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Abstract. In parallel computation domain, graph coloring is widely
studied in its own and represents a reference problem for scheduling of
parallel tasks. Unfortunately, common graph coloring strategies usually
focus on minimizing the number of colors without any concern for the
sizes of each color class, thus producing highly skewed color class distri-
butions. However, to guarantee efficiency in parallel computations, but
also in other application contexts, it is important to keep the color classes
highly balanced in their sizes. In this paper we address this challenging
issue for large scale graphs, proposing a fast parallel MCMC heuristic
for sparse graphs that randomly generates good balanced colorings pro-
vided that a sufficient number of colors are made available. We show its
effectiveness through some numerical simulations on random graphs.
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1 Introduction

The vertex coloring (or graph coloring) problem is one of the fundamental and
most difficult combinatorial problems. Given an undirected graph G, one is look-
ing for an assignment of colors to the vertices of G such that no two adjacent
vertices share the same color and the number of different colors used is mini-
mized. Vertex coloring is known to be NP-hard even for planar graphs [7]. Graph
coloring has many applications in different research fields. For example, it can be
used to register medical or biometric images [4,16] and to find good resource allo-
cation scheme for device-to-device (D2D) communications [3,22], used in mod-
ern wireless communication systems [11]. Moreover, graph coloring is extensively
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used in social networks problem such as Community Identification in Dynamic
Social Networks [21], summarization of social networks messages [19], and for
Collective Spammer Detection [6]. A common characteristic of these tasks is
that the graphs have very large size, thus requiring a speed up of the traditional
greedy sequential coloring heuristics [2], obtained introducing parallelization. In
Patter Recognition, also, there are many applications of graph coloring, that are
intractable without efficient parallelization: e.g. stochastic pyramids construc-
tion [17], graph classification [9], and so on.

In the literature, parallel graph coloring problem has been tackled by several
approaches but, at the best of our knowledge, very few address the problem of
balancing in parallel manner. One category of them is based on the search of
a maximal independent set of vertices on a progressively shrunk graph and the
concurrent coloring of the vertices in the found independent set. Often the inde-
pendent set itself is computed in parallel using some variant of the Luby’s algo-
rithm [15]. Examples of such approaches are [8,13]. Another category includes
methods that color as many vertices as possible concurrently, tentatively tolerat-
ing potential conflicts, while detecting and solving conflicts afterwards (e.g. [1]).
Despite these solutions are effective in producing a proper coloring, generally
minimizing the number of colors, they produce highly skewed color classes, unde-
sirable for many applications, such as parallel job scheduling, that requires bal-
ancing among the classes. At the other extreme, one could search for a coloring
being equitable, that is a coloring that guarantees that the sizes of any two
color classes differ by at most one [18]. This constraint is very expensive and
somehow too stringent for practical applications. Balanced coloring relaxes the
equitable constraint requiring that any two color class sizes differ by an integer
l greater than 1. Few approaches have been proposed to tackle Balanced graph
coloring (e.g. [14,20]). However, the limit of these methods is still that they are
intrinsically sequential thus not scalable, becoming unfeasible on large graph.

A promising direction of research on graph coloring concerns the Markov
Chain Monte Carlo (MCMC) methods that allow sampling from non analytic
complex distributions. The idea is to define an ergodic Markov chain whose
steady state distribution is defined over the set of colorings we wish to sample
from. Within the framework of graph coloring using Markov chains several con-
tributions have been proposed. In [12] a simple sequential solution based on the
Glauber dynamics has been adopted. The Glauber dynamics produces a Markov
chain on a proper coloring where at each step a random vertex v is recolored,
choosing a color uniformly at random from the permissible ones.

In this article we present an algorithm based on MCMC method produc-
ing balanced graph coloring in a parallel way. The main contribution is the
introduction of a proposal distribution, independently for each vertex, that pro-
motes overall balancing objectives. The key computational property is that the
generation of colorings with such distributions can be carried out on parallel
computational models. The technique is tested on large random graphs showing
experimentally its effectiveness.
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The remainder of the paper is organized as follows: Sect. 2 describes the
proposed algorithm and in Sect. 3 we prove quantitatively, by some experimental
results, the effectiveness of our method.

2 Parallel MCMC Sampling

2.1 Notations

Let G = 〈V,E〉 be a simple undirected graph of n = |V | vertices and [k] =
{1, . . . , k} be a set of colors used to label the vertices. A k-coloring is an assign-
ment c : V → [k] such that c = (c(1), . . . , c(n)) ∈ [k]n is called proper if adjacent
vertices receive different colors, otherwise it is termed improper. It is well-known
that, if Δ(G) is the maximum degree of G, k = Δ(G) + 1 colors are sufficient to
properly color the graph by a sequential greedy algorithm. For a given coloring
c, let N (v) denote the neighborhood of node v in G, and cN (v) ⊆ [k] be the set
of colors occupied by vertices N (v) and c̄N (v) its complement. The neighbor-
hood of v induces the partition {cN (v), c̄N (v)} of [k] for which hv(c) = |cN (v)|
and h̄v(c) = |c̄N (v)| denote their cardinality. We will also consider the absolute
frequency of the color j in c: fj(c) = |{u ∈ V : cu = j}|.

Hereafter we will use lowercase letters, e.g. c, c′, c∗, for given colorings and
uppercase for random colorings, e.g. C,C ′, C∗. For example the probability of
C ′ = c′ given C = c will be denoted P(C ′ = c′ | C = c) or P(c′ | c) for short.

2.2 Markov Chain Monte Carlo for Sampling Colorings

Monte Carlo estimation methods [23] are a broad class of statistical sampling
techniques based on the idea of estimating an unknown quantity with averaging
over a large set of samples. Due to the strong law of large numbers, the estimate
is guaranteed to almost surely converge to the unknown quantity. When the
iterative sampling scheme is based on the distribution of a Markov Chain it is
termed Markov Chain Monte Carlo (MCMC). Due to the lack of space here, we
refer to [23] for a comprehensive introduction to the topic.

Our objective is to define a 1st-order ergodic Markov chain (Ci)∞
i=1 consisting

in a sequence of k-colorings of a simple undirected graph G = 〈V,E〉 with n = |V |
nodes, whose stationary distribution π strongly depends on the set of conflicts
(edges with endpoints sharing the same color) involved in each coloring c ∈
[k]n. A natural target stationary distribution for the Markov chain is the Gibbs
distribution, expressed in the form

π(c) =
e−β#(c)

Z(β)
, with Z(β) =

∑

c′∈[k]n

e−β#(c′), (1)

where #(c) : [k]n → N counts the number of conflicts of the coloring c.
The choice of Gibbs distribution (1) turns out to be useful since, when β

is sufficiently large, it is close uniformly and with exponential rate to the uni-
form distribution over the proper colorings, which is our desired working set.
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It is known from MCMC theory that the latter distribution is asymptotically
approached in the sampling process when the chain is suitably constructed using
the established Metropolis-Hastings algorithm [10]. This technique prescribes the
specification of a proposal probability encapsulating the acceptance ratio and a
transition probability for the chain.

As for the transition probabilities of the Markov chain, given a coloring C = c
we sample the successive coloring C∗ in two phases acting according to a typi-
cal “rejection sampling” scheme [23]: first a candidate coloring C ′ is generated
according to a suitable proposal probability r(c, c′) := P(C ′ = c′ | C = c), then
the proposal C ′ is accepted effectively as successive coloring C∗ according to the
acceptance ratio α(c, c′):

P(C∗ = c′ | C = c) = α(c, c′) := min
{

π(c′)r(c′, c)
π(c)r(c, c′)

, 1
}

, where c′ �= c

while the old coloring C = c is retained with remaining probability 1 − α(c, c′).
The proposal coloring C ′ is sampled with probability r(c, c′) as follows. Each

node v ∈ V is drawn independently and with identical distribution P(c′
v | c) of

colors so that the overall proposal probability is

r(c, c′) =
∏

v∈V

P(c′
v | c). (2)

Notice that, in the construction of the acceptance ratio also the backward prob-
ability r(c′, c) is required, hence r(c, c′) is called forward probability.

The choice of the node proposal probability P(c′
v | c) is a key step and

is hence detailed distinctly in the following subsection. It is also important to
observe from the computational viewpoint that the independent drawing of all
c′
v, v ∈ V , allows for the generation of the new coloring in a parallel manner.

2.3 Generation of Proposal Color

Here we specify the proposal probability in algorithmic vein so that the stochastic
evaluations follow consequently from the analysis of the color generation. First,
the behavior of the algorithm splits into two cases based on the old coloring c.
When there is some conflict locally for v, namely cv ∈ cN (v), the new proposed
color C ′

v for v shall be redrawn with the aim of reducing the possible conflicts. We
draw it from the available colors c̄N (v) following a nearly uniform distribution
of C ′

v = j given c:

ηv(j, c) =

{
1−εhv(c)
k−hv(c)

if j ∈ c̄N (c)

ε if j ∈ cN (c).

The rationale behind such definition is that we want with high probability to
generate a color equally likely among those available, in order to aim at the
balancing objective of the method. Nevertheless, we keep a negligible chance
ε > 0 to pick a color that is not available, in order to widen the search space.
In the clearly rare case of no available colors, the algorithm maintains the old
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color cv with high probability, 1 − ε(n − 1), and selects another color with small
probability ε.

As for the case of no conflict for v, cv ∈ c̄N (c), it is desirable to keep the old
color cv nearly surely to facilitate the convergence of the algorithm, or otherwise
pick another color with a small chance ε. Hence, for the node v the proposal
color C ′

v = j given c in the case of no conflict is distributed as

ζv(j, c) =

{
1 − ε(n − 1) if j = cv

ε if j �= cv.

So far, we have presented the elements for determining the forward probabil-
ity r(c, c′) in (2). Indeed, from the discussion above one can derive the following

Proposition 1. The proposal probability of each node v is

P(c′
v | c) =

{
ηv(c′

v, c) if hv(c) < k, cv ∈ cN (c)

ζv(c′
v, v) otherwise.

On the other hand, the backward probabilities

r(c′, c) = P(C ′ = c | C = c′) =
∏

v∈V

P(C ′
v = cv | C = c′)

can be obtained by symmetrical reasoning, i.e. exchanging the role of c and c′

in the calculations outlined above. This allows to compute then the acceptance
ratio α(c, c′).

2.4 Algorithm

We can now describe more formally the procedural steps corresponding to our
method providing Algorithm 1. As for the convergence properties of the proposed

Algorithm 1. Parallel MCMC Balanced Graph Coloring
Input: Graph G = 〈V, E〉 with n = |V |; Number k of colors; Gibbs parameter β � 1
Output: Random proper coloring C ∈ [k]n

1: C := some initial arbitrary coloring ∈ [k]n

2: while #(C) > 0 do
3: for each v ∈ V in parallel do
4: Calculate CN (C) and hv(C) := |CN (C)|
5: Compute P(c′

v | C) according to the rule in Prop. 1
6: Generate proposal color C′

v with distribution P(c′
v | C)

7: Proposed coloring C′ := (C′
1, C

′
2, ..., Cn)

8: Compute forward and backward probabilities r(C, C′), r(C′, C)

9: α(C, C′) := min{ r(C′,C)
r(C,C′) e

−β(#(C′)−#(C)), 1}
10: Accept proposed coloring, C := C′, with probability α(C, C′)
11: return C
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algorithm, since we cannot guarantee that the number of conflicts #(C) strictly
decreases at each iteration, due to the randomness of the MCMC methodology,
we are able to give a characterization of the convergence in stochastic terms as
in the following proposition, which is stated without proof for lack of space.

Proposition 2. Let Ct and Ct+1 be the random coloring in iteration t and t+1,
respectively, of Algorithm 1 on G. Provided a number of colors k ≥ Δ(G) + 1, it
holds the expectation inequality:

E[#(Ct+1)] < E[#(Ct)].

It follows that, the number of colors #(C) in the algorithm converges in proba-
bility to 0, i.e. limt→∞ P(#(Ct) < θ) = 1 ∀θ > 0.

3 Numerical Simulations

In this section we report some numerical simulation results of the parallel MCMC
method exploiting the Erdős-Rènyi graph (ER) model [5]. This model is widely
used to generate random graphs and has some valuable properties to leverage
in order to asses the behaviour of the proposed coloring strategy both for fixed
graph sizes and asymptotically.

In the ER model G(n, p), a n-vertex graph is constructed by connecting
vertices randomly and including each edge with probability p independently
from every other edge. Equivalently, the probability that a vertex v has degree
k is Binomial, i.e. P(deg(v) = k) =

(
n−1

k

)
pk(1 − p)n−1−k, with expected value

E[deg(v)] = (n − 1)p. As n goes to infinity, the probability that a graph in
G(n, 2 ln(n)/n) is connected, tends to one. Another relevant property of ER
graphs is the edge density which is a random variable with expectation exactly
equal to the background probability p.

The role that ER model plays in this picture is important because it ensures
the possibility to provide graphs with certain properties, giving us at same time
an effective and sound algorithmic procedure to compute them in practice.

To compare our MCMC strategy with other techniques designed for the same
purpose, we choose a fast parallel greedy algorithm inspired by Luby’s work [15].
Luby has described a greedy parallel strategy to find a maximal independent set
(MIS) of vertices (i.e. a subset of vertices such that no two vertices are neighbors)
in undirected graphs. Consequently, given that any MIS can be colored in paral-
lel, a greedy graph coloring strategy could be defined by repeatedly finding the
largest MIS on subgraphs gradually resulting from pruning previous recovered
MIS.

Clearly, the Luby inspired colorer is not meant for balanced graph coloring
problem. However, we use it for two reasons: on one hand just for sake of com-
parison with a simple scheme graph colorer, on the other hand to empirically
show that the two algorithms have comparable computational times on sparse
graphs.
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3.1 CUDA Parallel Implementations

We developed a fast parallel implementation of both the MCMC and the Luby-
greedy coloring algorithms, called respectively MCMC-GPU and Luby-GPU,
using the NVIDIA CUDA programming paradigm. NVIDIA GPU processors
feature up to 5000 processing cores, hence a very large number of processing
threads can be scheduled and executed concurrently in a shared memory model.
Thanks to this, parallelization in both MCMC-GPU and Luby-GPU occurs at
vertex level, i.e. a thread is assigned to each vertex of the graph which is therefore
processed concurrently to every other vertex.

MCMC-GPU implementation closely follows Algorithm 1: during the iter-
ations, each vertex v is assigned to a processing thread which evaluates both
P(c′

v | c) and P(cv | c′) (the forward and backward probabilities) and draws the
new color cv accordingly. Thread synchronization occurs only at the end of each
iteration, where the total number of conflicts and the rejection factor α(c, c′) of
the new coloring have to be evaluated. In MCMC-GPU the algorithm is executed
until a proper k-coloring is found, or the maximum number of allowed iterations
is reached.

Also in Luby-GPU parallelization occurs at vertex level: each vertex is
assigned to a thread that evaluates its status (free or not-free) and randomly
adds itself to the current MIS if and only if it does not generate any conflict.
Synchronization is more invasive, since it has to be performed in every stage of
the MIS assembly.

3.2 Performances on ER Graphs

Here we report some preliminary experimental results on ER graphs comparing
the MCMC-GPU and Luby-GPU algorithms running on NVIDIA GPU devices.

We aim at measuring the quality of balancing in the color class sizes produced
in particular by MCMC-GPU, which works by improving the balancing of an
existing (improper) coloring moving vertices from one color class to another
on the basis of random choices, as highlighted by the proposed distribution over
colors given in Sect. 2.3. Let us first introduce a measure of deviation of a coloring
c ∈ [k]n from a perfectly balanced coloring where each color class j has size
nj = n/k, for each j ∈ [k]. This can be quantified by defining γn,k(j) = |fj −n/k|
which represents the target to be minimized in respect of which our heuristic will
perform local random arrangements. An overall measure of balancing quality
closely related to the standard deviation of the color class sizes can be then
defined as

Γn,k(c) =

⎛

⎝1
k

k∑

j=1

γ2
n,k(j)

⎞

⎠
1/2

(3)

called unbalancing index hereafter. Clearly, a coloring c is perfectly balanced if
Γn,k(c) = 0.
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Fig. 1. Average unbalancing index achieved by MCMC-GPU and Luby-GPU on ER
graphs of various size and densities 0.1% and 0.5% respectively.

A demonstration on how MCMC-GPU and Luby-GPU perform in terms of
color balancing is given in Fig. 1, where the curves represent the unbalancing
index (3). More precisely, the graphics relate to average amounts achieved on
ER graphs of various size and densities 0.1% and 0.5% respectively. To capture a
wide scale of ER graphs, once the density p has been fixed, we varied the graph
size n up to 500K vertices, averaging over 10 trials for each pair (n, p) to reach
satisfactory confidence level.

Concerning the number of colors k used by MCMC-GPU, assuming a regular
structure of the generated graphs we fix k = 
np� corresponding to the expected
vertex degree, which anyway assures the existence of proper coloring with high
probability. Note that, under this setting a coloring c for a graph in G(n, p) has
balancing index

Γn,�np	(c) ≈
⎛

⎝ 1
np

k∑

j=1

γ2
n,k(j)

⎞

⎠
1/2

.

As can be noticed in the plots, MCMC-GPU not only outperforms Luby-GPU,
but also provides invariant unbalancing index with respect to the graph sizes,
being Γn,�np	(c) ≈ constant (with very low standard deviation), for all n in
the range 25K ÷ 500K. In spite of the limited number of experiments, as a
general trend we have that the sum of within-class deviations γ2

n,k(j) roughly
grows linearly with the number of vertices, i.e.

∑k
j=1 γ2

n,k(j) ≈ pcpn, where cp

is a constant depending on the density p. For instance, in Fig. 1, the constants
cp = 26.29 and cp = 11.84 are shown for p = 0.1% and p = 0.5% respectively.

With regard to the computational times of the conducted experiments, their
averages are reported in Fig. 2. Whereas we can notice very high speedups (up to
20) between sequential and parallel MCMC implementations, the times spent by
MCMC-GPU and Luby-GPU remain comparable (they turn in favor of Luby-
GPU only for 500K).
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Fig. 2. Average execution times of Luby-GPU, MCMC-CPU and MCMC-GPU on ER
graphs of various size and densities 0.1% and 0.5% respectively.

Fig. 3. Average unbalancing index achieved by MCMC-GPU (left) and Luby-GPU
(right) on ER graphs varying both vertex degrees d = �np� and color number k.

A second experiment is aimed at studying the balancing quality achieved
when varying both the graph density and the number of colors made available
to MCMC-GPU. In particular, here we set the graph density in terms of vertex
degree d = 
np�, with d falling in the range 100 ÷ 350, while the number
k = r 
np� of colors is scaled down by a factor r ∈ (0, 1) ranging from 0.5 and 1.
Average values of the unbalancing index over colorings carried out by the two
algorithms are plotted in Fig. 3 (note that the ratio between the scales of the
two graphs is about 33).

4 Conclusions

In this paper we have proposed a new parallel algorithm for graph coloring
problem based on Markov Chain Monte Carlo techniques. The main goal of
this new method is to produce balanced solutions, which is a direction not much
explored yet in the literature. Experiments show the effectiveness of the approach
on random graphs. Given the encouraging results shown in this article, further
investigations are deserved. In particular we intend to generalize the model in



170 D. Conte et al.

order to be able to optimize several forms of balancing, possibly redefined at each
iteration of parallel coloring; furthermore, we will study a theoretical analysis of
the model, and finally we will extend the experiments testing the algorithm on
different graph typologies and comparing it with other parallel approaches.
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