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Abstract. In contrast to statistical representations, graphs offer some
inherent advantages when it comes to handwriting representation. That
is, graphs are able to adapt their size and structure to the individual
handwriting and represent binary relationships that might exist within
the handwriting. We observe an increasing number of graph-based key-
word spotting frameworks in the last years. In general, keyword spotting
allows to retrieve instances of an arbitrary query in documents. It is
common practice to optimise keyword spotting frameworks for each doc-
ument individually, and thus, the overall generalisability remains some-
how questionable. In this paper, we focus on this question by conducting
a cross-evaluation experiment on four handwritten historical documents.
We observe a direct relationship between parameter settings and the
actual handwriting. We also propose different ensemble strategies that
allow to keep up with individually optimised systems without a priori
knowledge of a certain manuscript. Such a system can potentially be
applied to new documents without prior optimisation.

Keywords: Keyword spotting · Handwritten historical documents ·
Graph-based representations · Hausdorff Edit Distance ·
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1 Introduction

Different handwritten historical documents often show large variations in the
handwriting (e.g. scale or style) and are often negatively affected by ink-bleed
through, fading, etc. Consequently, an automatic full transcription is often not
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feasible [3]. For this reason, Keyword Spotting (KWS) has been proposed as a
more flexible and error-tolerant alternative [5]. In particular, KWS systems allow
to retrieve all word instances in handwritten historical documents that represent
a given query word.

1.1 Related Work

In graph-based KWS, a query graph is commonly matched with the graphs that
represent the document words. Hence, sorted graph dissimilarities can be used to
derive a retrieval index that consists – in the best case – of all relevant keywords
as its top results.

Different graph-based approaches for KWS are based on different representa-
tions of the handwriting. However, nodes are often used to represent character-
istic points (so called keypoints) in the handwriting, while edges are commonly
used to represent handwriting strokes [13]. In other approaches the nodes are
used to represent prototype strokes, while edges are used to connect nodes that
stem from the same connected component [2,8]. More recently, a set of different
graph-based handwriting representations has been proposed that make use of
keypoints, grid-wise segmentations, or projection profiles [10]. These handwrit-
ing graph representations have been actually employed in various graph-based
KWS applications [1,7,11,12]. Very recently, Deep Learning techniques (so called
Message Passing Neural Networks) have been used to enhance node labels by a
structural node context [7].

Regardless the graph representation actually used, a matching procedure
is required in order to conduct KWS. To this end, different graph dissimilari-
ties have been employed like, for instance, Bipartite Graph Edit Distance (BP)
[2,8,11–13]1 as well as Hausdorff Edit Distance (HED) [1,7]2. Moreover, ensem-
ble methods have been proposed to combine different graph representations [11].

1.2 Contribution

It is common practice in the field of KWS research that parameters are indi-
vidually optimised for every document [2,3,5,7,8,13]. That is, the parameters
are often optimised on a subset of a specific document and then tested on a
disjoint set stemming from the same document. However, this practice does not
reflect a realistic scenario especially as libraries often keep thousands of differ-
ent handwritten historical documents. It would be a very cumbersome and time
consuming task to individually optimise a given KWS system for each of these
documents.

In the present paper, we evaluate the generalisability of a graph-based KWS
system. That is, we investigate the performance and limitation of this sys-
tem in a cross-evaluation experiment on four handwritten historical documents,

1 BP has been introduced in [9].
2 HED has been introduced in [4].
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Fig. 1. Exemplary excerpts of four handwritten historical documents: (a) George
Washington (GW), (b) Parzival (PAR), (c) Alvermann Konzilsprotokolle (AK),
(d) Botany (BOT).

viz. George Washington (GW)3, Parzival (PAR)4, Alvermann Konzilsprotokolle
(AK), and Botany (BOT)5. In particular, we optimise parameters on one docu-
ment (for instance GW) and eventually test the optimised settings on the three
remaining documents (in this case PAR, AK, and BOT). We repeat this pro-
cedure for each document. Moreover, we propose and evaluate novel ensemble
methods that allow to test unknown documents without prior optimisation step.
That is, these ensemble systems combine the results of three KWS systems (indi-
vidually optimised on three different manuscripts) in order to instantly perform
KWS on an unseen document.

In Fig. 1, excerpts from each document are shown. The large variations in
the writing styles and document states are clearly visible and illustrate the chal-
lenging task of tuning a KWS system on one document that eventually returns
reasonable results on other documents.

The remainder of this paper is organised as follows. First, the graph-based
KWS framework actually employed for our research study is reviewed in Sect. 2.
Next, the cross-evaluation experiment on the four handwritten documents as
well as the ensemble results are presented and discussed in Sect. 3. Finally, we
draw conclusions and discuss further research activities in Sect. 4.

2 Graph-Based Keyword Spotting

In this section, we review a graph-based KWS framework originally proposed
in [1,12]. We use this framework as basic system to conduct both the cross vali-
dation and the ensemble experiments. This framework is based on three different
3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, Letter-

book 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/gwseries2.
html.

4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database.

5 Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database,
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html.

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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processing steps (as illustrated in Fig. 2) and is briefly outlined in the next three
subsections. In the fourth and last subsection we discuss a possibility to build
an ensemble out of different KWS systems that might be particularly useful in
order to increase the generalisability of a KWS system.

2.1 Image Preprocessing

For the two documents GW and PAR, general noise is addressed by means
of Difference of Gaussians filtering. Next, document images are binarised by
global thresholding. Moreover, the resulting document images are automatically
segmented into single word images by means of their projection profiles, and if
necessary manually corrected. That is, we focus on the KWS process itself and
assume perfectly segmented documents in our evaluations. For deskewing, the
angle between x-axis and lower baseline of a text line is estimated and used to
rotate single word images. Finally, preprocessed word images are skeletonised by
means of thinning.

For the two documents AK and BOT, segmented word images are directly
taken from the ICFHR2016 benchmark database [6], and thus, only binarisation
has been employed. To handle small segmentation errors, we employ an addi-
tional image preprocessing step that removes small connected components on
these two manuscripts.

We denote preprocessed and skeletonised word images by S from now on.
For more details on the preprocessing step we refer to [11,12].

2.2 Handwriting Graphs

In general, a graph g is defined as a four-tuple g = (V,E, μ, ν) where V and E
are finite sets of nodes and edges, and μ : V → LV and ν : E → LE are labelling
functions for nodes and edges, respectively. The handwriting graphs employed
in this paper are defined as follows. Nodes are used to represent characteristic
points, so-called keypoints, in the handwriting, while edges are used to repre-
sent strokes between keypoints. Hence, nodes are labelled with two-dimensional
numerical labels, while edges remain unlabelled, i.e. LV = R

2 and LE = ∅. In
the following paragraphs we briefly review the procedure of extracting graphs
from word images (for details we refer to [12]).

First, end points and junction points are identified in the word images S.
Selected keypoints are added to the graph as nodes and labelled with their
respective (x, y)-coordinates. Next, intermediate points are added as nodes along
the skeleton in equidistant intervals of size D. Eventually, an undirected edge
(u, v) between u ∈ V and v ∈ V is inserted into the graph for each pair of nodes
that is directly connected by a chain of foreground pixels in image S.

To reduce scaling variations, the (x, y)-coordinates of the node labels μ(v)
are normalised by a z-score. Formally, we replace (x, y) by (x̂, ŷ), where

x̂ =
x − μx

σx
and ŷ =

y − μy

σy
.
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Fig. 2. Graph-based keyword spotting processing of the word “Möller”.

Thereby (μx, μy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration6.

For each manuscript, an original word image, a preprocessed word image, a
skeletonised word image, as well as the corresponding handwriting graph is given
in Fig. 3.

a)

b)

d)

c)

PAR AK BOTGW

Fig. 3. Exemplary graph representation of four handwritten historical documents (viz.
George Washington (GW), Parzival (PAR), Alvermann Konzilsprotokolle (AK), and
Botany (BOT)): (a) Original word image, (b) Preprocessed word image, (d) Skele-
tonised word image, (c) Handwriting graph.

2.3 Graph Matching

The actual keyword spotting is based on a pairwise matching of a query graph
q with all graphs g stemming from the set of document graphs G. In this paper,
we make use of Hausdorff Edit Distance (HED) [4]. HED is a quadratic time
lower bound of Graph Edit Distance that measures the minimum-cost defor-
mation needed to transform one graph g1 = (V1, E1, μ1, ν1) into another graph
g2 = (V2, E2, μ2, ν2) by means of deletions (u → ε), insertions (ε → v), and

6 Note that the resulting graphs are available under http://www.histograph.ch/.

http://www.histograph.ch/
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substitutions (u → v) of nodes u ∈ V1 and v ∈ V2. Likewise, edit operations
are defined for the edges. Formally, the HED of two graphs g1 and g2 can be
derived by

HED(g1, g2) =
∑

u∈V1

min
v∈V2∪{ε}

f(u, v) +
∑

v∈V2

min
u∈V1∪{ε}

f(u, v),

where f(u, v) is a cost function that takes into account the node edit cost c(u → v)
as well as the edge edit cost c(q → r) for all edges q and r adjacent to u and v,
respectively.

The cost model employed is based on a constant cost τv ∈ R
+ for node

deletions/insertions and a constant cost τe ∈ R
+ for edge deletions/insertions.

For node substitutions, the following weighted Euclidean distance is employed:
√

α (σx(xi − xj))2 + (1 − α) (σy(yi − yj))2,

where α ∈ [0, 1] denotes a parameter to weight the importance of the x- and
y-coordinate of a node, while σx and σy denote the standard deviation of all
node coordinates in the current query graph q. Edge substitutions are free of
cost (since they are unlabelled). We additionally use a weighting factor β ∈ [0, 1]
to weight the relative importance of the overall node and edge edit costs.

Finally, a retrieval index r is derived. In particular, HED is normalised by
the maximum possible graph edit distance between q and g (i.e. the sum that
results from deleting all nodes and edges of q and inserting all nodes and edges
in g). Formally,

r(q, g) =
HED(q, g)

(|Vq| + |Vg|) τv + (|Eq| + |Eg|) τe
.

2.4 Ensemble Methods

In order to increase the generalisability of the proposed framework, we propose
three different ensemble methods that allow to combine optimised cost models
of known documents. The general idea of these systems is as follows. We assume
that we have three documents at hand on which a KWS system can be individ-
ually optimised. We eventually apply all three parametrisations to one unknown
document and combine the three results by means of a statistical measure.
Formally,

rmin(q, g) = min
i∈{A,B,C}

ri(q, g),

rmax(q, g) = max
i∈{A,B,C}

ri(q, g),

rmean(q, g) = mean
i∈{A,B,C}

ri(q, g),

where {A,B,C} represent three given manuscripts, and ri refers to the HED
optimised on manuscript A, B, or C. If we assume, for instance, that BOT is an
unknown document, {A,B,C} is given by the three remaining documents that
is A = GW, B = PAR, and C = AK.
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3 Experimental Evaluation

3.1 Experimental Setup

For all evaluations, the accuracy is measured by the Mean Average Precision
(MAP), which is the mean area under all recall-precision curves of all individual
keywords. In particular, the evaluation is conducted in two steps, viz. validation
and test.

First, ten different keywords (with different word lengths) are manually
selected on each dataset. Based on these keywords, we define an indepen-
dent validation set for parameter optimisation that consists of 10 random
instances per keyword instance and 900 additional random words (in total 1,000
words). We evaluate 25 pairs of constants for node and edge deletion/insertion
costs (τv = τe ∈ {1, 4, 8, 16, 32}) in combination with the weighting parame-
ters α = β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (see Sect. 2.3). In Table 1, the optimal cost
model for each manuscript is given.

Table 1. Optimal cost function parameter.

GW PAR AK BOT

τv τe α β τv τe α β τv τe α β τv τe α β

8 4 0.1 0.5 8 1 0.5 0.1 16 1 0.1 0.3 8 4 0.1 0.3

Next, the proposed framework is tested using the same training and test sets
as used in [3] and [6]. In Table 2, a summary of dataset characteristics of all four
documents is given.

Table 2. Number of keywords, size of keyword spotting datasets (train and test), and
the image resolution of the original documents in dpi.

Dataset Keywords Train Test dpi

GW 105 2447 1224 300

PAR 1217 11468 6869 200

AK 200 1849 3734 400

BOT 150 1684 3380 400

3.2 Cross-Evaluation

In Table 3, the results of the cross-evaluation are shown for all manuscripts
(columns) using cross-evaluated parameters (rows). For instance, in the first
row we show the KWS results on all four data sets of the system actually opti-
mised on GW. In the main diagonal of Table 3 we thus provide the KWS results
on a document obtained by the system optimised on the same document.
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On GW we observe that the KWS system optimised on BOT achieves a
similar result as the document specific system (actually this system performs
even slightly better). Regarding the optimal parameters for the cost function in
Table 1, this result makes sense as for both GW and BOT very similar parameters
turn out to be optimal. Also the writing styles of both documents are quite
similar (see, for instance, Fig. 1).

Likewise, we observe that on BOT the KWS system optimised on GW
achieves quite similar results as the system optimised on BOT itself. In con-
trast with GW, however, we observe that on this dataset the parametrisation
seems to have less influence on the KWS accuracy as all parametrisations lead
to similar results. The same accounts for AK, where the optimal parameters for
BOT turn out to achieve the best result on the test set.

On one document, viz. PAR, however, none of the systems optimised on
another document can actually keep up with the system that has been optimised
for this specific manuscript. That is we observe deteriorations of the KWS accu-
racy of about 6 to 12 basis points. The system optimised on PAR makes use of
α = 0.5, while all other systems turn out to be optimal with α = 0.1. PAR has
a more dense and straight (i.e. almost no slant) handwriting when compared to
GW, AK, and BOT as shown in Fig. 1. As a result, variations in the x-direction
become more relevant (thus the higher α value).

Table 3. MAP using optimised cost function parameters of one manuscript employed
on all three remaining manuscripts. With ± we indicate the absolute percental gain
or loss in the accuracy of the cross-evaluated manuscript when compared with the
optimised parameter settings (shown in bold face).

Optimised on GW PAR AK BOT

MAP ± MAP ± MAP ± MAP ±
GW 69.28 - 63.39 −5.84 79.54 −0.18 51.21 −0.48

PAR 64.84 −4.44 69.23 - 79.73 +0.01 51.12 −0.57

AK 61.45 −7.82 56.93 −12.30 79.72 - 50.81 −0.88

BOT 69.44 +0.17 62.40 −6.83 80.28 +0.56 51.69 -

Overall we conclude, that the weighting parameter α shows quite a strong
correlation with the density of the handwriting. For a dense and straight hand-
writing the x-direction becomes more important, and thus higher parameter
values for α should be chosen. In contrast to that, β has in most cases only a
minor influence. Finally, it seems that the cost parameters τv and τe are depend-
ing on the size of the handwriting. That is, if the handwriting is characterised
by flourish like in case of AK, for instance, node substitutions should be rather
allowed by the cost model (by defining higher values for τv).



Cross-Evaluation of Graph-Based KWS 53

3.3 Ensemble Methods

In Table 4, we show the results of the proposed ensemble methods and the indi-
vidually optimised systems for each document. In the first column, for instance,
we show in the first row the KWS accuracy on GW of the system actually opti-
mised on GW. The three ensemble methods combine the results of the three
systems optimised on the remaining datasets.

In three out of four manuscripts, we observe that the ensemble methods can
keep up or even improve the accuracy when compared with the individually opti-
mised system. Especially, the ensemble methods max and mean achieve similar
KWS accuracies without any a priori knowledge of the manuscript. Similar to the
cross-evaluation experiment, we observe that ensemble methods can not keep up
on PAR. In contrast to all other manuscripts PAR offers a different writing style,
and the ensemble methods are not able to compensate these obvious differences.

Table 4. MAP of ensemble methods min, max, and mean. With ± we indicate the
absolute percental gain or loss in the accuracy of the ensemble method when compared
with the optimised parameter settings. Ensemble methods are ranked by (1), (2), (3).

GW PAR AK BOT Average

MAP ± MAP ± MAP ± MAP ± MAP ±
Optimal 69.28 69.23 79.72 51.69 67.48

min 65.63 −3.65 (3) 56.94 −12.29 (3) 80.28 +0.56 (2) 50.81 −0.88 (3) 63.42 −4.06 (3)
max 69.25 −0.02 (1) 63.39 −5.84 (1) 79.54 −0.18 (3) 51.25 −0.44 (2) 65.86 −1.62 (1)
mean 66.65 −2.62 (2) 62.28 −6.95 (2) 80.42 +0.70 (1) 51.49 −0.20 (1) 65.21 −2.27 (2)

We conclude that with ensemble methods (without document specific adapta-
tions) similar KWS accuracy rates can be achieved as with individual document
specific systems in most cases.

4 Conclusion and Outlook

The automatic recognition of handwritten historical documents is often nega-
tively affected by noise (ink-bleed through, fading, degradation, etc.) as well as
large handwriting variations in different documents. Therefore, Keyword Spot-
ting (KWS) has been proposed as flexible and error-tolerant alternative to full
transcriptions. Basically keyword spotting allows arbitrary retrievals in a docu-
ment in order to make such a document accessible for browsing and searching.

In the last years, a number of graph-based keyword spotting approaches have
been proposed. Yet, all of the proposed approaches are individually optimised
and tested for each manuscript. Consequently, for a novel unseen document the
system first needs to be optimised prior to the actual keyword spotting. In case
of large collections or libraries this clearly reduces the overall applicability and
practical relevance of the proposed graph-based keyword spotting frameworks.
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In order to research this problem we conduct a cross-evaluation on four
handwritten historical documents. That is, we evaluate KWS systems that have
been optimised on other, unrelated documents. We observe a clear relationship
between handwriting style and cost model for graph edit distance. Therefore,
an unseen document could be directly accessed by a KWS system that has
been optimised on a similar document without a priori parameter optimisation.
Moreover, we show that ensemble methods allow to further increase the overall
generalisability of the graph-based KWS. That is, the proposed ensemble meth-
ods, that need no document specific training, achieve similar accuracy rates as
the optimised cost models.

In future work we aim at including further documents with different hand-
writing styles to our evaluation pipeline. Another research avenue to be pursued
would be to research an automatic a priori triage in order to sort unknown
manuscripts by means of their handwriting style. Finally, one could also extend
the proposed ensemble methods by means of so-called overproduce-and-select
strategies. That is, starting with the best individual system further cost model
settings are added to an ensemble until a certain saturation is reached.

Acknowledgements. This work has been supported by the Swiss National Science
Foundation project 200021 162852.
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