
Experimental Evaluation of Subgraph
Isomorphism Solvers

Christine Solnon(B)

INSA-Lyon, LIRIS UMR5205, 69621 Villeurbanne, France
christine.solnon@insa-lyon.fr

Abstract. Subgraph Isomorphism (SI) is an NP-complete problem
which is at the heart of many structural pattern recognition tasks as
it involves finding a copy of a pattern graph into a target graph. In
the pattern recognition community, the most well-known SI solvers are
VF2, VF3, and RI. SI is also widely studied in the constraint program-
ming community, and many constraint-based SI solvers have been pro-
posed since Ullman, such as LAD and Glasgow, for example. All these
SI solvers can solve very quickly some large SI instances, that involve
graphs with thousands of nodes. However, McCreesh et al. have recently
shown how to randomly generate SI instances the hardness of which can
be controlled and predicted, and they have built small instances which
are computationally challenging for all solvers. They have also shown
that some small instances, which are predicted to be easy and are eas-
ily solved by constraint-based solvers, appear to be challenging for VF2
and VF3. In this paper, we widen this study by considering a large test
suite coming from eight benchmarks. We show that, as expected for an
NP-complete problem, the solving time of an instance does not depend
on its size, and that some small instances coming from real applications
are not solved by any of the considered solvers. We also show that, if
RI and VF3 can solve very quickly a large number of easy instances, for
which Glasgow or LAD need more time, they fail at solving some other
instances that are quickly solved by Glasgow or LAD, and they are clearly
outperformed by Glasgow on hard instances. Finally, we show that we
can easily combine solvers to take benefit of their complementarity.

1 Introduction

Subgraph Isomorphism (SI) is an NP-complete problem which involves finding
a copy of a pattern graph into a target graph, i.e., finding a mapping that
associates a different target node to each pattern node in such a way that edges
are preserved. There are two main variants of SI: in the non-induced case, only
pattern edges must be preserved (i.e., pattern nodes connected by an edge must

This work has been done in collaboration with Ciaran McCreesh, Patrick Prosser, and
James Trimble. In particular, all experiments have been run by Ciaran McCreesh and
used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)
funded by the University of Edinburgh and EPSRC (EP/P020267/1).

c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-030-20081-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20081-7_1&domain=pdf
http://www.cirrus.ac.uk
https://doi.org/10.1007/978-3-030-20081-7_1


2 C. Solnon

be mapped to target nodes connected by an edge); in the induced case, target
edges must also be preserved (i.e., target nodes connected by an edge cannot be
mapped to pattern nodes not connected by an edge).

SI is at the heart of many structural pattern recognition tasks in different
application fields such as image or biology, for example [7]. In the pattern recog-
nition community, the most well-known algorithms used to solve SI are VF2 [8],
VF3 [5], and RI [4]. These solvers will be referred to as PR solvers. PR solvers
perform a depth-first search in a space of states: each state corresponds to a
partial mapping where some pattern nodes have been mapped, and each state is
recursively extended by adding to its partial mapping a new couple of mapped
pattern/target nodes.

SI is also widely studied in the constraint programming community as it may
be modelled as a constraint satisfaction problem in a straightforward way. Many
constraint-based solvers have been proposed for solving SI since Ullman [20] such
as, for example, nRF+ [15], ILF [21], LAD [18], SND [2], and Glasgow [1,16].
These solvers will be referred to as CP solvers. Like VF2, VF3, and RI, CP solvers
recursively extend partial mappings. However, a fundamental difference is that
CP solvers maintain, for each non-mapped pattern node, the list of candidate
target nodes that may be mapped to it, and they propagate constraints to reduce
these lists. This constraint propagation mechanism is expensive, both in memory
and time, but it reduces the number of states to explore.

Recent PR and CP solvers can solve very quickly rather large SI instances,
that involve graphs with thousands of nodes. Indeed, being NP-complete does
not mean that all instances are hard to solve, and some instances of NP-complete
problems can be very easy to solve. In particular, in [6], Cheeseman et al. show
that NP-complete problems can be summarised by at least one “order parame-
ter”, and that hard instances occur at a critical value of such a parameter. In [17],
McCreesh et al. use this approach to generate “really hard” random SI instances
according to three random graph models. For example, for Erdős-Rényi random
graphs (where edges are generated according to an independent probability [11]),
instances of non-induced SI may be generated by fixing pattern and target num-
bers of nodes, and varying pattern and target edge probabilities from 0 to 1. In
this case, a phase transition occurs between entirely satisfiable instances (when
patterns are sparse and targets are dense) and entirely unsatisfiable instances
(when patterns are dense and targets are sparse), and the location of this phase
transition can be predicted by computing the expected number of solutions.
Instances located within this phase transition are computationally challenging
for all solvers even when graphs are small (e.g., thirty pattern nodes and 150
target nodes). However, the experimental study reported in [17] also shows that
some small instances which are predicted as easy, and which are easily solved by
CP solvers, appear to be challenging for PR solvers.

In this paper, we widen this experimental study and we experimentally eval-
uate and compare RI, VF2, VF3, Glasgow, and LAD on a large test suite of
14, 621 instances coming from eight benchmarks. In Sect. 2, we describe our
test suite. In Sect. 3, we show that, as expected for an NP-complete problem,



Experimental Evaluation of Subgraph Isomorphism Solvers 3

the solving time of an instance does not depend on its size, and that some small
instances (including instances coming from real applications) are not solved by
any of the considered solvers. In Sect. 4, we identify easy and hard instances
and we show that, if PR solvers are able to solve very quickly easy instances (for
which CP solvers often need more time), they fail at solving some other instances
that are rather quickly solved by CP solvers, and they are clearly outperformed
by Glasgow on hard instances. Finally, in Sect. 5, we show that we can easily
combine PR and CP solvers to take benefit of their complementarity.

Table 1. For each class, we give the number of instances (#inst) and then describe
pattern and target graph features: minimum and maximum number of nodes, number
of edges, and density.

Class #inst Pattern graphs Target graphs

#nodes #edges Density #nodes #edges Density

min max min max min max min max min max min max

images 6,302 4 170 4 241 .02 .67 1,072 5,972 1,539 8,888 .00 .00

meshes 3,018 40 199 114 539 .02 .15 201 5,873 252 15,292 .00 .02

LV 3,831 10 128 10 4,950 .02 1.00 10 6,671 10 209,000 .00 1.00

randERP 200 30 30 128 387 .29 .89 150 150 4,132 8,740 .37 .78

randER 270 40 360 41 12,410 .02 .21 200 600 436 34,210 .02 .19

randBVG 540 40 480 43 2,137 .01 .20 200 800 299 3,600 .00 .05

randM 360 51 777 76 2,075 .01 .08 256 1,296 672 4,377 .00 .03

randSF 100 180 900 478 5,978 .01 .17 200 1000 592 7,148 .01 .16

2 Experimental Set-Up

Test Suite. We consider 14, 621 instances coming from eight benchmarks
described in Table 1, and available at liris.cnrs.fr/christine.solnon/SIP.html.
images and meshes are coming from real applications where both pattern and
target graphs correspond to graphs extracted from segmented images and 3D
meshes [9,19].

LV is a benchmark described in [15]. It uses 113 graphs with various prop-
erties coming from the Stanford GraphBase described by Knuth in [13]. The
benchmark is built by splitting the set of graphs in two parts: the first part con-
tains the 50 smallest graphs; the second part contains the 63 remaining graphs.
We consider all pairs of graphs such that the pattern graph belongs to the first
part, the target graph belongs to the first or the second part, and the target
graph has at least as many nodes as the pattern graph.

rand* (with ∗ ∈ {ERP ,ER,BVG ,M ,SF}) are randomly generated instances.
randERP are instances close to the phase transition (expected to be hard as
explained in [17]), and all graphs are Erdős-Rényi graphs. randER, randBVG,
and randM are coming from the database described in [10], and graphs are Erdős-
Rényi graphs, (modified) bounded valence graphs and 4D meshes, respectively.

http://liris.cnrs.fr/christine.solnon/SIP.html


4 C. Solnon

Fig. 1. Number of pattern edges (x-axis), target edges (y-axis), and solving time
(colour) for non-induced SI: top left = Glasgow; top right = LAD; bottom left =
RI; bottom right = VF2. (Color figure online)

randSF is described in [22] and it contains scale-free graphs. All instances in
randER, randBVG, randM, and randSF (except 20 instances in randSF) are
feasible by construction because the pattern has been extracted from the target.

All graphs have at least as many edges as nodes. Hence, the size of a graph
is dominated by its number of edges.

Performance Measures. The experiments were performed on the EPCC Cirrus
HPC facility, on systems with dual Intel Xeon E5-2695 v4 CPUs and 256 Gb
RAM, running Centos 7.3.1611, and GCC 7.2.0 as the compiler. Each run has
been limited to 1, 000 s of CPU time. Some instances are not solved within this
time limit (note that even when increasing the time limit to 100, 000 s some
instances are still unsolved). We consider two different performance measures:
when all solvers have been able to solve all instances of a benchmark, we report
the average solving time; when some instances have not been solved within the
time limit, we report the number of solved instances within the time limit, and
we plot the evolution of the cumulative number of solved instances with respect
to time (i.e., the function f(t) = #{i ∈ I : tsi ≤ t} where I is the set of instances,
s a solver, and tsi the time spent by s to solve an instance i ∈ I).



Experimental Evaluation of Subgraph Isomorphism Solvers 5

We do not consider memory consumption as a performance measure as solvers
never run out of memory, even for the largest instances (all solvers have polyno-
mial memory complexities). However, CP solvers need more memory than PR
solvers as they maintain candidate lists of target nodes for each non-mapped
pattern vertex.

Different variants of Glasgow are described in [1]. We consider the biased
variant, which is the default setting1.

3 Does the Solving Time Depend on Graph Sizes?

To study the relation between the solving time and the size of an instance,
we plot in Figs. 1 and 2 the time spent by each solver on each instance. Each
instance corresponds to a point (x, y) where x is the number of pattern edges, y
the number of target edges, and the colour depends on the solving time: yellow
if it is smaller than one second, and black if the instance has not been solved
within 1000 s (if several instances have the same size, the colour corresponds to
the average solving time for all these instances).

Fig. 2. Number of pattern edges (x-axis), target edges (y-axis), and solving time
(colour) for induced SI: top left = Glasgow; top right = LAD; bottom left = RI; bottom
right = VF3. (Color figure online)

1 Glasgow is available at https://github.com/ciaranm/glasgow-subgraph-solver.

https://github.com/ciaranm/glasgow-subgraph-solver


6 C. Solnon

As expected for an NP-complete problem, these figures show us that hardness
does not depend on size. Let us first consider the non-induced case, displayed in
Fig. 1. Unsolved instances (black points) are not specially concentrated in the
top right area of the plots (corresponding to the largest instances). The number
of unsolved instances is quite different from a solver to another, but some black
points are common to all solvers. Among the set of instances which are solved by
none of the solvers, the smallest pattern (resp. target) graph has 62 edges and
30 nodes (resp. 400 edges and 86 nodes). Many much larger instances are solved
in less than one second. The gray line separates instances that have more target
edges than pattern edges (top left) from those that have less target edges than
pattern edges (bottom right). All instances in the bottom right part are trivially
infeasible. However, both VF2 and RI are not able to solve some of them.

Fig. 3. Number of pattern edges (x-axis), target edges (y-axis), and classes (colour) of
unsolved instances: left = non-induced SI; right = induced SI. (Color figure online)

Table 2. Number of feasible (yes), infeasible (no), easy (E), easy-or-hard (EH),
hard (H), and unsolved (U) instances per class.

Class Non-induced SI Induced SI

Feasibility Hardness Feasibility Hardness

yes no E EH H U yes no E EH H U

images 52 6,250 2,555 3,747 0 0 50 6,252 2,764 3,538 0 0

meshes 88 2,930 2,361 553 93 11 0 3,018 2,492 521 1 0

LV 596 3,235 2,097 1,477 137 120 191 3,640 2,939 693 139 60

randERP 164 36 0 48 69 83 0 200 0 0 180 20

randER 270 0 0 203 67 0 270 0 72 141 57 0

randBVG 540 0 461 79 0 0 540 0 454 86 0 0

randM 360 0 309 51 0 0 360 0 313 45 2 0

randSF 80 20 4 96 0 0 80 20 75 25 0 0

All 2,150 12,471 7,787 6,254 366 214 1,491 13,130 9,109 5,053 379 80



Experimental Evaluation of Subgraph Isomorphism Solvers 7

When looking at the induced case in Fig. 2, we also note that the unsolved
instances are not necessarily those with the largest graphs and the number of
unsolved instances is quite different from a solver to another. Among the set
of instances which are solved by none of the solvers, the smallest pattern (resp.
target) graph has 62 edges and 30 nodes (resp. 638 edges and 120 nodes). VF3
has much better results on induced SI than VF2 on non-induced SI, and it is
always able to quickly solve instances that are trivially infeasible because they
have less target edges than pattern edges.

4 Where Are the Hard Instances?

To have a better insight into where the hard instances are, we have partitioned
each class of our benchmark into 4 separate groups, depending on instance hard-
ness. As all instances but those of randERP have not been randomly generated
with a model that allows us to predict hardness with respect to the phase tran-
sition location, we consider an empirical definition of instance hardness:

– an instance is easy if the four solvers are able to solve it within one second;
– an instance is hard if no solver can solve it within one second, but at least

one solver can solve it within the time limit of 1000 s;
– an instance is easy-or-hard if at least one solver solves it within one second

whereas at least one solver cannot solve it within one second;
– an instance is unsolved if no solver can solve it within the time limit of 1000 s.

In Fig. 3, we display the number of edges in pattern and target graphs of
unsolved instances, and in Table 2, we give the number of instances in each group
of each class. As expected, many randERP instances are unsolved or hard, and
none of them is easy: these instances are close to the phase transition and they
are expected to be challenging despite their small size. However, not all unsolved
instances are coming from randERP. This shows us that really hard instances may
occur even if they have not been generated on purpose. For the non-induced case,
LV andmeshes respectively contain 120 and 11 unsolved instances, whereas for the
induced case, LV contains 60 unsolved instances. In both cases, these instances are
not the largest ones, and some of them are really small as illustrated in Fig. 3.

Many instances are easy (7,787 instances for the non-induced case, and 9,109
for the induced case), and these easy instances are coming from all classes but
randERP and randER for the non-induced case, and all classes but randERP for
the induced case.

In Table 2, we also give the number of feasible instance per class. Note that
any instance feasible for the induced case is also feasible for the non-induced
case. Three classes (i.e., randER, randBVG, and randM) only contain feasible
instances as they have been randomly generated in such a way that there always
exists at least one solution. There is no obvious relation between feasibility
and hardness: hard and unsolved groups contain both feasible and infeasible
instances.



8 C. Solnon

Table 3. Results of Glasgow (G), LAD (L), VF2/VF3 (V), and RI (R) on non-induced
(top) and induced (bottom) SI instances. #u is the number of unsolved instances within
1000 s (for easy instances, #u = 0). When all instances are solved, we report the average
solving time in seconds.

easy instances easy-or-hard instances hard instances
G L V R G L V R G L V R

Class time time time time #u time #u time #u time #u time #u #u #u #u
Non-induced SI

images .106 .374 .201 .002 0 (.18) 0 (4.07) 13 - 0 (0.01) - - - -
meshes .153 .026 .044 .016 1 - 3 - 276 - 180 - 20 23 91 91
LV .036 .017 .069 .008 12 - 9 - 886 - 206 - 18 32 130 76
randERP - - - - 0 (.21) 25 - 48 - 30 - 0 65 69 64
randER - - - - 0 (.88) 17 - 201 - 2 - 0 57 67 14
randBVG .017 .119 .004 .003 0 (.07) 0 (2.37) 0 (.01) 2 - - - - -
randM .051 .095 .013 .003 0 (.18) 0 (3.94) 18 - 2 - - - - -
randSF .007 .004 .497 .001 0 (.11) 0 (.10) 80 - 15 - - - - -
All .094 .146 .099 .008 13 - 54 - 1,522 - 437 - 38 177 357 245

Induced SI
images .136 .388 .002 .002 0 (.24) 0 (3.58) 0 (.00) 0 (.01) - - - -
meshes .173 .024 .001 .009 0 (1.04) 0 (.16) 103 - 237 - 0 0 1 1
LV .047 .026 .011 .024 4 - 8 - 52 - 96 - 10 53 51 65
randERP - - - - - - - - - - - - 0 175 175 175
randER .021 .260 .061 .030 0 (.43) 12 - 2 - 1 - 0 47 5 7
randBVG .018 .125 .002 .004 0 (.07) 0 (2.22) 3 - 4 - - - - -
randM .052 .117 .003 .003 0 (.17) 0 (4.31) 6 - 0 (6.11) 0 0 1 0
randSF .109 .065 .027 .023 0 (.14) 0 (.21) 2 - 10 - - - - -
All .108 .146 .005 .012 4 - 20 - 168 - 348 - 10 275 233 248

5 Experimental Comparison of the Solvers

In Table 3, we display the results of the four solvers on the different classes,
grouped with respect to hardness. For easy instances (which are solved by all
solvers), RI is an order faster than the other solvers for the non-induced case,
and VF3 is twice as fast as RI which is an order faster than Glasgow and LAD
for the induced case. Hence, on easy instances, the fastest solvers clearly are RI
for the non-induced case and VF3 for the induced case, and CP solvers are an
order slower.

However, on easy-or-hard and hard instances, PR solvers solve less instances
than LAD, and LAD solves less instances than Glasgow. More precisely, for
the non-induced case, Glasgow (resp. LAD, VF2, and RI) fails at solving 51
(resp. 221, 1879, and 682) instances. For the induced case, Glasgow (resp. LAD,
VF3, and RI) fails at solving 14 (resp. 295, 416, and 596) instances. Hence, on
easy-or-hard and on hard instances, the best solver clearly is Glasgow for both
the non-induced and the induced case. Actually most easy-or-hard instances are
trivially solved by Glasgow in less than one second whereas PR solvers fail at
solving many of these instances.



Experimental Evaluation of Subgraph Isomorphism Solvers 9

Fig. 4. Cumulative number of solved instances: top = easy instances; middle = easy-
or-hard instances; bottom = hard instances; left = non-induced SI; right = induced
SI.

For the non-induced case, if LAD is outperformed by Glasgow, it is able to
solve much more instances than PR solvers. For the induced case, LAD is also
outperformed by Glasgow and, if it is able to solve more instances than PR
solvers on many classes, it is clearly outperformed by them on randER instances.
Actually, LAD is the only solver which solves less instances for the induced case
than for the non-induced case. This comes from the fact that LAD has been
designed for the non-induced case. It has been extended to handle the induced
case in a very naive way (by checking that target edges are preserved a posteriori),
without exploiting properties specific to the induced case.



10 C. Solnon

Fig. 5. Comparison of the best PR and CP solvers. On the left (resp. right), each
point (x, y) corresponds to an instance which is solved in x seconds by Glasgow and
y seconds by RI for the non-induced case (resp. VF3 for the induced case). When an
instance is not solved by Glasgow (resp. RI or VF3), it is displayed on x = 1, 000 (resp.
y = 1, 000).

In Fig. 4, we plot the evolution of the cumulative number of solved instances
with respect to time. For easy instances, RI (resp. VF3) dominates all other
solvers for the non-induced (resp. induced) case, and it is able to solve more
than 5, 000 (resp. 7, 000) instances in less than 0.001 s. On these instances, CP
solvers often need more time.

For easy-or-hard instances, RI (for the non-induced case) and VF3 (for the
induced case) are able to solve more than 2, 500 instances in less than .001 s.
However, they fail at solving hundreds of instances which are easily solved by
Glasgow, in less than one second, and the cumulative number of instances solved
by Glasgow becomes larger than those of RI and VF3 after 0.3 s.

For hard instances, Glasgow clearly outperforms all other solvers and it is
able to solve much more instances.

Fig. 6. Cumulative number of solved instances on the whole benchmark of RI (resp.
VF3), Glasgow, and RI+Glasgow (resp. VF3+Glasgow) for non-induced SI (left) (resp.
induced SI (right)).



Experimental Evaluation of Subgraph Isomorphism Solvers 11

In Fig. 5, we compare the best CP solver (i.e., Glasgow) with the best PR
solver (i.e., RI for the non-induced case, and VF3 for the induced case) on a per
instance basis. Every point below the gray line corresponds to an instance which
is solved quicker by the PR solver than by Glasgow, and the wide majority of
these points are on the left of the vertical line x = 1, corresponding to instances
which are solved in less than one second by Glasgow. Every point above the
gray line corresponds to an instance which is solved quicker by Glasgow than by
the PR solver, and many of these points are on the horizontal line y = 1, 000,
corresponding to instances which are not solved by the PR solver within the
time limit of 1, 000 s.

6 Combining Solvers to Take the Best of Them

Glasgow is complementary to the best PR solver (i.e., RI for the non-induced
case and VF3 for the induced case) as it needs more time on very easy instances,
but it is able to solve more instances. We can take benefit of this complementarity
as follows: we run the best PR solver with a time limit of t1 seconds; if the
instance has not been solved within this limit, we run Glasgow. The time limit
t1 should be long enough to allow the PR solver to solve easy instances, but not
too long in order not to penalise the total solving time when the PR solver is
not able to solve the instance. In Fig. 6, we display cumulative numbers of solved
instances of the best PR solver, Glasgow, and the combined approach (denoted
RI+Glasgow for the non-induced case, and VF3+Glasgow for the induced case)
when the time limit t1 is set to 0.1 s. It shows us that this simple combination
allows to take the best of both solvers: before 0.1 s, the cumulative number
of solved instances of RI+Glasgow (or VF3+Glasgow) is equal to the one of
RI (or VF3), which is much greater than the one of Glasgow (not displayed
because the y-axis starts at 8, 000 and Glasgow solves less than 8, 000 instances
in 0.1 s); after 0.1 s, the cumulative number of solved instances of RI+Glasgow
(or VF3+Glasgow) grows faster than the one of RI (or VF3) because Glasgow
is able to solve instances which are not solved by RI (or VF3); finally, after
a few seconds, the cumulative number of solved instances of RI+Glasgow (or
VF3+Glasgow) is very close to the one of Glasgow as the delay of 0.1 s due to
the run of RI (or VF3) is negligible.

Of course, this very simple approach could be enhanced by considering more
solvers (including more variants of each solver, using different ordering heuristics,
for example). In this case, we may gather all solvers in a portfolio, and use an
algorithm selection approach to dynamically select from the portfolio the solver
which is expected to perform best for each new SI instance to solve, as proposed
by Kotthoff et al. in [14].

7 Conclusion

This study has shown that there are many very easy SI instances which are
solved in a few milliseconds by modern solvers, and that some of these instances
may involve very large graphs with thousands of nodes. However, there are still



12 C. Solnon

small instances which cannot be solved within a reasonable amount of time by
any of these solvers. It is important to evaluate solvers on these hard instances
too as they do appear in real applications, though they are less frequent than
easy instances.

A promising research direction for solving hard instances is to exploit multi-
ple cores, and parallel SI solvers have been introduced in [1,3,16], for example.
A special attention should be paid on performance measures used to evaluate
these approaches. Indeed, measuring an average speed-up between a sequential
and a parallel solver is not very meaningful when considering NP-complete prob-
lems because speed-ups are very different from an instance to another, and do
not depend on instance sizes: for easy instances, speed-ups are usually very low,
whereas for hard instances it is not rare to have super-linear speed-ups. Also,
really hard instances are not solved within a reasonable amount of time, and
speed-ups cannot be computed in this case. Let us illustrate this point on the
parallel version of Glasgow (using 32 cores) described in [1]. On easy instances
(solved in less than 1 s by sequential Glasgow), the speed-up varies between 0.1
and 32, and the average speed-up is close to 1. On hard instances (that are not
solved by sequential Glasgow within 1 s, but are solved within 1000 s), the speed-
up varies between 1 and 583, and the average speed-up is 14. However, parallel
Glasgow is able to solve instances which are not solved by sequential Glasgow
within 1000 s and, if we include these instances, the average speed-up becomes
greater than 19 (this is a lower bound of the speed-up as we only have a lower
bound of the time of sequential Glasgow for unsolved instances). This shows us
that the average speed-up does not give a clear picture of solver performance.
Better insights are given by scatter plots that compare times on a per instance
basis (as done in Fig. 5), or by the aggregate speed-up measure introduced in
[12], which measures timeout ratio for solving a same number of instances. For
instance, Sequential Glasgow solves 14, 356 instances within 1000 s, and the hard-
est of these instances is solved in 939 s. Parallel Glasgow solves 14, 356 instances
within a timeout of 19 s, and this gives an aggregate speed-up of 939/19 = 49.

References

1. Archibald, B., Dunlop, F., Hoffmann, R., McCreesh, C., Prosser, P., Trimble, J.:
Sequential and parallel solution-biased search for subgraph algorithms. In: 16th
International Conference on Integration of Constraint Programming, Artificial
Intelligence, and Operations Research (2019)

2. Audemard, G., Lecoutre, C., Samy-Modeliar, M., Goncalves, G., Porumbel, D.:
Scoring-based neighborhood dominance for the subgraph isomorphism problem.
In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 125–141. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10428-7 12

3. Bombieri, N., Bonnici, V., Giugno, R.: Parallel searching on biological networks.
In: 27th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, PDP, pp. 307–314. IEEE (2019)

4. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algo-
rithms. IEEE/ACM Trans. Comput. Biol. Bioinf. 14(1), 193–203 (2017)

https://doi.org/10.1007/978-3-319-10428-7_12


Experimental Evaluation of Subgraph Isomorphism Solvers 13

5. Carletti, V., Foggia, P., Saggese, A., Vento, M.: Challenging the time complexity
of exact subgraph isomorphism for huge and dense graphs with VF3. IEEE Trans.
Pattern Anal. Mach. Intell. 40(4), 804–818 (2018)

6. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: 12th International Joint Conference on Artificial Intelligence (IJCAI), pp. 331–
340 (1991)

7. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)

8. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10),
1367–1372 (2004)

9. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.C., Samuel, E.: Polyno-
mial algorithms for subisomorphism of nD open combinatorial maps. Comput. Vis.
Image Underst. (CVIU) 115(7), 996–1010 (2011)

10. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its
use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8),
1067–1079 (2003)

11. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297
(1959)

12. Hoffmann, R., et al.: Observations from parallelising three maximum common (con-
nected) subgraph algorithms. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS,
vol. 10848, pp. 298–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93031-2 22

13. Knuth, D.E.: The Stanford GraphBase - a platform for combinatorial computing.
ACM (1993)

14. Kotthoff, L., McCreesh, C., Solnon, C.: Portfolios of subgraph isomorphism algo-
rithms. In: Festa, P., Sellmann, M., Vanschoren, J. (eds.) LION 2016. LNCS, vol.
10079, pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50349-3 8

15. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Math. Struct. Comput. Sci. 12(4), 403–422 (2002)

16. McCreesh, C., Prosser, P.: A parallel, backjumping subgraph isomorphism algo-
rithm using supplemental graphs. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp.
295–312. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 21

17. Mccreesh, C., Prosser, P., Solnon, C., Trimble, J.: When subgraph isomorphism
is really hard, and why this matters for graph databases. J. Artif. Intell. Res. 61,
723–759 (2018)

18. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism. Artif. Intell.
174(12–13), 850–864 (2010)

19. Solnon, C., Damiand, G., de la Higuera, C., Janodet, J.: On the complexity of
submap isomorphism and maximum common submap problems. Pattern Recogn.
48(2), 302–316 (2015)

20. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

21. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

22. Zampelli, S., Deville, Y., Solnon, C., Sorlin, S., Dupont, P.: Filtering for sub-
graph isomorphism. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 728–742.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7 51

https://doi.org/10.1007/978-3-319-93031-2_22
https://doi.org/10.1007/978-3-319-93031-2_22
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-50349-3_8
https://doi.org/10.1007/978-3-319-23219-5_21
https://doi.org/10.1007/978-3-540-74970-7_51

	Experimental Evaluation of Subgraph Isomorphism Solvers
	1 Introduction
	2 Experimental Set-Up
	3 Does the Solving Time Depend on Graph Sizes?
	4 Where Are the Hard Instances?
	5 Experimental Comparison of the Solvers
	6 Combining Solvers to Take the Best of Them
	7 Conclusion
	References




