanics
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are described by the nonlinearly deformed generalized superconformal symme-
try instead of the nonlinearly deformed generalized super-Schrödinger symmetry
appearing in the case of the superextended rationally deformed QHO systems,
see [51]. The construction of rational deformations for the AFF model can be
generalized for the case of arbitrary values of the coupling constant g = ν(ν + 1)
[130].

7 Conclusion

We considered nonlinear supersymmetry of one-dimensional mechanical systems
which has the nature of the hidden symmetry generated by supercharges of higher
order in momentum. In the case of reflectionless, finite-gap, rationally deformed
oscillator and conformal mechanics systems, as well as in a special class of the
PT -regularized Calogero systems, the nonlinear N = 2 Poincaré supersymmetry
expands up to exotic nonlinear N = 4 supersymmetric and nonlinearly deformed
generalized super-Schrödinger or superconformal structures.

Classical symmetries described by the linear Lie algebraic structures are pro-
moted by geometric quantization to the quantum level [131, 132]. Though nonlinear
symmetries described by W -type algebras can be produced from linear symmetries
via some reduction procedure [64], the problem of generation of nonlinear quantum
mechanical supersymmetries from the linear ones was not studied in a systematic
way. It would be interesting to investigate this problem bearing particularly in mind
the problem of the quantum anomaly associated with nonlinear supersymmetry [14].
Some first steps were realized in this direction in [62] in the light of the so-called
coupling constant metamorphosis mechanism [133]. Note also that, as was shown
in [12], nonlinear supersymmetry of purely parabosonic systems can be obtained by
reduction of parasupersymmetric systems.

Hidden symmetries can be associated with the presence of the peculiar geometric
structures in the corresponding systems [1, 2, 134]. It would be interesting to
investigate nonlinear supersymmetry and related exotic nonlinear supersymmetric
and superconformal structures from a similar perspective.

Acknowledgements Financial support from research projects Convenio Marco Universidades
del Estado (Project USA1555) and FONDECYT Project 1190842, Chile, and MINECO (Project
MTM2014-57129-C2-1-P), Spain, is acknowledged.

References

1. M. Cariglia, Hidden symmetries of dynamics in classical and quantum physics. Rev. Mod.
Phys. 86, 1283 (2014)

2. V. Frolov, P. Krtous, D. Kubiznak, Black holes, hidden symmetries, and complete integrabil-
ity. Living Rev. Relativ. 20(1), 6 (2017)



182 M. S. Plyushchay

3. B. Khesin, G. Misolek, Euler equations on homogeneous spaces and Virasoro orbits. Adv.
Math. 176, 116 (2003)

4. B.A. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups (Springer, Berlin,
2009)

5. S. Yu. Dubov, V.M. Eleonskii, N. E. Kulagin, Equidistant spectra of anharmonic oscillators.
Zh. Eksp. Teor. Fiz. 102, 814 (1992)

6. S.Y. Dubov, V.M. Eleonskii, N.E. Kulagin, Equidistant spectra of anharmonic oscillators.
Chaos 4, 47 (1994)

7. A.P.Veselov, A.B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator.
Funct. Anal. Appl. 27, 81 (1993)

8. A.A. Andrianov, M.V. Ioffe, V.P. Spiridonov, Higher derivative supersymmetry and the Witten
index. Phys. Lett. A 174, 273 (1993)

9. D.J. Fernandez C, SUSUSY quantum mechanics. Int. J. Mod. Phys.A 12, 171 (1997)
10. D.J. Fernandez C, V. Hussin, Higher-order SUSY, linearized nonlinear Heisenberg algebras

and coherent states. J. Phys. A: Math. Gen. 32, 3603 (1999)
11. B. Bagchi, A. Ganguly, D. Bhaumik, A. Mitra, Higher derivative supersymmetry, a modified

Crum–Darboux transformation and coherent state. Mod. Phys. Lett. A 14, 27 (1999)
12. M. Plyushchay, Hidden nonlinear supersymmetries in pure parabosonic systems. Int. J. Mod.

Phys. A 15, 3679 (2000)
13. D.J. Fernandez, J. Negro, L.M. Nieto, Second-order supersymmetric periodic potentials.

Phys. Lett. A 275, 338 (2000)
14. S.M. Klishevich, M.S. Plyushchay, Nonlinear supersymmetry, quantum anomaly and quasi-

exactly solvable systems. Nucl. Phys. B 606, 583 (2001)
15. S.M. Klishevich, M.S. Plyushchay, Nonlinear supersymmetry on the plane in magnetic field

and quasi-exactly solvable systems. Nucl. Phys. B 616, 403 (2001)
16. S.M. Klishevich, M.S. Plyushchay, Nonlinear holomorphic supersymmetry, Dolan–Grady

relations and Onsager algebra. Nucl. Phys. B 628, 217 (2002)
17. S.M. Klishevich, M.S. Plyushchay, Nonlinear holomorphic supersymmetry on Riemann

surfaces. Nucl. Phys. B 640, 481 (2002)
18. D.J. Fernandez C, B. Mielnik, O. Rosas-Ortiz, B. F. Samsonov, Nonlocal supersymmetric

deformations of periodic potentials. J. Phys. A 35, 4279 (2002)
19. R. de Lima Rodrigues, The Quantum mechanics SUSY algebra: An Introductory review.

arXiv: hep-th/0205017 (2002)
20. C. Leiva, M.S. Plyushchay, Superconformal mechanics and nonlinear supersymmetry. JHEP

0310, 069 (2003)
21. A. Anabalon, M.S. Plyushchay, Interaction via reduction and nonlinear superconformal

symmetry. Phys. Lett. B 572, 202 (2003)
22. B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm? J. Phys. A 37, 10007

(2004)
23. M.V. Ioffe, D.N. Nishnianidze, SUSY intertwining relations of third order in derivatives.

Phys. Lett. A 327, 425 (2004)
24. F. Correa, M.A. del Olmo, M.S. Plyushchay, On hidden broken nonlinear superconformal

symmetry of conformal mechanics and nature of double nonlinear superconformal symmetry.
Phys. Lett. B 628, 157 (2005)

25. F. Correa, M.S. Plyushchay, Hidden supersymmetry in quantum bosonic systems. Ann. Phys.
322, 2493 (2007)

26. F. Correa, L.M. Nieto, M.S. Plyushchay, Hidden nonlinear supersymmetry of finite-gap Lamé
equation. Phys. Lett. B 644, 94 (2007)

27. F. Correa, M.S. Plyushchay, Peculiarities of the hidden nonlinear supersymmetry of Pöschl–
Teller system in the light of Lamé equation. J. Phys. A 40, 14403 (2007)

28. A. Ganguly, L.M. Nieto, Shape-invariant quantum Hamiltonian with position-dependent
effective mass through second order supersymmetry. J. Phys. A 40, 7265 (2007)

29. F. Correa, L.M. Nieto, M.S. Plyushchay, Hidden nonlinear su(2|2) superunitary symmetry of
N = 2 superextended 1D Dirac delta potential problem. Phys. Lett. B 659, 746 (2008)



Nonlinear Supersymmetry as a Hidden Symmetry 183

30. F. Correa, V. Jakubsky, L.M. Nieto, M.S. Plyushchay, Self-isospectrality, special supersym-
metry, and their effect on the band structure. Phys. Rev. Lett. 101, 030403 (2008)

31. F. Correa, V. Jakubsky, M.S. Plyushchay, Finite-gap systems, tri-supersymmetry and self-
isospectrality. J. Phys. A 41, 485303 (2008)

32. F. Correa, V. Jakubsky, M.S. Plyushchay, Aharonov-Bohm effect on AdS(2) and nonlinear
supersymmetry of reflectionless Pöschl–Teller system. Ann. Phys. 324, 1078 (2009)

33. F. Correa, G.V. Dunne, M. S. Plyushchay, The Bogoliubov/de Gennes system, the AKNS
hierarchy, and nonlinear quantum mechanical supersymmetry. Ann. Phys. 324, 2522 (2009)

34. F. Correa, H. Falomir, V. Jakubsky, M.S. Plyushchay, Supersymmetries of the spin-1/2 particle
in the field of magnetic vortex, and anyons. Ann. Phys. 325, 2653 (2010)

35. V. Jakubsky, L.M. Nieto, M.S. Plyushchay, The origin of the hidden supersymmetry. Phys.
Lett. B 692, 51 (2010)

36. M.S. Plyushchay, L.M. Nieto, Self-isospectrality, mirror symmetry, and exotic nonlinear
supersymmetry. Phys. Rev. D 82, 065022 (2010)

37. M.S. Plyushchay, A. Arancibia, L.M. Nieto, Exotic supersymmetry of the kink-antikink
crystal, and the infinite period limit. Phys. Rev. D 83, 065025 (2011)

38. V. Jakubsky, M.S. Plyushchay, Supersymmetric twisting of carbon nanotubes. Phys. Rev. D
85, 045035 (2012)

39. F. Correa, M. S. Plyushchay, Self-isospectral tri-supersymmetry in PT-symmetric quantum
systems with pure imaginary periodicity. Ann. Phys. 327, 1761 (2012)

40. F. Correa, M.S. Plyushchay, Spectral singularities in PT-symmetric periodic finite-gap
systems. Phys. Rev. D 86, 085028 (2012)

41. A.A. Andrianov, M.V. Ioffe, Nonlinear supersymmetric quantum mechanics: concepts and
realizations. J. Phys. A 45, 503001 (2012)

42. A. Arancibia, J. Mateos Guilarte, M.S. Plyushchay, Effect of scalings and translations on
the supersymmetric quantum mechanical structure of soliton systems. Phys. Rev. D 87(4),
045009 (2013)

43. A. Arancibia, J. Mateos Guilarte, M.S. Plyushchay, Fermion in a multi-kink-antikink soliton
background, and exotic supersymmetry. Phys. Rev. D 88, 085034 (2013)

44. F. Correa, O. Lechtenfeld, M. Plyushchay, Nonlinear supersymmetry in the quantum Calogero
model. JHEP 1404, 151 (2014)

45. R. Bravo, M.S. Plyushchay, Position-dependent mass, finite-gap systems, and supersymmetry.
Phys. Rev. D 93(10), 105023 (2016)

46. M.S. Plyushchay, Supersymmetry without fermions. arXiv:hep-th/9404081 (1994 )
47. M.S. Plyushchay, Deformed Heisenberg algebra, fractional spin fields and supersymmetry

without fermions. Ann. Phys. 245, 339 (1996)
48. J. Gamboa, M. Plyushchay, J. Zanelli, Three aspects of bosonized supersymmetry and linear

differential field equation with reflection. Nucl. Phys. B 543, 447 (1999)
49. J.F. Cariñena, M.S. Plyushchay, Ground-state isolation and discrete flows in a rationally

extended quantum harmonic oscillator. Phys. Rev. D 94(10), 105022 (2016)
50. L. Inzunza, M. S. Plyushchay, Hidden superconformal symmetry: where does it come from?

Phys. Rev. D 97(4), 045002 (2018)
51. L. Inzunza, M.S. Plyushchay, Hidden symmetries of rationally deformed superconformal

mechanics. Phys. Rev. D 99(2), 025001 (2019)
52. G.W. Gibbons, R.H. Rietdijk, J.W. van Holten, SUSY in the sky. Nucl. Phys. B 404, 42 (1993)
53. M. Tanimoto, The Role of Killing–Yano tensors in supersymmetric mechanics on a curved

manifold. Nucl. Phys. B 442, 549 (1995)
54. F. De Jonghe, A.J. Macfarlane, K. Peeters, J.W. van Holten, New supersymmetry of the

monopole. Phys. Lett. B 359, 114 (1995)
55. M.S. Plyushchay, On the nature of fermion-monopole supersymmetry. Phys. Lett. B 485, 187

(2000)
56. J. Mateos Guilarte, M.S. Plyushchay, Perfectly invisible PT -symmetric zero-gap systems,

conformal field theoretical kinks, and exotic nonlinear supersymmetry. JHEP 1712, 061
(2017)



184 M. S. Plyushchay

57. J. Mateos Guilarte, M.S. Plyushchay, Nonlinear symmetries of perfectly invisible PT-
regularized conformal and superconformal mechanics systems. J. High Energy Phys. 2019(1),
194 (2019)

58. E. Witten, Dynamical breaking of supersymmetry. Nucl. Phys. B 188, 513 (1981)
59. E. Witten, Constraints on supersymmetry breaking. Nucl. Phys. B 202, 253 (1982)
60. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rept. 251,

267 (1995)
61. G. Junker, Supersymmetric Methods in Quantum, Statistical and Solid State Physics, Revised

and Enlarged Edition (IOP Publishing, Bristol, 2019)
62. M.S. Plyushchay, Schwarzian derivative treatment of the quantum second-order supersym-

metry anomaly, and coupling-constant metamorphosis. Ann. Phys. 377, 164 (2017)
63. D. Bonatsos, C. Daskaloyannis, P. Kolokotronis, D. Lenis, The symmetry algebra of the N-

dimensional anisotropic quantum harmonic oscillator with rational ratios of frequencies and
the Nilsson model. arXiv preprint hep-th/9411218 (1994)

64. J. de Boer, F. Harmsze, T. Tjin, Nonlinear finite W symmetries and applications in elementary
systems. Phys. Rept. 272, 139 (1996)

65. A.V. Turbiner, Quasiexactly solvable problems and SL(2) group. Commun. Math. Phys. 118,
467 (1988)

66. F. Finkel, A. Gonzalez-Lopez, N. Kamran, P.J. Olver, M.A. Rodriguez, Lie algebras of
differential operators and partial integrability. arXiv preprint hep-th/9603139 (1996)

67. M.A. Shifman, New findings in quantum mechanics (partial algebraization of the spectral
problem). Int. J. Mod. Phys.A 4, 2897 (1989)

68. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)
69. M.G. Krein, On a continuous analogue of a Christoffel formula from the theory of orthogonal

polynomials. Dokl. Akad. Nauk SSSR 113, 970 (1957)
70. V.E. Adler, A modification of Crum’s method. Theor. Math. Phys. 101, 1381 (1994)
71. J.F. Cariñena, L. Inzunza, M.S. Plyushchay, Rational deformations of conformal mechanics.

Phys. Rev. D 98, 026017 (2018)
72. S.P. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons (Plenum, New

York, 1984)
73. A. Arancibia, M.S. Plyushchay, Chiral asymmetry in propagation of soliton defects in

crystalline backgrounds. Phys. Rev. D 92(10), 105009 (2015)
74. A. Arancibia, M.S. Plyushchay, Transmutations of supersymmetry through soliton scattering,

and self-consistent condensates. Phys. Rev. D 90(2), 025008 (2014)
75. C. Quesne, V.M. Tkachuk, Deformed algebras, position dependent effective masses and

curved spaces: an exactly solvable Coulomb problem. J. Phys. A 37, 4267 (2004)
76. A. Ganguly, S. Kuru, J. Negro, L. M. Nieto, A Study of the bound states for square potential

wells with position-dependent mass. Phys. Lett. A 360, 228 (2006)
77. S.C. y Cruz, J. Negro, L.M. Nieto, Classical and quantum position-dependent mass harmonic

oscillators. Phys. Lett. A 369, 400 (2007)
78. S.C. y Cruz, O. Rosas-Ortiz, Position dependent mass oscillators and coherent states. J. Phys.

A 42, 185205 (2009)
79. A. Arancibia, F. Correa, V. Jakubský, J. Mateos Guilarte, M.S. Plyushchay, Soliton defects in

one-gap periodic system and exotic supersymmetry. Phys. Rev. D 90(12), 125041 (2014)
80. A. Schulze-Halberg, Wronskian representation for confluent supersymmetric transformation

chains of arbitrary order. Eur. Phys. J. Plus 128, 68 (2013)
81. F. Correa, V. Jakubsky, M.S. Plyushchay, PT -symmetric invisible defects and confluent

Darboux–Crum transformations. Phys. Rev. A 92(2), 023839 (2015)
82. A. Contreras-Astorga, A. Schulze-Halberg, Recursive representation of Wronskians in con-

fluent supersymmetric quantum mechanics. J. Phys. A 50(10), 105301 (2017)
83. F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or

inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)
84. A.P. Polychronakos, Physics and mathematics of Calogero particles. J. Phys. A 39, 12793

(2006)



Nonlinear Supersymmetry as a Hidden Symmetry 185

85. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rept. Prog. Phys. 70, 947 (2007)
86. A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom.

Meth. Mod. Phys. 7, 1191 (2010)
87. P. Dorey, C. Dunning, R. Tateo, Spectral equivalences, Bethe ansatz equations, and reality

properties in PT -symmetric quantum mechanics. J. Phys. A 34, 5679 (2001)
88. P. Dorey, C. Dunning, R. Tateo, Supersymmetry and the spontaneous breakdown of PT

symmetry. J. Phys. A 34, L391 (2001)
89. A. Fring, M. Znojil, PT-symmetric deformations of Calogero models. J. Phys. A 41, 194010

(2008)
90. A. Fring, PT-symmetric deformations of integrable models. Philos. Trans. R. Soc. Lond. A

371, 20120046 (2013)
91. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N.

Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018)
92. V. de Alfaro, S. Fubini, G. Furlan, Conformal invariance in quantum mechanics. Nuovo

Cimento 34A, 569 (1976)
93. J. Beckers, V. Hussin, Dynamical supersymmetries of the harmonic oscillator. Phys. Lett. A

118, 319 (1986)
94. J. Beckers, D. Dehin, V, Hussin, Symmetries and supersymmetries of the quantum harmonic

oscillator. J. Phys. A 20, 1137 (1987)
95. J. Beckers, D. Dehin, V, Hussin, On the Heisenberg and orthosymplectic superalgebras of the

harmonic oscillator. J. Math. Phys. 29, 1705 (1988)
96. E.A. Ivanov, S.O. Krivonos, V.M. Leviant, Geometry of conformal mechanics. J. Phys. A 22,

345 (1989)
97. C. Duval, P.A. Horvathy, On Schrödinger superalgebras. J. Math. Phys. 35, 2516 (1994)
98. P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend, A. Van Proeyen, Black holes and

superconformal mechanics. Phys. Rev. Lett. 81, 4553 (1998)
99. J.A. de Azcarraga, J.M. Izquierdo, J.C. Perez Bueno, P.K. Townsend, Superconformal

mechanics and nonlinear realizations. Phys. Rev. D 59, 084015 (1999)
100. G.W. Gibbons, P.K. Townsend, Black holes and Calogero models. Phys. Lett. B 454, 187

(1999)
101. J. Beckers, Y. Brihaye, N. Debergh, On realizations of ‘nonlinear’ Lie algebras by differential

operators. J. Phys. A 32, 2791 (1999)
102. J. Michelson, A. Strominger, The geometry of (super)conformal quantum mechanics. Com-

mun. Math. Phys. 213, 1 (2000)
103. S. Cacciatori, D. Klemm, D. Zanon, W(infinity) algebras, conformal mechanics, and black

holes. Classical Quantum Gravity 17, 1731 (2000)
104. G. Papadopoulos, Conformal and superconformal mechanics. Classical Quantum Gravity 17,

3715 (2000)
105. E.E. Donets, A. Pashnev, V.O. Rivelles, D.P. Sorokin, M. Tsulaia, N = 4 superconformal

mechanics and the potential structure of AdS spaces. Phys. Lett. B 484, 337 (2000)
106. B. Pioline and A. Waldron, Quantum cosmology and conformal invariance. Phys. Rev. Lett.

90, 031302 (2003)
107. H.E. Camblong, C.R. Ordonez, Anomaly in conformal quantum mechanics: From molecular

physics to black holes. Phys. Rev. D 68, 125013 (2003)
108. C. Leiva, M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems

and AdS/CFT correspondence. Ann. Phys. 307, 372 (2003)
109. C. Duval, G.W. Gibbons, P. Horvathy, Celestial mechanics, conformal structures and gravita-

tional waves. Phys. Rev.D 43, 3907 (1991)
110. P.D. Alvarez, J.L. Cortes, P.A. Horvathy, M.S. Plyushchay, Super-extended noncommutative

Landau problem and conformal symmetry. JHEP 0903, 034 (2009)
111. F. Correa, H. Falomir, V. Jakubsky, M.S. Plyushchay, Hidden superconformal symmetry of

spinless Aharonov-Bohm system. J. Phys. A 43, 075202 (2010)
112. T. Hakobyan, S. Krivonos, O. Lechtenfeld, A. Nersessian, Hidden symmetries of integrable

conformal mechanical systems. Phys. Lett. A 374, 801 (2010)



186 M. S. Plyushchay

113. C. Chamon, R. Jackiw, S. Y. Pi, L. Santos, Conformal quantum mechanics as the CFT1 dual
to AdS2. Phys. Lett. B 701, 503 (2011)

114. Z. Kuznetsova, F. Toppan, D-module representations of N = 2, 4, 8 superconformal algebras
and their superconformal mechanics. J. Math. Phys. 53, 043513 (2012)

115. K. Andrzejewski, J. Gonera, P. Kosinski, P. Maslanka, On dynamical realizations of l-
conformal Galilei groups. Nucl. Phys. B 876, 309 (2013)

116. M.S. Plyushchay, A. Wipf, Particle in a self-dual dyon background: hidden free nature, and
exotic superconformal symmetry. Phys. Rev. D 89(4), 045017 (2014)

117. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Light-front holographic QCD and
emerging confinement. Phys. Rept. 584, 1 (2015)

118. M. Masuku, J.P. Rodrigues, De Alfaro, Fubini and Furlan from multi matrix systems. JHEP
1512, 175 (2015)

119. O. Evnin, R. Nivesvivat, Hidden symmetries of the Higgs oscillator and the conformal
algebra. J. Phys. A 50(1), 015202 (2017)

120. I. Masterov, Remark on higher-derivative mechanics with l-conformal Galilei symmetry. J.
Math. Phys. 57(9), 092901 (2016)

121. K. Ohashi, T. Fujimori, M. Nitta, Conformal symmetry of trapped Bose-Einstein condensates
and massive Nambu-Goldstone modes. Phys. Rev. A 96(5), 051601 (2017)

122. R. Bonezzi, O. Corradini, E. Latini, A. Waldron, Quantum mechanics and hidden supercon-
formal symmetry. Phys. Rev. D 96(12), 126005 (2017)

123. U. Niederer, The maximal kinematical invariance group of the harmonic oscillator. Helv.
Phys. Acta 46, 191 (1973)

124. J.F. Cariñena, A.M. Perelomov, M.F. Rañada, M. Santander, A quantum exactly solvable
nonlinear oscillator related to the isotonic oscillator. J. Phys. A Math. Theor. 41, 085301
(2008)

125. J.M. Fellows, R.A. Smith, Factorization solution of a family of quantum nonlinear oscillators.
J. Phys. A 42, 335303 (2009)

126. D. Gómez-Ullate, N. Kamran, R. Milson, An extension of Bochner’s problem: exceptional
invariant subspaces. J. Approx. Theory 162, 897 (2010)

127. I. Marquette, C. Quesne, New ladder operators for a rational extension of the harmonic
oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54, 102102
(2013)

128. I. Marquette, New families of superintegrable systems from k-step rational extensions,
polynomial algebras and degeneracies. J. Phys. Conf. Ser. 597, 012057 (2015)

129. J.F. Cariñena, M.S. Plyushchay, ABC of ladder operators for rationally extended quantum
harmonic oscillator systems. J. Phys. A 50(27), 275202 (2017)

130. L. Inzunza, M.S. Plyushchay, Klein four-group and Darboux duality in conformal mechanics.
arXiv preprint arXiv:1902.00538 (2019)

131. G.P. Dzhordzhadze, I.T. Sarishvili, Symmetry groups in the extended quantization scheme.
Theor. Math. Phys. 93, 1239 (1992)

132. G. Jorjadze, Constrained quantization on symplectic manifolds and quantum distribution
functions. J. Math. Phys. 38, 2851 (1997)

133. J. Hietarinta, B. Grammaticos, B. Dorizzi, A. Ramani, Coupling constant metamorphosis and
duality between integrable Hamiltonian systems. Phys. Rev. Lett. 53, 1707 (1984)

134. M. Cariglia, A. Galajinsky, G.W. Gibbons, P.A. Horvathy, Cosmological aspects of the
Eisenhart-Duval lift. Eur. Phys. J. C 78(4), 314 (2018)



Coherent and Squeezed States:
Introductory Review of Basic Notions,
Properties, and Generalizations
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To Prof. Veronique Hussin on his 60th birthday with friendship
and scientific admiration.

Abstract A short review of the main properties of coherent and squeezed states
is given in the introductory form. The efforts are addressed to clarify concepts
and notions, including some passages of the history of science, with the aim of
facilitating the subject for nonspecialists. In this sense, the present work is intended
to be complementary to other papers of the same nature and subject in current
circulation.

Keywords Coherent states · Squeezed states · Nonclassical states · Optical
detection · Optical coherence · Wave packets · Minimum uncertainty · Harmonic
oscillator · Riccati equation · Ermakov equation

1 Introduction

Optical coherence refers to the correlation between the fluctuations at different
space-time points in a given electromagnetic field. The related phenomena are
described in statistical form by necessity, and include interference as the simplest
case in which correlations between light beams are revealed [1]. Until the first half of
the last century the classification of coherence was somehow based on the averaged
intensity of field superpositions. Indeed, with the usual conditions of stationarity
and ergodicity, the familiar concept of coherence is associated with the sinusoidal
modulation of the averaged intensity that arises when two fields are superposed.
Such a modulation produces the extremal values 〈Imax〉av and 〈Imin〉av , which are
used to define the visibility of interference fringes
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V = 〈Imax〉av − 〈Imin〉av
〈Imax〉av + 〈Imin〉av .

The visibility is higher as larger is the difference 〈Imax〉av − 〈Imin〉av ≥ 0. At the
limit 〈Imin〉av → 0 we find V → 1. If no modulation is produced, then 〈Imax〉av =
〈Imin〉av , and no fringes are observed (V = 0). The fields producing no interference
fringes are called incoherent. In turn, the highest order of coherence is traditionally
assigned to the fields that produce fringes with maximum visibility.

The Young’s experiment is archetypal to introduce the above concepts. Let us
write 2|Λ(1,2)| cos θ(1,2) for the sinusoidal modulation of the averaged intensity at
the detection screen. Then

〈Imin〉av = 〈I1〉av + 〈I2〉av − 2|Λ(1,2)|, 〈Imax〉av = 〈Imin〉av + 4|Λ(1,2)|,

with 〈I1〉av and 〈I2〉av the average intensities that would be contributed by either
pinhole in the absence of the other. In general 〈I1〉av , 〈I2〉av , and |Λ(1,2)| depend on
the geometry of the experimental setup. Therefore we can write

VY =
(

2
√〈I1〉av〈I2〉av

〈I1〉av + 〈I2〉av
)
λ(1,2), with λ(1,2) = |Λ(1,2)|√〈I1〉av〈I2〉av . (1)

The expression λ(1,2) is the correlation function of the variable fields associated
with the averages 〈I1〉av and 〈I2〉av . If |Λ(1,2)| = 0, then λ(1,2) = 0, and no
fringes are observed (VY = 0). The fields incident on the pinhole-screen are in
this case incoherent. On the other hand, if the fields emerging from the pinholes
have equal intensity, the visibility VY will be equal to 1 only when λ(1,2) = 1.
The simplest form to obtain such a result is by considering the factorized form
|Λ(1,2)| = √〈I1〉av〈I2〉av , together with 〈I1〉av = 〈I2〉av .

The change of paradigm emerged in 1955, after the Brown and Twiss exper-
iments oriented to measure correlations between quadratic forms of the field
variables [2–4]. Unlike ordinary interferometer outcomes, the results of Brown and
Twiss demanded the average of square intensities for their explanation. In other
words, to embrace the new phenomenology, the concept of coherence as well as the
first-order correlation function λ(1,2) needed a generalization. It was also clear that
not all the fields described as “coherent” in the traditional approach would end up
satisfying the new definitions of coherence. Thus, the Brown–Twiss results opened
up the way to the quantitative investigation of higher-order forms of coherence [1, 5–
7], though most of the light studied at the time was mainly produced by thermal
sources. The development of new sources of light (minimizing noise generation)
and new detectors (strongly sensitive to individual quanta of light) represented
the experimental sustenance for the study of such concepts. However, the latter
implied that the formal structure of optical coherence should be constructed on the
basis of two mutually opposed features of light. While interference has long been
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regarded as a signature of the wavelike nature of electromagnetic radiation (Maxwell
theory), photodetection implies the annihilation of individual photons to release
photoelectrons from a given material (Einstein description of the photoelectric
effect). These contradictory aspects were reconciled by Glauber in 1963, with
his quantum approach to optical coherence, after considering expectation values
of normal-ordered products of the (boson) creation and annihilation operators as
quantum analogs of the classical correlation functions [8–10]. The expectation
value of a single normal-ordered product corresponds to the first-order correlation
function, that of two products corresponds to the second-order correlation function,
and so on. Basically, Glauber formulated the theory of quantum optical detection
for which the Young and Brown–Twiss experiments correspond to the measurement
of first- and second-order correlation functions, respectively [11].

According to Glauber, most of the fields generated from ordinary sources lack
second- and higher-order coherence, though they may be considered “coherent” in
the traditional sense (i.e., they are only first-order coherent in Glauber’s approach)
[12]. Partial coherence means that there exist correlations up to a finite order
only, and that the correlation functions of such order and all the lower orders are
normalized. Full coherence implies “partial coherence” at all orders (the complete
compilation of the Glauber contributions to quantum theory of optical coherence
can be found in [13]). In concordance with λ(1,2) in the Young’s interferometer, the
Glauber’s approach adopts the factorization of the n-th-order correlation function
as a condition for coherence. Each of the factors corresponds to the probability
of detecting a single photon at a given position at a given time. Factorization
represents independence in the single-photon detection process. As recording a
photon means its annihilation, the factors are indeed the squared norm of the vector
state after the action of an ideal detector. At this stage, the brilliant contribution
of Glauber was to notice that the simplest form of satisfying full coherence is
by asking the quantum state of the field to be an eigenvector of the boson-
annihilation operator with complex eigenvalue. Quite interestingly, this eigenvalue
is a solution (written in complex form) of the corresponding Maxwell equations.
In this form, the Glauber’s fully coherent states of the quantized electromagnetic
radiation are directly associated with the conventional electromagnetic theory. A
classical description is then feasible for such a special class of quantum states of
light.

It is apparent that the Fock (or number) states |n〉 arising from the quantization
of (single-mode) electromagnetic fields are not fully coherent for n �= 0. Namely,
with exception of |n = 0〉, the states |n ≥ 1〉 are not eigenvectors of the boson-
annihilation operator. It may be proved that |n = 1〉 is first-order coherent, but
it lacks second and higher-order coherence. The states |n ≥ 2〉 are also first-
order coherent but they do not factorize the second-order correlation function.
Then, the number states |n ≥ 1〉 are nonclassical in the sense that they are not
fully coherent, so that no Maxwell field can be attached to them, and no classical
description is possible. However, the “classical” property of states |n ≥ 1〉 to be first-
order coherent justifies their recurrent use as the incoming signal in contemporary
versions of the Young’s experiment [14–16]. On the other hand, the vacuum state
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|n = 0〉 belongs to the eigenvalue 0 of the annihilation operator. As such eigenvalue
is the trivial solution of the Maxwell equations, the zero-photon state |n = 0〉
corresponds to the classical notion of the absence of any field.

Despite the above remarks, the marvellous properties of quantum systems offer
the possibility of using linear combinations of number states (rather than a given
number state alone) to represent nontrivial eigenvectors of the boson-annihilation
operator. Denoting by |α〉 one of such vectors, the square modulus |α|2 of the
complex eigenvalue α provides the expectation value of the number of photons in
the superposition. In turn, the real and imaginary parts of α supply the expectation
values of the field-quadratures 〈x̂1〉 = √

2Re(α), 〈x̂2〉 = √
2Im(α). Therefore,

the variances are equal (Δx̂1)
2 = (Δx̂2)

2 = 1/2 and the related uncertainty is
minimized Δx̂1Δx̂2 = 1/2. In other words, the vectors |α〉 represent the closest
quantum states to the Maxwell description of single-mode electromagnetic radiation
(similar conclusions hold for the multi-mode case). A very important feature of the
set {|α〉} is that, although it is not orthogonal, this satisfies the resolution of the
identity [17]. Thus, {|α〉} is an overcomplete basis of states for the quantized single-
mode electromagnetic fields. This property was used by Glauber [10] and Sudarshan
[18] to introduce a criterion to classify the fields as those that admit a classical
description (like the fully coherent states) and the ones which are nonclassical (like
the number states |n ≥ 1〉). The former can be written as a mixture of pure states
|α〉〈α| for which the weights P(α) are admissible as conventional probabilities, the
Dirac delta distribution P(α) = δ(α) included. The nonclassical fields are such that
P(α) is not a conventional probability.

Over the time, states other than |α〉 were found to minimize the quadrature-
uncertainty [19–28]. In contraposition with |α〉, such states lead to (Δx̂1)

2 �=
(Δx̂2)

2 and, depending on a complex parameter ξ , one of the quadrature-variances
can be squeezed by preserving the product Δx̂1Δx̂2 = 1/2. Accordingly, the com-
plementary variance is stretched. These properties found immediate applications in
optical communication [29–31] and interferometry [32, 33], including the detection
of gravitational waves [34–40]. The ξ -parameterized minimal uncertainty states
|α, ξ 〉 are called squeezed [34] (see also [41–43]) and, like the number states
|n ≥ 1〉, they admit no description in terms of the Maxwell theory. That is, the
squeezed states |α, ξ 〉 are nonclassical.

As it can be seen, we have three different basis sets to represent the quantum
states of single-mode (and multi-mode) electromagnetic radiation, namely the
number states |n〉, the fully coherent states (hereafter coherent states for short)
|α〉, and the squeezed states |α, ξ 〉. The former and last states (with exception of
n = 0) are nonclassical while the coherent states may be described within the
Maxwell theory. Depending on the optical field under study, we can use either
of the above basis to make predictions and to explain experimental outcomes.
Pretty interestingly, the classicalness of a given state is not invariant under linear
superpositions. As immediate example recall that the “classical” state |α〉 is a
superposition of the nonclassical number states |n〉. In turn, it may be shown that
nonclassical states |α, ξ 〉 can be expressed as a superposition of coherent states |α〉
[44–47]. The “mystery” is hidden in the relative phases occurring as a consequence
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of any superposition of quantum states. According to Dirac, the reason because
people had not thought of quantum mechanics much earlier is that the phase
quantity was very well hidden in nature [48, p. 218]. Indeed, it is the probability
amplitude of the entire superposition which expresses the difference between
quantum and classical behavior. Thus, in quantum mechanics, not probabilities
but probability amplitudes are summed up to make predictions! In the Young’s
experiment discussed above, for example, the sinusoidal modulation is the result
of calculating the complete probability amplitude ψ = ψ1 +ψ2, with ψ1 and ψ2 the
amplitudes relative to either pinhole. The modulation term 2Re(ψ1ψ

∗
2 ) of the entire

probability |ψ |2 is different from zero only when we have no information about
the pinhole that actually emitted the detected photon. It is then relevant to find a
form to measure classicalness in quantum states [45, 49–55]. Besides the Glauber–
Sudarshan P -representation [10, 18], the main criteria include the negativity of
the Wigner function [49–51], some asymmetries in the Wigner and other pseudo-
probability distributions [52], the identification of sub-Poissonian statistics (Mandel
parameter) [53], and the presence of entanglement in the outcomes of a beam splitter
(Knight conjecture) [54, 55].

The nonclassical properties of light have received a great deal of attention in
recent years, mainly in connection with quantum optics [56], quantum information
[57], and the principles of quantum mechanics [33]. Pure states representing fields
occupied by a finite number of photons n �= 0 exhibit nonclassical properties. The
same holds for squeezed states and any other field state having sub-Poissonian
statistics [53]. Using some deformations of the algebra generated by the boson
operators, other states have been constructed to represent photons with “unusual
properties” [58, 59], which may be applied in photon counting statistics, squeezing,
and signal-to-quantum noise ratio [60]. Immediate generalizations [61, 62] moti-
vated the development of the subject as an important branch of quantum optics [56].
Other deformations of the boson algebra include supersymmetric structures [63–75]
for which the so-called polynomial Heisenberg algebras are quite natural [70, 76–
82]. Recently, some non-Hermitian models have been shown to obey the distortions
of the boson algebra that arise in the conventional supersymmetric approaches [83–
87]. The deformed oscillator algebras have been used to construct the corresponding
generalized (also called nonlinear) coherent states [61, 62, 75–82, 86–108]. Most of
these states exhibit nonclassical properties that distinguish them from the coherent
states of the conventional boson algebra.

The aim of the present work is to provide materials addressed to introduce
the subject of coherent and squeezed states. The contents have been prepared for
nonspecialists, so particular attention is given to the basic concepts as well as to
their historical development. I preliminary apologize many authors because I have
surely missed some fundamental references. In Sect. 2 the fundamentals of optical
detection and coherence are revisited. The meaning of the affirmation that the
photon “interferes only with itself” and that two different photons cannot interfere is
analyzed in detail (see Sect. 2.1). The conditions for fully coherence are then given
for fields of any number of modes and polarization. In Sect. 3 the coherent states
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for single-mode field are analyzed at the time that their fundamental properties
are revisited. Spatial attention is addressed to the wave packets of minimum
uncertainty that can be constructed for the conventional oscillator (Sects. 3.5
and 3.6), where the historical development of related ideas and concepts is overview.
Some generalizations for wave packets with widths that depend on time are given in
Sect. 3.7. The discussion about the wave packets for the hydrogen atom, as well as
its historical development and controversies, is given in Sects. 3.8 and 3.9. In Sect. 4
the connection with representations of Lie groups in terms of generalized coherent
states is reviewed in introductory form. The notions of generalized coherent states
are discussed in Sect. 5, some analogies with classical systems are also indicated.
Final comments are given in Sect. 6.

2 Basics of Quantum Optical Detection and Coherence

The quantized electric field is represented by the Hermitian operator

E(r, t) = E(+)(r, t) + E(−)(r, t), (2)

where its positive and negative frequency parts, E(+)(r, t) and E(−)(r, t), are
mutually adjoint

E(+)(r, t) = E(−)†(r, t). (3)

Details concerning field quantization can be consulted in, e.g., [6]. The positive
frequency part E(+)(r, t) is a photon annihilation operator [9], so it is bounded from
below E(+)(r, t)|vac〉 = 0, with |vac〉 the state in which the field is empty of all
photons. In turn, E(−)(r, t) is a photon creation operator, with no upper bound. In
particular, E(−)(r, t)|vac〉 represents a one-photon state of the field.

Following Glauber [13], let us associate the action of an ideal photodetector
with the operator E(+)(r, t). Assuming that the field is in state |i〉, and that one
photon (polarized in the μ-direction) has been absorbed, after the photo-detection
we have E(+)

μ (r, t)|i〉. The probability that such a result coincides with the state |f 〉
is regulated by the probability amplitude

A(1)
i→f = 〈f |E(+)

μ (r, t)|i〉, (4)

which is a complex number in general. Notice that we do not require to know
which of the possible states of the field is |f 〉. The only requirement is that |f 〉
be a physically admissible state. Then

P(1)
i→f = |A(1)

i→f |2 = 〈i|E(−)
μ (r, t)|f 〉〈f |E(+)

μ (r, t)|i〉 (5)
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is the probability we are looking for. To obtain the probability per unit time P(1)
det

that an individual photon be absorbed by the ideal detector at point r at time t , we
have to sum over all possible (admissible) states

P(1)
det (r, t) =

∑
f

P(1)
i→f = 〈i|E(−)

μ (r, t)

⎡
⎣∑

f

|f 〉〈f |
⎤
⎦E(+)

μ (r, t)|i〉. (6)

Now, it is quite natural to assume that the (admissible) final states form a complete
orthonormal set. Therefore, the sum of projector operators |f 〉〈f | between brackets
in (6) can be substituted by the identity operator I to get

P(1)
det (r, t) = 〈i|E(−)

μ (r, t)E(+)
μ (r, t)|i〉 = ||E(+)

μ (r, t)|i〉||2. (7)

That is, probability P(1)
det coincides with the expectation value of the Hermitian

product E(−)
μ (r, t)E(+)

μ (r, t), evaluated at the initial state |i〉 of the field. Equiva-

lently, this is equal to the square norm of the vector E(+)
μ (r, t)|i〉, which represents

the state of the field just after the action of the ideal detector. These results show
that the detector we have in mind measures the average value of the product
E(−)
μ (r, t)E(+)

μ (r, t), and not the average of the square of the Hermitian operator (2)
representing the field [9]. Thus, the field intensity I , as a quantum observable, is
represented by the operator E(−)E(+), and not by the operator E2. It is illustrative to
rewrite (7) as follows:

P(1)
det (r, t) = 〈i|Îμ(r, t)|i〉, Î (r, t) = E(−)(r, t)E(+)(r, t), (8)

which makes evident that P(1)
det is the expectation value of the intensity Îμ(r, t).

Notice that |i〉 = |vac〉 produces P(1)
det = 0, as this would be expected. The

above results can be easily extended to arbitrary initial states (either pure or mixed)
represented by ρ as follows:

P(1)
det (y) = Tr

{
ρE(−)

μ (y)E(+)
μ (y)

}
, y ≡ (r, t). (9)

A lucky researcher has at his disposal more than one photodetector in his laboratory.
He can use two detectors situated at different space-time points y1 and y2 to
detect photon (delayed) coincidences. The probability amplitude associated with
his predictions is of the form

A(2)
i→f = 〈f |E(+)

μ (y2)E(+)
μ (y1)|i〉, (10)

so the probability per unit (time)2 that one photon is recorded at y1 and another at
y2 is given by the expression
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P(2)
det (y1, y2) = Tr

{
ρE(−)

μ (y1)E(−)
μ (y2)E(+)

μ (y2)E(+)
μ (y1)

}
. (11)

To rewrite (11) in terms of the intensity operator Î (y), it is customary to use the
normally ordered notation

: E(−)E(+)E(−)E(+) : = E(−)E(−)E(+)E(+). (12)

Therefore

P(2)
det (y1, y2) = 〈i| : Îμ(y2)Îμ(y1) : |i〉 (13)

corresponds to the expectation value of the square-intensity observable, which
formalizes the experimental outcomes obtained by Brown and Twiss [11].

The above results can be generalized at will to include an arbitrary number of
photodetectors (I have in mind a researcher even more fortunate than the previous
one!). Another generalization may be addressed to investigate the correlations of
the fields at separated positions and times. In this context, Glauber introduced the
first-order correlation function

G(1)(y1, y2) = Tr
{
ρE(−)

μ (y1)E(+)
μ (y2)

}
, (14)

which is complex-valued in general and satisfies G(1)(y, y) = P(1)
det (y). The

expression for the n-th-order correlation function

G(n)(y1, . . . , yn, yn+1, . . . , y2n) = Tr

{
ρ

n∏
k=1

E(−)
μ (yk)

2n∏
�=n+1

E(+)
μ (y�)

}
(15)

is now clear. The normalized form of the above formula is defined as

g(n)(y1, . . . , y2n) = G(n)(y1, . . . , y2n)∏2n
k=1

{
G(1)(yk, yk)

}1/2 ≡ G(n)(y1, . . . , y2n)

∏2n
k=1

{
P(1)
det (yk)

}1/2 . (16)

Thus, g(n) is the n-th-order correlation function G(n), weighted by the root-squared
product of the probabilities that one photon is detected at y1, another at y2, and so
on until all the 2n space-time points yk have been exhausted. Notice that the product
of probabilities P(1)

det (yk) means independence in detecting the individual photons.
Glauber found that |g(n)| = 1, n = 1, 2, . . ., is a necessary condition for

coherence. The simplest way to satisfy such a requirement is by demanding the
factorization of G(n) as follows:
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∣∣∣G(n)(y1, . . . , y2n)

∣∣∣ =
2n∏
k=1

{
G(1)(yk, yk)

}1/2
. (17)

In other words, if the correlations of a given field at 2n space-time points yk can be
expressed, up to a phase, as the root-squared product of the one-photon detection
probabilities P(1)

det (yk), then the field is n-th-order coherent. If the latter condition is
fulfilled for all orders, the field is fully coherent. General properties of the functions
G(n) and g(n) can be consulted in [13].

2.1 Self-interference of Single Photons

To provide an immediate example let us compare the Glauber’s first-order correla-
tion function g(1)(y1, y2) with its counterpart λ(1,2) in the Young’s experiment. As

a first conclusion we have G(1)(yk, yk) = P(1)
det (yk) = 〈Î (yk)〉, k = 1, 2, which

verifies that the Hermitian operator E(−)E(+) represents the “quantum observable”
of field intensity Î . Second, the normalization condition |g(1)(y1, y2)| = 1 means
g(1)(y1, y2) = exp[iϕ(y1, y2)], so that ϕ(y1, y2) = θ(1,2). Using these results the
visibility (1) can be rewritten in the form

VY = 2
√
G(1)(y1, y1)G(1)(y2, y2)

G(1)(y1, y1) + G(1)(y2, y2)

∣∣∣g(1)(y1, y2)

∣∣∣ , (18)

which is simplified to

VY = 2
√
G(1)(y1, y1)G(1)(y2, y2)

G(1)(y1, y1) + G(1)(y2, y2)
(19)

for first-order coherent fields (i.e., if |g(1)(y1, y2)| = 1). In such case, the Young’s
visibility (19) is equal to 1 whenever G(1)(y1, y1) = G(1)(y2, y2), which is
equivalent to P(1)

det (y1) = P(1)
det (y2). On the other hand, given P(1)

det (yk) = 〈Î (yk)〉,
we may interpret P(1)

det (yk) as the probability that one photon emitted from the k-

th pinhole has been recorded by the detector. In this sense the identity P(1)
det (y1) =

P(1)
det (y2) means that we cannot determine which of the two pinholes is the one that

emitted such a photon. Thus, in the Young’s experiment for a first-order coherent
field, if the detection of an individual photon implies lack of knowledge about
the source, interference fringes will be produced with maximum visibility. Our
affirmation is particularly relevant for a single-photon wave packet that impinges
on the Young’s interferometer. As “any pure state in which the field is occupied by
a single photon possesses first order coherence” [13, p. 62], the single-photon wave
packet is able to produce interference fringes with maximum visibility, so this may
be classified as highly coherent in the ordinary sense.
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We would like to emphasize that, although the above results might be put in
correspondence with the very famous sentence of Dirac that “each photon then
interferes only with itself. Interference between two different photons can never
occur,” we must take it with a grain of salt. On the one hand, the origin of the
sentence can be traced back to the first edition of the Dirac’s book, published in
1930 [109], long before sources of coherent light like the maser (1953) or the laser
(1960) were built. Then, by necessity, Dirac used the ordinary notion of coherence
to formulate his sentence. The correlations of photons discussed in [109, Ch. I],
are thus of the first order in the Glauber sense. In other words, the phrase “each
photon then interferes only with itself” applies to conventional interferometry only
(in the Young’s experiment, for example). On the other hand, although the Brown–
Twiss results and the Glauber theory were published much later than the first edition
of the Dirac’s book, it is also true that the sentence we are dealing with survived,
with minimal modifications, until the fourth edition (revised) of the book, published
in 1967 [110]. Therefore, it seems that even in 1967 Dirac was not aware that
single-photon fields lack second- and higher-order coherence. Other option is that
he was not interested in making the appropriate adjustments to his manuscript.
In my opinion, the latter option is in opposition to the Dirac’s perfectionism, so
it can be discarded. The former option is viable but unlikely for somebody as
learned as Dirac. A third option is that Dirac was aware of the Brown–Twiss and
Glauber works but considered them as not definitive. To me, this last is the most
reasonable since many people were reluctant to accept the Brown–Twiss results
[111]. Besides, the Glauber theory, albeit corroborated on the blackboard, was far
from being experimentally confirmed at the time. In any case, phenomena associated
with the second-order correlation function (including the Brown–Twiss effect) are
experimentally observed over and over in quantum-optics laboratories around the
world. So the second part of Dirac’s sentence “interference between two different
photons can never occur” is also currently defeated. Other remarks in the same
direction can be found in [112].

Nevertheless, it is remarkable that efforts to produce interference with “feeble
light” were reported as early as 1905 by Taylor [113]. Fundamental advances on
the single-photon interference arrived up to 1986, with the experimental results of
Grangier, Roger, and Aspect about the anticorrelation effect produced on individual
photons by a beam splitter [14].

2.2 Fully Coherent States of Quantized Radiation Fields

The touchstone used by Glauber to determine the quantum states that satisfy the
factorization property (17) is reduced to the eigenvalue equation

E(+)
μ (y)|?〉 = Eμ(y)|?〉. (20)
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That is, the states |?〉 which Glauber was looking for should be eigenvectors of the
positive frequency operator E(+)

μ (y). As the latter is not self-adjoint, two features
of the solutions to (20) are easily recognized. First, the eigenvalues Eμ(y) are
complex numbers in general. Second, the (possible) orthogonality of the set of
solutions |?〉 is not (automatically) granted. Nevertheless, assuming (20) is fulfilled,
the introduction of the state ρ = |?〉〈?| into (15) gives

G(n)(y1, . . . , y2n) =
n∏

k=1

E∗
μ(yk)

2n∏
�=n+1

Eμ(y�), (21)

where z∗ stands for the complex-conjugate of z ∈ C. Clearly, the above expression
satisfies (17) and produces |g(n)| = 1. Thus, the eigenvectors of E(+)

μ (y) belonging
to complex eigenvalues are the most suitable to represent fully coherent states.

3 Single-Mode Coherent States

The electric-field operator (2) for a single-mode of frequency ω, linearly polarized
in the x-direction, with z-spatial dependence, can be written as

E(z, t) = EF
[
a(t) + a†(t)√

2

]
, EF = Evac sin(kz), (22)

where k = ω/c is the wave vector and Evac (expressed in electric field units) is
a measure of the minimum size of the quantum optical noise that is inherent to the
field [42]. The latter is associated with the vacuum fluctuations of the field since it is
the same for any strength of excitation (even in the absence of any excitation) of the
mode. The mutually adjoint time-dependent operators, a(t) and a†(t), are defined
in terms of the boson ladder operators [a, a†] = 1 as usual a(t) = a exp(−iωt). It
is useful to introduce the field quadratures

x̂1 = 1√
2
(a† + a), x̂2 = i√

2
(a† − a), [x̂1, x̂2] = i, (23)

to write

E(z, t) = EF (x̂1 cosωt + x̂2 sinωt). (24)

At t = 0 we have E(z, 0) = EF x̂1. That is, the quadrature x̂1 represents the (initial)
electric field. It is not difficult to show that the conjugate quadrature x̂2 corresponds
to the (initial) magnetic field [42].
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Equipped with physical units of position and momentum, the quadratures x̂1 and
x̂2 can be put in correspondence with a pair of phase-space operators

x̂1 =
√
mω

h̄
q̂, x̂2 = 1√

mh̄ω
p̂, [q̂, p̂] = ih̄, (25)

so they define the oscillator-like Hamiltonian Ĥ = h̄ωH , with H the dimensionless
quadratic operator

H = 1

2

(
x̂2

1 + x̂2
2

)
= 1

2

(
mω

h̄
q̂2 + 1

mh̄ω
p̂2
)
. (26)

3.1 Field Correlations

Assuming we are interested in photon delayed coincidences, we may compute field
correlations at t and t + τ , measured at the same space point. Introducing (22)
into (16) we obtain

g(1)(t, t + τ) = eiωτ , (27)

and

g(2)(t, t + τ) = 〈i|a†a†aa|i〉
〈i|a†a|i〉2 = 1 − 1

〈i|n̂|i〉 , 〈i|n̂|i〉 �= 0, (28)

where we have used the photon-number operator a†a = n̂. Notice that g(1) depends
on the delay τ between detections and not on the initial time t , so we write g(1)(t, t+
τ) = g(1)(τ ). Besides, g(2) does not depend on any time variable, so we can write
g(2)(t, t + τ) = g(2)(0).

The first-order correlation function (27) shows that any field represented by the
operator (22) is first-order coherent. That is, any quantized single-mode field E(z, t)
is coherent in the ordinary sense! In particular, the single-photon fields thought by
Dirac in his book belong to the class g(1) = exp(iωτ), see our discussion on the
matter in Sect. 2.1. In turn, the second-order correlation function (28) shows that the
single-photon fields |i〉 = |n = 1〉 produce the trivial result g(2) = 0, so they lack
second- and higher-order coherence, as we have already indicated. On the other
hand, the field occupied by two or more photons |i〉 = |n ≥ 2〉 leads to g(2) =
1 − 1/n. As the state |n ≥ 2〉 produces g(2) < 1 for a finite number of photons, we
know that the factorization (17) is not admissible if n ≥ 2. Of course, g(2) → 1 as
n → ∞. Note also that the probabilities of detecting a photon at time t , and another
one at time t + τ , produce the same result P(1)

det (t) = P(1)
det (t + τ) = |EF |2n/2,

n = 2, 3, . . ., which does not depend on any time variable.
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3.2 Mandel Parameter

To get additional information about the initial state |i〉 of the field, let us rewrite (28)
as follows:

g(2)(0) = 1 + (Δn̂)2 − 〈i|n̂|i〉
〈i|n̂|i〉2 , (29)

where we have added a zero to complete the photon-number variance (Δn̂)2 =
〈i|n̂2|i〉 − 〈i|n̂|i〉2. Introducing the Mandel parameter [53]:

QM = (Δn̂)2 − 〈i|n̂|i〉
〈i|n̂|i〉 = (Δn̂)2

〈i|n̂|i〉 − 1, 〈i|n̂|i〉 �= 0, (30)

we arrive at the relationships

g(2)(0) = 1 + QM

〈i|n̂|i〉 , QM =
[
g(2)(0) − 1

]
〈i|n̂|i〉, 〈i|n̂|i〉 �= 0. (31)

For any number state |n〉 we clearly have (Δn̂)2 = 0, so that g(2) = 1 − 1/n and
QM = −1 for n ≥ 1.

3.3 Klauder–Glauber–Sudarshan States

Using EF as the natural unit of the electric field strength [42], and dropping
the phase-time dependence of a(t), the introduction of (22) into the eigenvalue
equation (20) gives a|α〉 = α|α〉, the solution of which can be written as the
normalized superposition

|α〉 = e−|α|2/2
∞∑
n=0

αn√
n! |n〉, α ∈ C. (32)

The above result was reported by Glauber in his quantum theory of optical coher-
ence [13]. Remarkably, the superposition (32) was previously used (in implicit form)
by Schwinger in his studies on quantum electrodynamics [114], and introduced
by Klauder as the generator of an overcomplete family of states which is very
appropriate to study the Feynman quantization of the harmonic oscillator [17].
Indeed, Klauder realized that 〈α|a†a|α〉 = α∗α, and proved that the set of states
|α〉 forms a “basis” for the oscillator’s Hilbert space

1

π

ˆ
d2α|α〉〈α| =

∞∑
n=0

|n〉〈n| = I. (33)
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Notwithstanding, the basis elements are not mutually orthogonal

〈β|α〉 = exp

[
−|α − β|2

2
+ iIm(β∗α)

]
, |〈β|α〉|2 = e−|α−β|2 . (34)

Further improvements of the mathematical structure associated with the superposi-
tions (32) were provided by Klauder himself in his continuous representation theory
[115, 116]. In addition to the Glauber contributions [13], fundamental properties of
these states addressed to the characterization of light beams were also discussed by
Sudarshan [18]. Hereafter the superpositions (32) will be called “Klauder–Glauber–
Sudarshan states” or “canonical coherent states” (KGS-states or coherent states for
short).

The probability that the field represented by |α〉 is occupied by n-photons is given
by the Poisson distribution:

Pα→n = |〈n|α〉|2 = (n)ne−n

n! , (35)

where n ≡ 〈α|n̂|α〉 = |α|2. As it is well known, Poisson distributions like (35)
are useful for describing random events that occur at some known average rate.
In the present case, the rate is ruled by the mean value of the photon-number n.
Mandel and Wolf provided a very pretty physical interpretation: “when light from
a single-mode laser falls on a photodetector, photoelectric pulses are produced at
random at an average rate proportional to the mean light intensity, and the number
of pulses emitted within a given time interval therefore obeys a Poisson distribution”
[6, pp. 23–24]. In addition, the distribution we are dealing with is characterized by
the fact that the variance (Δn̂)2 is equal to the mean value 〈α|n̂|α〉, which can be
easily verified. Therefore, if the initial state of the field in the relationships (31) is
a KGS-state |α〉, then (Δn̂)2 = 〈α|n̂|α〉 = |α|2, and QM = 0. This result is quite
natural by noticing that the normalization condition |g(2)| = 1 is automatically
fulfilled by |α〉.

On the other hand, the straightforward calculation shows that:

(I) States |α〉 evolve in time by preserving their form (i.e., they have temporal
stability):

|α(t)〉 = e−iH t |α〉 = e−iωt/2|αe−iωt 〉. (36)

(II) They are displaced versions of the vacuum state, |α〉 = D(α)|n = 0〉, with

D(α) = exp
(
αa† − α∗a

)
= exp

(
−|α|2

)
exp

(
αa†

)
exp

(−α∗a
)

(37)

the unitary displacement operator fulfilling

D(α)aD†(α) = a − α, D†(α)a†D(α) = a† − α∗. (38)
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(III) They are such that 〈x̂1〉 = √
2Re(α), 〈x̂2〉 = √

2Im(α), and 〈x̂2
k 〉 = 〈x̂k〉2 + 1

2 ,
k = 1, 2. That is, the states |α〉 minimize the uncertainty of quadratures

(Δx̂1)
2 = (Δx̂2)

2 = 1

2
, Δx̂1Δx̂2 = 1

2
. (39)

Any of the properties (I)–(III), including the eigenvalue equation a|α〉 = α|α〉
and the identity resolution (33), referred to as properties (A) and (B) in the
sequel, can be assumed as the definition of the canonical coherent states. Then,
the remaining properties may be derived as a consequence. For systems other than
the harmonic oscillator it is very well known that not all the properties (A), (B),
and (I)–(III) are simultaneously satisfied. It is then customary to construct states by
using either of the above properties and to call them generalized coherent states
(see Sect. 5). If by chance the states so constructed exhibit any other property
of the KGS-states, the “coherence criterion” can be refined in each case. Not all
generalized coherent states are classical in the sense established by the Glauber
theory, so they usually deserve a study of their classicalness to be classified. After
all: coherent states are superpositions of basis elements to which some specific
properties are requested on demand (R.J. Glauber, private communication, Cocoyoc,
Mexico, 1994).

3.4 Glauber–Sudarshan P - and Fock–Bargmann
Representations

One of the most remarkable benefits offered by the KGS-states is the possibility of
expressing any state of the radiation field as follows [10, 18]:

ρ =
ˆ

P(α)|α〉〈α|d2α. (40)

The above “diagonal” form of the density operator ρ expresses the idea of having
a mixed state, even though the basis defined by |α〉 is not orthogonal. As the
superposition of pure states |α〉〈α| defined above must be convex, the following
condition is imposed

ˆ
P(α)d2α = 1. (41)

Glauber introduced (40) to study thermal fields [10] and coined the term P -
representation for it. In turn, Sudarshan argued that such representation is valid
provided that P(α) is a conventional probability distribution [18]. It is easy to see
that the state ρ = |β〉〈β|, with |β〉 a GKS-state, implies P(α) = δ(α − β) by
necessity. Then, the P -function is permitted to be as singular as the Dirac’s delta
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distribution. It may be shown that the number states |n ≥ 1〉 are P -represented
by the n-th derivatives of the delta distribution, so the latter is stronger singular
than δ(z) and are not allowed as probabilities. Therefore, the states |n ≥ 1〉 admit
no classical description in terms of the convex superposition (40). For states other
than the oscillator ones, the criterion applies in similar form. Details and general
properties of the P -function can be consulted in the book by Klauder and Sudarshan
[117].

Using the identity (33), one can write any element |ψ〉 of the Hilbert space H as
the superposition

|ψ〉 = 1

π

ˆ
d2αψ(α)|α〉. (42)

The Fourier coefficients ψ(α) are analytic over the whole complex α-plane. Indeed,
as these functions are holomorphic and are in one-to-one correspondence with
the number eigenstates, they are elements of a Hilbert space of entire functions
F named after Fock [118] and Bargmann [119]. The representation of the ladder
operators a and a† in the F-space corresponds to the derivative with respect to
α and the multiplication by α, respectively. The properties of the Fock–Bargmann
functions ψ(α) and the related representations are studied by Saxon, under the name
“creation operator representation,” in his Book on quantum mechanics (1968) [120,
Ch. VI.e] (where no reference is given to neither Fock nor Bargmann works!).

3.5 Oscillator Wave Packets

Let us calculate the superposition (32) in the x1-quadrature representation

ψα(x) := 〈x|α〉 = e−|α|2/2
∞∑
n=0

αn√
n!ϕn(x), (43)

where x̂1|x〉 = x|x〉, x ∈ R,
´
R
dx|x〉〈x| = I, and

ϕn(x) := 〈x|n〉 = e−x2/2

π1/4(2nn!)1/2Hn(x), n = 0, 1, . . . (44)

The expression Hn(x) stands for the Hermite-polynomials [121], and ϕn(x) rep-
resents the wave functions of the harmonic oscillator [120, 122]. After introduc-
ing (44) into (43), and using the generating function of Hn(x), Eq. 22.9.17 of
Ref. [121], we arrive at the Gaussian-like expression

ψα(x) = π−1/4 exp

[
− (x − 〈x̂1〉)2

2
+ i〈x̂2〉(x − 〈x̂1〉)

]
. (45)
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Using (39) the above result acquires the familiar form of a wave packet

ψα(x) = 1

[2π(Δx̂1)2]1/4 exp

[
− (x − 〈x̂1〉)2

4(Δx̂1)2
+ i〈x̂2〉(x − 〈x̂1〉)

]
. (46)

The Gaussian wave packet ψα(x) is localized about the point x = 〈x̂1〉 = √
2Re(α),

within a neighborhood defined by Δx̂1 = 1/
√

2. Finally, equipped with physical
units of position and momentum, the function (46) is given by

ψα(x) =
(

h̄

mω

)1/4 1

[2π(Δq̂)2]1/4 exp

[
− (q − 〈q̂〉)2

4(Δq̂)2
+ i

〈p̂〉(q − 〈q̂〉)
h̄

]
.

(47)

For arbitrary values of Δq̂, expression (47) coincides with the normalized minimum
wave packets reported by Schiff in 1949 [122]. The smaller Δq̂ is, the more
localized the wave packet. Although Schiff derived (47) by thinking on the free
particle motion, he was certain that “the structure of this minimum packet is the
same whether or not the particle is free, since this form can be regarded simply
as the initial condition on the solution of the Schrödinger equation for any V ”
[122, p. 54], where V stands for the potential defining the Schrödinger equation.
Then, considering the harmonic oscillator, he realized that arbitrary superpositions
of the related solutions are periodic functions of t , with the period of the classical
oscillator τosc = 2π/ω. His conclusion on the matter is very interesting to our
review purposes: “this suggest that it might be possible to find a solution in the
form of a wave packet whose center of gravity oscillates with the period of the
classical motion” [122, p. 67]. After some calculations, Schiff finally proved that
such time-dependent wave packet is viable actually. However, the oscillator wave
packet of Schiff was reported by Schrödinger 23 years earlier [123], as a minor
result of his wave-formulation of quantum mechanics [124], in a try to give a
physical meaning to the function that bears his name (see Sect. 3.8). It seems that
Schiff was not aware of the Schrödinger results at the time of the first edition of
his book [122] since the paper [123] is not mentioned until the third edition [125],
published in 1968. It is also to be noted that the minimum wave packet (47) is
as well discussed in the Saxon’s book [120], where the celebrated Schrödinger’s
solution is not mentioned either. According to Saxon, supposing x = f (t) is an
integral of the classical equations of motion, it is “tempting to guess that a suitable
form of the corresponding quantum mechanical probability function in the classical
limit is ψ∗

αψα—with 〈q̂〉 substituted by f (t) and 〈p̂〉 = 0 in our notation—for
sufficiently small Δq̂ ”. He added, “this expression represents a wave packet of
width Δx̂1 moving along the classical trajectory in accordance with the classical
equations of motion” [120, pp. 26–27]. Saxon also proved that (47) is of minimum
uncertainty [120, pp. 109–110], and then studied the motion of such wave packet
in the harmonic oscillator potential [120, Ch. VI.6]. The analysis by Saxon is very
close to that of Schwinger [114]. The above discussion is addressed to emphasize



204 O. Rosas-Ortiz

that in the late 1960s the currently famous paper of Schrödinger [123] was not
central in quantum theory yet. Even more, neither the Brown–Twiss experimental
results nor the Glauber theory had impacted with enough strength in the literature.

3.6 Schrödinger’s Wave Packets of Minimum Uncertainty

To recover the Schrödinger’s wave packet [123] let us reproduce the steps that led
us to Eq. (45), but this time using the time-dependent KGS-state |α(t)〉 as point of
departure. With the help of (36), it is easy to verify the following result:

ψα(x, t) = e−iωt

π1/4 exp

{
−[x − λ1(t)]2

2
+ iλ2(t)[x − λ1(t)]t

}
, (48)

where λ1(t) and λ2(t) are the real and imaginary parts of α exp(−iωt), written in
short notation as

λ(t) = 1√
2
R(t)〈x̂〉, R(t) =

(
cosωt sinωt

− sinωt cosωt

)
, A =

(
A1

A2

)
. (49)

The rotation matrix R(t) has the classical oscillator period τosc = 2π/ω, so the
point x = λ1(t) describes a circumference of radius Δx̂1 = Δx̂2 = 1/

√
2, centered

on the origin of the quadrature phase-space.
Both, Schrödinger and Schiff considered a wave packet (48) with 〈x̂2〉 = 0 (the

expected value of the initial magnetic-field quadrature is equal to zero!). Notedly,
Schrödinger was only interested on the real part of his wave packet ψα(x, t). After
dropping the imaginary part of (48) he wrote (in our notation):

ψα(x, t) = e
− 1

2

(
x− 〈x̂1〉√

2
cosωt

)2

π1/4 cos
[
ωt +

( 〈x̂1〉√
2

sinωt
) (

x − 〈x̂1〉√
2

cosωt
)]

.
(50)

Schrödinger realized that the first factor of (50) represents “a relatively tall and
narrow hump, of the form of a Gaussian error-curve, which at a given moment lies
in the neighborhood of the position” x = 〈x̂1〉√

2
cosωt [124, p. 43]. Accordingly, he

insisted, “the hump oscillates under exactly the same law as would operate in the
usual mechanics for a particle having (26) as its energy function.”

The reason for which Schrödinger discarded the imaginary part of ψα(x, t) is
that, initially, he considered the solutions of his equation to be real. Indeed, the
factor i = √−1 was missing in the first three papers of his celebrated series on
quantization as a problem of proper values [124]. The purely imaginary number
was introduced in his fourth paper on quantization. The latter influenced Born
to formulate the appropriate probability interpretation of ψ∗ψ [126]. In his first
intuitive intent, Born postulated the probabilities proportional to the probability-
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amplitudes, just because the papers published by Schrödinger at the time formulated
ψ to be real. An improved, though still imprecise version (probabilities = amplitude
squares), was included at the last moment, in his note added in proof [127]. The
argument for such a correction was that (real) amplitudes may be either positive
or negative, and the latter cannot be associated with probabilities. Once Born was
aware of the complex-valued wave functions, introduced in the Schrödinger’s fourth
paper on quantization, the correct formula was finally provided in [128], with some
additional precisions by Pauli [129].

Coming back to the wave packet ψα(x, t), Schiff based his analysis on the
probability density:

|ψα(x, t)|2 = π−1/2 exp

⎧⎪⎨
⎪⎩

−
[√

2x − 〈x̂1〉 cosωt − 〈x̂2〉 sinωt
]2

2

⎫⎪⎬
⎪⎭
, (51)

which in our case corresponds to the probability of finding the field state at a given
eigenvalue x of the (electric-field) quadrature x̂1. Clearly, the wave packet ψα(x, t)

oscillates without change of shape about x = 0, with (classical) frequency νosc =
ω/(2π).

3.7 Time-Dependent Oscillator Wave Packets

The study of “minimum wave packets” includes a big number of relevant works
throughout different stages of modern quantum theory. A nonexhaustive list com-
prehends the pioneering paper of Schrödinger [123], followed almost immediately
by Kennard [130], where a wave packet is constructed to follow the classical motion
with a Gaussian profile but the width of which oscillates with time (the Kennard’s
state, obtained in 1927, is in this form the first antecedent of what is nowadays
called squeezed state!). A very useful ansatz to construct Gaussian wave packets
characterized by the exponentiation of quadratic forms was given in 1953 by Husimi
[131, 132]. It was also found that displaced versions of the number states are able to
follow the classical motion by keeping their shape [133–138] but, unlike the KGS-
states, they produce uncertainty products that “can be arbitrarily large, showing that
the classical motion is not necessarily linked with minimum uncertainty” [139] (see
also [140]). A very interesting class of minimum wave packets was exhaustively
studied by Nieto [141–146]. On the other hand, the dynamics of many physical
systems can be described by using the quantum time-dependent harmonic oscillator
[147–157], where the construction of minimum wave packets is relevant [158–165].
In a more general situation, wave packets with time-dependent width may occur for
systems with different initial conditions, time-dependent frequency, or in contact
with a dissipative environment [166–169]. In all these cases, the corresponding
coherent states, position and momentum uncertainties, as well as the quantum
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mechanical energy contributions, can be obtained in the same form if the creation
and annihilation operators are expressed in terms of a complex variable that fulfills a
nonlinear Riccati equation, which determines the time-evolution of the wave packet
width. Explicitly, the wave packet (48) may be generalized to the form

Ψ (x, t) = N(t) exp
{
i
[
y(t )̃x2 + 〈x̂2〉̃x + K(t)

]}
, (52)

where y(t) = yR(t) + iyI (t) is a time-dependent complex-valued function, x̃ =
x − 〈x̂1〉(t) = x − η(t), with η(t) the (dimensionless) position of the wave packet
maximum describing a classical trajectory determined by the Newtonian equation

η̈(t) + ω2(t)η(t) = 0, (53)

and 〈x̂2〉 = η̇(t) the (dimensionless) classical momentum [166–169]. The time-
dependent coefficient of the quadratic term obeys the Riccati equation

ẏ(t) + y2(t) + ω2(t) = 0. (54)

The concrete form of the normalization factor N(t) and the purely time-dependent
phase K(t) are determined in each case. The straightforward calculation shows
that (54) is solved by the function y = α̇

α
+ i

α
, where α is a solution of the Ermakov

equation

α̈(t) + ω2(t)α(t) = 1

α3(t)
. (55)

The solutions of the above equations depend on the physical system under con-
sideration and on the (complex) initial conditions. Besides, they have close formal
similarities with general superpotentials leading to isospectral potentials in super-
symmetric quantum mechanics [63–69]. Recent applications include propagation
of optical beams in parabolic media [170–172] and Kerr media [173–176] as
well, studies of the geometry of the Riccati equation [177] and the fourth-order
Schrödinger equation with the energy spectrum of the Pöschl–Teller system [178].
Further discussion on the subject can be found in the Schuch’s book on a nonlinear
perspective to quantum theory [179].

3.8 A Quantum-Family Portrait

The development of modern quantum mechanics started in 1925, when Heisenberg
conceived the idea that rather constructing a theory from quantities which could not
be observed (like the electron orbits inside the atom), one should try to use quantities
that are provided by experiment (like the frequencies and amplitudes associated with
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emission radiation) [180]. Shortly afterwards, during 1925–1927, great progress was
made in developing matrix-mechanics (Heisenberg, Born, Jordan), wave-mechanics
(Schrödinger), and quantum-algebra (Dirac). The Born’s probability interpretation
[126, 128, 129] and the uncertainty principle of Heisenberg [181] completed
the foundations of what would become the most successful branch of physics
throughout the past century. Notwithstanding, interpretative problems arose as soon
as the first of the above formulations came to light. Schrödinger, for example,
was “discouraged” with respect to the “very difficult methods of transcendental
algebra” of the Heisenberg’s theory [123]. Like Einstein and others, he did not feel
comfortable with the quantum jumps involved in the matrix picture. Inspired by the
de Broglie formulation of matter waves (1924), Schrödinger introduced a formula-
tion based on finite single-valued functions obeying an “enigmatic” time-dependent
wave equation that is characterized by linear (instead of quadratic) variations in
the time-variable [124]. Remarkably, Schrödinger was firmly convinced that the
solutions of his equation should represent something physically real. In the best
of his attempts to provide the wave function with a physical meaning, for the charge
density of an electron as a function of the space and time variables, Schrödinger
suggested the squared modulus of the wave function multiplied by the total charge
e (see paper IV on quantization in [124]). From the Schrödinger’s perspective,
the substitution of discrete energies by wave eigenfrequencies would eradicate
“quantum jumps” from physics forever. Certainly, he was not immediately aware
that not only the Heisenberg’s theory and his own formalism are just two faces of
the same coin, but that the discreteness of quantum energies as well as quantum
jumps arrived to stay. The former was discovered by Schrödinger himself (see third
paper in [124]), and the latter is a natural consequence of the equivalence between
both approaches. Ironically, very far from having solved the “problems” of the
Heisenberg’s picture, the Schrödinger’s formulation added a number of elements
to the quantum theory that are unclear even today, such as the wave function. A
main example of the latter can be found in a paper by Dirac [182], published in
1965. After a detailed comparison between the advantages and disadvantages of
the Heisenberg and Schrödinger pictures to set up quantum electrodynamics, Dirac
found that the two pictures are not equivalent. His opinion is rather clear “we now
see that, if we want a logical quantum electrodynamics, we must work entirely
with q numbers in the Heisenberg picture. All references to Schrödinger wave
functions must be cut out as dead wood. The Schrödinger wave functions involve
infinities, associated with v-v Feynman diagrams, which destroy all hope of logic.”
Nevertheless, the above expression requires some caution, as Dirac indicates “of
course the development of quantum theory proposed here should not be considered
as detracting from the value of Schrödinger’s work. . . Only when one goes to an
infinite number of degrees of freedom does one find that the Schrödinger picture is
inadequate and that the Heisenberg picture has more fundamental validity.”
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3.9 The Quantum-Pictures Controversy: Hydrogen Atom Wave
Packets

The controversy on the Schrödinger’s quantization papers was immediate. After
receiving copies of the first three papers, Lorentz wrote to Schrödinger on May
27, 1926, expressing “if I had to choose now between your wave mechanics and
the matrix mechanics, I would give the preference to the former, because of its
greater intuitive clarity, so long as one only has to deal with the three coordinates
x, y, z. If, however, there are more degrees of freedom, then I cannot interpret the
waves and vibrations physically, and I must therefore decide in favor of matrix
mechanics” [183]. Clearly, Lorentz was foreseeing the Dirac’s arguments on the
infinities derived from the Schrödinger picture. In addition, among other points,
Lorentz remarked that the equation proposed by Schrödinger in his first three papers
did not contain time-derivatives (namely, it was stationary only), and expressed
some doubts about the Schrödinger’s functions “if I have understood you correctly,
then a particle, an electron, for example, would be comparable to a wave packet
which moves with the group velocity. But a wave packet can never stay together
and remain confined to a small volume in the long run. The slightest dispersion in
the medium will pull it apart in the direction of propagation, and even without that
dispersion it will always spread more and more in the transverse direction. Because
of this unavoidable blurring a wave packet does not seem to me to be very suitable
for representing things to which we want to ascribe a rather permanent individual
existence” [183]. Lorentz also emphasized some difficulties arising in the case of
the hydrogen atom and included some calculations on the matter.

On June 6, Schrödinger replied that he had found a form to include time-
derivatives in his equation. Concerning the difficulties about his functions, he added
“allow me to send you, in an enclosure, a copy of a short note in which something
is carried through for the simple case of the oscillator which is also an urgent
requirement for all more complicated cases, where however it encounters great
computational difficulties. (It would be nicest if it could be carried through in
general, but for the present that is hopeless.) It is a question of really establishing
the wave groups (or wave packets) which mediate the transition to macroscopic
mechanics when one goes to large quantum numbers. You see from the text of the
note, which was written before I received your letter, how much I too was concerned
about the “staying together” of these wave packets. I am very fortunate that now I
can at least point to a simple example where, contrary to all reasonable conjectures,
it still proves right” [183].

By “the short note” Schrödinger meant his wave packet paper [123] which, at
the very end, included a controversial statement “we can definitely foresee that, in a
similar way, wave groups can be constructed which move around highly quantized
Kepler ellipses and are the representation by wave mechanics of the hydrogen
electron. But the technical difficulties in the calculation are greater than in the
especially simple case which we have treated here” [124, p. 44]. The latter attracted
Lorentz’ attention who, on 19 June, replied “you gave me a great deal of pleasure by



Coherent and Squeezed States: Properties and Some Generalizations 209

sending me your note, the continuous transition from micro- to macro-mechanics,
and as soon as I had read it my first thought was: one must be on the right track
with a theory that can refute an objection in such a surprising and beautiful way.
Unfortunately my joy immediately dimmed again; namely, I cannot comprehend
how, e.g., in the case of the hydrogen atom, you can construct wave packets that
move like the electron (I am now thinking of the very high Bohr orbits). The short
waves required for doing this are not at your disposal.” Then Lorentz recalled that
some lines were wrote by him in his previous communication and proceeded to
extend his arguments on the subject. The short note of Schrödinger [123] was
published on July, 1926.

The first published criticism appeared in a paper by Heisenberg [181], received
on March 23, 1927. Yes, it is the work in which Heisenberg introduced the
uncertainty principle of quantum mechanics! In his own words “the transition from
micro to macro mechanics has already been dealt with by Schrödinger [123], but I
do not believe that Schrödinger’s considerations address the essence of the problem”
[181, p. 184]. Heisenberg based his argument on the fact that, unlike the harmonic
oscillator, “the frequencies of the spectral lines emitted by the atom are never integer
multiples of a fundamental frequency, according with quantum mechanics with
the exception of the special case of the harmonic oscillator. Thus, Schrödinger’s
consideration is applicable only to the harmonic oscillator considered by him, while
other cases in the course of time the wave packet spreads over all space surrounding
the atom” [181, p. 185]. That is, Heisenberg criticism was in complete agreement
with the doubts expressed by Lorentz. According to Moore [48, p. 216], Schrödinger
soon de-emphasized the wave packet picture while Lorentz thought that the demise
of wave packets also meant the end of the analogy between wave mechanics and
wave optics.

Taking into account the historical development, we have to say that the work of
Schrödinger on the oscillator wave packets withstood the test of time just because
the Glauber theory came to light. Although Schrödinger foresaw some possibilities
for his wave packets to be applied in optics, his main efforts were addressed not
to solve a practical problem originated in optics, but to provide the solutions of his
equation with a physical meaning. The fantastic coincidence of the Schrödinger’s
wave packet and the x1-quadrature representation of the fully coherent states of
Glauber is due to the fact that, in both cases, connection with the classical world
was looked for the quantum states of the harmonic oscillator. However, the states
of Schrödinger and those of Glauber were originated by different reasons and
obeying different approaches. In this form, the voices declaring that Schrödinger
“discovered” the coherent states mislead the physical meaning of quantum optical
coherence. Simply, it was not possible for Schrödinger to guess in any way that his
wave packets would be connected with interference phenomena, not even with the
Young’s interferometer, since no experimental evidence of higher-order coherence
(like the Brown–Twiss effect) was available at the time. The connection between
the Schrödinger’s wave packet and the “position” representation of the KGS-states is
merely mathematical in origin. Nevertheless, the above does not discard the brilliant
intuition of Schrödinger as far as quantum physics is concerned.
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The works quoted in Sect. 3.5 testify the correctness of the Lorentz–Heisenberg
argument. Although almost all of them are based on the oscillator number states,
only the Schrödinger wave packets (i.e., the KSG-states) satisfy the properties of
preserving their initial Gaussian profile by following the classical oscillator’s trajec-
tory. The most “exotic” of the aforementioned oscillator-like systems is the forced
oscillator discussed by Husimi [131, 132], which was recovered by Carruthers and
Nieto as the first application of the KGS-states to study quantum systems other
than the harmonic oscillator [184]. Nevertheless, attracted by the Schrödinger’s
affirmation, some authors have presented different proposals to solve the problem
of finding non-deformable wave packets for the hydrogen atom (see, e.g., [185–
192]). Current interest on the subject is addressed to the potential applications of
the Rydberg atoms in micro-wave cavities [193]. Notably, most of such proposals
are based on the dynamics (in the sense of Lie theory) associated with the Coulomb
problem. However, as Heisenberg indicated, the states so constructed do not go into
a state of the same class under time evolution. The problem was partially solved
by Klauder in 1996 [194], after relaxing some of the properties associated with the
KGS-states to construct the appropriate generalized coherent states (see also [195]).

4 Group Approach and Squeezed States

The foundations of property (II) rest on the Lie group-representation of the
Heisenberg–Weyl algebra. Namely, the operator D(α) that generates the displaced
state |α〉 = D(α)|0〉 is obtained by the product of exponentiated forms of the algebra
generators I, a†, and a. For if we take the exponentiation of αa† and −α∗a, using
the Baker–Campbell–Hausdorff formula [196], the related product can be simplified
as follows:

eαa
†
e−α∗a = eαa

†−α∗ae
1
2 [α∗a,αa†] = eαa

†−α∗ae|α|2I. (56)

Therefore

e−|α|2Ieαa†
e−α∗a = eαa

†−α∗a. (57)

The factors at the left-hand side of (57) are the result of a parametric exponentiation
of the generators of the Heisenberg–Weyl algebra. In turn, the element at the
right-hand side is the exponentiated form of the operator αa† − α∗a, which is
also a member of the algebra. Notably, all the exponentiated forms included
in (57) are elements of the Heisenberg–Weyl group, with exp(αa† − α∗a) the
result of multiplying the group basis elements properly parameterized. Comparing
with (37) we find the origin of the displacement operator D(α). On the other hand,
expression (57) is a disentangling formula [197–199] that permits the factorization
of D(α) into a normally ordered form, see Eq. (12). The factorization in antinormal-
order is also feasible [197–199]. As the zero-photon state |0〉 is annihilated by a,
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it is immediate to see that the action of the group-element exp(−α∗a) leaves |0〉
invariant. Hence |0〉 is called fiducial state with respect to exp(−α∗a) [200–204].
The above results can be abridged by saying that the Heisenberg–Weyl algebra rules
the dynamics of the quantum harmonic oscillator, and that the basis elements of
the related Lie group define a mechanism to get the coherent state |α〉, with the
vacuum |0〉 as fiducial state. Then we have at hand a recipe to generalize the notion
of coherent states for which the symmetric properties of the system under study are
relevant. It is just required the identification of the dynamical group that defines the
properties of the system we are interested in, as well as the related fiducial state
[200–204].

4.1 The Versatile Representations of SU(1, 1) and SU(2) Lie
Groups

To give an example let us consider the operators K± and K0 that satisfy the
commutation relations

[K−,K+] = 2σ±K0, [K0,K±] = ±K±, σ± = ±1, (58)

as well as the operator

K2 = K2
0 − σ

1/2
± (K+K− + K−K+), (59)

which satisfies [K2,K±] = [K2,K0] = 0. The above expressions correspond to
the su(1, 1) Lie algebra for σ+, and to the su(2) Lie algebra for σ−, with K2 the
Casimir operator. The normal order disentangling formula is in this case as follows
[198]:

eA+K+e(lnA0)K0eA−K− = ea+K++a0K0+a−K− , (60)

with

A± = a± sinhφ

φ
√
A0

, A0 = 1

[coshφ − a0 sinhφ
2φ ]2

, φ =
[
a2

0

4
− σ±a+a−

]1/2

.

For the su(1, 1) Lie algebra we have two immediate bosonic representations.
Namely, the single-mode one

K+ = 1

2
(a†)2, K− = 1

2
a2, K0 = 1

2

(
a†a + 1

2

)
, (61)
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and the two-mode representation

K+ = a†b†, K− = ab, K0 = 1

2

(
a†a + b†b + 1

)
, (62)

where [a, a†] = [b, b†] = 1, [a, b†] = 0, etc.

4.1.1 Vacuum Squeezed States

From (60) and (61), with a0 = 0, a+ = ξ = −a∗−, and ξ = reiϕ ∈ C, we obtain a
new operator Ss(ξ) = exp[ξ(a†)2 − ξ∗a2]/2 [21, 22] such that

|ξs〉 := Ss(ξ)|0〉 = 1√
cosh r

∞∑
n=0

einϕ tanhn r

2nn!
√
(2n)!|2n〉. (63)

The superposition |ξs〉 is known as the vacuum squeezed state [34] (see also [41–
43]). The first antecedents of these states can be found in the paper of Kennard
[130], and those of Infeld and Plebánski [134–137]. Noticeably, Cachill and Glauber
used a mixed state prepared with even number states |2n〉〈2n| to explore a class of
displaced thermal states [13, Ch. 10]. The pure state |ξs〉〈ξs | includes populations
|2n〉〈2n| as well as coherences |2n〉〈2m|, n �= m, and the former may share some
properties with the Cachill–Glauber states since it corresponds to the “classical”
part of the vacuum squeezed state (63).

On the other hand, it may be proved that the Mandel parameter (30) is in this
case QM = 2〈n̂〉 + 1 = 2 sinh2 r + 1, and that the variances (evaluated with
arbitrary ϕ) are parameterized by the modulus of ξ as follows (Δx̂1)

2 = e2r/2,
(Δx̂2)

2 = e−2r/2. Clearly, although x̂1 is stretched at the time that x̂2 is squeezed,
the related uncertainty is minimized. The roles are interchanged for other values
of ϕ. From (31) we also see that g(2) = 3 + 1/ sinh2 r . Therefore, as g(2) > 3,
the vacuum squeezed state |ξs〉 is nonclassical. The latter is enforced by noticing
that QM > 1. Of course, r = 0 is forbidden to evaluate either g(2) or QM

since this produces the vacuum state |ξs = 0〉. Additionally, the state |ξs〉 is
temporally stable |ξs(t)〉 = e−iωt/2|ξe−2iωt 〉. On the other hand, the expectation
value 〈a2〉 = sinh(2r)eiϕ/2 leads to the probability |〈a2〉|2 = sinh2(2r)/4 that two
photons have been detected at the same space point by preserving the field state.
This probability is always different from zero and increases with the mean number
of photons.

4.1.2 Even and Odd Coherent States

Remarkably, Dodonov et al. introduced in 1974 a pair of states |α±〉, called even
and odd coherent states [44], which include (63) as the even case |α+〉. These states
result from the superpositions
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|α±〉 =
[
2
(

1 ± e−2|α|2)]−1/2
(|α〉 ± | − α〉). (64)

The properties of |α±〉 can be consulted in the review by Man’ko [56, Ch. 4]. For
historical details about general squeezed states see the pretty review prepared by
Dodonov and Man’ko [56, Ch. 1].

4.1.3 Squeezed Coherent States

Applying the displacement operator D(α) on |ξs〉 we obtain the squeezed coherent
state |α, ξs〉 = D(α)Ss(ξ)|0〉 [25, 42], which produces the same variances as |ξs〉,
with a modification in the expected number of photons 〈n̂〉 = |α|2 + sinh2 r . Thus,
the displacement produced by D(α) does not modify the squeezing properties.
However, depending on the combination of α and r , the Mandel parameter QM

can be negative and g(2) ≤ 1 as well. In other words, for such values of (r, α) the
states |α, ξs〉 are very close in properties to the number states |n ≥ 1〉.

4.1.4 Two-Mode Squeezed States

If we now use (60) and (62) with the same parameters a0, a± as before, the action
of the resulting operator Stwo(ξ) = exp(ξa†b† − ξ∗ab) on the two-mode vacuum
state |0, 0〉 produces [205, 206]:

|ξtwo〉 = 1

cosh r

∞∑
n=0

einϕ tanhn r|n, n〉. (65)

The mean number of photons in any mode is the same 〈n̂a〉 = 〈n̂b〉 = sinh2 r ,
with correlation between modes defined by 〈ab〉 = sinh(2r)eiϕ/2 and 〈a†b〉 = 0.
Besides 〈a2〉 = 〈b2〉 = 0, and 〈a〉 = 〈b〉 = 0. The latter means that detection of only
one photon, no matter the mode, is forbidden. Indeed, as |〈a〉|2 = |〈b〉|2 = 0, we
see that the state of the field is inevitably changed to an orthogonal configuration
after detecting a single photon! The same holds for the probabilities |〈a2〉|2 =
|〈b2〉|2 = 0, so the field is changed to an orthogonal configuration after detecting
two photons of the same mode. The situation is different for the square modulus
of the correlation |〈ab〉|2 = sinh2(2r)/4, which means that only detections of one
photon in a given mode AND one photon in the complementary mode are allowed.
These properties are such that the modes a and b themselves are not squeezed, and
suggest the symmetrization (a ± b)/

√
2 to obtain the properly defined quadratures

(a 50–50 beam splitter is useful in this subject [52, Ch. 3.2]). Then, it may be shown
that the squeezing operator Stwo(ξ) can be factorized as the product of two-single
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mode squeezing operators. It is also possible to define two-mode squeezed coherent
states |α, β, ξ 〉 = D(α)D(β)Stwo(ξ)|0, 0〉. Additional properties of these states can
be consulted in the book by Agarwal [52].

5 Generalized Coherent States

The bare essentials of coherent states can be expressed as a linear superposition

|αCS〉 =
∑
k∈I

fn(α)|ψn〉, α ∈ C, (66)

where the vectors |ψn〉 generate a (separable) Hilbert space H (R.J. Glauber,
private communication, Cocoyoc, Mexico, 1994), I ⊆ R is an appropriate set of
indices, and fn(α) is a set of analytical functions permitting normalization. The
superposition (66) must exhibit some specific properties that are determined by the
“user” with basis on either the phenomenology under study or theoretical arguments.

Although the Klauder–Glauber–Sudarshan states (32) are the only superpositions
that posses all the properties (A), (B), (I)–(III), and many other, the term coherent
states (CS) has been used for a wide class of mathematical objects over the years.
Nowadays, the overcomplete bases of states constructed to include at least one of
the properties discussed in Sect. 3.3 are called generalized coherent states. The most
valuable profile of the latter is that they can be studied for many systems in terms of
the definition leading to the desirable result. For instance, the generalized CS studied
by Barut and Girardello [207] and by Perelomov [200–202] are respectively based
on properties (A) and (II) of the KGS-states. Property (III) is incidentally found as
a secondary result for some special systems. Indeed, besides the Schrödinger [123],
Kennard [130], Schiff [122], Husimi [131, 132], and Saxon [120] contributions,
the construction of wave packets addressed to minimize the uncertainty relation
of a pair of observables has been rarely reported in the literature. An exception
is represented by the Nieto’s results [141–146]. Of course, we have in mind that
squeezed states can be considered as deformations of generalized CS for which the
quadratures are not equal but minimize the related uncertainty. Klauder, for instance,
constructed generalized CS for the hydrogen atom [194] such that they have
temporal estability (i.e., they satisfy property I), are normalized and parametrized
continuously, like it is defined in Eq. (66), and admit a resolution of unity with a
positive measure (a fundamental property of the KGS-states proved in advance by
Klauder himself [115, 116]). Thus, as a basis to construct his states for the hydrogen
atom, Klauder used the concept of “coherent state” introduced in his compilation
book, signed together with Skagerstam [208]. Further improvements were given in
[209]. Additional generalizations have been discussed in, e.g., [210–212].

As a general rule, it is expected that the set {|αCS〉} forms an overcomplete basis
of the corresponding Hilbert space H. In turn, the superpositions |αCS〉 are wished
to be temporally stable.
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5.1 Generalized Oscillator Algebras

The deformed oscillator (or boson) algebras can be encoded in a global symbolic
expression that facilitates their study. One of the advantages of working in symbolic
form is that the related nonlinear coherent states can be written in the same
mathematical context [107]. The main idea is to consider (66) with

fn(α) = αn√
E(n)! , E(n)! = E(1)E(2) · · ·E(n), E(0)! := 1, (67)

where E is a nonnegative function, I = {0, 1, 2, . . .}, and |ψn〉 ≡ |n〉 ∀n ∈ I. The
normalization requires

NE(|α|) =
[ ∞∑
n=0

|α|2n
E(n)!

]−1/2

(68)

to be finite, so that not any E and |α| are allowed. Assuming E and α properly
chosen, the normalized vectors |αCS〉N = NE(α)|αCS〉 satisfy the closure relation

I =
ˆ

|αCS〉N 〈αCS |dσE(α); dσE(α) = d2α

π
ΛE

(
|α|2

)
, (69)

with ΛE(α) an additional function to be determined such that

ˆ ∞

0
ΛE(x)x

ndx = E(n)!, α = reiθ , x = r2. (70)

After the change b → m − 1, integral equation (70) coincides with the Mellin
transform [213] of ΛE(x). The simplest form to obtain (67) is by a modification of
the oscillator algebra that preserves the number operator n̂ but changes the ladder
operators, now written aE and a

†
E , as the set of generators. That is, one has

[n̂, aE] = −aE, [n̂, a†
E] = a

†
E, (71)

so that the product a†
EaE preserves the number of quanta provided it is equal to the

function E(n̂). Equivalently, aEa
†
E = E(n̂ + 1), so that aE |n〉 = √

E(n)|n − 1〉,
a

†
E |n〉 = √

E(n + 1)|n + 1〉, and

[aE, a†
E] − E(n̂ + 1) = E(n̂).

As the vacuum state |0〉 does not contain quanta we shall assume E(0) = 0 in order
to have a bounded from below annihilation operator aE |0〉 = 0. It is say that any
system obeying the new algebra is a generalized oscillator. It may be shown that



216 O. Rosas-Ortiz

when the function E(n) is a real polynomial of degree � ≥ 1, the determination
of the measure (70) is reduced to a moment problem that is solved by the Meijer
G-function [107]. This property automatically defines the delta distribution as the
P -representation of the generalized CS |αCS〉N so defined. Then, in principle, there
must be a classical analogy for them. However, in [107] it has been shown that
they exhibit properties like antibunching and that they lack second-order coherence.
That is, although they are P -represented by a delta function, they are not fully
coherent. Therefore, the systems associated with the generalized oscillator algebras
cannot be considered “classical” in the context of the quantum theory of optical
coherence. Examples include the f -oscillators of Man’ko and co-workers [62],
q-deformed oscillators [58, 59, 214], deformed photon phenomenology [60], the
su(1, 1) oscillators applied to the study of the Jaynes-Cummings model [215]
for intensity dependent interactions [216, 217] as well as the supersymmetric and
nonlinear models [61, 62, 75–82, 86–108].

5.2 Position-Dependent Mass Systems and Quantum-Classical
Analogies

The problem of calculating the energies of quantum systems endowed with position-
dependent mass m(x) has been a subject of increasing interest in recent years
[218–246]. This model represents an interface between theoretical and applied
physics, with analogies in geometric optics where the position dependent refractive
index can be interpreted as a variable mass [247]. Its main characteristic is that

the conventional expression for the kinetic term p̂2

2m is not self-adjoint [218, 219],
so that the Hermiticity of the Hamiltonian is a part of the problem if the mass
is not a constant. Nevertheless, different generalized CS have been constructed
[248–256]. The above is remarkable since well-known quantum-classical analogies
[38, 40, 247, 257–259] can be exploited to test quantum-theoretical predictions
in the laboratory. That is, although we nowadays have at hand precise forms to
produce single photons on demand (see, e.g., [260–262] and the review paper
[263]), relevant information is accessible from the optical analogies of quantum
behavior [257, 259]. A first example is offered by the propagation of signals in
optical waveguides [264], which can be used to test important predictions dealing
with quantum resonances and leaky electromagnetic modes [265, 266], solitons
[267, 268], and supersymmetry [269, 270]. Another example arises by recalling that
classic optics includes an uncertainty relation between position and momentum,
with Planck’s constant h̄ replaced by the light wave length λ [257]. The latter
analogies connect, as we have seen, Gaussian light beams with fully coherent states.
However, it may be also useful in the study of multilevel quantum systems [271].
Of course, the studies on the propagation of optical beams in parabolic [170–172]
and Kerr [173–176] media include a refractive index with special properties that
can be expressed as a concrete parametrization of the quantum states of light. On
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the other hand, quantum field theory in curved space-time also permits classical
analogies [259], so that Hawking radiation can be studied in nonlinear Kerr media
(including the analysis of the vacuum state for a star collapsing to a black hole which
leads to the controversial effect named after Unruh [272–275]). At the moment, the
analogies of Hawking radiation seem to be feasible [276–278].

5.3 Two Faces of the Same Coin

Considering the above remarks, it must be clear that squeezed and coherent states
can be treated as different faces of a superposition |αCS〉 that minimizes the
uncertainty of the appropriate quadratures. Indeed, they appear at different times
when repeated measurements are made on a system [279], in the context of quantum
nondemolition measurements [35–37] required to detect gravitational waves [38–
40], where the expression squeezed state was coined [34] (see also [280–282]).
Applications include quantum gravity [283], gauge field theory [284–287], and
Yang–Mills theory [288]. Addressed to the interest on Rydberg atoms [193, 289],
the generalized CS [290–293] are also relevant in manipulating atom–photon inter-
actions [193, 294–297]. Special properties are revealed in the Jaynes–Cummings
model [298–301], and for dynamical systems ruled by either the su(1, 1) or the
su(2) Lie algebras [256, 302–309]. The coherent states can be entangled [310–313],
superposed [44–47, 314], and constructed for non-Hermitian operators [86, 87, 315]
in terms of either a bi-orthogonal basis [84, 86, 87, 316] or noncommutative spaces
[312, 317, 318], for which nonclassical properties can be found [87, 107, 319, 320].
They have been also associated with super algebraic structures [313, 321–325],
nonlinear oscillators [326–328], and solvable models [329–341].

6 Conclusion

I have revisited the profiles of coherent and squeezed states that, in my opinion, have
been overpassed in other works of the same nature and subject. The efforts have
been addressed to clarify the main concepts and notions, including some passages
of the history of science, with the aim of facilitating the subject for nonspecialists.
In this sense, the present work must be treated as complementary to the reviews
already reported by other authors. Clearly, it is not possible to scan all the literature
on the matter so that, by necessity, any review is an incomplete work. The papers
included in the references cannot cover all the relevant contributions on the matter,
so the bibliography is, after all, the imperfect selection of the author. I apologize
for the missed fundamental references as well as for the imprecise quotations (if
any). I would conclude the work by addressing the readers attention to the books by
Mandel and Wolf [6], Klauder and Sudarshan [117], Glauber [13], Perelomov [202],
Ali et al. [212], Dodonov and Man’ko [56], Combescure and Robert [160], Agarwal
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[52], Schuch [179], and Gazeau [342]. The reviews of Gilmore [203], Walls [41],
Loudon and Knight [42], Fonda et al. [210], Zhang et al. [204], and Ali et al. [211]
are also terrific to initiate the study of the subject.
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134. J. Plebański, Classical properties of oscillator wave packets. Bull. Acad. Polon. Sci. Cl. III

11, 213 (1954)
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1 Introduction

Spectral zeta functions associated with eigenvalue problems of (partial) differential
operators are of relevance in a wide array of topics [3–8, 10, 11, 16, 18, 25, 26, 28].
As an example consider the Dirichlet boundary value problem

− ΔDf = −f ′′, f (0) = f (1) = 0, (1.1)

where −ΔD denotes the Dirichlet Laplacian in the Hilbert space L2((0, 1); dx)
(cf. (2.12)), with purely discrete and simple spectrum,

σ(−ΔD) = {λk = (kπ)2
}
k∈N. (1.2)

In particular, the spectral zeta function associated with −ΔD ,

ζ(z;−ΔD) =
∑
k∈N

λ−z
k = π−2zζ(2z), Re(z) > 1/2, (1.3)

is basically given by the Riemann zeta function

ζ(z) =
∑
k∈N

k−z, Re(z) > 1. (1.4)

This elementary and well-known observation identifies the Riemann zeta function
as a spectral zeta function and hence spectral theoretic techniques for their analysis
can be applied to it. This is the perspective taken in this article. In Sect. 2 we
briefly review representations for spectral zeta functions as derived in [13] and we
apply them to the zeta function of Riemann. New integral representations for the
Riemann zeta function are found and the well-known properties, namely values at
even negative and positive integers are easily reproduced. In addition, we derive new
representations for the value of the Riemann zeta function at positive odd integers.
Typical examples we derive are

ζ(z) = sin(πz/2)πz−1
ˆ ∞

0
ds s−z[coth(s) − cothn(s)],

Re(z) ∈ (max(1, 2n), 2n + 2), n ∈ N0,

(1.5)

where

coth0(z) = 1

z
, z ∈ C\{0},

cothn(z) = 1

z
+

n∑
k=1

22kB2k

(2k)! z2k−1, z ∈ C\{0}, n ∈ N,

(1.6)
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with Bm the Bernoulli numbers (cf. (A.30)–(A.33)), implying

ζ(3) = −π2
ˆ ∞

0
ds s−3[coth(s) − (1/s) − (s/3)], (1.7)

ζ(5) = π4
ˆ ∞

0
ds s−5[ coth(s) − (1/s) − (s/3) + (

s3/45
)]
, (1.8)

ζ(7) = −π6
ˆ ∞

0
ds s−7[ coth(s) − (1/s) − (s/3) + (

s3/45
) − (

2s5/945
)]
,

etc. (1.9)

Finally, the Appendix summarizes known results about the Riemann zeta func-
tion putting the results we found in some perspective.

2 Computing Traces and the Riemann ζ -Function

After a brief discussion of spectral zeta functions associated with self-adjoint
operators with purely discrete spectra, we turn to applications of spectral trace
formulas to the Riemann zeta function.

We start by following the recent paper [13] and briefly discuss spectral ζ -
functions of self-adjoint operators S with a trace class resolvent (and hence a purely
discrete spectrum).

Below we will employ the following notational conventions: A separable,
complex Hilbert space is denoted by H, IH represents the identity operator in H; the
resolvent set and spectrum of a closed operator T in H are abbreviated by ρ(T ) and
σ(T ), respectively; the Banach space of trace class operators on H is denoted by
B1(H), and the trace of a trace class operator A ∈ B1(H) is abbreviated by trH(A).

Hypothesis 2.1 Suppose S is a self-adjoint operator in H, bounded from below,
satisfying

(S − zIH)
−1 ∈ B1(H) (2.2)

for some (and hence for all ) z ∈ ρ(S). We denote the spectrum of S by σ(S) =
{λj }j∈J (with J ⊂ Z an appropriate index set ), with every eigenvalue repeated
according to its multiplicity.

Given Hypothesis 2.1, the spectral zeta function of S is then defined by

ζ(z; S) =
∑
j∈J
λj �=0

λ−z
j (2.3)

for Re(z) > 0 sufficiently large such that (2.3) converges absolutely.
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The cutRθ for w−z

w-plane

γ

Fig. 1 Contour γ in the complex w-plane

Next, let P(0; S) be the spectral projection of S corresponding to the eigenvalue
0 and denote by m(λ0; S) the multiplicity of the eigenvalue λ0 of S, in particular,

m(0; S) = dim(ker(S)). (2.4)

In addition, we introduce the simple contour γ encircling σ(S)\{0} in a counter-
clockwise manner so as to dip under (and hence avoid) the point 0 (cf. Fig. 1). In
fact, following [20] (see also [19]), we will henceforth choose as the branch cut of
w−z the ray

Rθ = {
w = teiθ

∣∣t ∈ [0,∞)
}

θ ∈ (π/2, π), (2.5)

and note that the contour γ avoids any contact with Rθ (cf. Fig. 1).

Lemma 2.6 In addition to Hypothesis 2.1 and the counterclockwise oriented
contour γ just described (cf. Fig. 1), suppose that

∣∣trH
(
(S−zIH)−1[IH−P(0; S)])∣∣

is polynomially bounded with respect to z on γ . Then

ζ(z; S) = −(2πi)−1
‰
γ

dww−z
[

trH
(
(S − wIH)

−1) + w−1m(0; S)] (2.7)

for Re(z) > 0 sufficiently large.
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We note in passing that one could also use a semigroup approach via

ζ(z; S) = Γ (z)−1
ˆ ∞

0
dt tz−1 trH

(
e−tS[IH − P(0; S)])

= Γ (z)−1
ˆ ∞

0
dt tz−1[ trH

(
e−tS

) − m(0; S)],
(2.8)

for Re(z) > 0 sufficiently large.
It is natural to continue the computation leading to (2.7) and now deform the

contour γ so as to “hug” the branch cut Rθ , but this requires the right asymptotic
behavior of trH

(
(S − wIH)−1[IH − P(0; S)]) as |w| → ∞ as well as |w| → 0.

This applies, in particular, to cases where S is strictly positive and one thus chooses
the branch cut along the negative axis, that is, it employs the cut Rπ , where

Rπ = (−∞, 0], (2.9)

and choosing the contour γ to encircle Rπ clockwise. This renders (2.7) into the
following expression:

ζ(z; S) = sin(πz)

π

ˆ ∞

0
dt t−z trH

(
(S + tIH)

−1)

= trH

(
sin(πz)

π

ˆ ∞

0
dt t−z(S + tIH)

−1
)

= trH
(
S−z

)
, (2.10)

employing the fact,

S−z = sin(πz)

π

ˆ ∞

0
dt t−z(S + tIH)

−1, Re(z) ∈ (0, 1), (2.11)

whenever S ≥ 0 in H, with ker(S) = {0} (see, e.g., [15, Proposition 3.2.1 d)]).

Note While (2.11) is rigorous, the manipulations in (2.10) are formal and subject
to appropriate convergence and trace class hypotheses which will affect the possible
range of Re(z). &

These hypotheses are easily shown to be satisfied when discussing the one-
dimensional Dirichlet Laplacian −ΔD in L2((0, 1); dx),

− ΔD = − d2

dx2 ,

dom(−ΔD) = {
u ∈ L2((0, 1); dx) ∣∣ u, u′ ∈ ACloc([0, 1]); u(0) = 0 = u(1);

u′′ ∈ L2((0, 1); dx)} (2.12)

(here AC([0, 1]) denotes the set of absolutely continuous functions on [0, 1]).
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Recalling Riemann’s celebrated zeta function (see the Appendix for more
details),

ζ(z) =
∑
k∈N

k−z, z ∈ C, Re(z) > 1. (2.13)

we start with the following result.

Lemma 2.14 Let Re(z) ∈ (1, 2), then

ζ(z) = sin(πz/2)πz−1
ˆ ∞

0
ds s−z−1[s coth(s) − 1]. (2.15)

Proof Since the eigenvalue problem for −ΔD reads

− ΔDuk = λkuk, k ∈ N, (2.16)

with

uk(x) = 21/2 sin(kπx), ‖uk‖L2((0,1);dx) = 1, λk = (πk)2, k ∈ N, (2.17)

and all eigenvalues λk , k ∈ N, are simple, (2.10) works as long as Re(z) ∈ ((1/2), 1)
and one obtains (see also [7, p. 94])

ζ(z;−ΔD) = trL2((0,1);dx)
(
(−ΔD)

−z
) =

∑
k∈N

(πk)−2z = π−2zζ(2z)

= sin(πz)

π

ˆ ∞

0
dt t−z trL2((0,1);dx)

(
(−ΔD + tIL2((0,1);dx))−1)

= sin(πz)

π

ˆ ∞

0
dt t−z

ˆ 1

0
dx t−1/2[ sinh(t1/2)]−1 sinh

(
t1/2x

)

× sinh
(
t1/2(1 − x)

)

= sin(πz)

2π

ˆ ∞

0
dt t−z−1[t1/2 coth

(
t1/2) − 1

]
, Re(z) ∈ ((1/2), 1).

(2.18)

Here we used

(−ΔD − zIL2((0,1);dx))−1(z, x, x′)

= 1

z1/2 sin(z1/2)

{
sin(z1/2x) sin(z1/2(1 − x′)), 0 ≤ x ≤ x′ ≤ 1,

sin(z1/2x′) sin(z1/2(1 − x)), 0 ≤ x′ ≤ x ≤ 1,

z ∈ C
∖{

π2k2}
k∈N,

(2.19)
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and [14, 2.4254]

ˆ x

dt sinh(at + b) sinh(at + c)

= −(x/2) cosh(b − c) + (4a)−1 sinh(2ax + b + c) + C, a �= 0.

(2.20)

Since

[
t1/2 coth

(
t1/2) − 1

] =
{
O(t), t ↓ 0,

O
(
t1/2

)
, t ↑ ∞,

(2.21)

(2.18) is well-defined for Re(z) ∈ ((1/2), 1). Thus, the elementary change of
variables t = s2 yields (2.15).

Remark 2.22 Representation (2.15) is suitable to observe the well-known properties

ζ(0) = −1/2, ζ(−2n) = 0, n ∈ N. (2.23)

To this end, one notes that the restriction Re(z) > 1 results from the s → ∞
behavior of the integrand in (2.15). Explicitly, one has

s coth(s) − 1 =
s→∞ s − 1 + O

(
e−2s), (2.24)

from which one infers that

ζ(z) = sin(πz/2)πz−1
ˆ ∞

1
ds s−z−1(s − 1) + E(z)

= sin(πz/2)πz−1
[

1

z − 1
− 1

z

]
+ E(z), (2.25)

where E( · ) is entire and

E(−2n) = 0, n ∈ N0. (2.26)

This immediately implies (2.23).
The values at positive even integers, ζ(2m) for m ∈ N, are best obtained using

representation (2.7); see Remark 2.41. &
One can generalize (2.11) as follows:

S−z = Γ (m)

Γ (n − z)Γ (m − n + z)
Sm−n

ˆ ∞

0
dt tn−1−z(S + tIH)

−m,

Re(z) ∈ (n − m, n), m, n ∈ N.

(2.27)
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Formally, this now yields

ζ(z; S) = Γ (m)

Γ (n − z)Γ (m − n + z)

ˆ ∞

0
dt tn−1−z trH

(
Sm−n(S + tIH)

−m
)

= trH

(
Γ (m)

Γ (n − z)Γ (m − n + z)
Sm−n

ˆ ∞

0
dt tn−1−z(S + tIH)

−m

)

= trH
(
S−z

)
. (2.28)

The case m = n appears to be the simplest and yields

ζ(z; S) = Γ (n)

Γ (n − z)Γ (z)

ˆ ∞

0
dt tn−1−z trH

(
(S + tIH)

−n
)

(2.29)

= trH

(
Γ (n)

Γ (n − z)Γ (z)

ˆ ∞

0
dt tn−1−z(S + tIH)

−n

)
= trH

(
S−z

)
.

Note Again, (2.27) is rigorous, but (2.28), (2.29) are subject to “appropriate”
convergence and trace class hypotheses. &

For −ΔD , (2.29) indeed works for n ∈ N as long as Re(z) ∈ ((1/2), n) and one
obtains

ζ(z;−ΔD) = trL2((0,1);dx)
(
(−ΔD)

−z
) =

∑
k∈N

(πk)−2z = π−2zζ(2z)

= Γ (n)

Γ (n − z)Γ (z)

ˆ ∞

0
dt tn−1−z trL2((0,1);dx)

(
(−ΔD + tIL2((0,1);dx))−n

)
.

(2.30)

For n = 2 this includes z = 3/2 and hence leads to a formula for ζ(3). However, we
prefer an alternative approach based on [13, Theorem 3.4 (i)] that applies to −ΔD

and yields the following results.

Lemma 2.31 Let Re(z) ∈ (1, 4), then

ζ(z) = sin(πz/2)

(2 − z)
πz−1

ˆ ∞

0
ds s−z−1

[
s coth(s) + s2[sinh(s)]−2 − 2

]
. (2.32)

In particular,

ζ(2) = π2

2

ˆ ∞

0
ds s−3

[
s coth(s) + s2[sinh(s)]−2 − 2

]
= .... = π2/6, (2.33)

ζ(3) = π2
ˆ ∞

0
ds s−4

[
s coth(s) + s2[sinh(s)]−2 − 2

]
. (2.34)
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Proof Employing [13, Theorem 3.4 (i)],

trL2((0,1);dx)
(
(−ΔD − zIL2((0,1);dx))−1) = −(d/dz) ln

(
z−1/2 sin

(
z1/2)),

z ∈ C\{π2k2}
k∈N (2.35)

(see also (A.35)), one confirms that

ζ(2)/π2 = lim
z→0

∑
k∈N

(
π2k2 − z

)−1 = 1/6. (2.36)

Actually, setting z = −t in (2.35) yields

trL2((0,1);dx)
(
(−ΔD + tIL2((0,1);dx))−1) = (d/dt) ln

(
t−1/2 sinh

(
t1/2))

= (2t)−1[t1/2 coth
(
t1/2) − 1

]
, t > 0, (2.37)

and hence confirms (2.18). Continuing that process, one notes that

trL2((0,1);dx)
(
(−ΔD + tIL2((0,1);dx))−2) = −(

d2/dt2
)

ln
(
t−1/2 sinh

(
t1/2))

= (
4t2

)−1
[
t1/2 coth

(
t1/2) + t

[
sinh

(
t1/2)]−2 − 2

]
, t > 0. (2.38)

Insertion of (2.38) into (2.30) taking n = 2 then yields

ζ(z;−ΔD) = trL2((0,1);dx)
(
(−ΔD)

−z
) =

∑
k∈N

(πk)−2z = π−2zζ(2z)

= 1

Γ (2 − z)Γ (z)

ˆ ∞

0
dt t1−z trL2((0,1);dx)

(
(−ΔD + tIL2((0,1);dx))−2)

= sin(πz)

4π(1 − z)

ˆ ∞

0
dt t−1−z

[
t1/2 coth

(
t1/2) + t

[
sinh

(
t1/2)]−2 − 2

]
,

(2.39)

Re(z) ∈ ((1/2), 2).

Since

[
t1/2 coth

(
t1/2) + t

[
sinh

(
t1/2)]−2 − 2

]
=
{
O
(
t2
)
, t ↓ 0,

O
(
t1/2

)
, t ↑ ∞,

(2.40)

(2.39) is well-defined for Re(z) ∈ ((1/2), 2). Thus, the elementary change of
variables t = s2 yields (2.32)–(2.34).
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Remark 2.41 Employing (2.35) in (2.7), one finds the representation

ζ(z;−ΔD) = (2πi)−1
‰
γ

dww−z
1 − w1/2 cot

(
w1/2

)
2w

, (2.42)

where the counterclockwise contour γ can be chosen to consist of a circle γε of
radius ε < π and straight lines γ1, respectively γ2, just above, respectively just
below, the negative x-axis. For z = m, m ∈ N, contributions from γ1 and γ2 cancel
each other and thus

ζ(m;−ΔD) = (2πi)−1
‰
γε

dw w−m
1 − w1/2 cot

(
w1/2

)
2w

. (2.43)

This integral is easily computed using the residue theorem. From the Taylor series
[14]

1 − w1/2 cot
(
w1/2

)
2w

=
∞∑
k=1

22k−1|B2k|
(2k)! wk−1, w ∈ C, 0 < |w| < π2 (2.44)

(with Bm the Bernoulli numbers, cf. (A.30)–(A.33)), the relevant term is k = m and

ζ(m;−ΔD) = 22m−1|B2m|
(2m)! , (2.45)

implying Euler’s celebrated result,

ζ(2m) = 22m−1π2m|B2m|
(2m)! , m ∈ N. (2.46)

This procedure works in a much more general context and allows for the
computation of traces of powers of Sturm–Liouville operators in a straightforward
fashion; this will be revisited elsewhere. &
Remark 2.47 An elementary integration by parts of the term s−2 coth(s) in (2.33)
indeed verifies once more that ζ(2) = π2/6. The same integration by parts in (2.34)
fails to render the integral trivial (as it obviously should not be trivial). Indeed,

ˆ R

ε

ds
{
s−2 coth(s) + s−1[sinh(s)]−2 − 2s−3}

=
ˆ R

ε

ds
{ − [

(d/ds)s−1] coth(s) + s−1[sinh(s)]−2 − 2s−3}

= −s−1 coth(s)
∣∣∣R
ε

+
ˆ R

ε

ds (−2)s−3 −→
ε↓0, R↑∞= 1

3
. (2.48)
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Applying the same strategy to (2.34) yields

ˆ R

ε

ds
[
s−3 coth(s) + s−2[sinh(s)]−2 − 2s−4

]

=
ˆ R

ε

ds
[

− (1/2)
[
(d/ds)s−2] coth(s) + s−2[sinh(s)]−2 − 2s−4

]

= −(1/2)s−2 coth(s)
∣∣∣R
ε

+
ˆ R

ε

ds
[
(1/2)s−2[sinh(s)]−2 − 2s−4

]
, (2.49)

and hence the expected nontrivial integral. We note once more that

[
s coth(s) + s2[sinh(s)]−2 − 2

]
=
s↓0

O
(
s4), (2.50)

rendering (2.34) well-defined. &
The following alternative (though, equivalent) approach to ζ(z) is perhaps a bit

more streamlined.

Theorem 2.51 Let n ∈ N0, 0 < Re(z) < 1, and1 Re(2n + 2z) > 1. Then2

ζ(2n + 2z) = (−1)nπ2(n+z)

Γ (1 − z)Γ (n + z)

ˆ ∞

0
dt t−z d

n

dtn

[
(2t)−1[t1/2 coth

(
t1/2) − 1

]]

= (−1)n2−nπ2(n+z)

Γ (1 − z)Γ (n + z)

ˆ ∞

0
ds s1−2z

(
1

s

d

ds

)n[
s−2[s coth(s) − 1]

]
. (2.52)

In addition to ζ(3) in (2.34) one thus obtains similarly,

ζ(5) = π4

3

ˆ ∞

0
ds s−6

[
2s3 coth(s)[sinh(s)]−2 + 3s2[sinh(s)]−2

+ 3s coth(s) − 8
]
, (2.53)

ζ(7) = π6

15

ˆ ∞

0
ds s−8

[
4s4[coth(s)]2[sinh(s)]−2

+ 2s4[sinh(s)]−4 + 12s3 coth(s)[sinh(s)]−2

+ 15s2[sinh(s)]−2 + 15s coth(s) − 48
]
, (2.54)

etc.

1The condition Re(2n+2z) > 1 takes effect only for n = 0, that is, we assume (1/2) < Re(z) < 1
if n = 0.
2The second formula is mentioned since it appears to be advantageous (cf. (2.32)–(2.34)) to
substitute t = s2 after one performs the n differentiations w.r.t. t in the 1st line of (2.52).



242 M. S. Ashbaugh et al.

Proof Assume that n ∈ N0, 0 < Re(z) < 1, and Re(2n + 2z) > 1. Then,

ˆ ∞

0
dt t−z d

n

dtn

[
trL2((0,1);dx)

(
(−ΔD + tIL2((0,1);dx))−1)]

=
ˆ ∞

0
dt t−z d

n

dtn

[
(2t)−1[t1/2 coth

(
t1/2) − 1

]]

=
∑
k∈N

ˆ ∞

0
dt t−z d

n

dtn

[(
π2k2 + t

)−1
]

=
∑
k∈N

ˆ ∞

0
dt

t−z(−1)nn!(
π2k2 + t

)n+1

= (−1)nn!
∑
k∈N

(
π2k2)−z−n

ˆ ∞

0
du

u−z

(1 + u)n+1

= (−1)nn!π−2(n+z)ζ(2(n + z))
Γ (1 − z)Γ (n + z)

Γ (n + 1)

= (−1)nπ−2(n+z)ζ(2(n + z))Γ (1 − z)Γ (n + z), (2.55)

resulting in (2.52). (The condition (1/2) < Re(z) < 1 if n = 0 guarantees
convergence of the sum over k in (2.55).)

Alternatively, one can attempt to analytically continue the equation

ζ(z) = sin(πz/2)πz−1
ˆ ∞

0
ds s−z−1[s coth(s) − 1], Re(z) ∈ (1, 2), (2.56)

to the region Re(z) ≥ 2. For this purpose we first introduce

coth(z) = 1

z
+

∞∑
k=1

22kB2k

(2k)! z2k−1, z ∈ C, 0 < |z| < π, (2.57)

coth0(z) = 1

z
, z ∈ C\{0},

cothn(z) = 1

z
+

n∑
k=1

22kB2k

(2k)! z2k−1, z ∈ C\{0}, n ∈ N.

(2.58)

Theorem 2.59 Let n ∈ N0, then,

ζ(z) = sin(πz/2)πz−1
ˆ ∞

0
ds s−z[coth(s) − cothn(s)],

Re(z) ∈ (max(1, 2n), 2n + 2).

(2.60)
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In particular,

ζ(3) = −π2
ˆ ∞

0
ds s−3[coth(s) − coth1(s)]

= −π2
ˆ ∞

0
ds s−3[coth(s) − (1/s) − (s/3)],

(2.61)

ζ(5) = π4
ˆ ∞

0
ds s−5[coth(s) − coth2(s)]

= π4
ˆ ∞

0
ds s−5[ coth(s) − (1/s) − (s/3) + (

s3/45
)]
,

(2.62)

ζ(7) = −π6
ˆ ∞

0
ds s−7[coth(s) − coth3(s)]

= −π6
ˆ ∞

0
ds s−7[ coth(s) − (1/s) − (s/3) + (

s3/45
) − (

2s5/945
)]
,

etc.
(2.63)

Proof When trying to analytically continue (2.56) to the right, one notices that
it is the small s-behavior of the integrand that invalidates this representation. We
therefore split the integral at some point a > 0 and write

ζ(z) = sin(πz/2)πz−1
ˆ ∞

a

ds s−z−1[s coth(s) − 1]

+ sin(πz/2)πz−1
ˆ a

0
ds s−z−1[s coth(s) − 1],

(2.64)

where the first integral is well-defined for Re(z) > 1, and the second for Re(z) < 2.
In order to analytically continue the second integral to the right, one writes

ˆ a

0
ds s−z−1[s coth(s) − 1] =

ˆ a

0
ds s−z−1

[
s coth(s) − 1 −

n∑
k=1

22kB2k

(2k)! s2k
]

+
ˆ a

0
ds s−z−1

n∑
k=1

22kB2k

(2k)! s2k

=
ˆ a

0
ds s−z−1

[
s coth(s) − 1 −

n∑
k=1

22kB2k

(2k)! s2k
]
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+
n∑

k=1

22kB2k

(2k)!
ˆ a

0
ds s−z−1+2k

=
ˆ a

0
ds s−z−1

[
s coth(s) − 1 −

n∑
k=1

22kB2k

(2k)! s2k
]

+
n∑

k=1

22kB2k

(2k)!
a2k−z

2k − z
,

(2.65)

valid for 1 < Re(z) < 2n + 2, z /∈ {2�}1≤�≤n.
In summary, up to this point we have shown that for 1 < Re(z) < 2n + 2,

z /∈ {2�}1≤�≤n, and for a > 0, one has

ζ(z) = sin(πz/2)πz−1
{ ˆ ∞

a

ds s−z−1[s coth(s) − 1]

+
ˆ a

0
ds s−z−1

[
s coth(s) − 1 −

n∑
k=1

22kB2k

(2k)! s2k
]

+
n∑

k=1

22kB2k

(2k)!
a2k−z

2k − z

}
. (2.66)

Restricting z to Re(z) ∈ (max(1, 2n), 2n + 2) and performing the limit a → ∞
in (2.66), observing that the first and third terms on the right-hand side of (2.66)
vanish in the limit, proves (2.60).

One notes that for z = 2n the first two lines in (2.66) as well as all terms k �= n

vanish and one confirms Euler’s celebrated formula

ζ(2n) = lim
z→2n

[
sin(πz/2)πz−1 22nB2n

(2n)!
a2n−z

2n − z

]
= 22n−1|B2n|π2n

(2n)! , n ∈ N.

(2.67)
Finally, one can take these investigations one step further as follows. Introducing

F(z) = ln
(
z−1/2 sinh

(
z1/2)) =

∞∑
k=1

22kB2k

2k(2k)! z
k, z ∈ C, |z| < π, (2.68)

Fn(z) =
n∑

k=1

22kB2k

2k(2k)! z
k, z ∈ C, n ∈ N, (2.69)

one can show the following result.

Theorem 2.70 Let n ∈ N0, then,

ζ(z) = (z/2)πz−1 sin(πz/2)
ˆ ∞

0
dt t−z/2−1 [F(t) − Fn(t)],

Re(z) ∈ (max(1, 2n), 2n + 2).

(2.71)
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In particular,

ζ(3) = −3π2
ˆ ∞

0
ds s−4[F (s2) − F1

(
s2)]

= −3π2
ˆ ∞

0
ds s−4[ ln

(
s−1 sinh(s)

) − (
s2/6

)]
,

(2.72)

ζ(5) = 5π4
ˆ ∞

0
ds s−6[F (s2) − F2

(
s2)]

= 5π4
ˆ ∞

0
ds s−6[ ln

(
s−1 sinh(s)

) − (
s2/6

) + (
s4/180

)]
,

(2.73)

ζ(7) = −7π6
ˆ ∞

0
ds s−8[F (s2) − F3

(
s2)]

= −7π6
ˆ ∞

0
ds s−8[ ln

(
s−1 sinh(s)

) − (
s2/6

) + (
s4/180

) − (
s6/2835

)]
,

etc.
(2.74)

Proof The computation

F ′(t) − F ′
n(t) = 1

2t

[
t1/2 coth

(
t1/2) − 1

] − 1

2

n∑
k=1

22kB2k

(2k)! tk−1

= 1

2t

[
t1/2 coth

(
t1/2) −

n∑
k=0

22kB2k

(2k)! tk
]

= 1

2t

[
t1/2 coth

(
t1/2) − t1/2 cothn

(
t1/2)], t ≥ 0, (2.75)

and (2.60) then show

ζ(z) = sin(πz/2)πz−1
ˆ ∞

0
ds s−z[coth(s) − cothn(s)]

= sin(πz/2)πz−1
ˆ ∞

0
dt t−z/2[F ′(t) − F ′

n(t)]

= (z/2) sin(πz/2)πz−1
ˆ ∞

0
dt t−z/2−1[F(t) − Fn(t)], (2.76)

Re(z) ∈ (max(1, 2n), 2n + 2),

after an integration by parts.
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Appendix: Basic Formulas for the Riemann ζ -Function

We present a number of formulas for ζ(z) and special values of ζ( · ). It goes without
saying that no such collection can ever attempt at any degree of completeness, and
certainly our compilation of formulas is no exception in this context.

Definition

ζ(z) =
∑
k∈N

k−z, z ∈ C, Re(z) > 1 (A.1)

= [
1 − 2−z

]−1 ∑
k∈N0

(2k + 1)−z, Re(z) > 1, [23, p. 19] (A.2)

= [
1 − 21−z

]−1 ∑
k∈N

(−1)k+1k−z, Re(z) > 0, [23, p. 19]. (A.3)

Functional Equation

ζ(z) = 2zπz−1 sin(πz/2)Γ (1 − z)ζ(1 − z), z ∈ C, Re(z) < 0. (A.4)

Alternative Formulas

ζ(z) = Γ (z)−1
ˆ ∞

0
dt

tz−1

et − 1
, z ∈ C, Re(z) > 1 (A.5)

= μzΓ (z)−1
ˆ ∞

0
dt

tz−1

eμt − 1
, z ∈ C, Re(z) > 1 Re(μ) > 0, [14, 3.4111]

(A.6)

= Γ (z)−1[1 − 21−z]−1
ˆ ∞

0
dt

tz−1

et + 1
, z ∈ C, Re(z) > 0 (A.7)

= μzΓ (z)−1[1 − 21−z]−1
ˆ ∞

0
dt

tz−1

eμt + 1
, z ∈ C, Re(z) > 0 Re(μ) > 0,

[14, 3.4113], (A.8)
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where

Γ (z) =
ˆ ∞

0
dt tz−1e−t , z ∈ C, Re(z) > 0. (A.9)

In addition,

ζ(x) = Γ (x)−1
ˆ 1

0

ˆ 1

0
dsdt

[ln(st)]x−2

1 − st
, x > 3, [34] (A.10)

= eiπ(1−x)Γ (x)−1
ˆ 1

0
dt

ln(t)x−1

1 − t
, x > 1, Jensen (1895), [14, 4.2714],

(A.11)

= πz/2Γ (z/2)−1
ˆ ∞

0
dt t(z/2)−1

∑
k∈N

e−k2πt , (A.12)

and

ζ(z) = πz/2Γ (z/2)−1
∑
k∈N

ˆ ∞

0
dt t(z/2)−1e−k2πt , z ∈ C, Re(z) > 1, [32]

(A.13)

= 2z−1

z − 1
− 2z

ˆ ∞

0
dt

sin(z arctan(t))

(1 + t2)z/2(eπt + 1)
, z ∈ C\{1}, (A.14)

[14, 9.5134], [23, p. 21]

= 2z−1
[
1 − 21−z

]
ˆ ∞

0
dt

cos(z arctan(t))

(1 + t2)z/2 cosh(πt/2)
, z ∈ C\{1}, (A.15)

[23, p. 21]

= 1

2
+ 1

z − 1
+ 2
ˆ ∞

0
dt

sin(z arctan(t))

(1 + t2)z/2(e2πt − 1)
, z ∈ C\{1}, (A.16)

Jensen’s formula (1895), [23, p. 21]

= az
2z−1

[
2z − 1

]Γ (z)−1
ˆ ∞

0
dt

tz−1

sinh(at)
, Re(z) > 1, a > 0, [14, 3.5231]

(A.17)

= Γ (z + 1)−14−1(2a)z+1
ˆ ∞

0
dt

tz

[sinh(at)]2
, Re(z) > −1, Re(a) > 0,

[14, 3.5271] (A.18)
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= Γ (z + 1)−14−1(2a)z+1[1 − 21−z
]−1
ˆ ∞

0
dt

tz

[cosh(at)]2
, (A.19)

Re(z) > −1, z �= 1, Re(a) > 0, [14, 3.5273]

= Γ (z + 1)−1[2 − 22−z
]−1
ˆ ∞

0
dt

tz

cosh(t) + 1
, Re(z) > 0, z �= 1,

(A.20)

[14, 3.5316]

= 2−1 + Γ (z)−12z−1
ˆ ∞

0
dt tz−1e−2t coth(t), Re(z) > 1, [14, 3.5513]

(A.21)

= 2−1 + Γ (z)−12z−1
ˆ ∞

0
dt tz−1e−2t coth(t), Re(z) > 1, [14, 3.5513]

(A.22)

= Γ (z)−12z−1
ˆ ∞

0
dt tz−1 e−t

sinh(t)
, Re(z) > 1, [14, 3.5521] (A.23)

= Γ (z)−12z−1[1 − 21−z
]−1
ˆ ∞

0
dt tz−1 e−t

cosh(t)
, Re(z) > 0, z �= 1,

[14, 3.5523] (A.24)

= 2zΓ (z)−1
ˆ 1

0
dt [ln(1/t)]z−1 t

1 − t2
, Re(z) > 0, [14, 4.27212]

(A.25)

= Γ (z + 1)−1
ˆ ∞

0
dt

tzet[
et − 1

]2 , Re(z) > 1, [23, p. 20] (A.26)

= Γ (z + 1)−1[1 − 21−z
]−1
ˆ ∞

0
dt

tzet[
et + 1

]2
, Re(z) > 0, [23, p. 20]

(A.27)

= 2 sin(πz/2)
ˆ ∞

0
dt

t−z

e2πt − 1
, Re(z) < 0, [22, p. 104] (A.28)

= (2z − 1)−1 2z−1z

z − 1
+ 2(2z − 1)−1

ˆ ∞

0
dt

sin(z arctan(2t))

[(1/4) + t2]z/2

1

e2πt − 1
,

(A.29)

z ∈ C\{1}, [30, p. 279].
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Specific Values

ζ(2n) = (−1)n+1(2π)2nB2n

2(2n)! , n ∈ N0, (A.30)

where Bm are the Bernoulli numbers generated, for instance, by

w

ew − 1
=

∑
m∈N0

Bm

wm

m! , w ∈ C, |w| < 2π, (A.31)

in particular,

B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, etc.,
(A.32)

B2k+1 = 0, k ∈ N. (A.33)

Moreover, one has the generating functions for ζ(2n),

−(πz/2) cot(πz) =
∑
n∈N0

ζ(2n)z2n, |z| < 1, ζ(0) = −1/2, (A.34)

−(πz/2) coth(πz) =
∑
n∈N0

(−1)nζ(2n)z2n, |z| < 1, ζ(0) = −1/2, (A.35)

and [32]

(n!/6)[ζ(n − 2) − 3ζ(n − 1) + 2ζ(n)] =
ˆ ∞

0
dt

tnet

(et − 1)4
, n ∈ N, n ≥ 4.

(A.36)

Choosing k = 2n, n ∈ N, even, employing (A.30) for ζ(2n), ζ(2n − 2), yields a
formula for ζ(2n − 1). Moreover,

ζ(2n + 1) = 1

(2n)!
ˆ ∞

0
dt

t2n

et − 1
, n ∈ N (A.37)

= (−1)n+1(2π)2n+1

2(2n + 1)!
ˆ 1

0
dt B2n+1(t) cot(πt), n ∈ N, [9],

(A.38)

where Bm( · ) are the Bernoulli polynomials,

Bm(z) =
m∑
j=0

(
m

j

)
Bjz

m−j , t ∈ C, (A.39)
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generated, for instance, by

wezw

ew − 1
=

∑
m∈N0

Bm(z)
wm

m! , w ∈ C, |w| < 2π. (A.40)

Explicitly,

B0(x) = 1, B1(x) = x − (1/2), B2(x) = x2 − x + (1/6),

B3(x) = x3 − (3/2)x2 + (1/2)x, etc.,
(A.41)

Bn(0) = Bn, n ∈ N, B1(1) = −B1 = 1/2, Bn(1) = Bn, n ∈ N0\{1},
(A.42)

B ′
n(x) = nBn−1(x), n ∈ N, x ∈ R. (A.43)

In addition, for n ∈ N,

ζ(2n + 1) = a2(2a)2n

[2−2n−1 − 1]
1

(2n + 1)!
×
ˆ ∞

0
dt t2n+1 cosh(at)

[sinh(at)]2
, a �= 0, [14, 3.5279] (A.44)

= 22n
[
22n − 1

] [(2n)!]−1
ˆ 1

0
dt

[ln(t)]2n

1 + t
, [14, 4.2711] (A.45)

= 22n+1
[
22n+1 − 1

] [(2n)!]−1
ˆ 1

0
dt

[ln(t)]2n

1 − t2
, [14, 4.2711], (A.46)

ζ(n) = [(n − 1)!]−1
ˆ 1

0
dt

[ln(1/t)]n−1

1 − t
, [14, 4.2729]. (A.47)

Just for curiosity,

ζ(3) = 1.2020569032 . . . .. (A.48)

Apery [1] proved in 1978 that ζ(3) is irrational (see also Beukers [2], van der
Poorten [29], Zudilin [35], and [31], [33]).

Moreover,

ζ(3) =
∑
k∈N

k−3 = 8

7

∑
k∈N0

(2k + 1)−3 = 4

3

∑
k∈N0

(−1)k(k + 1)−3, [31] (A.49)

= 1

2

ˆ ∞

0
dt

t2

et − 1
, [31] (A.50)
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= 2

3

ˆ ∞

0
dt

t2

et + 1
, [31] (A.51)

= 4

7

ˆ π/2

0
dt t ln([1/ cos(t)] + tan(t)), [31] (A.52)

= 8

7

[
π2 ln(2)

4
+ 2
ˆ π/2

0
dt t ln(sin(t))

]
, [33] (A.53)

= −1

2

ˆ 1

0

ˆ 1

0
dxdy

ln(xy)

1 − xy
, [2] (A.54)

=
ˆ 1

0

ˆ 1

0

ˆ 1

0
dxdydz

1

1 − xyz
, [31] (A.55)

= π

ˆ ∞

0
dt

cos(2 arctan(t))

(1 + t2)[cosh(πt/2)]2 , [31] (A.56)

= 8π2

7

ˆ 1

0
dt

t (t4 − 4t2 + 1) ln(ln(1/t))

(1 + t2)4
, [31] (A.57)

= 8π2

7

ˆ ∞

1
dt
t (t4 − 4t2 + 1) ln(ln(t))

(1 + t2)4
, [31] (A.58)

= 10
ˆ 1/2

0
dt

[arcsinh(t)]2

t
[12, p. 46] (A.59)

= (2/7)π2 ln(2) + (4/7)
ˆ π

0
dt t ln(sin(t/2)) [12, p. 46] (A.60)

= (2/7)π2 ln(2) − (8/7)
ˆ 1

0
dt

[arcsin(t)]2

t
[12, p. 46] (A.61)

= (2/7)π2 ln(2) − (8/7)
ˆ π/2

0
dt t2 cot(t) [12, p. 46] (A.62)

ζ(3) = −2

7
π2 ln(2) − 16

7

ˆ 1

0
dt

arctanh(t) ln(t)

t (1 − t2)
(A.63)

= −4

3

ˆ 1

0
dt

ln(t) ln(1 + t)

t
(A.64)

= −8
ˆ 1

0
dt

ln(t) ln(1 + t)

1 + t
(A.65)

=
ˆ 1

0
dt

ln(t) ln(1 − t)

1 − t
=
ˆ 1

0
dt

ln(t) ln(1 − t)

t
(A.66)
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= 1

4
π2 ln(2) +

ˆ 1

0
dt

ln(t) ln(1 + t)

1 − t
(A.67)

= 2

13
π2 ln(2) + 8

13

ˆ 1

0
dt

ln(t) ln(1 − t)

1 + t
(A.68)

= 2

7

ˆ π/2

0
dt

t (π − t)

sin(t)
. (A.69)

Formulas (A.63)–(A.69) were provided by Glasser and Ruehr and can be found in
[21, Problem 80-13]. Finally, we also recall,

ζ(3) = 1 +
ˆ ∞

0
dt

6t − 2t3

(1 + t2)3

1

e2πt − 1
, [17, p. 274] (A.70)

= 6

7
+ 2

7

ˆ ∞

0
dt

sin(3 arctan(2t))

[(1/4) + t2]3/2

1

e2πt − 1
(A.71)

= 6

7
+ 8

7

ˆ ∞

0
dt

sin(3 arctan(t))

(1 + t2)3/2

1

eπt − 1
(A.72)

= 2 − 8
ˆ ∞

0
dt

sin(3 arctan(t))

(1 + t2)3/2

1

eπt + 1
(A.73)

= 1 + 2
ˆ ∞

0
dt

sin(3 arctan(t))

(1 + t2)3/2

1

e2πt − 1
. (A.74)

Formulas (A.71)–(A.73) are due to Jensen (1895) and are special cases of results
to be found in [30, p. 279] (cf. (A.16), (A.29)); finally, (A.74) is a consequence
of (A.72) and (A.73).

For more on ζ(3) see also [12, p. 42–45].
For a wealth of additional formulas, going beyond what is recorded in this

appendix, we also refer to [24] and [27].
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Real- and Complex-Energy
Non-conserving Particle Number Pairing
Solution

Rodolfo M. Id Betan

Abstract Many-body open quantum systems are characterized by the correlations
between bound and scattering states. In contrast to a closed system (i.e., a very well
bound many-body system), the continuous part of the energy spectrum has to be
considered explicitly due to the proximity of the Fermi level to the continuum’s
threshold. In this work we show how to introduce these correlations through the
continuum single-particle level density (CSPLD) in the pairing framework. By
isolating the resonances of the system using an analytic continuation, we arrive at
the Berggren (complex-energy) representation of the pairing solution.

Keywords Pairing · Continuum · Resonances · Berggren · Gamow

1 Introduction

The study of many-body systems requires the use of a single-particle representation
in order to build a many-body basis. Within this basis one finds the many-body
eigenvalues and eigenfunctions. If the system has a Fermi level that is close to
the continuum’s threshold, the correlations with the continuous part of the energy
spectrum become important and have to be included. In this contribution, we present
a basis that includes explicitly the continuous part of the energy spectrum of the
pairing interaction. One main reason why we incorporate the continuum is that
the expansion of the wave function has the correct asymptotic behavior required to
describe loosely bound systems. In nuclear physics, the inclusion of the continuous
part of the energy spectrum led to the development of the real energy continuum
shell model [1, 2] and the complex-energy shell model [3, 4].
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The pairing correlation is a crucial part of the two-body residual interaction.
Within the Hartree–Fock–Bogoliubov framework, the pairing effect on weakly
bound nuclei was studied in Refs. [5–8]. Pairing correlations within the Bardeen–
Cooper–Schrieffer (BCS) approximation were studied in Refs. [9–12]. In Ref.
[13] the pairing with correlations in the continuum has been obtained using the
continuum single-particle level density (CSPLD) [14]. This density was used by
Mosel [15] to study hot nuclei. Fowler and Engelbrech [16] used the CSPLD
to calculate the nuclear partition functions at high temperature. In Ref. [17], the
CSPLD was used to calculate the contribution of unbound states within the nuclear
Hartree–Fock approximation at finite temperature. Other implementations of the
CSPLD in nuclear physics may be found in Refs. [18, 19].

The physical properties of nuclear systems with continuous spectrum have been
studied using the CSPLD within the framework of the pairing solution in Refs. [20,
21], but without a proper proof. In the appendix of Ref. [22], a box representation
has been used to justify the use of the CSPLD within the BCS framework, and in
Ref. [23] the exact pairing solution within the Richardson formalism [24, 25].

The first goal of this contribution is to apply the CSPLD to the pairing solution
without having to resort to box normalization, in an heuristic and plausible way,
without mathematical rigor.

For very narrow resonances, i.e., for long-lived quasi-stationary systems, the
CSPLD shows a very sharp peak around the resonant energy. Since the width of
very narrow resonances may be many orders of magnitude smaller than the resonant
energy, integration is extremely sensitive to the discretization used to approximate
the integral by a quadrature. The second goal of this contribution is to avoid this
drawback by doing an analytic continuation from the continuous spectrum to the
complex-energy plane. This continuation separates the resonant contribution from
the non-resonant one, and naturally leads to the Berggren representation [26].

In Sect. 2, we develop the non-conserving particle number pairing solution in
systems with continuous spectrum, without appealing to the box normalization. In
Sect. 3, the Berggren representation and the pole approximation are obtained by
performing the analytic continuation of the BCS equations. In Sect. 4, we present
our conclusions. In the Appendix we show how the discrete and the continuous gaps
combine into a single pairing gap.

2 Continuum Real-Energy Representation

Let us start with a many-body Hamiltonian H = ∑
i Ti + ∑

j<i Vij , and let us
reduce it by using the mean-field approximation to obtain H = Hsp + V , where
Hsp = ∑

i hi is the sum of single-particle Hamiltonians hi and V is the residual
interaction. We will assume that the single-particle Hamiltonians hi have discrete
εj and continuum ε eigenvalues. Their corresponding eigenfunctions generate the
single-particle basis used to solve the many-body problem.
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In the pairing framework the residual interaction is modeled by a potential VP
that correlates only one particle with its time reverse companion with strength G

[27]. When the system contains bound and continuum states, the Hamiltonian reads

H = Hsp + VP (1)

Hsp =
∑
j

εj n̂j +
ˆ ∞

0
dε ε n̂(ε) (2)

VP = −G P+P (3)

where

n̂j =
∑
m

a+
jmajm , n̂(ε) =

∑
νm

a+
νm(ε)aνm(ε) (4)

and

P+ =
∑
j

A+
j +
ˆ ∞

0
dε A+(ε) (5)

A+
j =

∑
m>0

a+
jma

+
jm̄ A+(ε) =

∑
νm>0

a+
νm(ε)a

+
νm̄(ε) (6)

The index j ≡ {n, l, j} labels the principal quantum number and the orbital
and total angular momentum of the valence bound states of the mean-field. The
index ν ≡ {l, j} labels the angular and total angular momentum of the continuum
(scattering) states of real energy ε. The quantum number m is the projection of
the total angular momentum j . The operators a†

jm and ajm, respectively, create and
annihilate a valence bound state with real negative energy εnlj . They satisfy the usual
anti-commutation relation {ajm, a+

j ′m′ } = δjj ′ δmm′ . Similarly, the operators a†
νm(ε)

and aνm(ε) create and annihilate continuum states with real positive energy ε in the
single-particle state {ν,m}. They satisfy the anti-commutation relation normalized
to the Dirac delta in energy, {aνm(ε), a+

ν′m′(ε′)} = δνν′ δmm′ δ(ε − ε′). The dash
on the quantum number m in Eq. (6) is a short-hand notation for the time reversed
state, i.e., a+

nm̄ ≡ (−)j−ma+
n,−m for n = j or n = ν(ε).

By introducing the operators P+
d = ∑

j A
+
j and P+

c = ´∞
0 dε A+(ε) one can

write the pairing interaction as VP = −GP+
d Pd−GP+

d Pc−GP+
c Pd−GP+

c Pc. It is
clear from this expression that the coupling between particles in different configura-
tions is all the same. This is an unwanted feature of the formalism, since one expects
that states in bound configurations to have stronger correlations than states in
continuum configurations. We will show below that the strength of the coupling with
states in the continuum is modulated by the continuum single-particle level density.
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2.1 Canonical Transformation

The so-called BCS (Bardeen–Cooper–Schrieffer) [28] solution of the pairing
Hamiltonian can be obtained by performing the Bogolyubov transformation [29] to
quasiparticle operators α+

nm in terms of unknown dimensionless coefficients u and v,

α+
jm = uja

+
jm − vjajm̄ (7)

α+
νm(ε) = uν(ε)a

+
νm(ε) − vν(ε)a

+
νm̄(ε) (8)

By inverting the above equation we end up with expressions such as

(u2
n + v2

n)a
+
nm = un α

+
nm + vn αnm̄ . (9)

This relation is equally valid for bound n = j and continuum n = ν(ε) states. In
order to get this equation, the anti-commutation relation has been used. Notice that
the Dirac delta does not appear in the above expression for the continuum states,
which justifies the election of the same normalization for bound and continuum
states,

u2
j + v2

j = 1 (10)

u2
ν(ε) + v2

ν (ε) = 1 (11)

After solving the BCS equations, we will find that uν(ε) and vν(ε) do not depend
on the quantum number ν.

As a consequence of the normalization (10) and (11), the quasi-particle operators
satisfy the same anti-commutation relation (canonical transformation) as the particle
operators

{αjm, α+
j ′m′ } = δjj ′ δmm′ (12)

{ανm(ε), α+
ν′m′(ε′)} = δνν′ δmm′ δ(ε − ε′) (13)

2.2 Physical Argument for Introducing the CSPLD

In writing the particle number operator in terms of the quasi-particle operators, we
found the singularity δ(ε − ε), which we proposed to avoid by introducing the
CSPLD,

N̂ =
∑
j

n̂j +
ˆ ∞

0
dε n̂(ε) (14)

=
∑
jm

v2
j +

∑
jm

(u2
j − v2

j )α
+
jmαjm +

∑
jm

ujvj

(
α+
jmα

+
jm̄ + hc

)
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+
ˆ

dε
∑
νm

v2
ν (ε) δ(ε − ε) +

ˆ
dε

∑
νm

[
u2
ν(ε) − v2

ν (ε)
]
α+
νm(ε)ανm(ε)

+
ˆ

dε
∑
νm

uν(ε)vν(ε)
[
α+
νm(ε)α

+
νm̄(ε) + hc

]
(15)

where hc denotes Hermitian conjugate.
Let us calculate the expectation of the particle number operator in the BCS

vacuum wave function, which is defined so that it satisfies αjm|BCS〉 = 0 and
ανm(ε)|BCS〉 = 0,

〈BCS|N̂ |BCS〉 =
∑
j

〈BCS|n̂j |BCS〉 +
ˆ

dε 〈BCS|n̂(ε)|BCS〉 (16)

=
∑
jm

v2
j +
ˆ

dε
∑
νm

v2
ν (ε) δ(ε − ε) (17)

Physically, this equation means that, on average, the particles will be distributed in
a set of bound states {j,m} with probability 〈BCS|n̂j |BCS〉 = (2j + 1)v2

j (where
(2j + 1) is the degeneracy of the state j ), and, less likely, in the continuum states
ν(ε) with probability proportional to 〈BCS|n̂ν(ε)|BCS〉 = (2jν + 1)v2

ν (ε). Where
n̂ν(ε) comes from written n̂(ε) = ∑

ν n̂ν(ε).
Since the continuum states represent scattering states, they cannot hold any states

unless there is a resonance in the system at the energy εν . In such a situation the
long-lived quasi-stationary state will have a measurable probability in the continuum
state ν(ε) given by 〈BCS|n̂ν(ε)|BCS〉, with a distribution peaked at some energy
εν , and then, the singular distribution δ(ε − ε) may be replaced by a non-singular
distribution gν(ε). Using this ansatz, the singular delta in Eq. (15) is substituted by
gν(ε), and then the average particle number reads

〈BCS|N̂ |BCS〉 =
∑
jm

v2
j +
ˆ

dε
∑
νm

v2
ν (ε) gν(ε) (18)

The distribution gν(ε) represents the continuum single-particle level density, and
it must be chosen according to the physical system. For example, in nuclear
physics, we would use the Breit–Wigner (Lorentzian) distribution, and therefore
〈BCS|n̂ν(ε)|BCS〉 = (2jν + 1)v2

ν (ε) gν(ε) gives the probability that a nucleon
populates the resonant state with quantum number ν and energy ε.

The replacement of δ(ε−ε) by the Breit–Wigner distribution may seem arbitrary.
However, it has been found that, when we use the resonant (Gamow) state to
describe the decay of a resonance, the ensuing decay energy spectrum is formally
similar to what one obtains from the Fermi Golden Rule, but with the energy delta
function replaced by the Breit–Wigner distribution [30, 31]. Hence, there are reasons
to believe that such replacement can be justified in a more rigorous version of the
formalism presented here.
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2.3 BCS Solution

To solve the BCS equations [32], we need to build the BCS Hamiltonian HBCS =
H−λN̂ and write it down in terms of the quasi-particle operators of Eqs. (7) and (8).
The parameter λ is the Fermi level, and it is fixed by the condition that the particle
number average of Eq. (18) corresponds to the number of particles in the system,
〈BCS|N̂ |BCS〉 = N .

The replacement of δ(ε− ε) by gν(ε) in Eq. (15) is equivalent to the substitution

of the contraction ̂a+
νm(ε)aνm(ε) = v2

ν (ε)δ(ε − ε) by

̂a+
νm(ε)aνm(ε) = v2

ν (ε)gν(ε) (19)

in the diagonal part of the HBCS Hamiltonian. This is so because α+α = α̂+α +
N (α+α), N being the normal ordering operator according to the |BCS〉 vacuum.
Applying the same approximation to the interaction part VP of HBCS leads to

̂a+
νm(ε)a

+
νm̄(ε) = (−)j−m uν(ε) vν(ε)gν(ε) (20)

Applying the formalism boils down to finding the Fermi level λ and the pairing
gap Δ using the gap equation and the particle number Eq. (18) for the number of
particles of the system N (the calculation can be found in the Appendix),

4

G
=
∑
jm

1√
(εj − λ)2 + Δ2

+
∑
νm

ˆ ∞

0
dε

gν(ε)√
(ε − λ)2 + Δ2

(21)

N =
∑
jm

v2
j +

∑
νm

ˆ ∞

0
dε v2(ε) gν(ε) (22)

where v2(ε) does not depend on the state ν (see Eq. (44) in the Appendix), and

v2
j = 1

2

⎛
⎝1 − εj − λ√

(εj − λ)2 + Δ2

⎞
⎠ (23)

v2(ε) = 1

2

(
1 − ε − λ√

(ε − λ)2 + Δ2

)
(24)

Notice that the inclusion of the continuum adds a contribution to the paring gap
given by Δc (see the Appendix). However, the pairing gap does not appear as a new
parameter in the BCS equations. Instead, it is combined with the usual (here called
discrete) gap Δd into a single constant Δ = Δd + Δc.



Real- and Complex-Energy Non-conserving Particle Number Pairing Solution 261

3 Continuum Complex-Energy Representation

The existence of resonances has been our motivation to include the single-particle
level density. In the limit case that the resonances have a very long half-life
(compared with the characteristic time of the system), they will show up as
sharp peaks in gν(ε) for some particular quantum number ν. Such peaks can be
parametrized using a Lorentzian distribution [33],

gν(ε) =
{

1
π

Γν/2
(ε−εν)2−(Γν/2)2

resonant states

0 non-resonant states
(25)

3.1 Berggren Representation

By performing the analytic continuation of the BCS Eqs. (21) and (22) to the lower
half of the complex-energy plane, and by applying the Cauchy theorem with the
CSPL given in Eq. (25), we get

4

G
=
∑
jm

1√
(εj − λ)2 + Δ2

+
∑
νm

1√
(εν − λ)2 + Δ2

+
ˆ
γ

dε

∑
νm gν(ε)√

(ε − λ)2 + Δ2
(26)

N =
∑
jm

v2
j +

∑
νm

v2
ν +
ˆ
γ

dε v2(ε)

(∑
νm

gν(ε)

)
(27)

where εν = εν−i Γν
2 and γ is a complex contour in the lower complex-energy plane

that results from the deformation of the positive real-energy axis. The summation∑
ν is done over the poles enclosed between the positive real-energy axis and the

contour γ , while
∑

m arises, as before, from the degeneracy of the state ν.
The first two terms of the BCS equations (26) and (27) correspond to the

bound states. The second summations in Eqs. (26) and (27) correspond to the
resonant (Gamow) states. The resonant states have complex energy and are solutions
of the single-particle Hamiltonian hi with purely outgoing boundary conditions.
The single-particle representation formed by bound states εj , discrete complex-
energy states εν , and complex-energy scattering states ε ∈ γ is called Berggren
representation [26].
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3.2 Pole Approximation

For very narrow resonances, the contribution from the complex contour (the third
terms in Eqs. (26) and (27)) can be neglected. Within this approximation, we
obtain a purely discrete representation for Eqs. (26) and (27) with each term being
associated with the poles of the S-matrix,

2

G
=
∑
n

Ωn√
(εn − λ)2 + Δ2

(28)

N = 2
∑
n

Ωnv
2
n (29)

where n = {j, ν}, and Ωn = (
∑

m 1)/2, the pair degeneracy of the level n. This
pole approximation makes 2

G
and N complex, since now the last terms in Eqs. (26)

and (27) are not present to cancel the complex-imaginary contribution from the
complex resonant energies. However, if the imaginary parts of the resulting 2

G
and

N in Eqs. (26) and (27) are small compared to their real parts, one may consider
that the pole approximation is acceptable. Otherwise, the results of the formalism
cannot be accepted on physical grounds.

4 Conclusions

Correlations with the continuum part of the energy spectrum are important in
open systems, e.g., in nuclei far from the stability line. Taking into account these
correlations in many-body calculations is very hard, because the dimension rapidly
increases with the number of particles and with the dimension of the model space.
The pairing interaction, jointly with the continuum single-particle level density
(CSPLD), overcomes these problems. In this work we have shown, in a heuristic
manner, how to introduce the CSPLD in the non-conserving particle number
solution of the pairing Hamiltonian. This model has been implemented in Ref.
[13] to study many-nucleon systems close to the nuclear drip-line. Assuming that
the resonances are sharp, we have provided a complex-energy representation of
the model’s solution. Our complex-energy representation of the solution has the
advantage of isolating the resonant contribution from the non-resonant contribution
of the continuum spectrum.

There are two ways in which this work can be expanded. First, although the
ansatz used in this work seems plausible, it still needs a more rigorous mathematical
approach. Second, in our approach the analytical continuation has been done in the
same way as Berggren [26]. However, there are other ways of doing the analytic
continuation (see, for example, review [34]) that would lead to expressions that are
similar to, but different from, those in Eqs. (26)–(29). It would be interesting to
obtain and compare them.
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Appendix

In this section we will deduce the BCS gap equation. As argued in Sect. 2, we use
the following expressions for the singular contractions:

̂a+
νm(ε)a

+
ν′m′(ε) = δνν′ δmm′ v2

ν (ε) gν(ε) (30)

̂a+
νm(ε)a

+
ν′m̄′(ε) = δνν′ δm,−m′ (−)j−m uν(ε) vν(ε) gν(ε) (31)

̂aνm(ε)aν′m̄′(ε) = δνν′ δm,−m′ (−)j−m uν(ε) vν(ε) gν(ε) (32)

where we have substituted δ(ε − ε) by gν(ε).
The diagonal part of the BCS Hamiltonian reads,

Hsp − λN̂ =
∑
jm

(εj − λ)v2
j +

∑
νm

ˆ
dε(ε − λ)v2

ν (ε)g(ε)

+
∑
jm

(εj − λ)(u2
j − v2

j )α
+
jmαjm

+
∑
νm

ˆ
dε(ε − λ)

[
u2
ν(ε) − v2

ν (ε)
]
α+
νm(ε)ανm(ε)

+
∑
jm

(εj − λ)(−)j−mujvj

(
α+
jmα

+
jm̄ + hc

)

+
∑
νm

ˆ
dε(ε − λ)(−)jν−muν(ε)vν(ε)

[
α+
νm(ε)α

+
νm̄(ε) + hc

]
(33)

For the pairing interaction we have

VP = −GP+
d Pd − GP+

d Pc − GP+
c Pd − GP+

c Pc (34)

where P+
d = ∑

j A
+
j and P+

c = ´∞
0 dε A+(ε). Thus,

− GP+
d Pd = −Δ2

d

G
+ 2Δd

∑
jm

ujvjα
+
jmαjm

−Δd

2

∑
jm

(−)j−m(u2
j − v2

j )
(
α+
jmα

+
jm̄ + hc

)

−G(terms with four α) (35)
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− GP+
c Pc = −Δ2

c

G
+ 2Δc

∑
νm

ˆ
dεuν(ε)vν(ε)α

+
νm(ε)ανm(ε)

−Δc

2

∑
νm

ˆ
dε(−)jν−m

[
u2
ν(ε) − v2

ν (ε)
] [
α+
νm(ε)α

+
νm̄(ε) + hc

]

−G(terms with four α) (36)

−G(P+
d Pc + P+

c Pd) = −2
ΔdΔc

G
+ 2Δc

∑
jm

ujvjα
+
jmαjm

+2Δd

∑
νm

ˆ
dεuν(ε)vν(ε)α

+
νm(ε)ανm(ε)

−Δd

2

∑
νm

ˆ
dε(−)jν−m

[
u2
ν(ε) − v2

ν (ε))
] [
α+
νm(ε)α

+
νm̄(ε) + hc

]

−Δc

2

∑
jm

(−)j−m(u2
j − v2

j )
(
α+
jmα

+
jm̄ + hc

)

−G(terms with four α) (37)

where we have introduced the discrete Δd and the continuum Δc gaps,

Δd = G

2

∑
jm

ujvj (38)

Δc = G

2

∑
νm

ˆ
dεuν(ε)vν(ε)gν(ε) (39)

Then, the pairing interaction reads

VP = −Δ2

G
+ 2Δ

∑
jm

ujvjα
+
jmαjm + 2Δ

∑
νm

ˆ
dεuν(ε)vν(ε)α

+
νm(ε)ανm(ε)

−Δ

2

∑
jm

(−)j−m(u2
j − v2

j )
(
α+
jmα

+
jm̄ + hc

)

−Δ

2

∑
νm

ˆ
dε(−)jν−m

[
u2
ν(ε) − v2

ν (ε))
] [
α+
νm(ε)α

+
νm̄(ε) + hc

]

−G(terms with four α) (40)

Notice that the unknown discrete and continuum gap do not appear separately but
in the combination Δ = Δd + Δc.
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By adding Eqs. (33) and (40), we get the expression of the BCS Hamiltonian
HBCS = Hsp + VP − λN̂ in terms of the quasi-particle operators. By eliminating
the “dangerous” terms [29] that contain α+

nmα
+
nm̄ + hc with n = j and n = ν(ε), we

get the following two equations:

− Δ

2
(u2

j − v2
j ) + (εj − λ)ujvj = 0 (41)

−Δ

2

[
u2
ν(ε) − v2

ν (ε)
]

+ (ε − λ)uν(ε)vν(ε) = 0 (42)

which, together with the normalization conditions u2
j +v2

j = 1 and u2
ν(ε)+v2

ν (ε) =
1, yield

v2
j = 1

2

⎡
⎣1 − (εj − λ)√

(εj − λ)2 + Δ2

⎤
⎦ (43)

v2
ν (ε) = 1

2

[
1 − (ε − λ)√

(ε − λ)2 + Δ2

]
(44)

Eq. (44) shows that the occupation probability in the continuum does not depend
on the quantum number ν, i.e., vν(ε) = v(ε). The coefficients u2

j and u2(ε) are
obtained from the normalization condition. Substituting Eqs. (43) and (44) into
Eqs. (41) and (42) we get

ujvj = Δ

2
√
(εj − λ)2 + Δ2

(45)

u(ε)v(ε) = Δ

2
√
(ε − λ)2 + Δ2

(46)

which can be used to calculate the gap parameter,

Δ = Δd + Δc (47)

= G

2

∑
jm

ujvj + G

2

∑
νm

ˆ ∞

0
dε u(ε)v(ε)gν(ε) (48)

The above equation reduces to the so-called gap equation,

4

G
=
∑
jm

1

Ej

+
∑
νm

ˆ ∞

0
dε

gν(ε)

E(ε)
(49)
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where we have introduced the quasi-particle energies, Ej =
√
(εj − λ)2 + Δ2 and

E(ε) = √
(ε − λ)2 + Δ2.

References

1. J. Okołowicz, M. Płoszajczak, I. Rotter, Phys. Rep. 374, 271 (2003)
2. A. Volya, V. Zelevinsky, Phys. Rev. C 74, 064314 (2006)
3. R. Id Betan, R.J. Liotta, N. Sandulescu, T. Vertse, Phys. Rev. Lett. 89, 042501 (2002)
4. N. Michel, W. Nazarewicz, M. Płoszajczak, K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002)
5. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge, Phys. Rev.

C 53, 02809 (1996)
6. K. Bennaceur, J. Dobaczewski, M. Płoszajczak, Phys. Rev. C 60, 034308 (1999)
7. S.A. Fayans, S.V. Tolokonnikov, D. Zawischa, Physics Letters B 491, 245 (2000)
8. M. Grasso, N. Sandulescu, N. Van Giai, R.J. Liotta, Phys. Rev. C 64, 064321 (2001)
9. N. Sandulescu, R.J. Liotta, R. Wyss, Phys. Lett. B 394, 6 (1997)

10. N. Sandulescu, O. Civitarese, R.J. Liotta, Phys. Rev. C 61, 044317 (2000)
11. N. Sandulescu, N. Van Giai, R.J. Liotta, Phys. Rev. C 61, 061301(R) (2000)
12. A.T. Kruppa, P.H. Heenen, R.J. Liotta, Phys. Rev. C 63, 044324 (2001)
13. R. M. Id Betan, Nucl. Phys. 879, 14 (2012)
14. E. Beth, G. Uhlenbeck, Physica 4, 915 (1937)
15. U. Mosel, Physcis Letters B 46, 8 (1973).
16. W.A. Fowler, C.A. Engelbrech, Astrophys. J. 226, 984 (1978).
17. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)
18. D.R. Dean, U. Mozel, Z. Phys. A 322, 647 (1985)
19. R.J. Charity, L.G. Sobotka, Phys. Rev. C 71, 024310 (2005)
20. R.M. Id Betan, Phys. Rev. C 85, 064309 (2012)
21. R.M. Id Betan, C.E. Repetto, Nucl. Phys. A 960, 131 (2017)
22. R.M. Id Betan, Nucl. Phys. A 959, 147 (2017)
23. R. M. Id Betan, IOP Conf. Ser.: J. Phys.: Conf. Ser. 839, 012003 (2017)
24. R.W. Richardson, Phys. Lett. 3, 277 (1963)
25. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)
26. T. Berggren, Nucl. Phys. A 109, 265 (1968)
27. A.M. Lane, Nuclear Theory. Pairing Force Correlations and Collective Motion (W. A.

Benjamin, Inc., New York, 1964)
28. J. Bardeen, J.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)
29. N.N. Bogolyubov, Sov. Phys. JETP 7, 41 (1958)
30. R. de la Madrid, Nucl. Phys. A 940, 297 (2015)
31. R.M. Id Betan, R. de la Madrid, Nucl. Phys. A 970 398 (2018)
32. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill Book

Company, New York, 1971)
33. V.I. Kukulin, V.M. Krasnolposky, J. Horacek, Theory of Resonances (Kluwer Academic

Publishers, Dordrecht, 1988)
34. R. de la Madrid, G. Garcia-Calderon, J.G. Muga, Czech. J. Phys. 55, 1141 (2005)



Jacobi Polynomials as su(2, 2) Unitary
Irreducible Representation

Enrico Celeghini, Mariano A. del Olmo, and Miguel A. Velasco

Abstract An infinite-dimensional irreducible representation of su(2, 2) is explic-
itly constructed in terms of ladder operators for the Jacobi polynomials J (α,β)

n (x)

and the Wigner dj -matrices where the integer and half-integer spins j := n + (α +
β)/2 are considered together. The 15 generators of this irreducible representation
are realized in terms of zero or first order differential operators and the algebraic
and analytical structure of operators of physical interest discussed.
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1 Introduction

The classification of the functions that can be defined “special,” where “special”
means something more than “useful,” is an open problem [1].
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Ş. Kuru et al. (eds.), Integrability, Supersymmetry and Coherent States, CRM Series
in Mathematical Physics, https://doi.org/10.1007/978-3-030-20087-9_10

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20087-9_10&domain=pdf
mailto:celeghini@fi.infn.it
mailto:marianoantonio.olmo@uva.es
https://doi.org/10.1007/978-3-030-20087-9_10


268 E. Celeghini et al.

The actual main line of work for a possible unified theory of special functions
is the Askey scheme that is based on the analytical theory of linear differential
equations [2–4].

A possible scheme, different from the Askey one, seems to emerge in these last
years by means of a generalization of the classical special functions, principally
related to the introduction of d-orthogonal polynomials by means of difference
equations, q-polynomials, and exceptional polynomials [5–15].

We follow here a point of view closely related to a field of mathematics seemingly
quite far from special functions: Lie algebras. It is an idea first introduced by
Wigner [16] and Talman [17] and later developed mainly by Miller [18] and
Vilenkin and Klimyk [19–21].

However, our approach starts from well-established concepts, the “old style”
orthogonal polynomials and looks for possible connections with the “old style” Lie
group theory. Thus in this paper, as Jacobi polynomials have three parameters we
simply attempt to relate them with a Lie algebra of rank three.

While other researches are focused on the general relations between special
functions and Lie algebras we consider a further step connecting special functions
and irreducible representations (IR) of Lie algebras. This restriction of the Lie
counterpart that has quite more properties of the abstract algebra gives a lot of
additional information on the special functions [22, 23].

Starting from the seminal work by Truesdell [24], where a sub-class of special
functions was defined by means of a set of formal properties, we propose indeed
a possible definition of a fundamental sub-class of special functions that we call
“algebraic special functions" (ASF).

These ASF are related to the hypergeometric functions but they are constructed
from the following algebraic assumptions:

1. A set of differential recurrence relations exists on these ASF that can be
associated with a set of operators that span a Lie algebra.

2. These ASF support a characteristic IR of this algebra.
3. A vector space can be constructed on these ASF where the ladder operators have

all the appropriate properties for realizing this IR of the associated Lie algebra.
4. The differential equations that define the ASF are related to the diagonal elements

of the universal enveloping algebra (UEA) and, in particular, to the Casimir
invariants of the whole algebra and subalgebras.

From these assumptions, we have that:

1. The exponential maps of the algebra define the associated group and allow to
obtain from the ASF other different sets of functions. If the transformation is
unitary, another algebraically equivalent basis of the space is thus obtained. When
the transformations are not unitary, as in the case of coherent states, sets with
different properties are found (like overcomplete sets).

2. The vector space of the operators acting on the L2-space of functions is
isomorphic to the UEA built on the algebra.
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The starting point of our work has been the paradigmatic example of Hermite
functions that are a basis on the Hilbert space of the square integrable functions
defined on the configuration space R. As it is well known from the algebraic discus-
sion of the harmonic oscillator, besides the continuous basis {|x〉}x∈R determined by
the configuration space, a discrete basis {|n〉}n∈N—related to the Weyl–Heisenberg
algebra h(1)—can be introduced such that Hermite functions are the transition
matrix elements from one basis to the other.

In previous papers we have presented the direct connection between some special
functions and specific IRs of Lie algebras in cases where the Lie structure was
smaller [25–28].

In this paper we discuss in detail the symmetries of the Jacobi functions intro-
duced in [29]. The fact that a su(2, 2) symmetry exists inside the hypergeometric
functions 2F1 [30, 31] is, of course, the starting point of our discussion.

This is a further confirmation of the line introduced in [25–27] in terms of the
Jacobi polynomials that satisfy the required conditions 1–4 and thus deserves an
additional analysis to that presented in [29]. As shown there, Jacobi polynomials
indeed can be associated with well-defined “algebraic Jacobi functions” (AJF) that
satisfy the preceding assumptions.

The AJF support an IR of su(2, 2) (a real form of A3) a Lie algebra of rank
3 related to the three parameters, {n, α, β}, of the Jacobi polynomials J

(α,β)
n (x)

and, alternatively, to the three parameters {j,m, q} of the AJF. These two triplets of
parameters are indeed belonging to the Cartan subalgebra of su(2, 2).

The procedure consists in starting from well-known orthogonality conditions of
the Jacobi polynomials and defines the orthonormal AJF. The recurrence relations of
the Jacobi polynomials are then rewritten by means of differential operators acting
on the AJF as ladder operators, whose explicit action remembers the operators J±
of the su(2) representation. In this way we obtain twelve non-diagonal operators
that together with three Cartan (diagonal) operators close the Lie algebra su(2, 2) in
a well-defined IR of AJF. All this analysis can also be transferred to the dj -Wigner
matrices [32].

From the Lie algebra point of view for both, AJF and Wigner dj–matrices, the
relevant algebraic chains are su(2, 2) ⊃ su(2)⊗su(2) ⊃ su(2) to consider together
integer and half-integer spin j and su(2, 2) ⊃ su(1, 1) to describe separately bosons
and fermions.

The paper is organized as follows. Section 2 is devoted to recall the main
properties of the AJF relevant for our discussion and their relations with the
Wigner dj -matrices. In Sect. 3 we study the symmetries of the AJF that keep
invariant the principal parameter j changing only m and/or q. We thus construct
the ladder operators that determine a su(2) ⊕ su(2) algebra and allow to build up
the irreducible representations defined by the same Casimir invariant of both su(2),
i.e., suj (2) ⊗ suj (2). In Sect. 4 we construct four new sets of ladder operators that
change the three parameters j,m, and q adding to all of them ±1/2. Each of these
sets generates a su(1, 1) algebra to which ∞-many IRs of su(1, 1)—supported by
the AJF and the dj -matrices—are associated. In Sect. 5 we show that the ladder
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operators, obtained in the previous sections, span all together a su(2, 2) algebra
and that both AJF and Wigner dj -matrices are a basis of the IR of su(2, 2) (that is
characterized by the eigenvalue −3/2 of the quadratic Casimir of su(2, 2)). Finally
some conclusions and comments are included.

2 Algebraic Jacobi Functions and Their Structure

The Jacobi polynomial of degree n ∈ N, J (α,β)
n (x), is defined in terms of the

hypergeometric functions 2F1 [33–35] by

J (α,β)
n (x) = (α + 1)n

n! 2F1

[
−n, 1 + α + β + n;α + 1; 1 − x

2

]
, (1)

where (a)n := a (a + 1) · · · (a + n − 1) is the Pochhammer symbol.
Now we include an x-depending factor related to the integration measure of

the Jacobi polynomials and we define—alternatively to {n, α, β}—three other
parameters {j,m, q} :

j := n + α + β

2
, m := α + β

2
, q := α − β

2
,

such that

n = j − m, α = m + q, β = m − q .

In order to obtain an algebra representation, as we will prove later, we have to
impose the following restrictions for {j,m, q}:

j ≥ |m|, j ≥ |q|, 2j ∈ N, j − m ∈ N, j − q ∈ N , (2)

thus {j,m, q} are all together integers or half-integers. The conditions (2) rewritten
in terms of the original parameters {n, α, β} exhibit that they are all integers
satisfying

n ∈ N, α, β ∈ Z, α ≥ −n, β ≥ −n, α + β ≥ −n.

We thus define

Ĵ m,q
j (x) : =

√
Γ (j + m + 1) Γ (j − m + 1)

Γ (j + q + 1) Γ (j − q + 1)

×
(

1 − x

2

)m+q
2

(
1 + x

2

)m−q
2

J
(m+q,m−q)
j−m (x) . (3)
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Note that usually the Jacobi polynomials J (α,β)
n (x) are defined for α > −1 and

β > −1 (α, β ∈ R) in such a way that a unique weight function w(x) allows their
normalization. However (see also [36, p. 49]) we have to change such restrictions
since the normalization inside the functions and their algebraic properties requires
Eq. (2). So, in addition to integer or half-integer conditions, we have to restrict to
j ≥ |m| in Eq. (3) (Ĵ m,q

j (x) = 0 when |q| > j ∈ N/2). This can be obtained
assuming

J m,q
j (x) := lim

ε→0
Ĵ m,q
j+ε (x)

indeed

J m,q
j (x) =

⎧⎨
⎩
Ĵ m,q
j (x) ∀ {j,m, q} verifying all conditions (2)

0 otherwise
. (4)

In conclusion, the basic objects of this paper that we call “algebraic Jacobi
functions” (AJF) have the final form (4).

The AJF (4) reveal additional symmetries hidden inside the Jacobi polynomials.
Indeed we have

J m,q
j (x) = J q,m

j (x),

J m,q
j (x) = (−1)j−m J m,−q

j (−x),

J m,q
j (x) = (−1)j−q J −m,q

j (−x),

J m,q
j (x) = (−1)m+q J −m,−q

j (x) .

(5)

The proof of these properties is straightforward. The first one can be proved
taking into account the following property of the Jacobi polynomials for integer
coefficients (n, α, β) [36]:

J
α,β
n (x) = (n + α)! (n + β)!

n! (n + α + β)!
(
x + 1

2

)−β

J
α,−β
n+β (x) ,

while the second relation can be derived from the well-known symmetry of the
Jacobi polynomials [33]

J (α,β)
n (x) = (−1)nJ (β,α)

n (−x), (6)

and the last two properties can be proved using the first two ones.
The AJF for m and q fixed verify the orthonormality relation

ˆ 1

−1
J m,q
j (x) (j + 1/2) J m,q

j ′ (x) dx = δj j ′ (7)
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as well as the completeness relation

∞∑
j=sup(|m|,|q|)

J m,q
j (x) (j + 1/2) J m,q

j (y) = δ(x − y). (8)

Both relations are similar to those of the Legendre polynomials [25] and the
associated Legendre polynomials [26]: all are orthonormal up to the factor j + 1/2.
These relations allow us to state that {J m,q

j (x); m, q fixed}∞j=sup(|m|,|q|) is a basis in
the space of square integrable functions defined in E = [−1, 1]. Considering

E × Z × Z/2 :=
⋃

m−q∈Z

⋃
q∈Z/2

Em,q ,

where Em,q is the configuration space E = [−1, 1] with m and q fixed and Z×Z/2
is related to the set of pairs (m, q) with m and q both integer or half-integer, then
{J m,q

j (x)} is a basis of L2(E,Z,Z/2) [29].
The Jacobi equation

E(α,β)
n J (α,β)

n (x) = 0 ,

where

E(α,β)
n ≡ (1 − x2)

d2

dx2
− ((α + β + 2)x + (α − β))

d

dx
+ n(n + α + β + 1) ,

rewritten in terms of these new functions J m,q
j (x) and of the new parameters

{j,m, q} becomes

Em,qj J m,q
j (x) = 0 , (9)

with

Em,qj ≡ −
(

1 − x2
) d2

dx2 + 2 x
d

dx
+ 2 m q x + m2 + q2

1 − x2 − j (j + 1) , (10)

where the symmetry under the interchange between m and q is evident.
It is worth noticing that the AJFs (4), with the substitution x = cosβ with 0 ≤

β ≤ π , are essentially the Wigner dj rotation matrices [32, 36]

dj (β)mq =
√
(j + m)!(j − m)!
(j + q)!(j − q)!

(
sin

β

2

)q−m(
cos

β

2

)m+q

J
(m−q,m+q)
j−m (cosβ)

that verify the conditions (2). The explicit relation between them is

dj (β)mq = J m,−q
j (cosβ). (11)
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Equation (5) are equivalent to the well-known relations among the dj (β)mq , for
instance,

dj (β)
q
m = (−1)q−m dj (β)mq .

The starting point for finding the algebra representation of the AJF is now the
construction of the rising/lowering differential applications [18] that change the
labels {j,m, q} of the AJF by 0 or 1/2. The fundamental limitation of the analytical
approach [16–21] is that the indices are considered as parameters that, in iterated
applications, must be introduced by hand. This problem has been solved in [25]
where a consistent vector space framework was introduced to allow the iterated use
of recurrence formulas by means of operators of which the parameters involved are
eigenvalues.

Indeed—in order to realize the needed operator structure on the set {J m,q
j (x)}—

we introduce not only the operators X and Dx of the configuration space :

X f (x) = x f (x), Dx f (x) = f ′(x),

but also three other operators J , M , and Q such that

(J, M, Q) : J m,q
j (x) → (j, m, q)J m,q

j (x), (12)

that are diagonal on the AJF and, thus, belong—in the algebraic scheme—to the
Cartan subalgebra.

3 Algebra Representations for Δj = 0

We start from the differential–difference applications verified by the Jacobi func-
tions (a complete list of which can be found in Refs. [33–35]). The procedure is
laborious, so that, we only sketch the simplest case with Δj = 0, related to su(2)
and well known for the dj in terms of the angle [37].

Let us start from the operators that change the values of m only. The relations
[33]

d
dx
J
(α,β)
n (x) = 1

2 (n + α + β + 1) J (α+1,β+1)
n−1 (x) ,

d
dx

[
(1 − x)α(1 + x)βJ

(α,β)
n (x)

]
=−2(n + 1)(1 − x)α−1(1 + x)β−1J

(α−1,β−1)
n+1 (x)

allow us to define the operators

A± := ±
√

1 − X2 Dx + 1√
1 − X2

(XM + Q), (13)
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that act on the algebraic Jacobi functions J m,q
j (x) as

A± J m,q
j (x) = √

(j ∓ m) (j ± m + 1) J m±1, q
j (x). (14)

The operators (13) are a generalization for Q �= 0 of the operators J± introduced
in [26] for the associated Legendre functions related to the AJF with q = 0.
Indeed Eq. (14) that are independent from q coincide with Eqs. (2.11) and (2.12)
of Ref. [26].

Defining now A3 := M and taking into account the action of the operators A±
and A3 on the AJFs, Eqs. (14) and (12), it is easy to check that A± and A3 close a
su(2) algebra that commutes with J and Q, denoted in the following by suA(2):

[A3, A±] = ±A± [A+, A−] = 2A3.

Thus, the AJFs {J m,q
j (x)}, with j and q fixed such that 2j ∈ N, j − m ∈ N

and −j ≤ m ≤ j , support the (2j + 1)-dimensional IR of the Lie algebra suA(2)
independent from the value of q.

Similarly to [26], starting from the differential realization (13) of the A±
operators, the Jacobi differential equation (9) is shown to be equivalent to the
Casimir equation of suA(2)

[CA − J (J + 1)] J m,q
j (x) ≡

[
A2

3 + 1

2
{A+, A−} − J (J + 1)

]
J m,q
j (x) = 0 .

Indeed, this equation reproduces the operatorial form of (9), i.e., it gives

EM,Q
J ≡ −(1−X2)D2

x+2XDx+ 1

1 − X2 (2XMQ+M2+Q2)−J (J+1) . (15)

On the other hand, we can make use of the factorization method [38–40], relating
second order differential equations to product of first order ladder operators in such
a way that the application of the first operator modifies the values of the parameters
of the second one. Taking into account this fact, iterated application of (13) gives
the two equations

[A+ A− − (J + M) (J − M + 1)] J m,q
j (x) = 0 ,

[A− A+ − (J − M) (J + M + 1)] J m,q
j (x) = 0 ,

(16)

that reproduce again the operator form of the Jacobi equation (9). These are
particular cases of a general property: the defining Jacobi equation can be recovered
applying to J m,q

j the Casimir operator of any involved algebra and subalgebra as
well as any diagonal product of ladder operators.

Now, using the symmetry under the interchange of the labels m and q of the
AJF (see first relation of (5)), we construct the algebra of operators that changes q
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leaving j and m unchanged. From A± two new operators B± are thus defined

B± := ±
√

1 − X2 Dx + 1√
1 − X2

(XQ + M) , (17)

and their action on the AJF is

B± J m,q
j (x) = √

(j ∓ q) (j ± q + 1) J m,q±1
l (x). (18)

Obviously also the operators B± and B3 := Q close a su(2) algebra we denote
suB(2)

[B3, B±] = ±B± [B+, B−] = 2B3,

and the AJFs {J m,q
j (x)}, with j and m fixed such that 2j ∈ N, j −q ∈ N and −j ≤

q ≤ j , close the (2j + 1)-dimensional IR of the Lie algebra su(2)B independent
from the value of m.

Again we can recover the Jacobi equation (9) from the Casimir, CB , of suB(2)

[CB − J (J + 1)]J m,q
j (x) =

[
B2

3 + 1

2
{B+, B−} − J (J + 1)

]
J m,q
j (x) = 0 .

A more complex algebraic scheme appears in common applications of the
operators A± and B±. As the operators {A±, A3} commute with {B±, B3}, the
algebraic structure is the direct sum of the two Lie algebras

suA(2) ⊕ suB(2).

A new symmetry of the AJFs emerges in the space of J m,q
j (x) when only j is fixed.

Both for {j,m, q}, integer or half-integer (see Eqs. (14), (18) and (12)) we have the
IR of the algebra su(2) ⊕ su(2)

suj (2) ⊕ suj (2) .

So that the AJFs {J m,q
j (x)} for fixed j and −j ≤ m ≤ j , −j ≤ q ≤ j determine

the IR with CA = CB = j (j + 1). From (13) and (17), taking into account that
always the operators M and Q have been written at the right of X and Dx , it can
be shown that A†

± = A∓, B
†
± = B∓ and the representation would be unitary

with a suitable inner product. In Fig. 1 the action of the operators A±, B± on the
parameters {j,m, q} that label the AJFs corresponds to the plane Δj = 0.

In conclusion, {J m,q
j (x)} with j fixed is the basis of an IR of su(2) ⊕ su(2) of

dimension (2j + 1)2 symmetrical under the interchange of A with B.
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Fig. 1 Root diagram of su(2, 2). The coordinates displayed on the planes correspond to the pairs
{m, q}, while the parameter Δj is represented in the vertical axis. The Cartan elements at the origin
are not included

4 Other Ladder Operators Acting on AJF and su(1, 1)

Representations

As we mentioned before there are many differential–difference relations between
the Jacobi polynomials for different values of the parameters [33, 34]. Starting
from them we construct a su(2, 2) representation supported by the AJF. The Lie
algebra su(2, 2) has fifteen infinitesimal generators, where three of them are Cartan
generators (for instance, J,M , and Q). As the four generators that commute with
J (i.e., A± and B±) have been introduced in the preceding paragraph, we have to
construct eight non-diagonal operators more. They are

C± := ± (1+X)
√

1−X√
2

Dx − 1√
2(1−X)

(
X (J + 1

2 ± 1
2 ) − (J + 1

2 ± 1
2 + M + Q)

)
,

D± := ∓ (1−X)
√

1+X√
2

Dx + 1√
2 (1+X)

(
X(J + 1

2 ± 1
2 ) + (J + 1

2 ± 1
2 + M − Q)

)
,

E± := ∓ (1−X)
√

1+X√
2

Dx + 1√
2 (1+X)

(
X(J + 1

2 ± 1
2 ) + (J + 1

2 ± 1
2 − M + Q)

)
,

F± := ∓ (1+X)
√

1−X√
2

Dx + 1√
2 (1−X)

(
X(J + 1

2 ± 1
2 ) − (J + 1

2 ± 1
2 − M − Q)

)
.

(19)
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All these differential operators act on the space {J m,q
j } for {j,m, q} integer and

half-integer such that j ≥ |m|, |q|. The explicit form of their action is

C± J m,q
j (x) =

√(
j + m + 1

2 ± 1
2

) (
j + q + 1

2 ± 1
2

)
J m±1/2, q±1/2
j±1/2 (x),

D± J m,q
j (x) =

√(
j + m + 1

2 ± 1
2

) (
j − q + 1

2 ± 1
2

)
J m±1/2, q∓1/2
j±1/2 (x)

E± J m,q
j (x) =

√(
j − m + 1

2 ± 1
2

) (
j + q + 1

2 ± 1
2

)
, J m∓1/2, q±1/2

j±1/2 (x),

F± J m,q
j (x) =

√(
j − m + 1

2 ± 1
2

) (
j − q + 1

2 ± 1
2

)
J m∓1/2, q∓1/2
j±1/2 (x).

(20)
From (19) or (20) we have

C
†
± = C∓, D

†
± = D∓, E

†
± = E∓, F

†
± = F∓,

i.e., all these rising/lowering operators could have the hermiticity properties required
by the representation to be unitary. The operators (19) change all parameters by
±1/2, so that in Fig. 1 they correspond to the planes Δj = ±1/2. In [29] also
quadratic forms of operators (19) that change the parameters in (±1, 0) instead of
±1/2 have been considered.

From Eq. (19) it is easily stated that

D±(X,Dx,M,Q) = C±(−X,−Dx,M,−Q),

E±(X,Dx,M,Q) = C±(−X,−Dx,−M,Q),

F±(X,Dx,M,Q) = −C±(X,Dx,−M,−Q).

(21)

Thus, because of the Weyl symmetry of the roots, we limit ourselves to discuss the
operators C±. Taking thus into account their action on the Jacobi functions we get

[C+, C−] = −2C3, [C3, C±] = ±C± (22)

where

C3 := J + 1

2
(M + Q) + 1

2
. (23)

Hence {C±, C3} close a su(1, 1) algebra we can denote suC(1, 1).
As in the cases of the operators A± and B±, we obtain the Jacobi differential

equation from the Casimir CC of suC(1, 1), written in terms of (19) and (23),

CC J m,q
j (x) ≡

[
C2

3 − 1

2
{C+, C−}

]
J m,q
j (x) = 1

4

[
(m + q)2 − 1

]
J m,q
j (x).
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Indeed
[
CC − 1

4
(M + Q)2 + 1

4

]
J m,q
j (x)

≡
[
C2

3 − 1
2 {C+, C−} − 1

4 (M + Q)2 + 1/4
]
J m,q
j (x) = 0

(24)

allows us to recover the Jacobi equation (9). Analogously the same result derives
from eqs.

[C+ C− − (J + M) (J + Q)] J m,q
j (x) = 0,

[C− C+ − (J + 1 + M) (J + 1 + Q)] J m,q
j (x) = 0,

(25)

obtained by the factorization method.
From (24) we see that since (m + q) = 0,±1,±2,±3, · · · the unitary IRs

of su(1, 1) with CC = (m + q)2/4 − 1/4 = −1/4, 0, 3/4, 2, 15/4, · · · are
obtained. Hence, the set of AJF supports infinite unitary IRs of the discrete series of
suC(1, 1) [41].

Similar results can be found for the other ladder operators D±, E±, F±, up to
an eventual multiplicative factor, with the substitutions (21) in all Eqs. (22)–(25).

5 The AJF Representation of su(2, 2)

To obtain the root system of the simple Lie algebra A3 (that has su(2, 2) as one of
its real forms) we have only simply to add to Fig. 1 the three points in the origin
corresponding to the elements J,M , and Q of the Cartan subalgebra.

The commutators of the generators A±, B±, C±,D±, E±, F±, J,M,Q are

[J,A±] = 0, [J,M] = 0, [J, B±] = 0, [J,Q] = 0,

[J,C±] = ±C±
2 , [J,D±] = ±D±

2 , [J,E±] = ±E±
2 , [J, F±] = ±F±

2 ,

[M,B±] = 0, [M,Q] = 0,

[M,C±] = ±C±
2 , [M,D±] = ±D±

2 , [M,E±] = ∓E±
2 , [M,F±] = ∓F±

2 ,

[Q,A±] = 0,

[Q,C±] = ±C±
2 , [Q,D±] = ∓D±

2 , [Q,E±] = ±E±
2 , [Q,F±] = ∓F±

2 ,

[A+, A−] = 2A3, [A3, A±] = ±A±, (A3 = M),
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[B+, B−] = 2B3, [B3, B±] = ±B±, (B3 = Q),

[C+, C−] = −2C3, [C3, C±] = ±C±, (C3 = J + 1
2 (M + Q) + 1

2 ),

[D+,D−] = −2D3, [D3,D±] = ±D±, (D3 = J + 1
2 (M − Q) + 1

2 ),

[E+, E−] = −2E3, [E3, E±] = ±E±, (E3 = J + 1
2 (−M + Q) + 1

2 ),

[F+, F−] = −2F3, [F3, F±] = ±F±, (F3 = J − 1
2 (M + Q) + 1

2 ),

[A±, B±] = 0, [A±, B∓] = 0,

[A±, C±] = 0, [A±, C∓] = ±E∓, [A±,D±] = 0, [A±,D∓]= ∓ F∓,

[A±, E±] = ±C±, [A±, E∓] = 0, [A±, F±] = D±, [A±, F∓] = 0,

[B±, C±] = 0, [B±, C∓] = ∓D∓, [B±,D±] = ±C±, [B±,D∓] = 0,

[B±, E±] = 0, [B±, E∓] = ∓F∓, [B±, F±] = ±E±, [B±, F∓] = 0,

[C±,D±] = 0, [C±,D∓] = ∓B±, [C±, E±] = 0, [C±, E∓] = ∓A±,

[C±, F±] = 0, [C±, F∓] = 0,

[D±, E±] = 0, [D±, E∓] = 0, [D±, F±] = 0, [D±, F∓] = ∓A±,

[E±, F±] = 0, [E±, F∓] = ∓B±.

The quadratic Casimir of su(2, 2) has the form

Csu(2,2) = 1
2 ({A+, A−} + {B+, B−} − {C+, C−} − {D+,D−} − {E+, E−}
−{F+, F−}) + 1

2

(
A2

3 + B2
3 + C2

3 + D2
3 + E2

3 + F 2
3

)

= 1
2 ({A+, A−} + {B+, B−} − {C+, C−} − {D+,D−} − {E+, E−}
−{F+, F−}) + 2J (J + 1) + M2 + Q2 + 1

2 ,

that, applied on the {J m,q
j (x)}, gives

Csu(2,2) J m,q
j (x) = −3

2
J m,q
j (x) . (26)
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Fig. 2 IR of su(2, 2) supported by the AJF Jm,q
l (x) represented by the black points. The

horizontal planes correspond to IR of suA(2) ⊕ suB(2)

The relation (26) shows that the infinite-dimensional IR of su(2, 2) generated by
{J m,q

j (x)} contains all j = 0, 1/2, 1, . . . ,. From it and taking into account the
differential realization of the operators involved, (12), (13), (17), and (19), we
recover again the Jacobi equation (9) that, as in the previous sections, can be
obtained also from the Casimir of any subalgebra of su(2, 2) as well as from any
diagonal product of ladder operators.

In this IR of su(2, 2) the integer and half-integer values of {j,m, q} are put all
together (see Fig. 2). The symmetries of the AJF, where integer and half-integer
values of {j,m, q} belong to different IRs, have been considered in [29].

6 Resume and Conclusions

The Jacobi polynomials and the dj -matrices look to be more general examples of
the properties described in [25–29] for special functions. This suggests that the
following properties could be assumed for a possible classification of the ASF, a
relevant subset of generic special functions:

1. ASF are a basis of L2(F), the space of integrable functions defined on an
appropriate space F.

2. ASF are a basis of an IR of a Lie algebra G.
3. All the diagonal elements of the UEA[G] can be written in terms of the

fundamental second order differential equation determined by the quadratic
Casimir of G.

4. All the non-diagonal elements of the UEA[G] can be written as first order
differential operators.

5. Every basis of L2(F) can be obtained applying an element of the Lie group G to
the ASF.
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6. Every operator acting on L2(F) belongs to UEA[G].

Returning now to the particular case of the AJF the previous remarks become:

1. AJF are a basis of an IR of the Lie algebra su(2, 2).
2. All the diagonal elements of the UEA[su(2, 2)] can be obtained from Eq. (9).
3. All the non-diagonal elements of the UEA[su(2, 2)] can be written as first order

differential operators.
4. The set of AJF {J m,q

j (x)} is a basis in L2(E,Z,Z/2), where E = [−1, 1].
5. Every basis of L2(E,Z,Z/2) can be obtained under the action of SU(2, 2) on

the set of AJF, i.e., it can be written as {g J m,q
j (x)} where g ∈ SU(2, 2).

6. Every operator acting on L2(E,Z,Z/2) belongs to the UEA[su(2, 2)].

As a final point we recall the connection between the IR of SU(2),

Dj(α, β, γ )
m′
m = e−iαm′

dj (β)
m′
m e−iγm ,

where α, β, γ are the Euler angles [37], the Wigner dj -matrices, and the Jacobi

polynomials P
m′−m,m′+m
j−m′ . This implies that all the results of this paper can be

extended to {Dj(α, β, γ )
m′
m } that have similar properties of the {J m,q

j (x)} and are a
basis of the square integrable functions defined in the space {α, β, γ }.
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Infinite Square-Well, Trigonometric
Pöschl-Teller and Other Potential Wells
with a Moving Barrier

Alonso Contreras-Astorga and Véronique Hussin

Abstract Using mainly two techniques, a point transformation and a time depen-
dent supersymmetry, we construct in sequence several quantum infinite potential
wells with a moving barrier. We depart from the well-known system of a one-
dimensional particle in a box. With a point transformation, an infinite square-well
potential with a moving barrier is generated. Using time dependent supersymmetry,
the latter leads to a trigonometric Pöschl-Teller potential with a moving barrier.
Finally, a confluent time dependent supersymmetry transformation is implemented
to generate new infinite potential wells, all of them with a moving barrier. For
all systems, solutions of the corresponding time dependent Schrödinger equation
fulfilling boundary conditions are presented in a closed form.

Keywords Infinite square-well potential · Pöschl-Teller potential ·
Supersymmetry · Point transformation · Moving barrier

1 Introduction

There are physical problems where the boundary conditions of the underlying
equation can move. Examples of them are the so-called Stefan problems, where
temperature as a function of position and time on a system of water and ice has
to be found, the interface water–ice imposes a boundary condition that changes
its position with time [1]. Another example was drafted by Fermi, he theorized
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the origin of cosmic radiation as particles accelerated by collisions with a moving
magnetic field [2], this problem was later studied by Ulam [3] in a classical
framework where the statistical properties of particles in a box with oscillating
infinite barriers were analyzed numerically. In this paper, we are interested in
systems ruled by the time dependent Schrödinger equation. In particular, we
show how different quantum systems with a moving boundary condition and their
solutions can be generated using basically two tools, a point transformation and a
time dependent supersymmetry.

The point transformation we use was introduced in [4, 5] where the authors
mapped solutions between two time dependent Schrödinger equations with different
potentials. This transformation can be used, for example, to map solutions of the
harmonic oscillator to solutions of the free particle system.

On the other hand, the supersymmetry technique or SUSY helps as well to map
solutions between two Schrödinger equations, but in this case the potentials share
properties like asymptotic behavior or a similar discrete spectrum in case of time
independent potentials. A first version links two time independent one-dimensional
Schrödinger equations [6, 7]. In this article we use the time dependent version that
links two time dependent Schrödinger equations [8, 9]. The involved potentials are
referred as SUSY partners and if the link is made through a first-order differential
operator, often called intertwining operator, the technique is known as 1-SUSY.
Examples of time dependent SUSY partners of the harmonic oscillator can be found
in [10, 11].

Finkel et al. [12] showed that the time independent SUSY technique and the time
dependent version were related by the previously mentioned point transformation.

The structure of this article is as follows. The quantum particle in a box is revised
in Sect. 2. In Sect. 3, we use a point transformation to generate an infinite square-
well potential with a moving barrier. A brief review of time dependent SUSY
is given in Sect. 4 and it is applied to the infinite square-well potential with a
moving barrier to generate the exactly solvable system of a Pöschl-Teller potential
with a moving barrier. In Sect. 5, we apply for the second time a supersymmetric
transformation to the infinite square-well potential to obtain a biparametric family of
infinite potential wells with a moving barrier. Exact solutions of the time dependent
Schrödinger equation for each potential are given in the corresponding section. We
finish this article with our conclusion.

2 Quantum Infinite Square-Well Potential

The quantum particle in a one-dimensional infinite square-well potential or particle
in a box is a common example of an exact solvable model in textbooks, see, for
example, [13–15]. It represents a particle trapped in the interval 0 < y < L

with impenetrable barriers, placed at zero and L, and inside that one-dimensional
box the particle is free to move. The corresponding time independent Schrödinger
equation is
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d2

dy2
ψ(y) + 2m

h̄2

(
E − Ṽ0

)
ψ(y) = 0, (1)

where E is a real parameter representing the energy of the particle, m is its mass,
and h̄ is Planck’s constant. Through this article we will use units where m = 1/2
and h̄ = 1. The one-dimensional infinite potential well Ṽ0(y) is

Ṽ0(y) =
{

0, 0 < y < L,

∞, otherwise,
(2)

where L is a positive real constant. The solution of this eigenvalue problem is well
known, eigenfunctions and eigenvalues are given by

ψn(y) =
√

2

L
sin

(nπy
L

)
, En =

(nπ
L

)2
, n = 1, 2, 3, . . . . (3)

Functions ψn(y) satisfy the boundary conditions ψn(0) = ψn(L) = 0. We will use
this system to construct a variety of infinite potential wells where one of the barriers
is moving.

3 From the Particle in a Box to the Infinite Square-Well
Potential with a Moving Barrier

In this section we will use a point transformation in order to obtain from the
stationary potential (2) an infinite square-well potential with a moving barrier. First
we introduce a general point transformation [4, 5, 12, 16] and then we apply it on
the particle in a box system. The simplified notation for the transformation was
introduced in [16].

3.1 Point Transformation

Consider a one-dimensional time independent Schrödinger equation in the spatial
variable y as

d2

dy2
ψ(y) + (

E − Ṽ0
)
ψ(y) = 0 (4)

where Ṽ0 = Ṽ0(y) and a solution ψ are known. Now let us take arbitrary functions
A = A(t) and B = B(t) and let the variable y be defined in terms of a temporal
parameter t and a new spatial variable x as:

y(x, t) = x exp

[
4
ˆ

A(t)dt

]
+ 2
ˆ

B(t) exp

[
4
ˆ

A(t)dt

]
dt (5)
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then the function

φ(x, t) = ψ(y(x, t)) exp

{
−i

[
A(t)x2 + B(t)x + E

ˆ
exp

[
8
ˆ

A(t)dt

]
dt

+
ˆ [

2iA(t) + B2(t)
]
dt

]}
, (6)

is solution of the equation

i
∂

∂t
φ(x, t) + ∂2

∂x2
φ(x, t) − V0(x, t)φ(x, t) = 0. (7)

The last equation is a time dependent Schrödinger equation where the potential is
given by

V0(x, t) = Ṽ0(y(x, t)) exp

[
8
ˆ

A(t)dt

]
+
[
d

dt
A(t) − 4A2(t)

]
x2

+
[
d

dt
B(t) − 4A(t)B(t)

]
x. (8)

3.2 Infinite Square-Well Potential with a Moving Barrier

We can use the point transformation to obtain an infinite square-well potential with
a moving barrier. Without considering for this moment boundary conditions of the
problem, we will transform the potential Ṽ0(y) = 0 into V0(x, t) = 0. Apparently
we are mapping a potential to itself but it will not be the case once we incorporate
the boundary conditions. To make this transformation, functions A(t) and B(t) such
that V0(x, t) = Ṽ0(y) = 0 in (8) need to be found. By setting Ṽ0(y) = 0 and
V0(x, t) = 0 in (8) we get

0 =
[
d

dt
A(t) − 4A2(t)

]
x2 +

[
d

dt
B(t) − 4A(t)B(t)

]
x. (9)

Coefficients of the previous polynomial in x give us a system of coupled differential
equations that can be solved:

d

dt
A(t) − 4A2(t) = 0, ⇒ A(t) = − 1

4t + c1
;

d

dt
B(t) − 4A(t)B(t) = 0, ⇒ B(t) = c2

4t + c1
; (10)
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where c1 and c2 are real constants. Once these two functions are known, the change
of variable defined in (5) can be evaluated,

y(x, t) = 2x − c2

2(4t + c1)
. (11)

At this point, we can discuss boundary conditions of the potential V0(x, t). The
barriers of the potential (2) of the initial problem are located at y1 = 0 and at
y2 = L, using the change of variable (11) the new barriers will then be placed at
x1 = c2/2 and x2 = 4Lt + c1L+ c2/2, respectively. Thus, the potential V0(x, t) is

V0(x, t) =
{

0, x1 < x < �(t),

∞, otherwise,
(12)

where

�(t) = 4Lt + c1L + c2/2. (13)

This potential is an infinite square-well potential with a moving barrier. The
meaning of the constants c1 and c2 can be extracted directly from the position of the
boundaries of this potential. Indeed, the position of the fixed barrier is c2/2, while
the moving barrier is located at �(t) and it is moving with a constant velocity 4L. At
t0 = −c1/4 we have an ill-defined problem (a particle in a box of length zero), so
we should avoid this singularity, moreover, this time t0 separates two problems: one
of a contracting box and one where the potential well is expanding as time increases.

Finally, solutions of the time dependent Schrödinger Eq. (7) where V0(x, t)

is (12) can be constructed using (3), (6), (10), and (11):

φn(x, t) =
√

2

L(4t + c1)
sin

{
nπ

L

[
2x − c2

2(4t + c1)

]}
exp

[
i

4t + c1
x2 − ic2

4t + c1
x

]

× exp

[
i
(nπ
L

)2 1

4(4t + c1)
+ i c2

2

4(4t + c1)

]
. (14)

We will fix the constant c2 = 0 so that one barrier is always at zero. We take as
well c1 = 1, then the moving barrier will be at L when t = 0. The singularity of the
problem will be located at t = −1/4. For this selection of constant the functions A,
B in (10) and the change of variable y in (11) simplify to

A(t) = − 1

4t + 1
, B(t) = 0, y(x, t) = x

4t + 1
; (15)

the potential reads

V0(x, t) =
{

0, 0 < x < �(t), where �(t) = L(4t + 1)
∞, otherwise,

(16)
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and the solutions of the time dependent Schrödinger equation can be written as

φn(x, t) =
√

2

�
sin

(nπ
�
x
)

exp

{
i
L

�

[
x2 +

(nπ
2L

)2
]}

. (17)

Note that φn(0, t) = φn(�, t) = 0, satisfying the required boundary conditions
of the physical problem. For this specific selection of the constants c1 and c2 the
domain of the time variable for the contracting box is (−∞,−1/4) and for the
expanding well is (−1/4,∞). Functions (17) are normalized

´ �
0 |φn|2dx = 1

at any given time. They form a complete orthogonal set at any fixed time and
the expectation value of the energy 〈E〉φn(t) = ´ �

0 φ∗
n(−∂2

xφn)dx = (nπ/�)2.
System (16) and its solutions (17) were also discussed in [17–21]. In Fig. 1 three
different probability densities were plotted at four different times, see (17): in blue
|φ1|2, in purple |φ2|2, and in yellow |φ3|2; for the times t = 1/4, 1/2, 3/4, 1 and
the parameter L = 1. Since the times we used are greater than t0 = −1/4, the
plotted potential represents an expanding box.

Fig. 1 Infinite square-well potential with a moving barrier, see (16). Plot of the probability
densities, see (17), |φ1|2 (blue), |φ2|2 (purple), |φ3|2 (yellow), at four different times: t = 1/4
(top left), t = 1/2 (top right), t = 3/4 (bottom left), t = 1 (bottom right), for the parameter L = 1
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4 From the Infinite Well Potential with a Moving Barrier
to a Pöschl-Teller Potential with a Moving Barrier

In this section we introduce our second tool, a time dependent SUSY transformation
introduced in [8, 9], the notation is adopted from [10]. Then, we apply it to the
infinite well potential with a moving barrier to generate a Pöschl-Teller potential
with a moving barrier.

4.1 Time Dependent Supersymmetric Quantum Mechanics

We start out with a time dependent Schrödinger Eq. (7) where the potential V0 is a
real known function. Next, we propose the existence of an operator L1 intertwining
two Schrödinger operators

S1L1 = L1S0, (18)

where the Schrödinger operators are defined as Sj = i∂t + ∂2
x − Vj , j = 0, 1. Now,

if L1 is a differential operator of the form L1 = A1
(−∂x + ux

u

)
where A1 = A1(t),

u = u(x, t) and the subindex in ux represents partial derivation with respect to x,
then the intertwining relationship (18) and the form of the Schrödinger operators
impose the conditions:

V1 = V0 + i(lnA1)t − 2(ln u)xx, i∂tu + uxx − V0u = c(t), (19)

where c(t) is an integration function. This function c(t) can be absorbed in the
potential term, and it will be reflected in the solution u of the Schrödinger equation
as a time dependent phase, in this work it will be set c(t) = 0. Note that now u

satisfies S0u = 0, i.e., it is a solution of the initial system. Furthermore, it can be
seen from (19) that in order to avoid new singularities in V1, the functions A1 and u
must not vanish.

The potential V1 in (19) is in general a complex function. Since we are interested
in a Hermitian operator S1, we must ask that the imaginary part of V1 vanishes,
Im(V1) = 0. Taking (19) and considering V0 as a real function, A1 and u must also
satisfy i

(
ln |A1|2

)
t
= 2 (ln(u/u∗))xx , since the left-hand side depends only on time

we can say that

∂3

∂x3
ln
( u

u∗
)

= 0 (20)

is a reality condition to generate a Hermitian operator S1, and then |A1| is fixed to

|A1| = exp

{
2
ˆ

Im

[
∂2

∂x2 ln u(x, t)

]
dt

}
. (21)
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If this condition is inserted into (19) along with A1 = |A1|, then the expression of
the new potential simplifies to

V1 = V0 − ∂2

∂x2 ln |u|2. (22)

The intertwining relation (18) ensures that if φ solves the equation S0φ = 0, then
χ = L1φ solves S1χ = 0. Direct substitution shows that there is an extra function
χε = 1/A1u

∗, often called missing state, that also solves S1χε = 0. Consult [8–11]
for more details on this technique.

4.2 Trigonometric Pöschl-Teller Potential with a Moving
Barrier

In order to apply a 1-SUSY transformation to the time dependent potential defined
in (16), we need to select a transformation function u(x, t) fulfilling three condi-
tions: (i) u(x, t) must satisfy the time dependent Schrödinger equation S0u = 0, (ii)
u(x, t) �= 0 to avoid new singularities inside the domain of the potential, and (iii)
∂3
x ln(u/u∗) = 0 to generate a Hermitian potential V1. One function satisfying all

three conditions is φ1(x, t) in (17), thus, we will use it as transformation function:

u(x, t) =
√

2

�
sin

(π
�
x
)

exp

{
i
L

�

[
x2 +

( π

2L

)2
]}

, � = L(4t + 1). (23)

Then, we need to calculate the function A1, see (21), and the intertwining operator
L1 = A1

(−∂x + ux
u

)
:

A1(t) = 4t + 1, L1 = −(4t + 1)
∂

∂x
+ i2x + π

L
cot

(πx
�

)
. (24)

The 1-SUSY partner V1 of (16) can be obtained directly from (22) as

V1(x, t) =
{

2
(
π
�

)2 csc2
(
πx
�

)
, 0 < x < �(t),

∞, otherwise,
(25)

it coincides with a trigonometric Pöschl-Teller potential at any fixed time [22], and
it is a particular case of a class of potentials found in [19]. Solutions of the time
dependent Schrödinger equation for this potential can be obtained applying the
operator L1 onto solutions φn, see (17) and (24):

χn(x, t) = L1φn(x, t) (26)

= π

L

√
2

�

[
cot

(πx
�

)
sin

(nπx
�

)
− n cos

(nπx
�

)]
exp

{
i
L

�

[
x2 +

(nπ
2L

)2
]}

,
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Fig. 2 In gray a trigonometric Pöschl-Teller potential with a moving barrier, see (25). Moreover,
normalized probability densities are also plotted, see (26), |χ2|2 (blue), |χ3|2 (purple), |χ4|2
(yellow), at four different times: t = 1/4 (top left), t = 1/2 (top right), t = 3/4 (bottom left),
t = 1 (bottom right), for the parameter L = 1

where n = 2, 3, 4, · · · . In this problem limx→0 χn(x, t) = limx→� χn(x, t) = 0.
There is no square integrable missing state χε . In Fig. 2 the Pöschl-Teller potential
with a moving barrier and the normalized probability densities corresponding to χ2,
χ3, and χ4 are shown at four different times t = 1/4, 1/2, 3/4, 1, for the parameter
L = 1.

5 Confluent SUSY Partners: More Potentials with a Moving
Barrier

The 1-SUSY technique introduced in Sect. 4 has a constraint, the transformation
function u must never vanish. To underpass this restriction a second iteration can
be performed, the particular iteration we will use is known as confluent SUSY,
see [10] for the time dependent version and [23] for the time independent case.
This technique will be applied again to V0 and will generate a new family of
infinite potential wells with a moving barrier. A different approach to get around
the mentioned restriction was followed in [19], leading to different potentials than
the ones constructed in this section.
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5.1 Time Dependent Confluent SUSY

Departing from S1 we propose a second intertwining operator L2 connecting S1
with a new Schrödinger operator S2

S2L2 = L2S1, (27)

where again L2 is a differential operator on the form L2 = A2
(−∂x + vx

v

)
, where

v solves S1v = 0. We would like to use a function v written in terms of u. If the
missing state χε = 1/A1u

∗ is used, then the generated potential V2 is exactly the
initial potential V0. In order to generate a different potential we should use a more
general solution v:

v = 1

A1u∗

(
ω +
ˆ x

x0

|u(s, t)|2ds
)
, (28)

where ω is a real constant. It can be verified by direct substitution that this
general expression for v is indeed a solution of S1v = 0. We can also demand
S2 and S1 to be Hermitian operators. This directly implies ∂3

x ln(v/v∗) = 0,
and substituting (28), the Hermiticity condition for the second potential is also
∂3
x ln(u/u∗) = 0. Analogous to (21), since ω was chosen real, A2 can be fixed

as A2 = A1. Under these considerations the new potential is given by

V2 = V1 − 2∂xx ln |v| = V0 − 2∂xx ln

(
ω +
ˆ x

x0

|u(s, t)|2ds
)
. (29)

From the intertwining relation (27) and using the functions χn (solving S1χ = 0),
we can see that functions ξn = L2χn = L2L1φn will solve the equation S2ξ = 0.
Finally, a missing solution can be found as

ξε = 1

A2v∗ = u

ω + ´ x
x0

|u(s, t)|2ds . (30)

Confluent and 1-SUSY techniques present similarities. Indeed, both use only
one transformation function u fulfilling S0u = 0, both require ∂3

x ln(u/u∗) = 0 to
generate Hermitian potentials, but the regularity condition is different. In 1-SUSY
u must be nodeless, for confluent SUSY the transformation function satisfies a
more relaxed condition:

´ x
x0

|u(s, t)|2ds �= −ω, this last condition could be met,
for example, by any square integrable solution.
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5.2 More Potentials with a Moving Barrier

Departing from the infinite well potential with a moving barrier in (16), we
can notice that solutions φn(x, t) (see (17)), when n ≥ 2 cannot be used as
transformation function for a 1-SUSY transformation because they have at least
one zero in the interval (0, �). With the confluent SUSY algorithm presented in this
section we can surpass this restriction.

By selecting u(x, t) = φm(x, t) (see (17)), where m ∈ N is a fixed number, a
confluent SUSY partner of the infinite square-well potential with a moving barrier
can be constructed. First we need to find the function A2 = A1 = |A1|, see (21),
and the intertwining operators L1 = A1 (−∂x + ux/u) and L2 = A1 (−∂x + vx/v):

A2(t) = A1(t) = 4t + 1,

L1 = −(4t + 1)
∂

∂x
+ i2x + mπ

L
cot

(mπx
�

)
, (31)

L2 = −(4t + 1)
∂

∂x
+ i2x − mπ

L
cot

(mπx
�

)

+ 4mπ� sin2 (mπx
�

)

2mπL(x + �ω) − L� sin
(

2mπx
�

) ,

where we fixed x0 = 0 in the definition of v, see (28), (29), and (30). Then,
using (29) an expression for the potential V2 can be obtained:

V2(x, t) =

⎧⎪⎨
⎪⎩

32(mπ� )
2 sin(mπx� )

[
sin(mπx� )−mπ

�
cos(mπx� )(x+ω�)

]
[
sin

(
2mπx
�

)
−2mπ

�
(x+ω�)

]2 , 0 < x < �(t),

∞, otherwise,
(32)

where ω ∈ (∞,−1] ∪ [0,∞) is a constant introduced by confluent algorithm.
Solutions ξn(x, t) for these potentials can as well be found with help of

intertwining operators L1 and L2, see (17) and (31)), when n �= m:

ξn(x, t) = L2L1φn

=
(π
L

)2
√

2

�
sin

(nπ
�
x
)

exp

{
i
L

�

[
x2 +

(nπ
2L

)2
]}

(33)

×
[
(m2+n2) sin

(
2mπx
�

)
+ 2mπ

�
(m2−n2)(x+ω�)

]
−4mn� cot( nπx� ) sin2(mπx� )

2mπ
�

(x+ω�)−sin
(

2mπx
�

) .



296 A. Contreras-Astorga and V. Hussin

Fig. 3 In gray a confluent SUSY partner of the infinite square-well potential with a moving barrier,
see (32). Moreover, normalized probability densities are also plotted, see (33) and (34), |ξ1|2 (blue),
|ξε |2 (purple), |ξ3|2 (yellow), at four different times: t = 1/4 (top left), t = 1/2 (top right), t = 3/4
(bottom left), t = 1 (bottom right), for the parameters L = 1, ω = 0.4 and m = 2

If n = m, then the corresponding solution is the missing state ξε(x, t) (see (30)):

ξε(x, t) =
√

2

�
sin

(mπ
�

x
)

× exp

{
i
L

�

[
x2 +

(mπ
2L

)2
]}

2mπ
2mπ
�
(x + �ω) − sin

(
2mπx
�

) . (34)

Solutions ξn satisfy limx→0 ξn(x, t) = limx→� ξn(x, t) = 0 whereas ξε fulfills
limx→0 ξε(x, t) = limx→� ξε(x, t) = 0 only if ω �= −1, 0. When ω is set equal
to −1 or zero, the function ξε is not square integrable. The confluent SUSY partner
of the infinite square-well potential with fixed barriers Ṽ (y), see (2), is reported in
[24, 25], the potentials V2(x, t) are a dynamic version of them.

In Fig. 3 the potential V2 in (32) is illustrated, the parameters used where L = 1,
ω = 0.4, and m = 2. This system has sharp edges at x = 0 and x = �. Normalized
probability densities of three solutions are shown as well, corresponding to ξ1, ξε ,
and ξ3. For the special cases ω = −1 and ω = 0 one of the edges of V2 is smooth
while the other is sharp, as can be seen in Figs. 4 and 5, moreover these special
situations do not present a square integrable missing state ξε .
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Fig. 4 In gray a confluent SUSY partner of the infinite square-well potential with a moving barrier,
see (32). Moreover, normalized probability densities are also plotted, see (33), |ξ1|2 (blue), |ξ3|2
(purple), |ξ4|2 (yellow), at four different times: t = 1/4 (top left), t = 1/2 (top right), t = 3/4
(bottom left), t = 1 (bottom right), for the parameters L = 1, ω = −1 and m = 2

6 Conclusions

In this article we showed how to generate different infinite potential wells with
a moving boundary condition. Through a series of transformations, we obtained
the infinite square-well potential, a trigonometric Pöschl-Teller potential, and the
confluent SUSY partners of the infinite square-well potential, where one of the
barriers is fixed and the other is moving with a constant velocity. For all these
systems, exact solutions of the time dependent Schrödinger equations fulfilling the
moving boundary conditions were given in a closed form.

As a continuation of the present work, it would be interesting to study different
sets of coherent and squeezed states for the constructed systems and the calculation
of relevant physical quantities and mathematical properties of such states.

Acknowledgements This work has been supported in part by research grants from Natural
sciences and engineering research council of Canada (NSERC). ACA would like to thank the
Centre de Recherches Mathématiques for kind hospitality.
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Fig. 5 In gray a confluent SUSY partner of the infinite square-well potential with a moving barrier,
see (32). Moreover, normalized probability densities are also plotted, see (33), |ξ1|2 (blue), |ξ3|2
(purple), |ξ4|2 (yellow), at four different times: t = 1/4 (top left), t = 1/2 (top right), t = 3/4
(bottom left), t = 1 (bottom right), for the parameters L = 1, ω = 0 and m = 2
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Variational Method Applied
to Schrödinger-Like Equation

Elso Drigo Filho, Regina M. Ricotta, and Natália F. Ribeiro

Abstract In this work we propose to adapt the variational method to analyze
a specific equation derived from a statistical model for the DNA molecule.
The referred equation is a Schrödinger-like equation with an additional position-
dependent function multiplying its second order derivative term. The use of the
adapted variational approach is shown to be a suitable technique for the calculation
of the ground state for two similar potential problems. In the first problem the
additional function and the potential have an exponential position-dependence while
for the second the additional function has a quadratic position-dependence and the
potential has a quadratic and inverse quadratic position-dependence.

Keywords Variational method · Schrödinger-like equation · Position-dependent
mass · Ground state solution · Non-exact potential · Energy-dependent potential

1 Introduction

In this work we address the problem of solving analytically a linear second order
differential equation that is formally equal to a Schrödinger equation with an
additional function multiplying the second order derivative term. To do this we
developed an adaptation of the usual variational method of quantum mechanics
[1–6].
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The main motivation to develop this methodology comes from the Peyrard–
Bishop–Dauxois (PBD) model for the DNA molecule [7]. In this model a non-
harmonic interaction is used to simulate the stacking interaction. The transfer
integral formalism [8] used in this approach to deal the thermodynamical properties
of the model leaves the system dominated by the ground state in the thermodynamic
limit. It is described by a non-exactly solvable Schrödinger-like equation that has
an additional function multiplying the second order derivative term that depends on
the position, [7]

− 1

m(x)

d2Ψ (x)

dx2 + V (x)Ψ (x) = EΨ (x), (1)

where the function m(x) has position-dependence and is related with the stacking
interaction, V (x) is the potential and represents the H-bond interaction, E is the
energy eigenvalue of the system, and Ψ (x) is the eigenfunction. The functions m(x)
and V (x) also depend on the parameters of the model, in particular the temperature
[7]. In the thermodynamic limit, the ground state eigenfunction solution of Eq. (1)
can be used to determine the thermodynamic properties of the studied system. For
example, the phase transition curve can be calculated through the evaluation of mean
stretching of the variable, 〈x〉, in terms of the temperature by the expression:

〈x〉 =
ˆ +∞

−∞
x|Ψ (x)|2dx . (2)

In general, it is not possible to determine its exact analytical solutions from
Eq. (1) and results from computational simulations are used to analyze the process
[9].

We introduce a semi-analytical method based on the variational method to
determine the ground state solution of Eq. (1). We interpret here that the function
m(x) plays a role similar to that of the mass that depends on the position. Thus, we
call this function as a position-dependent mass. The physical system is a classical
statistical one and we are only interested in its ground state solution. However, the
equation in question shows similarity to the Schrödinger equation with position-
dependent mass [10, 11].

It is opportune to emphasize that there are several problems related to the
description of quantum systems with position-dependent mass as, for instance, the
ordering ambiguity. It is also important to note that the operator on Eq. (1) is not
formally self-adjoint, which could allow the existence of non-real eigenvalues E. In
this context, the mathematical structure of the quantum Hamiltonian depends on the
so-called von Roos ambiguity parameters [10, 11]. However, although we analyze
a Schrödinger-like equation, we are not analyzing a quantum system. The Roos
parameters are fixed and we are only interested in the ground state solution of the
equation. Thus there is no ambiguity and that is why the ordering ambiguity is not
discussed here.
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The applicability of the proposed methodology is tested for two particular
potential problems. In the first problem the additional function and the potential have
an exponential position-dependence. This problem has a solution in the literature
[10], which enabled the comparison of the results obtained through the variational
method and the analytical solution.

In the second one the additional function has a quadratic position-dependence
and the potential has a quadratic and inverse quadratic position-dependence. The
resulting equation does not present exact analytical solution. The adapted variational
method suggested here is used to determine its ground state energy eigenvalue.

2 The Adapted Variational Method

We propose to adapt the variational method to obtain the approximate analytical
ground state solution of Eq. (1). Usually, in quantum mechanics, this approach
consists in the choice of a function Ψμ(x), the trial function that depends on set of
parameters μ. It is used to compute the energy eigenvalue. The variational principle
guarantees that the mean energy obtained from this trial function is always an upper
limit of the real ground state energy of the system (E0). The mean value of energy
is equal to E0 if the trial function is the exact solution of the Schrödinger equation.
The variational parameters in the trial eigenfunction are varied until the expectation
value of the energy is minimum.

Equation (1) can be rewritten if we multiply all the terms of the equation by
m(x). This procedure leads to the equation,

− d2Ψ (x)

dx2 + m(x)(V (x) − E)︸ ︷︷ ︸
Veff −εf

Ψ (x) = 0 (3)

The term m(x)(V (x) − E)Ψ (x) can be separated in a term depending on the
position and a constant term, namely −εf . Thus, Eq. (3) is rewritten as the following
effective equation:

Heff Ψ (x) = εf Ψ (x) (4)

where Heff is the effective Hamiltonian, given by

Heff = − d2

dx2 + Veff , (5)
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which defines the effective potential Veff , given by

Veff − εf = m(x)(V (x) − E). (6)

The variational method should be adapted to solve Eq. (3) since the energy
eigenvalue of the Schrödinger-like equation (1) is inserted in the effective potential
Veff . We notice that Eq. (5) with Veff defined in (6) has similar structure of the
Schrödinger problems with energy-dependent potentials [12, 13]. The term that
originally is interpreted as the energy eigenvalue is now a fixed constant εf . Thus,
the adopted procedure is to vary the energy eigenvalue E, and consequently to
vary the effective potential in order to compute the mean energy, as usual in the
variational method,

〈Heff 〉 =
´
V
Ψ ∗
μHeff ΨμdV´

V
Ψ ∗
μΨμdV

= ε(E,μ), (7)

where Heff is the effective Hamiltonian given by (5), Ψμ is the trial function, and
μ is the variational parameter. As indicated in (7), the value of the mean energy
ε(E,μ) depends on the energy eigenvalue E.

After integrating (7) the variational parameter is determined by the minimization
of ε(E,μ) with respect to this parameter. After the minimization process, the energy
eigenvalue is determined when the calculated ε(E,μ), Eq. (7), becomes equal to the
fixed εf . This value can be found, for instance, through a graphic representation of
ε(E,μ) versus E. The correct energy eigenvalue E is obtained from the intersection
point where ε(E,μ) = εf .

In what follows we illustrate the approach with two different examples to show
the applicability of this technique. We restrict the approach to one variational
parameter; however, it can be extended to a larger number of parameters.

2.1 Mass and Potential with Exponential Position-Dependence

In this case we analyze Eq. (1) with the mass and the potential with an exponential
position-dependence, given by

m(x) = m0e
−cx , V (x) = V0e

−cx − γ ecx. (8)

The equivalent effective Schrödinger equation to be solved is

− 1

m0

d2Ψ (x)

dx2
+ (V0e

−2cx − Ee−cx)Ψ (x) = γΨ (x). (9)

Adopting V0 = 1 and γ = −0.25, we realize that Eq. (9) allows exact/analytical
solution [10]; it is formally similar to the Schrödinger equation of a particle with
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constant mass (m0) under the influence of the Morse potential. Notice, however, that
it is in a different format, since the energy eigenvalue (E) of the system is inserted
in the potential. Moreover, the resulted equation is an equation of eigenfunctions
with the constant eigenvalue γ . For this reason, the usual variational method is not
applicable and should be restructured. In this case, it is necessary to vary the energy
E inserted in the potential, until obtaining the fixed value of γ = −0.25. The chosen
trial function is the wave function of the Morse potential [2]:

Ψμ ∝ e
a1
c
e−cx

e−b1x, (10)

with a1 = −
√
V̄0 , b1 = − c

2 + μ

2
√

V̄0
, V̄0 = 2m0

h̄2 V0 and μ is the variational

parameter. With this trial function (10) the mean value of Heff obtained from (9) is
determined by numerical integration of (7); the minimization is achieved graphically
by plotting the mean value as a function of the variational parameter μ. Thus, the
variational parameter that minimizes the energy γ is found as the global minimum
of this curve. Figure 1 shows the graphic representation of different values of the
eigenvalues, E, against the mean value of Heff . It can be observed that the pursued
value of γ = −0.25 is obtained when the energy inserted in the effective potential
is E = 2. This energy, therefore, is the energy of the ground state for the original
problem. The solution submitted in reference [10] shows that, using the equivalent
parameters adopted in this work (h̄2 = 2m0 = 1, c = 1, V0 = 1 e γ = −0.25), the
lowest energy calculated analytically is E0 = 2, coinciding with the result found
with the adapted variational method, as proposed here. From this result, we acquire
confidence that the variational method can be adapted to obtain solutions of the
Schrödinger-like equation (1).

Fig. 1 Graphic
representation of γ , the mean
value of Heff obtained with
the variational method, as a
function of the energy E for
m(x) and V (x) given by
Eq. (8). The continuum line
represents the constant value
γ = −0.25. The discrete
points are the minimum mean
values for the Hamiltonian
Heff obtained by using the
trial function, Eq. (10), for
different values of E
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2.2 Mass with Quadratic Position-Dependence and Potential
with Quadratic and Inverse Quadratic
Position-Dependence

The second case used to evaluate the viability of the adapted variational method sets
the mass and potential as given by

m(x) = m0x
2 , V (x) = − γ

x2
+ x2. (11)

For this case, Eq. (3) is rewritten as,

− d2Ψ (x)

dx2 + (−Ex2 + x4)Ψ (x) = γΨ (x). (12)

As previously mentioned, the position-dependent mass Schrödinger equation (1)
leads to an equation with the energy inserted in the effective potential Veff =
−Ex2 + x4 and the eigenvalue is given by a fixed constant, γ . To apply the adapted
variational method to this problem, the trial eigenfunction to be used is taken from
the results presented in [14], based on the solution of a Schrödinger equation for
a potential similar to the one used in Eq. (12), where the supersymmetric quantum
mechanics technique was applied; it is given by

Ψμ ∝ e− γ
2 x

2−μ
4 x

4
, (13)

where μ is the variational parameter.
From the choice of the trial wave function, it is possible to follow the same

procedure of the previous case to solve the Eq. (12) with the adapted variational
method. Firstly the value of the energy (E) inserted in the potential is varied until
the mean value is obtained, by integrating (7) and minimizing it with respect to μ,
we find the value of E which is equal to the fixed constant γ . To exemplify the
obtained results, the energies for three different values of γ were fixed, γ = 0.5,
γ = 0.87, and γ = 1. The integration and the minimization was performed in
agreement with the description in the previous problem. The obtained results are
shown in Fig. 2.

Figure 2 shows that it is possible to find the energy of the ground state for the
problem by performing the proposed procedures. The obtained energies for γ = 0.5,
γ = 0.87, and γ = 1.0 are, respectively, E = 1.3376, E = 0.5, and E = 0.1647.
We observe that the value of the energy increases when the value of γ increases. This
behavior can be understood since that the decrease of the value of E decreases the
contribution of the harmonic part of the potential. This effect causes the potential to
become narrower which causes an increase in the eigenvalue of γ . Once the problem
does not have an analytical exact solution, the use of the adapted variational method
enabled us to analyze the problem by using an approximated solution.
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Fig. 2 Graphics of the eigenvalue obtained with the variational method, ε(E,μ), as a function of
the energy E for m(x) and V (x) given by Eq. (11). The continuum line represents the constant
value γ . The points are the minimum mean values for the Hamiltonian Heff obtained by using the
trial function, Eq. (13), for different values of E. (a) γ = 0.5, (b) γ = 0.87, and (c) γ = 1.0

3 Conclusions

The main novelty of this paper is to present a semi-analytical method, the adapted
variational method to solve a second order differential equation that looks like
a Schrödinger equation with position-dependent mass, Eq. (1). The motivation to
study this type of equation comes from a statistical mechanics model to describe
the thermal and dynamic properties of DNA. The variational method, although it
is commonly used in the context of quantum mechanics to study the Schrödinger
equation, has not been yet applied to solve similar problems as the ones analyzed
here.
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The proposed methodology was tested in two particular cases. In the first case,
in which the potential and the mass have exponential dependence with the position,
it was possible to compare the result obtained with the adapted variational method
with the exact energy eigenvalue obtained in the literature [10]. In the second case
the mass is dependent on the square of the position and to the best of our knowledge
it does not have an exact/analytical solution.

From the results obtained, it is possible to conclude that the adopted approach is a
good alternative to study systems described by an equation similar to Eq. (1) and also
systems with energy-dependent potentials [12]. In particular, the PBD model [7] can
be analyzed by using the methodology suggested here and quantitative results can
be obtained for the thermal denaturation of the molecule. This information is useful
for testing and improving the model. The study of this DNA model is in progress.

Acknowledgement EDF would like to thank FAPESP (Proc. No. 2017/01757-9) for partial
support.
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The Lippmann–Schwinger Formula and
One Dimensional Models with Dirac
Delta Interactions

Fatih Erman, Manuel Gadella, and Haydar Uncu

Abstract We show how a proper use of the Lippmann–Schwinger equation
simplifies the calculations to obtain scattering states for one dimensional systems
perturbed by N Dirac delta equations. Here, we consider two situations. In the
former, attractive Dirac deltas perturbed the free one dimensional Schrödinger
Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For
completeness, we show that the method to obtain bound states use comparable
formulas, although not based on the Lippmann–Schwinger equation. Then, the
attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain
explicit expressions for the scattering wave functions. Here, we need regularisation
techniques that we implement via heat kernel regularisation.

Keywords Scattering states · Schrödinger and Salpeter one dimensional
Hamiltonians · Contact perturbations · Gamow wave functions ·
Lippmann–Schwinger equation

1 Introduction

One of the more used tools in order to understand quantum mechanics are the
solvable models, in particular those which are one dimensional due to their
simplicity [1–4]. The more often studied among these models is the free particle
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Schrödinger Hamiltonian decorated with Dirac delta interactions. Relativistic one
dimensional approaches for the free particle Hamiltonian, such as those named after
Salpeter or Dirac, have also been perturbed with contact interactions of delta type
[5–7]. The purpose of the present article is to give a brief review of the recent work
by the authors including the perturbation by N Dirac deltas of the one dimensional
Schrödinger and Salpeter free Hamiltonians [6, 8, 9].

From the physics point of view, point potentials may represent interactions which
are very localised in the space and strong and have a vast amount of applications for
modelling real physical systems. A well-known model using Dirac delta potentials
in non-relativistic quantum mechanics is the so-called Kronig–Penney model [10],
and it is actually a reference model in describing the band gap structure of metals
in solid state physics [11]. In addition, Dirac delta interactions in one or more
dimensions serve as simple pedagogical toy models for the understanding of several
quantum non-trivial concepts [12–19].

From the mathematical point of view, contact potentials are the result of the
theory of self-adjoint extensions of symmetric operators with equal deficiency
indices. In general, there are two methods to obtain these extensions. One is by
defining some matching conditions at the nodes (points that support the contact
potentials). Other uses the construction of the resolvent operator and often requires
a renormalisation due to possible divergences in the construction of the resolvent of
the self-adjoint extension. Still a third method relies on a theorem of von Neumann
that characterises all self-adjoint extensions of a symmetric operator with equal
deficiency indices, although this one has been less used.

We also want to show how the Lippmann–Schwinger formula is useful for
this purpose as a simplifying computational tool. Here, we shall use the simplest
form of this equation which acquires mathematical sense on Gelfand triplets. The
Lippmann–Schwinger formula gives an equation satisfied by the incoming and
outgoing plane waves after a scattering process due to a potential V . It has the
following form:

|k±〉 = |k〉 − R0(Ek ± i0) V |k±〉 , (1)

where |k±〉 refers to the full scattered incoming (+) and outgoing (−) plane waves,
|k〉 is the free plane wave, V the potential and R0(Ek ± i0) is the free resolvent, also
called the Green operator. Since it is a function of the complex variable z, R(z), and
has a branch cut at the spectrum of the free Hamiltonian (usually R

+ ≡ [0,∞)), we
denote by R0(Ek ± i0) the upper and lower limits of R(z) as the imaginary part of
z goes to zero. Here, Ek = (h̄2 k2)/2m.

This paper contains three more sections. In Sect. 2, we briefly discuss the
consequences of adding N Dirac delta perturbations to the one dimensional free
Schrödinger Hamiltonian. In Sect. 3, we do the same with the one dimensional
Salpeter Hamiltonian. The analysis of bound states is particularly relevant in both
cases. We finish our discussion with the concluding remarks.



The Lippmann–Schwinger Formula for 1D Delta Interactions 311

2 One Dimensional Schrödinger Hamiltonian with N Dirac
Delta Interactions

The objective of this section is to study the one dimensional Schrödinger Hamil-

tonian H0 = p2

2m perturbed by N Dirac deltas located at some points in the real
axis. This study includes the search for bound states, scattering coefficients and
resonances provided they exist. As is well known, this perturbed Hamiltonian has
the form

H := p2

2m
−

N∑
i=1

λi δ(x − ai) , V := −
N∑
i=1

λi δ(x − ai) , (2)

where λi and i = 1, 2, . . . , N , i = 1, 2, . . . , N are positive real numbers. The ai
show the points supporting the deltas and are called nodes. Each of the −λi , with
λi > 0, is the intensity of the delta located at ai for all value of i. These coefficients
are chosen to be negative if we want to have bound states. The Schrödinger equation
produced by (2) is

− h̄2

2m

d2ψ(x)

dx2 −
N∑
i=1

λi δ(x − ai) ψ(x) = Eψ(x) . (3)

It is interesting to rewrite the interaction V in such a way that the calculations
with the aid of the Lippmann–Schwinger equation become easy. For simplicity, let
us assume that we have only one first. Then, the potential is V = λ δ(x − a) and the
wave function is ψ(x) = 〈x|ψ〉 [20–24]. In this notation, (V ψ)(x) = 〈x|Vψ〉 and
〈x|a〉 = δ(x − a). Thus,

(V ψ)(x) = λ δ(x − a)ψ(a) . (4)

Next, we note that the potential can be written as V = λ |a〉〈a|, since then,

〈x|Vψ〉 = λ 〈x|a〉〈a|ψ〉 = λ δ(x − a)ψ(a) = (V ψ)(x) . (5)

The generalisation of the expression for the potential V in the case of having N

nodes is the following:

V = −
N∑
i=1

λi |ai〉〈ai | . (6)

This is the desired expression. Let us clarify the vectors |x〉 for any real number
x are the generalised eigenvalues of the position (multiplication) operator in one
dimension with eigenvalue x. As is well known, these vectors do not belong to the



312 F. Erman et al.

Hilbert space on which the multiplication operator acts, but instead to an extension
of it endowed with a weak topology. We do not want to enter in these kind of details
here, see [21–24]. Vectors |ai〉 are precisely of this type with x = ai .

The first objective is the search for scattering states. We are introducing the
procedure in the sequel, although we shall skip some steps in order to reach the
final result as straightforward as possible. Details may be found in [8, 9]. Let us
use (6) in the Lippmann–Schwinger equation (1) and multiply the result from the
left by the bra 〈x|. We have

〈x|k±〉 = 〈x|k〉 +
N∑
j=1

λj 〈x|G0(Ek ± i0)|aj 〉〈aj |k±〉 . (7)

For convenience, we shall use the notation G0(x, y;Ek ± i0) := 〈x|G0(Ek ±
i0)|y〉 in the sequel. Also, we recall that 〈x|k〉 is the free plane wave and
ψ±
k (x) := 〈x|k±〉 the perturbed plane wave in the coordinate representation. In

consequence, (7) can be written as (Henceforth we shall consider the sign plus in (7)
only, for simplicity. Similar results would be obtained with the other choice.)

ψ+
k (x) = eikx +

N∑
j=1

λj G0(x, aj ;Ek + i0) ψ+
k (aj ) , (8)

The goal is now to obtain the explicit form of ψ+(x), for which we have to find
the explicit form of the terms under the sum in (8). First, let as choose as values
of x in (8) the {aj }. We obtain the following linear system of N equations for N
indeterminates:

eikai = ψ+(ai) [1 − λi G0(ai, ai;Ek + i0)] (9)

−
N∑
j �=i

λj G0(ai, aj ;Ek + i0) ψ+(aj ) , i = 1, 2, . . . , N .

This system can be rewritten in matrix form. If Φ ≡ {Φij } is the N × N matrix
with matrix elements

Φij (Ek + i0) =
⎧⎨
⎩

1 − λi G0(ai, ai;Ek + i0) if i = j ,

λj G0(ai, aj ;Ek + i0) if i �= j .

(10)

Then, Eqs. (9) take the form,

N∑
j=1

Φij (Ek + i0) ψ+
k (aj ) = eikaj , j = 1, 2, . . . , N , (11)
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with solution,

ψ+
k (aj ) =

N∑
j=1

[
Φ−1(Ek + i0)

]
ij
eikaj , (12)

where Φ−1 is the inverse of the matrix Φ. In consequence, the final form of (8) is

ψ+
k (x) = eikx +

N∑
j=1

λj G0
(
x, aj ;Ek + i0

) [
Φ−1(Ek + i0)

]
ij
eikaj . (13)

Then, we have to find the Green function G0(x, aj ;Ek + i0). We do not intend
to describe the procedure here, which is explained in detail in [9]. Once we have
obtained this Green function, using (10), we finally get all matrix elements of Φ.
The final results are

G0
(
x, aj ;Ek + i0

) = im

h̄2k
ek|x−ai | (14)

and

Φij (Ek + i0) =

⎧⎪⎪⎨
⎪⎪⎩

1 − imλi
h̄2k

if i = j ,

−√
λi λj

im

h̄2k
eik|ai−aj | if i �= j .

(15)

Then, we have determined all the perturbed plane waves ψ+
k (x). For ψ−

k (x), we
follow a similar procedure. Always recall that Ek = (h̄2k2)/2m.

2.1 Search for Bound States

So far, we have found the scattering states corresponding to the total (or perturbed)
Hamiltonian, for which we have used the Lippmann–Schwinger equation as main
tool. Next, we search for the possible existence of bound states, where the search
could be carried out with similar tools to those used in the precedent discussion.

We proceed as follows: Let us use the simplified notation |fi〉 := √
λi |ai〉, so

that the total Hamiltonian (2) may be written as

H = p2

2m
−

N∑
i=1

|fi〉〈fi | . (16)

The corresponding Schrödinger equation reads
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〈
x

∣∣∣∣
p2

2m

∣∣∣∣ψ
〉
−

N∑
i=1

〈x|fi〉 〈fi |ψ〉 = E 〈x|ψ〉 . (17)

Bound states correspond to solutions of (17) with negative E and square integrable
wave function ψ(x) ≡ 〈x|ψ〉.

Next, insert the completeness relation 1 = 1
2πh̄

´ |p〉〈p| dp in front of |ψ〉 and

|fi〉. Define ψ̃(p) := 〈p|ψ〉, which is indeed the Fourier transform of 〈x|ψ〉, and

write φ(ai) := 〈fi |ψ〉 = √
λi 〈ai |ψ〉 = √

λi ψ(ai). Recall that 〈x|p〉 = e
i
h̄
px .

Then, (17) becomes

ˆ ∞

−∞
dp

2πh̄
e
i
h̄
px

ψ̃(p)

(
p2

2m
− E

)
=

N∑
i=1

√
λi

ˆ ∞

−∞
dp

2πh̄
e
i
h̄
p(x−ai ) φ(ai) .

(18)
From (18) and the properties of the Fourier transform, we have that

ψ̃(p) =
N∑
i=1

√
λi

e
− i

h̄
pai

p2

2m
− E

φ(ai) . (19)

But ψ̃(p) is the Fourier transform of the solution ψ(x) of the Schrödinger
equation (17). Let us use this idea to conclude that (take x = ai)

ψ(ai) =
N∑
i=1

√
λi

ˆ ∞

−∞
dp

2πh̄

e
− i

h̄
pai

p2

2m
− E

φ(ai) . (20)

Multiply both sides in (20) by
√
λi and recalling that φ(ai) = √

λi ψ(ai), we
arrive to an equation of the form:

N∑
j=1

Φij (E) φ(aj ) = 0 . (21)

Find details in [8]. It is beyond a mere coincidence that the matrix elements Φ ≡
{Φij (E)} are identical to those of (15) with the replacement k = √

2m|E|, so that [8]

Φij (E) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − mλi

h̄
√

2m|E| if i = j ,

− m
√
λiλj

h̄
√

2m|E| exp
(−√

2m|E| |ai − aj |/h̄
)

if i �= j .

(22)
Since Eq. (21) has come directly from (17), it is a necessary condition for the
existence of solutions of (17) with the desired properties. This equation has non-
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trivial solutions {φ(aj )} if and only if detΦ(E) = 0. Therefore, the bound states
energies are solutions of the transcendental equation detΦ(E) = 0.1

For a systematic calculation of the bound states, let us consider the following
eigenvalue problem:

Φ(E)A(E) = ω(E)A(E) , (23)

where ω(E) are the eigenvalues of the N × N matrix Φ(E) and A(E) their
corresponding eigenvectors. Equations (21) and (23) coincide if and only if ω(E) =
0 and then, the bound states energies have to be the solutions of the transcendental
equation ω(E) = 0 its eigenvectors being those with components equal to φ(aj ).
If we assume no degeneracy, the wave function corresponding to the energy value
Ei with eigenvector A(E) ≡ (φ(a1), . . . , φ(aN)) takes the form (19) with E = Ei .
In the coordinate representation, the wave function is just its Fourier transform. For
further comments, see [6, 8].

2.2 Resonances and Gamow States

The Lippmann–Schwinger equation is also useful for the construction of Gamow
states, which are vector states for resonances. In a resonant scattering process [25]
produced by a Hamiltonian pair, say {H0,H }, where H0 is a free Hamiltonian and
H = H0 + V , where V is the interaction, the Gamow vectors, ψ±, for a resonance
with energy ER and inverse of the mean life given by Γ are two eigenvectors of H
with respective eigenvalues ER ± Γ/2, i.e., Hψ± = (ER ∓ Γ/2) ψ± [25]. This
property shows that the Gamow vector ψ+ decays exponentially as t �−→ ∞ (and
ψ− decays exponentially as t �−→ −∞, they are time reversal of each other). This
situation produces two problems, one from the point of view of physics and the other
from the point of view of mathematics.

Although exponential decay for simple quantum unstable systems has been
detected for essentially for all values of time, deviations for these exponential law
have been detected for very short or very large times [26, 27]. Since these deviations
certainly occur under these conditions only, they are very difficult to be detected. For
most values of time, exponential decay serves as an excellent approximation. This
is why Gamow vectors are useful as good approximations of decaying states.

A self-adjoint operator on Hilbert space, as is the case of the Hamiltonian H ,
cannot have complex eigenvalues with corresponding eigenvectors in this Hilbert
space. Thus, Gamow vectors are well-defined objects on some extensions of Hilbert
spaces called rigged Hilbert spaces [25, 28–30].

1As a matter of fact, this also follows because Φ(E) appears in the denominator of the resolvent
of the total Hamiltonian H .
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Let us briefly sketch the use of (1) to obtain an explicit expression of the Gamow
vectors as eigenvectors of H with eigenvalue ER ± Γ/2. Details may be found
in [9, 31]. If we multiply Eq. (1) to the right by the bra 〈ψ |, we obtain a complex
function on the variable k. With adequate choices of the space of bras, this results on
meromorphic functions of complex variable defined at least on a half plane [29, 30].
Let us assume that this is the case and omit the bra 〈ψ |. Then, if we define kR as

zR := ER − Γ/2 = k2
R h̄

2

2m
, (24)

we may consider the analytic extension of (1) to the value of k given by kR ,

|k+
R 〉 = |kR〉 − G0(zR) V |k+

R 〉 . (25)

It is important to remark that zR is a pole of the Green function corresponding to the
total Hamiltonian H , but not of the free Hamiltonian H0, just by the characterisation
of resonances using the resolvent [32]. Then, G0(zR) is well defined and so is |k+

R 〉,
which has the property [9, 31, 33]

H |k+
R 〉 = zR |k+

R 〉 . (26)

Thus, |k+
R 〉 is one of the Gamow vectors with resonance pole zR (the other can be

obtained exactly in the same way, just replacing zR by its complex conjugate z∗
R and

taking the minus sign in (1). This Gamow vector in the coordinate representation is
ψ+
R (x) := 〈x|k+

R 〉, so that

(Hψ+
R )(x) = 〈x|H |k+

R 〉 = zR 〈x|k+
R 〉 = zR ψ

+
R (x) . (27)

Now, let us go back to the N Dirac deltas interaction and, consequently, take
in (25) the form of the potential given by V = −∑N

i=1 λi |ai〉〈ai |. Multiply the
result of this operation to the right by the bra 〈x| and divide kR into real and
imaginary parts, kR = kr − ikI . We have that 〈x|kR〉 = eikRx = eikrx e−ikI x and

ψ+
k (x) = 〈x|k+

R 〉 = 〈x|kR〉 +
N∑
i=1

λi 〈x|G0(zR)|ai〉〈ai |k+
R 〉

= eikrx ekI x +
N∑
i=1

λi G0(x, ai; zR)ψ+
R (ai) = eikrx ekI x (28)

+
N∑
i=1

λi

N∑
j=1

im
√
λi λj

h̄2(kr − ikI )

[
ei(kr−ikI ) |x−ai | Φ−1(zR)

]
ij
ei(kr−ikI )aj .
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A similar result can be obtained for the Gamow wave function ψ−(x). In
principle, both Gamow functions will be equally suitable to play the role of wave
function for the resonance state. The only technical difference is that one represents
the time reversal of the other [30]. Observe that ψ+

k (x) �−→ ∞ as x �−→ ∞.
Gamow wave functions cannot be normalised in the usual sense of square integrable
normalisation, but in sharp contrast with the plane waves (Dirac kets) which are not
normalisable although bounded, Gamow functions show an exponential growing at
the spatial infinite. This behaviour has been often called the exponential catastrophe.
This is not such a problem with a proper interpretation of the Gamow wave function
in terms of generalised functions in a suitable rigged Hilbert space. Still, this expo-
nential behaviour creates some particular problems such as the difficulties arisen in
order to fix a proper definition of averages of observables in Gamow states [34, 35].

3 One Dimensional Salpeter Hamiltonian with N Deltas

The one dimensional Salpeter Hamiltonian decorated with N Dirac deltas has the
following form (c = 1):

H :=
√
p2 + m2 −

N∑
i=1

λi δ(x − ai) , H0 :=
√
p2 + m2 . (29)

Here, H0 is the free Salpeter Hamiltonian. The definition of a self-adjoint version
for H in (29) is not as simple as is in the Schrödinger case, where it is sufficient to
impose correct matching conditions at the nodes. This self-adjoint version is usually
determined by a proper choice of the resolvent operator of H , which should be
obtained from the resolvent operator of H0 by the Krein formula. However, this
procedure leads to divergences in our case, so that a regularisation procedure is
in order here [5, 6]. We have chosen heat kernel regularisation for several reasons
discussed in [6]. Let us sketch briefly the procedure. First of all, we write the
Hamiltonian H as in (29) as

H =
√
p2 + m2 −

N∑
i=1

λi |ai〉〈ai | , (30)

exactly as we did for the cases studied in the previous section. The next step is to
write an ε-regularised version of (30) as

Hε =
√
p2 + m2 −

N∑
i=1

λi(ε) |aεi 〉〈aεi | , (31)
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where the new kets |aεi 〉 are defined in such a way that 〈x|aεi 〉 := Kε/2(x, ai), where
the function Kt(x, y) is the so-called heat kernel, which is the fundamental solution
of the heat equation of the form:

√
p2 + m2 Kt(x, y) = −∂ Kt(x, y)

∂ t
, (32)

and the weights λ(ε) are also chosen as functions of the parameter ε, such that
limε→0+ λi(ε) �−→ λi , i = 1, 2, . . . , N . The interest of this choice for 〈x|aεi 〉 comes
after the limiting property 〈x|aεi 〉 �−→ 〈x|ai〉 = δ(x − ai) as ε �−→ 0+.

Now, we go back to the Lippmann–Schwinger equation (1), where in the present
case Ek = √

p2 + m2 and V is as in (31). This gives

|k±(ε)〉 = |k〉 +
N∑
j=1

λj (ε) R0(Ek ± i0) |aεj 〉〈aεj |k±〉 . (33)

Let us choose the plus sign in (33) and use for brevity the following notation:
|f ε
i 〉 := √

λi(ε) |aεi 〉. Then, we choose one subindex i and isolate the corresponding
term in (33):

|k+(ε)〉 = |k〉 + R0(Ek + i0) |f ε
i 〉〈f ε

i |k+(ε)〉

+
N∑
j �=i

R0(Ek + i0) |f ε
j 〉〈f ε

j |k+(ε)〉 , (34)

before multiplying (34) to the left by the ket 〈f ε
i |. This gives

[
1 − 〈

f ε
i |R0(Ek + i0) |f ε

i

〉] 〈
f ε
i |k+(ε)

〉

−
N∑
i �=j

[〈
f ε
i |R0(Ek + i0) |f ε

i

〉] 〈
f ε
i |k+(ε)

〉 = 〈
f ε
i |k〉 , (35)

expression valid for i = 1, 2, . . . , N . This may be written in the matrix form as

N∑
j=1

Tij (ε, Ek + i0) 〈f ε
j |k+(ε)〉 = 〈f ε

i |k〉 , j = 1, 2, . . . , N , (36)

with

Tij (ε, Ek + i0) =
⎧⎨
⎩

1 − 〈f ε
i |R0(Ek + i0) |f ε

i 〉 if i = j ,

−〈f ε
i |R0(Ek + i0) |f ε

j 〉 if i �= j .
(37)
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Therefore, we may write the solution of (36) as

〈
f ε
i |k+(ε)

〉 =
N∑
j=1

[
T −1 (ε, Ek + i0)

]
ij

〈
f ε
j |k

〉
. (38)

We use (38) in (35) and, then, multiply the result to the left by the bra 〈x|. This gives

ψ+(ε, x) := 〈x|k+(ε)〉

= 〈x|k〉 +
N∑

i,j=1

〈x|R0(Ek + i0) |f ε
i 〉 [T −1(ε, Ek + i0)]ij 〈f ε

j |k〉

= eikx +
N∑

i,j=1

〈x|R0(Ek + i0) |aεi 〉 [Φ−1(ε, Ek + i0)]ij 〈aεj |k〉 , (39)

with

Φij (ε, Ek + i0) =
⎧⎨
⎩

1
λi(ε)

− 〈aεi |R0(Ek + i0) |aεi 〉 if i = j ,

−〈aεi |R0(Ek + i0) |aεj 〉 if i �= j .
(40)

The next step is to take the limit ε �−→ 0, for which we need a determination of
the functions λi(ε) for all values of i = 1, 2, . . . , N . This has been motivated and
determined in Section II in [6] and is

1

λi(ε)
= 1

λi(Mi)
+
ˆ ∞

0
dt Kt+ε(ai, ai) e

tMi , (41)

where Kt(x, y) is the heat kernel and Mi is an unphysical renormalisation scale that
is chosen to be the energy of the bound state Ei

B corresponding to the bound state
of the i-th delta [6]. This gives in the limit ε �−→ 0,

ψ+
k (x) = eikx +

N∑
i,j=1

〈x|R0(Ek + i0) |ai〉 [Φ−1(Ek + i0)]ij eikaj . (42)

Here,

〈x|R0(Ek + i0) |ai〉 = i
√
k2 + m2

k
eik|x−ai | + 1

π

ˆ ∞

m

dμ e−μ|x−ai |
√
μ2 − m2

μ2 + k2
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and

Φij (Ek + i0) =

=

⎧⎪⎪⎨
⎪⎪⎩

− 1
λ
(
Eλ,E

i
B

) − iEk√
E2
k−m2

if i = j ,

− iEk√
E2
k−m2

e
i

√
E2
k−m2 |x−aj | − 1

π

´∞
m

dμ e−μ|x−ai |
√

μ2−m2

μ2+E2
k−m2 if i �= j ,

where

1

λ
(
Eλ,E

i
B

)

= −Ek

π

√
E2
k −m2

arctanh

⎛
⎝
√
E2
k − m2

Ek

⎞
⎠− Ei

B

π

√
m2 − (

Ei
B

)2

(
π

2
+arcsin

Ei
B

m

)
,

where Ei
B has been defined before and μ := mini Ei

B . The conclusion is that the
Lippmann–Schwinger equation gives in a rather straightforward manner the exact
form of the scattering states in a rather cumbersome situation as the one discussed
along the present section. Explicit expressions for transmission and reflection
coefficients can be also derived from the above expressions.

4 Concluding Remarks

The Lippmann–Schwinger equation is a useful tool that permits to obtain explicit
forms for the scattering states produced by some potential. When this potential
is a finite set of Dirac delta interactions, one may find explicit expressions for
these scattering states. We have shown that this is the case when perturbing the
free Schrödinger one dimensional and the Salpeter Hamiltonians with N attractive
deltas. In the first case, we have also shown that the Lippmann–Schwinger equation
gives explicit expressions for Gamow wave functions which are the wave function
for the purely exponential decay part of resonance states. The discussion on the
search for bound states for the Schrödinger case includes similar methods.

The one dimensional Salpeter Hamiltonian with N attractive deltas is much more
complicated as it requires of a regularisation procedure that we implement with the
use of the heat kernel for the pseudo-differential operator

√−d2/dx2 + m2. In this
case, we also obtain the exact form of the scattering states.
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Hermite Coherent States for Quadratic
Refractive Index Optical Media

Zulema Gress and Sara Cruz y Cruz

Abstract Ladder and shift operators are determined for the set of Hermite–
Gaussian modes associated with an optical medium with quadratic refractive
index profile. These operators allow to establish irreducible representations of the
su(1, 1) and su(2) algebras. Glauber coherent states, as well as su(1, 1) and su(2)
generalized coherent states, were constructed as solutions of differential equations
admitting separation of variables. The dynamics of these coherent states along the
optical axis is also evaluated.

Keywords Hermite–Gaussian modes · Ladder operators · Coherent states ·
Self-focusing media · Paraxial beams · Ermakov equation

1 Introduction

The problem of addressing the construction, analysis, and possible applications
of coherent states has been a very important issue in quantum physics. Yet, the
concept of coherent state has also been considered within the framework of classical
optics in the context of the quantum mechanics-classical optics analogy [1–3].
This analogy, based on the formal equivalence between the paraxial Helmholtz
equation and the time-dependent Schrödinger equation [4–6], enables, for instance,
the use of operatorial methods for the description of light propagation phenomena
[7, 8]. In particular, diverse families of coherent states as linear combinations of
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paraxial beams can be constructed from a pure algebraic point of view in the
Barut–Girardello as well as in the Perelomov approaches (see the details in [9]).

In this work we deal with the construction of Glauber, SU(1, 1) and SU(2)
coherent states for the set of Hermite–Gaussian modes in an optical medium with
a quadratic refractive index profile, as solutions of differential equations admitting
separation of variables. This approach leads us to wave-packet type expressions for
these coherent states instead of the usual expressions defined algebraically as linear
combinations of paraxial modes.

With this end we organize our work as follows. In Sect. 2 we briefly discuss
on the Hermite–Gaussian modes and the functions featuring their behavior. In
Sect. 3 we present the construction of ladder operators for the Hermite–Gaussian
modes and their relation to the canonical variables of position and direction of
propagation. This relation will be important in the statement of the differential
equations defining the coherent states. Next, in Sect. 4, we construct the Hermite–
Glauber coherent states as eigenfunctions of the annihilation operators. Sections 5
and 6 contain, respectively, the construction of Hermite-su(1, 1) and Hermite-su(2)
coherent states in the Perelomov approach. Finally, we summarize our results in
Sect. 7.

2 The Hermite–Gaussian Beams

We are interested in optical media with quadratic refractive index profiles of the
form

n2(r) = n2
0

(
1 − Ω2r2

)
, (1)

where r2 = x2 + y2, n0 is called reference or bulk refractive index, and Ω is
a constant that defines the confining properties of the medium. In the paraxial
approximation it is assumed that Ω2r2 � 1 so that the refractive index is
nearly constant in regions close to the optical axis (that is chosen as the z-axis).
The paraxial Helmholtz equation takes the form of a time-dependent Schrödinger
equation

i

k0

∂

∂z
U(r, z) =

[
− 1

2k2
0n0

(
∂2

∂x2 + ∂2

∂y2

)
+ n0

2
Ω2r2

]
U(r, z) = HU(r, z),

(2)

where k0 is the wave number in free space, r = (x, y) is the transversal radial vector,
and the function U(r, z) is the amplitude of the electric field. It is well known that
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this equation has wave-packet type solutions of the form [9]

Un,m(r, z) = 1√
π2n+mn!m!

√
2

w(z)
e−i(n+m+1)χ(z)e

i
k0n0r

2

2R(z) e
− r2

w2(z)

×Hn

( √
2

w(z)
x

)
Hm

( √
2

w(z)
y

)
, (3)

where Hp(x) stands for the Hermite polynomial of degree p, and the functions χ(z),
R(z), and w(z) are given by

w(z) = w0

[
cos2(Ωz) + 1

(ΩzR)2
sin2(Ωz)

]1/2

, w0 = w(0), zR = k0n0w
2
0

2
,

(4)

1

R(z)
= d

dz
lnw(z), χ(z) = 2

k0n0

ˆ z dt

w2(z)
. (5)

These modes are the Hermite–Gaussian beams associated with a parabolic medium
and the functions w(z), R(z), χ(z) are the width, the radius of curvature, and
the Gouy phase shift of the beam (see [9]). The constants w0 and zR are called,
respectively, the beam waist or waist radius and the Rayleigh range. In the limit
Ω → 0 we recover the well- known beam width, radius of curvature, and Gouy
phase shift of a Hermite–Gaussian mode in a homogeneous medium [10]

w(z) = w0

√
1 +

(
z

zR

)2

, R(z) = z

[
1 +

(
zR

z

)2
]
, χ(z) = arctan

(
z

zR

)
.

(6)

In this case, the constants w0 and zR correspond to the minimum width of the beam
and to the distance from the focus along the optical axis at which the beam doubles
its transversal area. Due to this fact these parameters are considered, respectively,
the transversal and longitudinal characteristic lengths of the system. In the general
case Ω > 0, the beam width is an oscillating function of period π

Ω
due to the

confining properties of the medium.

2.1 Stationary Hermite–Gaussian Modes

Another interesting case occurs whenever 1
zR

= Ω , i.e., when the beam waist w0
and Ω are related through

w0 =
√

2

k0n0Ω
.
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In this case the divergent nature of light is balanced with the focalization properties
of the medium resulting in a beam that propagates with a constant width w0. A
simple inspection to (5) leads to the conclusion that, in this limit, the Hermite–
Gaussian modes become plane waves, as their radii of curvature becomes infinite
and their Gouy phase shifts χ(z) = Ωz = z

zR
are proportional to z. The

corresponding amplitudes

Us
n,m(r, z) = 1√

π2n+mn!m!

√
2

w0
e
−i(n+m+1) z

zR e
− r2

w2
0 Hn

(√
2

w0
x

)
Hm

(√
2

w0
y

)
,

(7)

turn into (stationary) eigenmodes of the operator H with eigenvalues Ω
k0
(n+m+ 1)

in complete analogy to the quantum harmonic oscillator potential. In this context, it
is worthwhile to note that, as the function w(z) in (4) fulfills the Ermakov equation
(check [9])

d2w

dz2 + Ω2w = w4
0

z2
Rw

3
,

the Hermite–Gaussian modes (3) can be obtained from the stationary ones (7)
through the quantum Arnold–Ermakov transformation (see, e.g., [11–13]).

3 Ladder Operators for the Hermite–Gaussian Modes

The Hermite–Gaussian modes (3) can be written in the form

Un,m(r, z) =
√

2

w(z)
e−iβn,mχ(z)e

i
k0n0r

2

2R(z) Ψn,m(u(x, z), v(y, z)), (8)

where

u(x, z) =
√

2

w(z)
x, v(x, z) =

√
2

w(z)
y,

βn,m = n+m+ 1, and the functions Ψn,m(u, v) are the square integrable solutions
to the eigenvalue problem [9]

HΨ (u, v) = βΨ (u, v), (9)
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with

H = −1

2

(
∂2

∂u2
+ ∂2

∂v2

)
+ 1

2

(
u2 + v2

)
. (10)

The form of this operator suggests that we may write

Ψn,m(u, v) = 1√
n!m!

(
a+)n (b+)m Ψ0,0(u, v), Ψ0,0(u, v) = 1√

π
e− 1

2 (u
2+v2),

(11)

where a± and b± are the ladder operators of the harmonic oscillator

a± = 1√
2

(
∓ ∂

∂u
+ u

)
, b± = 1√

2

(
∓ ∂

∂v
+ v

)
, (12)

fulfilling the boson algebra

[
a−, a+] = [

b−, b+] = I,
[
a±, b±] = 0. (13)

The substitution of (11) into (8) leads us to

Un,m(r, z) = 1√
n!m! e

−i(n+m)χ(z)e
i
k0n0r

2

2R(z)
(
a+)n (b+)m e

−i
k0n0r

2

2R(z) U0,0(r, z),

which, in turn, allows us to write

Un,m(r, z) = 1√
n!m!

(
A+)n (B+)m U0,0(r, z), (14)

with the identification of the non-autonomous invariant operators [9]

A+ = e−iχ(z)e
i
k0n0x

2

2R(z) a+e−i
k0n0x

2

2R(z) , A− = (
A+)†

,

B+ = e−iχ(z)e
i
k0n0y

2

2R(z) b+e−i
k0n0y

2

2R(z) , B− = (
B+)†

. (15)

The algebraic structure of the operators A±, B± is inherited from that of a± and
b±. If Nx = A+A− and Ny = B+B−, we have

[
A−, A+] = I,

[
B−, B+] = I,

[
A±, B±] = 0, (16)

[
Nx,A

±] = ±A±,
[
Ny,B

±] = ±B±. (17)
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Also, the action of A±, B± on the Hermite–Gaussian beams can be readily stated

A+Un,m(r, z) = √
n + 1Un+1,m(r, z), A−Un,m(r, z) = √

nUn−1,m(r, z),

B+Un,m(r, z) = √
m + 1Un,m+1(r, z), B−Un,m(r, z) = √

mUn,m−1(r, z),

NxUn,m(r, z) = nUn,m(r, z), NyUn,m(r, z) = mUn,m(r, z). (18)

It can be also shown that, in terms of the canonical variables of position r and

propagation direction p = − i
k0

(
∂
∂x
, ∂
∂y

)

A+ = −ie−iχw

[
k0px

2
− S̄x

]
, A− = ieiχw

[
k0px

2
− Sx

]
,

B+ = −ie−iχw

[
k0py

2
− S̄y

]
, B− = ieiχw

[
k0py

2
− Sy

]
, (19)

where the bar stands for complex conjugation and

S(z) = k0n0

2R(z)
+ i

w2(z)
.

At this stage, it is important to stress that the form of the Hermite–Gaussian
modes (8), as well as that of the operators A±, and B±, depends strongly on the
beam width w(z). This is due to the fact that, according to Eqs. (3)–(5), this function
encodes all the information about the beam propagation along the longitudinal axis.
In turn, the behavior of w(z) is determined by the choice of its initial value w0.
This means that, for a fixed value of Ω defining a particular optical medium, the
form of the Hermite–Gaussian modes and the corresponding ladder operators will
be intrinsically dependent on the parameter w0.

To close this section, let us note that the paraxial Helmholtz equation (2) defines
the z-variation of the field amplitude U(r, z) through

U(r, z) = W(z)U(r, 0), (20)

where

W(z) = e−ik0Hz, with H = p2

2n0
+ n0

2
Ω2r2,

can be interpreted as the evolution operator of the electromagnetic modes. Note also
that

Un,m(r, 0) =
√

2

w0
Ψn,m(u(x, 0), v(y, 0))
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is an eigenfunction of the operator H for the fixed value z = 0. In this way,
combining (20) and (8) we have

W(z)Un,m(r, 0) =
√

2

w(z)
e−iβn,mχ(z)e

i
k0n0r

2

2R(z) Ψn,m (u(x, z), v(y, z)) .

This means that if Ψn,m(u(x, 0), v(y, 0)) is an eigenfunction of H at z = 0,
corresponding to the eigenvalue βn,m, we have

W(z)Ψn,m(u(x, 0), v(y, 0)) = w0

w(z)
e−iβn,mχ(z)e

i
k0n0r

2

2R(z) Ψn,m (u(x, z), v(y, z)) .

(21)

4 Hermite–Glauber Coherent States

The Glauber coherent states Uαx,αy (r, z) of the Hermite type are constructed as
eigenstates of the annihilation operators A− and B−. Thus, they must fulfill the
differential equations

A−Uαx,αy (r, z) = 1

2
weiχ

[
∂

∂x
− 2iSx

]
Uαx,αy (r, z) = αxUαx,αy (r, z),

B−Uαx,αy (r, z) = 1

2
weiχ

[
∂

∂y
− 2iSy

]
Uαx,αy (r, z) = αyUαx,αy (r, z). (22)

The normalized solution is given by

Uαx,αy (r, z) = 1√
π

√
2

w(z)
exp

{
1

2

[
e−2iχ(z)

(
α2
x + α2

y

)
−
(
|αx |2 + |αy |2

)]}

× e
i
k0n0r

2

2R(z) exp

[
−
(

x

w(z)
−e−iχ(z)αx

)2

−
(

y

w(z)
−e−iχ(z)αy

)2
]
.

(23)

In Fig. 1 we present some plots concerning Hermite–Glauber coherent states (23).
They are Gaussian wave-packets (left) that remain Gaussian as they propagate along
the optical axis with oscillating width, given by (4), of period π/Ω (center). The
center of the wave-packet follows an elliptic trajectory given by the parametric
equations (see Fig. 1 (right))

x(z) = w(z)Re
(
e−iχ(z)αx

)
, y(z) = w(z)Re

(
e−iχ(z)αy

)
.
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Fig. 1 Hermite–Glauber coherent state for αx = 1√
2
(1 + i), αy = 1√

2
(1 − i), and zR =

0.7/Ω: (Left) Intensity distribution in the xy-plane. (Center) Dynamics of the coherent beam
as it propagates along the z-axis. (Right) The trajectory of the center of the wave-packet in the
transversal plane. The transversal variables x, y are measured in units of w0 while the longitudinal
one z is measured in units of zR

From the geometrical optics point of view, this trajectory would correspond to the
projection on the transversal plane of the path that follows a light ray that propagates
in this medium. The corresponding components of the propagation direction p are
defined by

px(z) = w(z)

k0
Re

(
e−iχ(z)S̄(z)αx

)
, py(z) = w(z)

k0
Re

(
e−iχ(z)S̄(z)αy

)
.

5 Hermite-su(1, 1) Coherent States

It is well known that the generators of the su(1, 1) and su(2) algebras can be realized
as higher order compositions of single mode boson operators [14–18]. In the non-
degenerate case these realizations correspond to the Schwinger representation of
those algebras [19]. Indeed the operators

K− = B−A−, K+ = B+A+, K0 = 1

2
H, (24)

fulfill the commutation rules of the su(1, 1) algebra

[K−,K+] = 2K0, [K0,K±] = ±K±. (25)

From its definition, it is clear that the operator K− (K+) lows (raises) both labels
n,m of the Hermite–Gaussian modes, meaning that, under the action of these
operators the Hermite–Gaussian modes are transformed in such a way that the
number |n − m| is left invariant. Hence, the set of Hermite–Gaussian modes can
be classified into hierarchies defined by the number N = |n − m|. The complete



Hermite Coherent States for Quadratic Refractive Index Optical Media 331

space of modes is, thus, decomposed as the direct sum of subspaces HN± which are
the span of each N -hierarchy and correspond to a particular representation of the
su(1, 1) algebra. Here the ± signs stand for the cases n − m > 0 and n − m < 0,
respectively.

On the other hand, it is well known that the su(1, 1) coherent states of the
Perelomov type can be obtained as eigenvectors of the operator [14]

(nK) = n0K0 − n1K1 − n2K2, (26)

where n = (n0, n1, n2) is a vector fulfilling n2 = n2
0 − n2

1 − n2
2 = 1, n0 > 0, that

can be parametrized as

(n0, n1, n2) = (cosh τ0, sinh τ0 cosφ0, sinh τ0 sinφ0) ,

and the operators K1,K2 are the quadratures of the su(1, 1) algebra given by

K1 = 1

2
(K+ + K−) , K2 = 1

2i
(K+ − K−) . (27)

Hence, the construction of Perelomov coherent states UN
ξ (r, z) involves the solution

of two eigenvalue equations. The first one will select the corresponding N -subspace
from the space of modes. For the choice n − m > 0 (the case n − m < 0 can be
constructed by interchanging the roles of n and m) we have

(
Nx − Ny

)
UN
ξ (r, z) = NUN

ξ (r, z). (28)

The second equation will define the coherent state in this particular subspace:

(nK) UN
ξ (r, z) = kUN

ξ (r, z), (29)

where k is the Bargmann parameter given by k = 1
2 (n − m + 1). The complex

number ξ labeling the coherent state is fixed by the parameters τ0 and φ0 in the
form

ξ

|ξ | = e−iφ0 , tanh |ξ | = tanh
τ0

2
.

In the coordinate representation the operators N̂ = Nx − Ny , K0, K1, and K2
have the forms

N̂ = w2

4

[
−
(
∂2

∂x2
− ∂2

∂y2

)
+ 2iRe(S)

(
x
∂

∂x
− y

∂

∂y

)
+ 4|S|2

(
x2 − y2

)]
,

K0 = w2

8

[
−
(
∂2

∂x2
+ ∂2

∂y2

)
+ 2iRe(S)

(
x
∂

∂x
+ y

∂

∂y

)
+ 4|S|2

(
x2 + y2

)]

+ i

2
w2Re(S),
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K1 = w2

4

[
cos 2χ

∂2

∂x∂y
− 2iRe

(
e2iχS

)(
y
∂

∂x
+ x

∂

∂y

)
− 4Re

(
e2iχS2

)
xy

]
,

K2 = w2

4

[
− sin 2χ

∂2

∂x∂y
+ 2iIm

(
e2iχS

)(
y
∂

∂x
+ x

∂

∂y

)
+ 4Im

(
e2iχS2

)
xy

]
.

From these expressions it is clear that the operators N̂ and (nK) will contain first as
well as second order symmetries for an arbitrary value of z. However, for z = 0 the
operators N̂ , K0, and K1 only contain second order symmetries, as χ(0) = 0 and
S(0) = i

w2
0
. In this case the set of Eqs. (28)–(29) can be solved using separation of

variables by setting τ0 = 0. As the coherent states will not depend on the parameter
φ0 we may choose φ0 = 0 without loss of generality. For these choices of the
parameter we have ξ = 0. The set (28)–(29) now have the form

N̂UN
0 (r, 0) = −w2

0

4

[
∂2

∂x2 − ∂2

∂y2 + 4

w4
0

(
x2 − y2

)]
UN

0 (r, 0) = NUN
0 (r, 0),

K0U
N
0 (r, 0) = −w2

0

8

[
∂2

∂x2 + ∂2

∂y2 + 4

w4
0

(
x2 + y2

)]
UN

0 (r, 0)

= 1

2
(N + 1) UN

0 (r, 0).

The normalized solution fulfilling both equations reads

UN
0 (r, 0) = 1√

π2NN !

√
2

w0
e
− r2

w2
0 HN

(√
2

w0
x

)
. (30)

Now, in order to determine the evolution of this coherent state in the longitudinal
coordinate, consider the fact that UN

0 (r, 0) is an eigenfunction of H at z = 0 with
eigenvalue β = N + 1, therefore

UN
0 (r, z) = 1√

π2NN !

√
2

w(z)
e−i(N+1)χ(z) e

i
k0n0r

2

2R(z) e
− r2

w2(z) HN

( √
2

w(z)
x

)
. (31)

In Fig. 2 we present some plots showing the behavior of this coherent state for N =
4 and zR = 0.5/Ω . The intensity distribution exhibits the rectangular symmetry
characteristic of the Hermite–Gaussian modes, being N the number of nodes in the
x direction. As z grows, the width of the beam oscillates with a period defined by
the value of zR .
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Fig. 2 Hermite-su(1, 1) coherent state for N = 4 and zR = 0.5/Ω: (Left, Center) Intensity
distribution as a function of x and y. (Right) Dynamics of the coherent beam as it propagates along
the z-axis. The width of the beam oscillates with a period 2πzR . The transversal variables x, y are
measured in units of w0 while the longitudinal one z is measured in units of zR

6 Hermite-su(2) Coherent States

Now let us consider the second order operators

J− = A−B+, J+ = A+B−, J0 = 1

2

(
Nx − Ny

)
, (32)

fulfilling the su(2) commutation relations

[J−,J+] = −2J0, [J0,J±] = ±J±. (33)

In this case it is possible to see that the operators J± induce transformations on
the Hermite–Gaussian modes leaving the number n + m invariant. The Hermite–
Gaussian modes are classified now into hierarchies defined by the number j =
1
2 (n+m). This means that the space of modes can be decomposed as the direct sum
of subspaces Hj spanned by the corresponding j -hierarchies.

Following the Perelomov approach, we construct the su(2) coherent states
U
j
ξ (r, z) as the simultaneous solutions of two equations: the first one selects a

particular j -subspace

HU
j
ξ (r, z) = (2j + 1)Uj

ξ (r, z), (34)

while the second one will define the coherent state

(n · J)Uj
ξ (r, z) = −jU

j
ξ (r, z), (35)

where

(n · J) = n0J0 + n1J1 + n2J2,
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with n = (n0, n1, n2) a unitary vector that can be parametrized as

(n0, n1, n2) = (cos θ0, sin θ0 cosφ0, sin θ0 sinφ0) ,

and J1, J2 the quadratures of the su(2) algebra given by

J1 = 1

2
(J+ + J−) , J2 = 1

2i
(J+ − J−) . (36)

The complex parameter ξ labeling the coherent state is now defined in terms of θ0
and φ0 by

ξ

|ξ | = e−iφ0 , tan |ξ | = tan
θ0

2
.

The expressions for the quadratures in the coordinate representation are

J1 = w2

4

[
− ∂2

∂x∂y
+ 2iRe(S)

(
y
∂

∂x
+ x

∂

∂y

)
+ 4|S|2xy

]
, (37)

J2 = − i

2

(
x
∂

∂y
− y

∂

∂x

)
. (38)

In this case it is possible to see that for z = 0 and φ0 = 0, π the differential operator
n · J contains only second order symmetries, while for z = 0, θ0 = π

2 and φ0 = ±π
2

it only contains first order symmetries.
In the first case, for the choice φ0 = 0, we have ξ = θ0

2 and the set of Eqs. (34)–
(35) reduces to

−w2
0

4

[
∂2

∂x2 + ∂2

∂y2 − 4

w4
0

(
x2 + y2

)]
U
j
ξ (r, 0) = (2j + 1) Uj

ξ (r, 0),

−w2
0

8

[
cos θ0

(
∂2

∂x2 − ∂2

∂y2

)
+ 2 sin θ0

∂2

∂x∂y

]
U
j
ξ (r, 0)

+ 1

2w2
0

[
cos θ0

(
x2 − y2

)
+ 2 sin θ0xy

]
U
j
ξ (r, 0) = −jU

j
ξ (r, 0).

The normalized solution reads

U
j
ξ (r, 0) = 1√

π22j (2j)!

√
2

w0
e
− r2

w2
0 H2j

(√
2

w0

[
y cos

θ0

2
− x sin

θ0

2

])
. (39)
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Fig. 3 Hermite-su(2) coherent state for j = 3
2 and zR = 0.5/Ω: Intensity distribution as a

function of x and y for θ0 = 0 (left) and θ0 = 3π
4 (right). As a function of θ0 this distribution

rotates with a period 4πzR around the optical axis. The transversal variables x, y are measured in
units of w0

Fig. 4 Hermite-su(2) coherent state for j = 3
2 and zR = 0.5/Ω: Intensity distribution as a

function of x, y, z (left) and x, y, θ0 (right). For this value of zR , the oscillation period of the beam
width coincides with the rotation period of this distribution with respect to θ0. The transversal
variables x, y are measured in units of w0 while the longitudinal one z is measured in units of zR

As this function is an eigenstate of H for z = 0 with eigenvalue β = 2j + 1, its
dynamics in z can be readily obtained:

U
j
ξ (r, z) = 1√

π22j (2j)!

√
2

w(z)
e−i(2j+1)χ(z)e

i
k0n0r

2

2R(z) e
− r2

w2(z) ×

×H2j

( √
2

w(z)

[
y cos

θ0

2
− x sin

θ0

2

])
. (40)

In Figs. 3 and 4 we show the intensity distributions associated with these states
for zR = 0.5/Ω . The coherent state exhibits the typical rectangular symmetry of
Hermite–Gaussian states, where the parameter j defines the number of nodes of the
field intensity. The variation of the parameter θ0 induces rotations of the distribution
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around the optical axis with period 4πzR according to the argument of the Hermite
polynomial in expression (40). In Fig. 4 we show the intensity distribution as a
function of z (left) and as a function of θ0 (right). For this particular value of zR
the periods of self-focusing and rotation around the optical axis coincide.

For the choice φ0 = π we have ξ = − θ0
2 and the corresponding coherent state

can be easily constructed from (40) with the substitution θ0 → −θ0.
On the other hand, for the choice z = 0, θ0 = π

2 , and φ0 = ∓π
2 , we have ξ =

±i π4 . Let us denote the corresponding coherent state by Ui±(r, 0). Equation (35)
reduces to

± i

(
x
∂

∂y
− y

∂

∂x

)
U
j
±(r, 0) = −2jUj

±(r, 0). (41)

This equation can be identified with the eigenvalue equation for the orbital angular
momentum in the z-direction

∓ k0LzU
j
±(r, 0) = ±i

∂

∂θ
U
j
±(r, 0) = −2jUj

±(r, 0), (42)

with θ the polar coordinate. This means that the coherent state Uj
±(r, 0) is a mode

of definite orbital angular momentum � = ±2j so that it can be written as

U
j
±(r, 0) = ψj (r)e±i2jθ .

Now, in order to determine the function ψj(r), it is convenient to express the
Eq. (34) in polar coordinates. We have

−w2
0

4

(
d2

dr2 + 1

r

d

dr
− 4j2

r2

)
ψj(r) + 1

w2
0

r2ψj (r) = (2j + 1)ψj (r).

This equation can be transformed into a confluent hypergeometric one [20, 21].
Indeed, with the substitution

ψj (r) = "j e− "
2 φ("), " = 2

w2
0

r2,

we get

[
"

d2

d"2 + (2j + 1 − ")
d

d"

]
φ(") = 0.



Hermite Coherent States for Quadratic Refractive Index Optical Media 337

Fig. 5 Hermite-su(2) coherent state for 2j = 3 and zR = 0.5/Ω: (Left, Center) Intensity
distribution as a function of x and y. (Right) Dynamics of the coherent beam as it propagates
along the z-axis. The width of the beam oscillates with a period 2πzR . The transversal variables x,
y are measured in units of w0 while the longitudinal one z is measured in units of zR

The solution to this equation that leads to a well-behaved function ψj (r) is a
constant, and, hence, the normalized coherent state has the form

U
j
±(r, 0) = 1√

π(2j)!
√

2

w0

(√
2

w0
r

)j

e
− r2

w2
0 e∓i2jθ , (43)

while its evolved version reads

U
j
±(r, z) = 1√

π(2j)!
√

2

w(z)

( √
2

w(z)
r

)j

e−i(2j+1)χ(z) e
i
kon0r

2

2R(z) e
− r2

w2
0 e∓i2jθ .

(44)

As these coherent states are eigenvectors of the orbital angular momentum operator,
they exhibit axial symmetry. Indeed, they correspond to the Laguerre–Gaussian
modes of degree p = 0 and order � = ±2j (see [10]). In Fig. 5 we show the
behavior of the intensity distribution for j = 3

2 as a function of the transversal
coordinates, as well as its evolution along the optical axis.

7 Summary

We addressed the construction of ladder operators for the set of Hermite–Gaussian
modes associated with an optical medium with quadratic refractive index. The
case of the homogeneous medium is recovered in the limit as the parabolicity
parameter of the medium Ω → 0. In this limit the ladder operators coincide
with the creation and annihilation operators for the Hermite–Gaussian modes in
free space [1], with the creation and annihilation operators for the harmonic states
of the free particle [11], and with the invariant generalized ladder operators of
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the parametric harmonic oscillator [22]. Next, the z-dependent Glauber coherent
states were determined as eigenstates of the annihilation operators. These coherent
states turn out to be Gaussian wave-packets for which their centers follow classical
trajectories associated with the paths of the corresponding rays in the geometrical
optics limit. Second order operators satisfying su(1, 1) and su(2) commutation rules
were defined as compositions of the Hermite–Gaussian modes ladder operators.
These allowed us to construct su(1, 1) and su(2) Hermite coherent states, in the
Perelomov approach, as solutions of differential equations admitting separation of
variables for z = 0. Finally, the dynamics of these coherent states as they propagate
along the optical axis were determined by the means of the corresponding evolution
operator W(z).

Acknowledgements The financial support of CONACyT, Mexico (Project A1-S-24569 and grant
257292 for ZG), Instituto Politécnico Nacional, Mexico (Project SIP20180377), the Spanish
MINECO (Pro. MTM2014-57129-C2-1-P), and Junta de Castilla y León, Spain (VA137G18) is
acknowledged. The authors are indebted to Prof. J. Negro for enlightening comments and to the
anonymous referee for valuable suggestions. Z. Gress is grateful to the Valladolid University for
kind hospitality.

References

1. G. Nienhuis, L. Allen, Paraxial wave optics and harmonic oscillators. Phys. Rev. A 48, 656
(1993)

2. S.G. Krivoshlykov, N.I. Petrov, I.N. Sisakyan, Correlated coherent states and propagation
of arbitrary Gaussian beams in longitudinally homogeneous quadratic media exhibiting
absorption or amplification. Sov. J. Quantum Electron. 16, 933 (1986)

3. N.I. Petrov, Macroscopic quantum effects for classical light. Phys. Rev. A 90, 043814 (2014)
4. D. Stoler, Operator methods in physical optics. J. Opt. Soc. Am. 71, 334 (1981)
5. M.A.M. Marte, S. Stenholm, Paraxial light and atom optics: the optical Schrod̈inger equation

and beyond. Phys. Rev. A 56, 2940 (1997)
6. S. Cruz y Cruz, O. Rosas-Ortiz, Leaky modes of waveguides as a classical optics analogy of

quantum resonances. Adv. Math. Phys. 2015, 281472 (2015)
7. D. Gloge, D. Marcuse, Formal quantum theory of light rays. J. Opt. Soc. Am. 59, 1629 (1969)
8. G. Nienhuis, J. Visser, Angular momentum and vortices in paraxial beams. J. Opt. A: Pure

Appl. Opt. 6, S248 (2004)
9. S. Cruz y Cruz, Z. Gress, Group approach to the paraxial propagation of Hermite–Gaussian

modes in a parabolic medium. Ann. Phys. 383, 257 (2017)
10. A.E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986)
11. J. Guerrero, F.F. López-Ruiz, V. Aldaya, F. Cossío, Harmonic states for the free particle. J.

Phys. A: Math. Theor. 44, 445307 (2011)
12. J. Guerrero, F. F. López-Ruiz, The quantum Arnold transformation and the Ermakov–Pinney

equation. Phys. Scr. 87 038105 (2013)
13. J. Guerrero, F.F. López-Ruiz, On the Lewis–Riesenfeld (Dodonov–Man’ko) invariant method.

Phys. Scr. 90 074046 (2015)
14. A. Perelomov, Generalized Coherent States and their Applications (Springer, Berlin, 1986)
15. R.R. Puri, SU(m, n) coherent states in the bosonic representation and their generation in

optical parametric processes. Phys. Rev. A 50, 5309 (1994)



Hermite Coherent States for Quadratic Refractive Index Optical Media 339

16. P. Shanta, S. Chaturvedi, V. Srinivasan, G.S. Agarwal, C.L. Mehta, Unified approach to
multiphoton coherent states. Phys. Rev. Lett. 72, 1447 (1994)

17. R.R. Puri, G.S. Agarwal, SU(1, 1) coherent states defined via a minimum-uncertainty product
and an equality of quadrature variances. Phys. Rev.A 53, 1786 (1996)

18. I. Dhand, B.C. Sanders, H. de Guise, Algorithms for SU(n) boson realizations and D-
functions. J. Math. Phys. 56, 111705 (2015)

19. J. Schwinger, Quantum Theory of Angular Momentum (Academic, New York, 1965), pp. 229–
279

20. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables (Dover, Washington, DC, 1970)

21. J. Negro, L.M. Nieto, O. Rosas-Ortiz, Confluent hypergeometric equations and related solvable
potentials in quantum mechanics. J. Math. Phys. 41,7964 (2000)

22. O. Castaños, D. Schuch, O. Rosas-Ortiz, Generalized coherent states for time-dependent and
nonlinear Hamiltonian operators via complex Riccati equations. J. Phys. A: Math. Theor. 46,
075304 ( 2013)



Analysis of CP N−1 Sigma Models via
Soliton Surfaces

Piotr P. Goldstein and Alfred M. Grundland

Abstract In this paper we present results obtained from the study of an invariant
formulation of completely integrable CPN−1 Euclidean sigma models in two
dimensions defined on the Riemann sphere, having finite actions. Surfaces con-
nected with the CPN−1 models, invariant recurrence relations linking the successive
projection operators, and immersion functions of the surfaces are discussed in detail.
We show that immersion functions of 2D-surfaces associated with the CPN−1

model are contained in 2D-spheres in the su(N) algebra. Making use of the fact that
the immersion functions of the surfaces satisfy the same Euler–Lagrange equations
as the original projector variables, we derive surfaces induced by surfaces and
prove that the stacked surfaces coincide with each other, which demonstrates the
idempotency of the recurrent procedure. We also demonstrate that the CPN−1

model equations admit larger classes of solutions than the ones corresponding
to rank-1 Hermitian projectors. This fact allows us to generalize the Weierstrass
formula for the immersion of 2D-surfaces in the su(N) algebra and to show that,
in general, these surfaces cannot be conformally parametrized. Finally, we consider
the connection between the structure of the projective formalism and the possibility
of spin representations of the su(2) algebra in quantum mechanics.
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1 Introduction

Integrable models and their continuous deformations under various types of dynam-
ics have produced a great deal of interest and activity in several branches of
mathematics, physics, and biology. Soliton surfaces associated with integrable
models, and with the CPN−1 sigma model in particular, have been shown to
play an essential role in many problems with physical applications (see, e.g.,
[2, 11, 16, 17, 19, 20]). The possibility of using a rank-1 projector formalism
associated with the CPN−1 model to construct soliton surfaces has yielded many
new results concerning the intrinsic geometric properties of such surfaces (see, e.g.,
[1]). In this vein, it has recently proved fruitful to extend such characterizations of
soliton surfaces via their immersion functions in Lie algebras, based on projectors
of rank higher than one. The construction of such surfaces related to the completely
integrable CPN−1 sigma model in two dimensions has been accomplished by
representing the equation of motion for the model as a conservation law which in
turn provides a closed differential for the surface. This is the so-called generalized
Weierstrass formula for immersion [15]. The results obtained [7, 9, 10, 12–14, 18]
proved to be fruitful from the point of view of constructing multileaf soliton surfaces
immersed in Lie algebras. This paper contains a survey of these results for the
immersion of soliton surfaces, particularly as applied to the integrable CPN−1

sigma model, and its link to the quantum mechanics of spin representations of the
su(2) algebra.

2 The Projector Formalism and Solitons Obtained via
CP N−1 Sigma Models

The description of the CPN−1 model in terms of projection operators and the
properties of the orthogonal projection matrices P (mapping onto one-dimensional
subspaces of CN ) can be summarized as follows.

The CPN−1 models are defined by their action integral and can be defined in
terms of the homogeneous variables (see, e.g., [25] and the references therein)

C ⊇ Ω � ξ = ξ1 + i ξ2 �→ f = (f 0, f 1, . . . , f N−1) ∈ C
N \ {0}. (2.1)

The action integral for a CPN−1 model on a Riemann surface R having domain in
Ω ⊂ C can be written in terms of the homogeneous variables

A(f ) = 1

4

ˆ
Ω

1

f †f

(
∂+f †P∂−f + ∂−f †P∂+f

)
dξdξ̄ , (2.2)
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where P is a rank-1 Hermitian projector

P =f ⊗ f †

f †f
,

P 2 = P, P † = P, trP = 1,

(2.3)

and the complex derivatives ∂+ and ∂− with respect to ξ and ξ̄ are given by

∂+ = 1

2
(∂1 − i ∂2) , ∂− = 1

2
(∂1 + i ∂2) , ∂1 = ∂

∂ξ1
, ∂2 = ∂

∂ξ2
. (2.4)

In this formulation the action integral (2.2) can be expressed in a more compact way
in terms of the projectors P , which are explicitly scaling-invariant, namely

A(P ) =
ˆ
Ω

tr (∂+P · ∂−P) dξdξ̄ , (2.5)

and its extremum is subject to the algebraic constraints (2.3).
The Euler–Lagrange (EL) equations corresponding to the action integral (2.5)

with these constraints take the simple form [7, 13]

[∂+∂−P,P ] = ∅, (2.6)

or equivalently can be written as the conservation law (CL)

∂+ [∂−P,P ] + ∂− [∂+P,P ] = ∅. (2.7)

In what follows we assume that the model (2.7) is defined on the Riemann sphere
S2 = C ∪ {∞} and that its action functional (2.5) is finite. According to [5, 6, 21],
for finite action integrals, all rank-1 projectors P(ξ, ξ̄ ) as well as the corresponding
homogeneous vectors

f0 =
(
f 0

0 , f
1
0 , . . . , f

N−1
0

)
∈ C

N \ {0} (2.8)

can be obtained by acting on the holomorphic (or antiholomorphic) solution f0 (or
fN−1) with raising (creation) and lowering (annihilation) operators. In terms of f ,
the recurrence relations are given by [5, 6]

fk+1 = P+(fk) = (IN − Pk) ∂+fk, fk−1 = P−(fk) = (IN − Pk) ∂−fk,

P 0± = IN, PN± fk = 0, k = 0, 1, . . . , N − 1, (2.9)

where P+ is the creation operator and P− is the annihilation operator.
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The equations satisfied by fk, k = 0, . . . N − 1 are invariant under multipli-
cation of the f ’s by any scalar function of (ξ, ξ̄ ). Therefore “holomorphic” (or
“antiholomorphic”) means that there exists a solution (2.8) whose all components
are holomorphic (or similarly fN−1 with all antiholomorphic components). The
holomorphic or antiholomorphic property of f can easily be checked by dividing all
components of f by the first one f 0

0 (or f 0
N−1) and thus setting the first component

equal to 1.
In terms of the projectors Pk the raising and lowering operators are given by

Goldstein and Grundland [7]

P±1 = Π±(P ),

Π+(P ) =
{

∂+PP∂−P
tr(∂+PP∂−P) for ∂+PP∂−P �= ∅,

∅ for ∂+PP∂−P = ∅,

Π−(P ) =
{

∂−PP∂+P
tr(∂−PP∂+P) for ∂−PP∂+P �= ∅,

∅ for ∂−PP∂+P = ∅,

(2.10)

where P stands for one of the projectors {P0, P1, . . . , PN−1}. Note that Eq. (2.10)
are nonlinear and the objects on which they act have to remain normalized to retain
their projective character.

The set of N rank-1 projectors {P0, P1, . . . , PN−1} satisfies the orthogonality
and completeness relations

PjPk = δjkPj (no summation),

N−1∑
j=0

Pj = IN.
(2.11)

The first vector f0 is holomorphic and the last one fN−1 is antiholomorphic [5]

∂−f0 = 0, ∂+fN−1 = 0. (2.12)

Therefore the annihilation operator acting on f0 and the creation operator acting on
fN−1 yield zero. Thus the sequence of solutions in the CPN−1 model consists of
N vectors fk or N rank-1 projectors Pk , 0 ≤ k ≤ N − 1. The procedure given in
[5, 6], for N > 2, allows us to construct three classes of solutions: holomorphic f0,
antiholomorphic fN−1, and mixed solutions fk , 1 ≤ k ≤ N − 2.

Note that if the target space f of P is a direction of a holomorphic or an
antiholomorphic function f (ξ) or f (ξ̄ ) (i.e., if it depends on only one of the two
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independent variables ξ or ξ̄ ) then we obtain an analogue of the first Frenet formula
[8],

∂+PP = 1

f †f
(IN − P) ∂+f ⊗ f †,

P ∂−P = 1

f †f
f ⊗ ∂−f † (IN − P) .

(2.13)

For a given set of N rank-1 projector solutions Pk of the EL equations (2.7)
written as conservation laws

∂+ [∂−Pk, Pk] + ∂− [∂+Pk, Pk] = ∅, (2.14)

the generalized Weierstrass formula for the immersion (GWFI) of two-dimensional
surfaces is defined by the contour integral [12, 15] of the su(N) matrix-valued 1-
form

Xk(ξ, ξ̄ ) = i
ˆ
γk

(− [∂+Pk, Pk] dξ + [∂−Pk, Pk] dξ̄
) ∈ su(N) � R

N2−1,

(2.15)

where γk is a trajectory in C. The CLs ensure that the contour integral is locally
independent on the trajectory γk and can be explicitly integrated [12]

Xk(ξ, ξ̄ ) = − i

⎛
⎝Pk + 2

k−1∑
j=0

Pj

⎞
⎠ + i ckIN ∈ su(N),

ck = 1

N
(1 + 2k) .

(2.16)

For each index k, the projectors Pk satisfy the eigenvalue equations

(Xk − i λkIN) Pk = ∅ (2.17)

with

λk =
⎧⎨
⎩
ck−2 j < k,

ck−1 j = k,

ck j > k.

(2.18)

Note that

[
Xk, Pj

] = 0, 0 ≤ k, j ≤ N − 1, (2.19)
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whence the immersion functions Xk span a Cartan subalgebra of su(N)

[
Xk,Xj

] = 0, 0 ≤ k, j ≤ N − 1. (2.20)

The matrix-valued immersion functions Xk(ξ, ξ̄ ) satisfy the following minimal
polynomial identities [7]:

1. For any mixed solution of the EL equations (2.14), 1 ≤ k ≤ N − 2, the minimal
polynomial is cubic

[Xk − i ckIN ] [Xk − i(ck − 1)IN ] [Xk − i(ck − 2)IN ] = ∅,

1 ≤ k ≤ N − 2.
(2.21)

2. For any holomorphic (k = 0) or antiholomorphic (k = N − 1) solutions of EL
equations (2.14), the minimal polynomial is quadratic

k =0 : [X0 − i c0IN ] [X0 − i(c0 − 1)IN ] = ∅, c0 + cN = 2,

k =N − 1 : [XN−1 + i c0IN ] [XN−1 + i(c0 − 1)IN ] = ∅.
(2.22)

For the sake of uniformity, the inner product is defined by

(A,B) = −1

2
tr (A · B) , A,B ∈ su(N). (2.23)

The quadratic expressions for the immersion functions Xk are given by

(Xk,Xk) = 1

2
[Nck (2 − ck) − 1] = const. (2.24)

This means that the surfaces described by (2.21) and (2.22) are submanifolds of

the compact sphere with the radius
[
N
2 ck (2 − ck) − 1

2

]1/2
immersed in R

N2−1 �
su(N).

The projectors Pk fulfill the completeness relation (2.11) which implies in turn
that the immersion functions Xk satisfy the linear relation

N−1∑
k=0

(−1)k Xk = ∅. (2.25)

We can reconstruct all projectors Pk using the immersion functions Xk and the unit
matrix IN . The inverse formulae are given by Goldstein and Grundland [7]

Pk = X2
k − 2 i (ck − 1)Xk − ck (ck − 2) IN, (2.26)

but these formulae are nonlinear.
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For the CPN−1 models, the spectral problem is closely related to the immersion
functions of 2D soliton surfaces. The CPN−1 models with finite action inte-
grals (2.5) are completely integrable. The linear spectral problem (LSP) associated
with the CL (2.7) is given by Zakharov and Mikhailov [24]

∂+Φk = U1
k Φk = 2

1 + λ
[∂+Pk, Pk]Φk,

∂−Φk = U2
k Φk = 2

1 − λ
[∂−Pk, Pk]Φk,

(2.27)

where λ ∈ C is the spectral parameter. An explicit solution of the LSP (2.6) for
which the wavefunctions Φk tend to the unit matrix IN as λ → ∞ [6]

Φk = IN + 4λ

(1 − λ)2

k−1∑
j=0

Pj − 2

1 − λ
Pk ∈ SU(N), λ = i t, t ∈ R,

Φ−1
k = IN − 4λ

(1 + λ)2

k−1∑
j=0

Pj − 2

1 + λ
Pk,

(2.28)

and the zero-curvature condition (ZCC) takes the form

∂−U1
k − ∂+U2

k +
[
U1
k , U

2
k

]
� [∂+∂−Pk, Pk] = 0. (2.29)

The relation between the wavefunctions Φk and the immersion functions Xk is given
by the Sym-Tafel (ST) formulas [23] yielding soliton surfaces

XST
k

(
ξ, ξ̄ , λ

) = − iΦ−1
k

∂

∂λ
Φk + i ckIN

= −2 i

(1 − λ)2

⎡
⎣Pk + 2

k−1∑
j=0

Pj − ckIN

⎤
⎦ ∈ su(N).

(2.30)

These formulae are identical to the generalized Weierstrass immersion functions
Xk given in the expression (2.16), up to a multiplicative constant. Therefore in
conformal coordinates we obtain, as a result, a sequence of surfaces Xk whose
structural equations are identical to the EL equations (2.6) for the CPN−1 model

[∂+∂−Xk,Xk] = 0, X†
k = −Xk ∈ su(N), 0 ≤ k ≤ N − 1 (2.31)

and thus they are the soliton surfaces for the CPN−1 model. The corresponding
creation and annihilation operators for the immersion functions Xk were found in
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[18]. They are defined by

X±1 = X±(P ), (2.32)

and their explicit forms are [18]

X±(X) =
{

∂±XX∂∓X
tr(∂±XX∂∓X) ∂±XX∂∓X �= ∅,

∅ ∂±XX∂∓X = ∅,
(2.33)

where X stands for one of the immersion functions {X0, X1, . . . , XN−1}. Note that
X is orthogonal to X±(X), i.e.,

(X,X±(X)) = 0. (2.34)

Note that in view of the linear dependence of the immersion function Xk , i.e.,
Eq. (2.25), the ST formula (2.30) leads us to the following differential constraint
on the wavefunctions Φk:

N−1∑
j=0

(−1)jXST
j =

(
1 − λ2

)
∂λ ln

N−1∏
j=0

Φ
(−1)j

j = 0.

This implies that the expression

∏
2l<N

Φ2l

∏
2l+1<N

Φ−1
2l+1

is independent of the spectral parameter λ, but it may depend on the coordinates
ξ, ξ̄ ∈ C.

Let us now explore certain geometrical aspects of surfaces immersed in the
su(N) algebra. The complex tangent vectors are

∂±Xk = − i ∂±Pk − 2 i
k−1∑
j=0

∂±Pj , (2.35)

and the corresponding metric tensors defined on these surfaces Xk are conformally
parametrized

(gk)±± = −1

2
tr (∂±Pk · ∂±Pk) = 0,

(gk)±∓ = −1

2
tr (∂+Pk · ∂−Pk) = 1

2
[Nck (2 − ck) + 1] .

(2.36)
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This gives us the following expressions for the first and the second fundamental
forms [7]

Ik = tr (∂+Pk · ∂−Pk) dξdξ̄ , (2.37)

IIk = −tr (∂+Pk · ∂−Pk) ∂+
(

[∂+Pk, Pk]

tr (∂+Pk · ∂−Pk)

)
dξ2 + 2 i [∂−Pk, ∂+Pk] dξdξ̄

+tr (∂+Pk · ∂−Pk) ∂−
(

[∂−Pk, Pk]

tr (∂+Pk · ∂−Pk)

)
dξ̄2.

The Gaussian curvature Kk and the mean curvatures Hk (written in matrix form)
take the forms

Kk = −∂+∂− ln |tr (∂+Pk · ∂−Pk)|
tr (∂+Pk · ∂−Pk)

,

Hk = −4 i

tr (∂+Pk · ∂−Pk)
[∂+Pk, ∂−Pk] ∈ su(N),

(2.38)

where

tr (Hk) = 0, (Hk, ∂±Xk) = 0. (2.39)

This result allows us to compute the Willmore functionals [7]

Wk =
¨

S2
tr ([∂+Pk, ∂−Pk])2 dξ1dξ2, (2.40)

where the integration is over the whole Riemann sphere S2 ∼= C ∪ {∞}. The
topological charges Qk associated with these surfaces are [7]

Qk = − 2

π

¨
S2

tr (Pk · [∂+Pk, ∂−Pk]) dξ1dξ2. (2.41)

The Euler–Poincaré characters associated with these surfaces are given by Goldstein
and Grundland [7]

Δk = − 1

π

¨
S2
∂+∂− ln |tr (∂+Pk · ∂−Pk)| dξ1dξ2. (2.42)

The integrals (2.40)–(2.42) exist and provide global characterization of these
surfaces. The fact that all soliton surfaces Xk possess the same value of the Euler–
Poincaré character, equal to 2, and positive Gaussian curvature Kk > 0 means that
all surfaces are homeomorphic to spheres.
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It is easy to prove [8] that for k �= l the surfaces Xk and Xl do not have common
points, with the exception of X0 and X1 in the CP 1 model, where according
to (2.25) X0 coincides with X1.

Proof Indeed, let Xk coincide with Xl at some point
(
ξ, ξ̄

) ∈ C. In view of (2.16),
subtracting Xl from Xk for l > k, we get

Pl − Pk + 2
l−1∑
j=k

Pj − 2

N
(l − k) IN = ∅. (2.43)

This relation implies that
(

1 − 2

N
(l − k)

)
Pk = ∅,

(
1 − 1

N
(l − k)

)
Pl−1 = ∅, for k < l − 1, (2.44)

(
1 − 2

N

)
Pk = ∅, for k = l − 1.

Equations (2.44) can only be satisfied when N = 2, l = 1, k = 0. Hence X1 = X0.
This equality holds for all points due to the fact that (2.25) holds.

The interesting case of surfaces having constant Gaussian curvature was dis-
cussed in detail by Delisle, Hussin, and Zakrzewski, also for higher-rank Grassman-
nians, in [3, 4].

3 Stack of Conformally Parametrized Surfaces

The immersion functions Xk of the 2D-soliton surfaces satisfy the same EL equa-
tions (2.31) as the original rank-1 projectors Pk (2.6). This suggests a possibility
of further construction of surfaces induced by surfaces, etc., up to a whole stack
of surfaces. An unexpected result comes from the fact that the surfaces Yk over the
surfaces Xk prove to be identical to the original surfaces Xk up to a factor of (−1) if
we require that the induced surfaces be elements of the su(N) algebra. The surfaces
over surfaces are defined by the contour integrals

Yk
(
ξ, ξ̄

) = i
ˆ
γk

(− [∂+Xk,Xk] dξ + [∂−Xk,Xk] dξ̄
) ∈ su(N). (3.1)

The integrals in (3.1) are also contour-independent because the EL equations (2.31)
written in terms of the su(N)-valued immersion functions Xk can be written as the
CLs

∂+ [∂−Xk,Xk] + ∂− [∂+Xk,Xk] = 0. (3.2)
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The complex tangent vectors ∂+Yk and ∂−Yk are obviously

∂+Yk = − i [∂+Xk,Xk] , ∂−Yk = i [∂−Xk,Xk] . (3.3)

We now derive surfaces obtained from rank-1 projectors induced by surfaces and
show that the surfaces within the stack of surfaces coincide with each other, which
demonstrates the idempotency of the recurrence procedure.

Proposition 1 ([9]) Let the CPN−1 model be defined on the Riemann sphere and
have a finite action functional. Then the surfaces Yk over the surfaces Xk defined by
the contour integral (expressed in terms of the rank-1 projectors Pk and the identity
matrix) (3.1) are identical to the initial surface (2.16) from which the surfaces were
derived, up to a factor of (−1).

Outline of the proof. By direct computation of the complex tangent vectors of
∂+Yk and ∂−Yk from the projector properties we obtain

∂+Yk = −∂+Xk, ∂−Yk = −∂−Xk,

which implies

Yk = −Xk (3.4)

if we require that both Yk and Xk be elements of the algebra su(N). This means
that the process of building the stack in which each next step is a surface over the
previous step becomes idempotent.

4 Higher-Rank Projectors and Superposition Formula
for Immersions

The EL equations (2.6) with the property P 2 = P admit a larger class of solutions
than the rank-1 Hermitian projectors Pk . We show that any linear combination of
rank-1 projectors Pk satisfying the EL equations is itself a projector which satisfies
the EL equations.

Proposition 2 ([9]) Let P be any linear combination of rank-1 Hermitian projec-
tors Pk where not all λk are necessarily zero

P =
N−1∑
k=0

λkPk, λk ∈ R, (4.1)

which have been obtained from P0 by raising operators (2.10) and each Pk satisfies
the EL equations (2.6). Then P also satisfies the EL equations (2.6). If in addition,
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for all indices i, j ∈ {0, . . . , N − 1} we have

λi = 0 or λj = 1, (4.2)

then P is a higher-rank projector satisfying the idempotency condition

P 2 = P. (4.3)

In this case P maps the C
N space onto C

m, where

m =
N−1∑
i=0

λi.

Proof The proof is based on the Clebsch–Gordan decompositions. Namely, if Pk
satisfies the EL equations (2.6), then the second mixed derivatives of Pk can be
represented as a combination of at most three rank-1 neighboring projectors [9]

∂+∂−Pk = α̂kPk−1 + (
α̂k + α̌k

)
Pk + α̌kPk+1, (4.4)

where the coefficients

α̂k = tr (∂−PkPk∂+Pk) , α̌k = tr (∂+PkPk∂−Pk) ,

α̂k + α̌k = tr (∂+Pk∂−Pk) .
(4.5)

are real-valued functions. The rank-1 projectors Pk are mutually orthogonal and
they commute with each other. This implies that ∂+∂−P commutes with P , i.e.,

[∂+∂−P,P ] =
⎡
⎣∂+∂−

N−1∑
i=0

λiPi,

N−1∑
j=0

λjPj

⎤
⎦

=
N−1∑
i,j=0

λiλj
{
α̌i
[
Pi−1, Pj

] + α̂i
[
Pi+1, Pj

] − (
α̌i + α̂j

) [
Pi, Pj

]}

= 0. (4.6)

The linear combination of rank-1 projectors Pk is a projector of higher rank. If P
satisfies the condition (4.3), then this implies that for all i, j,∈ {0, . . . , N − 1}, the
coefficients λi satisfy (4.2).

Note that the coefficients α̂k and α̌k have physical and geometrical interpreta-
tions. The coefficients (α̂k + α̌k) constitute the Lagrangian density in the action
functional (2.5). Moreover, we have shown that

tr (∂+Xk∂−Xk) = −tr (∂+Pk∂−Pk) , 0 ≤ k ≤ N − 1,
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which is also the Lagrange density for the 2D-surface immersion functions. It is
also the non-diagonal element of the metric tensor (gk)±∓ on the surface Xk (see
Eq. (2.36)), which is also an element of the area of the surfaceXk . In this way α̂k+α̌k
determines the metric properties of the surfaces and hence all surfaces of the stack.

Note that the inverse theorem is not true. For r >1, there exist decompositions of
rank-r projectors which satisfy the EL equations (2.6) into rank-1 projectors which
do not satisfy them. For example, the 2 × 2 identity matrix I2 obviously satisfies the
EL equations (2.6), whereas it may be decomposed into P1 + (I2 − P1) where P1
can be any rank-1 projector function including those which do not satisfy the EL
equations (2.6).

We now show that any linear combination of immersion functions Xk satisfying
the EL equations is itself an immersion function which satisfies the EL equations.

Proposition 3 ([9]) Let a matrix function X be a linear combination of immersion
functions Xk of 2D-surfaces in the su(N) algebra

X =
N−1∑
k=0

λkXk, (4.7)

where λk are complex-valued constants. Let the Xk satisfy the EL equations (2.6).
Then X also satisfies the EL equations [∂+∂−X,X] = 0. If, in addition, all λk are
real-valued constants, then the immersion function of the multileaf X is also an
element of the su(N) algebra.

Proof The proof is straightforward, based on the fact that the 2D-surface immersion
functions Xk are linear combinations of rank-1 projectors Pk and the identity matrix
IN (see Eq. (2.16)). Hence, ∂+∂−X commute with X. Note that if all λk are 0 or 1
then the surface is represented by the multileaf immersion function X which is a
union of the 2D-surfaces Xk represented by those Xk for which λk = 1, which are
immersed in the N2 − 1 dimensional su(N) algebra.

For m > k, the immersion functions Xk and Xm make a constant angle φkm
between them which does not depend on the choice of the P0 solution of the EL
equations (2.6), nor on the coordinates

(
ξ, ξ̄

) ∈ C

cosφkm = ck(2 − cm){[
ck(2 − ck) − 1

N

] [
cm(2 − cm) − 1

N

]}1/2 ∈ (0, 1), (4.8)

since

(Xk,Xm) = N

2
ck(2 − cm)

holds and (Xk,Xk) is given by (2.24). The fact that the angles φkm between Xk and
Xm remain the same does not imply anything about the mutual inclination of the
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surfaces (whose angle is not well defined). It means that given N, k, and m, we
can simultaneously plot both surfaces Xk,Xm ∈ su(N) with a compass whose legs
are at a constant angle dependent on these three integers only. Obviously, the angle
between the legs φkm ∈ [0, π ] is uniquely defined by its cosine. For example, in the
CP 3 case the cosines of φkm for N = 4, k = 0, 1, 2, and m = 1, 2, 3 are given by

k\m 1 2 3
0 5/

√
33

√
3/11 1/3

1 9/11
√

3/11
2 5/

√
33

A question arises: does the idempotency stated in Proposition 2 hold for the
surfaces corresponding to higher-rank projectors?

Let P be a projector of rank r > 1 satisfying the EL equations (2.6) which have
the projective property P 2 = P . Let the immersion function X be obtained from P

by the contour integral (2.15) and the “surface over the surface.” Will this Y prove
to be the same immersion function as X up to a constant factor? The answer is
negative, even if the projector P is a linear combination of rank-1 projectors (4.1)
where the coefficients λk are 0 or 1. Direct computation shows that the complex
tangent vectors ∂+Y and ∂−Y have a nonzero remainder. Namely, we have

∂+Y = −
N−1∑
k=0

λ2∂+Xk + 2 i
N−1∑
l=0

N−1∑
k=0

λkλl

⎧⎨
⎩∂+PkPk − Pl∂+Pl

+ (∂+Pk + ∂+Pl)
l−1∑
j=k

Pj +
l−1∑
j=k

Pj (∂+Pk + ∂+Pl)

⎫⎬
⎭ . (4.9)

and its respective complex conjugate. The first sum in (4.9) implies that Y = −X

provided that the λk are 0 or 1 but the remainder in (4.9) may be nonzero. The same
holds for ∂−Y . This means that the idempotency in the stack of surfaces does not
hold if we start from projectors of rank-r > 1.

5 Spin Matrices Obtained via su(2) Projective Structures

The matrices S which represent spins or isospins generate subalgebras of su(2) in
the subspace C2, which is linked with the CP 1 model (N = 2) and can be expressed
in terms of linear combination of rank-1 projectors [10]

S = s0P0 + s1P1, S† = S, sk = k − 1

2
, k = 0, 1. (5.1)

The eigenvalues of the matrix S representing particles of spin are − 1
2 and 1

2 .
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Proposition 4 The matrices S which represent spins are conjugate to

(
− i

2

)
(X0 + X1) = − iX0. (5.2)

This means that every spin field is conjugate, up to a factor of
(
− i

2

)
to the

surface X0. Expressing X0 in terms of the rank-1 projectors Pk , we get (5.1). Note
that the expression on the right-hand side is conjugate to any su(2) matrix whose
eigenvalues are given by s0 = − 1

2 and s1 = 1
2 .

Proposition 5 There is a one-to-one correspondence of the surface − iX0
immersed in su(2) algebra with the quantum spin fields, provided that the Killing
form which determines the length of the spin matrix S is defined as

(S, S) = 3

2
tr (S · S) . (5.3)

Remark 1 The absence of the minus sign in the expression (5.3), in contrast to
the classical Killing form (2.23), arises from the fact that the spin matrices S are
Hermitian while elements of the su(2) algebra are anti-Hermitian.

Proof The spin matrices S have to satisfy the two conditions:

1. The eigenvalues of a spin z-component (or those of the projection of the spin in
any direction) assume the half integer values s0 = − 1

2 and s1 = 1
2 .

2. The length of a spin field S has to be [17, 22]

[s(s + 1)]1/2 =
√

3

2
. (5.4)

On the other hand, the square of the length has to be determined as a multiplier of
the scalar product, i.e., the Killing form

s(s + 1) = c tr (S · S) ,

where c is a real constant. From (5.1), we get

s(s + 1) = c tr

⎛
⎝
[

1∑
k=0

(
k − 1

2

)
Pk

]2⎞
⎠ .

Substituting s = 1
2 and making use of the orthogonality relation (2.11) for rank-1

projectors, we obtain c = 3
2 .
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6 Final Remarks

The technique presented above for constructing an increasing number of surfaces
associated with CPN−1 sigma models on Euclidean spaces provides us with an
effective tool for finding them without requiring any additional consideration, but
proceeding directly from the given CPN−1 model.

In the next stage of this research, it would be worthwhile to identify the general
solution of the EL equations (2.6), a result which, up to now, remains an open
problem. It would also be interesting to extend this technique to different types of
Grassmannian manifolds, such as

Grp,q(C) = SU(p + q)/ [S (U(p) × U(q))] ,

and also their symplectic analogue defined over the quaternionic field, e.g.,

Grp,q(H) = Sp(p + q)/ [Sp(p) × Sp(q)]

in the compact case. Their important common properties are that the EL equations
can be written in terms of higher-rank projectors. These equations share many
properties such as an infinite number of local or nonlocal conserved quantities,
infinite-dimensional symmetry algebras, Hamiltonian structures, complete integra-
bility, and the existence of multisoliton solutions. Investigating these manifolds can
provide us with much more diverse types of surfaces than those discussed here. It
would also be pertinent to further develop these models via the SU(2) coherent
states approach [14]. This task will be undertaken in a future work.
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On the Equivalence Between Type I
Liouville Dynamical Systems in the Plane
and the Sphere

Miguel A. González León, Juan Mateos Guilarte,
and Marina de la Torre Mayado

Abstract Separable Hamiltonian systems either in sphero-conical coordinates on
an S2 sphere or in elliptic coordinates on a R

2 plane are described in a unified
way. A back and forth route connecting these Liouville Type I separable systems is
unveiled. It is shown how the gnomonic projection and its inverse map allow us to
pass from a Liouville Type I separable system with a spherical configuration space
to its Liouville Type I partners where the configuration space is a plane and back.
Several selected spherical separable systems and their planar cousins are discussed
in a classical context.

Keywords Separation of variables · Sphero-conical coordinates · Elliptic
coordinates · Liouville dynamical systems · Trajectory isomorphism

1 Introduction

Hamiltonian systems in R
2 that admit separation of variables were completely

determined by Liouville [1] and Morera [2], and can be classified, see [3], in
four different types according to the system of coordinates where the separability
is manifested: elliptic, polar, parabolic, and Cartesian, respectively. Thus Type
I Liouville systems in R

2 are defined by natural Hamiltonians: H = K + U ,

K = m
2

(
( dx1
dt
)2 + ( dx2

dt
)2
)

, that are separable in elliptic coordinates [3].
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In this work we shall establish an isomorphism between this kind of mechanical
systems and Liouville systems in S2 that are separable in sphero-conical coordinates
that, correspondingly, we shall call Type I Liouville systems in S2.

This isomorphism will be constructed by mapping the configuration space S2

by means of two gnomonic projections from the two S2-hemispheres into two R
2

planes, together with a redefinition of the physical time and the application of a
linear transformation in the projecting planes. This procedure is a generalization
of the method used in [4], where the orbits of the two fixed center problem on S2

[5, 6] were determined by inverting these transformations. The inspiration was taken
from the work of Borisov and Mamaev [7], based itself on the ideas of Albouy
[8] and Albouy and Stuchi [9]. The main novelty of [4] was the simultaneous
consideration of two gnomonic projections in order to study the complete set of
orbits, identifying each trajectory crossing the equator of S2 with the conjunction of
two planar unbounded orbits: one of the two attractive center problem and another
corresponding to the system of the two associated repulsive centers.

The idea of projecting dynamical systems in constant positive curvature surfaces
to planar ones goes back to Appell [10, 11] in the nineteenth century. Higgs and
Leemon [12] have studied the Kepler problem in S2 using this kind of techniques.
In modern times projective dynamics has been developed by Albouy [8, 13–15] and
Albouy and Stuchi [9], see also [16] for a detailed historical review and references
on problems defined in spaces of constant curvature.

The structure of this paper is as follows: In Sect. 2 the gnomonic projections
will be constructed. Section 3 is devoted to describe the properties of Liouville
type I systems, both in S2 and R

2. In Sect. 4 the isomorphism is established.
Section 5 contains several selected examples and finally some comments and future
perspectives are showed in the final section.

2 Gnomonic Projections from S2 to R
2

Let us consider the S2 sphere embedded in R
3, i.e., (X, Y,Z) ∈ R

3, such that
X2 + Y 2 + Z2 = R2. Standard spherical coordinates in S2:

X = R sin θ cosϕ , Y = R sin θ sinϕ , Z = R cos θ

θ ∈ [0, π ], ϕ ∈ [0, 2π), allow us to write the metric tensor in T S2 (i.e., the
restriction of Euclidean metric in TR3 to the sphere) in standard form:

ds2 = R2
(
dθ2 + sin2 θ dϕ2

)

The gnomonic projections from the North/South hemispheres: S2+ = {(X, Y,Z) ∈
S2/Z > 0}, S2− = {(X, Y,Z) ∈ S2/Z < 0}, to the R

2 plane, with respect to the
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Fig. 1 Gnomonic projections
Π+ and Π−

points (0, 0,±R), see Fig. 1, are defined by the change of variables

Π± : S2± −→ R
2 ⇒

⎧⎨
⎩
x = R

Z
X = R tan θ cosϕ

y = R
Z
Y = R tan θ sinϕ

, ϕ ∈ [0, 2π)

where θ ∈ [
0, π2

)
in the case of Π+ and θ ∈ (

π
2 , π

]
for Π−. The inverse maps

Π−1± : R2 −→ S2±, read:

X = Rx√
R2 + x2 + y2

, Y = Ry√
R2 + x2 + y2

, Z = ±R2
√
R2 + x2 + y2

The projections Π± define two copies of the Riemannian manifold (R2, g) where
the metric tensor g in each copy is given by:

ds2 = R2

(R2 + x2 + y2)2

(
(R2 + y2)dx2 − 2xy dx dy + (R2 + x2)dy2

)
(1)

with associated Christoffel symbols: Γ 1
22 = Γ 2

11 = 0,

Γ 1
11 = 2Γ 2

12 = 2Γ 2
21 = −2x

R2 + x2 + y2 , Γ 2
22 = 2Γ 1

12 = 2Γ 1
21 = −2y

R2 + x2 + y2 .
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Gnomonic projections map geodesics in S2 into straight lines in R
2. In fact the

geodesic equations for the metric (1):

∇ẋẋ = 0 ⇒
{
ẍ + Γ 1

11ẋ
2 + 2Γ 1

12ẋẏ + Γ 1
22ẏ

2 = 0
ÿ + Γ 2

11ẋ
2 + 2Γ 2

12ẋẏ + Γ 2
22ẏ

2 = 0

where x ≡ (x(t), y(t)) ∈ R
2 and dots represent derivative with respect to t , can

be converted, by changing from physical to local (or projected) time, into trivial
standard form:

dτ = R2 + x2 + y2

R2
dt ⇒ x′′ = 0 , y′′ = 0

where primes denote derivation with respect to τ .
Given a mechanical problem in S2 defined by a potential function U , the

projection of Newton equations in S2+ or S2− to (R2, g) can be written as:

∇ẋẋ = −gradU(x) (2)

where x ≡ (x, y), and covariant derivatives and the gradient are associated with the
g metric (1). Changing to projected time, Eq. (2) will be written as:

x′′ = −gradU(x) ⇒
{
x′′ = −g11 ∂U

∂x
− g12 ∂U

∂y

y′′ = −g21 ∂U
∂x

− g22 ∂U
∂y

(3)

where gij denote the components of g−1, the inverse of the metric g.
We now pose the following question: Is it possible to understand Eq. (3) as

Newton equations for a mechanical system in the Euclidean R
2 plane with time

τ?, in other words: Would it exists a function V(x1, x2) such that equations

x′′
1 = − ∂V

∂x1
, x′′

2 = − ∂V
∂x2

(4)

are equivalent to (3)?
The answer was given by Albouy [8] and developed explicitly by Borisov and

Mamaev [7] for the case of the Killing problem restricted to the North hemisphere,
i.e., the problem of two Kepler centers in S2+. The equivalence (trajectory isomor-
phism) was achieved in this concrete case via the linear transformation x1 = x,
x2 = 1

σ
y, for an adequate value of σ parameter, in Eq. (3). Moreover, in [7] this

isomorphism was extended to other mechanical systems and in general to systems
admitting separation of variables in sphero-conical coordinates in S2+. In [4] the
equivalence for the Killing problem was applied to the complete sphere considering
the two projections Π+ and Π− simultaneously. A delicate point is the gluing of
the inverse projections at the equator of the sphere. Orbits crossing the equator have
to be described by the differentiable gluing of two pieces coming from unbounded
orbits in each of the two planes, respectively.
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In this work, following [7], we shall show that these results are valid for the
class of Type I Liouville systems in the whole S2, i.e., separable system in sphero-
conical coordinates in S2, that are transformed by gnomonic projections and the
linear transformation into Liouville systems of Type I in R

2 (separable in elliptic
coordinates) with respect to the “non-physical” time τ .

3 Liouville Type I Systems in S2 and R
2

We shall refer to Hamilton–Jacobi separable spherical systems in sphero-conical
coordinate as Liouville dynamical systems of Type I in S2, in analogy with the
planar case for elliptic coordinates, see [3],

Sphero-conical coordinates U ∈ (σ̄ , 1), V ∈ (−σ̄ , σ̄ ) describe points in an S2-
sphere by means of the geodesic distances Rθ1 and Rθ2 from the particle position to
two fixed points that we choose without loosing generality as: F1 = (Rσ̄ , 0, Rσ),
F2 = (−Rσ̄ , 0, Rσ), σ = cos θf , σ̄ = sin θf , see Fig. 2, in the form:

θ1 = arccos(σ cos θ + σ̄ sin θ cosϕ) , θ2 = arccos(σ cos θ − σ̄ sin θ cosϕ)

Sphero-conical coordinates are thus defined by replicating on the sphere the
“gardener” construction which allowed Euler to define elliptic coordinates in R

2:

U = sin
θ1 + θ2

2
, V = sin

θ2 − θ1

2

and the change of coordinates is the following:

X = R

σ̄
UV , Y 2 = R2

σ 2σ̄ 2 (U
2 − σ̄ 2)(σ̄ 2 − V 2) , Z2 = R2

σ 2 (1 −U2)(1 − V 2) .

Fig. 2 Position of the
particle in the sphere relative
to two fixed points or foci
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The kinetic energy of a particle moving on one S2 sphere as configuration space
expressed in sphero-conical coordinates reads

K = mR2

2

[
U2 − V 2

(1 − U2)(U2 − σ̄ 2)

(
dU

dt

)2

+ U2 − V 2

(1 − V 2)(σ̄ 2 − V 2)

(
dV

dt

)2
]
,

where t is the physical time and we stress that K is singular in the equator, i.e., in
the circle: Z = 0 ≡ U = 1. Changing from physical to local time, dς = dt

U2−V 2 ,
the kinetic energy is rewritten as:

K = mR2

2(U2 − V 2)

[
1

(1 − U2)(U2 − σ̄ 2)

(
dU

dς

)2

+ 1

(1 − V 2)(σ̄ 2 − V 2)

(
dV

dς

)2
]
.

We define a natural dynamical system as Liouville of Type I in S2 if the potential
energy is a function of the form:

U(U, V ) = 1

U2 − V 2 (F (U) + G(V )) . (5)

This kind of potentials where the functions F(U) and G(V ) are regular enough give
rise to motion equations which are separable in the U and V evolutions.

Systems of this type are automatically completely integrable. The first integral of
motion, the mechanical energy E = K + U , leads to the separated expressions:

−
mR2

(
dV
dς

)2

2(1 − V 2)(σ̄ 2 − V 2)
−G(V )−EV 2 =

mR2
(
dU
dς

)2

2(1 − U2)(U2 − σ̄ 2)
+F(U)−EU2

which necessarily must be equal to a constant −Ω , a second invariant in involution
with the energy. Rearranging these expressions we finally reduce the equations of
motion to the uncoupled first-order ODEs system:

(
dU

dς

)2

= 2

mR2
(1 − U2)(U2 − σ̄ 2) (−Ω + E U2 − F(U)) (6)

(
dV

dς

)2

= 2

mR2 (1 − V 2)(σ̄ 2 − V 2) (Ω − E V 2 − G(V )). (7)

that is immediately integrated via the quadratures:

ς − ς0 = ±R

√
m

2

ˆ U

σ̄

dŨ√
(1 − Ũ2)(Ũ2 − σ̄ 2) (−Ω + E Ũ2 − F(Ũ))

(8)
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ς − ς0 = ±R

√
m

2

ˆ V

−σ̄

dṼ√
(1 − Ṽ 2)(σ̄ 2 − Ṽ 2) (Ω − E Ṽ 2 − G(Ṽ ))

. (9)

and the orbits are found by inversion, if possible, of these integrals. The physical
time can be recovered by integration of the expression:

t =
ˆ ς

ς0

(U(ς̄)2 − V (ς̄)2)dς̄

Liouville Type I systems in R
2 are separable in elliptic coordinates [3]. Recall

that Euler elliptic coordinates in R
2 relative to the foci: f1 = (a, 0), f2 = (−a, 0)

are defined as half the sum and half the difference of the distances from the particle
position to the foci:

u = r1 + r2

2a
, v = r2 − r1

2a
; r1 =

√
(x1 − a)2 + x2

2 , r2 =
√
(x1 + a)2 + x2

2 .

(10)

The new coordinates vary in the intervals: −1 < v < 1, 1 < u < ∞. In terms of
these coordinates the particle position is defined to be

x1 = auv , x2
2 = a2 (u2 − 1)(1 − v2), (11)

implying a two-to-one map from R
2 to the infinite “rectangle”: (−1, 1)× (1,+∞).

The kinetic energy with respect to the local time dζ = dt
u2−v2 in this coordinate

system reads

K = ma2

2(u2 − v2)

(
1

u2 − 1

(
du

dζ

)2

+ 1

1 − v2

(
dv

dζ

)2
)

and the potential provides a Liouville Type I system in R
2 if is of the form

V(u, v) = 1

u2 − v2 (f (u) + g(v)) , (12)

for arbitrary but sufficiently regular functions f (u) and g(v). A standard separability
process leads to the uncoupled first-order ODEs:

(
du

dζ

)2

= 2

ma2
(u2 − 1) (−λ + h u2 − f (u)) (13)

(
dv

dζ

)2

= 2

ma2
(1 − v2) (λ − h v2 − g(v)) (14)

depending on the energy h and the second constant of motion λ.
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4 Trajectory Isomorphism Between Liouville Type I Systems
in S2 and R

2

The gnomonic projection Π+ from S2+ to R
2 allows us to write the Cartesian

coordinates (x, y) in terms of the sphero-conical ones:

x = Rσ

σ̄

UV√
1 − U2

√
1 − V 2

, y2 = R2

σ̄ 2

(U2 − σ̄ 2)(σ̄ 2 − V 2)

(1 − U2)(1 − V 2)

The re-scaling x1 = x, x2 = y
σ

permits us to re-write these expressions in terms of
Euler elliptic coordinates in the form (11) for a = Rσ̄

σ
. Note that with this choice we

have that Π+(F1) = (a, 0) = f1 and Π+(F2) = (−a, 0) = f2. Thus the R
2 plane

with coordinates (x1, x2) is equivalently described in terms of the sphero-conical
coordinates or in the elliptic form (11) via the identifications:

u = σU

σ̄
√

1 − U2
, v = σV

σ̄
√

1 − V 2
(15)

It is interesting to remark that Eq. (15) do not explicitly depend on the radius R

of the sphere that only appears in the inter-foci distance a. This is thus a way to
link sphero-conical and elliptic coordinates completely different to the well-known
limiting process that identifies elliptic coordinates in the plane as the limiting case
of sphero-conical coordinates in the sphere as the radius tends to infinity.

Let us consider a Liouville Type I system in S2 with potential (5) and the
corresponding separated first-order equations (6) and (7) with respect to the local
time ς in S2. The chain of changes from this local time ς to the elliptic local time
ζ , via going back to the physical time t , changing to the projected time τ and finally
defining ζ in terms of τ : dζ = dτ

u2−v2 , can be simply summarized in the form:

dζ = σ̄ dς

Using this expression and the identification (15) one easily realizes that Eqs. (6) and
(7) are equivalent to Eqs. (13) and (14), and reciprocally, if the respective constants
of motion are related through the equation:

h = E − Ω

σ 2
, λ = Ω

σ̄
.

and the potential energy in R
2 is obtained from the potential energy in S2, and vice

versa, via the identities:

f (u) = σ̄ 2u2 + σ 2

σ 2σ̄ 2
F(U(u)) , g(v) = σ̄ 2v2 + σ 2

σ 2σ̄ 2
G(V (v)) (16)
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S2
±, Newton Equations for U
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±
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2

Projected-Local time ζ

Fig. 3 Chain of changes of variables and time schedules

It is thus established the prescription to pass back and forth between a Liouville
Type I separable systems in S2+ with a given physical time t and a Liouville Type I
system in R

2 with respect to a “non-physical” time τ .
An analogous procedure relative to the projection Π− can be developed for S2−,

and thus Newton equations on S2± are equivalent to Newton equations (4) in the
Euclidean planes. The orbits of a system with S2 as configuration space require the
determination of the orbits of two planar systems to be completely described in this
projected picture.

In order to clarify the relationship between local times needed for separability in
S2 and R

2 we include in Fig. 3 a diagram showing all the changes of time schedules.

5 Gallery of Selected Examples

5.1 The Neumann System

The Neumann system [17] consists of a particle constrained to move in an S2 sphere
of radius R subjected to maximally anisotropic linear attraction towards the center
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of the sphere. The potential energy is

U(X, Y,Z) = aX2 + bY 2 + cZ2 , a > b > c > 0, (17)

where the couplings a, b, c may be redefined as mω2

2 = a − c, 0 < σ 2 = b−c
a−c

< 1,
to easily show that the Neumann problem is a Liouville Type I system in S2 since
the potential energy in sphero-conical coordinates is of the standard form (5) with:

F(U) = mω2

2
R2

(
U2 − σ̄ 2

)
U2 , G(V ) = mω2

2
R2

(
σ̄ 2 − V 2

)
V 2.

The sigma parameter fixing the position of the foci measures in this case the
asymmetry between the intensity of the elastic forces in the X and Y directions.
Consequently, the orbits of a particle in the Neumann problem are determined by
evaluating the quadratures (8) and (9) with this choice of F(U) and G(V ). Both
integrals can be written in the compact form:

ς − ς0 = ±√
mR

ˆ X

X0

dX̃√
P5(X̃ )

(18)

P5(X ) = −X (1 − X )(X − σ̄ 2)
(
mω2R2X 2 − (2E − mω2R2σ̄ 2)X + 2Ω

)

where a new integration variable: X has been introduced:U = X 2 for quadrature (8)
and V = X 2 for (9). Equation (18) is a hyperelliptic integral of genus 2, and
obviously to obtain explicit expressions for these orbits requires the use of rank
2 theta functions, see [18, 19].

Taking into account the symmetry of the Neumann potential (17), the correspond-
ing planar potentials V(x1, x2) will have identical expressions in both Π+(S2+) and
Π−(S2−) planes. Applying (16) we obtain potential (12) with:

f (u) = mω2R2σ 2

2

u2(u2 − 1)

σ̄ 2u2 + σ 2 , g(v) = mω2R2σ 2

2

v2(1 − v2)

σ̄ 2v2 + σ 2

that in Cartesian coordinates corresponds to the potential function:

V(x1, x2) = mω2R2

2

(
x2

1 + σ 2x2
2

R2 + x2
1 + σ 2x2

2

)
(19)

Thus orbits for (17) lying in S2+ or S2− are in one-to-one correspondence with
bounded orbits of the planar system (19), see Fig. 4, whereas orbits that cross the
equator have to be recovered from the projected pictures as the gluing of unbounded
orbits of the two planar copies.
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Fig. 4 An orbit of the Neumann problem and its corresponding planar orbit

5.2 The Killing System

In the Killing system [5, 6], see also [4] and the references therein, one massive
particle is forced to move on an S2-sphere of radius R under the action of a
gravitational field created by two (e.g., attractive, γ1 > 0, γ2 > 0) Keplerian centers.
Fixing the centers in the above defined F1 and F2 points the potential energy reads

U(θ1, θ2) = −γ1

R
cotan θ1 − γ2

R
cotan θ2,

and thus the test mass feels the presence of two attractive centers in the North
hemisphere and two (repulsive) ones located at the antipodal points in the South
hemisphere with identical strengths. In sphero-conical coordinates the potential
energy is written in two different expressions depending on the hemisphere that
it is considered. In both cases U±(U, V ) is of Liouville Type I in S2 form (5), with:

F±(U) = ∓γ1 + γ2

R
U
√

1 − U2, G(V ) = −γ1 − γ2

R
V
√

1 − V 2.

Applying the general procedure explained above the dynamics in the S2+ hemisphere
can be described by the planar potential:

V+(x1, x2) = − γ1

σ 2
√
(x1 − Rσ̄

σ
)2 + x2

2

− γ2

σ 2
√
(x1 + Rσ̄

σ
)2 + x2

2

that corresponds to the problem of two attractive centers in R
2. In a parallel way,

the problem in the South hemisphere is orbitally equivalent to the planar problem:

V−(x1, x2) = γ2

σ 2
√
(x1 − Rσ̄

σ
)2 + x2

2

+ γ1

σ 2
√
(x1 + Rσ̄

σ
)2 + x2

2

,
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Fig. 5 (a) Planetary orbit in S2+. (b) Closed orbit in S2 that crosses the equator

a b c

Fig. 6 (a) Planetary orbit projected in R
2. (b and c) Projections of the closed orbit on Π+(S2+)

and Π−(S2−), respectively

i.e., the planar potential of two repulsive centers where the roles of the points
(±Rσ̄

σ
, 0), and thus the strengths of the centers in modulus, are interchanged with

respect to the attractive potential V+(x1, x2) in Π+(S2+).
In [4] a complete analysis of the different types of orbits for this problem is

performed, including the integration and inversion of the involved elliptic integrals
that lead to explicit expressions in terms of Jacobi elliptic functions for all the
available regimes in the bifurcation diagram. Two examples of planetary type orbits
are represented in Fig. 5. In Fig. 6 we can see their corresponding orbits in the
projected planar systems.

5.3 Inverse Gnomonic Projection of the Garnier System from
R

2 to S2

The Garnier system [3, 20] corresponds to a planar anharmonic oscillator which
is isotropic in the quartic power of the distance to the center but anisotropic in
the quadratic term. Using non-dimensional coordinates and couplings the potential
energy is defined to be:

V(x1, x2) = 1

2

(
x2

1 + x2
2 − 1

)2 + a2

2
x2

2 , 0 < a < 1.
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Changing to Euler elliptic variables (11) it is easily seen that it is a Liouville Type I
system in R

2 since the potential energy takes the form (12) where

f (u) = a4

2
(u2 − 1)

(
u2 − 1

a2

)2

, g(v) = a4

2
(1 − v2)

(
v2 − 1

a2

)2

.

The quadratures are thus

ς − ς0 = ∓ a

ˆ u

1

dz√
(z2 − 1)P6(z)

, ς − ς0 = ∓a

ˆ v

−1

dz√
(1 − z2)P̃6(z)

,

where the sixth order polynomials read:

P6(u) = −f (u) + hu2 − λ, P̃6(v) = −g(v) − hv2 + λ.

The change of integration variable: z2 = z̄, renders both integrals to identical
canonical form:

ˆ
dz̄√

2z̄(1 − z̄)(a4z̄3 − a2(a2 + 2)z̄2 + (1 + 2a2 − 2h)z̄ + 2λ − 1)

i.e., they are hyperelliptic integrals of genus 2.
The inverse gnomonic projection leads us to the Liouville Type I separable

system in S2+ characterized by the rational functions:

F(U) = (U2 − σ̄ 2)(1 − 2U2)2

2(1 − U2)2
, G(V ) = (σ̄ 2 − V 2)(1 − 2V 2)2

2(1 − V 2)2

where, in this non-dimensional setting, we have identified the parameters in the
form: a = σ̄

σ
.

The corresponding potential in terms of (X, Y,Z) ∈ S2+ is

U(X, Y,Z) = 1

2σ 2

(
1 − σ̄ 2X2

Z4 − 1 + 3σ 2

Z2

)

that is singular in the equator. Thus in this case, even if we extend U(X, Y,Z) to the
whole S2 sphere, the orbits cannot cross the equator, and unbounded planar orbits
are mapped into spherical trajectories that approach the equator asymptotically.

6 Summary and Further Comments

In this report we have analyzed separable classical Hamiltonian systems in a
unified way. We have focused in systems of two degrees of freedom for which the
configuration space is either an S2 sphere or the Euclidean plane R

2. In the first
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case that we denote as Liouville Type I in S2, we have selected those systems for
which the Hamilton–Jacobi equation is separable in sphero-conical coordinates. In
the planar case the separability of the HJ equation is demanded in Euler elliptic
coordinates, thus restricting ourselves to Liouville Type I systems in R

2.
The main contribution in this essay is the construction of a bridge between

Liouville Type I systems, respectively, in S2 and R
2. The path is traced following

the gnomonic projection from both the North and South hemispheres to the plane.
The idea is inspired by the connection between the two Keplerian center problem,
respectively, in S2 and R

2 established in [7–9]. We provide a geometric structure
to the Borisov–Mamaev map which allows to extend the idea to any Liouville
Type I system. As particular cases we construct the bridge between the Neumann
problem and its partner in the plane, besides reconstructing the Borisov–Mamaev
map between the Killing problem, two Keplerian centers in S2, and the Euler
problem, two Keplerian centers in R

2, in this geometric setting. Moreover, we also
consider a distinguished Liouville Type I system in R

2, the Garnier system, and its
mapping back in S2 by using the inverse of the gnomonic projection. A remarkable
fact emerges: the two center problems in S2 and R

2 exhibit separable potentials in
terms of either trigonometric or polynomial functions but identical, up to a constant,
strengths: in both manifolds Keplerian potentials arise.

Having established this equivalence for Liouville Type I systems, the idea of
extending this relation to other types of Liouville systems in the plane and the
sphere is very promising. The results of this work can be also extended to the
quantum framework. It would be very interesting to analyze the relation between
separable Schrödinger equations in S2 and the corresponding projected equations in
R

2. Connecting paths between the classical and quantum worlds are provided by the
WKB quantization procedure. Separable quantum systems in elliptic coordinates,
for instance, [21, 22] or [23] would be analyzed in the spherical case.

Finally, it is adequate to remind that the search for solitary waves arising in (1 +
1)-dimensional relativistic scalar field theories is tantamount to solve an analogue
mechanical system. In this framework, the application of the equivalence between
separable systems in S2 and R

2 could be a fruitful source of information about the
links between solitary waves in non-linear and linear sigma models, [24–26].
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Dedicated to our colleague and friend, Véronique Hussin, on
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Abstract Nonlinear PDEs having given conditional symmetries are constructed.
They are obtained starting from the invariants of the conditional symmetry generator
and imposing the extra condition given by the characteristic of the symmetry. Series
of examples of new equations, constructed starting from the conditional symmetries
of Boussinesq, are presented and discussed thoroughly to show and clarify the
methodology introduced.

Keywords Lie symmetries · Partial differential equations · Conditional
symmetries · Point transformations · Boussinesq equation

1 Introduction

Our capability of solving complicated physical problems described by mathematical
formulas (say equations) is based on the existence of symmetries, i.e., transforma-
tions which leave the equations invariant. Towards the end of the nineteenth century,
Sophus Lie introduced the notion of Lie group of symmetries in order to study the
solutions of differential equations. He showed the following main property: if an
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Ş. Kuru et al. (eds.), Integrability, Supersymmetry and Coherent States, CRM Series
in Mathematical Physics, https://doi.org/10.1007/978-3-030-20087-9_17

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20087-9_17&domain=pdf
mailto:levi@roma.infn.it
mailto:decio.levi@roma3.infn.it
mailto:rodrigue@ucm.es
mailto:zora.thomova@sunpoly.edu
https://doi.org/10.1007/978-3-030-20087-9_17


376 D. Levi et al.

equation is invariant under a one-parameter Lie group of point transformations,
then we can reduce the equation and possibly construct an invariant solution.
This observation unified and extended the available integration techniques such as
separation of variables or integrating factors.

A partial differential equation (PDE) E = 0 in the independent variables xi
and dependent variables uj is invariant under a continuous group of Lie point
transformations if the corresponding infinitesimal symmetry generator X̂ satisfies

prX̂E
∣∣∣
E=0

= 0, (1)

X̂ =
∑
i

ξi∂xi +
∑
j

φj ∂uj , (2)

where ξi and φj are functions of the independent and dependent variables appearing
in E = 0. By the symbol pr we mean the prolongation of the infinitesimal generator
to all derivatives appearing in E = 0. See, for example, the references [6, 26] for
this construction.

Given an infinitesimal generator of a symmetry X̂ a function I is an invariant if
it is such that

prX̂I = 0. (3)

Equation (3) is a first order PDE which can be solved on the characteristic and
provide the set of invariants and differential invariants Ik , k = 0, 1, · · · depending
on xi , uj , and their partial derivatives up to arbitrary order. Then the PDEs invariant
with respect to the infinitesimal generator (2) can be written as

E = E({Ik}) = 0, k = 0, 1, · · · . (4)

Lie method is a well-established technique to search for exact solutions of
differential or difference equations of any type, integrable or non-integrable, linear
or nonlinear. However, many equations may have no symmetries and there is no
simple algorithm to prove the existence of symmetries other than looking for them.
Moreover, the obtained solutions do not always fulfill the conditions imposed by the
physical requests (boundary conditions, asymptotic behavior, etc.). So one looks for
extension or modification of the construction which could overcome some of these
problems. One looks for more symmetries,

– not always expressed in local form in terms of the dependent variable of the
differential equations,

– not satisfying all the properties of a Lie group but just providing solutions.

In the first class are the potential symmetries introduced by Bluman [4] and
Bluman et al. [7], the nonlocal symmetries by Krasil’shchik and Vinogradov [21],
Vinogradov and Krasil’shchik [36], Hernández-Heredero and Reyes [19], Reyes
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[29, 30], Muriel and Romero [24], Catalano Ferraioli [10], and Levi et al. [23],
while in the second one are the conditional symmetries [5, 15, 16, 22, 25].

In this paper we will be interested in showing how one can construct equations
having given conditional symmetries.

In Sect. 2 we will provide the theory behind the construction of the conditional
symmetries clarifying in this way the difference between symmetries and condi-
tional symmetries. Then in Sect. 3 we will verify the proposed construction in the
case of a few of the conditional symmetries of the Boussinesq equation (9) and,
in correspondence with these conditional symmetries, construct new conditionally
invariant equations which may have physical significance. Section 4 is devoted to
the summary of the result, some concluding remarks, and prospects of future works.

2 What Is a Conditional Symmetry?

For simplicity of the presentation we will consider PDEs in only one dependent
variable. The extension to systems is straightforward.

Bluman and Cole [5] introduced the method for finding conditional symmetries,
the non-classical method. The non-classical method adds an auxiliary first order
equation build up in terms of the coefficients of the infinitesimal generator X̂ to
E = 0, namely

C = C(xi, u, uxi ) =
∑
i

ξiuxi − φ = 0. (5)

Equation (5) is the infinitesimal symmetry generator (2) written in characteristic
form [26] set equal to zero. Equation (5) is as yet unspecified and it will be
determined together with the vector field X̂, as it involves the same functions ξi
and φ.

It is easy to prove that (5) is invariant under the first prolongation of (2)

prX̂C = −
(∑

i

ξi,uuxi − φu

)
C = 0, (6)

without imposing any conditions on the functions ξi and φ. Consequently, to get
the conditional symmetries of E = 0 we need just to apply the following invariance
condition:

prX̂E
∣∣∣E=0
C=0

= 0. (7)

Equation (7) gives nonlinear determining equations for ξi and φ which provide at
the same time classical and non-classical symmetries.
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As C = 0 appears in (7) as a condition imposed on the determining equations the
resulting symmetries are called conditional symmetries.

There are several works devoted to using the non-classical method to construct
solutions of PDEs that are different from the ones obtained by the classical method
using the Lie point symmetries, for example [2, 14, 17, 18, 20, 27, 31]. Moreover,
we can find programs [3] to compute them and algorithms [11] for showing the
existence of nontrivial non-classical symmetries for given PDEs. In the case of
integrable equations let us mention the works of Sergyeyev [33, 34] where he
considered the classification of all (1+1)-dimensional evolution systems that admit
a generalized (Lie–Bäcklund) vector field as a generalized conditional symmetry.

In this paper we want to look at the conditional symmetries from a different
perspective. Given an infinitesimal group generator characterized by a vector field
X̂ with specific values of the functions ξi and φ, we want to construct equations
E = 0 which have this symmetry as a conditional symmetry and not as a Lie point
symmetry. Taking into account that an equation invariant under a given symmetry is
written in terms of its invariants (4), a PDE invariant under a conditional symmetry
will be given by

E({Ij })
∣∣∣{C=0} = 0, j = 0, 1, . . . . (8)

The constraint {C = 0} in (8) is to be interpreted as the differential equation (5) and
its consequences (see Sect. 3 for details when constructing explicit examples).

3 A Few Examples from the Conditional Symmetries of the
Boussinesq Equation

The Boussinesq equation

uyy + uuxx + (ux)
2 + uxxxx = 0 (9)

was introduced in 1871 by Boussinesq to describe the propagation of long waves in
shallow water [8, 9] and it is of considerable physical and mathematical interest.
It also arises in several other physical applications including one-dimensional
nonlinear lattice waves [35, 37], vibrations in a nonlinear string [38], and ion sound
waves in a plasma [32]. It has two independent variables x1 = x and x2 = y,
consequently i = 1, 2 in (2). For simplicity we will call ξ1 = ξ and ξ2 = η. If
η in (2) is different from zero, the resulting determining equations for conditional
symmetries do not fix it and we can always put η = 1. If η = 0 and ξ �= 0, we
can put ξ = 1 for the same reason. Consequently the condition is the same if we
consider X̂ or f (x, y, u)X̂, although the invariants in the two cases are different.

The conditional symmetries of the Boussinesq equation for η �= 0 were obtained
in [22], and in [13] by non-group techniques. The case η = 0 has been considered
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later and can be found in [12]. In [12, 22] we find the following generators of the
conditional symmetries for (9):

X̂1 = ∂y + y∂x − 2y∂u (10)

X̂2 = ∂y − x

y
∂x +

(
2

y
u + 6

y3
x2
)
∂u (11)

X̂3 = ∂y +
(

−x

y
+ y4

)
∂x +

(
2

y
u + 6

y3 x
2 − 2y2x − 4y7

)
∂u (12)

X̂4 = ∂y +
(
x

2y
+ y

)
∂x − 1

y
(u + 2x + 4y2)∂u (13)

X̂5 = ∂y + ℘′

2℘
(x + c1W)∂x −

[
℘′

℘
u + 3℘′x2 + c1

(
1

2℘
+ 6℘′W

)
(14)

+c2
1W

(
1

2℘
+ 3℘′W

)]
∂u, W =

ˆ y

0

℘(s)

℘′(s)2
ds,

X̂6 = ∂x +
(

2

x
u + 48

x3

)
∂u, (15)

X̂7 = ∂x +
[
−2x℘ + c2℘

ˆ y ds

℘ (s)2

]
∂u, (16)

where ℘ is a special case of the Weierstrass P function, ℘(y, g2, g3) [1] with g2 = 0
satisfying the differential equations ℘′2 = 4℘3 − g3, and g3, c1, c2 are arbitrary
constants.

The generators X̂1, · · · , X̂5 were obtained assuming η = 1, thus are defined in
(10)–(14) up to an arbitrary function η(x, y, u), while X̂6 and X̂7 were obtained
assuming η = 0 and ξ = 1, thus are defined in (15) and (16) up to an arbitrary
function ξ(x, y, u).

In the following we will not go through all the generators presented above but
we will just consider as particular examples, X̂1, X̂2 and X̂6.

3.1 Conditional Invariant Equations Associated to X̂1

For the infinitesimal generator X̂1 and its prolongation up to fourth order we obtain
the following invariants:

I0 = − 2x + y2, I1 = 2x + u, I2 = ux, I3 = 2y + yux + uy, I4 = uxx,

I5 =yuxx + uxy, I6 = uyy + 2yuxy + 2(y2 − x)uxx, I7 = uxxx

. . . , I11 = uxxxx. (17)
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The condition is given by I3 = 0, i.e., C = 2y + yux + uy = 0. As a verification of
the correctness of the procedure proposed in the previous section we construct the
Boussinesq equation in terms of the invariants (17). It is

I1I4 + I6 + I11 + I2
2

∣∣∣
Cx=0

= uyy + 2y(uxy + yuxx) + uuxx + uxxxx

+ (ux)
2
∣∣∣
uxy+yuxx=0

= uyy + uuxx + uxxxx + (ux)
2 = 0. (18)

Now, we want to construct a new nonlinear PDE which has as a conditional
symmetry the infinitesimal generator X̂1. Let us consider the following combination
of the invariants I1, I4, I6, and I7 given in (17):

I1I4 + I6 + I7

∣∣∣
Cx=0

= uyy + 2y(uxy + yuxx) + uuxx + uxxx

∣∣∣
uxy+yuxx=0

= 0.

So we have

uxxx + uuxx + uyy = 0, (19)

a nonlinear dispersive Laplace equation.
The point symmetries of (19) are

Ĥ1 = ∂x, Ĥ2 = ∂y, Ĥ3 = 2x∂x + 3y∂y − 2u∂u. (20)

Equation (19) has a conditional symmetry (K̂1) with η = 1 (which is the chosen
conditional symmetry to construct the equation) and three conditional symmetries
(L̂1, L̂2, and L̂3) with η = 0, ξ = 1 (after removing the Lie point symmetries
previously computed (20) and using these points symmetries to remove inessential
parameters):

K̂1 =∂y + y∂x − 2y∂u (21)

L̂1 =∂x + 2xu

x2 + c1
∂u (22)

L̂2 =∂x − ℘(y; 0, g3)

[
6x − c2

ˆ y

0

1

℘(s; 0, g3)2
ds

]
∂u (23)

L̂3 =∂x +
[
u

x
− ℘(y; 0, g3)

(
3x + c3

x

ˆ y

0

1

℘(s; 0, g3)2
ds

)]
∂u, (24)

where ci , i = 1, 2, 3 and g3 are arbitrary constants.
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3.2 Conditional Invariant Equations Associated to X̂2

For the infinitesimal generator X̂2 and its prolongation up to derivatives of fourth
order we obtain the following invariants:

I0 =xy, I1 = x2u + x4

y2 , I2 = x3ux + 2
x4

y2 , (25)

I3 =x2

y
(yuy − xux − 2u − 6

x2

y2
), I4 = x4uxx + 2

x4

y2
,

I5 =x3

y

(
yuxy − xuxx − 3ux − 12

x

y2

)
,

I6 =x2

y

(
yuyy − 2xuxy + x2

y
uxx − 4uy + 6

x

y
ux + 6

u

y
+ 42

x2

y3

)
,

I7 =x5uxxx, . . . , I11 = x6uxxxx.

The condition is given by I3 = 0 which in this case we choose to be

C = yuy − xux − 2u − 6
x2

y2 = 0. (26)

We can easily check that the Boussinesq equation can be constructed in terms of the
invariants (25). It is

I1I4 + I11 + (I2)
2
∣∣∣{C=0} = x6

[
uyy + uuxx + uxxxx + (ux)

2
]
. (27)

A new nonlinear dispersive Laplace equation can be written by considering the
invariants I0, I1, I2, I4, and I7, i.e.,

I1I4 + I0I7 + (I2)
2
∣∣∣{C=0} = x6[uyy + uuxx + (ux)

2 + yuxxx] = 0. (28)

The equation

uyy + uuxx + (ux)
2 + yuxxx = 0 (29)

has point symmetries

Ĥ1 = ∂x, Ĥ2 = x∂x + y∂y, (30)
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and conditional symmetries with η = 1 :

K̂1 =∂y +
(
c1y

4 − x

y

)
∂x +

(
2u

y
− 2

(
c1y

5 − x
) (

2c1y
5 + 3x

)

y3

)
∂u,

K̂2 =∂y + c2y
2∂x +

(
u

y
− 3c2

2y
3
)
∂u, (31)

where X̂2 is recovered from K̂1 by setting c1 = 0. K̂2 is a genuine new conditional
symmetry of (29) for any value of c2. Also K̂1 with c1 �= 1 is a new conditional
symmetry of (29).

When η = 0, ξ = 1 we have

L̂ = ∂x + [f (x)u + g(x, y)]∂u, (32)

where f (x) satisfy the ODE:

f ′′ + 5ff ′ + 2f 3 = 0, (33)

while the overdetermined system of equations for g(x, y), depending explicitly
of f (x), is given in the Appendix in (45) and (46). Equation (33) can be solved
completely but the solution we find by the use of Lie point symmetries is implicit,
i.e., we have x as an integral function of f (x). So we cannot use it to solve the
overdetermined system (45) and (46). We are able to present, however, three explicit
solutions for f (x)

χ1 = 0, χ2 = 2

x
, χ3 = 1

2x
. (34)

Solving (45) and (46) with f (x) given by χ1 we get

L̂1 = ∂x + ℘(y + c1; 0, g3)

(
−2x + c2

ˆ y

0

1

℘(s + c1; 0, g3)2
ds

)
∂u, (35)

where c1, c2 are integration constants, while for χ2 we get g(x, y) = 0 and then

L̂2 = ∂x + 2u

x
∂u. (36)

Finally, for χ3 the overdetermined system, solved using the differential Grobner
bases [28], is incompatible.
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3.3 Conditional Invariant Equations Associated to X̂6

For the infinitesimal generator X̂6 and its prolongation up to third order we obtain
the following invariants:

I0 =y, I1 = 1

x4

(
12 + x2u

)
, I2 = uy

x2
, (37)

I3 = 1

x5

(
x3ux − 2x2u − 48

)
, I4 = uyy

x2
, · · · ,

I10 = 1

x7

(
− 1440 − 24x2u + 18x3ux + x5uxxx − 6x4uxx

)
.

The condition is given by I3 = 0 which in this case we choose to be

C = ux − 2u

x
− 48

x3
= 0. (38)

As in the previous case, the Boussinesq equation can be written in terms of the
invariants (37):

6(I1)
2 + I4

∣∣∣{C=0} = 1

x2

[
uyy + uuxx + uxxxx + (ux)

2
]
. (39)

In correspondence with X̂6 we may also have

6(I1)
2 + I2

∣∣∣{C=0} = 1

x2
[uy + uuxx + uxxxx + (ux)

2] = 0. (40)

The equation

uy + uuxx + uxxxx + (ux)
2 = 0 (41)

has the point symmetries

Ĥ1 = ∂x, Ĥ2 = ∂y, Ĥ3 = x∂x + 4y∂y − 2u∂u. (42)

The only conditional symmetry of (37) with η = 1 turns out to be, after
multiplication by 4(y + c), a linear combination of the Lie point symmetries (42).
When η = 0, ξ = 1 we have

L̂ = ∂x + φ(x, y, u)∂u, (43)

where the function φ(x, y, u) is defined by just one PDE which we present in the
Appendix in (47). For any entire function φ(x, y, u) in u (47) has, apart from the
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solution X̂6, the following conditional symmetries:

L̂1 = ∂x + 2u

x
∂u, L̂2 = ∂x + x

3y
∂u. (44)

4 Conclusions

In this article we presented a construction of nonlinear PDEs having given condi-
tional symmetries. They are obtained starting from the invariants of the symmetry
and imposing the extra condition obtained by equating to zero the characteristic
and its differential consequences. Starting from the conditional symmetries of the
Boussinesq equation we reconstructed the Boussinesq equation itself as well as
other nonlinear equations (19), (29), and (41). The obtained equations have Lie point
symmetries and conditional symmetries.

An important point not touched in this work but on which we are presently
working is understanding a priori when we can construct a conditionally invariant
equation. Moreover work is also in progress on solving by symmetry reduction the
obtained conditionally invariant equations and on the construction of conditional
symmetry preserving discretizations of the Boussinesq equation.
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Appendix: Determining Equations for X̂2 and X̂6

For completeness we present here the determining equation of the conditional
symmetries when ξ = 1 and η = 0 for which we have been able just to present
some particular solutions

gxx + 3fgx + (5f ′ + 4f 2)g + 4f 4y + 7f ′f 2y − 2f ′f = 0, (45)

gyy +
(

5yf 2 − 5yf ′ + 3g
)
gx + 2

(
8yf 2 + 10yf ′ + g

)
fg

+ 2y2f
(

13f 4 − 20f ′2 + 16f 2f ′) = 0. (46)
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φuuuuφ
4 + (4φ2

uu + 6φuφuuu + 4φxuuu)φ
3 + (7φuuφ

2
u + 2(6φxuu + 1)φu

+ φuu(12φxu + u) + 6(φuuuφx + φxxuu))φ
2 + (8φ2

xu + 2(2φ2
u + u)φxu

+ φx(10φuφuu + 12φxuu + 3) + 4φuuφxx + 6φuφxxu + 4φxxxu)φ

+ 3φuuφ
2
x + 4φuφxφxu + uφxx + 4φxuφxx + 6φxφxxu + φxxxx + φy = 0.

(47)
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An Integro-Differential Equation
of the Fractional Form: Cauchy Problem
and Solution

Fernando Olivar-Romero and Oscar Rosas-Ortiz

To prof. Veronique Hussin on his 60th birthday.

Abstract We solve the Cauchy problem defined by the fractional partial differential
equation [∂tt − κD]u = 0, with D the pseudo-differential Riesz operator of first
order, and the initial conditions u(x, 0) = μ(

√
πx0)

−1e−(x/x0)
2
, ut (x, 0) = 0. The

solution of the Cauchy problem resulting from the substitution of the Gaussian pulse
u(x, 0) by the Dirac delta distribution ϕ(x) = μδ(x) is obtained as corollary.

Keywords Fractional partial differential equations · Fox H -functions · Dirac
delta distribution · Pseudo-differential Riesz operator · Complementary equation

1 Introduction

Linear partial differential equations of second order are useful in physics to model
phenomena like wave propagation, heat diffusion, and transport processes [1–3]. In
analogy to conics of analytic geometry, the wave equation is hyperbolic, while the
heat and transport equations are parabolic. In a recent work [4] we have reported
a fractional formulation that permits the study of such equations in unified form.
Additionally, we have introduced an integro-differential version of the parabolic
equation utt−κux = 0 (hereafter called complementary equation) that is solvable in
analytic form. That is, in [4] we have solved the Cauchy problem for utt −κDu = 0
with zero initial velocity and the Dirac delta pulse ϕ(x) = μδ(x) as initial
condition. The symbol D stands for the pseudo-differential Riesz operator [5] (for
contemporary notions on the matter, see, e.g., [6]). In the present work we provide
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the solutions for the Cauchy problem with zero initial velocity and the Gaussian
distribution u(x, 0) = μ(

√
πx0)

−1e−(x/x0)
2

as initial disturbance.
The manuscript is structured as follows: In Sect. 2 we give the solution of the

Cauchy problem for the modified complementary equation when the Gaussian
distribution is considered as initial condition with zero initial velocity. We recover
the results reported in [4] as a byproduct. In Sect. 3 we analyze the results. Some
final conclusions are given in Sect. 4.

2 Statement of the Problem and Solution

The main results of this contribution are summarized in the following Proposition
and Corollary.

Proposition 1 The Cauchy problem defined for the integro-differential equation

∂2

∂t2
u(x, t) + κ

π

∂

∂x

ˆ
R

u(y, t)

x − y
dy = 0, κ > 0, (1)

with the initial conditions

u(x, 0) = μ

x0
√
π
e−(x/x0)

2
, ut (x, 0) = 0, x0 ≥ 0, (2)

is solved by the function

u(x, t) = μ

κt2

∞∑
k=0

(−1)k

k!
( x0

2κt2

)2k
θk(x, t), (3)

where θk is the following Fox H -function:

θk(x, t) = H
2,1
3,3

[
|x|
κt2

∣∣∣∣
(−2k, 1) , ( 1

2 ,
1
2 ), (−1 − 4k, 2)

(0, 1), (−2k, 1) , ( 1
2 ,

1
2 )

]
. (4)

Proof First note that Eq. (1) is indeed the fractional partial differential equation

[
∂2

∂t2
− κD

]
u(x, t) = 0, (5)

with D the pseudo-differential Riesz operator [5, 6]. We may consider a generalized
version of the latter equation [4, 7], defined as

[Dα − v2
α,βD

β ]u(x, t) = 0, 1 ≤ α ≤ 2, 1 ≤ β ≤ 2, (6)
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where the fractional time-derivative Dα is taken in the sense of Caputo [8] (see also
[6]), and D

β is the Riesz operator of order β. In [4] we had already solved Eq. (6)
for the initial conditions (2). The solution is written as the series

u(x, t) = μ

βt
α
β v

2/β
α,β

∞∑
k=0

(−1)k

k!

⎛
⎝ x0

2t
α
β v

2/β
α,β

⎞
⎠

2k

Θk(x, t;α, β), (7)

with

Θk(x, t;α, β) = H
2,1
3,3

⎡
⎣ |x|
t
α
β v

2/β
α,β

∣∣∣∣∣∣

(
β−(1+2k)

β
, 1
β

)
, ( 1

2 ,
1
2 ),

(
β−α(1+2k)

β
, α
β

)

(0, 1),
(
β−(1+2k)

β
, 1
β

)
, ( 1

2 ,
1
2 )

⎤
⎦ . (8)

Here

Hm,n
p,q

[
x

∣∣∣∣
(a1, α1), . . . , (ap, αp)

(b1, β1), . . . , (ap, βp)

]
(9)

= 1

2πi

ˆ
L

∏m
j=1 Γ (bj + βj z)

∏n
i=1 Γ (1 − ai − αiz)x

−zdz∏p

i=n+1 Γ (ai + αiz)
∏q

j=m+1 Γ (1 − bj − βj z)

is the Fox H -function [9, 10] for which the labels m, n, p, and q are integers such
that 0 ≤ m ≤ q, and 0 ≤ n ≤ p. Besides ai, bj ∈ C and αi, βj ∈ (0,∞).

The solution to the Cauchy problem (1)–(2) is obtained by evaluating Eqs. (7)
and (8) at the point (α, β) = (2, 1), with κ = v2

2,1 and Θk(x, t; 2, 1) = θk(x, t) &.

Corollary 1 If the Gaussian profile of the initial condition u(x, 0) of Proposition 1
is substituted by the Dirac delta distribution ϕ(x) = μδ(x), then the solution is
given by

u(δ)(x, t) =
( μ

κt2

)
H

2,1
3,3

[
|x|
κt2

∣∣∣∣
(0, 1) , ( 1

2 ,
1
2 ), (−1, 2)

(0, 1), (0, 1) , ( 1
2 ,

1
2 )

]
. (10)

Proof The delta pulse ϕ(x) is recovered from the Gaussian distribution u(x, 0) at
the limit x0 → 0. The proof is simple by noticing that, with the exception of the
term with k = 0, the coefficients of (3) become zero at such a limit. Therefore,
u(x, t) → u(δ)(x, t) as x0 → 0 &.
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3 Analysis of Results

The behavior of the solutions u(x, t) defined in (3)–(4) is shown in the panel
of Fig. 1 for μ = κ = 1. From top to bottom, the rows correspond to x0 =
1,

√
0.5,

√
0.1. From left to right, the columns refer to t = 0.1, 1.7, 5, 6.5. An

interesting profile of these functions is the emergence of zeros as time goes pass.
They arise in pairs, superposed at x = 0, and then propagate in opposite directions
(symmetrically with respect to x = 0). As the function u(x, t) is initially a
nonnegative pulse, the zeros are indeed nodes that propagate, together with the
maxima and minima of the disturbance, in wavelike form. For fixed values of μ
and κ , the times at which we find new pair of nodes depend on the width of the
initial Gaussian distribution. That is, they arise at shorter times for smaller values
of x0. We are interested in studying the behavior of such nodes as the disturbance
u(x, t) propagates.

First, we use Theorems 1.2 and 1.4 of Ref. [9] to rewrite θk as the absolutely
convergent series [7]

θk(x, t) = 4k√
π

(
κt2

|x|
)1+2k ∞∑

�=0

(−1)�Γ ( 1
2 + k + �

2 )

Γ (1 + 4k + 2�)Γ (−k − �
2 )

(
κt2

|x|
)�

, (11)

where x �= 0. The divergences of Γ (−k − �
2 ) eliminate the terms with even values

of � in the above expression, then

u(x, t) = μ√
π |x|

∞∑
k,n=0

(−1)k+1

k!
(x0

x

)2k
(

2κt2

|x|
)2n+1

λ(n, k), (12)

with

λ(n, k) = Γ (1 + n + k)

Γ (3 + 4n + 4k)Γ
(
− 1

2 − n − k
) . (13)

The latter formulae give us information about the nodes of the disturbance generated
by the initial Gaussian-like perturbation defined in (2). Of course, as the point x = 0
has been omitted, the following description does not automatically hold for |x| ≤ ε

as ε approaches to zero.
The straightforward calculation shows that (12) can be rewritten in the form

u(x, t) = μ

π

(
κt2

x2

) ∞∑
s=0

Γ (2s + 2)

Γ (4s + 3)

(
κt2

|x|
)2s

Λs(x0, t), x �= 0, (14)
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where Λs(x0, t) is the polynomial of x0t
−2 given by

Λs(x0, t) =
∑

n+k=s

(−1)n

Γ (k + 1)

( x0

2κt2

)2k
. (15)

Now, let us analyze the series (14) in terms of ξ = κt2

|x| > 0. For ξ << 1 we may
consider the power with s = 0 only. We have

u(x, t) ≈ μκ

2π

(
t

x

)2

, x �= 0. (16)

The latter means that, no matter the value of x0, the solution is free of zeros at short
times. To illustrate the phenomenon, Fig. 1a, e and i show the behavior of u(x, t) for
the indicated values of x0 at t = 0.1.

At slightly larger times we may hold only the powers with s = 0 and s = 1.
Thus, dropping the terms with s ≥ 2 we arrive at the expression

u(x, t) ≈ μκ

π

(
t

x

)2 [1

2
+ Γ (4)

Γ (7)

(
κt2

|x|
)
Λ1(x0, t)

]
, x �= 0, (17)

where

Λ1(x0, t) = −1 +
( x0

2κt2

)2
. (18)

Given x0 ≥ 0, the values of t such that Λ1 < 0 permit the presence of a pair of zeros
in function (17). Before such values, the function u(x, t) exhibits a global minimum
that is positive and goes to zero as t increases. Then the minimum becomes equal
to zero (the time at which the first pair of nodes is created, both superposed at
x = 0), and finally it takes negative values (the nodes start to propagate in opposite
directions with respect to x = 0). The second column (from left to right) of Fig. 1
shows the situation in which the minimum of u(x, t) is negative for three different
values of x0. Although the three graphics are evaluated at t = 1.7, notice that the
minimum is as deep as x0 is short. The latter shows that the positions of the nodes
at a given time depend on x0.

At larger times, the value of x0 determines the number of zeros as well as their
distribution. For example, in the third and fourth columns (from left to right) of
Fig. 1 we appreciate that the number of nodes increases as x0 decreases at a given
time. In general, such number increases as ξ → ∞. Then, the time t at which a
new pair of nodes arises is shorter for smaller values of x0. Remarkably, at the limit
x0 → 0, for the polynomial (15) we have

lim
x0→0

Λs(x0, t) = (−1)s . (19)
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From (14) and (19) one has

lim
x0→0

u(x, t) = μ

π

(
κt2

x2

) ∞∑
s=0

(−1)s
Γ (2s + 2)

Γ (4s + 3)

(
κt2

|x|
)2s

, x �= 0, (20)

which corresponds to the series expansion of u(δ)(x, t) reported in [4].

4 Concluding Remarks

We have shown that the (modified) complementary equation utt − κDu = 0 can be
solved in analytic form by considering the Cauchy problem for zero initial velocity
and the Gaussian distribution as initial disturbance. The solutions exhibit nodes that
arise in pairs at different times and propagate from x = 0 in wavelike form. The
number of zeros in a given time-interval increases as the width of the distribution
is reduced. At the very limit in which the width becomes equal to zero we recover
the solutions to the Cauchy problem with the initial disturbance as a Dirac delta
pulse. The possible physical applications of the modified complementary equation
represent an open problem, which we shall face elsewhere.
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Quasi-Integrability and Some Aspects
of SU(3) Toda Field Theory

Wojtek Zakrzewski

Abstract In this talk I discuss results of our recent paper in which we have
studied various properties of solitonic solutions of deformed SU(3) Toda field
theories in (1 + 1) dimensions. The aim of that work was to check whether the
results of scattering of such solitons supported our ideas on quasi-integrability. The
deformations we considered preserved the symmetries which for other models were
sufficient to guarantee their quasi-integrability. The results of our simulations had
indeed led to the expected results, thus broadening the class of models which are
quasi-integrable.

The simulations had also found some interesting properties of the scattering
(like the interesting dependence of the interaction between solitons being related
to the sign of the deformation). In this talk we also present some recently found
understanding of this behaviour based on the collective coordinate approximation
to the description of the scattering of such solitons.

Keywords Solitons · Nonlinear · Integrability · Quasi-integrability · Toda field
theories · Collective coordinates · Evolution of solitons · Deformations of
Lagrangians

1 Introduction

Field theories possessing soliton-like solutions have been studied a lot, both ana-
lytically and numerically. In particular, many papers have been written describing
various aspects of the scattering of solitons in various (d + 1) models [1]. They
included pure S2 σ models and various ‘baby Skyrme’ models. In addition, there are
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also papers which described the scattering of solitons in a modified chiral model—
the so-called Ward model. Of these models this Ward model [2] is integrable, while
the other models are not; surprisingly, some properties of such scatterings were
found to be quite similar. This led Sutcliffe (P.M. Sutcliffe, private communication)
to look at a model which is a superposition of the Ward model and the ‘baby Skyrme’
model, and again the properties of the scatterings were not very different. By such
properties we mean very few waves of radiation being emitted during the scattering
(i.e. the scattering being ‘almost’ elastic). In fact, this is quite close to what is seen
in ‘nature’. At CERN, at high energy scattering of protons a significant percent of
the total cross section (just over 20%) is elastic. In the Skyrme model [3], which
describes such processes quite well, radiation is represented by the emission of
pions and so, given the energies available for the production of pions—this suggests
the possibility that physics equations that describe ‘nature’ maybe be quite close to
being integrable, and so in some sense ‘almost’ integrable or ‘quasi-integrable’.

Of course, these are all very loose ideas but they have led L.A. Ferreira and
myself to attempt to formulate more precisely this concept of ‘quasi-integrability’
[4]. As soon as one start thinking about this one realises that this is like opening
a ‘can of worms’. Mathematically (in particular for systems of finite numbers of
degrees of freedom) the integrability of any model is reasonably well defined.
The integrable systems have large numbers of conserved quantities (for finite
dimensional system their number equals the number of the degrees of freedom of
such systems). For field theories all of this is much more complicated and I do
not think there is an agreed definition what integrability really means. And quasi-
integrability is even more complicated. Quasi-conserved quantities? For all field
configurations or only for some of them? And how small effects of what type of
perturbations of integrable systems should they be (to define this ’closeness’ to
being integrable)?

The approach we have formulated in our early papers [4–6] was based on study-
ing various deformed integrable systems which possessed soliton-like solutions.
The studied models included various deformed modifications of the Sine-Gordon
and NLS models. The deformations were such that the models still possessed exact
one-soliton solutions and then we considered the modifications of the quantities
which for vanishing deformations corresponded to the conserved quantities. We
have found that in many of such models these modifications were very small and
so these quantities were quasi-conserved. By studying such models further we have
managed to connect the quasi-conservation of these quantities to some symmetry
properties of the field configurations describing two-soliton fields in such models.

Our first studies were restricted to models of one field in (1 + 1) dimensions
and the discussions were relatively simple. Next we considered more complicated
systems, involving more solitons (like the various modifications of the KdV
equation) [7] or models with more fields (still in (1 + 1) dimensions). In this talk
I want to describe our recent study of one of the models of this second class—and
here our work involved the study of some deformations of the SU(3) Toda model.
So my talk is based on a paper published in the Journal of High Energy Physics [8]
but I also want to mention some unpublished results.
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2 Toda Model

The SU(3) model is described by the Lagrangian [9]

L = 1

2
[(∂μφ1)

2 + (∂μφ2)
2 − ∂μφ1 ∂

μφ2]

+ 2[ei(2φ1−φ2) + ei(2φ2−φ1) + e−i(φ1+φ2) − 3]. (1)

The equations of motion of this model take the form:

∂+∂−φ1 = −i[ei(2φ1−φ2) − e−i(φ1+φ2)],
∂+∂−φ2 = −i[ei(2φ2−φ1) − e−i(φ1+φ2)], (2)

where ∂± = 1
2 (∂x ± ∂t ) and where we have set c = 1.

Note that the fields of this model are complex and so the energy does not have to
be real. This is potentially a serious problem (at least from the point of view of any
‘physical’ applications) but this has not stopped many mathematicians studying it
at length. This is partly due to its properties. Apart from the fact that the model can
be formulated in a more ‘mathematical’ form (using group theory, etc.), it is fully
integrable and many of its solutions are well known. Moreover, although the fields
are complex its soliton solutions have real energy.

So what are the solutions of this model? In fact, the model possesses two one-
soliton solutions. The difference lies in their complex phase rotating differently. (real
and imag. parts of φi). The fields of the solitons are defined in terms of Hirota’s τ
functions. They are given by

φa = i ln
τa

τ0
, a = 1, 2. (3)

Then, the one-soliton solution of the first type is given by

⎛
⎝
τ0

τ1

τ2

⎞
⎠ =

⎛
⎝

1
1
1

⎞
⎠ +

⎛
⎝

1
ω

ω2

⎞
⎠ eΓ (z), (4)

and the one-soliton solution of the second type is given by

⎛
⎝
τ0

τ1

τ2

⎞
⎠ =

⎛
⎝

1
1
1

⎞
⎠ +

⎛
⎝

1
ω2

ω

⎞
⎠ eΓ (z) (5)
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Fig. 1 The real and imaginary parts of φ1

with Γ (z) given by

Γ (zk) = √
s

(
zkx+ + x−

zk

)
+ ξk = 2

√
3ηk

(x − vkt − xk0 )√
1 − v2

k

(6)

and where ω is a cubic root of unity, different from unity itself. So we take

ω = ei 2π/3, 1 + ω + ω2 = 0. (7)

The real and imaginary parts of φ1 are shown in Fig. 1; the field φ2 is similar (its
real part is the same but its imaginary part is opposite of that of φ1).

Note that the real parts of these fields look very similar to the fields of the Sine-
Gordon solitons.

The model possesses also three classes of two-soliton solutions. They are
obtained by combining the expressions for one solitons:

The species-11 two-soliton solution is given by

⎛
⎝
τ0

τ1

τ2

⎞
⎠=

⎛
⎝

1
1
1

⎞
⎠+

⎛
⎝

1
ω

ω2

⎞
⎠ eΓ (z1)+

⎛
⎝

1
ω

ω2

⎞
⎠ eΓ (z2)+

⎛
⎝

1
ω2

ω

⎞
⎠ eΓ (z1)+Γ (z2)+Δ11 . (8)

The species-22 two-soliton solution takes the form:

⎛
⎝
τ0

τ1

τ2

⎞
⎠=

⎛
⎝

1
1
1

⎞
⎠+

⎛
⎝

1
ω2

ω

⎞
⎠ eΓ (z1)+

⎛
⎝

1
ω2

ω

⎞
⎠ eΓ (z2)+

⎛
⎝

1
ω

ω2

⎞
⎠ eΓ (z1)+Γ (z2)+Δ11 . (9)
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The mixed (i.e. species-12) two-soliton solution is given by

⎛
⎝
τ0

τ1

τ2

⎞
⎠=

⎛
⎝

1
1
1

⎞
⎠+

⎛
⎝

1
ω

ω2

⎞
⎠ eΓ (z1)+

⎛
⎝

1
ω2

ω

⎞
⎠ eΓ (z2)+

⎛
⎝

1
1
1

⎞
⎠ eΓ (z1)+Γ (z2)+Δ12 , (10)

where Γ (zk) are given as before and the quantities Δ11 and Δ12 are given by

eΔ11 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 sinh2
(
α2−α1

2

)

4 cosh2
(
α2−α1

2

)
−1

if η1 η2 = 1

4 cosh2
(
α2−α1

2

)

4 sinh2
(
α2−α1

2

)
+1

if η1 η2 = −1

(11)

and

eΔ12 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 sinh2
(
α2−α1

2

)
+1

4 cosh2
(
α2−α1

2

) if η1 η2 = 1

4 cosh2
(
α2−α1

2

)
−1

4 sinh2
(
α2−α1

2

) if η1 η2 = −1

. (12)

In these expressions αa , a = 1, 2, are the rapidities of the solitons related to the
velocities by va = tanhαa . Note that the two-soliton solutions satisfy the conditions
τ1 = τ +2 and τ +0 = τ0 and so the Hamiltonian for these solutions is real.

2.1 Some Properties of All These Solutions

Note that the energy and its density of all these solutions is real. Moreover, one-
soliton solutions can be static, and, from the two-soliton solutions, the mixed ones
can be static too. Furthermore, all solutions are stable, and the energies of static
one-soliton solutions are the same and the energy of the static two solitons (the
mixed case) is exactly twice the energy of one soliton. This suggests to us that the
model may possess a BPS-like property [10]; however, so far we have not managed
to demonstrate it.

The fields of two solitons possess various symmetries (like φ+1 = −φ2, etc.)
which guarantee the existence of the solutions in the first place and are responsible
for some of their properties. Moreover, these symmetries are also responsible for the
integrability of the model and, in this, the model resembles the Sine-Gordon model.
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To use this model to test our ideas on quasi-integrability, like we have done this
for the Sine-Gordon model, we have to deform it. So in the next section we discuss
our deformation of this model.

3 Deformed Model

Of course, there are various possible deformations of the model. For our purposes
the deformations of the potential V (φ1, φ2) are the most convenient and so we
considered various changes of

2[ei(2φ1−φ2) + ei(2φ2−φ1) + e−i(φ1+φ2) − 3] (13)

and have finally settled on [8] its change to

2[ei(2φ1−(1+ε)φ2) + ei(2φ2−(1+ε)φ1) + e−i(1−ε)(φ1+φ2) − 3], (14)

in which ε is the parameter of the deformation.
However, the changes introduced by this deformation are not insignificant. Not

only the equations of motion change appropriately but also one needs to change the
boundary conditions (so that each term in V vanishes).

So what are the properties of our deformation and can we use it to study the
quasi-integrability properties of our deformed model?

In the various cases of the deformed Sine-Gordon model we used the conserved
quantities of the original (undeformed) Sine-Gordon model as test quantities which
helped us to understand better the quasi-integrability. In the deformed model these
quantities were no longer conserved (they constituted the so-called ‘anomalies’).
These anomalies could have any form but when the deformed model still possessed
some important symmetries these anomalies were small and non-zero only when the
interacting solitons were close together. Moreover, their total contribution vanished
asymptotically—so that conserved were still conserved asymptotically (i.e. at large
times before and after the interaction of solitons). We have also noticed that this
asymptotical conservation always held if the original field configuration possessed
some specific properties (symmetries with respect to a reflection around some point
in space time (x, t)). Our previous studies involved models with one field; in this
work we have studied models involving more fields (here still only two).

Our paper [8] describes all this in detail, here we have no space to present the
details of our procedure of calculation of these anomalies and of relating them to
the study of the above-mentioned symmetry. Interested reader can find all needed
details in [8]. Here we recall the main results of our work and present new results
which provide explanations to some intriguing features of the previous results.

As shown in [8] our deformation preserves many symmetries of the original
Toda system and we have performed the calculation of the anomalies in a similar
way to the Sine-Gordon case. In [8] we showed that the lowest anomaly density is
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proportional to:

− [6 (∂−φ1)
2 − (3 − ε) (∂−φ2)

2 − 2 (3 + ε) ∂−φ1∂−φ2]E1

+ [(3 − ε) (∂−φ1)
2 − 6 (∂−φ2)

2 + 2 (3 + ε) ∂−φ1∂−φ2]E2 (15)

+ 3 (1 − ε)[(∂−φ1)
2 − (∂−φ2)

2]E0,

in which Ei stand for the three terms of the modified potential.
To go further we had to perform the simulations, but for them we needed

initial conditions and we do not even have expressions for one-soliton fields of the
deformed model in an analytic form.

So we have had to construct the relevant initial conditions numerically. We
did this in two steps. First we constructed one-soliton fields (with appropriately
modified boundary conditions). This was done by replacing ∂2

t by ∂t in the equations
of motions, i.e. running the simulations of the relevant dissipative system. This took
a while but gradually the fields settled to the one-soliton solutions of the deformed
equation. We repeated this procedure for various values of ε and so obtained the
numerical expressions of the deformed one-soliton fields for various values of the
deformation parameter. Then the two-soliton fields were constructed from one-
soliton fields by superpositions and reflections, etc. (aping the unmodified Toda
case). And then we performed our numerical simulations of our main equations
for the case of two solitons of the mixed case. As we mentioned before, this case
describes the solitons which can be static when ε = 0. For the other two-soliton
system we have repulsion like in the simple Sine-Gordon system.

4 Results: Static Cases

First of all we have looked at the case involving two solitons placed too far apart
(see the figure below); this has effectively tested our program and we were satisfied
as, as required, there was no motion. In Fig. 2 we present plots of the energy density
at t = 0 and at t = 1000. They clearly show that the solitons have not moved.

Then we started the solitons much closer together. In Fig. 3 we present the results
observed in three simulations (ε = 0, where we do not expect any motion, and for
two other values (one positive and one negative) of ε).

The plots are very representative of what we have seen in all our simulations.
First of all the two-soliton configurations for ε = 0 appear to be static, e.g. there
is no motion, while for ε > 0 we have always observed repulsion and for ε < 0
we saw attraction followed by an interesting behaviour (involving a reflection). In
the static ε = 0 case, in fact, we do see infinitesimally small attraction—but this
can be shown to be a numerical artifact (due to the too simple approximation of the
second derivatives in the equation of motion). We checked this by including more
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Fig. 2 Plots of energy densities see for values of t (a) t = 0, (b) t = 1000 seen in a static
simulation ε = 0.01
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Fig. 3 Plots of trajectories for ε = 0, ε = −0.01 and ε = 0.005

terms in the derivatives and attraction was smaller. However, including more terms
requires more computer time so all our results mentioned here were obtained using
the simplest approximation to the second order derivatives. The other cases are clear
cut and are genuine. No small corrections to the numerical approximations of the
derivatives would change them.

We have also obtained plots for the time evolution of the anomaly for the
simulations with ε �= 0. In the next two figures we present plots (or the real and
imaginary parts) of the anomaly for ε = −0.01 (Fig. 4) and in the following one for
ε = 0.001. These anomalies are exceptionally small suggesting quasi-integrability
if not full integrability. However, staring at these and some other similar results,
discussed in more detail in [8], we claim that we have only quasi-integrability.

The observed phenomena persist for more general values of ε �= 0.
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Fig. 5 Time dependence of real and imaginary parts of the anomaly seen in the simulation for
ε = 0.001

5 Non-static Cases

We have also performed many simulations for various values of velocities of
initial solitons (and for various values of ε). This involved taking non-static initial
conditions; we constructed such solutions taking dφa

dt
proportional to dφa

dx
, treating

each soliton separately. Moreover, we started our simulations with solitons further
(i.e. at positions where their interactions were negligible). As usual we compared
this procedure with the exact non-static solitons for the undeformed case and we did
not see any difference. Hence we are very confident of the validity of our results
(Fig. 5).
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Fig. 7 Field φ1 at three values of time: t = 0, t = 40 and t = 80. Initial velocities v = 0.06,
towards each other

We have performed many such simulations (for various values of ε, and of the
initial velocities and positions of solitons). Of course, the most interesting cases
involved solitons initially sent towards each other. All our simulations of such
scatterings found two interesting types of behaviour: reflections and ‘flips’ between
φ1 and φ2. In the figures below we present plots of some representative figures
showing both types of scattering.

In Fig. 6 we show the field φ1 at three values of time, which together demonstrate
the reflection (case with ε = 0.001). The field φ2 performed the corresponding
reflective evolution.

The next figure presents the plots of φ1 seen in a case which involved ‘flip’.
Again the velocity was v = 0.06 and the simulation was performed for ε = 0.01
(Fig. 7).

In Fig. 8 we present more plots of a typical ‘flipped’ case. This case corresponds
to ε = −0.001 with the starting velocities being v = 0.1. The three plots in this
figure show the trajectory of the field φ1, its shape at the ‘flipped’ point (in fact at
t = 58.5) and the energy density of the system at that value of time.

Looking at the picture of the trajectory in detail we note that the ‘trajectory’ of the
‘flipped’ soliton is a bit different (as if the solitons moved with a slightly modified
velocity). We have also looked at the anomalies seen in our simulations. They were
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always all very small and we do not include any plots of them here. Any interested
reader can see them in [8].

Instead, we return the static case in which we saw an essentially different
behaviour of the solitons (for different values of the sign of ε). We have tried to
understand it, since [8] was published, and in the next section we present our current
understanding of the observed difference in behaviour. This explanation is based on
performing a collective field approximation to the scattering in such cases.

6 Collective Coordinate Approximation

In the collective coordinate field approximation we replace each soliton field by
a variable describing the position of a soliton, and then construct a Lagrangian
describing the evolution of these variables. Of course, working in the centre of mass
we can restrict ourselves to considering only one variable which we denote by X(t).
The question then is: what is the Lagrangian for X(t)?

There are various ways for obtaining such an approximation. In our work
we follow the standard procedure as described in, e.g., [10]. This procedure
involves approximating fields f (x, t) by f (x − X(t)) and then substituting this
approximation into the original Lagrangian and deriving the Lagrangian for X(t)

by integrating over x.

6.1 The Case of ε = 0

So let us first consider the ε = 0 case. We ‘join together’ two single solitons—one
in the region x < 0, the other located in x > 0.
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To do this we take

φi = i ln
τ1

τ0
, (16)

for x < 0, where τ0 = 1 + eΓ1 and τ1 = 1 + ωeΓ1 with

Γ1 = α(x + X(t)) (17)

and, of course, ω = − 1
2 + i

√
3

2 . And we take φ2 to be given by φ2 = −(φ1)
+.

For x ≥ 0 take φi = i ln
τ ′

1
τ ′

0
, where τ ′

0 = 1 + eΓ2 , and τ ′
1 = 1 + ωeΓ2 . For Γ2

we take Γ2 = α(−x + X(t)).

As we said above, X(t) is the collective coordinate of one kink and α is a
constant. Note that at x = 0 Γ1 = Γ2 = αX and so the fields are continuous.

To get equations of motion for X(t) we integrate the Lagrangian density (1) over
x from −∞ to ∞. Interestingly, the spatial derivatives terms exactly cancel with the
potential terms in (1) and only the time derivative term remains. This gives us:

L(X, Ẋ) = (Ẋ)2f (X), (18)

where f (X) is given by

f (X) =
ˆ 0

−∞
e3Γ1 dx

(1 − eΓ1 + e2Γ1)2(1 + eΓ1)2
(19)

with Γ1(x,X) = 2
√

3 [x + X(t)]. Next we calculate f (X) and find

f (X) =
ˆ 0

−∞
e3Γ1 dx

(1 − eΓ1 + e2Γ1)2(1 + eΓ1)2
= 1

6
√

3

e6
√

3X

1 + e6
√

3X
. (20)

We note that we have two solutions for X(t), either

X = 0 or X(t) = 1

12
√

3
ln
[
sinh

√
L|t − t0|

]
(21)

The first one is what we wanted to get. However, what is the meaning of the second
one? This is unclear, and we have not understood it. It is likely to be an artifact of
our collective coordinate approximation.

6.2 The ε �= 0 Case

Next we consider the ε �= 0 case. As the initial configurations for our simulations
have only been calculated numerically we have to consider only small values of ε. To
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Fig. 9 φ1 Fields of one kink for ε = 0.04 at the beginning and at the end of diffusive simulation

get the correct boundary conditions it was convenient to introduce κ = 3
3+ε

∼ 1+2α
and to approximate all expressions by including only the first order corrections in α.

However, to get the numerical solutions of the soliton fields, for ε �= 0 we
modified φ1 and φ2 (and their derivatives) by multiplying them by 3

3+ε
and then

evolved them numerically (using a diffusive equation) to their correct values (i.e.
we evolved them until the energy did not change by more than 0.01% and the fields
seemed to be independent of the diffusive variable). When we compared the plots
we have found that the change of the fields was extremely small; time original and
the final fields looked essentially the same. In Fig. 9 we present the plots of the real
parts of φ1 fields of one solitons at the beginning and final times obtained in such a
diffusion for ε = 0.04. It is clear that these fields are essentially indistinguishable.

This suggested to us that, in our collective coordinate discussion we could take
the original fields (i.e. the errors introduced by this approximation would be very
small (essentially negligible)). This simplified significantly the calculations but, of
course, introduced small (but hopefully almost negligible) errors. Then the detailed
calculations gave us the following expression for our Lagrangian:

L = κ2(∂tX)
2g(X) − κ2 g(X)β + (g(X)β)κ, (22)

where g(X), in this approximation, is given by

g(X) ∼ f (X) = 1

6
√

3

e6
√

3X

1 + e6
√

3X
(23)

and β is a constant very close to 1.
This time the cancellation of the spatial derivative terms with the potential (which

occurred for ε = 0) does not take place and so the resultant Lagrangian has three
terms. Of course, when κ = 1, the last two terms cancel. The non-cancellation
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of these terms (for ε �= 0) changes everything. So, when we have calculated the
equations of motion for X(t), we have found that

2Ẍg(X) + Ẋ2 ∂g

∂X
− ∂h

∂X
= 0, (24)

where h(X) = α gβ[2 − ln(gβ)].
So what is the solution for X(t) if, initially, the kinks are started from rest? To

see this we have put Ẋ = 0 and noted that then

Ẍ = 1

2g(X)

∂h

∂X
. (25)

However, ∂h
∂X

= αβ
∂g
∂X

[1 − ln(gβ)] and g(X) < 1 and so we see that the sign of
∂h
∂X

agrees with the sign of α. This clearly explains our results as to the direction of
the initial motion of solitons (i.e. for ε < 0 we initially have the attraction, and ε we
have repulsion). However, it is much harder to find an explanation, why for ε < 0,
the initial attraction gets reversed when the kinks come close together resulting in
an effective oscillation. This would probably require more detailed evaluations of
the integrals and lies beyond the scope of this work.

7 Conclusions

The modifications of the Toda models possess interesting properties which may
help us in our study of quasi-integrability. We have obtained interesting results and
we have demonstrated that the fields of our deformed models possess interesting
properties. Their scattering properties depend on the deformations and we have
showed that, at least initially, the motion of the solitons can be explained by ideas
based on a collective field approximation.

We have also found that the anomaly is real (this is guaranteed initially by
the symmetry but, it seems, that this symmetry is essentially preserved by the
simulations).

Our anomaly (its real part) does change with time but it preserves our condition
of ‘returning to its original form’, i.e. provides the support for quasi-integrability
of the model. Thus we feel that this work has provided further arguments for the
existence of quasi-integrability.

Our future plans involve looking at breather-like fields, etc. but at this meeting
. . . ‘Many happy returns to Veronique Hussin’.
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On Some Aspects of Unitary Evolution
Generated by Non-Hermitian
Hamiltonians

A Unitary Way Towards Quantum Collapse

Miloslav Znojil

Abstract The possibility of nontrivial quantum-catastrophic effects caused by the
mere growth of the imaginary component of a non-Hermitian but PT -symmetric
ad hoc local-interaction potential V (x) is revealed and demonstrated. Via a
replacement of coordinate x ∈ R by a non-equidistant discrete lattice xn with
n = 0, 1, . . . , N+1 the model is made exactly solvable at allN . By construction, the
energy spectrum shrinks with the growth of the imaginary strength. The boundary
of the unitarity of the model is reached in a certain strong non-Hermiticity limit.
The loss-of-stability instant is identified with the Kato’s exceptional point of order
N at which the model exhibits a complete N -state degeneracy. This phase-transition
effect is accessible as a result of a unitary-evolution process in an amended physical
Hilbert space.

Keywords Quantum systems · Unitary evolution · Three-Hilbert-space
representation of states · Non-Hermitian observables · Quantum phase
transitions · Quantum catastrophes · Exactly solvable model

1 Introduction

The challenge of using non-Hermitian Hamiltonians in Schrödinger equation dates
back to the very early days of quantum mechanics. Typically, these Hamiltonians
were usually used in the study of resonances (cf., e.g., [1]). Still, in the context of
stable bound states, the very recent enormous growth of interest in the concept (cf.,
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e.g., reviews [2, 3]) may be perceived as evoked by the single short 1998 letter by
Bender with Boettcher [4]. These two authors managed to persuade the international
physics community that the study of non-Hermitian Hamiltonians H �= H † with
real spectra may be well motivated even if one studies a unitarily evolving quantum
system.

Already the early concrete applications of the abstract theoretical idea proved
surprisingly productive. In the context of quantum field theory, for example,
the use of non-Hermitian toy-model interactions helped to clarify certain non-
perturbative aspects of the spontaneous symmetry breaking [5]. In a certain parallel
to the conventional Hermitian models, unfortunately, even the innovation of the
mathematical frame did not lead to a discovery of any experimentally detectable
mechanism of the spontaneous breakdown of supersymmetry [6]. The parallel with
Hermitian theory only survived in a successful extension of the well-known non-
relativistic supersymmetric quantum mechanics to its versions using non-Hermitian
Hamiltonians (cf., e.g., [7]).

In the literature one can find many other, immediately visible paradoxes con-
nected with the development of the new formulation of quantum theory. Let us,
for example, mention here the rather unpleasant absence of a unified name of
the formalism. Thus, Bender [2] calls the formalism PT -symmetric quantum
mechanics. Reason: he and his coauthors strongly recommend the work with non-
Hermitian Hamiltonians H �= H † exhibiting an additional property HPT =
PT H . Here, P denotes parity, while T is time reversal. In a later review [3],
in contrast, Mostafazadeh called (more or less the same) formalism a pseudo-
Hermitian representation of quantum mechanics. Reason: as long as the operator
T of time reversal is antilinear, the above-mentioned PT -symmetry of H is to be
more naturally interpreted as its pseudo-Hermiticity.

An additional source of terminological misunderstandings has been, in parallel,
found in the fact that the non-Hermitian Hamiltonians with real spectra (though
not necessarily with the pseudo-Hermiticity property) were already constructed and
used in the past. Indeed, in the 1956 study of ferromagnetism by Dyson [8], the
Hamiltonians in question have been called “quasi-Hermitian.” Subsequently, in the
1970s and 1980s the idea found a number of successful practical applications in the
physics of heavy nuclei (these developments—called interacting boson model—
were partially reviewed, in 1992, by Scholtz et al. [9]).

The productivity of the concept, under any name, attracted attention of a broader
scientific community. Thus, mathematicians claimed that one should certainly
speak, more precisely, about the so-called Krein-space self-adjointness of H [10].
In parallel, the experimental physicists working in classical optic often translate
the PT -symmetry of the medium (with a complex refraction index) as a balance
between the gain (i.e., sources) and loss (i.e., sinks), simulated by the contemporary
highly advanced nanotechnologies [11].

In our present paper we will only marginally mention such a broadened physical
perspective. Our attention will be concentrated upon the comparatively narrow field
of the unitary quantum theory in which the Dyson’s (i.e., father’s founder’s) 60 years
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old ideas found their new and surprising applications recently, ranging from the
relativistic quantum mechanics up to the phenomenological quantum cosmology.

The essence and consequences of these ideas will be explained via certain
technically (though not phenomenologically) simplified illustrative examples. Our
text will be organized as a compact introduction in the theory (Sect. 2) followed
by an outline of models living on discrete lattices (Sect. 3). In Sect. 4 we then pick
up a family of solvable models in which we will be able to simulate the unitary
evolution leading, in a finite time, to an ultimate quantum energy-complexification
catastrophe.

The latter result may be perceived as a phenomenological climax of our present
message. In Appendix we shall complement it by a concise summary of some of its
mathematical aspects.

2 Unitary PT -Symmetric Quantum Theory In Nuce

For the conventional quantum systems S which are assigned self-adjoint one-
parametric families of Hamiltonians h(z) = h†(z) [with a real parameter z ∈
(zmin, zmax) which can vary, slowly, in time] the evolution described by Schrödinger
equation

i
d

dt
|ψ(t)- = h(z) |ψ(t)- , |ψ(t)- ∈ H(conventional) (1)

is unitary [12]. This is a traditional formulation of the theory which may prove,
in some situations, over-restrictive. For example, without an additional, ad hoc
symmetry of the Hamiltonian such a traditional formalism does not admit several
less usual but still utterly elementary evolution processes involving, e.g., an
unavoided crossing, or a merger and complexification (i.e., the loss of observability)
of a pair (or, in general, of anN -plet) of energy levels. The reason was formulated by
Kato [13]. He explained that the mergers of the energy levels can only occur at the
so-called exceptional points (EP) which are, for a generic self-adjoint Hamiltonian,
not real, i.e., which lie out of the range of an experimental realization.

2.1 Non-Hermitian Hamiltonians Enter the Scene

Whenever one needs to describe the process of an energy merger (marking, e.g.,
the quantum phase transition [14] or a “catastrophic” evolution scenario [15]), it
is necessary to employ the so-called pseudo-Hermitian representation (PHR) of
quantum mechanics [3] admitting non-Hermitian Hamiltonians H(z) �= H †(z) for
which the EP values of z can be real, z(EP ) ∈ R.
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Naturally, the search for such PHR models of quantum dynamics is of imminent
interest [2, 16]. For their description one only has to replace the conventional
Schrödinger Eq. (1) by its “false space” [17] generalization

i
d

dt
|ψ(t)〉 = H(z) |ψ(t)〉 , |ψ(t)〉 ∈ H(auxiliary) (2)

in which the uppercase Hamiltonian H is manifestly non-Hermitian. One of
the most popular illustrative examples of the applicability of the non-Hermitian
evolution Eq. (2) using ordinary differential Hamiltonians with real spectrum is due
to Bender and Boettcher [4] who studied the models

H(z) = − d2

dx2 + V (x, z) �= H †(z) (3)

where the potential represents the imaginary cubic oscillator V (x, 0) = ix3 or the
family of its generalizations

V (x, z) = (ix)z V (x, 0) . (4)

In the special case of z ∈ (−1, 1) these authors worked in H(auxiliary) = L2(R).
They conjectured that the model could be compatible with the unitarity-of-evolution
hypothesis (cf. [2, 3] and also several updated reviews in [18]).

2.2 The Emergence of Difficulties

A few years later it was revealed that the Bender’s and Boettcher’s concrete model
cannot be made compatible with the Stone theorem so that, eo ipso, Hamiltonian
(3) + (4) cannot be interpreted as a generator of unitary evolution of a quantum
system (see the detailed explanations as given, e.g., in Refs. [19, 20]). Similar
mathematical objections proved also to apply to a number of other non-Hermitian
local-interaction models [21]. Hence, the search for an update of a widely accepted
benchmark illustrations of the pseudo-Hermitian representation theory has been
reopened [22].

The search is not yet completed. Besides the attempts aimed at the rather compli-
cated mathematics behind the unbounded operators (3) and reviewed by Antoine and
Trapani [23], a more pragmatic strategy has been developed in Ref. [9]. Scholtz et
al. described and recommended there a bounded-operator version of the formalism.
Along these lines we also proposed, in our recent paper [24], a replacement of
the differential-operator models (3) by their various discrete, bounded-operator
descendants: These Hamiltonians may be found recalled in Sect. 3.

One of the shortcomings of the illustrative models of Ref. [24] was their
numerical nature. In our present text we will get rid of such a weakness. We will
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introduce a family of amended discrete-operator benchmark Hamiltonians which
remain closely related to their paradigmatic ordinary differential predecessors (3).
Our project will involve also the following, phenomenologically oriented aims.

1. Via Eq. (2) we intend to simulate the quantum unitary-evolution process in which
the Hamiltonian is a one-parametric N × N matrix H(N)(z). This toy-model
matrix will be Hermitian at z = 0 and non-Hermitian but PT -symmetric at z ∈
(0, 1) [for the definition of the concept of (discrete) PT -symmetry see Sect. 4.4].

2. An exact linear-algebraic solvability of our model will be achieved via its
discrete-operator construction based on a replacement of the real axis of coor-
dinates x ∈ R in (3) by a finite lattice of grid points xn, n = 0, 1, . . . , N + 1.

3. We shall guarantee that the spectra {En(z)} of our matrices H(N)(z) will be real.
The task will prove facilitated by an interplay between the tridiagonality and
PT -symmetry of H(N)(z).

4. We shall find a special subfamily of our matrices H(N)(z) for which the spectrum
will prove obtainable, at all of the relevant parameters z ∈ (0, 1) as well as at all
of the quantum numbers n = 0, 1, . . . , N − 1, in closed form (cf. Sect. 4).

In the latter, exactly solvable special case, all of the energies as well as all of the
wave functions will be required to degenerate at the real exceptional point z =
z(EPN) = 1 of the N -th order

lim
z→1

En(z) = E0(1) , lim
z→1

|ψn(z)〉 = |ψ0(1)〉 , n = 0, 1, . . . , N − 1 (5)

(cf. the rigorous mathematical definition of the exceptional points in [13]). Param-
eter z ∈ (0, 1) will be treated as a measure of the degree of non-Hermiticity of our
discrete local potential V (x) = V (x, z). At the maximal non-Hermiticity boundary
with z = 1 the specific EPN degeneracy (5) will be rendered possible by the use of
a non-equidistant lattice, with the self-consistently fine-tuned separation distances
hn = xn − xn−1, n = 1, 2, . . . , N + 1 at any N = 2, 3, . . .. An independent,
inseparable part of the solvability feature of our benchmark model will be shown to
lie in the user-friendly nature of the so-called Hilbert-space metric Θ which defines
the correct physical inner products. Interested readers may find a brief outline of
these technical details in Appendix.

3 Simplified Mathematics and the Discrete-Coordinate
Models

According to the recent study [21] the spectrum generated by V ∼ ix3 could
be unstable and “a very small perturbation . . . can create . . . eigenvalues very far
from the spectrum of the unperturbed operator H .” The danger is real. Its possible
emergence was already predicted by Dieudonné [25]. The authors of the quantum-
physics-oriented review [9] decided to restrict, therefore, the scope of the PHR
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approach to bounded Hamiltonians, H ∈ B(H). In this way they managed to stay
on the mathematically safe side. The ill-behaved unbounded-operator models were
excluded.

In many subsequent publications which accepted this philosophy, multiple
realistic calculations as well as conceptual considerations were even based on the
mere finite-dimensional benchmark matrix models [14, 26, 27]. The same strategy
will be also accepted in our present paper.

3.1 Discrete Imaginary Cubic Oscillators

In Ref. [24] we followed and tested the consequences of the latter tendency.
For the model of Eq. (4) which manifestly violates the boundedness condition
H ∈ B(H) a remedy has been proposed. It consisted in a discretization of the
continuous coordinate x ∈ R yielding the lattice of points xn = const + h n with
n = 0, 1, . . . , N + 1, and with a constant grid-mesh size h > 0.

The use of the discrete coordinates led to the replacement of the continuous-
coordinate kinetic-energy term by its difference-operator analog

− d2

dx2 u(xn) → 1

h2 [−u(xn−1) + 2u(xn) − u(xn+1)] . (6)

We fixed δ = 0, premultiplied Hamiltonian (4) by h2, abbreviated h5/8 = a and
arrived at the imaginary cubic discrete-oscillator sequence of the N by N matrix
models

H
(2)
(IC)(a) =

(
2 − ia −1
−1 2 + ia

)
, H

(3)
(IC)(a) =

⎛
⎝

2 − 8ia −1 0
−1 2 −1
0 −1 2 + 8ia

⎞
⎠ ,

H
(4)
(IC)(a) =

⎛
⎜⎜⎝

2 − 27ia −1 0 0
−1 2 − ia −1 0
0 −1 2 + ia −1
0 0 −1 2 + 27ia

⎞
⎟⎟⎠ . . . . (7)

In comparison with the formal N → ∞ limit (4) we emphasized the technical
merits of the study of family (7) at a few not too large N . This offered an immediate
theoretical insight in several interesting physical phenomena and, in particular, an
access to a transparent exemplification of the two-level mergers of the energy levels.
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3.2 General Power-Law Potentials

In the limit N → ∞, dynamical models (7) yield the traditional PHR Hamiltonian
(4) at δ = 0. From this perspective the methodical role of the Bender’s and
Boettcher’s variable exponent δ has been transferred to the variable mesh-size a. The
original EP singularities [4, 28] appeared paralleled by the dimension-dependent EP
values a(N)

(EP ) (cf. their sample in Table Nr. 1 in Ref. [24]).
Feeling encouraged by such a success we decided to introduce, in [24], another

variable parameter. We made its value γ intimately connected with the exponent
δ in Eq. (4). Our two-parametric toy-Hamiltonian construction resulted in another
sequence of power-law matrices

H
(2)
(PL)(a, γ ) =

(
2 − ia −1
−1 2 + ia

)
,

H
(3)
(PL)(a, γ ) =

⎛
⎝

2 − 2γ ia −1 0
−1 2 −1
0 −1 2 + 2γ ia

⎞
⎠ , (8)

H
(4)
(PL)(a, γ ) =

⎛
⎜⎜⎝

2 − 3γ ia −1 0 0
−1 2 − ia −1 0
0 −1 2 + ia −1
0 0 −1 2 + 3γ ia

⎞
⎟⎟⎠ , . . . . (9)

Such a γ �= 3 generalization of Eq. (7) enhanced the flexibility of the predictions.
Serendipitously, it also led to the emergence of a number of topologically non-
equivalent spectral loci [24].

4 Physics of Unitary Evolution Towards a Collapse

A less satisfactory aspect of the above-outlined results lies in a serious methodical
problem which emerged in connection with the necessity of the construction of the
hermitizing inner products in the correct, physical Hilbert spaces. Only the purely
numerical techniques were found to be able to deal with the problem, i.e., in the
language of physics, with the necessity of the guarantee of the positive definiteness
of the inner product.
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4.1 Non-uniform Lattices with Site-Dependent Spacings

On an equidistant lattice with a fixed spacing h > 0 the discrete Laplacian is defined
by Eq. (6). On the more general one-dimensional lattices with the site-dependent
spacings hn > 0 an analogous formula holds, just with the modified, site-dependent
coefficients [29]

− d2

dx2
u(xn) → −anu(xn−1) + 2 bnu(xn) − cnu(xn+1) , (10)

an = 2

hn(hn + hn+1)
, bn = 1

hn hn+1
, cn = 2

hn+1(hn + hn+1)
. (11)

The old formula is correctly reproduced in the equidistant limit hn → h. Along
these lines the original discrete Laplacian . becomes generalized

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 . . . 0

−1 0
. . .

. . .
...

0 −1
. . . −1 0

...
. . .

. . . 0 −1
0 . . . 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2b1 −c1 0 . . . 0

−a2 2b2 −c2
. . .

...

0 −a3 2b3
. . . 0

...
. . .

. . .
. . . −cN−1

0 . . . 0 −aN 2bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Once we add a local potential V (xn) we arrive at the ultimate discrete version of
ansatz (3)

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2b1 + V (x1) −c1 0 . . . 0

−a2 2b2 + V (x2) −c2
. . .

...

0 −a3 2b3 + V (x3)
. . . 0

...
. . .

. . .
. . . −cN−1

0 . . . 0 −aN 2bN + V (xN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

The variability of the sequence of spacings hn may be reinterpreted as the emergence
of a new model-building freedom. The tridiagonal discrete-oscillator Hamiltonians
can now contain more or less arbitrary real off-diagonal matrix elements. Naturally,
such a freedom may be expected to become highly welcome in phenomenological
context.
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4.2 Simplification Requirement: PT -Symmetry

A family of user-friendly PHR quantum models H = . + V (x) can be built using
the generalized kinetic-energy component (12). We are also allowed to pick up
such a (non-Hermitian) discrete local interaction V (x) which would guarantee the
stable, unitary evolution of the system, i.e., the strict reality of the whole energy
spectrum. That’s why the PT -symmetry of H is often required. Indeed, such a
property of H proves methodically useful because in the complex plane of energies,
it guarantees that even if not real, all of the formal complex energy eigenvalues
are very specific in always occurring in complex conjugate pairs. Hence, under
the apparently redundant PT -symmetry the loss of the reality is much more easily
traced and detected.

This observation makes the concept of PT -symmetry useful and productive. For
the matrix Hamiltonians, in particular, the antilinear operator T can be visualized
as causing Hermitian conjugation (i.e., transposition plus complex conjugation). In
parallel, the linear operator of parity acquires the matrix form

P =

⎡
⎢⎢⎢⎢⎢⎣

1
1

˙̇̇
1

1

⎤
⎥⎥⎥⎥⎥⎦
. (14)

Having selected, for the sake of definiteness, the value of the exponent γ = 1 in
our guiding example (8), we then obtain a PT -symmetric non-uniform-grid more-
parametric generalizations

H
(2)
(PT )

(f, g, a) =
(
f − ia g

g f + ia

)
,

H
(3)
(PT )

(f(2), g, a) =
⎛
⎝
f1 − 2ia g 0

g f2 g

0 g f1 + 2ia

⎞
⎠ , (15)

H
(4)
(PT )

(f(2), g(2), a) =

⎛
⎜⎜⎝

f1 − 3ia g1 0 0
g1 f2 − ia g2 0
0 g2 f2 + ia g1

0 0 g1 f1 + 3ia

⎞
⎟⎟⎠ , . . . (16)

of the respective two-parametric Hamiltonian matrices in Eq. (8).
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4.3 Construction of the Collapse

The higher−N elements of our PT -symmetric family (15) of the candidates for a
solvable Hamiltonian contain so many free parameters that one cannot really hope
that the determination of the energies would become non-numerical at N > 4. At
the same time, one can try to restrict such a redundant freedom and obtain, in this
manner, a non-numerical form of the energy levels. In what follows we shall see that
it is possible to achieve even more: The variability of the parameters will enable us
to fine-tune their values in a way aimed at making our EP values of some parameters
real, i.e., accessible to an experimental simulation.

In the light of the latter comment our present model-building strategy will be
based on a step-by-step search for the most efficient simplifications. Naturally, such
a search has to start from H

(N)

(PT )
(f(J ), g(K), a) at N = 2 and J = K = 1. Thus,

from the available elementary formula for the energy spectrum E± = f ±√
g2 − a2

one deduces that the role of f , meaning just a shift of the spectrum, is trivial so that
we may put this parameter equal to zero. Similarly, the value of g just fixes the scale
so that we may set it equal to one.

The naive strategy of such a type fails immediately at N = 3, J = 2, and K = 1.
Indeed, the Cardano formulae for the energies are found complicated and far from
being transparent even with f2 = 0 or with f1 = 0. In contrast, the simultaneous
choice of f1 = f2 = 0 leads to the satisfactory elementary formulae E0 = 0 and
E± = √

2 g2 − 4 a2. The tests made at N = 4 and N = 5 gave similar answers.
On these grounds we arrived at our following ultimate multiparametric ansatz for
H(N)(g(K), z):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i (N − 1)z g1 0 0 . . . 0

g1 −i (N − 3)z g2 0
. . .

...

0 g2 −i (N − 5)z
. . .

. . . 0

0 0 g3
. . . g2 0

...
. . .

. . .
. . . i (N − 3)z g1

0 . . . 0 0 g1 i (N − 1)z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

It coincides with the sequence of models (15) under the trivial choice of f(J ) = 0,
i.e., it still varies with the K-plet of optional real parameters g(K) such that N = 2K
or N = 2K + 1.

Theorem 1 For the special choice of parameters

gk = ±√
k(N − k) (18)
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Fig. 1 Time-dependent
energies (19) for the choice of
z = z(t) = max (0, t) and
N = 8. The EP8 collapse is
encountered at t = 1
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in the complex symmetric Hamiltonian (17), the set of the energy eigenvalues has
the following elementary form:

Ek(z) = (N − 2k + 1)
√

1 − z2 , k = 1, 2, . . . , N . (19)

Proof Due to the tridiagonality of the Hamiltonian one can recall the recurrent
construction recipe of Ref. [30]. Once we introduce the reduced variable s =√
E/(1 − z2) we find that at any dimension N the secular polynomial S(s) has

just integer coefficients and that it factorizes into elementary factors, with the roots
given by Eq. (19).

Figure 1 offers an example of the N -level collapse. We choose there N = 8 and
a specific time dependence of z = z(t) = max (0, t). The picture shows that the
spectrum remains constant before zero time t = 0, then it shrinks and, ultimately,
degenerates at t = t (EPN) = 1. It becomes purely imaginary and unobservable later
on, at t > 1.

4.4 Multiparametric Hamiltonians

Let us now assume that our toy-model Hamiltonian (13) is exactly solvable, i.e.,
that it coincides, up to an inessential overall multiplicative factor, with the solvable
matrix (17) and (18), i.e., the matrix H(N)(z) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i (N − 1)z −√
N − 1 0 0 . . . 0

−√
N − 1 −i (N − 3)z −√

2(N − 2) 0
. . .

...

0 −√
2(N − 2) −i (N − 5)z

. . .
. . . 0

0 0 −√
3(N − 3)

. . . −√
2(N − 2) 0

...
. . .

. . .
. . . i (N − 3)z −√

N − 1
0 . . . 0 0 −√

N − 1 i (N − 1)z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(20)
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Such a coincidence requirement has the form of algebraic set

√
(N − k)k = ck = 2

(hk + hk+1)hk+1
= ak+1 = 2

hk+1(hk+1 + hk+2)
, (21)

for k = 1, 2, . . . N − 1. The first and last items enable us to eliminate h1 and hN+1,

h1 = h1(h2) = 2

h2
√
N − 1

− h2 , hN+1 = hN+1(hN) = 2

hN
√
N − 1

− hN .

(22)

Thus, at N = 2 we are left with the single variable mesh-size h2 = h and its two
functions (22). At any larger N > 2 we may simplify relations (22) by evaluating
the ratios ck/ak . This yields the N − 2 recurrences

hk+2

√
(N − k − 1)(k + 1) = hk+1

√
(N − k)k , k = 1, 2, . . . , N − 2, (23)

which interrelate the remaining N − 1 spacings h2, h3, . . . , hN . One quantity is
always left as an independent mesh-size variable. It is h = h2 = h3 at N = 3, etc.

Such a determination of the non-uniform spacings hk = hk(h) may be followed
by the subsequent evaluation of components 2bk of the diagonal matrix elements
2bk + V (xk) in Eq. (13). Once we want our matrix to coincide with the exactly
solvable model of Eq. (20), we must make these matrix elements equal to the purely
imaginary quantities −i(N+1−2k)z. In this manner, our exactly solvable potential
will be defined by the relations

Re V (xk) = −2bk(h) , Im V (xk) = −i(N + 1 − 2k)z . (24)

The resulting potential is fine-tuned to guarantee the degeneracy (5). Its (non-
vanishing!) real part remains fixed and only its imaginary part varies with the real
coupling-strength parameter z (cf. [31]). Our construction of the local potential
defined on the non-equidistant discrete lattice of grid points xk and supporting the
existence of the (in principle, experimentally accessible) real N -tuple exceptional
point is completed.

5 Conclusions

In our present paper we described an answer to the truly challenging problem of
the description of the physics of unitary evolution towards a collapse using a local
interaction potential. Our successful construction was rendered possible by a patient
trial-and-error search for a maximally user-friendly toy-model. Besides a suitable
modification of the more or less routine discretization strategy, the main merit
of our approach can be seen in a strictly non-numerical tractability of our N by
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N Hamiltonians. We managed to construct an amended family of matrix models
containing a sufficient number of variable parameters while still keeping the bound-
state energies themselves in a closed, non-numerical form.

On the basis of our present results we believe that many of the above-discussed
weaknesses of the currently available non-Hermitian local-interaction models will
be further suppressed along the indicated methodical lines. We are persuaded that,
first of all, the purely physical credit of the finite-dimensional Hamiltonians will
be further enhanced, mainly due to our demonstration that even at the higher
dimensions N , the form of the spectrum of the toy models need not necessarily
be purely numerical. Secondly, the future analyses of toy models will certainly
be encouraged by our present constructive demonstration that the linear-algebraic
construction of the physical Hilbert space may often decisively be facilitated by the
finiteness of their matrix dimensions N < ∞.

Appendix: The Metric as a Degree of Model-Building Freedom

The specification of quantum system S requires not only the knowledge of its
Hamiltonian H(N)(z) [i.e., at any preselected dimension N and parameter z,
the knowledge of matrix (20) in our case] but also a constructive access to the
correct probabilistic interpretation of experiments. In other words, having solved
the time-dependent Schrödinger equation (2) we still need to replace our manifestly
unphysical working Hilbert space H(auxiliary) by the correct physical Hilbert space,
i.e., we must modify the inner product accordingly [3].

The Abstract Theory Revisited

In the context of quantum theory of many-body systems it was Freeman Dyson [8]
who conjectured that in some cases, an enormous simplification of the variational
determination of the bound-state spectra could be achieved via a suitable non-
unitary similarity transformation of the given realistic Hamiltonians

h → H = Ω−1hΩ , Ω†Ω �= I. (25)

The trick proved particularly efficient in nuclear physics [9]. An amendment of the
calculations has been achieved via a judicious choice of the operators Ω converting,
e.g., the strongly correlated pairs of nucleons into weakly interacting effective
bosons.

In spite of the initial success, the trial-and-error nature of the Dyson-inspired
recipes and the fairly high formal mathematical costs of the replacement of the
self-adjoint “realistic” operator h = h† by its manifestly non-Hermitian, quasi-
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Hermitian [9] alternative

H = Θ−1H †Θ �= H † , Θ = Ω†Ω (26)

have been found, beyond the domain of nuclear physics, strongly discouraging (cf.,
e.g., [25]).

Undoubtedly, the idea itself is sound. In the context of abstract quantum theory its
appeal has been rediscovered by Bender with Boettcher [4]. In effect, these authors
just inverted the arrow in Eq. (25). They conjectured that one might start a model-
building process directly from Eq. (26), i.e., directly from a suitable trial-and-error
choice of a sufficiently simple non-Hermitian Hamiltonian with real spectrum. Their
conjecture was illustrated by the family of perturbed imaginary cubic oscillator
Hamiltonians

Hε = − d2

dx2
+Vε(x) �= H †

ε , Vε(x)= ix3(ix)ε , x ∈ (−∞,∞), ε ∈ (−1, 1).

(27)

Technical details may be found in reviews [2, 3, 9, 18] in which several formulations
of the “inverted” stationary version of the quantum model-building strategy may be
found.

The Unitarity of Evolution Reestablished

It is worth adding that strictly speaking, the latter strategies are not always equivalent
(cf. also further comments in [22, 32]). For our present purposes we may distinguish
between the older, more restrictive “quasi-Hermitian” formulation of quantum
mechanics (QHQM) of Ref. [9], and the “PT -symmetric” version of quantum
mechanics (PTQM, [2]).

The key difference between the latter two pictures of quantum reality lies in the
strictly required non-admissibility of the unbounded Hamiltonians in the QHQM
framework of Ref. [9]. This requirement is by far not only formal, and it also makes
the QHQM theory mathematically better understood. In contrast, the process of
the rigorous mathematical foundation of the extended, phenomenologically more
ambitious PTQM theory (admitting the unbounded Hamiltonians as sampled by
Eq. (27)) is still unfinished (cf., e.g., the concise progress reports [23, 33]). Hence,
also the toy models with the local but not real potentials are far from being widely
accepted as fully understood and consistent at present (cf., e.g., [20, 21]).

One is forced to conclude that the ordinary differential (but, unfortunately,
unbounded) benchmark model (27) of a PT -symmetric quantum system (where P
means parity, while symbol T denotes the time reversal [4]) is far from satisfactory.
At the same time, its strength may be seen in its methodical impact as well as in
its simplicity and intuitive appeal. For all of these reasons one is forced to search
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for alternative PT -symmetric quantum models which share the merits while not
suffering of the inconsistencies.

Needless to add that the unitarity of the quantum evolution can be reestablished
for many non-Hermitian models with real spectra. One just has to return to the stan-
dard quantum theory in QHQM formulation. The details of the implementation of
the idea may vary. Thus, Bender [2] works with an auxiliary nonlinear requirement
HPT = PT H called “PT -symmetry of H .” In a slightly more general setting
Mostafazadeh [3] makes use of the same relation written in the equivalent form
H †P = PH , and he calls it “P-pseudo-Hermiticity of H .” Still, both of these
authors respect the Stone theorem. This means that both of them introduce the
correct physical Hilbert-space metric Θ and both of them use it in the postulate

H = Θ−1H †Θ := H ‡. (28)

of the so-called quasi-Hermiticity property of the acceptable Hamiltonians. Rewrit-
ten in the form

H †Θ = Θ H (29)

the equation can be interpreted as a linear-algebraic system which defines, for a
given Hamiltonian matrix H with real spectrum, the N -parametric family of all of
the eligible matrices of metric Θ . For the tridiagonal input matrices H , the solution
is particularly straightforward because the algorithm can be given a recurrent form
implying that the solutions exist at any input H [34].
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