
GEDLIB: A C++ Library for Graph Edit
Distance Computation

David B. Blumenthal1(B) , Sébastien Bougleux2 , Johann Gamper1 ,
and Luc Brun2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
{david.blumenthal,gamper}@inf.unibz.it

2 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
bougleux@unicaen.fr, luc.brun@ensicaen.fr

Abstract. The graph edit distance (GED) is a flexible graph dissimilar-
ity measure widely used within the structural pattern recognition field.
In this paper, we present GEDLIB, a C++ library for exactly or approx-
imately computing GED. Many existing algorithms for GED are already
implemented in GEDLIB. Moreover, GEDLIB is designed to be easily
extensible: for implementing new edit cost functions and GED algo-
rithms, it suffices to implement abstract classes contained in the library.
For implementing these extensions, the user has access to a wide range of
utilities, such as deep neural networks, support vector machines, mixed
integer linear programming solvers, a blackbox optimizer, and solvers for
the linear sum assignment problem with and without error-correction.

Keywords: Graph edit distance · Open source library · C++

1 Introduction

Because of their expressiveness and versatility, labeled graphs are widely used to
model various kinds of objects such as molecules, street networks, and images.
Many pattern recognition problems defined over these domains presuppose the
availability of a (dis-)similarity measure for labeled graphs. Despite the fact that
its exact computation is NP-hard [31], one of the most widely used measures
is the graph edit distance (GED). Given two labeled graphs G and H, it is
defined as GED(G,H) := minP∈Ψ(G,H) c(P), where Ψ is the set of all edit paths
between G and H and c(P) denotes the cost of an edit path P . An edit path
is a sequence of edit operations that transforms G into H. There are six edit
operations: substituting a node or an edge in G by a node or an edge in H,
deleting an edge or an isolated node from G, and inserting an edge or an isolated
node into H. Each edit operation comes with an associated non-negative edit cost
defined in terms of the node or edge labels involved in the operation; and the
cost of an edit path is defined as the sum over the costs of its edit operations.

Over the past years, some exact and a lot of approximate algorithms for
computing GED have been suggested. As the hardness of GED does not allow
c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 14–24, 2019.
https://doi.org/10.1007/978-3-030-20081-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20081-7_2&domain=pdf
http://orcid.org/0000-0001-8651-750X
http://orcid.org/0000-0002-4581-7570
http://orcid.org/0000-0002-7128-507X
http://orcid.org/0000-0002-1658-0527
https://doi.org/10.1007/978-3-030-20081-7_2

GEDLIB: A C++ Library for Graph Edit Distance Computation 15

for a theoretical evaluation of approximate algorithms (the existence of any
α-approximation algorithm for GED would imply that the graph isomorphism
problem, a prime candidate for an NP-intermediate problem, is in P), these
algorithms are typically evaluated empirically. In order for such a comparison
to be fair, it is highly desirable that the compared algorithms be implemented
within the same environment. However, to the best of our knowledge, no software
is available that can be used for this purpose.

In this paper, we present the C++ template library GEDLIB which is
intended to fill this gap. GEDLIB is available on GitHub:

https://github.com/dbblumenthal/gedlib

In its current version, GEDLIB contains implementations of 24 different
GED algorithms and 9 different edit cost functions. Further algorithms and edit
costs can be implemented easily by implementing abstract classes contained in
GEDLIB. For this, the user has access to standard libraries for blackbox opti-
mization, mixed integer linear programming, the linear sum assignment problem
with and without error-correction, deep neural networks, and support vector
machines. GEDLIB provides a parser to load graphs given in the GXL file for-
mat. Alternatively, graphs with user-specified node ID, node, and edge label
types can be constructed from within GEDLIB. Internally, GEDLIB uses the
Boost Graph Library [22] for representing the graphs and Eigen [19] for matrix
operations.

The remainder of this paper is organized as follows: In Sect. 2, the overall
architecture of GEDLIB is sketched. In Sect. 3, the user interface is presented.
In Sects. 4 and 5, the abstract classes for implementing GED algorithms and edit
cost functions are described. Section 6 concludes the paper. Details, examples,
and installation instructions can be found in the documentation.

2 Overall Architecture

Figure 1 shows the overall architecture of GEDLIB in a UML diagram. The entire
library is contained in the namespace ged. The template parameters UserNodeID,
UserNodeLabel, and UserEdgeLabel correspond to the types of the node IDs,
the node labels, and the edge labels of the graphs provided by the user.

– The class template ged::GEDEnv provides the user interface. Via its public
member functions, graphs can be constructed or loaded from GXL files, edit
costs can be set, the algorithms implemented in GEDLIB can be run, and
the results of the runs can be obtained. For users who do not want to provide
extensions for GEDLIB, it suffices to get familiar with this class template.

– The abstract class template ged::GEDMethod provides a generic interface for
implementing algorithms that exactly or approximately compute GED.

– The abstract class templates ged::LSBasedMethod , ged::MIPBasedMethod ,
and ged::LSAPEBasedMethod are derived from the generic interface provided
by ged::GEDMethod . They yield more specialized interfaces for implementing

https://github.com/dbblumenthal/gedlib

16 D. B. Blumenthal et al.

GEDLIB

ged::GEDEnv

UserNodeID,UserNodeLabel,UserEdgeLabel

ged::GEDData

UserNodeLabel,UserEdgeLabel

ged::EditCosts

UserNodeLabel,UserEdgeLabel

ged::GEDMethod

UserNodeLabel,UserEdgeLabel

ged::LSBasedMethod

UserNodeLabel,UserEdgeLabel

ged::MIPBasedMethod

UserNodeLabel,UserEdgeLabel

ged::LSAPEBasedMethod

UserNodeLabel,UserEdgeLabel

ged::MLBasedMethod

UserNodeLabel,UserEdgeLabel

Fig. 1. The overall architecture of GEDLIB shown in a UML class diagram.

methods using local search, mixed integer linear programming, and transfor-
mations to the linear sum assignment problem with error-correction.

– The abstract class template ged::MLBasedMethod is derived from the inter-
face ged::LSAPEBasedMethod . It can be used to implement algorithms that
use deep neural networks or support vector machines for transforming GED
to the linear sum assignment problem with error-correction.

– The class template ged::GEDData contains the normalized input data on
which all GED algorithms contained in GEDLIB operate. Via the public
member functions of ged::GEDData, derived classes of ged::GEDMethod have
access to the graphs that have been added to the environment and to the edit
cost functions selected by the user.

– The abstract class template ged::EditCosts provides a generic interface for
implementing edit cost functions.

3 User Interface

In Fig. 2, the class template ged::GEDEnv, which constitutes the user inter-
face of GEDLIB, is displayed in detail. By calling add graph(), add node(),
and add edge(), the user can add labeled graphs to the environment.
Alternatively, load gxl graphs() can be used to load graphs given in
the GXL file format. For this, the template parameter UserNodeID must

GEDLIB: A C++ Library for Graph Edit Distance Computation 17

be set to ged::GXLNodeID a. k. a. std::string, and the template param-
eters UserNodeLabel and UserEdgeLabel must be set to ged::GXLLabel
a. k. a. std::map<std::string,std::string>.

Calls to set edit costs() add edit cost functions to the environment. The
user can either select one of the predefined edit cost functions or use her own
implementation of ged::EditCosts . Calls to init() initialize the environ-
ment eagerly or lazily. If eager initialization is chosen, all edit costs between
graphs contained in the environment are precomputed. Otherwise, the edit
cost functions are evaluated on the fly. The member function set method()
selects one of the GED algorithms available in GEDLIB. Some algorithms
accept options, which can be passed to set method() as a string of the form
"[--<option> <arg>] [...]". Calls to init method() initialize the selected
method for runs between graphs contained in the environment, and calls to
run method() run the method between two specified graphs. The results of the
runs (lower and upper bounds, runtimes, etc.) can be accessed via various getter
member function.

ged::GEDEnv

... // misc. variables

+ add graph() // adds a graph to the environment
+ add node() // adds a node to a previously added graph
+ add edge() // adds an edge to a previously added graph
+ load gxl graphs() // loads graphs given as GXL files
+ set edit costs() // selects the edit costs
+ init() // initializes the environment
+ set method() // selects the GED method
+ init method() // initializes the selected GED method
+ run method() // runs the selected GED method
... // misc. member functions

UserNodeID,UserNodeLabel,UserEdgeLabel

Fig. 2. The user interface ged::GEDEnv.

4 Abstract Classes for Implementing GED Algorithms

Generic Interface. Figure 3 details the abstract class template ged::GEDMethod ,
which provides the generic interface for implementing GED. The interface is
defined by the virtual member functions starting with the prefix ged . We here
describe only the most important virtual member functions; the remaining ones
are detailed in the documentation: ged run () runs the method between two
input graphs, ged init () initializes the methods for the graphs that have been

18 D. B. Blumenthal et al.

ged::GEDMethod

... // misc. variables

- ged run () // runs the method between two graphs
- ged init () // initializes the method for the graphs in ged data

- ged parse option () // parses the options
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 3. The generic interface ged::GEDMethod .

added to the environment, and ged parse option () parses the options of the
method. The following existing algorithms already implemented in GEDLIB are
directly derived classes of ged::GEDMethod : ged::BranchTight [2], ged::HED
[17], ged::Partition [32], ged::Hybrid [32], ged::SimulatedAnnealing [30],
ged::BranchCompact [32], ged::AnchorAwareGED [14].

Interface for Methods Based on the Linear Sum Assignment Problem with Error-
Correction. A popular approach for approximating GED is to use transforma-
tions to the linear sum assignment problem with error-correction (LSAPE). An
instance of LSAPE consists of a cost matrix C = (ci,k) ∈ R

(n+1)×(m+1)
≥0 . The

task is to compute a mapping π from rows to columns, such that each row
except for n + 1 and each column expect for m + 1 is covered exactly once and
C(π) :=

∑
(i,k)∈π ci,k is minimized. LSAPE can be solved optimally in cubic

time [10]; in GEDLIB, we use the LSAPE toolbox [8] for solving LSAPE.
If LSAPE is used for approximating GED(G,H), n and m are set to |V G|

and |V H |, the first |V G| rows of C are associated with the nodes of G, the first
|V H | columns of C are associated with the nodes of H, and the last rows and
columns are associated with dummy nodes used for codifying node insertions
and deletions. With this setup, each LSAPE solution π corresponds to a node
map between G and H, which, in turn, induces an edit path and hence an upper
bound for GED(G,H) [6]. LSAPE based heuristics for GED try to achieve tight
upper bounds by encoding structural information of the input graphs into C.
Moreover, some of them construct C such that minπ C(π) lower bounds GED.

Figure 4 shows the abstract class template ged::LSAPEBasedMethod , which
provides the interface for implementing heuristics of this kind. The interface
is defined by the virtual member functions starting with the prefix lsape .
The most important one is lsape populate instance () , which populates
the LSAPE instance C. The following algorithms implemented in GEDLIB
are directly derived classes of ged::LSAPEBasedMethod : ged::Bipartite [26],
ged::Branch [2], ged::BranchFast [2], ged::Node [21], ged::BranchUniform
[32], ged::Ring [3], ged::Subgraph [12], ged::Walks [18]. Additionally, all
derived classes of ged::LSAPEBasedMethod can be run with the node centralities
suggested in [27].

GEDLIB: A C++ Library for Graph Edit Distance Computation 19

ged::LSAPEBasedMethod

... // misc. variables

- lsape populate instance () // populates the LSAPE instance
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 4. The interface ged::LSAPEBasedMethod for methods based on LSAPE.

Interface for Methods Based on Machine Learning. Recently, it has been sug-
gested to use deep neural networks or support vector machines for carrying out
the transformation from GED to LSAPE. Given two graphs G and H, feature
vectors are constructed for all node substitutions, deletions, and insertions, and
the matrix C is defined as ci,k := 1 − p�(i, k). Here, p�(i, k) is the confidence
of a machine learning framework (either a deep neural network or a support
vector machine) that the feature vector associated to the node edit operation
corresponding to row i and column k is contained in an optimal node map.

Figure 5 details the abstract class template ged::MLBasedMethod , which
provides the interface for algorithm adopting this paradigm. For implement-
ing the interface, it suffices to override the virtual member functions start-
ing with the prefix ml . The most important ones are the three virtual mem-
ber functions of the form ml populate * feature vector () , which construct
the feature vectors associated to the node edit operations. Derived classes of
ged::MLBasedMethod do not have to implement the machine learning frame-
works, as ged::MLBasedMethod offers support for artificial deep neural net-
works (using FANN [24]) and support vector machines (using LIBSVM [13]).
The following algorithms implemented in GEDLIB are directly derived classes
of ged::MLBasedMethod : ged::BipartiteML [28], ged::RingML [4].

ged::MLBasedMethod

... // misc. variables

- ml populate substitution feature vector () // substitution features
- ml populate deletion feature vector () // deletion features
- ml populate insertion feature vector () // insertion features
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 5. The interface ged::MLBasedMethod for LSAPE based methods that use machine
learning techniques for populating their LSAPE instances.

20 D. B. Blumenthal et al.

Interface for Methods Based on Mixed Integer Programming. Another approach
for exactly or approximately computing GED is to rephrase the problem of com-
puting GED(G,H) as a mixed integer programming (MIP) problem. GED(G,H)
can then be computed exactly by calling an MIP solver. Alternatively, lower
bounds for GED(G,H) can be obtained by solving the linear programming (LP)
relaxations of the MIP formulations.

Figure 6 shows the abstract class template ged::MIPBasedMethod , which
provides the interface for GED algorithms that use MIP formulations. The vir-
tual member functions that define the interface start with the prefix mip . The
most important one is mip populate model () , which constructs the employed
MIP formulation and must be overridden by all derived classes. In GEDLIB,
we use Gurobi [20] as our MIP and LP solver. Gurobi is commercial soft-
ware but offers a free academic license. For users who cannot obtain a license
for Gurobi, the installation script distributed with GEDLIB offers the option
to install GEDLIB without ged::MIPBasedMethod and its derived classes.
The following algorithms implemented in GEDLIB are directly derived classes
of ged::MIPBasedMethod : ged::F1 [23], ged::F2 [23], ged::CompactMIP [6],
ged::BLPNoEdgeLabels [21].

ged::MIPBasedMethod

... // misc. variables

- mip populate model () // constructs the MIP formulation
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 6. The interface ged::MIPBasedMethod for methods based on MIP.

Interface for Methods Based on Local Search. Another popular approach for
upper bounding GED is to use variants of local search to systematically vary
a previously computed or randomly generated node map, such that the cost
of the induced edit path decreases. Figure 7 shows the abstract class template
ged::LSBasedMethod , which provides the interface for algorithms using local
search. The prefix ls marks the virtual member functions defining the inter-
face. The most important one is ls run from initial solution () , which runs
the local search from an initial node map. The following algorithms implemented
in GEDLIB are directly derived classes of ged::LSBasedMethod : ged::IPFP [5,
9,11], ged::BPBeam [16,29], ged::Refine [31]. Moreover, ged::LSBasedMethod
provides support for running all derived classes with parallel multi-start as sug-
gested in [15], and stochastic generators as suggested in [7].

GEDLIB: A C++ Library for Graph Edit Distance Computation 21

ged::LSBasedMethod

... // misc. variables

- ls run from initial solution () // improves initial node map
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 7. The interface ged::LSBasedMethod for methods based on local search.

5 Abstract Class for Implementing Edit Costs

Figure 8 shows the abstract class template ged::EditCosts , which provided
the interface for implementing edit cost functions. The virtual member func-
tions * del cost fun() compute the cost of deleting a node or an edge with a
given label, the functions * ins cost fun() compute the insertions costs, and
the functions * rel cost fun() compute the costs for relabeling a node or an
edge. The functions vectorize * label() return vector representations of the
node and the edge labels, which are required by some methods. In GEDLIB, edit
costs are available for the datasets aids, fingerprint, grec, letter, muta-
genicity, and protein from the IAM Graph Database [25], for the datasets
acyclic, alkane, pah, and mao from GREYC’s Chemistry Dataset (available
at https://brunl01.users.greyc.fr/CHEMISTRY/), and for the dataset cmu-ged
from the Graph Data Repository for Graph Edit Distance [1]. We also provide
constant edit cost functions that can be used with any data.

ged::EditCosts

+ node del cost fun() // computes node deletion cost
+ node ins cost fun() // computes node insertion cost
+ node rel cost fun() // computes node relabelling cost
+ edge del cost fun() // computes edge deletion cost
+ edge ins cost fun() // computes edge insertion cost
+ edge rel cost fun() // computes edge relabelling cost
+ vectorize node label() // computes vector representation of node label
+ vectorize edge label() // computes vector representation of edge label

UserNodeLabel,UserEdgeLabel

Fig. 8. The interface ged::EditCosts for implementing edit costs.

https://brunl01.users.greyc.fr/CHEMISTRY/

22 D. B. Blumenthal et al.

6 Conclusions and Future Work

In this paper, we have presented GEDLIB, a C++ library for GED computations.
GEDLIB currently implements 24 different GED algorithms and 9 different edit
cost functions designed for datasets which are widely used in the research com-
munity. In the future, we will provide Python and MATLAB bindings for better
usability. Moreover, we would like to encourage authors of algorithms and edit
costs that are not implemented in GEDLIB to commit their work to GEDLIB.

References

1. Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y.: A graph database repository and
performance evaluation metrics for graph edit distance. In: Liu, C.-L., Luo,
B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015. LNCS, vol. 9069, pp.
138–147. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18224-7 14.
http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html

2. Blumenthal, D.B., Gamper, J.: Improved lower bounds for graph edit distance.
IEEE Trans. Knowl. Data Eng. 30(3), 503–516 (2018). https://doi.org/10.1109/
TKDE.2017.2772243

3. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Ring based approximation
of graph edit distance. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio,
B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 293–303. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97785-0 28

4. Blumenthal, D.B., Bougleux, S., Gamper, J., Brun, L.: Upper bounding GED via
transformations to LSAPE based on rings and machine learning (2018, submitted)

5. Blumenthal, D.B., Daller, E., Bougleux, S., Brun, L., Gamper, J.: Quasimetric
graph edit distance as a compact quadratic assignment problem. In: ICPR 2018,
pp. 934–939 (2018)

6. Blumenthal, D.B., Gamper, J.: On the exact computation of the graph edit distance.
Pattern Recognit. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.05.002

7. Boria, N., Bougleux, S., Brun, L.: Approximating GED using a stochastic generator
and multistart IPFP. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio,
B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 460–469. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-97785-0 44

8. Bougleux, S., Brun, L.: Linear sum assignment with edition. arXiv:1603.04380
[cs.DS] (2016). https://bougleux.users.greyc.fr/lsape/

9. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph
edit distance as a quadratic assignment problem. Pattern Recognit. Lett. 87, 38–
46 (2017). https://doi.org/10.1016/j.patrec.2016.10.001

10. Bougleux, S., Gaüzère, B., Blumenthal, D.B., Brun, L.: Fast linear sum assign-
ment with error-correction and no cost constraints. Pattern Recognit. Lett. (2018).
https://doi.org/10.1016/j.patrec.2018.03.032

11. Bougleux, S., Gaüzère, B., Brun, L.: Graph edit distance as a quadratic program.
In: ICPR 2016, pp. 1701–1706 (2016). https://doi.org/10.1109/ICPR.2016.7899881

12. Carletti, V., Gaüzère, B., Brun, L., Vento, M.: Approximate graph edit distance
computation combining bipartite matching and exact neighborhood substructure
distance. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J. (eds.) GbRPR 2015.
LNCS, vol. 9069, pp. 188–197. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18224-7 19

https://doi.org/10.1007/978-3-319-18224-7_14
http://www.rfai.li.univ-tours.fr/PublicData/GDR4GED/home.html
https://doi.org/10.1109/TKDE.2017.2772243
https://doi.org/10.1109/TKDE.2017.2772243
https://doi.org/10.1007/978-3-319-97785-0_28
https://doi.org/10.1016/j.patrec.2018.05.002
https://doi.org/10.1007/978-3-319-97785-0_44
http://arxiv.org/abs/1603.04380
https://bougleux.users.greyc.fr/lsape/
https://doi.org/10.1016/j.patrec.2016.10.001
https://doi.org/10.1016/j.patrec.2018.03.032
https://doi.org/10.1109/ICPR.2016.7899881
https://doi.org/10.1007/978-3-319-18224-7_19
https://doi.org/10.1007/978-3-319-18224-7_19

GEDLIB: A C++ Library for Graph Edit Distance Computation 23

13. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27 (2011). https://doi.org/10.1145/1961189.
1961199. https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

14. Chang, L., Feng, X., Lin, X., Qin, L., Zhang, W.: Efficient graph edit dis-
tance computation and verification via anchor-aware lower bound estimation.
arXiv:1709.06810 [cs.DB] (2017)

15. Daller, É., Bougleux, S., Gaüzère, B., Brun, L.: Approximate graph edit distance by
several local searches in parallel. In: ICPRAM 2018, pp. 149–158 (2018). https://
doi.org/10.5220/0006599901490158

16. Ferrer, M., Serratosa, F., Riesen, K.: A first step towards exact graph edit distance
using bipartite graph matching. In: Liu, C.-L., Luo, B., Kropatsch, W.G., Cheng, J.
(eds.) GbRPR 2015. LNCS, vol. 9069, pp. 77–86. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-18224-7 8

17. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation of
graph edit distance based on Hausdorff matching. Pattern Recognit. 48(2), 331–
343 (2015). https://doi.org/10.1016/j.patcog.2014.07.015

18. Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance
guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog,
M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3 8

19. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
20. Gurobi Optimization, LLC: Gurobi optimizer reference manual (2018). http://

www.gurobi.com
21. Justice, D., Hero, A.: A binary linear programming formulation of the graph

edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1200–1214 (2006).
https://doi.org/10.1109/TPAMI.2006.152

22. Lee, L., Lumsdaine, A., Siek, J.: The Boost Graph Library: User Guide and Ref-
erence Manual (2002). https://www.boost.org/doc/libs/1 68 0/libs/graph/doc/
index.html

23. Lerouge, J., Abu-Aisheh, Z., Raveaux, R., Héroux, P., Adam, S.: New binary linear
programming formulation to compute the graph edit distance. Pattern Recognit.
72, 254–265 (2017). https://doi.org/10.1016/j.patcog.2017.07.029

24. Nissen, S.: Implementation of a fast artificial neural network library (FANN). Tech-
nical report, Department of Computer Science, University of Copenhagen (DIKU)
(2003). http://leenissen.dk/fann/wp/

25. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. S+SSPR 2008. LNCS, vol. 5342, pp. 287–
297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89689-0 33.
http://www.fki.inf.unibe.ch/databases/iam-graph-database

26. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009). https://doi.
org/10.1016/j.imavis.2008.04.004

27. Riesen, K., Bunke, H., Fischer, A.: Improving graph edit distance approximation by
centrality measures. ICPR 2014, pp. 3910–3914 (2014). https://doi.org/10.1109/
ICPR.2014.671

28. Riesen, K., Ferrer, M.: Predicting the correctness of node assignments in bipartite
graph matching. Pattern Recognit. Lett. 69, 8–14 (2016). https://doi.org/10.1016/
j.patrec.2015.10.007

https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://arxiv.org/abs/1709.06810
https://doi.org/10.5220/0006599901490158
https://doi.org/10.5220/0006599901490158
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1007/978-3-319-18224-7_8
https://doi.org/10.1016/j.patcog.2014.07.015
https://doi.org/10.1007/978-3-662-44415-3_8
http://eigen.tuxfamily.org
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/TPAMI.2006.152
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_68_0/libs/graph/doc/index.html
https://doi.org/10.1016/j.patcog.2017.07.029
http://leenissen.dk/fann/wp/
https://doi.org/10.1007/978-3-540-89689-0_33
http://www.fki.inf.unibe.ch/databases/iam-graph-database
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1109/ICPR.2014.671
https://doi.org/10.1109/ICPR.2014.671
https://doi.org/10.1016/j.patrec.2015.10.007
https://doi.org/10.1016/j.patrec.2015.10.007

24 D. B. Blumenthal et al.

29. Riesen, K., Fischer, A., Bunke, H.: Combining bipartite graph matching and beam
search for graph edit distance approximation. In: El Gayar, N., Schwenker, F.,
Suen, C. (eds.) ANNPR 2014. LNCS (LNAI), vol. 8774, pp. 117–128. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11656-3 11

30. Riesen, K., Fischer, A., Bunke, H.: Improved graph edit distance approximation
with simulated annealing. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017.
LNCS, vol. 10310, pp. 222–231. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58961-9 20

31. Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approxi-
mating graph edit distance. PVLDB 2(1), 25–36 (2009). https://doi.org/10.14778/
1687627.1687631

32. Zheng, W., Zou, L., Lian, X., Wang, D., Zhao, D.: Efficient graph similarity search
over large graph databases. IEEE Trans. Knowl. Data Eng. 27(4), 964–978 (2015).
https://doi.org/10.1109/TKDE.2014.2349924

https://doi.org/10.1007/978-3-319-11656-3_11
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.1007/978-3-319-58961-9_20
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.14778/1687627.1687631
https://doi.org/10.1109/TKDE.2014.2349924

	GEDLIB: A C++ Library for Graph Edit Distance Computation
	1 Introduction
	2 Overall Architecture
	3 User Interface
	4 Abstract Classes for Implementing GED Algorithms
	5 Abstract Class for Implementing Edit Costs
	6 Conclusions and Future Work
	References

