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Abstract This chapter is aimed at introducing the reader to current methods for
the spatial and temporal analysis of eye movements. There are four main parts. In
the first part of the chapter, we introduce the relation between attention and eye
movements and then review the foundations of attention research, social attention
and the effect of stimulus saliency on attention. In the second part, we first review
traditional characterizations of eye movements, specifically measures of fixations
and saccades, and then we review the major methods for the spatial analysis of
eye movements, including heat maps and area-of-interest analyses. In the third part,
we introduce a new temporal analysis of eye movements, recurrence quantification
analysis. We review the basic methods and measures of this analysis, and we discuss
several applications. In the last part of the chapter, we provide an overviewofmethods
for the comparison of scanpaths and show that recurrence quantification analysis can
be generalized successfully to scanpath comparisons.

With the information provided in this chapter, readers will be able to understand

• The relationship between attention and eye movements
• Thedifferentmethods for characterizing eyemovements in the spatial and temporal
domain

• The fundamentals of recurrence quantification analysis for characterizing eye
movement dynamics

• The major scanpath comparison methods.

Abbreviations

The following abbreviations are used in this chapter

AOI Area of interest
CORM Center of recurrence mass
DET Determinism
LAM Laminarity
LDA Linear discriminant analysis
REC Recurrence
RQA Recurrence quantification analysis
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10.1 Introduction: Attention and Eye Movements

Humanattention is themechanism that enables one tofilter out some sensory informa-
tion in the environment and sharpen the perception of other information, much as one
disregards the surrounding text on a page while reading specific words (Broadbent,
1971). Typically, attentional orienting is accompanied by fast jerky eyemovements—
called saccades—that rapidly acquire detailed information from the environment,
such as those being performed while reading the sentences in this chapter (see e.g.
chapter by Hyönä&Kaakinen, this volume). These shifts in attention are called overt
because they involve reorienting the eyes, a behaviour that can be observed by others
(Findlay & Gilchrist, 2003). Interestingly, though, eye movements are not needed
for shifts of attention to occur. For instance, when you reach the end of this sentence,
stare at the period and then identify the word that is one line below it while keeping
your eyes on the period. These shifts in attention in the absence of eyemovements are
called covert because they do not require reorienting of the eyes and thus cannot be
directly observed by others (Posner, 1978). In general we look at things that interest
us, and therefore overt attention and covert attention align. Therefore the focus of
discussion in this chapter concerns attention, as measured by overt shifts in attention,
specifically, those that are executed as saccadic eye movements.

Both forms of orienting, covert and overt, can be activated reflexively by external
events in the environment (this is sometimes referred to as exogenous orienting) and
voluntarily by internal goals and expectations (also called endogenous orienting)
(Kingstone, 1992). Consider for example that in reading this sentence you aremoving
your overt attention voluntarily from one word to the next.

Alternatively, imagine that you are driving a car when a ball suddenly bounces
into the road ahead of you. Initially, your attention is captured by the ball (overt
reflexive orienting) but you do not track the ball for long. Rather, you look back to
the area that the ball came from (overt voluntary orienting) to see if a child is about
to run into the road after the ball.

In everyday life there are often competing demands on reflexive and volitional
attention, and in order to respond appropriately to these competing demands, one
needs to be able to coordinate attentional processes. For example, in the driving
scenario described above, you would need to be able to break your reflexive attention
away from the ball to search in a volitional manner for a child.

In the lab, two classic paradigms used to isolate these two processes, and their
coordination, are the prosaccade task and the anti-saccade task (see Fig. 10.1 and
chapter by Pierce et al., this volume). Saccadic latency is shorter when saccades
are directed towards a target (prosaccades) than away from it (anti-saccades). This
difference is typically attributed to the fact that different processes are involved
in prosaccade and antisaccade generation. Prosaccades are reflexive (exogenous)
responses triggered by the onset of a stimulus. Antisaccades require two processes:
the inhibition of a prosaccade and volitional (endogenous) programming of a saccade
in the opposite direction (Olk & Kingstone, 2003).
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Fig. 10.1 Example trial sequence in a prosaccade and antisaccade task. Participants are presented
with a central fixation dot flanked by two possible target locations. After a delay of delay of 1 s, a
target circle is presented on the left or right. In a prosaccade task the participant is to fixate the target
location as quickly as possible. In an antisaccade task the participant is to fixate the location that
is mirror opposite to where the target appeared. Thus, in the trial that is illustrated, if a participant
was performing a prosaccade task a left eye movement would be correct, and if a participant was
performing an antisaccade task a right eye movement would be correct

Difficulty in coordinating attentional processes can be a major source of disability
in people with neurologic disorders (see Müri et al., this volume). For example,
patients with frontal lobe lesions, caused by a stroke or a closed head injury, may
performnormallywhen looking reflexively to a peripheral light that appears suddenly,
as in the prosaccade task. But when asked to look away from the stimulus light, as
in the antisaccade task, these patients are extremely slow to respond, and often
incorrectly continue to make reflexive eye movements towards the light. It is as if
the driver in our scenario above could not stop tracking the ball and thus could not
begin to search for a child. Thus it is believed that frontal brain systems are crucial
for generating voluntary shifts of attention and inhibiting reflexive ones.

10.2 Historical Annotations

10.2.1 Attention Research: Assumptions of Process Stability
and Control

The study of human attention can be segmented into three historical stages. The first
stage occurs in the late 1950s and is characterized by a rapid scientific progression
propelled by the methods of traditional psychophysics and experimental psychology.
The second stage appears in the mid-1970s and is driven by computational analyses
that heralded the arrival of cognitive science. The third phase, which began in the
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mid-1980s, incorporated evidence from neuropsychology and animal neurophysi-
ology, and more recently, brain imaging, and is subsumed by the field of cognitive
neuroscience.

Each of these historical stages are grounded on two basic research assumptions.
One is that human attention is controlled by processes that are stable across different
situations, meaning that, for example, the processes that are studied in the lab are the
same as the processes that are expressed in the real world. Second one can maximize
research power by exerting experimental control and minimizing all variability in
a situation save for the factor of interest. Below we describe briefly why these two
assumptions may very well be invalid insofar as they fail to shed light on attention
in real world situations, and how the field has responded by conducting far more
complex studies that occur in real life or at least better approximate real-world sit-
uations. These more sophisticated studies have in turn demanded more advanced
analytical tools, and these analytical methods—in particular, the recurrence quantifi-
cation analysis—are the main focus of the present chapter. Before turning to these
analyses, however, a brief historical review is warranted and presented.

10.2.2 Social Attention and Stimulus Saliency

While the assumptions of process stability and situational control are commonly held
and applied in studies of attention, adopting them comes with a degree of risk. The
assumption of stability for example eliminates any need or obligation by the scientist
to confirm that the factors beingmanipulated andmeasured in the lab actually express
themselves in the real world. The field does of course check routinely that the effects
beingmeasured are stablewithin the lab environment by demanding that results in the
lab be replicable. Unfortunately a result that is stable within a controlled laboratory
environment does not necessarily mean that it is stable outside the lab. Indeed there
are many examples within the field of human attention indicating that even minimal
changes within a laboratory situation will compromise the replicability of the effect
(e.g., Chica, Klein, Rafal, & Hopfinger, 2010; Hunt, Chapman, & Kingstone, 2008;
Soto, Morein-Zamir, & Kingstone, 2005).

It has been proposed in much greater detail elsewhere (e.g., Kingstone, Smilek, &
Eastwood, 2008; Risko & Kingstone, 2011) that an impoverished highly controlled
experimental situation is unlikely to inform the field about the attentional processes
as they are expressed in everyday real-life situations. It stands to reason then that by
increasing situational complexity and reducing experimental control one will begin
to better approximate the mechanisms that operate in everyday life.

This approach can be illustrated by first considering that the prevailing eye move-
ment model of Itti and Koch (2000) assumes that where people look is determined
by a ‘winner take all’ visual saliency map. This saliency map is generated from basic
stimulus features, such as luminance, contrast and colour. These features are claimed
to be combined in a biologically plausible way (based on the workings of the visual
cortex) to represent the most interesting or ‘salient’ regions of a display, image or
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Fig. 10.2 a Example image; b Salience map as computed by the Saliency Toolbox in MATLAB
(Walther & Koch, 2006); c Salience map as computed by the Attention based on Information
Maximization (AIM) model (Bruce & Tsotsos, 2009)

video (see Fig. 10.2). Despite the mounting evidence that this model has, at best,
minimal construct validity in an very narrow band of situations (e.g., Nyström &
Holmqvist, 2008; Tatler, Baddeley, & Gilchrist, 2005), it is still prominent in the
literature.

What is striking about this model, besides its vast popularity, is how the scenes
that have been used to test the model have rarely contained any people. The real
world is much more than images of landscapes, buildings, and empty rooms. The
real world contains people, and much of it operates in service of the needs of people.

The recent eye tracking work of Birmingham and colleagues (Birmingham,
Bischof, & Kingstone, 2008a, b; Levy, Foulsham, & Kingstone, 2012) has revealed
that people are extraordinarily interested in people, in particular, the eyes of peo-
ple, even when they are embedded in complex scenes. It does not appear to matter
very much where the people are in the scenes, what they are wearing, or even how
tiny they are represented in a scene. If there is a person somewhere in a photo, then
participants are going to look at them quickly, and often—especially their eyes.

From the perspective of the saliency model, these results are not expected because
often the people in the scenes are very small and not at all visually salient (Birm-
ingham, Bischof, & Kingstone, 2009). And yet, observers quickly, consistently, and
repeatedly seek them out. Thus, there seemed to be a profound bias to search out
people, and in particular the eyes of individuals, in complex social scenes.

10.2.3 Social Attention in the Real World

The research conducted using social scenes, of course, pertain to simple static scenes
(i.e. photographs) of people. In real life people move about, they look at each other,
and they talk to one another. What happens in such a situation? Foulsham, Cheng,
Tracy, Henrich, and Kingstone (2010) asked precisely this question. In their study
participants watched videos of different groups of three individuals sitting around
a table discussing a hypothetical situation regarding the most important items that
they would take to the moon while having their eye movements tracked. Foulsham
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et al. (2010) found that despite the fact that the individuals in these videos moved,
talked and interacted with one another, there remained a tremendous consistency
in the participants’ looking behavior. Specifically, participants fixated primarily on
the eyes of the people in the video (see also Cheng, Tracy, Foulsham, Kingstone,
& Henrich, 2013). Thus, even in this dynamic social context, participants’ looking
behavior evidenced a clear bias to attend to the eyes of others. Furthermore, as with
Birmingham, Bischof, and Kingstone (2009), these findings cannot be explained in
terms of basic low-level stimulus saliency, in this case, features like visual motion
and sound onsets. Foulsham and Sanderson (2013) and Coutrot and Guyader (2014)
both investigated whether looks to the faces and eyes of individuals engaged in
conversation were significantly affected by changes in visual saliency, or whether the
audio is present or absent. In both studies, participants again view complex, dynamic
scenes featuring conversationwhile their eyemovementswere recorded. Their results
indicated that the addition of an audio track increased looks to the faces and eyes
of the talkers, and also resulted in greater synchrony between observers when they
looked at the speakers (Foulsham & Sanderson, 2013). Critically, however, whether
sound was present or not, and independent of changes in low-level visual saliency
(Coutrot & Guyader, 2014), people spent most of their time looking at the faces and
eyes of the individuals in the videos.

10.2.4 Summary

To summarize, it has been found that attention paradigms that are conducted in
isolation using simple non-social, carefully controlled visual scenes, a model that
assumes that people look at the most salient items can explain some eye movement
behaviour. However, when contrary to the classic research approach of simplification
and control, participants are shown a wide variety of photos containing people (the
pictures are all different) and the behaviour is unconstrained (participants are free to
look wherever they wished), then it is discovered that people are primarily interested
in looking at the people in the scenes, especially their eyes. These findings persisted
when stimulus complexity is further increased by introducing videos that involved
people moving and talking. Finally, these data provided a strong test of the Itti-Koch
saliency model of human looking behaviour and found that it could not account for
such behaviour in these more natural and complex displays.

To address these and similar criticisms, the Itti-Koch saliency model has been
revised regularly by incorporating additional features, such as depth and motion,
by adding top-down mechanisms, such as face detectors, or contextual guidance
(Anderson,Donk,&Meeter, 2016; Torralba,Oliva, Castelhano,&Henderson, 2006).
Finally, some recent work has used machine learning to learn an optimal set of
bottom-up features (e.g. Vig, Dorr, & Cox, 2014). These extensions are further dis-
cussed in the chapter by Foulsham (this volume). We also encourage the reader to
consult the SaliencyBenchmarkwebsite http://saliency.mit.edu for a review of recent
saliency models and their performance.

http://saliency.mit.edu
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10.3 Traditional Characterizations of Eye Movements

So far we have reviewed fundamental characteristics of attention with a focus on eye
movements, and some of the basic paradigms used in attention research. We began
with very simple tasks for the study of reflexive and volitional attention using, for
example, the prosaccade and antisaccade tasks. We concluded that although these
studies are useful and important, highly controlled experimental situations may not
fully inform us about the attentional processes expressed in everyday real-life situ-
ations (see Sect. 10.3.2). We then reviewed studies employing more complex tasks
such as viewing of static and dynamic images depicting complex social scenes.

In the remainder of this chapter, we focus on the measurement and description of
eye movements. First, we briefly review some of the traditional basic eye movement
measures and note that they are simply not able to capture and reflect the complex
patterns of spatial and temporal eye movement behaviours being produced. Second,
we review popular methods for assessing spatial and temporal characteristics of eye
movements that aremore suitable for describing eyemovements in viewings complex
scenes. Third, we introduce recurrence quantification analysis, a method that is well
suited to the description of the temporal characteristic of eye movements in real-
world situations. Finally, we review several methods of comparing sequences of eye
movements.

10.3.1 Fundamental Measures for Eye Movements

From a psychological perspective, the most important eye movement events are
fixations (see also the chapter by Alexander & Martinez-Conde, this volume) and
saccades, as described earlier in the chapter. A saccade is a rapid, ballistic motion
of the eyes from one point to another, while a fixation is the brief (around 200 ms)
pause between saccades during which the most visual information is gleaned. Fixa-
tions and saccades are extracted from the raw eye-tracking data that is recorded using
specialized eye-tracking equipment by applying an algorithm, or series of algorithms
to the raw data. Both fixations and saccades can be described in the spatial and the
temporal domains. One of the more important spatial fixation measures is the vari-
ability of fixations, or where exactly people looked, which can be used for assessing
the consistency of eye movements across different observers or across repeated pre-
sentations for the same observer. The variability can be measured by determining the
variance or the range of fixation positions, and it can be measured with respect to the
whole stimulus area or with respect to particular regions of interest. The temporal
fixation measures are based on the duration of fixations and include, for example, the
average fixation duration, the distribution of fixation durations, or the total fixation
duration for fixations within different regions of interest.

The spatial measures of saccadic eye movements include amplitude and direction
of saccades. The former refers to the size of saccades and is typically measured by
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the average saccade amplitude or the distribution of saccade amplitudes for each
experimental condition. The direction distribution of saccades describes how often
saccades were made in each direction. The temporal measures include saccade dura-
tion, that is howmuch time the saccades take on average, and saccade rate, that is how
frequently saccades aremade. Finally, spatio-temporal saccademeasures include, for
example, saccade velocity and acceleration (for further details, see Holmqvist et al.,
2011).

In practice, eye movement studies often use combinations of spatial and temporal
fixation and saccademeasures for assessing differences between experimental groups
or conditions. While these measurements are undoubtedly important for character-
izing eye movement behaviour, it is often difficult to explain why certain differences
exist between experimental conditions or experimental groups, except in very spe-
cific circumstances. For example, the average saccade amplitudesmay differ between
two groups of participants, but without an analysis of eye movement dynamics and
without a model of saccade generation, it would be difficult to explain why this
would be the case. This, in turn, puts limits on the usefulness of these measures for
characterizing eye movement behaviour with complex stimuli. For this reason, we
introduce spatial and temporal eye movement measures that are suitable for such
stimuli.

10.3.2 Spatial Analysis of Eye Movements

This section presents an overview of the predominant methods for visualizing and
analyzing the spatial distribution of fixations. Figure 10.3a shows a scene of three
people playing cards, with over 2000 fixations produced by 21 participants while
viewing this scene. Each red dot represents one or more fixations at that image
location. From the distribution of fixations, one can see that a large proportion of
fixations landed on the persons in the scene, and in particular on their faces. The
fixation plot of Fig. 10.3a can be visualized in different ways that make areas with
high fixation densities more explicit.

In the gridded heat map (see Fig. 10.3b), the stimulus area is partitioned in a
rectangular grid of square cells, in this case of 16 by 12 cells. The grey level of
each cell is proportional to the number of fixations that landed within the cell. The
gridded heat map makes it easy to see the image areas with the most fixations; here
the two faces on the left, the card deck on the table and the picture on the wall. The
visualization of fixations using gridded heat maps has a clear advantage over raw
fixation maps (as in Fig. 10.3a), and it allows to make statistical comparisons of
fixation frequency counts between different groups or experimental conditions fairly
easy. On the negative side, this technique introduces artificial boundaries between
cells that have no relation to the scene content.

Alternatively, the fixations can be visualized using a smooth heat map. In this
method, each fixation is replaced by a 2D-Gaussian with a pre-defined standard
deviation, and these Gaussians are added together, resulting in a smooth fixation



416 W. F. Bischof et al.

Fig. 10.3 a Image of a social scene with fixations overlaid as red dots. b Gridded heat map with
16 × 12 cells. Grey level of each cell is proportional to the number of fixations that landed within
the cell. c Smooth heat map, where fixations have been replaced by 2D-Gaussians. The grey level
at is point is proportional to the height of the heat map. d Variation of smooth heat map where only
the peaks are shown in colour with the color proportional to the height of the heat map, whereas
the original image is shown in areas of low heat map values

map, which is often referred to as a heat map. In the case of Fig. 10.3c, the standard
deviation was chosen to be 20 pixels (with an image size of 800 by 600 pixels).
There are, however, no hard and fast guidelines regarding the best choice of the
standard deviation. This can often make it difficult to compare heatmaps across
different experimental conditions. The heat map can also be visualized by assigning
a grey level proportional to the height of the heat map (Fig. 10.3c) or by assigning a
Gaussian standard deviation based on fixation duration. Again, the heat mapmakes it
clear which image areas were fixated the most. An interesting variation of heatmaps
was created by Woodford (2014), where the heat map is overlayed over the original
image, but only the peaks are shown in colour with the color proportional to the
height of the heat map, whereas in regions with low values, the original image is
shown (see Fig. 10.3d).
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10.3.2.1 Limitations of Heat Maps

Heat maps are good visualization tools and can give a quick overview of fixation
patterns for a large number of participants and to easily locatefixationhotspots such as
the faces in Fig. 10.3. For several reasons, however, the analysis and the interpretation
of heat maps are difficult. First, heat maps are specific to a particular stimulus layout,
and hence can be used only to compare heat maps of fixation patterns obtained for
the same images (or images with identical spatial layouts). Second, fixation hotspots
may not be due to participants fixating a particular scene point, but could be due to
the fact that participants tend to fixate the center area of stimuli more frequently than
peripheral areas. This central fixation bias is illustrated in Fig. 10.4, which shows
the heat map obtained from the fixations of 21 participants looking at 10 different
images. The (red) hotspots in the center indicate a strong bias towards fixating central
image areas independent of particular scene contents (Tatler, 2007).

Box 1: Comparison of Heat Maps
Heat maps must be analyzed statistically to establish differences and similar-
ities obtained under different experimental conditions, as well as to establish
whether certain fixation hotspots are significantly higher than the rest of the
heat map (for a detailed overview of heat map comparisons see Le Meur &
Bacchino, 2013). The similarity of heat maps can, for example, be measured
using simple correlation between two heat maps, measured over all image posi-
tions. Second, one can compare the two heat maps using the Kullback-Leibler
divergence, a non-symmetric measure of the difference between two proba-
bility distributions (Kullback & Leibler, 1951). Third, the heatmaps can be
compared using ROC analysis (Green & Swets, 1966) where the ROC curve

Fig. 10.4 Heat map
obtained from fixations by
21 participants looking at 10
different images. Red areas
indicate regions with high
fixation counts and blue
indicates areas with low
fixation counts
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expresses the correspondence between the twomaps (formore details see Judd,
Ehinger, Durand, & Torralba, 2009; Le Meur & Baccino, 2013).

The three methods are unproblematic for gridded heat maps because the
number of fixations is independent between different cells of the grid. For
smooth heatmaps, however, the comparison ismore complicated due to the fact
that independence between nearby positions is lost due to the spatial smoothing
with the Gaussian filter. This is a situation similar to the one in the analysis of
fMRI results, where a smoothing is applied to the raw data (Friston, Jezzard,
& Turner, 1994; Friston et al., 1995). For eye movements, Caldara and Miel-
let (2011) has proposed a pixelwise comparison of heat maps that takes this
dependence into account. In general, it is best to rely on bootstrappingmethods
(Efron & Tibshirani, 1993) for the statistical analysis of heat maps.

Themethods presented in this section visualize the spatial distribution of fixations
of many participants in an image, and they are easy to understand. Their statistical
analysis iswell understood, but their interpretation is a bitmore difficult. They express
the spatial distribution of fixations in image coordinates without reference to specific
scene content, so the analysis with respect to scene content requires additional work.

10.3.3 Area of Interest Analysis of Eye Movements

In order to take the content of a visual scene into account, a second group of eye
movement measures is concerned with analyzing the proportion and duration of
fixations in pre-defined areas of interest (AOIs). In a visual search display, one might
define AOIs for each target and each distractor. In images of more complex scenes,
for example, in work with social scene stimuli (e.g., Birmingham et al., 2008a, b),
the AOIs can include the bodies, faces and eye regions of the persons in the scenes
(see Fig. 10.5). An AOI analysis consists of counting all fixations or determining the
fixation proportions or average fixation durations (dwell time) for the eyemovements
within each AOI.

10.3.3.1 Advantages of AOI Analyses

AOI analyses have proven useful for assessing eye movement patterns with simple
and complex images. Fixation frequencies or dwell times on different AOIs can be
compared between different experimental groups or conditions and even between
different stimuli provided they have the same image structure, i.e. they contain the
same types of regions (for example, people, faces or eyes in social scenes). Assuming
a uniform distribution of fixations across images, the number of fixations or dwell
time in an AOI is proportional to the AOI area. If fixation counts or durations need
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Fig. 10.5 Areas of interest
of the social scene. The color
of each area has been chosen
randomly

to be compared between different AOIs, then it is advisable to normalize the number
or duration of fixations by the AOI area and obtain the number of fixations or dwell
time per unit area in each AOI.

The definition of AOIs is relatively straight-forward with static images and many
eye tracking systems provide software for defining staticAOIs.With dynamic stimuli,
the definition of AOIs becomesmore difficult. Example of such cases include movies
as stimuli or with eye tracking in real-world experiments, where participants are
wearing a mobile eye tracker and fixations are projected onto the recorded scenes
by the eye tracking software. This is illustrated in Fig. 10.6, where the rider changes
position and size in every movie frame, leading to an enormous effort for defining the
AOI rider for long frame sequences. One possible solution to this problem relies on
so-called keyframing. In this technique, the relevant AOIs are defined only in certain
frames (key frames), and the computer then interpolates the AOI boundaries for all
the frames in between (Igarashi, Moscovich, & Hughes, 2005). With this technique,
the effort of encoding AOIs is substantially reduced. Under certain circumstances,
in particular with computer-generated stimuli, AOIs can be automatically generated
with relatively little effort. In mobile eye tracking it is also possible to utilize markers
(unique patterns printed on a piece of paper) to define regions of interest in the
real environment. These markers can then be used to translate world-view fixation

Fig. 10.6 Three frames from the opening scene of the movie “The Good, the Bad and the Ugly”.
The size and location of the rider change in each frame, increasing the effort of defining areas of
interest
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coordinates to fixation coordinates based on the area around a marker instead (e.g.,
Krassner, Patera, & Bulling, 2014)

10.3.3.2 Disadvantages of AOI Analyses

The AOI analysis is useful for the comparison of fixation patterns for identical or
structurally similar stimuli with a common set of elements. It can, however, be
difficult to use AOIs to derive meaningful results if highly diverse stimuli, e.g.,
when a mixture of social scenes, landscapes and artificial stimuli is being used. In
this case, there is no obvious way of comparing AOIs across the set of stimuli.

The sections on the spatial analysis of fixation patterns using heat maps and areas
of interest have introduced several analysis methods that are very popular in the eye
movement literature for analyzing the spatial allocation of attention in images. On
the downside, the methods do not capture the dynamics of eye movement behaviour,
unless one analyzes their development over time. This is, however, only possible with
a very coarse temporal resolution. Methods more suitable for the temporal analysis
of eye movements are discussed in the next section.

10.3.4 Temporal Analysis of Eye Movements

Temporal eye movement analysis is concerned with the dynamic aspects of eye
movements, the temporal sequence of fixations and saccades as they unfold over
time (i.e., the scanpath). In the context of AOI analysis, it is concerned with the
transitions between different AOIs and typically focuses on AOI transitionsmatrices.
For example, with a set of stimuli derived from an image of two people sitting at
a table, the regions head1, torso1, head2, torso2, table, and chairs, could yield a
transition matrix between the AOI regions as shown in Table 10.1.

Each row in Table 10.1 indicates the probability of saccades from the AOI on the
left to each of the AOIs. For example, if a fixation at time t is in the region head2,
then the next fixation at time t + 1 is in the region head3 with a probability of 0.3,
in the region torso1 with a probability of 0.1, and so on. The AOI transitions in

Table 10.1 Example of a transition matrix for six AOI regions

head1 torso1 head2 torso2 chairs table

head1 0.1 0.4 0.3 0.1 0.1 0.0

torso1 0.2 0.2 0.1 0.2 0.2 0.1

head2 0.3 0.1 0.3 0.3 0.0 0.0

torso2 0.1 0.1 0.4 0.2 0.1 0.1

chairs 0.1 0.3 0.1 0.3 0.1 0.1

table 0.3 0.1 0.3 0.1 0.2 0.0
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Table 10.1 characterize the dynamic sequence of eye movements for a given experi-
mental condition, and comparisons to other conditions can be made by assessing the
similarity of the transition matrices. It is important to point out, however, that such
transition matrices capture only the overall characteristics of the transitions, but not,
for example, their change over time.

In specific applications, the transition matrices have been modeled using Markov
and hidden Markov models (Boccignone & Ferraro, 2014; Holmqvist et al., 2011;
Stark&Ellis, 1981), for example, in face recognition (Chuk, Chan,&Hsiao, 2014) or
participants solving items fromRaven’sAdvanced ProgressiveMatrices Test (Hayes,
Petrov,&Sederberg, 2011; see also Boccignone’s chapter in this volume). As pointed
out earlier, such AOI-based analyses are feasible only when the class of stimuli is
sufficiently restricted, e.g. contain a common set of regions. Otherwise, the transition
matrices cannot be compared across different stimuli. In contrast, we introduce in
the next section a method for characterizing scanpaths obtained with related as well
as unrelated images.

10.3.5 Summary

In this section we have introduced the analysis of eye movements and reviewed some
common spatial and temporal methods of analysing fixations. We have discussed
spatial techniques such as using heatmaps to determine where people look as well
as AOI analyses that include information about the scene content. We have briefly
discussed the use of transition matrices to analyze the dynamic aspects of using
AOI’s.

An important group of other dynamic fixation measures are the scanpath analyses
that were developed in reading research. In these studies, scanpath events, such as
backtracking, regression, look-ahead and return have a direct interpretation. In scene
viewing, however, scanpath measures are more difficult to interpret, and there is
little consensus on good measures for scanpath comparison. Almost no measures
have been developed for directly quantifying a single scanpath in an image. In the
sections below, we describe one recently developed method for quantifying a single
scanpath, then we describe several techniques for comparing similarities between
scanpaths.

10.4 Recurrence Quantification Analysis (RQA)

Recurrence analysis has been used successfully as a tool for describing complex
dynamic systems, for example, climatological data (Marwan & Kurths, 2002), elec-
trocardiograms (Webber & Zbilut, 2005), or postural fluctuations (Pellecchia &
Shockley, 2005; Riley & Clark, 2003), which are inadequately characterized by
standard methods in time series analysis (e.g., Box, Jenkins, & Reinsel, 2008). It
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has also been used for describing the interplay between dynamic systems in cross-
recurrence analysis, e.g., for analyzing the postural synchronization of two persons
(Shockley, Baker, Richardson, & Fowler, 2007; Shockley, Santana, & Fowler, 2003;
Shockley & Turvey, 2005). The fundamental idea of recurrence analysis is to ana-
lyze the temporal pattern of repeated (recurrent) events, for example, the same tidal
height in tide analysis, the same waves in the ventricular cycle in electrocardiogram
analysis, the same postural relation in the analysis of postural synchronization, or the
same fixated locations in an image. Here we describe a simplified version of recur-
rence analysis based on categorical data. This simplified analysis is ideal because it
allows for direct interpretation of the various recurrence measures as they apply to
categorical fixation data.

10.4.1 Categorical Recurrence Quantification

Richardson, Dale and colleagues have generalized recurrence analysis to the analysis
of categorical data and have used it for analyzing the coordination of gaze patterns
between individuals (e.g., Cherubini, Nüssli, & Dillenbourg, 2010; Dale, Kirkham,
& Richardson, 2011; Dale, Warlaumont, & Richardson, 2011; Richardson & Dale,
2005; Richardson, Dale, & Tomlinson, 2009; Shockley, Richardson, & Dale, 2009).
For example, Dale, Warlaumont & Richardson, 2010, quantified the coordination
between a speaker and a listener’s eye movements as they viewed actors on a screen
(see Fig. 10.7).

In this experiment, one person (left) was talking about a particular television
character while the other person (right) listened in. Pictures of characters including
the one discussed were displayed in a 2 × 3 grid in front of the speaker and the
listener. The eye movements were categorized into a grid corresponding to the six
photos of the television characters. The eye movements generated by speaker and
listener during a 60 s period are shown in a series of numbers 1–6 corresponding to
the six grid locations. Dale et al. (2010) used a cross-recurrence analysis of these
fixations and were able to show that the listener tended to follow the same fixation
patterns as the speaker, with a delay of approximately 2 s.

10.4.2 Generalized Recurrence Quantification

Dale et al.’s cross-recurrence analysis can provide an overall measure of similarity
across two eye movement sequences (i.e., a form of scanpath comparison that we
will discuss later in this chapter). Recently, we have introduced a generalized form of
Dale et al.’s categorical recurrence analysis to characterize gaze patterns of a single
observer (Anderson, Bischof, Laidlaw, Risko, &Kingstone, 2013), and we were able
to show that it is a very useful tool for encoding general characteristics of fixation
sequences. The essential idea is to consider each fixation as one in a series throughout
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Fig. 10.7 Dale, Warlaumont, and Richardson’s (2011) experiment. Upper panel: The left person
is speaking about a 2 × 3 grid displaying television characters while the right person listens in.
Lower panel: Each interval of the one-minute experiment produces a numeric value representing
the panel that was fixated. Using these data, a cross-recurrence analysis compares the panels fixated
by speaker and listener over different time lags. Figure adapted from Dale et al. (2011)

the image. Recurrence analysis quantifies when one fixation might overlap in space
with another (one person looking at the same place twice or more times in the
course of looking at a scene). In the following, we first review the fundamentals of
recurrence quantification analysis (RQA) for usewith categorical eyemovement data,
with specific consideration of fixation sequences. Then we describe and interpret the
main RQA measures.
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10.4.3 Formal Definition of Recurrence

Consider a sequence of N fixations fi, i = 1,…, N, with each fi characterized by its
spatial coordinates. Two fixations are considered recurrent, if they are close together.
“Closeness” can be defined in several ways, but in general, one can define recurrence
rij as

ri j =
{
1, d

(
fi , f j

) ≤ ρ

0, otherwise

(10.1)

where d is some distance metric (usually Euclidian distance), and ρ is a given radius,
i.e., two fixations are considered recurrent if they are within a distance ρ of each
other. Guidelines for selecting a value for ρ are introduced further below.

10.4.4 Recurrence Plot

Recurrence can be represented in a recurrence diagram, which plots recurrences
of a fixation sequence over all possible time lags. The essential starting point of a
recurrence analysis is drawing this plot. While it is not strictly a necessary step, all of
the recurrence measures are based on patterns that emerge from this plot. The plot is
drawn as follows: If fixations i and j are recurrent (i.e. if rij = 1), then a dot is plotted at
position i,j. All fixations are recurrent with themselves (since d(fi, fi) = 0), hence all
elements on the major diagonal—the line of incidence—are recurring. Furthermore,
since distancemetrics are symmetric (i.e., d(fi, fj)= d(fj, fi)) recurrence plots are also
symmetric. This is illustrated in Fig. 10.8. Figure 10.8a shows a landscape image
with a scanpath consisting of 30 fixations, with repeated fixations mainly in the cloud
formation. The recurrence plot for the fixation scanpath is shown in Fig. 10.8b, with
each recurrence indicated by a red dot. A recurrence plot can be generated for each
sequence of fixations, e.g. for each experimental trial.

10.4.5 Recurrence Quantification Measures

The recurrence diagram provides a useful visual representation of the recurrence
patterns for a fixation sequence, but it must be complemented by a recurrence quan-
tification analysis for comparison across different fixation sequences, e.g., across
different trials, participants and experimental conditions. Here, we describe a sub-
set of RQA measures, those that are particularly useful for the analysis of fixation
sequences (see Webber & Zbilut, 2005 and Marwan & Kurths, 2002 for a complete
list of measures). All of these measures describe certain patterns that emerge in the
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Fig. 10.8 a Image of a landscape with the scanpath produced by one participant overlaid (the size
of the circle at each fixation point represents the duration of the fixation); b recurrence plot of the
scanpath in a

recurrence plot. For example, the recurrence measure itself is simply a percentage of
the total number of possible recurrent points. Determinism is the percentage of recur-
rent points that form a diagonal line on the plot, while laminarity is the percentage of
vertical and horizontal lines. Given the symmetry of the recurrence diagram, these
quantitative measures are usually extracted from the upper triangle of the recurrence
diagram, excluding the line of incidence, which does not add any additional infor-
mation (recall that the line of incidence indicates that each fixation is recurrent with
itself).

First, we give some useful definitions: Given a fixation sequence of length N, fi,
i = 1,…, N, let R be the sum of recurrences in the upper triangle of the recurrence
diagram, i.e., R = ∑N−1

i=1

∑N
j=i+1 ri j . Let DL be the set of diagonals lines, HL the set

of horizontal, and VL the set of vertical lines, all in the upper triangle, and all with a
length of at least L, and let |·| denote cardinality.

10.4.5.1 Recurrence

The recurrence measure is defined as

REC = 100
2R

N (N − 1)
(10.2)

For a sequence of N fixations Recurrence represents the percentage of recurrent
fixations (i.e. it indicates how often an observer re-fixates previously fixated image
positions). As fixations are plotted sequentially, the larger the distance between a
recurrent point and the main diagonal, the larger the time interval (in number of
fixations) between the original fixation and the re-fixation.
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Fig. 10.9 Detailed view of the recurrence plot and the fixation plot shown in Fig. 10.8. Fixations
6, 7, 25 and 28 are within the radius ρ of Fixation 3, as indicated by the blue circle, producing the
shown recurrences in the recurrence plot

Figure 10.9 provides an illustration of recurrence. Fixations 6, 7, 25 and 28 in
Fig. 10.9 are all close-by, more specifically within a radius of ρ of fixation 3, hence
these fixations are recurrent.

10.4.5.2 Determinism

The determinism measure is defined as

DET = 100
|DL |
R

(10.3)

Determinism measures the proportion of recurrent points forming diagonal lines
in the recurrence plot and represents repeating fixation sequences in the recurrence
diagram. This may represent two areas of a scene where one fixation is more likely
to follow another. For example, if a person looks first at one person, then another in
that same order twice in a trial. It is a small section of a scanpath repeated within
a trial. The minimum line length of diagonal line elements is typically set to L =
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Fig. 10.10 Detailed view of the recurrence plot and the fixation plot shown in Fig. 10.8. Fixations
3 and 4 as well as fixations 25 and 26 follow the same path. This creates a diagonal line on the
recurrence plot and defines a deterministic recurrence

2. The length of the diagonal line element reflects the number of fixations making
up the repeated scanpath, and the distance from the diagonal reflects the time (in
numbers of fixations) since the scanpath was first followed.

Figure 10.10 provides an illustration of determinism. Fixations 3 and 4 as well as
fixations 25 and 26 follow the same path, defining a deterministic recurrence.

10.4.5.3 Laminarity

The laminarity measure is defined as

LAM = 100
|HL | + |VL |

2R
(10.4)
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Vertical lines represent areas that were fixated first in a single fixation and then
re-scanned in detail over consecutive fixations at a later time (e.g., several fixations
later), and horizontal lines represent areas that were first scanned in detail and then
re-fixated briefly later in time. Again, we set the minimum line lengths of vertical and
horizontal lines to L = 2. We find that the recurrence diagrams sometimes contain
recurrence clusters (with horizontal and vertical lines), indicating detailed scanning
of an area and nearby locations. Laminarity indicates that specific areas of a scene
are repeatedly fixated, for example, when an observer returns to an interesting area
of the scene to scan it in more detail.

An example of laminarity is shownwith fixations in Fig. 10.9. The position fixated
in fixation 3 is refixated in a more detailed inspection in fixations 6 and 7.

10.4.5.4 Center of Recurrence Mass

The center of recurrence mass (corm) is defined as the distance of the center
of gravity of recurrent points from the line of incidence, normalized such that the
maximum possible value is 100.

CORM = 100

∑N−1
i=1

∑N
j=i+1( j − i)ri j

(N − 1)R
(10.5)

This measure indicates approximately where in time most of the recurrent points
are situated. Small corm values indicate that re-fixations tend to occur close in time,
i.e.most recurrent points are close to the line of incidence. For example, if an observer
sequentially scans three particular areas of a scene in detail and never returns to those
areas later in the trial, most of the recurrent points would fall close to the line of
incidence. This would be represented by a small corm value. In contrast, large corm
values indicate that re-fixations tend to occur widely separated in time, i.e. most
recurrent points are close to the upper left and lower right corners of the recurrence
diagram. This occurs, for example, when an observer re-fixates only one scene area,
once at the beginning and once at the end of the fixation sequence, but not in between.

Box 2: RQA and Fixation Duration
Fixation duration can be an important indicator of processing during fixation
(Holmqvist et al., 2011, pp. 377ff). RQA can be generalized to take fixation
durations into account (Anderson et al., 2013).

Given a fixation sequence f i, i = 1,…, N, and the associated vector of
fixation durations ti, i = 1,…, N, one can redefine recurrence rtij as

r ti j =
{
ti + t j , d

(
fi , f j

) ≤ ρ

0, otherwise
(10.6)
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with the (Euclidian) distance metric d and the radius ρ. With the modified
recurrence definition of rtij, the RQA measures have to be renormalized. Let

R = ∑N−1
i=1

∑N
j=i+1 r

t
i j , and T = ∑N

i=1 ti . Then the revised definitions for
REC, DET, LAM and CORM are as follows.

RECt = 100
2Rt

(N − 1)T

DET t = 100

Rt

∑
(i, j)∈DL

r ti j

L AMt = 100

2Rt

⎛
⎝ ∑

(i, j)∈HL

r ti j +
∑

(i, j)∈VL

r ti j

⎞
⎠

CORMt = 100

∑N−1
i=1

∑N
j=i+1( j − i)r ti j

(N − 1)2T

In summary, the recurrence and cormmeasures capture the global temporal struc-
ture of fixation sequences. They measure how many times given scene areas are
re-fixated (recurrence) and whether these re-fixations occur close in time or widely
separated in a trial (corm). In contrast, determinism and laminarity measure the finer
temporal structure of fixation sequences. Specifically, they indicate sequences of
fixations that are repeated (determinism) and points at which detailed inspections
of an image area are occurring (laminarity). These measures can then be compared
across different types of images, experimental contexts and participants to assess the
dynamic structure of eye movements.

10.4.6 Selection of the Recurrence Radius

As explained in Sect. 10.5.3, two fixations are considered recurrent if they are within
a distance ρ of each other, with the radius ρ being a free parameter. The number
of recurrences is directly related to the radius. As the radius ρ approaches zero,
(off-diagonal) recurrences approach zero, and as ρ approaches the image size, recur-
rences approach 100%. The dependence of recurrence on radius leads to the obvious
question of how an appropriate radius for recurrence analysis should be selected.

Webber and Zbilut (2005) suggested several guidelines for selecting the proper
radius, including the selection of a radius such that percentage of recurrences remains
low, for example about 1–2%. In the case of eye movements, one can apply more
content-oriented criteria. For example, fixations can be considered as recurring if their
foveal areas overlap, using a radius size of 1–2° of visual angle. This is discussed
further by Anderson et al. (2013).
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10.4.7 Statistical Analyses of Recurrence Measures

In this section, we discuss the distribution of RQA measures as well as their correla-
tions. This is important when RQA measures are used to compare and discriminate
between experimental conditions and groups. Figure 10.11 shows the histograms of
the measures recurrence, determinism, laminarity and corm obtained with 104 par-
ticipants viewing 1872 images, each for a duration of 10 s. As the histograms show,
the RQA measures are distributed more or less symmetrically, with the exception of
Recurrence, permitting the use of analyses of variance for their statistical analysis.

Figure 10.12 illustrates scatter diagrams and correlations betweenRQAmeasures,
obtained for the same group of participants and the same images as in Fig. 10.11.
As the Figure shows, the correlations between RQA measures vary substantially.
While the correlation between laminarity and corm is essentially zero, other correla-
tions, e.g. between recurrence and laminarity are relatively high. Such dependencies
between theRQAmeasures are not surprising, given that they are defined and selected
to be easily interpretable, rather than being independent of each other. Indeed, lami-
narity and determinism are very closely related to recurrence as they are themselves
percentages of recurrent points.

For this reason, it is useful to consider several or all RQAmeasures for comparing
and discriminating different groups of participants or different experimental condi-

Fig. 10.11 Histograms of the measures recurrence, determinism, laminarity and corm obtained
with 104 participants viewing 1872 images, each for a duration of 10 s
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Fig. 10.12 Correlations between RQA measures. Each panel shows a scatterplot for a pair of
measures, the regression line and the correlation value

tions. In other words, it is advisable to take all RQA measures into account and use
discriminant analyses for distinguishing different scanpath patterns, a multivariate
analysis of variance, analysis of variance, or canonical correlation in regression-type
analysis. This is further described below.

10.4.8 Discrimination of Gaze Patterns Using RQA

The previous sections showed that RQA is a useful method for discriminating eye
movement patterns based purely on dynamic characteristics. Each of the RQA mea-
sures used (recurrence, determinism, laminarity and corm) can discriminate to a cer-
tain extent between experimental groups or different groups of participants. At the
same time, however, the measures are not independent, as the correlations between
RQA measures in the previous section showed. To elaborate on this aspect, we eval-
uated how well the RQA measures discriminate between eye movement patterns of
participants who viewed social scenes under natural viewing conditions (Full-View
condition) and participants who view the same scenes through a gaze-contingent
window of limited spatial extent (Restricted-View condition).
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Figure 10.13 shows histograms for the measures recurrence, determinism, lami-
narity and corm, for the Full-View and the Restricted-View conditions. For clarity of
presentation, the histograms were smoothed using a Gaussian smoothing filter with
half-width = 2% or σ = 0.849% of the total range. An inspection of the four his-
tograms shows that each measure can discriminate to some extent between the two
groups, but, at the same time, there is a substantial overlap that varies between RQA
measures. Consequently, classification accuracy of the discrimination between the
two groups varies accordingly, with accuracy for the recurrence measure at 75%, for
the determinism measure of 88.6%, for laminarity at 77.7%, and for corm at 70.8%.
In other words, each of the measures can discriminate between the two experimental
groups, but discrimination performance is far from perfect.

Discrimination between the eye movement patterns of the two groups can be
improved substantially using combinations of RQA measures. This is possible
because the measures are somewhat, but definitely not perfectly correlated. For
example, using the measures recurrence + laminarity + corm improves discrimi-
nation accuracy to 85.5%, and the discrimination accuracy using all four measures is
94.5%, a substantial improvement over the use of single measures. The results show

Fig. 10.13 Smoothed histograms for the measures recurrence, determinism, laminarity and corm
for the full-view (natural viewing) condition and the Restricted-View (viewing through a small,
gaze-contingent window). The histograms were smoothed with a Gaussian filter with half-width =
2%
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clearly that the RQA measures are sensitive to, and useful for discriminating gaze
patterns under Full-View and Restricted-View conditions.

Box 3: Potential Limitations of the RQA Method
1. RQA can measure the characteristics of re-fixations, but it cannot measure

idiosyncratic eye movement characteristics, such as saccadic distances,
angles, and so on.

The purpose of RQA is to capture the dynamic aspects of scanpaths and should
be used in addition to other measures (e.g. fixation and saccade characteris-
tics), not replace them.

2. RQA analyzes scanpaths under the assumption that there is always recur-
rence.

This is not quite correct. First, the recurrence measure can always be com-
puted and is zero when there is no recurrence. It is, however, correct that the
other measures, determinism, laminarity, and corm are undefined if there is no
recurrence. Second, one can always compute the RQA measures with larger
recurrence radii ρ (see Eq. 10.1) and possibly with a whole range of recurrence
radii. As the recurrence radius ρ increases, so does the number of recurrences
(see Sect. 10.5.4 and Anderson et al., 2013).

3. RQA cannot be applied if there is a single fixation.

For this extreme case, it is indeed true that RQA cannot be applied, but the
same is true for many other measures including those describing saccade char-
acteristics.

4. What are the computational limitations of RQA?

The number of cells in the recurrence plot increases with the square of the
number of fixations n in a scan path. Consequently, computing RQAmeasures
becomes computationally more and more expensive as n increases. In our own
work, we have rarely used RQA for scanpaths with more than 100 fixations.

10.4.9 Summary

In this section we have presented a new technique, RQA, for quantifying the char-
acteristics of a single scanpath. This is a useful measure that compliments other
spatial and temporal measures of eye movement characteristics. We have described
recurrence in general, several other useful measures associated with RQA, and how
to use RQA to discriminate gaze patterns across groups of participants or stimuli.
In the next section we will describe methods to compare between two scanpaths, a
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technique that is useful for describing how two eye movement patterns are similar
to each other.

10.5 Comparison of Scanpaths

Eye movements unfold over time, hence one can also examine the inter-relationship
between sequences of eye movements. In his seminal work, Yarbus (1967) noticed
that observers displayed similar scan patterns in viewings of Repin’s painting “The
Unexpected Visitor” and concluded that “observers differ in the way they think and,
therefore, differ also to some extent in the way they look at things” (p. 192). A brief
inspection of these scan patterns reveals that they are complex and non-random, and
they contain sequences of repeated fixations. Noton and Stark (1971) noticed that
observers tend to show similar scan patterns during encoding and later recognition
of images. According to their “Scanpath Theory”, the sequence of fixations during
the first viewing of a stimulus is stored in memory as a spatial model, and stimu-
lus recognition is facilitated through observers following the same scanpath during
repeated exposures to the same image. These early observations were made infor-
mally by visual inspection, but later research has aimed at quantifying the similarity
of scanpaths, for the same observer at different time points or when solving different
tasks, or between different subjects.

In the following sections, we describe the scanpath comparison methods that have
been introduced in the literature (see Anderson, Anderson, Kingston, & Bischof,
2014). In each case, we give a short description, and the reader is advised to consult
the original publications for further details.

10.5.1 Edit Distance

One successful way for comparing scanpaths is based on the string edit distance
(Bunke, 1992; Levenshtein, 1966;Wagner&Fischer, 1974),which is used tomeasure
the dissimilarity of character strings. In this method, a sequence of transformations
(insertions, deletions, and substitutions), is used to transform one string into the other
and their similarity is represented as the number of transformation steps between the
two strings. This method has been adapted for comparing the similarity of scanpaths
(Brandt & Stark, 1997; Foulsham & Kingstone, 2013; Foulsham & Underwood,
2008;Harding&Bloj, 2010;Underwood, Foulsham,&Humphrey, 2009). To achieve
this, a grid is overlaid on an image, and each cell in the grid is assigned a unique
character. Fixation sequences are then transformed into a sequence of characters by
replacing the fixation with the character corresponding to the grid cell a fixation
falls in. With this approach, scanpaths are being represented by strings of characters,
and the dissimilarity of two scanpaths can then be represented by the number of
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transformations required to convert the string corresponding to the first scanpath to
the string corresponding to the second scanpath.

The string edit distance method has been very popular in early scanpath compar-
ison work (e.g., Brandt & Stark, 1997) and has been used subsequently in a variety
of experimental contexts (e.g., Harding & Bloj, 2010; Underwood et al., 2009). This
is an advantage for researchers wishing to directly compare results to these earlier
studies. The main advantage of the string edit measure, however, lies in the fact
that it captures the intuitive notion of the distance between two scanpaths (i.e., their
dissimilarity) in a simple and straightforward way.

Several criticisms have been raised against the use of edit distance for scanpath
comparisons. First, as described in Sect. 10.4.2 for gridded heatmaps, the grid is
defined independently of image content. It may thus be too coarse in regions of
interestwhile being toofine in other regions. Second, twofixationsmay be considered
different even when they are close together, namely if they fall on either side of a grid
line. Some variants of the string edit distance have been developed to address these
problems. For instance, assigning characters to pre-defined areas of interest allow
the researcher to add semantic information to the quantization process (Josephson &
Holmes, 2002; West, Haake, Rozanski, & Karn, 2006), but the definition of regions
of interest can be time-consuming.

10.5.2 ScanMatch

Cristino, Mathôt, Theeuwes, and Gilchrist (2010) proposed a generalized scanpath
comparison method that addresses many of the deficiencies of the string edit dis-
tance method. Their generalization aligns eye movement sequences based on the
Needleman-Wunsch algorithm (Needleman&Wunsch, 1970),which is used in bioin-
formatics to compare DNA sequences. In their method, scanpaths are spatially and
temporally binned and then recoded to create a sequence of letters that retains fixa-
tion location, duration, and sequence information. The two character sequences are
compared by maximizing the similarity score computed from a substitution matrix,
which in turn provides the score for all letter pair substitutions, and includes a penalty
for gaps. Critically, the substitutionmatrix can encode information about the relation-
ship between specific regions of interest, thus providing the opportunity to include
semantic information in the similarity measure.

A major advantage of the ScanMatch method is that it can take into account spa-
tial, temporal and sequential similarity in the comparison of scanpaths. In addition,
semantic information can be easily added using the substitution matrix. One disad-
vantage of this method is that it suffers from the quantization issues inherent to any
measure using grids or regions of interest.
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10.5.3 Sample-Based Measures

Shepherd, Steckenfinger, Hasson, andGhasanfar (2010) introduced several measures
for assessing the similarity of two scanpaths, which are described in the following
subsections. For each of the measures, the eye positions are first resampled uni-
formly in time (at 60 Hz), and truncated to the length of the shorter sequence. These
measures introduced below are sample-based in the sense that they do not require
pre-processing of eye-tracking data into discrete fixation-saccade sequences, as is
usually the case in eye movement analyses.

10.5.3.1 Fixation Overlap

Fixation overlap is a measure of the similarity of two scanpaths in space and over
time. To this effect, two gaze samples are considered overlapping if they are within
a predefined radius. This measure is extremely sensitive to differences in absolute
timing between two scanpaths, but is slightly less sensitive to differences in position
(due to the use of the radius). Given these sensitivities, it is reasonable to expect this
measure to perform similarly to the ScanMatch measure, which is also sensitive to
the spatial and temporal similarities between two scanpaths.

10.5.3.2 Temporal Correlation

Shepherd et al. (2010) also introduced temporal correlation [see also Hasson, Yang,
Vallines, Heeger and Rubin (2008)] as ameasure of the similarity between scanpaths.
For two scanpaths f and g, the temporal correlation is defined as the average of the
correlation between the x-coordinates of f and g and between the y-coordinates of f
and g.

This measure is very sensitive to temporal and spatial differences between the
two scanpaths. The sensitivity to temporal differences can be advantageous when
timing is important, e.g., when the stimuli change over time, such as in videos. The
correlation measure is also sensitive to small differences in fixation positions, given
that there is no spatial quantization of the fixations. A significant advantage of this
method is its use of the straightforward and readily interpretable correlation analysis.
This measure is more sensitive to similarities in position than the fixation overlap
method, while also taking sequential information into account. However, this strong
spatial-temporal sensitivity may be less robust to noisy data than other measures that
are grid-based or rely on a radius-based definition of fixation proximity.
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10.5.3.3 Gaze Shift

Shepherd and colleagues’ (Shepherd et al., 2010) gaze shift measure assesses how
similar the saccade times and amplitudes are between two scanpaths. Gaze shift is
computed as the correlation between the absolute values of the first derivative of
each scanpath and is computed in the same manner as the temporal correlation, but
using the first derivative instead of the position.

To smooth the scanpaths and compute their derivatives, each scanpath is convolved
with the derivative of a Gaussian filter. Gaze shift is sensitive to the amplitude of the
saccade as well as its temporal location, and it reflects how similar two scanpaths are
in terms of the sequence of large and small saccades. This captures some aspects of
a global viewing strategy, as subjects who produce small saccades within a localized
region have very different scanpaths than subjects who produce large saccades within
the entire visible area. This is also useful for comparing dynamic stimuli (e.g., video)
to assess how subjects respond to temporal changes in the scene.

10.5.4 Linear Distance

Mannan, Ruddock, and Wooding (1995) analyzed the overall similarity of two scan-
paths by computing the linear distances between the fixations of the first scanpath and
the nearest neighbour fixations of the second scanpath, as well as the linear distances
between the fixations of the second scanpath and the nearest neighbour fixations of
the first scanpath. These distances are averaged and normalized against randomly
generated scanpath sequences. Mannan et al.’s method was further developed by
Mathot, Cristino, Gilchrist, and Theeuwes (2012).

The major advantage of the linear distance method is that it does not need to
be quantized like, for example, the string edit distance method. It simply compares
each fixation of one scanpath with the fixations of another scanpath in terms of their
spatial similarity.However, by comparing only nearest neighbour fixations in terms of
distance, thismethod ignores sequential information. To address someof these issues,
Mannan et al.’s (1995) method was modified by Henderson, Brockmole, Castelhano,
and Mack (2007) to enforce a one-to-one mapping between two scanpaths, provided
that they have the same length. The results for the two methods are very similar
(Foulsham & Underwood, 2008), which is likely due to the fact that Mannan et al.
average the distances from the first to the second and from the second to the first
scanpath, hence clusters of fixations in one scanpath are averaged out.

10.5.5 Scasim

Scasim is a scanpath comparison technique developed initially for use in analysing
eye movement patterns while reading (von der Malsburg & Vasishth, 2011). It uses
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similar logic to the string edit and Levenshtein distance metrics, however, it does
not require discretization of fixations into regions of interest and it takes fixation
duration into account. It compares both the duration and spatial location between
fixations by adding or subtracting durations dependent on their distance apart. One
unique advantage of Scasim is that it allows the user to specify what sort of cost
spatial distance between fixations might have. While by default, this is related to
the drop-off of visual acuity from the fovea, this cost can be changed depending on
whether spatial distance is more or less important to the hypothesis in question.

10.5.6 MultiMatch

Recently, Jarodzka, Holmqvist, and Nyström (2010), Dewhurst et al. (2012) and
Foulsham et al. (2012) introduced the MultiMatch method for comparing scanpaths.
The MultiMatch methods consists of five separate measures that capture the similar-
ity between different characteristics of scanpaths, namely shape, direction, length,
position and duration. Computation of each MultiMatch measure begins with scan-
path simplification, which involves combining iteratively successive fixations if they
are within a given distance or within a given directional threshold of each other.
This simplification process aids in reducing the complexity of the scanpaths while
preserving the spatial and temporal structure.

Following this simplification, scanpaths are aligned based on their shape using a
dynamic programming approach. The alignment is computed by optimizing the vec-
tor difference between the scanpaths (note, however, that scanpathsmaybe aligned on
any number of dimensions inMultiMatch). This alignment reduces the comparison’s
sensitivity to small temporal or spatial temporal variations and allows the algorithm to
find the best possible match between the pair of scanpaths. All subsequent similarity
measures are computed on these simplified, aligned scanpaths.

10.5.6.1 Vector Similarity

The MultiMatch vector similarity measure is computed as the vector difference
between aligned saccade pairs, normalized by the screen diagonal and averaged
over scanpaths. This measure is sensitive to spatial differences in fixation positions
without relying on pre-defined quantization. It is a measure of the overall similarity
in shape between two fixation-saccade sequences.

10.5.6.2 Length Similarity

MultiMatch length similarity is computed as the absolute difference in the amplitude
of aligned saccade vectors, normalized by the screen diagonal and averaged over
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scanpaths. This measure is sensitive to saccade amplitude only, not to the direction,
location or the duration of the fixations.

10.5.6.3 Direction Similarity

MultiMatch direction similarity is computed as the angular difference between
aligned saccades, normalized by p and averaged over scanpaths. This measure is
sensitive to saccade direction only, but not to amplitude or absolute fixation location.

10.5.6.4 Position Similarity

MultiMatch position similarity is computed as the Euclidean distances between
aligned fixations, normalized by the screen diagonal and averaged over scanpaths.
This measure is sensitive to both saccade amplitudes and directions.

10.5.6.5 Duration Similarity

MultiMatch duration similarity is computed as the absolute difference in fixation
durations of aligned fixations, normalized by the maximum duration and averaged
over scanpaths. This measure is insensitive to fixation position or saccade amplitude.

Themain advantage of theMultiMatchmethod is that it provides several measures
to choose from for assessing scanpath similarity, and each measure on its own cap-
tures a unique component of scanpath similarity. Given the multiplicity of measures,
it remains, however, difficult to assess which measure, or which set of measures, is
most applicable in a given scenario. Furthermore, because each scanpath is initially
simplified it is also not clear how robust each measure is to scanpath variations.

10.5.7 Cross-Recurrence Quantification Analysis

The recurrence quantification analysis introduced in Sect. 10.5 can be generalized
for the comparison of scanpaths in a cross-recurrence analysis. To this effect, we
have generalized the RQA measures for the comparison of scanpaths, and we now
introduce these generalized measures.

Consider two fixation sequences f and g that have the same lengths. For sequences
of unequal length, the longer sequence is truncated. Within these sequences, two
fixations fi and gj are cross-recurrent if they match or are close together, i.e., if their
distance is below a given threshold. One can define cross-recurrence cij as
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Fig. 10.14 a Image of building with two scanpaths (purple and orange) produced by the same
participant. b Corresponding cross-recurrence diagram

ci j =
{
1, d

(
fi , g j

) ≤ ρ

0, otherwise
(10.7)

where d is distance metric and ρ is a given radius, as in the definition of recur-
rence. Cross-recurrence can be represented in a cross-recurrence diagram, which
plots cross-recurrences of the fixation sequences over all possible time lags. If fixa-
tions fi and gj are recurrent (i.e. if cij = 1), then a dot is plotted at position i,j.

This is illustrated in Fig. 10.14, which shows an example from a study in which
participants looked at many images, each for about 10 s, and later saw the same
images again among many new ones. The black lines in Fig. 10.14a indicate the
first scanpath, the red lines the second scanpath, and the black circles indicate cross-
recurrences, i.e., fixations of one scanpath that were close to fixations of the other
scanpath.

The resulting cross-recurrence diagram is shown in Fig. 10.14b, in which the
fixations of the first scanpath are shown along the x-axis and the fixations of the
second scanpath along the y-axis. In contrast to the recurrence diagram shown in
Fig. 10.8, the cross-recurrence diagram is not symmetric. Second, there is no line
of incidence in the cross-recurrence diagram. For these reasons, the RQA measures
have to be generalized for the application in cross-recurrence analysis.

10.5.7.1 Cross-Recurrence

The cross-recurrence measure of two fixation sequences represents the percentage
of cross-recurrent fixations, i.e. the percentage of fixations that match between the
two fixation sequences. The more similar two fixation sequences, the higher the
number of cross-recurrent points on the plot. It is invariant to differences in the order
of the fixations as fixations are considered recurrent only if they overlap in position.
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Given that cross-recurrence quantifies similarity in position only, it is most similar
to the linear distance measure and the MultiMatch position measure.

10.5.7.2 Determinism

Thedeterminismmeasure encodes the percentage of cross-recurrent points that form
diagonal lines in the cross-recurrence plot and represents the percentage of fixation
trajectories common to both fixation sequences. That is, determinism quantifies the
overlap of a specific sequence of fixations, preserving their sequential information.
An advantage of this measure is that it provides unique information about the type of
similarity between two scanpaths. Although two scanpaths may be quite dissimilar
in their overall shape or fixation positions, this measure can show whether certain
smaller sequences of those scanpaths are shared.

10.5.7.3 Laminarity

The laminaritymeasure is a measure of repeated fixations on a particular region that
are common to both scanpaths. Laminarity is closely related to determinism. If both
laminarity and determinism are high, then in both scanpaths fixations tend to cluster
on one or a few particular locations and remain there across several fixations. If
laminarity is high, but determinism is low, then it quantifies the number of locations
that were fixated in detail in one of the fixation sequences, but only fixated briefly in
the other fixation sequence. It is a measure of the clustering of fixations across two
sequences.

10.5.7.4 Center of Recurrence Mass

The center of recurrence mass (corm) is defined as the distance of the center of
gravity of recurrences from themain diagonal in a recurrence plot. The cormmeasure
indicates the dominant lag of cross-recurrences. Small corm values indicate that the
same fixations in both fixation sequences tend to occur close in time, whereas large
corm values indicate that cross-recurrences tend to occur with either a large positive
or negative lag. This is a measure of whether one scanpath leads (with positive lag)
or follows (with negative lag) its paired scanpath. Their overall similarity in shape or
position may be different, but offset, such that one sequence proceeds in a particular
trajectory, and the other follows the same trajectory only later on in time (e.g., a few
fixations later). If there is no specific prediction about whether one scanpath leads
or follows the other, the absolute value of the corm value can be used rather than
averaging over positive and negative values.

In summary, cross-recurrence has been shown to be a natural extension of recur-
rence.While recurrence is used to characterize individual scanpaths, cross-recurrence
is used to characterize the similarity of two different scanpaths. Onemajor advantage
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of recurrence and cross-recurrence analysis lies in the fact that the same measures,
recurrence, determinism, laminarity and corm can be applied to both situations. As
a note of caution, however, it must be emphasized that the measures have to be
interpreted differently in the two cases.

10.5.8 Summary

In this section, we have reviewed several common methods for assessing the sim-
ilarity between scanpaths, and by extension, differences between scanpaths. These
various methods all have their strengths and weaknesses, but all provide unique
information regarding the similarity between two scanpath sequences. Comparing
scanpaths is useful, as like RQA (described in Sect. 10.5), they preserve and quantify
the temporal characteristics of eye movement behavior. These methods can be used
for comparing the similarities and differences in eye movements between or among
different observers.

10.6 General Summary

In the preceding sections, we first reviewed traditional measures for characterizing
eye movements, starting with basic fixation and saccade measures. We then consid-
ered spatial eye movement analyses with a focus on heat maps and area of interest
analyses. Finally, we examined popular temporal analyses of eye movements. Taken
together, the reviews showed that the spatial analyses were not capturing the dynamic
characteristics of eye movements, whereas the temporal analyses were applicable
only in restricted circumstances.

We introduced recurrence quantification analysis (RQA) as a method for measur-
ing the dynamic characteristics of eyemovements. Although the analysis may appear
to some as rather complicated, RQA can readily and accurately be conceptualized as
an analysis of the temporal pattern of refixations. Critically, the RQA measures we
introduced (recurrence, determinism, laminarity, and corm) capture important and
interpretable aspects of this pattern. We showed for instance that RQA is suitable for
discriminating eye movement patterns independent of the spatial structure of stimuli
by focusing on temporal aspects exclusively. For this reason, it is ideally suited for
the analysis of eye movements in more complex and dynamic situations.

Finally, we discussed current approaches to the comparison of scanpaths (edit
distance, sample-based measures, linear distance, Scasim, ScanMatch, and Multi-
Match), and showed that a simple generalization of RQA, that is, cross-RQA is well
suited for the spatial comparison of scanpaths (i.e., how closely the individual fixa-
tions of two scanpaths overlap) while also capturing aspects of their temporal nature
(e.g., their sequential information). Collectively then, RQA and cross-RQA, repre-
sents two powerful analysis techniques for future studies of eyemovement behaviour,
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both within controlled laboratory settings and less controlled, more complex, natural
environments. More generally. as eye movement analysis moves into the real world,
techniques that capture the temporal nature of eye movements will no doubt prove
useful in quantifying this more complex behavior.

10.7 Suggested Readings

Anderson, N. C., Bischof,W. F., Laidlaw, K. E., Risko, E. F., &Kingstone, A. (2013).
Recurrence quantification analysis of eye movements. Behavior research methods,
45(3), 842–856.

– This paper introduces recurrence quantification analysis for the analysis of eye
movements. Much of the material in section 6 is based on this paper.

Anderson, N. C., Anderson, F., Kingston, A., & Bischof, W. F. (2014). A comparison
of scanpath comparison methods. Behavior Research Methods, https://doi.org/10.
3758/s13428-014-0550-3.

– This paper reviews and comparesmost of the recent scanpath comparisonmethods.
Much of the material in section 7 is based on this paper.

Dale, R., Warlaumont, A. S., & Richardson, D. C. (2011b). Nominal cross recur-
rence as a generalized lag sequential analysis for behavioral streams. Interna-
tional Journal of Bifurcation and Chaos, 21, 1153–1161. https://doi.org/10.1142/
s0218127411028970.

– Recurrence analysis can be generalized to categorical data. This paper introduces
categorical cross-recurrence analysis for analyzing the coordination of gaze pat-
terns between individuals (see section 6).

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., & van de
Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures.
Oxford, U.K.: Oxford University Press.

– This handbook is a comprehensive guide to the methods and measures for eye
tracking. We recommend that researchers in the area of eye movement analysis
consult this handbook. A new edition is scheduled for 2016 or 2017.

Marwan, N., & Kurths, J. (2002). Nonlinear analysis of bivariate data with cross
recurrence plots. Physics Letters A, 302, 299–307.

– This paper introduces recurrence analysis as a tool for describing complex
dynamic systems. The works of Dale et al. (2011b) and of Anderson et al. (2013)
are applications of, and extensions to this paper.

https://doi.org/10.3758/s13428-014-0550-3
https://doi.org/10.1142/s0218127411028970
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10.8 Questions to Students

a. What are the fundamental differences between grid-based and heat map methods
for the spatial analysis of eye movements?

b. What are the characteristics of stimuli for which area-of-interest analyses are
useful, and when are they less useful or not at all useful?

c. What are the fundamental advantages of recurrence analysis over the other spatial
and temporal methods presented in this chapter?

d. What aspect of the recurrence patterns are captured by the measures recurrence,
determinism, laminarity and corm?
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