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Abstract. In this paper, we explore how to the decompose the global
thermodynamic entropy of a network into components associated with
its edges. Commencing from a statistical mechanical picture in which
the normalised Laplacian matrix plays the role of Hamiltonian opera-
tor, thermodynamic entropy can be calculated from partition function
associated with different energy level occupation distributions arising
from Maxwell-Boltzmann statistics. Using the spectral decomposition of
the Laplacian, we show how to project the edge-entropy components so
that the detailed distribution of entropy across the edges of a network
can be achieved. We apply the resulting method to fMRI activation net-
works to evaluate the qualitative and quantitative characterisations. The
entropic measurement turns out to be an effective tool to identify the
differences in the structure of Alzheimer’s disease by selecting the most
salient anatomical brain regions.
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1 Introduction

Functional magnetic resonance imaging (fMRI) provides a sophisticated means of
studying the neuropathophysiology associated with Alzheimer’s disease (AD) [1].
It maps the network representation to neuronal activity between the various
brain regions. The resulting network structure has proved useful in understand-
ing Alzheimer’s disease (AD) via the analysis of intrinsic brain connectivity [2].
Although there are many tools to identify the affected brain regions in AD, it is
still not clear how this abnormality affects the functional organization of the whole
brain connection.

Tools from network analysis provide a convenient approach for understanding
the functional association of different regions in the brain [2,4]. The approach
is to characterize the topological structures present in the brain and to quantify
the functional interaction between brain regions, using the mathematical study
of networks and graph theory. Graph theory offers an attractive route since
it provides effective tools for characterizing network structures together with
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their intrinsic complexity [3,6]. This approach has led to the design of several
practical methods for characterizing the global and local structure of graphs [3].
Features based on the global and local measures of connectivity are widely used
in functional brain analysis [5].

Unfortunately, there is relatively little literature aimed at studying structural
network features using entropic analysis. The reason for that is the vast majority
of techniques suggested by entropy provides a useful global characterisation of
network structure, they do not lend themselves to the analysis of local measures
of edge or subnetwork structure. However, entropy analysis is a more natural
representation for brain structure, since they allow the information of activation
signals for different anatomical structures in the brain.

This paper is motivated by the need to fill this important gap in the litera-
ture, and to establish effective methods for measuring the structural properties
of entropy representing fMRI brain networks. In particular, in order to character-
ize the functional organization of the brain, our approach explores a novel edge
entropy projection which can decompose the global network entropy computed
from Maxwell-Boltzmann distribution [6,12]. The new characterisations of edge
entropy resulting from this analysis allow us to probe in finer detail the interac-
tions between different anatomical regions in fMRI data from healthy controls
and Alzheimer’s disease sufferers (AD).

The remainder of the paper is organized as follows. Section 2 briefly reviews
the basic concepts in network representation, especially with a sophisticated
study of von Neumann entropy. Section 3 reviews density matrix and Hamilto-
nian operator on graphs, and decompose the thermodynamic entropy on edges
from Maxwell-Boltzmann statistics. Section 4 provides our experimental evalua-
tion. Finally, Sect. 5 provides the conclusion and direction for future work.

2 Graph Representation

2.1 Preliminaries

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let V represent the total number of nodes on graph G(V,E). The adjacency
matrix of a graph is A with the degree of node u is du =

∑
v∈V Auv. Then, the

Laplacian matrix is L = D − A, where D denotes the degree diagonal matrix
whose elements are given by D(u, u) = du and zeros elsewhere. The normalized
Laplacian matrix L̃ of the graph G is defined as L̃ = D− 1

2 LD
1
2 , and the spectral

decomposition is L̃ = ΦΛ̃ΦT , where Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal
matrix with the ordered eigenvalues as elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is
the matrix with the ordered eigenvectors as columns.

2.2 Von Neumann Edge Entropy

In quantum mechanics, the density matrix is used to describe a system with
the probability of pure quantum states |ψi〉 and each with probability pi. It is
defined as ρ =

∑V
i=1 pi|ψi〉〈ψi|. Severini et al. [7] have extended this idea to
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the graph domain. Specifically, they show that a density matrix for a graph or
network can be obtained by scaling the combinatorial Laplacian matrix by the
reciprocal of the number of nodes in the graph.

With this notation, the specified density matrix is obtained by scaling the
normalized Laplacian matrix by the number of nodes, i.e. ρ = L̃

|V | . When defined
in this way the density matrix is Hermitian i.e. ρ = ρ† and ρ ≥ 0,Trρ = 1.
This interpretation opens up the possibility of characterising a graph using the
von Neumann entropy from quantum information theory [7]. Therefore, the von
Neumann entropy is given in terms of the eigenvalues λ1, ....., λ|V | of the density
matrix ρ,

S
V N

= −Tr(ρ log ρ) = −
|V |∑

i=1

λi

|V | log
λi

|V | (1)

In fact, Han et al. [8] have shown how to approximate the calculation of
von Neumann entropy in terms of simple degree statistics. Their approxima-
tion allows the cubic complexity of computing the von Neumann entropy to be
reduced to one of quadratic complexity using simple edge degree statistics, i.e.

S
V N

= 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(2)

Therefore, the edge entropy decomposition is given as

S
edge

V N
(u, v) =

1
|E| − 1

|V ||E| − 1
|E||V |2

1
dudv

(3)

where S
V N

=
∑

(u,v)∈E S
edge

V N
(u, v). This expression decomposes the global

parameter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Thermodynamic Statistics and Global Entropy
Decomposition

The concept of von Neumann entropy arises in the quantum domain. Here, we
commence from the Hamiltonian operator in statistical mechanics to develop
thermodynamic entropy. We then decompose or project the global entropy onto
edges using the eigenvectors of the normalised Laplacian matrix.

3.1 Thermodynamic Entropy

To connect the normalised Laplacian matrix to statistical mechanics, we view
the eigenvalues of the Laplacian matrix as the energy eigenstates of a system in
contact with a heat reservoir. These determine the Hamiltonian and hence the
relevant Schrödinger equation which governs the particles in the system [3,6].
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The particles occupy the energy states of the Hamiltonian subject to thermal
agitation by the heat bath [12]. The number of particles in each energy state is
determined by the temperature, the assumed model of occupation statistics and
the relevant chemical potential.

We consider the network as a thermodynamic system of N particles with
energy states given by normalised Laplacian matrix L̃, which is immersed in
a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β is inverse of temperature T . When specified in this
way, the thermodynamic entropy is given by,

S = kB

[
∂

∂T
T log Z

]

N

(4)

The statistical properties of particles in the network are determined by the
partition functions associated with different energy level occupation statistics.
In this way, thermodynamic quantities, such as entropy, can characterise the
network structure.

3.2 Maxwell-Boltzmann Statistics

The Maxwell-Boltzmann distribution relates the microscopic properties of par-
ticles to the macroscopic thermodynamic properties of matter [10]. It applies to
systems consisting of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy levels associated with a Hamiltonian and
in our case the Hamiltonian of the network, which is in contact with a thermal
bath [6].

Taking the Hamiltonian to be the normalized Laplacian of the network, the
canonical partition function for Maxwell-Boltzmann occupation statistics of the
energy levels is

Z
MB

= Tr
[

exp(−βL̃)N

]

(5)

where β = 1/kBT is the reciprocal of the temperature T with kB as the Boltz-
mann constant; N is the total number of particles and λi denotes the microscopic
energy of system at each microstate i with energy λi. Derived from Eq. (4), the
entropy of the system with N particles is

S
MB

= log Z − β
∂ log Z

∂β
= −NTr

{
exp(−βL̃)

Tr[exp(−βL̃)]
log

exp(−βL̃)
Tr[exp(−βL̃)]

}

For a single particle, the density matrix is

ρ
MB

=
exp(−βL̃)

Tr[exp(−βL̃)]
(6)

Since the density matrix commutes with the Hamiltonian operator, we have
∂ρ/∂t = 0 and the system can be viewed as in equilibrium. So the entropy in
the Maxwell-Boltzmann system is simply N times the von Neumann entropy of
a single particle, as we might expect.
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3.3 Edge Entropy Decomposition

Our goal is to project the global network entropy onto the edges of the network.
In matrix form for Maxwell-Boltzmann statistics in Eq. (6), the entropy can be
written as,

S
MB

= −Tr
[
ρ

MB
log ρ

MB

]
= −Tr[Σ

MB
] (7)

Since the spectral decomposition of the normalized Laplacian matrix is

L̃ = ΦΛ̃ΦT (8)

We can decompose the matrix Σ
MB

as follows

Σ
MB

= Φσ
MB

(Λ̃)ΦT (9)

where

σ
MB

(λi) = −N
e−βλi

∑|V |
i=1 e−βλi

log
e−βλi

∑|V |
i=1 e−βλi

(10)

As a result, we can perform edge entropy projection of the Maxwell-
Boltzmann statistical model using the Laplacian eigenvectors [11]. The result
of the entropy for each edge (uv) is given as,

S
edge

MB
(u, v) =

|V |∑

i=1

σ
MB

(λi)ϕiϕ
T
i (11)

Thus, the global entropy can be projected on the edges of the network sys-
tem. This provides useful measures for local entropic characterisation of network
structure in a relatively straightforward manner.

4 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis
of interregional connectivity structure for fMRI activation networks for normal
and Alzheimer’s patients. We first examine the dependence of the edge entropy
components on node degree and temperature and compare their performance
with von Neumann entropy. Then we apply edge entropy-based analysis to dis-
tinguish between different stages in the development of Alzheimer’s disease, and
fMRI data for normal subjects. We explore whether we can identify specific inter-
regional connections and regions in the brain associated with the neurodegener-
ation caused by the onset of Alzheimer’s disease. To simplify the calculations,
the Boltzmann constant is set to unity in our experiments.
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4.1 Dataset

The fMRI data were obtained from the ADNI initiative [9]. fMRI images of
subjects brains were taken every two seconds and are used to compute the
Blood-Oxygenation-Level-Dependent (BOLD) signals for different anatomical
brain regions. To do this the fMRI voxels were aggregated into larger regions of
interest (ROIs). The different ROIs correspond to different anatomical regions of
the brain and are assigned anatomical labels to distinguish them. There are 90
such anatomical regions in each fMRI image. The correlation between the aver-
age time series in different ROIs represents the degree of functional connectivity
between regions which are driven by neural activities.

We construct a graph to represent the pattern of activities using the cross-
correlation coefficients for the average time series for pairs of ROIs. We create an
undirected edge between two ROI’s if the cross-correlation coefficient between
the time series is in the top 40% of the cumulative distribution. This cross-
correlation threshold is fixed over all of the available data, which provides an
optimistic bias for constructing graphs. Those ROIs that have missing time series
data are discarded. Subjects fall into different categories according to the degree
of severity of the disease, there are normal subjects, those with early mild cog-
nitive impairment, those with late mild cognitive impairment and those with
full Alzheimer’s. The data supplied 705 patients, including 105 subjects with
Alzheimer’s disease (AD), 193 normal healthy control subjects (NC), 240 in the
Early Mild cognitive impairment (EMCI) and 167 in the Late Mild cognitive
impairment (LMCI).

Fig. 1. Scatter plot of thermodynamic edge entropy compared to the von Neumann
entropy with different value of temperatures.
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4.2 Experimental Results

We first investigate the relationship between the mean edge entropy computed
using Maxwell-Boltzmann statistics and von Neumann entropy. Figure 1 shows
the edge entropy with varying temperatures. The statistical entropy exhibits a
transition in behaviour with respect to the von Neumann entropy with varying
temperature.

For example, at the high temperature (β = 0.1), the thermodynamic entropy
is roughly in linear proportion to the von Neumann entropy. As the temperature
reduces, they take on an approximately exponential dependence. At low temper-
ature, the thermodynamic edge entropies decrease monotonically with the von
Neumann edge entropy (β = 10). Therefore, at high temperature, the statistical
and von Neumann edge entropies are proportional, while at low temperature
they are in inverse proportion.

Then, we apply the edge entropy computations to fMRI brain networks,
with the aim of determining which anatomical regions play the strongest role
in the development of Alzheimer’s disease. Figure 2 shows the different edge
entropy distribution for the Alzheimer’s disease (AD) and healthy control (Nor-
mal) samples. Compared to the von Neumann entropy which does not show
a clear difference in distributions between the two groups, the thermodynamic
entropy better distinguish the detailed distribution of edge entropy. The edge
entropy in the case Alzheimer’s disease tends towards lower values. This obser-
vation is more palpable in the cases of the Maxwell-Boltzmann edge entropy
distributions, as shown in Fig. 2(b), with more edges tending to occupy the low
entropy region.

Fig. 2. Edge entropy distribution of fMRI networks with (a) von Neumann entropy,
(b) Maxwell-Boltzmann statistics. Two groups of patients, Alzheimer’s disease (AD)
and healthy control (Normal).

Next, we select the edges with the largest 10% of entropy in the anatomical
regions to reduce the feature dimension. This gives 278 significant edges as a
feature vector. We explore whether these feature vectors can be used to classify
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Fig. 3. (a) Visualisation of three dimensional principal components of thermodynamic
edge entropy in four groups of Alzheimer’s disease. (b) Significant differences between
edge entropy associated with diseased areas in the brain. We use the standard deviation
of thermodynamic entropy to identify the divergence between AD and HC groups for
each edge.

normal healthy subjects and patients with early Alzheimer’s disease. Figure 3(a)
is the visualisation of the three-dimensional principal components for four groups
using Fisher’s linear discriminant analysis (LDA). Three principal eigenvectors
show the cluster of each group. The palpable feature is that the statistical edge
entropy in Maxwell-Boltzmann case can give the separation among the four
subject groups.

If we regard the principal components as the feature vectors on each sample
graph, we can apply C-SVM (Support Vector Machine) to classify four groups.
The data are manually separated into two parts as 500 samples for the training
data and 205 samples for the testing data (the rest of the raw data excluding the
training set). The 10-fold cross-validation with the grid search method is used
to find the optimal parameters (c and g)in C-SVM with Gaussian kernel. The
training and testing accuracies are shown in Table 1.

Table 1. SVM Classification Accuracy. In the four group classification, 500 samples are
used for training and 205 samples for testing. For AD and Normal binary classification,
200 samples are used for training and 98 samples for testing. For EMCI and Normal
binary classification, 300 samples are used for training and 133 samples for testing.

Training accuracy Testing accuracy

Four groups 88.42% (442/500) 87.80% (180/205)

AD/Norm 83.50% (167/200) 82.65% (81/98)

EMCI/Norm 92.71% (278/300) 91.03% (121/133)

Table 1 shows that the edge entropies in Maxwell-Boltzmann statistics are
good features to identify Alzheimer’s disease. For all the groups of patients, the
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total classification accuracy can reach 87.80%. In term of the binary classifi-
cation between Early Mild cognitive impairment (EMCI) and healthy control
(Normal), the thermodynamic edge entropy presents a better performance to
classify the early disease which is helpful for clinical application. Thus, we can
apply the resulting method to identify fMRI activation networks from patients
with suspected Alzheimer’s disease.

On the other hand, identifying diseased regions in the brain is also impor-
tant. Several studies have shown that different anatomical structures can be
analysed using the properties of the corresponding ROIs, and are important
for understanding brain disorders [2,4]. Here, we use the difference in standard
deviation for the thermodynamic entropy to identify the sources of significant
variance between AD and HC groups. Figure 3(b) plots the greatest variance
of edge entropy for different anatomical regions (edges). The entropic measure-
ments in the brain areas, such as the Paracingulate Gyrus, Parahippocampal
Gyrus, Inferior Temporal Gyrus and Temporal Fusiform Cortex, suggest that
subjects with AD experience loss of interconnection between these regions in
their brain network during the progression of the disease.

Table 2. Top 10 ROIs with the most significant difference in edge entropy between
the Alzheimer’s disease (AD) and Health Control (Normal) groups.

Index ROI ROI

1 Middle Frontal Gyrus Right(10) Inferior Parietal Lobule Right(62)

2 Inferior Frontal Gyrus Left(11) Supramarginal Gyrus Left(63)

3 Supplementary Motor Area Left(19) Supplementary Motor Area Right(20)

4 Medial Frontal Gyrus Left(23) Medial Frontal Gyrus Right(24)

5 Posterior Cingulate Gyrus Left(35) Precuneus Left(67)

6 Hippocampus Left(37) ParaHippocampal Gyrus Right(40)

7 Hippocampus Right(38) Amygdala Right(42)

8 ParaHippocampal Gyrus Left(39) ParaHippocampal Gyrus Right(40)

9 Lingual Gyrus Left(47) Middle Occipital Gyrus Left(51)

10 Angular Gyrus Left(65) Angular Gyrus Right(66)

As listed in Table 2, the ten anatomical regions with the largest entropy dif-
ferences for subjects with the full AD are Paracingulate Gyrus, Parahippocampal
Gyrus, Temporal Fusiform Cortex, etc. This result is consistent with the previous
study reported in [4,5]. For example, the parahippocampal gyrus has consistently
been reported as being vulnerable to pathological changes in Alzheimer’s disease
(AD), which is closely related to entorhinal and perirhinal subdivisions as the most
heavily damaged cortical areas for the disease [13]. The Frontal Medial Cortex and
Temporal Fusiform Cortex are memory-related cognitive areas. They are severely
damaged by Alzheimer’s disease and affect recognition memory for faces. Overall,



Graph Edge Entropy in Maxwell-Boltzmann Statistics 65

the loss of connection between these brain regions results in significant functional
impairment between healthy subjects and patients with the AD.

In conclusion, both statistical methods and von Neumann edge entropies can
be used to represent changes in network structure. Compared to the von Neu-
mann edge entropy, thermodynamic edge entropies are more sensitive to sample
variance associated with the degree distribution. Maxwell-Boltzmann statistics
reflect strong community structure which is more suitable for representing a
detailed structure of the degree distribution.

5 Conclusion

In this paper, we show how to decompose the global network entropies result-
ing from thermodynamic occupation statistics onto the constituent edges of a
graph. We refer to the resulting statistical quantities as Maxwell-Boltzmann
edge-entropies. The method uses the normalised Laplacian matrix as the Hamil-
tonian operator of the network to compute the corresponding partition func-
tions. We undertake experiments to analyse the thermodynamic edge entropies
and compare them to their von Neumann counterparts. Experiments reveal that
the Maxwell-Boltzmann edge entropy distributions can effectively in character-
ising detailed variations in the network structure. It outperforms the von Neu-
mann entropy in this respect. Finally, we apply this novel method to provide
insights into the neuropathology of Alzheimer’s disease. The thermodynamic
edge entropy distribution is capable of discriminating between subjects suffering
from Alzheimer’s and healthy subjects.

References

1. van den Heuvel, M.P., Pol, H.E.H.: Exploring the brain network: a review on
resting-state fMRI functional connectivity. J. Eur. Neuropsychopharmacol. 20,
519–534 (2010)

2. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses
and interpretations. Neuroimage 52(3), 1059–69 (2010)

3. Ye, C., Wilson, R.C., Comin, C.H., Costa, L.D.F., Hancock, E.R.: Approximate
von Neumann entropy for directed graphs. Phys. Rev. E 89(5), 052804 (2014)

4. Rombouts, S.A., Barkhof, F., Goekoop, R., Stam, C.J., Scheltens, P.: Altered rest-
ing state networks in mild cognitive impairment and mild Alzheimer’s disease: an
fMRI study. Hum. Brain Mapp. 26(4), 231–239 (2005)

5. Khazaee, A., Ebrahimzadeh, A., Babajani-Ferem, A.: Classification of patients with
MCI and AD from healthy controls using directed graph measures of resting-state
fMRI. Behav. Brain Res. 322, 339–350 (2016)

6. Wang, J., Wilson, R.C., Hancock, E.R.: Spin statistics, partition functions and
network entropy. J. Complex Netw. 5(6), 858–883 (2017)

7. Passerini, F., Severini, S.: The von Neumann entropy of networks. Int. J. Agent
Technol. Syst. 1, 58–67 (2008)

8. Han, L., Escolano, F., Hancock, E.R., Wilson, R.C.: Graph characterizations from
von Neumann entropy. Pattern Recognit. Lett. 33, 1958–1967 (2012)



66 J. Wang et al.

9. Alzheimer’s Disease Neuroimaging Initiative (ADNI). http://adni.loni.usc.edu/
10. Ye, C., Wilson, R.C., Hancock, E.R.: An entropic edge assortativity measure.

In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS,
vol. 9069, pp. 23–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18224-7 3

11. Wang, J., Wilson, R.C., Hancock, E.R.: Network edge entropy from Maxwell-
Boltzmann statistics. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.)
ICIAP 2017. LNCS, vol. 10484, pp. 254–264. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68560-1 23

12. Wang, J., Wilson, R.C., Hancock, E.R.: fMRI activation network analysis using
Bose-Einstein entropy. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F.,
Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 218–228. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49055-7 20

13. Van Hoesen, G.W., Augustinack, J.C., Dierking, J., Redman, S.J., Thangavel,
R.: The parahippocampal gyrus in Alzheimer’s disease: clinical and preclinical
neuroanatomical correlates. Ann. New York Acad. Sci. 911(1), 254–274 (2000)

http://adni.loni.usc.edu/
https://doi.org/10.1007/978-3-319-18224-7_3
https://doi.org/10.1007/978-3-319-18224-7_3
https://doi.org/10.1007/978-3-319-68560-1_23
https://doi.org/10.1007/978-3-319-68560-1_23
https://doi.org/10.1007/978-3-319-49055-7_20

	Graph Edge Entropy in Maxwell-Boltzmann Statistics for Alzheimer's Disease Analysis
	1 Introduction
	2 Graph Representation
	2.1 Preliminaries
	2.2 Von Neumann Edge Entropy

	3 Thermodynamic Statistics and Global Entropy Decomposition
	3.1 Thermodynamic Entropy
	3.2 Maxwell-Boltzmann Statistics
	3.3 Edge Entropy Decomposition

	4 Experiments and Evaluations
	4.1 Dataset
	4.2 Experimental Results

	5 Conclusion
	References




