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Abstract. In different application fields, such as biology, databases,
social networks and so on, graphs are a widely adopted structure to
represent the data. In these fields, a relevant problem is the detection
and the localization of structural patterns within very large graphs; such
a problem, formalized as subgraph isomorphism, has been proven to be
NP-Complete in the general case. Moreover, the continuously growing
size of the graphs to face, actually of hundred thousands of nodes, is
making the problem even more challenging also for the most efficient
algorithms in the state of the art, requiring days or weeks of compu-
tational time. This huge amount of time is also consequence of the fact
that most of the algorithms do not exploit any kind of parallelism, even if
the problem is suitable to be solved adopting parallel approaches. In this
paper we present a new parallel algorithm for subgraph isomorphism,
namely VF3P, based on a redesign of the well known algorithm VF3.
The effectiveness of VF3P has been experimentally proven on a publicly
available dataset of very large graphs, confirming that the algorithm is
able to efficiently scale w.r.t. the number of used CPUs without affecting
the memory usage.

Keywords: Exact graph matching · Subgraph isomorphism ·
Parallel algorithms · VF3

1 Introduction

Graphs are discrete mathematical structures representing objects in terms of
their parts and the relationships among these parts, using abstractions called
nodes and edges respectively. Such a representation is much more expressive
than the vector-based one, but it requires more complex algorithms, and thus
a higher computational effort, also to perform simple operations like evaluating
the similarity between two objects. Nevertheless, there are several cases where
graphs are preferred to vectors because the latter are ineffective to model the
complexity of the objects especially when these are composed by parts suitably
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interconnected each other and the application at hand exploits this relevant
structural information [16,18,26].

Nowadays, the field of social networks [15,27], databases, semantic web and
biology require to use bigger and bigger structural information, typically rep-
resented in term of graphs [3,21]. Among them, the latter is undoubtedly the
most promising and challenging area [5,9,13,14], where many biological entities
are naturally represented as graphs; moreover, the quantity of data generated
every year and needed to be analyzed, is enormous. Noteworthy examples are
molecular and protein structures, interaction networks and more recently the
genome, that for many years has been represented as a string of bases [4,23].

In this context graph matching algorithms play an important role because
they allow to perform the basic operations required to apply pattern recognition
methods, such as the computation of the similarity (i.e. the distance) or the
search for a structural pattern.

It is important to say that all the previously cited fields provide, year by year,
new challenges to graph matching algorithms, due to the continuously growing
size of the graphs they require to deal on. It it important to note that, actually,
even a graph of thousand nodes is considered small in many cases, for instance
when working with the genome of an individual that is composed of billions of
bases. Therefore, even a frequent operation like searching for a pattern structure
inside a graph, namely the subgraph isomorphism problem, becomes very time
expensive also for the most efficient algorithms in the state of the art.

The current graph matching algorithms have been generally designed accord-
ing to a sequential computational paradigm, even if many operations required
by them can be potentially done in parallel; indeed, analyzing the literature it
is possible to find extremely efficient algorithms, such as VF3 [8,11,12,14] and
RI [5], able to work with graphs of thousands of nodes using a very limited
quantity of memory and CPU, but requiring a large amount of time when the
size and the density of the graphs increase (e.g. weeks of computational time).

Another important evidence of the need for parallel graph matching algo-
rithms, is the growing interest in parallelizing the computation of the graph edit
distance recently arisen in the scientific community [1,2,6,24].

Realizing efficient parallel graph matching algorithms is not as easy as it
would appear. Indeed, starting from a sequential algorithm and making in par-
allel some of its steps and procedures is, in most of the case, useless. The big
challenge is to design the algorithm so as to take full advantage form a specific
parallel architecture, such as multicore systems using CPU, GPU, clusters and
so on. Distributed subgraph isomorphism methods to deal with very large graphs
have been proposed in [7,28], but there still remains the problem of reducing the
high communication cost among the nodes of the cluster. Concerning the GPUs,
some papers [20,29] have proposed interesting performance analysis on graph
matching algorithms for GPU highlighting the bottlenecks and the reasons why
graph algorithms are not able to exploit the architecture CPU-GPU at the best.
A parallel approach on multicore CPUs has been recently proposed by McCreesh
et al. [22]. The authors have proposed a simple parallel constrain programming
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approach based on LAD [25]; they have focus the attention on specific paralleliz-
able steps and have presented an analysis limited to the execution time, without
discussing efficiency and speedup.

In this paper we propose a parallel algorithm for multicore CPUs obtained
from VF3-Light [11] by realizing a state-level parallelization. The effectiveness
of our proposal have been proved by analyzing the memory requirements, the
speed-up and the efficiency with respect to the original sequential algorithm.

2 VF3-Light: The Sequential Algorithm

In this section, we briefly present some fundamental concepts on graph match-
ing and VF3-Light required to understand the design choices discussed in the
successive sections, the reader who is interested in deepening the algorithm is
referred to [8,11].

2.1 Graphs and Graph Matching

A graph is an ordered pair G = (V,E) where V and E ⊂ V × V are the set of
nodes and edges respectively. Given a node u ∈ V , the set of its successors (the
nodes connected to u by outgoing edges) is denoted as S(u), while the set of
its predecessors (the nodes connected by incoming edges) is denoted as P(u). In
a more general definition, graphs can carry also attributes or labels attached to
their nodes and edges. Hence, two additional sets are considered: the set of node
labels Lv and the set of edge labels Le; two labeling functions, λv : V → Lv and
λe : E → Le, are used to associate each node or edge to the corresponding label.

Considering two graphs, namely G1 = (V1, E1) and G2 = (V2, E2), graph
matching is the problem of finding a function M : V1 → V2, namely the mapping
function, satisfying some structural constraints. In the case of subgraph iso-
morphism [16], the constraints are that M is injective and structure preserving,
i.e. the nodes put in correspondence must have the same structure considering
both the presence and the absence of edges. It is important to note that the map-
ping function is not unique, but the problem can have several distinct solutions
where the nodes in V1 are mapped to different subsets of nodes in V2. In general,
we are not interested in finding the first solution only, but all the possible ones.

2.2 VF3-Light

VF3-Light is the most recent successor of the well-know algorithm for subgraph
isomorphism VF2 [17]; it has been proposed in [11] as a lightened version of
VF3 [8] where some of the heuristics, required to deal with large and dense
graphs, have been relaxed to reduce the overall computational time when facing
small or sparse graphs. All the algorithms, designed from VF2, share the same
structure and use a depth-first approach search (DFS) over a tree-structured
search space of states. Each state sn represents a partial mapping M(sn) between
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the nodes in V1 and those in V2. Two additional sets M1(sn) ⊆ V1 and M2(sn) ⊂
V2 are used to represent the nodes of V1 and V2, respectively, that are in M(sn).

That said, the algorithm starts from a root state s0 where the mapping M(s0)
is empty and proceed until it reaches a leaf state sl whose mapping M(sl) is
complete, i.e. it involves all the nodes in V1. The exploration from the root to a
leaf proceed by extending the nodes involved in the mapping M ; at each state
sn a new one is generate by adding to the mapping M(sn), a new couple of
nodes un ∈ V1, vn ∈ V2 that are not yet in M(sn). Only some of the couples are
feasible to generate a state that is consistent with the constrains of the subgraph
isomorphism and so are used to generate a new state. Finally, the leaves are also
consistent, namely the goal states, represent the solutions of the problem.

In order to avoid an expensive bind search over the whole search space, VF3-
Light uses the feasibility rule (Eq. 1) to explore the sub-space composed of only
consistent states.

IsFeasible(sn, un, vn) = Fs(sn, un, vn) ∧ Fc(sn, un, vn) (1)

The function Fs verifies the semantic consistency of node and edge labels (or
attributes), while Fc verifies the structural consistency. Such a rule aims at ensur-
ing that the addition of a couple (un, vn) to a consistent state sn will not produce
an inconsistent state.

3 Parallel Algorithms

Designing a parallel algorithm starting from a sequential one is not an immediate
task, but it requires to analyze different aspects. A widely adopted methodolog-
ical approach, proposed by Ian Foster in [19], organizes the design of a parallel
algorithm in four steps: Partitioning, Communication, Agglomeration and Map-
ping. The first is the arrangement of the data into discrete chunk of work that
can be distributed to multiple tasks. Two basic ways to perform this process
are: domain decomposition, aimed at decomposing the data into many small
partitions to which parallel computation may be applied, and functional decom-
position where the problem is decomposed in terms of operations that can be
performed simultaneously. Once the decomposition have been defined, it is nec-
essary to define how the task communicate each other; for instance if they work
in a coordinated way or asynchronously. Then the agglomeration step aims at
reducing the number of tasks generated during the partitioning in order to reduce
communication costs, that is the most influencing factor in parallel algorithms
performance. Finally, in the mapping step we define where each task is to run
in order to minimize the execution time. For instance, we can map on the same
processors tasks that need a strong communication while on different processors
tasks able to run concurrently.

The exploration of the search space is a problem suitable to effectively exploit
the data parallelism, thus, according to the partitioning strategies proposed by
Foster, we have designed a parallel algorithm, namely V F3P , based on a domain
decomposition where each task is responsible to explore a single state. It is worth
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to point out that we have considered each task as performed by a single thread,
therefore we will use equivalently the terms thread and task. The communication
is realized through a global state stack ; a task extracts the state to explore from
the stack, then puts the feasible states generated in it. Each task stops when no
further states have to be explored, such a condition is verified when the global
stack is empty and all the other tasks have finished to explore their last extracted
state, thus no other state is going to be put in the stack. Adopting such a strategy,
the agglomeration is implicitly realized by the way the tasks communicate each
other through the global structure. An outline of the procedure performed by
each task in V F3P is shown in Fig. 1. On the one hand, the used strategy allows
to reach a high efficiency because all the threads work for most of the time; but,
on the other hand, it requires a high level high level of synchronization among the
threads that can affect the efficiency when the number of threads grows. To deal
with this problem, we have designed a further optimization of V F3P , namely
V F3PLS , aimed at reducing the synchronization through the use of a side state
stack used privately by the tasks. Each task has its local state stack where it puts
the generated states to be successively explored. Therefore, until a task does not
need to access the global stack it is able to work independently from the others.
It is worth noting that using the local stack only does not guarantees that the
workload is balanced among all the thread, this can cause a loss of efficiency
due to the fact that some tasks are unoccupied. To avoid this problem, the local
stack has a limited size, thus, when it is full the task is force to put the exceeding

1: function V F3P-Task(s, G1, G2, Sg, out Results)

2: if IsEmpty(Sg) then

3: return CheckActiveTasks()

4: s := PullFromStack(Sg)

5: if IsGoal(s) then

6: append M(s) to Results

7: else

8: for (un, vn) ∈ NextCandidates(s, G1, G2)

9: if IsFeasible(s, un, vn) then

10: sn := ExtendState(s, un, vn)
11: PushInStack(sn, Sg)

12: NotifyEndOfExploration()

13: return True

14: end

Fig. 1. Outline of V F3P task procedure. Each task pull the next state to process
from the global stack Sg. If the state is not a goal one, the task explores all of its
descendant and put in Sg only those are feasibile. Since the condition IsEmpty(Sg) is
not sufficient to guarantees that no more states have to be explored, each task notifies
the start of the exploration when it pulls a state from the stack and uses the procedure
NotifyEndOfExploration to communicates to the others when it finished. When Sg

is empty and no more tasks are involved in exploring a state, than all the tasks will
stop working.
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states in the global stack. It is worth to note that, if the size of local state stack
is configured taking into account the maximum depth of the search space (the
size of the pattern graph) and the density of the two graphs, each task will be
able to explore the space, from the root to leaves, without picking states from
the global stack. Moreover, considering how the DFS works, each task maintains
in its local stack the states corresponding to the higher levels of the state space,
while it tends to put in the global stacks the states belonging to the lower levels.

The two algorithms, V F3P and V F3PLS , differ in the procedures Pull-
FromStack and PushInStack (see Fig. 1). Indeed, while the tasks of V F3P
work directly using the global stack, in V F3PLS each a task checks firstly if the
local stack is empty (full) before accessing the global stack to pull (put) a state.

4 Experiments

The benchmark of parallel algorithms is not limited to time and memory require-
ments; indeed, two relevant performance measures (see Eq. 2) are speed-up (Sp)
and efficiency (Ef). The first represents the improvement of the execution time
evaluated as the ratio between the run time Ts of the most efficient sequential
algorithm and Tp, the one of the parallel algorithm. The second characterizes how
the parallel algorithm is efficient in exploiting the available hardware resources
and is obtained dividing the speed-up by the number of CPUs.

Sp =
Ts

Tp
Ef =

Sp

#CPU
(2)

The goal for a parallel algorithm is to reach a linear speed-up, where the value
of the ratio is exactly the number of used CPUs. Very rarely, it is also possible to
witness a superlinear speed-up, when the speed-up ratio is higher than the number
of the CPUs. In general, a linear speed-up is very difficult to achieve because it
requires that all the CPUs have always the same amount of workload and are able
to execute their task independently or with few interactions. Unfortunately, not
for all the problems it is possible to design algorithms exposing a linear speed-
up. This is the case of graph algorithms, where this difficulty is confirmed by
the fact that, until now, they have not been implemented effectively on modern
GPU architectures, that are designed to exploit algorithms suitable to exhibit a
linear speed-up such as low level image processing ones.

As previously introduced, computing the speed-up and the efficiency requires
to choose a reference sequential algorithm, that is usually selected among the
most efficient ones solving the problem under analysis. In our case, since the
proposed parallel algorithms have been realized starting from VF3-Light, it is the
most suited to this purpose, even because it has been proved to be one of the most
efficient subgraph isomorphism algorithms. Therefore, in our experiments we
have computed the aforementioned performance measures by executing V F3P
and V F3PLS with 2, 4 and 8 working threads respectively, in order to evaluate
how the performance measures evolve when the number of thread grows.
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Table 1. Speed-up of the parallel algorithms over different target graph size and num-
ber of CPU cores employed.

Dataset Target size Speed-up

V F3P V F3PLS

2 core 4 core 8 core 2 core 4 core 8 core

η = 0.2 Uniform 1000 0.76 0.75 0.70 0.99 0.84 0.76

2000 1.59 2.34 3.42 1.55 2.63 3.74

4000 1.56 2.96 5.16 1.69 3.14 5.61

10000 1.79 3.44 6.36 1.82 3.53 6.63

Non-Uniform 1000 0.70 0.75 0.61 1.06 0.76 0.57

2000 1.54 2.16 2.98 1.51 2.33 3.11

4000 1.70 2.98 4.77 1.72 3.12 4.97

10000 1.77 3.37 6.11 1.80 3.47 6.41

η = 0.3 Uniform 1000 1.72 2.63 3.46 1.79 2.69 3.59

2000 1.46 3.00 5.19 1.54 3.24 5.64

4000 1.78 3.36 6.05 1.81 3.47 6.39

6000 1.85 3.56 6.68 1.88 3.65 6.89

8000 1.88 3.64 6.82 1.90 3.69 6.96

Non-Uniform 1000 1.65 2.53 2.93 1.77 2.55 3.17

2000 1.59 2.93 4.91 1.66 3.15 5.30

4000 1.76 3.27 5.69 1.77 3.38 6.28

8000 1.86 3.60 6.74 1.88 3.66 6.91

The experimental environment has been properly configured so as to collect
unbiased measures and ensure that each thread run on the same core during all
the execution time. The experiments have been performed on a Ubuntu 18.04
server where all the unnecessary services and the swap area have been deacti-
vated. The server is equipped with two Intel(R) Xeon(R) CPU E5-2650 v2 and
256 Gb of Ram. Each Xeon E5-2650 has 8 physical core and three level of cache,
in particular 256 Kb of L2 cache dedicated to the each single core and 20 Mb of
L3 cache shared by all the cores laying on the same CPU. Hyperthreading has
been deactivated to let the operating system to run one thread per physical core.
One of the CPUs hosted the threads of the operating system and the experi-
mental environment, while the other has been completely dedicated to run the
working threads of the algorithms; thus, by setting the affinity we have ensured
that each thread was executed on a dedicated core. In this way, we are able to
properly measure how the algorithms improves speed-up and efficiency w.r.t. the
number of cores by setting the wanted number of running threads.

The experiments have been performed over a subset of the MIVIA LDG,
a standard dataset firstly used in [8,10,11] to benchmark VF3. The dataset is
composed of very large and dense random Erdős and Rényi graphs, both labelled
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Table 2. Efficiency of the parallel algorithms over different target graph size and
number of CPU cores employed.

Dataset Target size Efficiency

V F3P V F3PLS

2 core 4 core 8 core 2 core 4 core 8 core

η = 0.2 Uniform 1000 0.38 0.18 0.08 0.49 0.21 0.09

2000 0.79 0.58 0.42 0.77 0.65 0.47

4000 0.78 0.74 0.64 0.84 0.78 0.70

10000 0.89 0.86 0.79 0.91 0.88 0.83

Non-Uniform 1000 0.35 0.18 0.07 0.53 0.19 0.07

2000 0.77 0.54 0.37 0.75 0.58 0.38

4000 0.85 0.74 0.59 0.86 0.78 0.62

10000 0.88 0.84 0.76 0.90 0.86 0.80

η = 0.3 Uniform 1000 0.86 0.65 0.43 0.90 0.67 0.45

2000 0.73 0.75 0.64 0.77 0.81 0.71

4000 0.89 0.84 0.75 0.90 0.87 0.80

8000 0.94 0.91 0.85 0.95 0.92 0.87

Non-Uniform 1000 0.83 0.63 0.38 0.89 0.63 0.40

2000 0.79 0.73 0.61 0.83 0.78 0.66

4000 0.88 0.82 0.71 0.89 0.85 0.79

8000 0.93 0.90 0.84 0.94 0.92 0.86

η = 0.2 η = 0.3

M
em

or
y

(a) (b) (c) (d)

Target Size
V F3 − Light V F3P (2 Core) V F3P (4 Core) V F3P (8 Core)
V F3PLS (2 Core) V F3PLS (4 Core) V F3PLS (8 Core)

Fig. 2. Memory usage on η = 0.2 and η = 0.3 random graphs of both V F3P and
V F3PLS , by varying the number of used cores.
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and unlabelled, having densities (η) of 0.2, 0.3 and 0.4 respectively. The target
graphs size ranges from 300 to 10, 000 nodes, while the size of the pattern graphs
is 20% with respect to that of the corresponding target. As discussed in [10],
although in the MIVIA LDG dataset there is only one solution for each pair of
graphs, the computational effort required to search for the solution and explore
the whole search space to confirm the absence of other solutions is very high.
Therefore, due to its complexity such a dataset is very suitable to stress the
algorithm in terms of CPU usage, so as to highlight possible loss of efficiency.

In Tables 1 and 2 we present the results of the experiments in terms of speed-
up, efficiency on the considered datasets. Analyzing the speed-up it is possible to
note that both the parallel algorithms are able to scale w.r.t. the number of cores.
In particular, in the case of η = 0.2, the best speed-up is achieved by V F3PLS

for graphs larger than 8, 000 node, and it is of 1.7, 3.5 and 6.6 when using
2, 4 and 8 cores respectively. On η = 0.3 graph, the best results is still obtained
by V F3PLS ; it is worth to note that, in this case, the speed-up using 8 cores is
about 7. The effectiveness of the proposed algorithms is also confirmed by the
achieved efficiency, especially when the CPUs is more stressed, i.e. for graphs
larger than 4, 000 nodes; as expected, both the algorithm are able to obtain values
higher than 0.8 irrespective from the number of cores. Of course, using less cores
the efficiency is higher due to the lower time lost in synchronization. Anyway,
when the number of cores increases, the benefit of the local stack, adopted by
V F3PLS , in reducing the amount of synchronization time lost, is more evident
both on the speed-up and on the efficiency.

Differently happens for the memory, there are not notable benefits in using
the local stack because both the solutions requires the same amount of memory
to manage the communication; indeed looking at the Fig. 2 the curves are com-
pletely overlapped. It is worth to note that, the higher is the number of cores
the higher is the memory usage because of the higher is the number of states
generated and buffered in the communication stacks; even if the growth in the
usage of memory is very limited if compared with that of VF3-Light.

5 Conclusions

In this paper we have proposed V F3P , a parallel algorithm to solve subgraph
isomorphism. The effectiveness of the proposed algorithm has been proved using
very large and dense graphs considering three performance measures: the speed-
up, the efficiency and the memory usage. On the base of the achieved results
we have demonstrated that the proposed algorithm is very efficient and able
to scale w.r.t. the number of used CPUs. Nevertheless, a deeper analysis can
be performed to explore other aspects impacting the performance and further
improvements to the efficiency can be achieved by adopting different communi-
cation schemas and agglomeration.
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