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Abstract. In this paper, we propose to embed edges instead of
nodes using state-of-the-art neural/factorization methods (DeepWalk,
node2vec). These methods produce latent representations based on co-
ocurrence statistics by simulating fixed-length random walks and then
taking bags-of-vectors as the input to the Skip Gram Learning with Neg-
ative Sampling (SGNS). We commence by expressing commute times
embedding as matrix factorization, and thus relating this embedding to
those of DeepWalk and node2vec. Recent results showing formal links
between all these methods via the spectrum of graph Laplacian, are
then extended to understand the results obtained by SGNS when we
embed edges instead of nodes. Since embedding edges is equivalent to
embedding nodes in the line graph, we proceed to combine both exist-
ing formal characterizations of the line graphs and empirical evidence in
order to explain why this embedding dramatically outperforms its nodal
counterpart in multi-label classification tasks.
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1 Introduction

The recent success of neural graph embeddings such as LINE [18], DeepWalk [14]
and node2vec [7] has opened a new path for analyzing networks. Despite these
embeddings outperform spectral ones in tasks such as link prediction and multi-
label node classification, Spectral Graph Theory [3] is still key tool for under-
standing and characterizing neural embeddings [16].

In this paper, we contribute with empirical evidence showing that neural
embeddings (Sect. 2) can boost their performance in multi-label classification
by embedding edges instead of nodes. We conjecture that this fact is due to the
spectral properties of line graphs, whose nodes are the edges of the original graphs
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(Sect. 3). However, since general line graphs have not been fully characterized yet,
we can only correlate our empirical findings (Sect. 4) with some of the well known
properties of line graphs and the spectral characterization of neural embeddings.

2 Classic vs Neural Embeddings

2.1 Classic Embeddings

Let G = (V,E,A) be a graph/network with n = |V | nodes, m = |E| edges,
where E ⊆ V × V , and adjacency matrix A. Then, node embedding consists of
finding a mapping f : V → R

d (with d � n) so that the resulting d-dimensional
vectors capture the structural properties of each vertex. As a result, we have
||f(i) − f(j)||2 → 0 if nodes i and j are structurally similar within the graph G.
Traditionally, nodal structural similarity was associated with the reachability of
node j from node i (and vice versa) through random walks [10]. This characteri-
zation leaded to define both hitting times Hij (expected steps taken by a random
walk to reach j from i) and commute times CTij = Hij +Hji (which also includes
the expected steps needed to return to i from j). Since random walks are encoded
by transition matrices of the form P = D−1A, where D = diag(d1, . . . , dn) is
the diagonal matrix with the degrees of the nodes, the spectral analysis of P is a
natural way of understanding both hitting and commute times. More precisely,
let λ1 = 1 ≥ λ2 ≥ . . . ≥ λn ≥ −1 be the spectrum of the transition matrix. It
is well known that hitting times and commute times are highly conditioned by
the spectral gap λ = 1 − max{λ2, |λn|}. When several communities are encoded
by a connected graph G, then Hij and CTij are only meaningful when λ → 0
(small bottlenecks between communities); otherwise, these quantities rely on
the local densities (degrees) of the nodes i and j, and one cannot discriminate
whether two nodes belong to the same community or not [11]. Consequently,
the applicability of node embeddings based on commute times to clustering is
quite limited (see representative examples of image segmentation and tracking
in [15]). In this regard, recent research is focused on simultaneously minimizing
the spectral gap and shrinking (whenever possible) inter-community commute
distances via graph densification [4,5] before embedding the nodes.

Therefore, once G is processed (or rewired) commute times embedding leads
to learn two matrices X,Y ∈ R

n×d, whose rows are denoted by xi and yi

respectively and xi is the embedding of the node i. Following [15], the commute
times embedding matrix X results from factorizing

vol(G)G = XYT , (1)

where vol(G) =
∑n

i=1 di is the volume of the graph and G is its Green’s function,
i.e. the pseudo-inverse of the normalized graph Laplacian L = I−D−1/2AD−1/2,
whose spectrum is 1 − λ1 = 0, 1 − λ2, . . . , 1 − λn ≤ 2, i.e. if λi is an eigenvalue
of P then 1 − λi is an eigenvalue of L.
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2.2 Neural Embeddigs

Neural embeddings such as LINE [18], DeepWalk [14] and node2vec [7], exploit
random walks in a different way. Namely, they simulate a fixed number N of
random walks with fixed length L emanating from the nodes of G and then
capture co-ocurrence statistics of pairs of nodes. The first node of the i-th path
wi, assimilated to a word in a textual corpus (skip-gram model), is sampled from
a prior distribution P (wi). Then, the context of wi is given by the nodes/words
surrounding it in a T -sized window wi−T , . . . , wi−1, wi+1, . . . , wi+T , according
to the transition matrix P. Then, the node-context pairs (w, c) are given by
(wi−r, wi) and (wi, wi+r) for r = 1, . . . , T . All these pairs are added to the
multiset D used for learning with negative sampling. Negative sampling implies
not only to consider likely node-context pairs (w, c) but also b unlikely ones
(w, c′): the negative samples c′, are nodes that can be drawn from the steady-
state probability distribution of the random walk, i.e. PN (i) = di/vol(G). This
process is called Skip Gram Learning with Negative Sampling (SGNS) and leads
to the following factorization [9]:

M = XYT , with Mij = log
(

#(wi, cj)|D|
#(wi)#(cj)

)

− log b, (2)

where: #(wi, ci) is the number of times the corresponding node-context pair is
observed,#(wi) is the number of times the node i is observed and similarly for
node #(cj); finally log(.) is the element-wise logarithm and b is the number of
negative samples.

2.3 LINE and DeepWalk vs node2vec Factorizations

These strategies differ in the way they sample (and thus vectorize) the graph for
SGNS. LINE and DeepWalk rely on first-order random walks whereas node2vec
is driven by second-order random walks.

LINE and DeepWalk. LINE’s factorization is a direct result from the cost
function associated with SGNS. In particular, the latent representations of both
the word/node xi and the context yj are assumed to be correlated with the
existence on an edge between nodes i and j, i.e. Aij log g(xT

i yj) is maximized,
where g(.) is the sigmoid function. Following [16], this leads to

xT
i yj = log

(
vol(G)Aij

didj

)

− log b ⇒ log
(
vol(G)D−1AD−1

) − log b = XYT .

(3)
DeepWalk, on the other hand, leads to a more complex factorization. Assum-
ing that the first node of each random walk is drawn from the steady state
distribution, we have that, when L → ∞,

#(wi, cj)|D|
#(wi)#(cj)

p→ vol(G)
2T

(
1
dj

T∑

r=1

Pr
ij +

1
di

T∑

r=1

Pr
ji

)

(4)
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where
p→ denotes convergence in probability. This yields

log

(
vol(G)

T

(
T∑

r=1

Pr

)

D−1

)

− log b = XYT , (5)

which is equivalent to LINE for T = 1.

node2vec. The underlying idea of this embedding is to add more flexibility
to the random walk. This is done by defining two parameters p and q, that
control, respectively the likelihood of immediately revisit a node in the walk
and making the walk very local. To that end, node2vec needs to evaluate the
probability of the next nodes given the preceding one in the walk, i.e. we have
a 2nd-order random walk. This walk is characterized by the hypermatrix P,
where Pi(jk) denotes the probability of reaching j from j given that the node
preceeding j is k. Thus, the 2nd order random walk can be reduced to a 1st
order one on the edges of the graph [1] as it is done in the implementation of
node2vec. The stationary distribution Xik for this type of random walks satisfies∑

k Pi(jk)Xik = Xij . Qiu et al. [16] have found that

#(wi, cj)|D|
#(wi)#(cj)

p→
1
2T

∑T
r=1

(∑
k XikPr

j(ik) +
∑

k XjkPr
i(jk)

)

(
∑

k Xik) (
∑

k Xjk)
(6)

and, despite the matricial expression for the factorization is more elusive, the
final factorization differs significantly from those of DeepWalk and LINE.

3 Node vs Edges Embedding

3.1 The Line Graph

In this paper, we are mainly concerned with the impact of embedding the edges
of G instead of its nodes. This means that a word wi in the previous expressions
is not yet associated with a node of G but with a node of its line graph LG. The
nodes of LG are the edges of G and there is an edge in the line graph if two edges
in G share a node. More formally, given the n×m incidence matrix B where Biα

is 1 if the link α is related to node i and 0 otherwise, we have that the m × m
adjacency matrix C = BTB − I has elements Cαβ =

∑n
i=1 BiαBiβ(1 − δαβ).

3.2 Spectral Analysis

Some interesting properties of line graphs vs G:

– Boosted edge density. A single node i in G leads to a clique of di(di − 1)/2
edges in LG (see Fig. 1). Despite this gives a high prominence to notable
nodes of G it flexibilizes community detection [6]. In addition the steady
state distribution of a random walk in LG is PN (α(i,j)) = dα/vol(LG) where
dα = di + dj − 2 and vol(LG) =

∑
α,β Cαβ =

∑n
i=1 di(di − 1).
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– Redundant spectrum for m > n. Let λ1(LG) ≥ λ2(LG) ≥ . . . ≥ λm(LG) be
the spectrum of C. Then, for m > n, λn+1 = . . . = λm = −2. As a result,
λi(L(LG)) ≥ 4, for the largest m−n eigenvalues of L(LG), the unnormalized
Laplacian matrix of LG [19]. This increases significantly the medium-large
eigenvalues of L(LG) with respect to L(G) (see Fig. 2).

– Majorization of the spectrum of G. This is really a conjecture derived from
the bound λ2(LG) ≤ m

2 − 1 in comparison to that for G: λ2(G) ≤ n
2 − 1.

Empirical data shows that the lowest part of the spectrum of L−I in the line
graph majorizes that of G (blue lines in Fig. 2). Since the spectrum driving
DeepWalk is (approximately) of the form 1

T

∑T
r=1 λr

i this leads (in general)
to small spectral gaps for the line graphs, and thus slower mixing times of the
random walks (more randomness). Green lines show the real spectra driving
random walks in DeepWalk. In all cases, T = 10.

Fig. 1. Barbell graph linking two cliques (left) and its line graph (right)

4 Experiments and Discussion

4.1 Datasets (Networks)

– CiteSeer for Document Classification [17]. Citation network containing
3312 scientific publications with 4676 links between them. Each publication
is classified in one of 6 categories.

– Cora [17]. Citation network containing 2708 scientific publications with 5278
links between them. Each publication is classified in one of 7 categories.

– Wiki1. Contains a network of 2405 web pages with 17981 links between them.
Each page is classified in one of 19 categories.

– Facebook social circles [13].

1 https://github.com/thunlp/MMDW/.

https://github.com/thunlp/MMDW/
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Fig. 2. Eigenvalues of the original (top) and line graph (bottom), for Cora (left) and
CiteSeer (right) databases (Color figure online)

Nodes Edges Line graph edges Gap Con. comps Labels Multi-label

wiki 2405 12761 355644 0.000000 45 19 No

cora 2708 5278 52301 0.000000 78 7 No

citeseer 3327 4676 27174 0.000000 438 6 No

ppi 3890 38739 3018220 0.000000 35 50 Yes

pos 4777 92517 49568882 0.576132 1 40 Yes

facebook 4039 88234 9314849 0.000837 1 10 Yes

– Wikipedia Part-of-Speech (POS) [12]. Co-ocurrence of words appearing
in the first million of the bytes of the dumping of Wikipedia. The categories
correspond to the labels of Part-of-Speech (POS) inferred by the Stanford
POS-Tagger. Contains 4777 nodes, and 92517 undirected links. Each node
may have several labels. We have 40 labels (categories).

– Protein-Protein Interactions (PPI)2 [2]. We use a subgraph of the PPIs
associated with the Homo Sapiens. The network has 3890 nodes and 76584
links. Each node may have several labels corresponding to the 50 possible
categories.

2 https://downloads.thebiogrid.org/BioGRID.

https://downloads.thebiogrid.org/BioGRID
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Facebook, PPI and POS have been retrieved from SNAP3 [8]. CiteSeer and
Cora have been retrieved from LINQS4.

All the networks are considered as undirected graphs. Originally single-
labelled networks are transformed into multi-label networks when their line-
graph is computed (or sampled, for the sake of efficiency). Nodes with more
than one label are the border nodes between two categories (inter-class), and the
nodes that hold one label are intra-class nodes.

Inter-class nodes Intra-class nodes

wiki 4526 (35%) 8235 (65%)

cora 1003 (19%) 4275 (81%)

citeseer 1190 (25%) 3486 (75%)

We have used the implementations of node2vec and DeepWalk included in the
framework. OpenNE5. The default values for p and q in node2vec are p = q = 1.
After optimizing p and q in the range {0.25, 0.5, 1, 2, 4} the maximum improve-
ment of node2vec wrt DeepWalk in the classification score is 0.014 (micro and
macro). Regarding spectral embeddings, CTE and LLE have been only tested
in networks with a single connected component (pos and facebook). In particu-
lar, commute times (CTE) have a poor performance in multi-label classification
because their factorization relies on the Green’s function and this means that
only the inverse of each eigenvalue is considered. However, DeepWalk is con-
trolled by a polynomial associated with each eigenvalue.

node2vec DeepWalk cte lle

Nodes Edges Nodes Edges

Micro-F1 citeseer 0.591071 0.768626 0.595833 0.780930 – –

cora 0.808715 0.903557 0.817578 0.920538 – –

wiki 0.663342 0.840709 0.692436 0.859129 – –

pos 0.447845 0.697572 0.471620 0.696640 0.375037 0.393165

ppi 0.197435 0.590731 0.205786 0.609937 – –

facebook 0.911516 0.999900 0.911516 0.999900 0.239217 0.231214

3 https://snap.stanford.edu/node2vec/.
4 https://linqs.soe.ucsc.edu/data.
5 https://github.com/thunlp/OpenNE.

https://snap.stanford.edu/node2vec/
https://linqs.soe.ucsc.edu/data
https://github.com/thunlp/OpenNE
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node2vec DeepWalk cte lle

Nodes Edges Nodes Edges

Macro-F1 citeseer 0.544490 0.730930 0.545774 0.745995 – –

cora 0.798782 0.898863 0.804928 0.917838 – –

wiki 0.528603 0.764205 0.597948 0.787771 – –

pos 0.084183 0.773035 0.094148 0.774001 0.041637 0.033617

ppi 0.168237 0.566912 0.178405 0.587934 – –

facebook 0.821899 0.999377 0.822243 0.999407 0.108742 0.045155

Fig. 3. Evolution of the performance as a function of the fraction of known labels in
the training set. Micro-F1 (top) and Macro-F1 (bottom)
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Fig. 4. t-SNE embeddings. Original graph (top) and line-graph (bottom), for Facebook
(left), Cora (center) and CiteSeer (right) databases.

In Fig. 3, we show the performance in multi-label classification (according to
the percentage of nodes with known labels). The line-graph versions of node2vec
and DeepWalk clearly outperform their nodal counterparts. The similarity in
terms of performance of node2vec and DeepWalk is due to the fact that the
2nd order random walk of node2vec is not applied at the level of edges (it is
unfeasible for large networks). Finally, in Fig. 4 we show the t-SNE embeddings.
Edge embeddings clearly produce denser communities.

5 Conclusions

In this paper, we have contributed with empirical evidence showing that embed-
ding edges clearly outperforms node-based embeddings in neural SGNS strate-
gies. We conjecture that this is due to the slower mixing times of random walks
in line graphs. Future work includes a detailed check of this conjecture as well
as more efficient (in time and space) strategies for designing walkers on the line
graphs.
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