
Solving the Graph Edit Distance Problem
with Variable Partitioning Local Search

Mostafa Darwiche1,2(B), Donatello Conte1, Romain Raveaux1,
and Vincent T’kindt2

1 Laboratoire d’Informatique Fondamentale et Appliquée de Tours (EA 6300),
University of Tours, Tours, France

{mostafa.darwiche,donatello.conte,romain.raveaux}@univ-tours.fr
2 Laboratoire d’Informatique Fondamentale et Appliquée de Tours (EA 6300),

ERL-CNRS 6305, University of Tours, Tours, France
tkindt@univ-tours.fr

Abstract. In the world of graph matching, the Graph Edit Distance
(GED) problem is a well-known distance measure between graphs.
It has been proven to be a NP-hard minimization problem. This
paper presents an adapted version of Variable Partitioning Local Search
(VPLS) matheuristic for solving the GED problem. The main idea in
VPLS is to perform local searches in the solution space of a Mixed Integer
Linear Program (MILP). A local search is done in a small neighborhood
defined based on a set of special variables. Those special variables are
selected based on a procedure that extracts useful characteristics from
the instance at hand. This actually ensures that the neighborhood con-
tains high quality solutions. Finally, the experimentation results have
shown that VPLS has outperformed existing heuristics in terms of solu-
tion quality on CMU-HOUSE database.

Keywords: Graph Edit Distance · Graph Matching ·
Mixed Integer Linear Program · Variable Partitioning Local Search ·
Matheuristic

1 Introduction

Graphs are heavily involved in Structural Pattern Recognition (SPR). Using
graphs, it is possible to model objects and patterns by considering the main com-
ponents as vertices and expressing the relations between those components using
edges. Moreover, graphs can store extra properties and characteristics about the
pattern by assigning attributes to vertices and edges. Then, these graphs are
exploited to perform object comparison and recognition [15]. In fact, this is known
as Graph Matching (GM), which is the core of the SPR field. GM is about find-
ing vertices and edges mappings between two graphs, from which a (dis-)similarity
measure can be computed. In addition, GM covers many problems that are split
into two main categories: Exact (EGM) and Error-Tolerant (ETGM). The main
c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 67–77, 2019.
https://doi.org/10.1007/978-3-030-20081-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20081-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-20081-7_7

68 M. Darwiche et al.

difference between the two categories is thatEGMrequires having the same topolo-
gies and attributes in graphs. While ETGM is flexible and accommodates to dif-
ferences in graphs. ETGM is more preferable because it is unlikely to have the
same exact graphs in real-life scenarios. Among the various problems that fall into
ETGMcategory, theGraphEditDistance (GED)problem is considered as themost
popular one. Solving this problem computes a dissimilarity measure between two
graphs [4]. The main idea in GED is to transform one source graph into another
target graph, by applying a certain number of edit operations. Those edit opera-
tions are: substitution, insertion and deletion of a vertex/edge. Each edit operation
has an associated cost. The aim when solving the GED problem is to find a set of
edit operations that minimizes the total cost. This is what makes it a very complex
problem to solve, which later was proven to be a NP-hard minimization problem
[19]. Despite the complex nature of the problem, it is still seen as an important
one because it was shown to be a generalization to other GM problems such as
the maximum common subgraph and the subgraph isomorphism [2,3]. Also, the
GED has applications in many fields such as image analysis, biometrics, bio/chem-
informatics, etc. [18].

Looking into the literature, numerous methods for solving the GED problem
exist. They can be divided into two classes: exact and heuristics. In the first class,
there are methods that solve an instance to the problem to optimality. Such meth-
ods tend to become expensive when dealing with large graphs, because of the expo-
nential growth in complexity. The other class, however, contains heuristic meth-
ods that aim at computing a sub-optimal solution in a reasonable amount of time.
For exact methods, mathematical programming is used to model the GED prob-
lem providing Mixed Integer Linear Models (MILP). Two formulations appear
to outperform other methods: JH by Justice and Hero [11] and F3 by Darwiche
et al. [8]. JH is designed to solve a sub-problem of the GED (denoted by GEDEnA),
in which the attributes on edges are ignored. However, F3 is designed to solve
instances of the general GED problem. Regarding the heuristic methods, there
are plenty of them. Starting with the most famous and fastest one the Bipartite
GM heuristic (denoted shortly by BP), which was developed by Riesen et al. [16].
BP breaks down the GED problem into a linear sum assignment problem that
can be solved in polynomial time, using the Hungarian algorithm [14]. Later, BP
has been improved in many works such as FastBP and SquareBP [17], and also
it has been used in other heuristics such as SBPBeam [10]. Other heuristics are,
for instance, Integer Projected Fixed Point (IPFP) and Graduate Non Convexity
and Concavity Procedure (GNCCP) [1]. They are based on solving the Quadratic
Assignment Problem (QAP) model for the GED problem proposed by the same
authors. A recent heuristic method has been designed in [7] and referred to as
LocBra. It is based on local searches in the solution space of a MILP formulation.
This kind of heuristics on the basis of MILP formulations is known by Matheuris-
tics. LocBra was shown in [6,7] to be more effective than existing heuristics (e.g.
SBPBeam, IPFP and GNCCP) when dealing with instances of GEDEnA.

VPLS for the GED Problem 69

This work is an attempt to design a new matheuristic that can accom-
plish accurate results as LocBra but on the general problem. It is actually an
adapted version of Variable Partitioning Local Search (VPLS) matheuristic pro-
posed originally by Della Croce et al. [9]. The main ingredients in VPLS are: a
MILP formulation which is going to be F3 and a MILP solver which is CPLEX.
Then, VPLS defines neighborhoods around feasible solutions by modifying the
MILP. The modified formulation will be handed over to the solver to explore
the neighborhoods looking for improved solutions. The special version dedicated
to the GED problem involves integrating problem-dependent information and
characteristics into the neighborhood definition, which increases most likely the
performance of the heuristic.

The remainder is organized as follows: Sect. 2 presents the definition of GED
problem, followed with a review of F3 formulation. Then, Sect. 3 details the pro-
posed heuristic. And Sect. 4 shows the results of the computational experiments.
Finally, Sect. 5 highlights some concluding remarks.

2 GED Definition and F3 Formulation

2.1 GED Problem Definition

Given two graphs G = (V,E, μ, ξ) and G′ = (V ′, E′, μ′, ξ′), GED is the task of
transforming the graph source G into the graph target G′. To accomplish this,
GED introduces vertex and edge edit operations: (i → k) is the substitution of
two vertices, (i → ε) is the deletion of a vertex, and (ε → k) is the insertion of a
vertex, with i ∈ V, k ∈ V ′ and ε refers to the empty node. The same logic goes
for edges. The set of operations that reflects a valid transformation of G into G′

is called a complete edit path, defined as λ(G,G′) = {o1, ..., ok}, where oi is an
elementary vertex (or edge) edit operation and k is the number of operations.
GED is then,

dmin(G,G′) = min
λ∈Γ (G,G′)

∑

oi∈λ

�(oi) (1)

where Γ (G,G′) is the set of all complete edit paths between G and G′, dmin

represents the minimal cost obtained by a complete edit path λ(G,G′), and �(.)
is a cost function that assigns costs to elementary edit operations.

2.2 Mixed Integer Linear Program

The general MILP formulation is of the form:

min
x

cT x (2)

Ax ≥ b (3)

xi ∈ {0, 1},∀i ∈ B (4)

xj ∈ N,∀j ∈ I (5)

70 M. Darwiche et al.

xk ∈ R,∀k ∈ C (6)

where c ∈ R
n and b ∈ R

m are vectors of coefficients, A ∈ R
m×n is a matrix of

coefficients. x is a vector of variables to be computed. The variable index set is
split into three sets (B, I, C), which stand for binary, integer and continuous,
respectively. This formulation minimizes an objective function (Eq. 2) w.r.t. a
set of linear inequality constraints (Eq. 3) and the bounds imposed on variables
x e.g. integer or binary (Eqs. 4–6). A feasible solution is a vector x with the
proper values based on their defined types, that satisfies all the constraints. The
optimal solution is a feasible solution that has the minimum objective function
value. This approach of modeling decision problems (i.e. problems with binary
and integer variables) is very efficient, especially for hard optimization problems.

2.3 F3 Formulation

F3 is a recent MILP formulation proposed by Darwiche et al. [8], which was
an improvement to an earlier version (referred to as F2) designed by Lerouge
et al. [12]. F3 is a compact formulation with a set of constraints independent from
the edges in the graphs. For this reason, F3 is more effective than F2 especially
in the case of dense graphs [8]. In the following, F3 is detailed by defining: data,
variables, objective function to minimize and constraints to satisfy.

Data. Given two graphs G = (V,E, μ, ξ) and G′ = (V ′, E′, μ′, ξ′), the cost
functions, in order to compute the cost of each vertex/edge edit operations, are
known and defined. Therefore, vertices cost matrix [cv] is computed as in Eq. 7 for
every couple (i, k) ∈ V × V ′. The ε column is added to store the cost of deletion
of i vertices, while the ε row stores the costs of insertion of k vertices. Following
the same process, the matrix [ce] is computed for every ((i, j), (k, l)) ∈ E × E′,
plus the row/column ε for deletion and insertion of edges.

cv =

v1 v2 . . . v|V ′| ε
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

c1,1 c1,2 . . . c1,|V ′| c1,ε u1

c2,1 c2,2 . . . c2,|V ′| c2,ε u2

...
...

. . .
...

...
...

c|V |,1 c|V |,2 . . . c|V |,|V ′| c|V |,ε u|V |
cε,1 cε,2 . . . cε,|V | 0 ε

(7)

Variables. F3 focuses on finding the correspondences between the sets of ver-
tices and the sets of edges. So, two sets of decision variables are needed.

– xi,k ∈ {0, 1} ∀i ∈ V,∀k ∈ V ′; xi,k = 1 when vertices i and k are matched,
and 0 otherwise.

– yij,kl ∈ {0, 1} ∀(i, j) ∈ E,∀(k, l) ∈ E′ ∪ E
′
such that E

′
= {(l, k) : ∀(k, l) ∈

E′}; yij,kl = 1 when edge (i, j) is matched with (k, l), and 0 otherwise.

VPLS for the GED Problem 71

Objective Function. The objective function to minimize is the following.

min
x,y

∑

i∈V

∑

k∈V ′
(cv(i, k) − cv(i, ε) − cv(ε, k)) · xi,k (8)

+
∑

(i,j)∈E

∑

(k,l)∈E′
(ce(ij, kl) − ce(ij, ε) − ce(ε, kl)) · yij,kl + γ

The objective function minimizes the cost of assigning vertices and edges
with the cost of substitution subtracting the cost of insertion and deletion. The
γ, which is a constant given in Eq. 9, compensates the subtracted costs of the
assigned vertices and edges. This constant does not impact the optimization
algorithm and it could be removed. It is there to obtain the GED value. So at
first, the function considers all vertices and edges of G as deleted and the ones of
G′ as inserted. Then, it solves the problem of finding the cheapest substitution
assignments of vertices and edges.

γ =
∑

i∈V

cv(i, ε) +
∑

k∈V ′
cv(ε, k) +

∑

(i,j)∈E

ce(ij, ε) +
∑

(k,l)∈E′
ce(ε, kl) (9)

Constraints. F3 has 3 sets of constraints.
∑

k∈V ′
xi,k ≤ 1 ∀i ∈ V (10)

∑

i∈V

xi,k ≤ 1 ∀k ∈ V ′ (11)

∑

(i,j)∈E

∑

(k,l)∈E′∪E
′
yij,kl ≤ di,k × xi,k ∀i ∈ V,∀k ∈ V ′

with di,k = min (degree(i), degree(k)) (12)

Constraints 10 and 11 are to make sure that a vertex can be only matched
with maximum one vertex. Next, constraints 12 guarantee preserving edges
matching between two couple of vertices.

3 VPLS Heuristic

3.1 Main Features of VPLS

Variable Partitioning Local Search (VPLS) is a matheuristic proposed by
Della Corce et al. [9]. It aims at solving optimization problems by embedding
a MILP solver into heuristic algorithms. More generally, VPLS is about per-
forming neighborhood exploration in the solution space of a MILP formulation.
To start a VPLS heuristic, two ingredients are needed: MILP formulation and
MILP solver.

72 M. Darwiche et al.

Fig. 1. Example of VPLS partitioning.

The first step in VPLS heuristic is to compute a feasible solution X̄. Let
XB = {xi|∀i ∈ B} be the set of binary variables and X̄B = {x̄i|∀i ∈ B}
be the set of values assigned to binary variables based on X̄. Now, assuming
that there exists a partition S ⊆ B of “special” binary variables. The variables
in S are selected based on some defined rules, where these rules underlie some
analyses and observations related to the problem. Later, a procedure is presented
for selecting those special variables based on problem-dependent information
and characteristics of an instance. After determining the set S, a neighborhood
N(X̄, S) can be defined as follows:

N(X̄, S) = {XB | xj = x̄j ,∀j /∈ S} (13)

The neighborhood of X̄, then, contains all solutions of the MILP such that,
they share the same values of binary variables not belonging to subset S, as
in the current solution X̄B . Meanwhile, the variables belonging to subset S
remain free. An example of variables partitioning is depicted in Fig. 1. So, the
resulting restricted MILP formulation has a part of its binary variables with
default values (as in the solution X̄). At this point, the solver can be called
to solve the restricted formulation looking for the optimal/best solution in the
neighborhood N(X̄, S). The new solution is the optimal in that neighborhood, if
the proof of optimality is returned by the solver. In the case where the restricted
formulation is difficult, then the solver can be forced to stop and return the best
solution found so far. This step stands for the search intensification in VPLS.
Finally, the current solution X̄ is updated with the new solution. To sum up,
VPLS consists of three main steps:

1. Neighborhood definition around a current solution X̄.
2. Intensifying the search in the neighborhood.
3. Updating the current solution with the new one.

The process can be repeated until a defined stopping criterion is met.

3.2 VPLS for the GED Problem

To make the heuristic suitable for the GED problem, F3 is selected as the main
formulation. Then, A fundamental question arises when implementing VPLS is

VPLS for the GED Problem 73

how to define the set S? Earlier, the variables in S were referred to as special
variables, and this is to indicate that they should be chosen carefully. Choosing
them randomly is a possibility, but there is no guarantee that the neighborhoods
will contain good and diversified solutions.

Fig. 2. Example of generating spheres for a graph. When δ = 1, in red is the sphere for
vertex 1, in green is the sphere for vertices 2 and 3, in orange is the sphere for vertex
4 and in blue is the sphere for vertex 5. When δ = 2, in red is the sphere for vertices
1 and 4, in green is the sphere for vertices 2, 3, and in blue is the sphere for vertex 5.
(Color figure online)

So, back to defining the set S, it is essential to select variables that affect
the most the matching (and at the same time the objective function). Basically,
only xi,k variables are going to be considered when defining the set S. And next,
a procedure based on the notion of spheres is followed to determine S. This
procedure needs two input graphs G and G′ and an initial solution x0, and it
proceeds as follows:

(i) First, define the list of spheres on graph G of radius δ. For each vertex i in
G, the sphere Si contains all vertices j that are distant from i with at most
δ edges, e.g. if δ = 1, Si contains all vertices connected to i with an edge.
To compute how many edges are needed to go from one vertex to another,
the well-known Dijkstra algorithm is used [5]. It computes the shortest
path between two vertices in a graph. In fact, each sphere is a subgraph
of G, containing all vertices accessible by at most δ edges, plus the edges
connecting any two vertices in the sphere. Figure 2 shows an example of
spheres with different δ values.

(ii) Next, compute a cost for each sphere Si based on the assignments in
the initial solution x0. For example, if S1 for vertex u1 contains vertices
{u1, u2, u3, u4}. From the solution x0, see to which vertex k ∈ V ′ the vertex
u1 is assigned, and include the cost c(u1 → v) to the sphere’s cost. As well,
check the edges that are part of sphere S1 and find their assignments so

74 M. Darwiche et al.

their costs are added to the sphere’s cost. The same is done for the rest of
the vertices ({u2, u3, u4}).

cS =
∑

∀i∈S

c(i → assign(i)) +
∑

∀(i,j)∈(S ×S)∩E

c((i, j) → assign((i, j))), (14)

with assign a function to determine vertices/edges assignments based on xp

solution. The result of this step is an array [cS] storing costs of all spheres.
(iii) Finally, find the sphere with the highest cost in [cS] array. Then, for every

vertex i in this sphere, add all xi,k variables to the set S.

Steps (ii) and (iii) are called each time a new feasible solution is found to select
the next sphere with the highest cost. An already selected sphere is excluded in
the next iteration. This avoids selecting a sphere multiple times, and searching
in the same neighborhood several times consecutively.

Once the set S is determined, the next step is to set all variables not in S
to their values in the solution x0 and the rest of the variables are left free in
the MILP formulation. The solver will solve the restricted MILP formulation
trying to find the best solution by setting the right values for variables in S.
This is the intensification phase, that will result in a new solution x1. Again,
the spheres costs are recomputed based on x1, and the one with the highest cost
will be selected for the next iteration. An iteration, then, consists of three steps:
computing and selecting the sphere to define S, defining the neighborhood based
on S, intensifying the search in the neighborhood. This process is repeated until
reaching some defined stopping criterion.

Finally, VPLS requires the following parameters to be set:

1. δ, is the radius of spheres.
2. total time limit, is the total running time allowed for VPLS before stopping.
3. node time limit, is the maximum running time given to the solver to solve

the restricted MILP formulation.
4. UB time limit, is the running time allowed to the solver to compute an initial

solution.
5. cons sol max, serves as a stopping criterion: VPLS stops when the number

of consecutive intensification steps finding solutions with the same objective
function values is equal to this parameter.

4 Computational Experiments

Database. Among the numerous existing databases, CMU-HOUSE database is
selected in this experiment [13]. It contains 111 (attributed and undirected)
graphs corresponding to 3D-images of houses. The particularity of this database
is that graphs are extracted from 3D-images of houses, where the houses are
rotated with different angles. This is interesting because it enables testing and
comparing graphs representing the same house but positioned differently inside
the images. The total number of instances is 660.

VPLS for the GED Problem 75

Experiment Settings and Comparative Heuristics. VPLS algorithm is imple-
mented in C language. The solver CPLEX 12.7.1 is used to solve the MILP
formulations. CPLEX solver is configured to use a single thread, and the rest of
the parameters are set to default. Experiments are ran on a machine with Win-
dows 7 × 64, Intel Xeon E5 2.30 GHz, 4 cores and 8 Gb of RAM. The following
heuristics are selected from the literature in the comparison: SBPBeam [10],
IPFP and GNCCP [1]. Their parameters are set to the values as mentioned
in the references. VPLS parameters are set empirically to the following val-
ues: δ = 2, cons sol max = 5, total time limit = 10 s, node time limit = 2 s,
UB time limit = 4 s. For each heuristic, the following indicators are computed:
tmin, tavg, and tmax are the minimum, average and maximum CPU times in
seconds over all instances. Correspondingly, dmin, davg, and dmax are the devi-
ations of the solutions obtained by one heuristic, from the best solutions found
by all heuristics (i.e. given an instance I and a heuristic H, deviation percentage
is equal to solutionH

I −bestI
bestI

× 100, with bestI the best solution for I found by all
heuristics).

Table 1. VPLS vs. heuristics on CMU-HOUSE instances

VPLS SBPBeam IPFP GNCCP

tmin 5.76 7.54 0.03 6.85

tavg 9.24 8.50 0.18 9.61

tmax 10.03 9.72 0.32 11.70

dmin 0.00 0.00 0.00 0.00

davg 13.13 330.24 313.05 336.81

dmax 294.41 5502.39 34308.00 32426.89

ηI 537 126 310 440

Results and Analysis : Based on the results reported in Table 1, VPLS seems
to be the best heuristic in terms of solutions quality, with the best average
deviation at 13% and ηI at 537. The difference is remarkably high (around 300%)
compared to the deviations obtained by other heuristics. Even when looking at
worst deviations the difference is very high. However, in terms of average running
time, the fastest heuristic is IPFP with tavg at 0.18 s, while other heuristics
including VPLS reaches 9 s. Eventually, VPLS has been able to outperform the
existing heuristics by obtaining very good solutions.

5 Conclusion

In this work, a VPLS heuristic is designed for solving the GED problem. This
heuristic is based on performing local searches on the basis of a MILP formula-
tion. To perform local searches, the neighborhoods are defined based on special

76 M. Darwiche et al.

variables determined by extracting characteristics from the instance at hand.
By doing so, the performance of VPLS improves, which was shown in the exper-
iments where VPLS outperformed the existing heuristics in terms of solution
quality. This is a second matheuristic designated to solve the GED problem after
the first and successful attempt with local branching [7]. Indeed, matheuristics
are effective and are new ways for solving the GED problem. Meanwhile, it will be
interesting to combine VPLS and local branching into one matheuristic by uni-
fying the neighborhood definitions. As well, more evaluations and experiments
need to be performed to test the methods on different kinds of graphs.

References

1. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46
(2017)

2. Bunke, H.: On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett. 18(8), 689–694 (1997)

3. Bunke, H.: Error correcting graph matching: on the influence of the underlying
cost function. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 917–922 (1999)

4. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recogn. Lett. 1(4), 245–253 (1983)

5. Cormen, T.H.: Section 24.3: Dijkstra’s algorithm. In: Introduction to Algorithms,
pp. 595–601 (2001)

6. Darwiche, M., Conte, D., Raveaux, R., T’Kindt, V.: Graph edit distance: accu-
racy of local branching from an application point of view. Pattern Recogn. Lett.
(2018). https://doi.org/10.1016/j.patrec.2018.03.033. http://www.sciencedirect.
com/science/article/pii/S0167865518301119

7. Darwiche, M., Conte, D., Raveaux, R., T’Kindt, V.: A local branching heuristic
for solving a graph edit distance problem. Comput. Oper. Res. (2018). https://
doi.org/10.1016/j.cor.2018.02.002. http://www.sciencedirect.com/science/article/
pii/S0305054818300339

8. Darwiche, M., Raveaux, R., Conte, D., T’Kindt, V.: Graph edit distance in the
exact context. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B.,
Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 304–314. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97785-0 29

9. Croce, F.D., Grosso, A., Salassa, F.: Matheuristics: embedding MILP solvers into
heuristic algorithms for combinatorial optimization problems. In: Siarry, P. (ed.)
The Oxford Handbook of Innovation, Chap. 3. NOVA Publisher (2013)

10. Ferrer, M., Serratosa, F., Riesen, K.: Improving bipartite graph matching by assess-
ing the assignment confidence. Pattern Recogn. Lett. 65, 29–36 (2015)

11. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit
distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006)

12. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear
programming formulation to compute the graph edit distance. Pattern Recogn. 72,
254–265 (2017)

13. Moreno-Garćıa, C.F., Cortés, X., Serratosa, F.: A graph repository for learn-
ing error-tolerant graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B.,
Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 519–529.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7 46

https://doi.org/10.1016/j.patrec.2018.03.033
http://www.sciencedirect.com/science/article/pii/S0167865518301119
http://www.sciencedirect.com/science/article/pii/S0167865518301119
https://doi.org/10.1016/j.cor.2018.02.002
https://doi.org/10.1016/j.cor.2018.02.002
http://www.sciencedirect.com/science/article/pii/S0305054818300339
http://www.sciencedirect.com/science/article/pii/S0305054818300339
https://doi.org/10.1007/978-3-319-97785-0_29
https://doi.org/10.1007/978-3-319-49055-7_46

VPLS for the GED Problem 77

14. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

15. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. Advances
in Computer Vision and Pattern Recognition. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-27252-8

16. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the
edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS,
vol. 4538, pp. 1–12. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72903-7 1

17. Serratosa, F.: Computation of graph edit distance: reasoning about optimality and
speed-up. Image Vis. Comput. 40, 38–48 (2015)

18. Stauffer, M., Tschachtli, T., Fischer, A., Riesen, K.: A survey on applications of
bipartite graph edit distance. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR
2017. LNCS, vol. 10310, pp. 242–252. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58961-9 22

19. Zeng, Z., Tung, A.K., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approxi-
mating graph edit distance. Proc. VLDB Endow. 2(1), 25–36 (2009)

https://doi.org/10.1007/978-3-319-27252-8
https://doi.org/10.1007/978-3-319-27252-8
https://doi.org/10.1007/978-3-540-72903-7_1
https://doi.org/10.1007/978-3-540-72903-7_1
https://doi.org/10.1007/978-3-319-58961-9_22
https://doi.org/10.1007/978-3-319-58961-9_22

	Solving the Graph Edit Distance Problem with Variable Partitioning Local Search
	1 Introduction
	2 GED Definition and F3 Formulation
	2.1 GED Problem Definition
	2.2 Mixed Integer Linear Program
	2.3 F3 Formulation

	3 VPLS Heuristic
	3.1 Main Features of VPLS
	3.2 VPLS for the GED Problem

	4 Computational Experiments
	5 Conclusion
	References

