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Preface

This volume contains the papers presented at the 12th IAPR-TC15 Workshop on
Graph-Based Representations in Pattern Recognition (GbR) held during June 19–21,
2019, in Tours.

In total 22 papers were accepted and presented orally. Each submission was
reviewed by at least two and usually three Program Committee members. The program
also included two very interesting invited talks: one by Christine Solnon, from the
INSA of Lyon, who presented a talk entitled “Experimental Evaluation of Subgraph
Isomorphism Solvers”; one by Marco Gori, from the University of Siena, who
presented a talk entitled “Local Propagation in Graphical Neural Networks.”

Accepted papers mainly cover the following topics: graph edit distance, graph
matching, machine learning for graph problems, network and graph embedding,
spectral graph problems, and parallel algorithms for graph problems. Numerous
applications have been addressed with the help of graph-based representations, ranging
from fMRI applications, image and video processing, to social networks analysis,
document analysis, chemio-informatics and classification problems.

Authors of selected papers were invited to submit an extended version to a Special
Issue on “Advances in Graph-based Representations for Pattern Recognition” to be
published in Pattern Recognition Letters in 2020.

The GbR 2019 workshop was hosted by the Computer Science Laboratory of
University of Tours in France (LIFAT). We acknowledge the generous support from
the city of Tours, the French Region Centre Val de Loire, the University of Tours and
the Engineering School of the University, the research federation ICVL, and the
company APSIDE. We would like to thank all the Program Committee members for
their help in the review process. We also wish to thank all the local organizers. Without
their contributions, GbR 2019 would not have been successful. Finally, we express our
appreciation to Springer for publishing this volume.

June 2019 Donatello Conte
Jean-Yves Ramel
Pasquale Foggia
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Experimental Evaluation of Subgraph
Isomorphism Solvers

Christine Solnon(B)

INSA-Lyon, LIRIS UMR5205, 69621 Villeurbanne, France
christine.solnon@insa-lyon.fr

Abstract. Subgraph Isomorphism (SI) is an NP-complete problem
which is at the heart of many structural pattern recognition tasks as
it involves finding a copy of a pattern graph into a target graph. In
the pattern recognition community, the most well-known SI solvers are
VF2, VF3, and RI. SI is also widely studied in the constraint program-
ming community, and many constraint-based SI solvers have been pro-
posed since Ullman, such as LAD and Glasgow, for example. All these
SI solvers can solve very quickly some large SI instances, that involve
graphs with thousands of nodes. However, McCreesh et al. have recently
shown how to randomly generate SI instances the hardness of which can
be controlled and predicted, and they have built small instances which
are computationally challenging for all solvers. They have also shown
that some small instances, which are predicted to be easy and are eas-
ily solved by constraint-based solvers, appear to be challenging for VF2
and VF3. In this paper, we widen this study by considering a large test
suite coming from eight benchmarks. We show that, as expected for an
NP-complete problem, the solving time of an instance does not depend
on its size, and that some small instances coming from real applications
are not solved by any of the considered solvers. We also show that, if
RI and VF3 can solve very quickly a large number of easy instances, for
which Glasgow or LAD need more time, they fail at solving some other
instances that are quickly solved by Glasgow or LAD, and they are clearly
outperformed by Glasgow on hard instances. Finally, we show that we
can easily combine solvers to take benefit of their complementarity.

1 Introduction

Subgraph Isomorphism (SI) is an NP-complete problem which involves finding
a copy of a pattern graph into a target graph, i.e., finding a mapping that
associates a different target node to each pattern node in such a way that edges
are preserved. There are two main variants of SI: in the non-induced case, only
pattern edges must be preserved (i.e., pattern nodes connected by an edge must

This work has been done in collaboration with Ciaran McCreesh, Patrick Prosser, and
James Trimble. In particular, all experiments have been run by Ciaran McCreesh and
used the Cirrus UK National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk)
funded by the University of Edinburgh and EPSRC (EP/P020267/1).

c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 1–13, 2019.
https://doi.org/10.1007/978-3-030-20081-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20081-7_1&domain=pdf
http://www.cirrus.ac.uk
https://doi.org/10.1007/978-3-030-20081-7_1


2 C. Solnon

be mapped to target nodes connected by an edge); in the induced case, target
edges must also be preserved (i.e., target nodes connected by an edge cannot be
mapped to pattern nodes not connected by an edge).

SI is at the heart of many structural pattern recognition tasks in different
application fields such as image or biology, for example [7]. In the pattern recog-
nition community, the most well-known algorithms used to solve SI are VF2 [8],
VF3 [5], and RI [4]. These solvers will be referred to as PR solvers. PR solvers
perform a depth-first search in a space of states: each state corresponds to a
partial mapping where some pattern nodes have been mapped, and each state is
recursively extended by adding to its partial mapping a new couple of mapped
pattern/target nodes.

SI is also widely studied in the constraint programming community as it may
be modelled as a constraint satisfaction problem in a straightforward way. Many
constraint-based solvers have been proposed for solving SI since Ullman [20] such
as, for example, nRF+ [15], ILF [21], LAD [18], SND [2], and Glasgow [1,16].
These solvers will be referred to as CP solvers. Like VF2, VF3, and RI, CP solvers
recursively extend partial mappings. However, a fundamental difference is that
CP solvers maintain, for each non-mapped pattern node, the list of candidate
target nodes that may be mapped to it, and they propagate constraints to reduce
these lists. This constraint propagation mechanism is expensive, both in memory
and time, but it reduces the number of states to explore.

Recent PR and CP solvers can solve very quickly rather large SI instances,
that involve graphs with thousands of nodes. Indeed, being NP-complete does
not mean that all instances are hard to solve, and some instances of NP-complete
problems can be very easy to solve. In particular, in [6], Cheeseman et al. show
that NP-complete problems can be summarised by at least one “order parame-
ter”, and that hard instances occur at a critical value of such a parameter. In [17],
McCreesh et al. use this approach to generate “really hard” random SI instances
according to three random graph models. For example, for Erdős-Rényi random
graphs (where edges are generated according to an independent probability [11]),
instances of non-induced SI may be generated by fixing pattern and target num-
bers of nodes, and varying pattern and target edge probabilities from 0 to 1. In
this case, a phase transition occurs between entirely satisfiable instances (when
patterns are sparse and targets are dense) and entirely unsatisfiable instances
(when patterns are dense and targets are sparse), and the location of this phase
transition can be predicted by computing the expected number of solutions.
Instances located within this phase transition are computationally challenging
for all solvers even when graphs are small (e.g., thirty pattern nodes and 150
target nodes). However, the experimental study reported in [17] also shows that
some small instances which are predicted as easy, and which are easily solved by
CP solvers, appear to be challenging for PR solvers.

In this paper, we widen this experimental study and we experimentally eval-
uate and compare RI, VF2, VF3, Glasgow, and LAD on a large test suite of
14, 621 instances coming from eight benchmarks. In Sect. 2, we describe our
test suite. In Sect. 3, we show that, as expected for an NP-complete problem,
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the solving time of an instance does not depend on its size, and that some small
instances (including instances coming from real applications) are not solved by
any of the considered solvers. In Sect. 4, we identify easy and hard instances
and we show that, if PR solvers are able to solve very quickly easy instances (for
which CP solvers often need more time), they fail at solving some other instances
that are rather quickly solved by CP solvers, and they are clearly outperformed
by Glasgow on hard instances. Finally, in Sect. 5, we show that we can easily
combine PR and CP solvers to take benefit of their complementarity.

Table 1. For each class, we give the number of instances (#inst) and then describe
pattern and target graph features: minimum and maximum number of nodes, number
of edges, and density.

Class #inst Pattern graphs Target graphs

#nodes #edges Density #nodes #edges Density

min max min max min max min max min max min max

images 6,302 4 170 4 241 .02 .67 1,072 5,972 1,539 8,888 .00 .00

meshes 3,018 40 199 114 539 .02 .15 201 5,873 252 15,292 .00 .02

LV 3,831 10 128 10 4,950 .02 1.00 10 6,671 10 209,000 .00 1.00

randERP 200 30 30 128 387 .29 .89 150 150 4,132 8,740 .37 .78

randER 270 40 360 41 12,410 .02 .21 200 600 436 34,210 .02 .19

randBVG 540 40 480 43 2,137 .01 .20 200 800 299 3,600 .00 .05

randM 360 51 777 76 2,075 .01 .08 256 1,296 672 4,377 .00 .03

randSF 100 180 900 478 5,978 .01 .17 200 1000 592 7,148 .01 .16

2 Experimental Set-Up

Test Suite. We consider 14, 621 instances coming from eight benchmarks
described in Table 1, and available at liris.cnrs.fr/christine.solnon/SIP.html.
images and meshes are coming from real applications where both pattern and
target graphs correspond to graphs extracted from segmented images and 3D
meshes [9,19].

LV is a benchmark described in [15]. It uses 113 graphs with various prop-
erties coming from the Stanford GraphBase described by Knuth in [13]. The
benchmark is built by splitting the set of graphs in two parts: the first part con-
tains the 50 smallest graphs; the second part contains the 63 remaining graphs.
We consider all pairs of graphs such that the pattern graph belongs to the first
part, the target graph belongs to the first or the second part, and the target
graph has at least as many nodes as the pattern graph.

rand* (with ∗ ∈ {ERP ,ER,BVG ,M ,SF}) are randomly generated instances.
randERP are instances close to the phase transition (expected to be hard as
explained in [17]), and all graphs are Erdős-Rényi graphs. randER, randBVG,
and randM are coming from the database described in [10], and graphs are Erdős-
Rényi graphs, (modified) bounded valence graphs and 4D meshes, respectively.

http://liris.cnrs.fr/christine.solnon/SIP.html


4 C. Solnon

Fig. 1. Number of pattern edges (x-axis), target edges (y-axis), and solving time
(colour) for non-induced SI: top left = Glasgow; top right = LAD; bottom left =
RI; bottom right = VF2. (Color figure online)

randSF is described in [22] and it contains scale-free graphs. All instances in
randER, randBVG, randM, and randSF (except 20 instances in randSF) are
feasible by construction because the pattern has been extracted from the target.

All graphs have at least as many edges as nodes. Hence, the size of a graph
is dominated by its number of edges.

Performance Measures. The experiments were performed on the EPCC Cirrus
HPC facility, on systems with dual Intel Xeon E5-2695 v4 CPUs and 256 Gb
RAM, running Centos 7.3.1611, and GCC 7.2.0 as the compiler. Each run has
been limited to 1, 000 s of CPU time. Some instances are not solved within this
time limit (note that even when increasing the time limit to 100, 000 s some
instances are still unsolved). We consider two different performance measures:
when all solvers have been able to solve all instances of a benchmark, we report
the average solving time; when some instances have not been solved within the
time limit, we report the number of solved instances within the time limit, and
we plot the evolution of the cumulative number of solved instances with respect
to time (i.e., the function f(t) = #{i ∈ I : tsi ≤ t} where I is the set of instances,
s a solver, and tsi the time spent by s to solve an instance i ∈ I).
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We do not consider memory consumption as a performance measure as solvers
never run out of memory, even for the largest instances (all solvers have polyno-
mial memory complexities). However, CP solvers need more memory than PR
solvers as they maintain candidate lists of target nodes for each non-mapped
pattern vertex.

Different variants of Glasgow are described in [1]. We consider the biased
variant, which is the default setting1.

3 Does the Solving Time Depend on Graph Sizes?

To study the relation between the solving time and the size of an instance,
we plot in Figs. 1 and 2 the time spent by each solver on each instance. Each
instance corresponds to a point (x, y) where x is the number of pattern edges, y
the number of target edges, and the colour depends on the solving time: yellow
if it is smaller than one second, and black if the instance has not been solved
within 1000 s (if several instances have the same size, the colour corresponds to
the average solving time for all these instances).

Fig. 2. Number of pattern edges (x-axis), target edges (y-axis), and solving time
(colour) for induced SI: top left = Glasgow; top right = LAD; bottom left = RI; bottom
right = VF3. (Color figure online)

1 Glasgow is available at https://github.com/ciaranm/glasgow-subgraph-solver.

https://github.com/ciaranm/glasgow-subgraph-solver


6 C. Solnon

As expected for an NP-complete problem, these figures show us that hardness
does not depend on size. Let us first consider the non-induced case, displayed in
Fig. 1. Unsolved instances (black points) are not specially concentrated in the
top right area of the plots (corresponding to the largest instances). The number
of unsolved instances is quite different from a solver to another, but some black
points are common to all solvers. Among the set of instances which are solved by
none of the solvers, the smallest pattern (resp. target) graph has 62 edges and
30 nodes (resp. 400 edges and 86 nodes). Many much larger instances are solved
in less than one second. The gray line separates instances that have more target
edges than pattern edges (top left) from those that have less target edges than
pattern edges (bottom right). All instances in the bottom right part are trivially
infeasible. However, both VF2 and RI are not able to solve some of them.

Fig. 3. Number of pattern edges (x-axis), target edges (y-axis), and classes (colour) of
unsolved instances: left = non-induced SI; right = induced SI. (Color figure online)

Table 2. Number of feasible (yes), infeasible (no), easy (E), easy-or-hard (EH),
hard (H), and unsolved (U) instances per class.

Class Non-induced SI Induced SI

Feasibility Hardness Feasibility Hardness

yes no E EH H U yes no E EH H U

images 52 6,250 2,555 3,747 0 0 50 6,252 2,764 3,538 0 0

meshes 88 2,930 2,361 553 93 11 0 3,018 2,492 521 1 0

LV 596 3,235 2,097 1,477 137 120 191 3,640 2,939 693 139 60

randERP 164 36 0 48 69 83 0 200 0 0 180 20

randER 270 0 0 203 67 0 270 0 72 141 57 0

randBVG 540 0 461 79 0 0 540 0 454 86 0 0

randM 360 0 309 51 0 0 360 0 313 45 2 0

randSF 80 20 4 96 0 0 80 20 75 25 0 0

All 2,150 12,471 7,787 6,254 366 214 1,491 13,130 9,109 5,053 379 80
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When looking at the induced case in Fig. 2, we also note that the unsolved
instances are not necessarily those with the largest graphs and the number of
unsolved instances is quite different from a solver to another. Among the set
of instances which are solved by none of the solvers, the smallest pattern (resp.
target) graph has 62 edges and 30 nodes (resp. 638 edges and 120 nodes). VF3
has much better results on induced SI than VF2 on non-induced SI, and it is
always able to quickly solve instances that are trivially infeasible because they
have less target edges than pattern edges.

4 Where Are the Hard Instances?

To have a better insight into where the hard instances are, we have partitioned
each class of our benchmark into 4 separate groups, depending on instance hard-
ness. As all instances but those of randERP have not been randomly generated
with a model that allows us to predict hardness with respect to the phase tran-
sition location, we consider an empirical definition of instance hardness:

– an instance is easy if the four solvers are able to solve it within one second;
– an instance is hard if no solver can solve it within one second, but at least

one solver can solve it within the time limit of 1000 s;
– an instance is easy-or-hard if at least one solver solves it within one second

whereas at least one solver cannot solve it within one second;
– an instance is unsolved if no solver can solve it within the time limit of 1000 s.

In Fig. 3, we display the number of edges in pattern and target graphs of
unsolved instances, and in Table 2, we give the number of instances in each group
of each class. As expected, many randERP instances are unsolved or hard, and
none of them is easy: these instances are close to the phase transition and they
are expected to be challenging despite their small size. However, not all unsolved
instances are coming from randERP. This shows us that really hard instances may
occur even if they have not been generated on purpose. For the non-induced case,
LV andmeshes respectively contain 120 and 11 unsolved instances, whereas for the
induced case, LV contains 60 unsolved instances. In both cases, these instances are
not the largest ones, and some of them are really small as illustrated in Fig. 3.

Many instances are easy (7,787 instances for the non-induced case, and 9,109
for the induced case), and these easy instances are coming from all classes but
randERP and randER for the non-induced case, and all classes but randERP for
the induced case.

In Table 2, we also give the number of feasible instance per class. Note that
any instance feasible for the induced case is also feasible for the non-induced
case. Three classes (i.e., randER, randBVG, and randM) only contain feasible
instances as they have been randomly generated in such a way that there always
exists at least one solution. There is no obvious relation between feasibility
and hardness: hard and unsolved groups contain both feasible and infeasible
instances.



8 C. Solnon

Table 3. Results of Glasgow (G), LAD (L), VF2/VF3 (V), and RI (R) on non-induced
(top) and induced (bottom) SI instances. #u is the number of unsolved instances within
1000 s (for easy instances, #u = 0). When all instances are solved, we report the average
solving time in seconds.

easy instances easy-or-hard instances hard instances
G L V R G L V R G L V R

Class time time time time #u time #u time #u time #u time #u #u #u #u
Non-induced SI

images .106 .374 .201 .002 0 (.18) 0 (4.07) 13 - 0 (0.01) - - - -
meshes .153 .026 .044 .016 1 - 3 - 276 - 180 - 20 23 91 91
LV .036 .017 .069 .008 12 - 9 - 886 - 206 - 18 32 130 76
randERP - - - - 0 (.21) 25 - 48 - 30 - 0 65 69 64
randER - - - - 0 (.88) 17 - 201 - 2 - 0 57 67 14
randBVG .017 .119 .004 .003 0 (.07) 0 (2.37) 0 (.01) 2 - - - - -
randM .051 .095 .013 .003 0 (.18) 0 (3.94) 18 - 2 - - - - -
randSF .007 .004 .497 .001 0 (.11) 0 (.10) 80 - 15 - - - - -
All .094 .146 .099 .008 13 - 54 - 1,522 - 437 - 38 177 357 245

Induced SI
images .136 .388 .002 .002 0 (.24) 0 (3.58) 0 (.00) 0 (.01) - - - -
meshes .173 .024 .001 .009 0 (1.04) 0 (.16) 103 - 237 - 0 0 1 1
LV .047 .026 .011 .024 4 - 8 - 52 - 96 - 10 53 51 65
randERP - - - - - - - - - - - - 0 175 175 175
randER .021 .260 .061 .030 0 (.43) 12 - 2 - 1 - 0 47 5 7
randBVG .018 .125 .002 .004 0 (.07) 0 (2.22) 3 - 4 - - - - -
randM .052 .117 .003 .003 0 (.17) 0 (4.31) 6 - 0 (6.11) 0 0 1 0
randSF .109 .065 .027 .023 0 (.14) 0 (.21) 2 - 10 - - - - -
All .108 .146 .005 .012 4 - 20 - 168 - 348 - 10 275 233 248

5 Experimental Comparison of the Solvers

In Table 3, we display the results of the four solvers on the different classes,
grouped with respect to hardness. For easy instances (which are solved by all
solvers), RI is an order faster than the other solvers for the non-induced case,
and VF3 is twice as fast as RI which is an order faster than Glasgow and LAD
for the induced case. Hence, on easy instances, the fastest solvers clearly are RI
for the non-induced case and VF3 for the induced case, and CP solvers are an
order slower.

However, on easy-or-hard and hard instances, PR solvers solve less instances
than LAD, and LAD solves less instances than Glasgow. More precisely, for
the non-induced case, Glasgow (resp. LAD, VF2, and RI) fails at solving 51
(resp. 221, 1879, and 682) instances. For the induced case, Glasgow (resp. LAD,
VF3, and RI) fails at solving 14 (resp. 295, 416, and 596) instances. Hence, on
easy-or-hard and on hard instances, the best solver clearly is Glasgow for both
the non-induced and the induced case. Actually most easy-or-hard instances are
trivially solved by Glasgow in less than one second whereas PR solvers fail at
solving many of these instances.
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Fig. 4. Cumulative number of solved instances: top = easy instances; middle = easy-
or-hard instances; bottom = hard instances; left = non-induced SI; right = induced
SI.

For the non-induced case, if LAD is outperformed by Glasgow, it is able to
solve much more instances than PR solvers. For the induced case, LAD is also
outperformed by Glasgow and, if it is able to solve more instances than PR
solvers on many classes, it is clearly outperformed by them on randER instances.
Actually, LAD is the only solver which solves less instances for the induced case
than for the non-induced case. This comes from the fact that LAD has been
designed for the non-induced case. It has been extended to handle the induced
case in a very naive way (by checking that target edges are preserved a posteriori),
without exploiting properties specific to the induced case.
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Fig. 5. Comparison of the best PR and CP solvers. On the left (resp. right), each
point (x, y) corresponds to an instance which is solved in x seconds by Glasgow and
y seconds by RI for the non-induced case (resp. VF3 for the induced case). When an
instance is not solved by Glasgow (resp. RI or VF3), it is displayed on x = 1, 000 (resp.
y = 1, 000).

In Fig. 4, we plot the evolution of the cumulative number of solved instances
with respect to time. For easy instances, RI (resp. VF3) dominates all other
solvers for the non-induced (resp. induced) case, and it is able to solve more
than 5, 000 (resp. 7, 000) instances in less than 0.001 s. On these instances, CP
solvers often need more time.

For easy-or-hard instances, RI (for the non-induced case) and VF3 (for the
induced case) are able to solve more than 2, 500 instances in less than .001 s.
However, they fail at solving hundreds of instances which are easily solved by
Glasgow, in less than one second, and the cumulative number of instances solved
by Glasgow becomes larger than those of RI and VF3 after 0.3 s.

For hard instances, Glasgow clearly outperforms all other solvers and it is
able to solve much more instances.

Fig. 6. Cumulative number of solved instances on the whole benchmark of RI (resp.
VF3), Glasgow, and RI+Glasgow (resp. VF3+Glasgow) for non-induced SI (left) (resp.
induced SI (right)).
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In Fig. 5, we compare the best CP solver (i.e., Glasgow) with the best PR
solver (i.e., RI for the non-induced case, and VF3 for the induced case) on a per
instance basis. Every point below the gray line corresponds to an instance which
is solved quicker by the PR solver than by Glasgow, and the wide majority of
these points are on the left of the vertical line x = 1, corresponding to instances
which are solved in less than one second by Glasgow. Every point above the
gray line corresponds to an instance which is solved quicker by Glasgow than by
the PR solver, and many of these points are on the horizontal line y = 1, 000,
corresponding to instances which are not solved by the PR solver within the
time limit of 1, 000 s.

6 Combining Solvers to Take the Best of Them

Glasgow is complementary to the best PR solver (i.e., RI for the non-induced
case and VF3 for the induced case) as it needs more time on very easy instances,
but it is able to solve more instances. We can take benefit of this complementarity
as follows: we run the best PR solver with a time limit of t1 seconds; if the
instance has not been solved within this limit, we run Glasgow. The time limit
t1 should be long enough to allow the PR solver to solve easy instances, but not
too long in order not to penalise the total solving time when the PR solver is
not able to solve the instance. In Fig. 6, we display cumulative numbers of solved
instances of the best PR solver, Glasgow, and the combined approach (denoted
RI+Glasgow for the non-induced case, and VF3+Glasgow for the induced case)
when the time limit t1 is set to 0.1 s. It shows us that this simple combination
allows to take the best of both solvers: before 0.1 s, the cumulative number
of solved instances of RI+Glasgow (or VF3+Glasgow) is equal to the one of
RI (or VF3), which is much greater than the one of Glasgow (not displayed
because the y-axis starts at 8, 000 and Glasgow solves less than 8, 000 instances
in 0.1 s); after 0.1 s, the cumulative number of solved instances of RI+Glasgow
(or VF3+Glasgow) grows faster than the one of RI (or VF3) because Glasgow
is able to solve instances which are not solved by RI (or VF3); finally, after
a few seconds, the cumulative number of solved instances of RI+Glasgow (or
VF3+Glasgow) is very close to the one of Glasgow as the delay of 0.1 s due to
the run of RI (or VF3) is negligible.

Of course, this very simple approach could be enhanced by considering more
solvers (including more variants of each solver, using different ordering heuristics,
for example). In this case, we may gather all solvers in a portfolio, and use an
algorithm selection approach to dynamically select from the portfolio the solver
which is expected to perform best for each new SI instance to solve, as proposed
by Kotthoff et al. in [14].

7 Conclusion

This study has shown that there are many very easy SI instances which are
solved in a few milliseconds by modern solvers, and that some of these instances
may involve very large graphs with thousands of nodes. However, there are still
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small instances which cannot be solved within a reasonable amount of time by
any of these solvers. It is important to evaluate solvers on these hard instances
too as they do appear in real applications, though they are less frequent than
easy instances.

A promising research direction for solving hard instances is to exploit multi-
ple cores, and parallel SI solvers have been introduced in [1,3,16], for example.
A special attention should be paid on performance measures used to evaluate
these approaches. Indeed, measuring an average speed-up between a sequential
and a parallel solver is not very meaningful when considering NP-complete prob-
lems because speed-ups are very different from an instance to another, and do
not depend on instance sizes: for easy instances, speed-ups are usually very low,
whereas for hard instances it is not rare to have super-linear speed-ups. Also,
really hard instances are not solved within a reasonable amount of time, and
speed-ups cannot be computed in this case. Let us illustrate this point on the
parallel version of Glasgow (using 32 cores) described in [1]. On easy instances
(solved in less than 1 s by sequential Glasgow), the speed-up varies between 0.1
and 32, and the average speed-up is close to 1. On hard instances (that are not
solved by sequential Glasgow within 1 s, but are solved within 1000 s), the speed-
up varies between 1 and 583, and the average speed-up is 14. However, parallel
Glasgow is able to solve instances which are not solved by sequential Glasgow
within 1000 s and, if we include these instances, the average speed-up becomes
greater than 19 (this is a lower bound of the speed-up as we only have a lower
bound of the time of sequential Glasgow for unsolved instances). This shows us
that the average speed-up does not give a clear picture of solver performance.
Better insights are given by scatter plots that compare times on a per instance
basis (as done in Fig. 5), or by the aggregate speed-up measure introduced in
[12], which measures timeout ratio for solving a same number of instances. For
instance, Sequential Glasgow solves 14, 356 instances within 1000 s, and the hard-
est of these instances is solved in 939 s. Parallel Glasgow solves 14, 356 instances
within a timeout of 19 s, and this gives an aggregate speed-up of 939/19 = 49.
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Abstract. The graph edit distance (GED) is a flexible graph dissimilar-
ity measure widely used within the structural pattern recognition field.
In this paper, we present GEDLIB, a C++ library for exactly or approx-
imately computing GED. Many existing algorithms for GED are already
implemented in GEDLIB. Moreover, GEDLIB is designed to be easily
extensible: for implementing new edit cost functions and GED algo-
rithms, it suffices to implement abstract classes contained in the library.
For implementing these extensions, the user has access to a wide range of
utilities, such as deep neural networks, support vector machines, mixed
integer linear programming solvers, a blackbox optimizer, and solvers for
the linear sum assignment problem with and without error-correction.

Keywords: Graph edit distance · Open source library · C++

1 Introduction

Because of their expressiveness and versatility, labeled graphs are widely used to
model various kinds of objects such as molecules, street networks, and images.
Many pattern recognition problems defined over these domains presuppose the
availability of a (dis-)similarity measure for labeled graphs. Despite the fact that
its exact computation is NP-hard [31], one of the most widely used measures
is the graph edit distance (GED). Given two labeled graphs G and H, it is
defined as GED(G,H) := minP∈Ψ(G,H) c(P ), where Ψ is the set of all edit paths
between G and H and c(P ) denotes the cost of an edit path P . An edit path
is a sequence of edit operations that transforms G into H. There are six edit
operations: substituting a node or an edge in G by a node or an edge in H,
deleting an edge or an isolated node from G, and inserting an edge or an isolated
node into H. Each edit operation comes with an associated non-negative edit cost
defined in terms of the node or edge labels involved in the operation; and the
cost of an edit path is defined as the sum over the costs of its edit operations.

Over the past years, some exact and a lot of approximate algorithms for
computing GED have been suggested. As the hardness of GED does not allow
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for a theoretical evaluation of approximate algorithms (the existence of any
α-approximation algorithm for GED would imply that the graph isomorphism
problem, a prime candidate for an NP-intermediate problem, is in P), these
algorithms are typically evaluated empirically. In order for such a comparison
to be fair, it is highly desirable that the compared algorithms be implemented
within the same environment. However, to the best of our knowledge, no software
is available that can be used for this purpose.

In this paper, we present the C++ template library GEDLIB which is
intended to fill this gap. GEDLIB is available on GitHub:

https://github.com/dbblumenthal/gedlib

In its current version, GEDLIB contains implementations of 24 different
GED algorithms and 9 different edit cost functions. Further algorithms and edit
costs can be implemented easily by implementing abstract classes contained in
GEDLIB. For this, the user has access to standard libraries for blackbox opti-
mization, mixed integer linear programming, the linear sum assignment problem
with and without error-correction, deep neural networks, and support vector
machines. GEDLIB provides a parser to load graphs given in the GXL file for-
mat. Alternatively, graphs with user-specified node ID, node, and edge label
types can be constructed from within GEDLIB. Internally, GEDLIB uses the
Boost Graph Library [22] for representing the graphs and Eigen [19] for matrix
operations.

The remainder of this paper is organized as follows: In Sect. 2, the overall
architecture of GEDLIB is sketched. In Sect. 3, the user interface is presented.
In Sects. 4 and 5, the abstract classes for implementing GED algorithms and edit
cost functions are described. Section 6 concludes the paper. Details, examples,
and installation instructions can be found in the documentation.

2 Overall Architecture

Figure 1 shows the overall architecture of GEDLIB in a UML diagram. The entire
library is contained in the namespace ged. The template parameters UserNodeID,
UserNodeLabel, and UserEdgeLabel correspond to the types of the node IDs,
the node labels, and the edge labels of the graphs provided by the user.

– The class template ged::GEDEnv provides the user interface. Via its public
member functions, graphs can be constructed or loaded from GXL files, edit
costs can be set, the algorithms implemented in GEDLIB can be run, and
the results of the runs can be obtained. For users who do not want to provide
extensions for GEDLIB, it suffices to get familiar with this class template.

– The abstract class template ged::GEDMethod provides a generic interface for
implementing algorithms that exactly or approximately compute GED.

– The abstract class templates ged::LSBasedMethod , ged::MIPBasedMethod ,
and ged::LSAPEBasedMethod are derived from the generic interface provided
by ged::GEDMethod . They yield more specialized interfaces for implementing

https://github.com/dbblumenthal/gedlib
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GEDLIB

ged::GEDEnv

UserNodeID,UserNodeLabel,UserEdgeLabel

ged::GEDData

UserNodeLabel,UserEdgeLabel

ged::EditCosts

UserNodeLabel,UserEdgeLabel

ged::GEDMethod

UserNodeLabel,UserEdgeLabel

ged::LSBasedMethod

UserNodeLabel,UserEdgeLabel

ged::MIPBasedMethod

UserNodeLabel,UserEdgeLabel

ged::LSAPEBasedMethod

UserNodeLabel,UserEdgeLabel

ged::MLBasedMethod

UserNodeLabel,UserEdgeLabel

Fig. 1. The overall architecture of GEDLIB shown in a UML class diagram.

methods using local search, mixed integer linear programming, and transfor-
mations to the linear sum assignment problem with error-correction.

– The abstract class template ged::MLBasedMethod is derived from the inter-
face ged::LSAPEBasedMethod . It can be used to implement algorithms that
use deep neural networks or support vector machines for transforming GED
to the linear sum assignment problem with error-correction.

– The class template ged::GEDData contains the normalized input data on
which all GED algorithms contained in GEDLIB operate. Via the public
member functions of ged::GEDData, derived classes of ged::GEDMethod have
access to the graphs that have been added to the environment and to the edit
cost functions selected by the user.

– The abstract class template ged::EditCosts provides a generic interface for
implementing edit cost functions.

3 User Interface

In Fig. 2, the class template ged::GEDEnv, which constitutes the user inter-
face of GEDLIB, is displayed in detail. By calling add graph(), add node(),
and add edge(), the user can add labeled graphs to the environment.
Alternatively, load gxl graphs() can be used to load graphs given in
the GXL file format. For this, the template parameter UserNodeID must
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be set to ged::GXLNodeID a. k. a. std::string, and the template param-
eters UserNodeLabel and UserEdgeLabel must be set to ged::GXLLabel
a. k. a. std::map<std::string,std::string>.

Calls to set edit costs() add edit cost functions to the environment. The
user can either select one of the predefined edit cost functions or use her own
implementation of ged::EditCosts . Calls to init() initialize the environ-
ment eagerly or lazily. If eager initialization is chosen, all edit costs between
graphs contained in the environment are precomputed. Otherwise, the edit
cost functions are evaluated on the fly. The member function set method()
selects one of the GED algorithms available in GEDLIB. Some algorithms
accept options, which can be passed to set method() as a string of the form
"[--<option> <arg>] [...]". Calls to init method() initialize the selected
method for runs between graphs contained in the environment, and calls to
run method() run the method between two specified graphs. The results of the
runs (lower and upper bounds, runtimes, etc.) can be accessed via various getter
member function.

ged::GEDEnv

... // misc. variables

+ add graph() // adds a graph to the environment
+ add node() // adds a node to a previously added graph
+ add edge() // adds an edge to a previously added graph
+ load gxl graphs() // loads graphs given as GXL files
+ set edit costs() // selects the edit costs
+ init() // initializes the environment
+ set method() // selects the GED method
+ init method() // initializes the selected GED method
+ run method() // runs the selected GED method
... // misc. member functions

UserNodeID,UserNodeLabel,UserEdgeLabel

Fig. 2. The user interface ged::GEDEnv.

4 Abstract Classes for Implementing GED Algorithms

Generic Interface. Figure 3 details the abstract class template ged::GEDMethod ,
which provides the generic interface for implementing GED. The interface is
defined by the virtual member functions starting with the prefix ged . We here
describe only the most important virtual member functions; the remaining ones
are detailed in the documentation: ged run () runs the method between two
input graphs, ged init () initializes the methods for the graphs that have been
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ged::GEDMethod

... // misc. variables

- ged run () // runs the method between two graphs
- ged init () // initializes the method for the graphs in ged data

- ged parse option () // parses the options
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 3. The generic interface ged::GEDMethod .

added to the environment, and ged parse option () parses the options of the
method. The following existing algorithms already implemented in GEDLIB are
directly derived classes of ged::GEDMethod : ged::BranchTight [2], ged::HED
[17], ged::Partition [32], ged::Hybrid [32], ged::SimulatedAnnealing [30],
ged::BranchCompact [32], ged::AnchorAwareGED [14].

Interface for Methods Based on the Linear Sum Assignment Problem with Error-
Correction. A popular approach for approximating GED is to use transforma-
tions to the linear sum assignment problem with error-correction (LSAPE). An
instance of LSAPE consists of a cost matrix C = (ci,k) ∈ R

(n+1)×(m+1)
≥0 . The

task is to compute a mapping π from rows to columns, such that each row
except for n + 1 and each column expect for m + 1 is covered exactly once and
C(π) :=

∑
(i,k)∈π ci,k is minimized. LSAPE can be solved optimally in cubic

time [10]; in GEDLIB, we use the LSAPE toolbox [8] for solving LSAPE.
If LSAPE is used for approximating GED(G,H), n and m are set to |V G|

and |V H |, the first |V G| rows of C are associated with the nodes of G, the first
|V H | columns of C are associated with the nodes of H, and the last rows and
columns are associated with dummy nodes used for codifying node insertions
and deletions. With this setup, each LSAPE solution π corresponds to a node
map between G and H, which, in turn, induces an edit path and hence an upper
bound for GED(G,H) [6]. LSAPE based heuristics for GED try to achieve tight
upper bounds by encoding structural information of the input graphs into C.
Moreover, some of them construct C such that minπ C(π) lower bounds GED.

Figure 4 shows the abstract class template ged::LSAPEBasedMethod , which
provides the interface for implementing heuristics of this kind. The interface
is defined by the virtual member functions starting with the prefix lsape .
The most important one is lsape populate instance () , which populates
the LSAPE instance C. The following algorithms implemented in GEDLIB
are directly derived classes of ged::LSAPEBasedMethod : ged::Bipartite [26],
ged::Branch [2], ged::BranchFast [2], ged::Node [21], ged::BranchUniform
[32], ged::Ring [3], ged::Subgraph [12], ged::Walks [18]. Additionally, all
derived classes of ged::LSAPEBasedMethod can be run with the node centralities
suggested in [27].
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ged::LSAPEBasedMethod

... // misc. variables

- lsape populate instance () // populates the LSAPE instance
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 4. The interface ged::LSAPEBasedMethod for methods based on LSAPE.

Interface for Methods Based on Machine Learning. Recently, it has been sug-
gested to use deep neural networks or support vector machines for carrying out
the transformation from GED to LSAPE. Given two graphs G and H, feature
vectors are constructed for all node substitutions, deletions, and insertions, and
the matrix C is defined as ci,k := 1 − p�(i, k). Here, p�(i, k) is the confidence
of a machine learning framework (either a deep neural network or a support
vector machine) that the feature vector associated to the node edit operation
corresponding to row i and column k is contained in an optimal node map.

Figure 5 details the abstract class template ged::MLBasedMethod , which
provides the interface for algorithm adopting this paradigm. For implement-
ing the interface, it suffices to override the virtual member functions start-
ing with the prefix ml . The most important ones are the three virtual mem-
ber functions of the form ml populate * feature vector () , which construct
the feature vectors associated to the node edit operations. Derived classes of
ged::MLBasedMethod do not have to implement the machine learning frame-
works, as ged::MLBasedMethod offers support for artificial deep neural net-
works (using FANN [24]) and support vector machines (using LIBSVM [13]).
The following algorithms implemented in GEDLIB are directly derived classes
of ged::MLBasedMethod : ged::BipartiteML [28], ged::RingML [4].

ged::MLBasedMethod

... // misc. variables

- ml populate substitution feature vector () // substitution features
- ml populate deletion feature vector () // deletion features
- ml populate insertion feature vector () // insertion features
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 5. The interface ged::MLBasedMethod for LSAPE based methods that use machine
learning techniques for populating their LSAPE instances.
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Interface for Methods Based on Mixed Integer Programming. Another approach
for exactly or approximately computing GED is to rephrase the problem of com-
puting GED(G,H) as a mixed integer programming (MIP) problem. GED(G,H)
can then be computed exactly by calling an MIP solver. Alternatively, lower
bounds for GED(G,H) can be obtained by solving the linear programming (LP)
relaxations of the MIP formulations.

Figure 6 shows the abstract class template ged::MIPBasedMethod , which
provides the interface for GED algorithms that use MIP formulations. The vir-
tual member functions that define the interface start with the prefix mip . The
most important one is mip populate model () , which constructs the employed
MIP formulation and must be overridden by all derived classes. In GEDLIB,
we use Gurobi [20] as our MIP and LP solver. Gurobi is commercial soft-
ware but offers a free academic license. For users who cannot obtain a license
for Gurobi, the installation script distributed with GEDLIB offers the option
to install GEDLIB without ged::MIPBasedMethod and its derived classes.
The following algorithms implemented in GEDLIB are directly derived classes
of ged::MIPBasedMethod : ged::F1 [23], ged::F2 [23], ged::CompactMIP [6],
ged::BLPNoEdgeLabels [21].

ged::MIPBasedMethod

... // misc. variables

- mip populate model () // constructs the MIP formulation
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 6. The interface ged::MIPBasedMethod for methods based on MIP.

Interface for Methods Based on Local Search. Another popular approach for
upper bounding GED is to use variants of local search to systematically vary
a previously computed or randomly generated node map, such that the cost
of the induced edit path decreases. Figure 7 shows the abstract class template
ged::LSBasedMethod , which provides the interface for algorithms using local
search. The prefix ls marks the virtual member functions defining the inter-
face. The most important one is ls run from initial solution () , which runs
the local search from an initial node map. The following algorithms implemented
in GEDLIB are directly derived classes of ged::LSBasedMethod : ged::IPFP [5,
9,11], ged::BPBeam [16,29], ged::Refine [31]. Moreover, ged::LSBasedMethod
provides support for running all derived classes with parallel multi-start as sug-
gested in [15], and stochastic generators as suggested in [7].
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ged::LSBasedMethod

... // misc. variables

- ls run from initial solution () // improves initial node map
... // misc. member functions

UserNodeLabel,UserEdgeLabel

Fig. 7. The interface ged::LSBasedMethod for methods based on local search.

5 Abstract Class for Implementing Edit Costs

Figure 8 shows the abstract class template ged::EditCosts , which provided
the interface for implementing edit cost functions. The virtual member func-
tions * del cost fun() compute the cost of deleting a node or an edge with a
given label, the functions * ins cost fun() compute the insertions costs, and
the functions * rel cost fun() compute the costs for relabeling a node or an
edge. The functions vectorize * label() return vector representations of the
node and the edge labels, which are required by some methods. In GEDLIB, edit
costs are available for the datasets aids, fingerprint, grec, letter, muta-
genicity, and protein from the IAM Graph Database [25], for the datasets
acyclic, alkane, pah, and mao from GREYC’s Chemistry Dataset (available
at https://brunl01.users.greyc.fr/CHEMISTRY/), and for the dataset cmu-ged
from the Graph Data Repository for Graph Edit Distance [1]. We also provide
constant edit cost functions that can be used with any data.

ged::EditCosts

+ node del cost fun() // computes node deletion cost
+ node ins cost fun() // computes node insertion cost
+ node rel cost fun() // computes node relabelling cost
+ edge del cost fun() // computes edge deletion cost
+ edge ins cost fun() // computes edge insertion cost
+ edge rel cost fun() // computes edge relabelling cost
+ vectorize node label() // computes vector representation of node label
+ vectorize edge label() // computes vector representation of edge label

UserNodeLabel,UserEdgeLabel

Fig. 8. The interface ged::EditCosts for implementing edit costs.

https://brunl01.users.greyc.fr/CHEMISTRY/
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6 Conclusions and Future Work

In this paper, we have presented GEDLIB, a C++ library for GED computations.
GEDLIB currently implements 24 different GED algorithms and 9 different edit
cost functions designed for datasets which are widely used in the research com-
munity. In the future, we will provide Python and MATLAB bindings for better
usability. Moreover, we would like to encourage authors of algorithms and edit
costs that are not implemented in GEDLIB to commit their work to GEDLIB.
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Abstract. Graph edit distance has become an important tool in structural pat-
tern recognition since it allows us to measure the dissimilarity of attributed
graphs. One of its main constraints is that it requires an adequate definition of
edit costs, which are application dependent. These costs eventually determine
which graphs are considered similar or not in a concrete application. Several
methods have been presented to learn these costs to avoid manually setting
them. They are based on different techniques ranging from probabilistic methods
to neural networks or known optimisation algorithms. The aim of this paper is
twofold. On the one hand, we list them and summarize their features. On the
other hand, we empirically analyse the behaviour of the proposed optimisation
functions. We conclude that these functions return different edit costs and
therefore, they have to be considered application dependent and not only a
technicality of the method, as it has been considered so far.

Keywords: Graph edit distance � Learning edit costs � Optimisation function

1 Introduction

Graph edit distance [1–5] is one of the most well-known and used distance between
attributed graphs. It is defined as the minimum amount of required distortion that
transforms one graph into another. To this end, a number of distortion or edit opera-
tions consisting of deletion, insertion, and substitution of nodes and edges are defined.
The basic idea is to assign an edit cost to each edit operation according to the amount of
distortion that it introduces in the transformation; this allows to quantitatively evaluate
the edit operations.

However, the structural and semantic dissimilarity of graphs is only correctly
reflected by graph edit distance if the underlying edit costs are defined appropriately.
For this reason, several methods have been presented to learn these edit costs. Nev-
ertheless, the main features and differences of these methods have only been com-
mented in the introduction of some papers but have never been summarised and put
together in only one table.

The aim of this paper is twofold. On the one hand, we present a table showing the
main features of eleven different methods that have been presented. On the other hand,
we show, through a simple example, that the different proposed optimisation functions
make the learning algorithm to return different edit costs.
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Until now, the scientific community considered that the edit costs were application
dependent and therefore, they would have to be learned through examples generated by
the same application (or database) that afterwards is going to be applied in pattern
recognition. In addition, the optimisation function has to be considered application
dependent.

This paper is structured as follows; Sect. 2 defines the attributed graphs and the
graph edit distance. Section 3 summarises ten learning methods and their optimisation
functions. Section 4 shows three optimisation functions given different graph edit
distance parameters. Finally, Sect. 5 concludes the paper.

2 Attributed Graphs and Graph Edit Distance

Suppose we have a pair of graphs, G and G0. Also suppose the ith node in G is
represented as Gi and the ath node in G0 is represented as G0

a. Similarly, the edge
between the Gi node and the Gj node in G is represented as Gi;j. And finally, the edge
between G0

a node and the G0
b node in G0 is represented as G0

a;b.
The graph edit distance between two attributed graphs consists in finding the best

combination of edit operations that transforms one graph into another. Three operations
are considered on the nodes and on the edges: Substitution, deletion and insertion. To
quantify the distortion of each edit operation, a cost is assigned to them depending on the
attributes on the involved nodes or edges. Cn

s i; að Þ is the cost of substituting the node Gi

by the node G0
a, C

n
D ið Þ is the cost of deleting the node Gi and Cn

I að Þ is the cost of
inserting the node G0

a. Similarly, Ce
s i; a; j; bð Þ is the cost of substituting the edge Gi;j by

the edge G0
a;b, C

e
D i; jð Þ is the cost of deleting the edge Gi;j and Ce

I a; bð Þ is the cost of
inserting the edge G0

a;b. Thus, the graph edit distance is defined as the transformation
from one graph into another, through the edit operations, that obtains the minimum cost.

This graph transformation can be defined through a node-to-node mapping f
between nodes of both graphs. In this way, we represent the mapping from node Gi to
node G0

a as a ¼ f ið Þ. We suppose both graphs have the same number of nodes since
they have been expanded with new nodes that have a concrete attribute. We call these
new nodes as Null. Note, the mapping between edges is imposed by the mapping of the
nodes that these edges connect. Given the mapping a ¼ f ið Þ from node Gi to node G0

a,
we say that represents a node substitution if both nodes are not Null. Contrarily, if node
G0

a is a Null and Gi is not, we say that it represents a deletion. Finally, if node Gi is a
Null and G0

a is not, we say that it represents an insertion. Similarly happens with the
edges. The case that either nodes or both edges are Null is not considered since it is
always defined with zero cost.
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3 Learning Methods and Objective Functions

Table 1 shows the published methods related on learning the edit costs. There are ten
papers from 2005 to 2018. The objective function is the most general term for any
function to be optimized during training. The aim of the learning algorithm is to deduce
the parameters of this function such this function reaches the global minimum. In some
cases, the objective function is composed of the cost function plus a loss function. The
cost function is the real aim of the optimisation process and the loss function is added
to the objective function to have some control on the parameters to be learned.

Thus, Eq. (1) shows the general learning paradigm given the objective function of
these methods where the parameters to be learned are the edit costs on nodes and edges,

_Cn
s ;

_Cn
D;

_Cn
I ;

_Ce
s ;

_Ce
D;

_Ce
I

� �

¼ max
Cn
s ;C

n
D;C

n
I ;C

e
s ;C

e
D;C

e
I

Objective function Cn
s ;C

n
D;C

n
I ;C

e
s ;C

e
D;C

e
I

� � ð1Þ

The three most used objective functions for graph edit distance learning are the
Dunn index [22], the recognition ratio and the correspondence accuracy.

In the first two of these objective functions, it is assumed that there is a database
composed of classified graphs (a set of graphs that an oracle has imposed they belong
to a class). Roughly speaking, the Dunn index is the ratio between the minimum of the
distances between all the graphs that are classified at the same class and the maximum
of the distances between all the graphs that are classified as having different classes.
That is, it represents how much the classes are separated, considering the learned
distance. The classification ratio informs of the number of correctly classified graphs
normalised by the number of graphs in the test set.

In the correspondence accuracy case, the database of graphs is defined in a different
way. Each register in the database is not composed of a graph and its class but a pair of
graphs and their node-to-node correspondence. This correspondence has been imposed
by an oracle. Then, for learning purposes, the classes of the graphs are not used. In [29],
they present some public databases having this type of registers. The correspondence
accuracy is the number of times a node-to-node mappings is the same than the one
imposed by the oracle normalised by the number of node-to-node mappings.

Considering the edit costs, learning methods can be classified in two classes. The
first class is composed of the methods that learn a function that represents the edit cost
through a neural network, self organizing map or probability density representation.
Thus, in the pattern recognition method, the edit costs are the output of these machine
learning methods when the input are the attributes on the nodes or edges. In this case,
the aim of the learning algorithm is to learn these functions. In Table 1, these edit costs
are represented as Fn

s ;F
n
D;F

n
I ;F

e
s ;F

e
D and Fe

I .
The second class is composed of the methods that learn some constants. Then, in

the pattern recognition process, the edit costs are computed through these constants and
the machine learning method is not considered any more. In Table 1, these constants
are represented as Kn

D;K
n
I ;K

e
D and Ke

I . Moreover, the substitution costs are represented
as a weighted Euclidean distance between the attributes on nodes of both graphs or
between the edges of both graphs. In this case, the machine learning method learns
these weights, which are represented as wn

s and we
s .
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Table 1. Published methods related on learning the graph edit costs

Ref. Authors Objective function Learning method

2005 [6] Neuhaus
Bunke

Average of 8
indices: Davies–
Bouldin [21]
Dunn [22]
C [23]
Goodman–Krusk
[24]
Calinski–Haraba
[25]
Rand [26]
Jaccard [27]
Fowlkes–Mallo
[28]

The method learns the weights of a Self
Organized Map (SOM) to define the
substitution, deletion and insertion costs
on nodes and edges. These costs become
the output of the SOM when the input is
the attribute of the node or the edge
Learns: Fn

s ;F
n
D;F

n
I ;F

e
s ;F

e
D;F

e
I

2007 [7] Neuhaus
Bunke

Dunn Index [22] The method learns the parameters of a
Probability Density Function (PDF) to
define the substitution, deletion and
insertion costs on nodes and edges. These
costs become the inverse of the probability
set by the PDF given the attributes of the
node or the edge
Learns: Fn

s ;F
n
D;F

n
I ;F

e
s ;F

e
D;F

e
I

2009 [8] Caetano
McAuley
Cheng
Le
Smola

Correspondence
accuracy

The method learns the weights of the
weighted Euclidean distance to define the
substitution cost on nodes and edges. The
substitution cost becomes the weighted
Euclidean distance for nodes and edges.
Insertion and deletion of nodes and edges
are not learned and assumed to be constant
Learns: wn

s ;w
e
s

2012 [9] Leordeanu
Sukthankar
Hebert

Recognition ratio The same than [8]

2015 [10] Cortés
Serratosa

Correspondence
accuracy

The method learns the deletion and
insertion costs on nodes and edges as
constants (Real numbers). The
substitution cost is assumed the Euclidean
distance between the attributes on nodes
or on edges
Learns: Kn

D;K
n
I ;K

e
D;K

e
I

2016 [11] Cortés
Serratosa

Correspondence
accuracy

The same than [8]

2017 [12] Raveaux
Martineau
Conte
Venturini

Recognition ratio The same than [8]

(continued)
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Papers [17] and [18] published in 2008 and 2013, respectively, have not been
included in the table since, although they are related to learning graph matching
parameters, are image registration oriented. Therefore, they are not general graph
matching learning algorithms. Similarly happens with [19, 20], which are dedicated to
learning or deducing the optimal correspondence through human interaction

4 Experimental Evaluation

The aim of this experimental evaluation is to show that the optimisation functions
based on the correspondence accuracy, the recognition ratio and the Dunn index
maximise at different edit cost values. Thus, the decision of which optimisation
function has to be used becomes application dependent and not only a technicity in the
learning algorithm.

Table 1. (continued)

Ref. Authors Objective function Learning method

2018 [13] Cortés
Conte
Cardot
Serratosa

Correspondence
accuracy

The method learns the substitution
functions on nodes and edges through a
Neural Network (NN). The substitution
cost is defined as the output of the NN
when the input is the attribute on the
nodes and edges. Insertion and deletion of
nodes and edges are not learned and
assumed to be constants
Learns: Fn

s ;F
e
s

2018 [14] Santacruz
Serratosa

Correspondence
accuracy

Similar to [13] but the insertion and
deletion costs on nodes and edges are also
learned. There is also a NN for insertion
and another one for deletion the nodes and
edges.
Learns: Fn

s ;F
n
D;F

n
I ;F

e
s ;F

e
D;F

e
I

2018 [15] Algabli
Serratosa

Correspondence
accuracy

The method learns the weights of the
weighted Euclidean distance to define the
substitution cost and also the deletion and
insertion costs as constants on nodes and
edges. The substitution cost is computed
as a weighted Euclidean distance in which
the weights have been learned. The
insertion and deletion costs become the
learned constant (Real number)
Learns: wn

s ;K
n
D;K

n
I ;w

e
s ;K

e
D;K

e
I

2018 [16] Martineau
Raveaux
Conte
Venturini

Recognition ratio The method learns the weights on each
node or edge. These weights depend on
how important are the nodes and edges to
describe de class
Learns: weights on nodes and edges

Learning the Graph Edit Costs: What Do We Want to Optimise? 29



The experimental evaluation has been carried out using four different databases:
Letter_High, Letter_Med, Letter_Low and House_Hotel [29]. The main characteristic
of them is that their registers are not only composed of a graph and its class, but they
are composed of a pair of graphs and a ground-truth correspondence between them, as
well as their class. This register structure is useful to analyse and develop graph
matching algorithms and to learn their parameters in a broad manner.

The Letter_High, Letter_Med and Letter_Low databases consists in a set of graphs
that represent artificially distorted letters of the Latin alphabet. For each class, a pro-
totype line drawing was manually constructed. These prototype drawings are then
converted into prototype graphs by representing the lines through undirected edges, and
the ending points of such lines through nodes. Attributes on nodes are the bi-
dimensional position of the stroke junctions and edges do not have attributes. The three
variants of the database depend on the degree of distortion with respect to the original
prototype (adding, deleting and moving nodes and edges). The House_Hotel database
consist of 111 graphs corresponding to a toy house and 101 graphs corresponding to a
hotel. Each frame of these sequences has the same 30 hand-marked salient points
identified and labelled with some attributes. Therefore, nodes in the graphs represent
the salient points, with their position in the image plus a 60-size feature vector using
Context Shape as attributes. Edges are imposed by the Delaunay triangulation.

Figures 1, 2, 3 and 4 show the correspondence accuracy, the classification ratio and
the Dunn index of all the graphs in the test set. Moreover, they also show the mean of
these three optimisation functions computed on the Letter_High, Letter_Med, Let-
ter_Low and House_Hotel databases. In the four cases, we have only computed these
functions given several values of the insertion and deletion costs on nodes and edges.
The substitution costs have been computed as the Euclidean distance (all the weights on
the attributes have the same value). The node insertion costs and the edge insertion costs
have been set equal to node deletion costs and the edge deletion costs, respectively.

The first we realise is that most of the surfaces have several local maximum values,
which makes difficult the optimisation algorithm to find the global maximum of the
function. Moreover, these local maximum values and the global ones in the three
optimisation functions (correspondence accuracy, the classification ratio and the Dunn
index) do not appear in the same positions of the insertion and deletion values. Finally,
the maximum of the mean of these functions (lower right plot) does not appear in any
of the maximum of the three functions, since they are completely different. Never-
theless, in general, the mean seems to be smoother than the optimisation functions and
therefore, usually easier to find the global maximum using a suboptimal algorithm.
Note that the method in [6] is based on optimising the mean of eight optimisation
algorithms and we assume it was done in this way due to this feature.

As previously commented, the difference between the three Letter databases is the
increasing noise applied on the graphs. Thus, we were tempted to find a relation
between the maximisation points and the amount of noise. For instance, when the noise
increases, the optimal insertion and deletion costs also tend to increase. Nevertheless,
we have not been able to find these behaviours.

Finally, all combinations of insertion and deletion costs in the analysed domain on
nodes and edges in the House_Hotel database return a classification ratio of one.
Nevertheless, the correspondence accuracy and the Dunn index are strongly dependent
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Fig. 1. Correspondence accuracy, classification ratio, Dunn index and the mean of these
functions applied to the Letter_High database and given several combinations of insertion and
deletion costs on nodes and edges.

Fig. 2. Correspondence accuracy, classification ratio, Dunn index and the mean of these
functions applied to the Letter_Med database and given several combinations of insertion and
deletion costs on nodes and edges.
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Fig. 3. Correspondence accuracy, classification ratio, Dunn index and the mean of these
functions applied to the Letter_Low database and given several combinations of insertion and
deletion costs on nodes and edges.

Fig. 4. Correspondence accuracy, classification ratio, Dunn index and the mean of these
functions applied to the House_Hotel database and given several combinations of insertion and
deletion costs on nodes and edges.
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on these costs. Thus, in this case, optimising on the classification ratio seems not to
have much sense. Thus, this other example also strengthens the idea that the optimi-
sation function has to be considered application dependent.

5 The Conclusions

Edit costs are application dependent and frequently set manually. Nevertheless, some
methods have been published to learn these edit costs. The aim of this paper is twofold.
On the one hand, we have summarised ten of these methods in only one table and
highlighted their differences. On the other hand, we have analysed the effect of the
three optimisation functions proposed by these methods, which are the correspondence
accuracy, the classification ratio and the Dunn index.

Given a simple experiment on four databases, we have concluded that the max-
imisation of the three optimisation functions return different edit costs and therefore,
the use of one of these functions has to be deeply considered and it is clearly appli-
cation dependent. Finally, in the case that we want to have a learning algorithm
independent of the optimisation function, a useful option could be to optimise the mean
of these three functions. This option has the advantage that the mean of the optimi-
sation functions appears to be smoother than the other three functions but it has the
drawback that the computational cost drastically increases.
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Abstract. In the recent years, Graph Edit Distance has awaken inter-
est in the scientific community and some new graph-matching algorithms
that compute it have been presented. Nevertheless, these algorithms usu-
ally cannot be used in real applications due to runtime restrictions.
For this reason, other graph-matching algorithms have also been used
that compute an approximation of the graph correspondence with lower
runtime. Clearly, in a real application, there is a tradeoff between run-
time and accuracy. One of the most costly part in these algorithms is
the deduction of the node-to-node mapping. We present a new graph-
matching algorithm that returns a graph correspondence without the
explicit computation of the assignment problem. This is done thanks
to a classification of the node-to-node assignment learned in a previous
training stage.

Keywords: Graph Edit Distance · Node assignment classification ·
Graph embedding · Graph matching

1 Introduction

Attributed graphs have found widespread applications in several research fields
of structural pattern recognition [1–3]. This is due to their ability to represent
structured objects through unary and binary local entities. To compare them,
several distance measures between attributed graphs have been presented [2,3].
Among them, one of the most used distances is the Graph Edit Distance [4,5].

Typically, the problem ismathematically formulated as a quadratic assignment
problem, which consists of finding the node-to-node assignment that minimizes an
objective function encoding local dissimilarities (a linear term) and structural dis-
similarities (a quadratic term). To do so, it is needed to define the cost functions
between the linear terms and also the quadratic terms, given the application at
hand. Note that a proper definition of these cost functions is crucial to achieve good
classification or recognition results. For this reason, severalmethods have been pre-
sented to learn these edit costs [6,7]. Moreover, the Graph Edit Distance has been
c© Springer Nature Switzerland AG 2019
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demonstrated to be an NP-hard problem. For this reason, several algorithms that
return a graph correspondence in polynomial time with respect to the number of
nodes at the expense of not having the certainty of being the correspondence that
minimizes the graph edit distance, have been presented [8–12].

In this paper, we present another graph matching algorithm that deduces the
graph correspondences in a sub-optimal way, as the ones commented above. The
novelty of our algorithm is that we classify the node-to-node assignments at a
first step and then there is no need of using a combinatorial optimization algo-
rithm (such as the Hungarian method [13]) to deduce the graph correspondence,
thus avoiding their computational cost.

2 Definitions

2.1 Attributed Graphs and Graph Edit Distance

We define an attributed graph G as a quadruplet G = {∑v,
∑

e, γv, γe} where∑
v = {vi|i = 1...n} is the set of n nodes and

∑
e = {ei,j |i, j ∈ 1...n} is the set

of edges connecting pairs of nodes. γv = {vi → ψi|i = 1..n} and γe = {vi →
E(vi)|i = 1..n} are functions that map the nodes and edges to their attribute
values, respectively. ψi ∈ R

m maps each node to its m local attributes and E(·)
refers to the degree of a certain node [14,15]. For simplicity, in this paper we only
consider undirected and unattributed edges. However, all the concepts presented
in this paper could be extended to directed and attributed edges.

The Graph Edit Distance (GED) [4] is a distance between two attributed
graphs G and G′. It consists of the best combination of edit operations that
transform G into G′. Three operations are considered on the local attributes
of the nodes and also on its structures: Substitution, deletion and insertion. To
quantify the degree of distortion that each edit operation introduces, a cost is
assigned to them depending on the attributes on the involved nodes or edges. A
sequence of edit operations that completely transform G into G′ is referred to
as edit path λG,G′ between G and G′. The cost of an edit path is the sum of
the costs of the edit operations included on it. Thus, the GED is defined as the
edit path from one graph into another that obtains the minimum cost under all
possible edit paths TG,G′ between G and G′. Formally:

GED(G,G′) = min
λG,G′∈TG,G′

Cost(G,G′, λG,G′) (1)

The edit path λG,G′ can be defined through a node-to-node matching f between
nodes of both graphs where f(vi) = v′

a. Graphs can be enlarged by null nodes
to assure having the same order.

2.2 Approximating the Graph Edit Distance

The graph-matching algorithms that return the GED are based on exploring all
the combinations of correspondences f between G and G′ and selecting the one
with the minimum cost. However, several approaches have appeared to reduce
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the computational complexity of the GED computation [9,16–18] at the expense
of returning a sub-optimal correspondence. Usually, these algorithms are based
on two main steps:

In the first step, a cost matrix is filled with the edit cost between all com-
binations of the local structures of both graphs. The computational cost of this
step is approximated by O(s×n2), where s is the computational cost of mapping
the local structures.

In the second step, a node-to-node matching f is found. The problem at
hand is seen as a minimization of the sum of the linear assignation given the
cost matrix. Thus, the computational cost of this second step is O(n3) or O(n2)
depending on whether the matching is deduced by the Bipartite graph match-
ing [9,18], or the Greedy edit matching [8,14,16,17], respectively. In the case of
the Bipartite graph matching, it is usually solved through the Munkres or Jonker-
Volgenant algorithms [13,19]. In another case, the matching between nodes f is
obtained through an algorithm that iteratively selects the minimum value per
row and discards the selected columns for the remaining rows.

3 Learning Graph Matching

We propose a sub-optimal graph matching algorithm which avoids the second
step in the classical sub-optimal graph matching algorithms (see Sect. 2.2). This
is because the second part turns out to be more expensive than the first part,
from the computational time point of view. In the next section, we list the known
methods that learn the edit costs, from which our method is inspired.

3.1 Learning the Edit Costs and Graph Embedding

Several methods have been presented to learn the edit costs based on supervised
machine learning techniques, which can be divided in two main groups. The ones
that return a constant on the edit operations [20–24], and the other ones that
define the edit costs as functions. For instance, in [25], they use a probabilistic
model of the distribution of graph edit operations. Another paper is based on a
self-organizing map model [26] in which the edit costs are the output of a Neural
Network. In both papers, the learning set is composed of classified graphs and
the edit costs are optimized with regard to Dunn’s index [27]. Recently, two
new papers assume the cost matrix could filled as the output of a supervised
machine learning model. In [7], the authors use a Neural Network to learn only
the substitution costs (no insertion nor deletion operations are allowed). And
in [6], a general framework is presented to learn and define this costs.

3.2 From Edit Costs Estimation to Node Assignment Classification

Inspired by methods such as the ones in [6,7], we propose a supervised machine
learning model that splits the node-to-node assignments in two classes, depend-
ing whether the learning database considers that they have to be mapped in f
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or not. Note that in [6,7], the learning algorithms deduce edit costs instead of
discerning between two classes. The key idea of our model is to decide if a node
in G is mapped to a node in G′ using a classifier. Then, the classes mapped or
non-mapped are assigned considering the output of a previously trained classifier.
Note that a node could remain unmapped in f if it is classified as non-mapped
in all cases. We treat this particular case as a deletion or an insertion of the
corresponding node.

Our method is independent of the classification method (Support Vector
Machine, K-Nearest Neighbours, Neural Network, etc.), however, in any case
we need to transform each node-to-node mapping into a vector that becomes
the input of the classifier. Thus, we propose to embed each matching into
a vector, similar as proposed in [7]. In this case, the embedded representa-
tion of a mapping between two nodes vi and v′

a of G and G′, is xvi→v′
a

=
[γv(vi), γe(vi), γ′

v(v′
a), γ′

e(v
′
a)] ∈ R

(m+1)·2.
Our matching algorithm is shown in Algorithm1. It is a greedy algorithm

that goes across all nodes vi ∈ G and, for each of them, deduces the first node
v′

a ∈ G′ that can be mapped to vi. Note that this strategy avoids: (a) The
explicit computation of the graph correspondences in the second step of the
classical sub-optimal graph matching algorithms. (b) The whole computation
of the cost matrix in the first step of the classical sub-optimal graph matching
algorithms. Note that in our case, instead of having a cost matrix, we have a
classification matrix.

Nevertheless, it is important to remark that the model does not return a
distance but only a graph correspondence. Moreover, the performance of the
model depends on the quality of the classifier.

Algorithm 1. Graph matching based on node assignment classification.
Data: graph G and graph G′

Result: matching f
1 f = empty node-to-node correspondence
2 forall the vi in G do
3 forall the v′

a in G′ and not in f do
4 x = embed(vi → v′

a)
5 y = class predictor(x)
6 if y = mapped then
7 f(vi) = v′

a

8 break loop
9 end

10 end
11 end
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Figure 1 (on the left) shows a pair of graphs (blue and red) and the optimal
graph correspondence (green arrows), edges do not have attributes and the node
edit cost is the distance between attributes. In the center of Fig. 1 the cost matrix
computed in the first step of a sub-optimal graph-matching algorithm (Sect. 2.2)
is shown. Finally, Fig. 1 (on the right) shows the outputs of the classifier (T:
mapped or F: non-mapped) by our proposed algorithm. Grey cells are the node
pairs that our algorithm needs to analyze. In our example, only 7 values have
been computed. Being 4 the minimum and 10 the maximum number in the worst
case (n and n(n + 1)/2, respectively, where n is the number of nodes).

Fig. 1. Left: A pair of graphs (blue and red) and the optimal correspondence (green
arrows). Centre: The cost matrix. Right: The computed classes (T: mapped or F: non-
mapped). Highlighted in green: Node-to-node mappings. Grey: Computed values (nodes
are processed consecutively from 1 to 4). (Color figure online)

3.3 Training the Classifier

In supervised machine learning, databases entries are composed of an element
and its expected outputs. In our case, an entry p in the database is composed
of a pair of graphs (Gp, Gp′) and their ground-truth correspondence f̂p. These
correspondences f̂p have been deduced by an external system (typically a human
expert) and they are considered to be the best mappings for our learning pur-
poses. The aim of the learning method is to define a model that, given a pair of
nodes, returns the class mapped when the two nodes are mapped in the ground-
truth, and non-mapped otherwise.

To do so, we define two sets of node-to-node mappings: The one with node
pairs that have to be mapped according the ground-truth correspondences and
the set of node pairs assumed they do not have to be mapped. Assuming that the
ground-truth correspondences are bijective functions, each node of G is mapped
to a single node of G′, while it has not to be mapped to the rest of nodes of G′.
This means that for each node-to-node mapping classified as mapped, there are
n − 1 node-to-node mappings classified as non-mapped, where n is the order of
the graphs. In order to prevent imbalance problem, the node-to-node mappings
in mapped are repeated n − 1 times when we feed the training algorithm.
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4 Experimental Evaluation

In this section, we show the performance of our graph-matching algorithm in
terms of accuracy and runtime. To do so, we compare our results to different
existing approaches in the literature. In Sect. 4.1, we describe the databases
used in our experiments while in Sect. 4.2, we present the computed accuracy
and runtime. Finally, in Sect. 4.3, we evaluate the performance of our method
using synthetically generated graphs to analyze how the graph order affects our
model. Experiments were conducted using MATLAB 2018 on a Windows 10,
with an Intel i5 processor at 1.6 GHz and 8 GB of RAM.

4.1 Database Description

We used the House-Hotel [28] and a database synthetically generated by the
method in [29]. The House-Hotel database [28] consists of two sequences of frames
showing two computer modeled objects, 111 frames of a House and 101 frames
of a Hotel moving and rotating on its own axis throughout the scene. Each frame
has 30 salient points manually labelled. Each salient point represents a graph
node and it is attributed by 60 Context Shape features. The salient points has
been triangulated by Delaunay triangulation according to its coordinates to build
the edges. Since the salient points are manually labelled, we know the ground-
truth correspondence between the nodes of the graphs. As more separated are
the frames that represents each graph, the differences between graphs increase
and consequently, more difficult is the graph matching process. We performed
different experiments changing the number of frames of separation between the
frames in the video sequence. For each experiment, we built three sub-sets of
graph pairs (train, validation and test).

The synthetic database was composed of several sets of graphs that had the
same order. We generated different pairs of graph prototypes inspired by the
method detailed in [29]. Nodes has four Integer attributes randomly generated
in a range from 0 to 999. Edges are unattributed and it was imposed a probability
of 20% for each pair of nodes to be connected by an edge. Next, a collection of
pairs of graphs has been generated by distorting original prototypes adding some
Gaussian noise (Standard deviation: 500) to the last attribute of each node.

4.2 Graph Matching Performance

We analyzed the graph matching accuracy and the time spent to perform it.
The matching accuracy is defined as the number of node-to-node mappings in
the deducted correspondences that are equal to the node-to-node mappings in
the ground-truth correspondences, normalized by the graph order.

Our method was implemented with two different classifiers: (a) A Neural
Network with one hidden layer that has 60 neurons and an output layer with
two neurons (a neuron per class: mapping and non-mapping). (b) A Quadratic
Support Vector Machine, which classifies the node-to-node mappings among the
two classes: mapping and non-mapping.
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Moreover, we compared our approach to four graph-matching methods
(Table 1). In the first two methods, the cost function is defined as an edit cost
based on the Euclidean distance between the node attributes plus the difference
of the degree of these attributes, as it was done in [14,15]. In the other two, the
cost function is defined as the output of a Neural Network previously trained as
in [7].

Table 1. Graph matching methods used in this paper for comparative purposes.

Cost function Solver Complexity Year Reference

Edit Cost Hungarian O(n3) 2009 [9]

Edit Cost Greedy O(n2) 2017 [16]

Neural Network Hungarian O(n3) 2018 [7]

Neural Network Greedy O(n2) - -

Fig. 2. Matching accuracy (top) and Runtime in seconds (bottom) versus number of
frames of separation. Database: Hotel-House.

Figure 2 (top) shows the matching accuracy versus the number of frames
of separation using the Hotel-House database. When the number of frames of
separation increases, graphs tend to be more different and this fact is reflected
on the accuracy decrease. On the bottom of the Fig. 2 the mean runtime spent
to perform a matching between two graphs (in seconds) is shown. There is a
slight tendency of increasing the runtime.

In these experiments, our method shows a good balance on runtime and
matching accuracy. The accuracy is similar to the Neural Network methods [7]
but the runtime is lower. Moreover, the GED methods [9,16] are faster but return
a worse matching accuracy when the number of frames of separation increases.
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Fig. 3. Matching accuracy and speedup with respect to the GED-Hungarian versus
number of nodes per graph. Database: Synthetic.

4.3 Runtime Analysis

We analyzed the relevance of the graph order with regard to the performance of
the model in the synthetic database. Our model was the one implemented with a
Neural Network that has 6 neurons in the hidden layer. The Quadratic Support
Vector Machine was not used in this experiment due to the high computational
time necessary in the learning step.

Figure 3 (left) shows the accuracy versus the number of nodes of the graphs.
We observe that there is an important decrease in the accuracy when the order
of the graphs achieves 1500 nodes. Moreover, the methods that use edit costs
return low accuracies given any graph order.

Figure 3 (right) shows the speedup of each graph matching alg: Speedupalg =
Runtime[9]/Runtimealg, where Runtimex is the runtime of algorithm x. We
observe that the speedup of our model grows faster than any other method when
we increase the graphs order. We achieve the best results in terms of speedup
and the second best accuracy when the graphs order is 1500 nodes.

We observed that there is an extra computational cost when using a classifier
like a Neural Network instead of a cost function such as the Edit Costs due to
the number of internal operations that have to be carried out. For this reason,
when the graph order is small, there is no improvement in terms of runtime with
respect to the methods that use Edit Costs and the Hungarian solver. However,
for larger graphs, the increase of runtime due to the classifier is compensated by
the fact that we do not need to evaluate all node-to-node correspondences and
it is not necessary to solve the assignment problem either.

5 Conclusions

In this paper, we present a fast approach to deduce the graph correspondence.
Previous methods are based on two steps. In the first one, a cost matrix is filled
and in the second one, a linear solver is applied on it to deduce the graph cor-
respondence. In our proposal, we do not need this second step since the first
one, the node-to-node mapping, is directly deduced. To do so, we have used a
classifier that separates the node-to-node assignment in two classes: mapped and
non-mapped. In the experimental section, we show that our method achieves a
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good accuracy with a low matching runtime, comparing it to four existing meth-
ods. The experiments show a larger decrease of runtime, compared to the other
methods, when the graph order increases. This allows to compute matchings
between graphs with the proposed method for very large graphs in an accept-
able computational time.
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Abstract. In contrast to statistical representations, graphs offer some
inherent advantages when it comes to handwriting representation. That
is, graphs are able to adapt their size and structure to the individual
handwriting and represent binary relationships that might exist within
the handwriting. We observe an increasing number of graph-based key-
word spotting frameworks in the last years. In general, keyword spotting
allows to retrieve instances of an arbitrary query in documents. It is
common practice to optimise keyword spotting frameworks for each doc-
ument individually, and thus, the overall generalisability remains some-
how questionable. In this paper, we focus on this question by conducting
a cross-evaluation experiment on four handwritten historical documents.
We observe a direct relationship between parameter settings and the
actual handwriting. We also propose different ensemble strategies that
allow to keep up with individually optimised systems without a priori
knowledge of a certain manuscript. Such a system can potentially be
applied to new documents without prior optimisation.

Keywords: Keyword spotting · Handwritten historical documents ·
Graph-based representations · Hausdorff Edit Distance ·
Ensemble methods

1 Introduction

Different handwritten historical documents often show large variations in the
handwriting (e.g. scale or style) and are often negatively affected by ink-bleed
through, fading, etc. Consequently, an automatic full transcription is often not
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feasible [3]. For this reason, Keyword Spotting (KWS) has been proposed as a
more flexible and error-tolerant alternative [5]. In particular, KWS systems allow
to retrieve all word instances in handwritten historical documents that represent
a given query word.

1.1 Related Work

In graph-based KWS, a query graph is commonly matched with the graphs that
represent the document words. Hence, sorted graph dissimilarities can be used to
derive a retrieval index that consists – in the best case – of all relevant keywords
as its top results.

Different graph-based approaches for KWS are based on different representa-
tions of the handwriting. However, nodes are often used to represent character-
istic points (so called keypoints) in the handwriting, while edges are commonly
used to represent handwriting strokes [13]. In other approaches the nodes are
used to represent prototype strokes, while edges are used to connect nodes that
stem from the same connected component [2,8]. More recently, a set of different
graph-based handwriting representations has been proposed that make use of
keypoints, grid-wise segmentations, or projection profiles [10]. These handwrit-
ing graph representations have been actually employed in various graph-based
KWS applications [1,7,11,12]. Very recently, Deep Learning techniques (so called
Message Passing Neural Networks) have been used to enhance node labels by a
structural node context [7].

Regardless the graph representation actually used, a matching procedure
is required in order to conduct KWS. To this end, different graph dissimilari-
ties have been employed like, for instance, Bipartite Graph Edit Distance (BP)
[2,8,11–13]1 as well as Hausdorff Edit Distance (HED) [1,7]2. Moreover, ensem-
ble methods have been proposed to combine different graph representations [11].

1.2 Contribution

It is common practice in the field of KWS research that parameters are indi-
vidually optimised for every document [2,3,5,7,8,13]. That is, the parameters
are often optimised on a subset of a specific document and then tested on a
disjoint set stemming from the same document. However, this practice does not
reflect a realistic scenario especially as libraries often keep thousands of differ-
ent handwritten historical documents. It would be a very cumbersome and time
consuming task to individually optimise a given KWS system for each of these
documents.

In the present paper, we evaluate the generalisability of a graph-based KWS
system. That is, we investigate the performance and limitation of this sys-
tem in a cross-evaluation experiment on four handwritten historical documents,

1 BP has been introduced in [9].
2 HED has been introduced in [4].
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(a) (b)

(c) (d)

Fig. 1. Exemplary excerpts of four handwritten historical documents: (a) George
Washington (GW), (b) Parzival (PAR), (c) Alvermann Konzilsprotokolle (AK),
(d) Botany (BOT).

viz. George Washington (GW)3, Parzival (PAR)4, Alvermann Konzilsprotokolle
(AK), and Botany (BOT)5. In particular, we optimise parameters on one docu-
ment (for instance GW) and eventually test the optimised settings on the three
remaining documents (in this case PAR, AK, and BOT). We repeat this pro-
cedure for each document. Moreover, we propose and evaluate novel ensemble
methods that allow to test unknown documents without prior optimisation step.
That is, these ensemble systems combine the results of three KWS systems (indi-
vidually optimised on three different manuscripts) in order to instantly perform
KWS on an unseen document.

In Fig. 1, excerpts from each document are shown. The large variations in
the writing styles and document states are clearly visible and illustrate the chal-
lenging task of tuning a KWS system on one document that eventually returns
reasonable results on other documents.

The remainder of this paper is organised as follows. First, the graph-based
KWS framework actually employed for our research study is reviewed in Sect. 2.
Next, the cross-evaluation experiment on the four handwritten documents as
well as the ensemble results are presented and discussed in Sect. 3. Finally, we
draw conclusions and discuss further research activities in Sect. 4.

2 Graph-Based Keyword Spotting

In this section, we review a graph-based KWS framework originally proposed
in [1,12]. We use this framework as basic system to conduct both the cross vali-
dation and the ensemble experiments. This framework is based on three different
3 George Washington Papers at the Library of Congress, 1741–1799: Series 2, Letter-

book 1, pp. 270–279 & 300–309, http://memory.loc.gov/ammem/gwhtml/gwseries2.
html.

4 Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database.

5 Alvermann Konzilsprotokolle and Botany at ICFHR2016 benchmark database,
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html.

http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://memory.loc.gov/ammem/gwhtml/gwseries2.html
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.fki.inf.unibe.ch/databases/iam-historical-document-database/parzival-database
http://www.prhlt.upv.es/contests/icfhr2016-kws/data.html
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processing steps (as illustrated in Fig. 2) and is briefly outlined in the next three
subsections. In the fourth and last subsection we discuss a possibility to build
an ensemble out of different KWS systems that might be particularly useful in
order to increase the generalisability of a KWS system.

2.1 Image Preprocessing

For the two documents GW and PAR, general noise is addressed by means
of Difference of Gaussians filtering. Next, document images are binarised by
global thresholding. Moreover, the resulting document images are automatically
segmented into single word images by means of their projection profiles, and if
necessary manually corrected. That is, we focus on the KWS process itself and
assume perfectly segmented documents in our evaluations. For deskewing, the
angle between x-axis and lower baseline of a text line is estimated and used to
rotate single word images. Finally, preprocessed word images are skeletonised by
means of thinning.

For the two documents AK and BOT, segmented word images are directly
taken from the ICFHR2016 benchmark database [6], and thus, only binarisation
has been employed. To handle small segmentation errors, we employ an addi-
tional image preprocessing step that removes small connected components on
these two manuscripts.

We denote preprocessed and skeletonised word images by S from now on.
For more details on the preprocessing step we refer to [11,12].

2.2 Handwriting Graphs

In general, a graph g is defined as a four-tuple g = (V,E, μ, ν) where V and E
are finite sets of nodes and edges, and μ : V → LV and ν : E → LE are labelling
functions for nodes and edges, respectively. The handwriting graphs employed
in this paper are defined as follows. Nodes are used to represent characteristic
points, so-called keypoints, in the handwriting, while edges are used to repre-
sent strokes between keypoints. Hence, nodes are labelled with two-dimensional
numerical labels, while edges remain unlabelled, i.e. LV = R

2 and LE = ∅. In
the following paragraphs we briefly review the procedure of extracting graphs
from word images (for details we refer to [12]).

First, end points and junction points are identified in the word images S.
Selected keypoints are added to the graph as nodes and labelled with their
respective (x, y)-coordinates. Next, intermediate points are added as nodes along
the skeleton in equidistant intervals of size D. Eventually, an undirected edge
(u, v) between u ∈ V and v ∈ V is inserted into the graph for each pair of nodes
that is directly connected by a chain of foreground pixels in image S.

To reduce scaling variations, the (x, y)-coordinates of the node labels μ(v)
are normalised by a z-score. Formally, we replace (x, y) by (x̂, ŷ), where

x̂ =
x − μx

σx
and ŷ =

y − μy

σy
.
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Fig. 2. Graph-based keyword spotting processing of the word “Möller”.

Thereby (μx, μy) and (σx, σy) represent the mean and standard deviation of all
(x, y)-coordinates in the graph under consideration6.

For each manuscript, an original word image, a preprocessed word image, a
skeletonised word image, as well as the corresponding handwriting graph is given
in Fig. 3.

a)

b)

d)

c)

PAR AK BOTGW

Fig. 3. Exemplary graph representation of four handwritten historical documents (viz.
George Washington (GW), Parzival (PAR), Alvermann Konzilsprotokolle (AK), and
Botany (BOT)): (a) Original word image, (b) Preprocessed word image, (d) Skele-
tonised word image, (c) Handwriting graph.

2.3 Graph Matching

The actual keyword spotting is based on a pairwise matching of a query graph
q with all graphs g stemming from the set of document graphs G. In this paper,
we make use of Hausdorff Edit Distance (HED) [4]. HED is a quadratic time
lower bound of Graph Edit Distance that measures the minimum-cost defor-
mation needed to transform one graph g1 = (V1, E1, μ1, ν1) into another graph
g2 = (V2, E2, μ2, ν2) by means of deletions (u → ε), insertions (ε → v), and

6 Note that the resulting graphs are available under http://www.histograph.ch/.

http://www.histograph.ch/
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substitutions (u → v) of nodes u ∈ V1 and v ∈ V2. Likewise, edit operations
are defined for the edges. Formally, the HED of two graphs g1 and g2 can be
derived by

HED(g1, g2) =
∑

u∈V1

min
v∈V2∪{ε}

f(u, v) +
∑

v∈V2

min
u∈V1∪{ε}

f(u, v),

where f(u, v) is a cost function that takes into account the node edit cost c(u → v)
as well as the edge edit cost c(q → r) for all edges q and r adjacent to u and v,
respectively.

The cost model employed is based on a constant cost τv ∈ R
+ for node

deletions/insertions and a constant cost τe ∈ R
+ for edge deletions/insertions.

For node substitutions, the following weighted Euclidean distance is employed:
√

α (σx(xi − xj))2 + (1 − α) (σy(yi − yj))2,

where α ∈ [0, 1] denotes a parameter to weight the importance of the x- and
y-coordinate of a node, while σx and σy denote the standard deviation of all
node coordinates in the current query graph q. Edge substitutions are free of
cost (since they are unlabelled). We additionally use a weighting factor β ∈ [0, 1]
to weight the relative importance of the overall node and edge edit costs.

Finally, a retrieval index r is derived. In particular, HED is normalised by
the maximum possible graph edit distance between q and g (i.e. the sum that
results from deleting all nodes and edges of q and inserting all nodes and edges
in g). Formally,

r(q, g) =
HED(q, g)

(|Vq| + |Vg|) τv + (|Eq| + |Eg|) τe
.

2.4 Ensemble Methods

In order to increase the generalisability of the proposed framework, we propose
three different ensemble methods that allow to combine optimised cost models
of known documents. The general idea of these systems is as follows. We assume
that we have three documents at hand on which a KWS system can be individ-
ually optimised. We eventually apply all three parametrisations to one unknown
document and combine the three results by means of a statistical measure.
Formally,

rmin(q, g) = min
i∈{A,B,C}

ri(q, g),

rmax(q, g) = max
i∈{A,B,C}

ri(q, g),

rmean(q, g) = mean
i∈{A,B,C}

ri(q, g),

where {A,B,C} represent three given manuscripts, and ri refers to the HED
optimised on manuscript A, B, or C. If we assume, for instance, that BOT is an
unknown document, {A,B,C} is given by the three remaining documents that
is A = GW, B = PAR, and C = AK.
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3 Experimental Evaluation

3.1 Experimental Setup

For all evaluations, the accuracy is measured by the Mean Average Precision
(MAP), which is the mean area under all recall-precision curves of all individual
keywords. In particular, the evaluation is conducted in two steps, viz. validation
and test.

First, ten different keywords (with different word lengths) are manually
selected on each dataset. Based on these keywords, we define an indepen-
dent validation set for parameter optimisation that consists of 10 random
instances per keyword instance and 900 additional random words (in total 1,000
words). We evaluate 25 pairs of constants for node and edge deletion/insertion
costs (τv = τe ∈ {1, 4, 8, 16, 32}) in combination with the weighting parame-
ters α = β ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (see Sect. 2.3). In Table 1, the optimal cost
model for each manuscript is given.

Table 1. Optimal cost function parameter.

GW PAR AK BOT

τv τe α β τv τe α β τv τe α β τv τe α β

8 4 0.1 0.5 8 1 0.5 0.1 16 1 0.1 0.3 8 4 0.1 0.3

Next, the proposed framework is tested using the same training and test sets
as used in [3] and [6]. In Table 2, a summary of dataset characteristics of all four
documents is given.

Table 2. Number of keywords, size of keyword spotting datasets (train and test), and
the image resolution of the original documents in dpi.

Dataset Keywords Train Test dpi

GW 105 2447 1224 300

PAR 1217 11468 6869 200

AK 200 1849 3734 400

BOT 150 1684 3380 400

3.2 Cross-Evaluation

In Table 3, the results of the cross-evaluation are shown for all manuscripts
(columns) using cross-evaluated parameters (rows). For instance, in the first
row we show the KWS results on all four data sets of the system actually opti-
mised on GW. In the main diagonal of Table 3 we thus provide the KWS results
on a document obtained by the system optimised on the same document.



52 M. Stauffer et al.

On GW we observe that the KWS system optimised on BOT achieves a
similar result as the document specific system (actually this system performs
even slightly better). Regarding the optimal parameters for the cost function in
Table 1, this result makes sense as for both GW and BOT very similar parameters
turn out to be optimal. Also the writing styles of both documents are quite
similar (see, for instance, Fig. 1).

Likewise, we observe that on BOT the KWS system optimised on GW
achieves quite similar results as the system optimised on BOT itself. In con-
trast with GW, however, we observe that on this dataset the parametrisation
seems to have less influence on the KWS accuracy as all parametrisations lead
to similar results. The same accounts for AK, where the optimal parameters for
BOT turn out to achieve the best result on the test set.

On one document, viz. PAR, however, none of the systems optimised on
another document can actually keep up with the system that has been optimised
for this specific manuscript. That is we observe deteriorations of the KWS accu-
racy of about 6 to 12 basis points. The system optimised on PAR makes use of
α = 0.5, while all other systems turn out to be optimal with α = 0.1. PAR has
a more dense and straight (i.e. almost no slant) handwriting when compared to
GW, AK, and BOT as shown in Fig. 1. As a result, variations in the x-direction
become more relevant (thus the higher α value).

Table 3. MAP using optimised cost function parameters of one manuscript employed
on all three remaining manuscripts. With ± we indicate the absolute percental gain
or loss in the accuracy of the cross-evaluated manuscript when compared with the
optimised parameter settings (shown in bold face).

Optimised on GW PAR AK BOT

MAP ± MAP ± MAP ± MAP ±
GW 69.28 - 63.39 −5.84 79.54 −0.18 51.21 −0.48

PAR 64.84 −4.44 69.23 - 79.73 +0.01 51.12 −0.57

AK 61.45 −7.82 56.93 −12.30 79.72 - 50.81 −0.88

BOT 69.44 +0.17 62.40 −6.83 80.28 +0.56 51.69 -

Overall we conclude, that the weighting parameter α shows quite a strong
correlation with the density of the handwriting. For a dense and straight hand-
writing the x-direction becomes more important, and thus higher parameter
values for α should be chosen. In contrast to that, β has in most cases only a
minor influence. Finally, it seems that the cost parameters τv and τe are depend-
ing on the size of the handwriting. That is, if the handwriting is characterised
by flourish like in case of AK, for instance, node substitutions should be rather
allowed by the cost model (by defining higher values for τv).
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3.3 Ensemble Methods

In Table 4, we show the results of the proposed ensemble methods and the indi-
vidually optimised systems for each document. In the first column, for instance,
we show in the first row the KWS accuracy on GW of the system actually opti-
mised on GW. The three ensemble methods combine the results of the three
systems optimised on the remaining datasets.

In three out of four manuscripts, we observe that the ensemble methods can
keep up or even improve the accuracy when compared with the individually opti-
mised system. Especially, the ensemble methods max and mean achieve similar
KWS accuracies without any a priori knowledge of the manuscript. Similar to the
cross-evaluation experiment, we observe that ensemble methods can not keep up
on PAR. In contrast to all other manuscripts PAR offers a different writing style,
and the ensemble methods are not able to compensate these obvious differences.

Table 4. MAP of ensemble methods min, max, and mean. With ± we indicate the
absolute percental gain or loss in the accuracy of the ensemble method when compared
with the optimised parameter settings. Ensemble methods are ranked by (1), (2), (3).

GW PAR AK BOT Average

MAP ± MAP ± MAP ± MAP ± MAP ±
Optimal 69.28 69.23 79.72 51.69 67.48

min 65.63 −3.65 (3) 56.94 −12.29 (3) 80.28 +0.56 (2) 50.81 −0.88 (3) 63.42 −4.06 (3)
max 69.25 −0.02 (1) 63.39 −5.84 (1) 79.54 −0.18 (3) 51.25 −0.44 (2) 65.86 −1.62 (1)
mean 66.65 −2.62 (2) 62.28 −6.95 (2) 80.42 +0.70 (1) 51.49 −0.20 (1) 65.21 −2.27 (2)

We conclude that with ensemble methods (without document specific adapta-
tions) similar KWS accuracy rates can be achieved as with individual document
specific systems in most cases.

4 Conclusion and Outlook

The automatic recognition of handwritten historical documents is often nega-
tively affected by noise (ink-bleed through, fading, degradation, etc.) as well as
large handwriting variations in different documents. Therefore, Keyword Spot-
ting (KWS) has been proposed as flexible and error-tolerant alternative to full
transcriptions. Basically keyword spotting allows arbitrary retrievals in a docu-
ment in order to make such a document accessible for browsing and searching.

In the last years, a number of graph-based keyword spotting approaches have
been proposed. Yet, all of the proposed approaches are individually optimised
and tested for each manuscript. Consequently, for a novel unseen document the
system first needs to be optimised prior to the actual keyword spotting. In case
of large collections or libraries this clearly reduces the overall applicability and
practical relevance of the proposed graph-based keyword spotting frameworks.
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In order to research this problem we conduct a cross-evaluation on four
handwritten historical documents. That is, we evaluate KWS systems that have
been optimised on other, unrelated documents. We observe a clear relationship
between handwriting style and cost model for graph edit distance. Therefore,
an unseen document could be directly accessed by a KWS system that has
been optimised on a similar document without a priori parameter optimisation.
Moreover, we show that ensemble methods allow to further increase the overall
generalisability of the graph-based KWS. That is, the proposed ensemble meth-
ods, that need no document specific training, achieve similar accuracy rates as
the optimised cost models.

In future work we aim at including further documents with different hand-
writing styles to our evaluation pipeline. Another research avenue to be pursued
would be to research an automatic a priori triage in order to sort unknown
manuscripts by means of their handwriting style. Finally, one could also extend
the proposed ensemble methods by means of so-called overproduce-and-select
strategies. That is, starting with the best individual system further cost model
settings are added to an ensemble until a certain saturation is reached.
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Foundation project 200021 162852.

References

1. Ameri, M.R., Stauffer, M., Riesen, K., Bui, T.D., Fischer, A.: Graph-based keyword
spotting in historical manuscripts using Hausdorff edit distance. Pattern Recognit.
Lett. (2018, in press)

2. Bui, Q.A., Visani, M., Mullot, R.: Unsupervised word spotting using a graph repre-
sentation based on invariants. In: International Conference on Document Analysis
and Recognition, pp. 616–620. IEEE (2015)

3. Fischer, A., Keller, A., Frinken, V., Bunke, H.: Lexicon-free handwritten word
spotting using character HMMs. Pattern Recognit. Lett. 33(7), 934–942 (2012)

4. Fischer, A., Suen, C.Y., Frinken, V., Riesen, K., Bunke, H.: Approximation
of graph edit distance based on Hausdorff matching. Pattern Recognit. 48(2),
331–343 (2015)

5. Manmatha, R., Han, C., Riseman, E.: Word spotting: a new approach to indexing
handwriting. In: Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 631–637. IEEE (1996)

6. Pratikakis, I., Zagoris, K., Gatos, B., Puigcerver, J., Toselli, A.H., Vidal, E.:
ICFHR2016 handwritten keyword spotting competition (H-KWS 2016). In: Inter-
national Conference on Frontiers in Handwriting Recognition, pp. 613–618. IEEE
(2016)

7. Riba, P., Fischer, A., Lladós, J., Fornés, A.: Learning graph distances with mes-
sage passing neural networks. In: International Conference on Pattern Recognition.
IEEE (2018)

8. Riba, P., Lladós, J., Fornés, A.: Handwritten word spotting by inexact match-
ing of grapheme graphs. In: International Conference on Document Analysis and
Recognition, pp. 781–785. IEEE (2015)



Cross-Evaluation of Graph-Based KWS 55

9. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput. 27(7), 950–959 (2009)

10. Stauffer, M., Fischer, A., Riesen, K.: A novel graph database for handwritten word
images. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.)
S+SSPR 2016. LNCS, vol. 10029, pp. 553–563. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49055-7 49

11. Stauffer, M., Fischer, A., Riesen, K.: Ensembles for graph-based keyword spotting
in historical handwritten documents. In: International Conference on Document
Analysis and Recognition, pp. 714–720. IEEE (2017)

12. Stauffer, M., Fischer, A., Riesen, K.: Keyword spotting in historical handwritten
documents based on graph matching. Pattern Recognit. 81, 240–253 (2018)

13. Wang, P., Eglin, V., Garcia, C., Largeron, C., Lladós, J., Fornés, A.: A novel
learning-free word spotting approach based on graph representation. In: Interna-
tional Workshop on Document Analysis Systems, pp. 207–211. IEEE (2014)

https://doi.org/10.1007/978-3-319-49055-7_49
https://doi.org/10.1007/978-3-319-49055-7_49


Graph Edge Entropy
in Maxwell-Boltzmann Statistics
for Alzheimer’s Disease Analysis

Jianjia Wang1(B), Richard C. Wilson2, and Edwin R. Hancock2

1 School of Computer Science, Shanghai University, Shanghai, China
jianjiawang@shu.edu.cn

2 Department of Computer Science, University of York, York, UK

Abstract. In this paper, we explore how to the decompose the global
thermodynamic entropy of a network into components associated with
its edges. Commencing from a statistical mechanical picture in which
the normalised Laplacian matrix plays the role of Hamiltonian opera-
tor, thermodynamic entropy can be calculated from partition function
associated with different energy level occupation distributions arising
from Maxwell-Boltzmann statistics. Using the spectral decomposition of
the Laplacian, we show how to project the edge-entropy components so
that the detailed distribution of entropy across the edges of a network
can be achieved. We apply the resulting method to fMRI activation net-
works to evaluate the qualitative and quantitative characterisations. The
entropic measurement turns out to be an effective tool to identify the
differences in the structure of Alzheimer’s disease by selecting the most
salient anatomical brain regions.

Keywords: fMRI networks · Graph edge entropy ·
Alzheimer’s disease (AD)

1 Introduction

Functional magnetic resonance imaging (fMRI) provides a sophisticated means of
studying the neuropathophysiology associated with Alzheimer’s disease (AD) [1].
It maps the network representation to neuronal activity between the various
brain regions. The resulting network structure has proved useful in understand-
ing Alzheimer’s disease (AD) via the analysis of intrinsic brain connectivity [2].
Although there are many tools to identify the affected brain regions in AD, it is
still not clear how this abnormality affects the functional organization of the whole
brain connection.

Tools from network analysis provide a convenient approach for understanding
the functional association of different regions in the brain [2,4]. The approach
is to characterize the topological structures present in the brain and to quantify
the functional interaction between brain regions, using the mathematical study
of networks and graph theory. Graph theory offers an attractive route since
it provides effective tools for characterizing network structures together with
c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 56–66, 2019.
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their intrinsic complexity [3,6]. This approach has led to the design of several
practical methods for characterizing the global and local structure of graphs [3].
Features based on the global and local measures of connectivity are widely used
in functional brain analysis [5].

Unfortunately, there is relatively little literature aimed at studying structural
network features using entropic analysis. The reason for that is the vast majority
of techniques suggested by entropy provides a useful global characterisation of
network structure, they do not lend themselves to the analysis of local measures
of edge or subnetwork structure. However, entropy analysis is a more natural
representation for brain structure, since they allow the information of activation
signals for different anatomical structures in the brain.

This paper is motivated by the need to fill this important gap in the litera-
ture, and to establish effective methods for measuring the structural properties
of entropy representing fMRI brain networks. In particular, in order to character-
ize the functional organization of the brain, our approach explores a novel edge
entropy projection which can decompose the global network entropy computed
from Maxwell-Boltzmann distribution [6,12]. The new characterisations of edge
entropy resulting from this analysis allow us to probe in finer detail the interac-
tions between different anatomical regions in fMRI data from healthy controls
and Alzheimer’s disease sufferers (AD).

The remainder of the paper is organized as follows. Section 2 briefly reviews
the basic concepts in network representation, especially with a sophisticated
study of von Neumann entropy. Section 3 reviews density matrix and Hamilto-
nian operator on graphs, and decompose the thermodynamic entropy on edges
from Maxwell-Boltzmann statistics. Section 4 provides our experimental evalua-
tion. Finally, Sect. 5 provides the conclusion and direction for future work.

2 Graph Representation

2.1 Preliminaries

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let V represent the total number of nodes on graph G(V,E). The adjacency
matrix of a graph is A with the degree of node u is du =

∑
v∈V Auv. Then, the

Laplacian matrix is L = D − A, where D denotes the degree diagonal matrix
whose elements are given by D(u, u) = du and zeros elsewhere. The normalized
Laplacian matrix L̃ of the graph G is defined as L̃ = D− 1

2 LD
1
2 , and the spectral

decomposition is L̃ = ΦΛ̃ΦT , where Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal
matrix with the ordered eigenvalues as elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is
the matrix with the ordered eigenvectors as columns.

2.2 Von Neumann Edge Entropy

In quantum mechanics, the density matrix is used to describe a system with
the probability of pure quantum states |ψi〉 and each with probability pi. It is
defined as ρ =

∑V
i=1 pi|ψi〉〈ψi|. Severini et al. [7] have extended this idea to
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the graph domain. Specifically, they show that a density matrix for a graph or
network can be obtained by scaling the combinatorial Laplacian matrix by the
reciprocal of the number of nodes in the graph.

With this notation, the specified density matrix is obtained by scaling the
normalized Laplacian matrix by the number of nodes, i.e. ρ = L̃

|V | . When defined
in this way the density matrix is Hermitian i.e. ρ = ρ† and ρ ≥ 0,Trρ = 1.
This interpretation opens up the possibility of characterising a graph using the
von Neumann entropy from quantum information theory [7]. Therefore, the von
Neumann entropy is given in terms of the eigenvalues λ1, ....., λ|V | of the density
matrix ρ,

S
V N

= −Tr(ρ log ρ) = −
|V |∑

i=1

λi

|V | log
λi

|V | (1)

In fact, Han et al. [8] have shown how to approximate the calculation of
von Neumann entropy in terms of simple degree statistics. Their approxima-
tion allows the cubic complexity of computing the von Neumann entropy to be
reduced to one of quadratic complexity using simple edge degree statistics, i.e.

S
V N

= 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(2)

Therefore, the edge entropy decomposition is given as

S
edge

V N
(u, v) =

1
|E| − 1

|V ||E| − 1
|E||V |2

1
dudv

(3)

where S
V N

=
∑

(u,v)∈E S
edge

V N
(u, v). This expression decomposes the global

parameter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Thermodynamic Statistics and Global Entropy
Decomposition

The concept of von Neumann entropy arises in the quantum domain. Here, we
commence from the Hamiltonian operator in statistical mechanics to develop
thermodynamic entropy. We then decompose or project the global entropy onto
edges using the eigenvectors of the normalised Laplacian matrix.

3.1 Thermodynamic Entropy

To connect the normalised Laplacian matrix to statistical mechanics, we view
the eigenvalues of the Laplacian matrix as the energy eigenstates of a system in
contact with a heat reservoir. These determine the Hamiltonian and hence the
relevant Schrödinger equation which governs the particles in the system [3,6].
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The particles occupy the energy states of the Hamiltonian subject to thermal
agitation by the heat bath [12]. The number of particles in each energy state is
determined by the temperature, the assumed model of occupation statistics and
the relevant chemical potential.

We consider the network as a thermodynamic system of N particles with
energy states given by normalised Laplacian matrix L̃, which is immersed in
a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β is inverse of temperature T . When specified in this
way, the thermodynamic entropy is given by,

S = kB

[
∂

∂T
T log Z

]

N

(4)

The statistical properties of particles in the network are determined by the
partition functions associated with different energy level occupation statistics.
In this way, thermodynamic quantities, such as entropy, can characterise the
network structure.

3.2 Maxwell-Boltzmann Statistics

The Maxwell-Boltzmann distribution relates the microscopic properties of par-
ticles to the macroscopic thermodynamic properties of matter [10]. It applies to
systems consisting of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy levels associated with a Hamiltonian and
in our case the Hamiltonian of the network, which is in contact with a thermal
bath [6].

Taking the Hamiltonian to be the normalized Laplacian of the network, the
canonical partition function for Maxwell-Boltzmann occupation statistics of the
energy levels is

Z
MB

= Tr
[

exp(−βL̃)N

]

(5)

where β = 1/kBT is the reciprocal of the temperature T with kB as the Boltz-
mann constant; N is the total number of particles and λi denotes the microscopic
energy of system at each microstate i with energy λi. Derived from Eq. (4), the
entropy of the system with N particles is

S
MB

= log Z − β
∂ log Z

∂β
= −NTr

{
exp(−βL̃)

Tr[exp(−βL̃)]
log

exp(−βL̃)
Tr[exp(−βL̃)]

}

For a single particle, the density matrix is

ρ
MB

=
exp(−βL̃)

Tr[exp(−βL̃)]
(6)

Since the density matrix commutes with the Hamiltonian operator, we have
∂ρ/∂t = 0 and the system can be viewed as in equilibrium. So the entropy in
the Maxwell-Boltzmann system is simply N times the von Neumann entropy of
a single particle, as we might expect.
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3.3 Edge Entropy Decomposition

Our goal is to project the global network entropy onto the edges of the network.
In matrix form for Maxwell-Boltzmann statistics in Eq. (6), the entropy can be
written as,

S
MB

= −Tr
[
ρ

MB
log ρ

MB

]
= −Tr[Σ

MB
] (7)

Since the spectral decomposition of the normalized Laplacian matrix is

L̃ = ΦΛ̃ΦT (8)

We can decompose the matrix Σ
MB

as follows

Σ
MB

= Φσ
MB

(Λ̃)ΦT (9)

where

σ
MB

(λi) = −N
e−βλi

∑|V |
i=1 e−βλi

log
e−βλi

∑|V |
i=1 e−βλi

(10)

As a result, we can perform edge entropy projection of the Maxwell-
Boltzmann statistical model using the Laplacian eigenvectors [11]. The result
of the entropy for each edge (uv) is given as,

S
edge

MB
(u, v) =

|V |∑

i=1

σ
MB

(λi)ϕiϕ
T
i (11)

Thus, the global entropy can be projected on the edges of the network sys-
tem. This provides useful measures for local entropic characterisation of network
structure in a relatively straightforward manner.

4 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis
of interregional connectivity structure for fMRI activation networks for normal
and Alzheimer’s patients. We first examine the dependence of the edge entropy
components on node degree and temperature and compare their performance
with von Neumann entropy. Then we apply edge entropy-based analysis to dis-
tinguish between different stages in the development of Alzheimer’s disease, and
fMRI data for normal subjects. We explore whether we can identify specific inter-
regional connections and regions in the brain associated with the neurodegener-
ation caused by the onset of Alzheimer’s disease. To simplify the calculations,
the Boltzmann constant is set to unity in our experiments.
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4.1 Dataset

The fMRI data were obtained from the ADNI initiative [9]. fMRI images of
subjects brains were taken every two seconds and are used to compute the
Blood-Oxygenation-Level-Dependent (BOLD) signals for different anatomical
brain regions. To do this the fMRI voxels were aggregated into larger regions of
interest (ROIs). The different ROIs correspond to different anatomical regions of
the brain and are assigned anatomical labels to distinguish them. There are 90
such anatomical regions in each fMRI image. The correlation between the aver-
age time series in different ROIs represents the degree of functional connectivity
between regions which are driven by neural activities.

We construct a graph to represent the pattern of activities using the cross-
correlation coefficients for the average time series for pairs of ROIs. We create an
undirected edge between two ROI’s if the cross-correlation coefficient between
the time series is in the top 40% of the cumulative distribution. This cross-
correlation threshold is fixed over all of the available data, which provides an
optimistic bias for constructing graphs. Those ROIs that have missing time series
data are discarded. Subjects fall into different categories according to the degree
of severity of the disease, there are normal subjects, those with early mild cog-
nitive impairment, those with late mild cognitive impairment and those with
full Alzheimer’s. The data supplied 705 patients, including 105 subjects with
Alzheimer’s disease (AD), 193 normal healthy control subjects (NC), 240 in the
Early Mild cognitive impairment (EMCI) and 167 in the Late Mild cognitive
impairment (LMCI).

Fig. 1. Scatter plot of thermodynamic edge entropy compared to the von Neumann
entropy with different value of temperatures.
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4.2 Experimental Results

We first investigate the relationship between the mean edge entropy computed
using Maxwell-Boltzmann statistics and von Neumann entropy. Figure 1 shows
the edge entropy with varying temperatures. The statistical entropy exhibits a
transition in behaviour with respect to the von Neumann entropy with varying
temperature.

For example, at the high temperature (β = 0.1), the thermodynamic entropy
is roughly in linear proportion to the von Neumann entropy. As the temperature
reduces, they take on an approximately exponential dependence. At low temper-
ature, the thermodynamic edge entropies decrease monotonically with the von
Neumann edge entropy (β = 10). Therefore, at high temperature, the statistical
and von Neumann edge entropies are proportional, while at low temperature
they are in inverse proportion.

Then, we apply the edge entropy computations to fMRI brain networks,
with the aim of determining which anatomical regions play the strongest role
in the development of Alzheimer’s disease. Figure 2 shows the different edge
entropy distribution for the Alzheimer’s disease (AD) and healthy control (Nor-
mal) samples. Compared to the von Neumann entropy which does not show
a clear difference in distributions between the two groups, the thermodynamic
entropy better distinguish the detailed distribution of edge entropy. The edge
entropy in the case Alzheimer’s disease tends towards lower values. This obser-
vation is more palpable in the cases of the Maxwell-Boltzmann edge entropy
distributions, as shown in Fig. 2(b), with more edges tending to occupy the low
entropy region.

Fig. 2. Edge entropy distribution of fMRI networks with (a) von Neumann entropy,
(b) Maxwell-Boltzmann statistics. Two groups of patients, Alzheimer’s disease (AD)
and healthy control (Normal).

Next, we select the edges with the largest 10% of entropy in the anatomical
regions to reduce the feature dimension. This gives 278 significant edges as a
feature vector. We explore whether these feature vectors can be used to classify
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Fig. 3. (a) Visualisation of three dimensional principal components of thermodynamic
edge entropy in four groups of Alzheimer’s disease. (b) Significant differences between
edge entropy associated with diseased areas in the brain. We use the standard deviation
of thermodynamic entropy to identify the divergence between AD and HC groups for
each edge.

normal healthy subjects and patients with early Alzheimer’s disease. Figure 3(a)
is the visualisation of the three-dimensional principal components for four groups
using Fisher’s linear discriminant analysis (LDA). Three principal eigenvectors
show the cluster of each group. The palpable feature is that the statistical edge
entropy in Maxwell-Boltzmann case can give the separation among the four
subject groups.

If we regard the principal components as the feature vectors on each sample
graph, we can apply C-SVM (Support Vector Machine) to classify four groups.
The data are manually separated into two parts as 500 samples for the training
data and 205 samples for the testing data (the rest of the raw data excluding the
training set). The 10-fold cross-validation with the grid search method is used
to find the optimal parameters (c and g)in C-SVM with Gaussian kernel. The
training and testing accuracies are shown in Table 1.

Table 1. SVM Classification Accuracy. In the four group classification, 500 samples are
used for training and 205 samples for testing. For AD and Normal binary classification,
200 samples are used for training and 98 samples for testing. For EMCI and Normal
binary classification, 300 samples are used for training and 133 samples for testing.

Training accuracy Testing accuracy

Four groups 88.42% (442/500) 87.80% (180/205)

AD/Norm 83.50% (167/200) 82.65% (81/98)

EMCI/Norm 92.71% (278/300) 91.03% (121/133)

Table 1 shows that the edge entropies in Maxwell-Boltzmann statistics are
good features to identify Alzheimer’s disease. For all the groups of patients, the
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total classification accuracy can reach 87.80%. In term of the binary classifi-
cation between Early Mild cognitive impairment (EMCI) and healthy control
(Normal), the thermodynamic edge entropy presents a better performance to
classify the early disease which is helpful for clinical application. Thus, we can
apply the resulting method to identify fMRI activation networks from patients
with suspected Alzheimer’s disease.

On the other hand, identifying diseased regions in the brain is also impor-
tant. Several studies have shown that different anatomical structures can be
analysed using the properties of the corresponding ROIs, and are important
for understanding brain disorders [2,4]. Here, we use the difference in standard
deviation for the thermodynamic entropy to identify the sources of significant
variance between AD and HC groups. Figure 3(b) plots the greatest variance
of edge entropy for different anatomical regions (edges). The entropic measure-
ments in the brain areas, such as the Paracingulate Gyrus, Parahippocampal
Gyrus, Inferior Temporal Gyrus and Temporal Fusiform Cortex, suggest that
subjects with AD experience loss of interconnection between these regions in
their brain network during the progression of the disease.

Table 2. Top 10 ROIs with the most significant difference in edge entropy between
the Alzheimer’s disease (AD) and Health Control (Normal) groups.

Index ROI ROI

1 Middle Frontal Gyrus Right(10) Inferior Parietal Lobule Right(62)

2 Inferior Frontal Gyrus Left(11) Supramarginal Gyrus Left(63)

3 Supplementary Motor Area Left(19) Supplementary Motor Area Right(20)

4 Medial Frontal Gyrus Left(23) Medial Frontal Gyrus Right(24)

5 Posterior Cingulate Gyrus Left(35) Precuneus Left(67)

6 Hippocampus Left(37) ParaHippocampal Gyrus Right(40)

7 Hippocampus Right(38) Amygdala Right(42)

8 ParaHippocampal Gyrus Left(39) ParaHippocampal Gyrus Right(40)

9 Lingual Gyrus Left(47) Middle Occipital Gyrus Left(51)

10 Angular Gyrus Left(65) Angular Gyrus Right(66)

As listed in Table 2, the ten anatomical regions with the largest entropy dif-
ferences for subjects with the full AD are Paracingulate Gyrus, Parahippocampal
Gyrus, Temporal Fusiform Cortex, etc. This result is consistent with the previous
study reported in [4,5]. For example, the parahippocampal gyrus has consistently
been reported as being vulnerable to pathological changes in Alzheimer’s disease
(AD), which is closely related to entorhinal and perirhinal subdivisions as the most
heavily damaged cortical areas for the disease [13]. The Frontal Medial Cortex and
Temporal Fusiform Cortex are memory-related cognitive areas. They are severely
damaged by Alzheimer’s disease and affect recognition memory for faces. Overall,
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the loss of connection between these brain regions results in significant functional
impairment between healthy subjects and patients with the AD.

In conclusion, both statistical methods and von Neumann edge entropies can
be used to represent changes in network structure. Compared to the von Neu-
mann edge entropy, thermodynamic edge entropies are more sensitive to sample
variance associated with the degree distribution. Maxwell-Boltzmann statistics
reflect strong community structure which is more suitable for representing a
detailed structure of the degree distribution.

5 Conclusion

In this paper, we show how to decompose the global network entropies result-
ing from thermodynamic occupation statistics onto the constituent edges of a
graph. We refer to the resulting statistical quantities as Maxwell-Boltzmann
edge-entropies. The method uses the normalised Laplacian matrix as the Hamil-
tonian operator of the network to compute the corresponding partition func-
tions. We undertake experiments to analyse the thermodynamic edge entropies
and compare them to their von Neumann counterparts. Experiments reveal that
the Maxwell-Boltzmann edge entropy distributions can effectively in character-
ising detailed variations in the network structure. It outperforms the von Neu-
mann entropy in this respect. Finally, we apply this novel method to provide
insights into the neuropathology of Alzheimer’s disease. The thermodynamic
edge entropy distribution is capable of discriminating between subjects suffering
from Alzheimer’s and healthy subjects.
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Abstract. In the world of graph matching, the Graph Edit Distance
(GED) problem is a well-known distance measure between graphs.
It has been proven to be a NP-hard minimization problem. This
paper presents an adapted version of Variable Partitioning Local Search
(VPLS) matheuristic for solving the GED problem. The main idea in
VPLS is to perform local searches in the solution space of a Mixed Integer
Linear Program (MILP). A local search is done in a small neighborhood
defined based on a set of special variables. Those special variables are
selected based on a procedure that extracts useful characteristics from
the instance at hand. This actually ensures that the neighborhood con-
tains high quality solutions. Finally, the experimentation results have
shown that VPLS has outperformed existing heuristics in terms of solu-
tion quality on CMU-HOUSE database.

Keywords: Graph Edit Distance · Graph Matching ·
Mixed Integer Linear Program · Variable Partitioning Local Search ·
Matheuristic

1 Introduction

Graphs are heavily involved in Structural Pattern Recognition (SPR). Using
graphs, it is possible to model objects and patterns by considering the main com-
ponents as vertices and expressing the relations between those components using
edges. Moreover, graphs can store extra properties and characteristics about the
pattern by assigning attributes to vertices and edges. Then, these graphs are
exploited to perform object comparison and recognition [15]. In fact, this is known
as Graph Matching (GM), which is the core of the SPR field. GM is about find-
ing vertices and edges mappings between two graphs, from which a (dis-)similarity
measure can be computed. In addition, GM covers many problems that are split
into two main categories: Exact (EGM) and Error-Tolerant (ETGM). The main
c© Springer Nature Switzerland AG 2019
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difference between the two categories is thatEGMrequires having the same topolo-
gies and attributes in graphs. While ETGM is flexible and accommodates to dif-
ferences in graphs. ETGM is more preferable because it is unlikely to have the
same exact graphs in real-life scenarios. Among the various problems that fall into
ETGMcategory, theGraphEditDistance (GED)problem is considered as themost
popular one. Solving this problem computes a dissimilarity measure between two
graphs [4]. The main idea in GED is to transform one source graph into another
target graph, by applying a certain number of edit operations. Those edit opera-
tions are: substitution, insertion and deletion of a vertex/edge. Each edit operation
has an associated cost. The aim when solving the GED problem is to find a set of
edit operations that minimizes the total cost. This is what makes it a very complex
problem to solve, which later was proven to be a NP-hard minimization problem
[19]. Despite the complex nature of the problem, it is still seen as an important
one because it was shown to be a generalization to other GM problems such as
the maximum common subgraph and the subgraph isomorphism [2,3]. Also, the
GED has applications in many fields such as image analysis, biometrics, bio/chem-
informatics, etc. [18].

Looking into the literature, numerous methods for solving the GED problem
exist. They can be divided into two classes: exact and heuristics. In the first class,
there are methods that solve an instance to the problem to optimality. Such meth-
ods tend to become expensive when dealing with large graphs, because of the expo-
nential growth in complexity. The other class, however, contains heuristic meth-
ods that aim at computing a sub-optimal solution in a reasonable amount of time.
For exact methods, mathematical programming is used to model the GED prob-
lem providing Mixed Integer Linear Models (MILP). Two formulations appear
to outperform other methods: JH by Justice and Hero [11] and F3 by Darwiche
et al. [8]. JH is designed to solve a sub-problem of the GED (denoted by GEDEnA),
in which the attributes on edges are ignored. However, F3 is designed to solve
instances of the general GED problem. Regarding the heuristic methods, there
are plenty of them. Starting with the most famous and fastest one the Bipartite
GM heuristic (denoted shortly by BP), which was developed by Riesen et al. [16].
BP breaks down the GED problem into a linear sum assignment problem that
can be solved in polynomial time, using the Hungarian algorithm [14]. Later, BP
has been improved in many works such as FastBP and SquareBP [17], and also
it has been used in other heuristics such as SBPBeam [10]. Other heuristics are,
for instance, Integer Projected Fixed Point (IPFP) and Graduate Non Convexity
and Concavity Procedure (GNCCP) [1]. They are based on solving the Quadratic
Assignment Problem (QAP) model for the GED problem proposed by the same
authors. A recent heuristic method has been designed in [7] and referred to as
LocBra. It is based on local searches in the solution space of a MILP formulation.
This kind of heuristics on the basis of MILP formulations is known by Matheuris-
tics. LocBra was shown in [6,7] to be more effective than existing heuristics (e.g.
SBPBeam, IPFP and GNCCP) when dealing with instances of GEDEnA.
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This work is an attempt to design a new matheuristic that can accom-
plish accurate results as LocBra but on the general problem. It is actually an
adapted version of Variable Partitioning Local Search (VPLS) matheuristic pro-
posed originally by Della Croce et al. [9]. The main ingredients in VPLS are: a
MILP formulation which is going to be F3 and a MILP solver which is CPLEX.
Then, VPLS defines neighborhoods around feasible solutions by modifying the
MILP. The modified formulation will be handed over to the solver to explore
the neighborhoods looking for improved solutions. The special version dedicated
to the GED problem involves integrating problem-dependent information and
characteristics into the neighborhood definition, which increases most likely the
performance of the heuristic.

The remainder is organized as follows: Sect. 2 presents the definition of GED
problem, followed with a review of F3 formulation. Then, Sect. 3 details the pro-
posed heuristic. And Sect. 4 shows the results of the computational experiments.
Finally, Sect. 5 highlights some concluding remarks.

2 GED Definition and F3 Formulation

2.1 GED Problem Definition

Given two graphs G = (V,E, μ, ξ) and G′ = (V ′, E′, μ′, ξ′), GED is the task of
transforming the graph source G into the graph target G′. To accomplish this,
GED introduces vertex and edge edit operations: (i → k) is the substitution of
two vertices, (i → ε) is the deletion of a vertex, and (ε → k) is the insertion of a
vertex, with i ∈ V, k ∈ V ′ and ε refers to the empty node. The same logic goes
for edges. The set of operations that reflects a valid transformation of G into G′

is called a complete edit path, defined as λ(G,G′) = {o1, ..., ok}, where oi is an
elementary vertex (or edge) edit operation and k is the number of operations.
GED is then,

dmin(G,G′) = min
λ∈Γ (G,G′)

∑

oi∈λ

�(oi) (1)

where Γ (G,G′) is the set of all complete edit paths between G and G′, dmin

represents the minimal cost obtained by a complete edit path λ(G,G′), and �(.)
is a cost function that assigns costs to elementary edit operations.

2.2 Mixed Integer Linear Program

The general MILP formulation is of the form:

min
x

cT x (2)

Ax ≥ b (3)

xi ∈ {0, 1},∀i ∈ B (4)

xj ∈ N,∀j ∈ I (5)
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xk ∈ R,∀k ∈ C (6)

where c ∈ R
n and b ∈ R

m are vectors of coefficients, A ∈ R
m×n is a matrix of

coefficients. x is a vector of variables to be computed. The variable index set is
split into three sets (B, I, C), which stand for binary, integer and continuous,
respectively. This formulation minimizes an objective function (Eq. 2) w.r.t. a
set of linear inequality constraints (Eq. 3) and the bounds imposed on variables
x e.g. integer or binary (Eqs. 4–6). A feasible solution is a vector x with the
proper values based on their defined types, that satisfies all the constraints. The
optimal solution is a feasible solution that has the minimum objective function
value. This approach of modeling decision problems (i.e. problems with binary
and integer variables) is very efficient, especially for hard optimization problems.

2.3 F3 Formulation

F3 is a recent MILP formulation proposed by Darwiche et al. [8], which was
an improvement to an earlier version (referred to as F2) designed by Lerouge
et al. [12]. F3 is a compact formulation with a set of constraints independent from
the edges in the graphs. For this reason, F3 is more effective than F2 especially
in the case of dense graphs [8]. In the following, F3 is detailed by defining: data,
variables, objective function to minimize and constraints to satisfy.

Data. Given two graphs G = (V,E, μ, ξ) and G′ = (V ′, E′, μ′, ξ′), the cost
functions, in order to compute the cost of each vertex/edge edit operations, are
known and defined. Therefore, vertices cost matrix [cv] is computed as in Eq. 7 for
every couple (i, k) ∈ V × V ′. The ε column is added to store the cost of deletion
of i vertices, while the ε row stores the costs of insertion of k vertices. Following
the same process, the matrix [ce] is computed for every ((i, j), (k, l)) ∈ E × E′,
plus the row/column ε for deletion and insertion of edges.

cv =

v1 v2 . . . v|V ′| ε
⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

c1,1 c1,2 . . . c1,|V ′| c1,ε u1

c2,1 c2,2 . . . c2,|V ′| c2,ε u2

...
...

. . .
...

...
...

c|V |,1 c|V |,2 . . . c|V |,|V ′| c|V |,ε u|V |
cε,1 cε,2 . . . cε,|V | 0 ε

(7)

Variables. F3 focuses on finding the correspondences between the sets of ver-
tices and the sets of edges. So, two sets of decision variables are needed.

– xi,k ∈ {0, 1} ∀i ∈ V,∀k ∈ V ′; xi,k = 1 when vertices i and k are matched,
and 0 otherwise.

– yij,kl ∈ {0, 1} ∀(i, j) ∈ E,∀(k, l) ∈ E′ ∪ E
′
such that E

′
= {(l, k) : ∀(k, l) ∈

E′}; yij,kl = 1 when edge (i, j) is matched with (k, l), and 0 otherwise.
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Objective Function. The objective function to minimize is the following.

min
x,y

∑

i∈V

∑

k∈V ′
(cv(i, k) − cv(i, ε) − cv(ε, k)) · xi,k (8)

+
∑

(i,j)∈E

∑

(k,l)∈E′
(ce(ij, kl) − ce(ij, ε) − ce(ε, kl)) · yij,kl + γ

The objective function minimizes the cost of assigning vertices and edges
with the cost of substitution subtracting the cost of insertion and deletion. The
γ, which is a constant given in Eq. 9, compensates the subtracted costs of the
assigned vertices and edges. This constant does not impact the optimization
algorithm and it could be removed. It is there to obtain the GED value. So at
first, the function considers all vertices and edges of G as deleted and the ones of
G′ as inserted. Then, it solves the problem of finding the cheapest substitution
assignments of vertices and edges.

γ =
∑

i∈V

cv(i, ε) +
∑

k∈V ′
cv(ε, k) +

∑

(i,j)∈E

ce(ij, ε) +
∑

(k,l)∈E′
ce(ε, kl) (9)

Constraints. F3 has 3 sets of constraints.
∑

k∈V ′
xi,k ≤ 1 ∀i ∈ V (10)

∑

i∈V

xi,k ≤ 1 ∀k ∈ V ′ (11)

∑

(i,j)∈E

∑

(k,l)∈E′∪E
′
yij,kl ≤ di,k × xi,k ∀i ∈ V,∀k ∈ V ′

with di,k = min (degree(i), degree(k)) (12)

Constraints 10 and 11 are to make sure that a vertex can be only matched
with maximum one vertex. Next, constraints 12 guarantee preserving edges
matching between two couple of vertices.

3 VPLS Heuristic

3.1 Main Features of VPLS

Variable Partitioning Local Search (VPLS) is a matheuristic proposed by
Della Corce et al. [9]. It aims at solving optimization problems by embedding
a MILP solver into heuristic algorithms. More generally, VPLS is about per-
forming neighborhood exploration in the solution space of a MILP formulation.
To start a VPLS heuristic, two ingredients are needed: MILP formulation and
MILP solver.
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Fig. 1. Example of VPLS partitioning.

The first step in VPLS heuristic is to compute a feasible solution X̄. Let
XB = {xi|∀i ∈ B} be the set of binary variables and X̄B = {x̄i|∀i ∈ B}
be the set of values assigned to binary variables based on X̄. Now, assuming
that there exists a partition S ⊆ B of “special” binary variables. The variables
in S are selected based on some defined rules, where these rules underlie some
analyses and observations related to the problem. Later, a procedure is presented
for selecting those special variables based on problem-dependent information
and characteristics of an instance. After determining the set S, a neighborhood
N(X̄, S) can be defined as follows:

N(X̄, S) = {XB | xj = x̄j ,∀j /∈ S} (13)

The neighborhood of X̄, then, contains all solutions of the MILP such that,
they share the same values of binary variables not belonging to subset S, as
in the current solution X̄B . Meanwhile, the variables belonging to subset S
remain free. An example of variables partitioning is depicted in Fig. 1. So, the
resulting restricted MILP formulation has a part of its binary variables with
default values (as in the solution X̄). At this point, the solver can be called
to solve the restricted formulation looking for the optimal/best solution in the
neighborhood N(X̄, S). The new solution is the optimal in that neighborhood, if
the proof of optimality is returned by the solver. In the case where the restricted
formulation is difficult, then the solver can be forced to stop and return the best
solution found so far. This step stands for the search intensification in VPLS.
Finally, the current solution X̄ is updated with the new solution. To sum up,
VPLS consists of three main steps:

1. Neighborhood definition around a current solution X̄.
2. Intensifying the search in the neighborhood.
3. Updating the current solution with the new one.

The process can be repeated until a defined stopping criterion is met.

3.2 VPLS for the GED Problem

To make the heuristic suitable for the GED problem, F3 is selected as the main
formulation. Then, A fundamental question arises when implementing VPLS is
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how to define the set S? Earlier, the variables in S were referred to as special
variables, and this is to indicate that they should be chosen carefully. Choosing
them randomly is a possibility, but there is no guarantee that the neighborhoods
will contain good and diversified solutions.

Fig. 2. Example of generating spheres for a graph. When δ = 1, in red is the sphere for
vertex 1, in green is the sphere for vertices 2 and 3, in orange is the sphere for vertex
4 and in blue is the sphere for vertex 5. When δ = 2, in red is the sphere for vertices
1 and 4, in green is the sphere for vertices 2, 3, and in blue is the sphere for vertex 5.
(Color figure online)

So, back to defining the set S, it is essential to select variables that affect
the most the matching (and at the same time the objective function). Basically,
only xi,k variables are going to be considered when defining the set S. And next,
a procedure based on the notion of spheres is followed to determine S. This
procedure needs two input graphs G and G′ and an initial solution x0, and it
proceeds as follows:

(i) First, define the list of spheres on graph G of radius δ. For each vertex i in
G, the sphere Si contains all vertices j that are distant from i with at most
δ edges, e.g. if δ = 1, Si contains all vertices connected to i with an edge.
To compute how many edges are needed to go from one vertex to another,
the well-known Dijkstra algorithm is used [5]. It computes the shortest
path between two vertices in a graph. In fact, each sphere is a subgraph
of G, containing all vertices accessible by at most δ edges, plus the edges
connecting any two vertices in the sphere. Figure 2 shows an example of
spheres with different δ values.

(ii) Next, compute a cost for each sphere Si based on the assignments in
the initial solution x0. For example, if S1 for vertex u1 contains vertices
{u1, u2, u3, u4}. From the solution x0, see to which vertex k ∈ V ′ the vertex
u1 is assigned, and include the cost c(u1 → v) to the sphere’s cost. As well,
check the edges that are part of sphere S1 and find their assignments so



74 M. Darwiche et al.

their costs are added to the sphere’s cost. The same is done for the rest of
the vertices ({u2, u3, u4}).

cS =
∑

∀i∈S

c(i → assign(i)) +
∑

∀(i,j)∈(S ×S )∩E

c((i, j) → assign((i, j))), (14)

with assign a function to determine vertices/edges assignments based on xp

solution. The result of this step is an array [cS ] storing costs of all spheres.
(iii) Finally, find the sphere with the highest cost in [cS ] array. Then, for every

vertex i in this sphere, add all xi,k variables to the set S.

Steps (ii) and (iii) are called each time a new feasible solution is found to select
the next sphere with the highest cost. An already selected sphere is excluded in
the next iteration. This avoids selecting a sphere multiple times, and searching
in the same neighborhood several times consecutively.

Once the set S is determined, the next step is to set all variables not in S
to their values in the solution x0 and the rest of the variables are left free in
the MILP formulation. The solver will solve the restricted MILP formulation
trying to find the best solution by setting the right values for variables in S.
This is the intensification phase, that will result in a new solution x1. Again,
the spheres costs are recomputed based on x1, and the one with the highest cost
will be selected for the next iteration. An iteration, then, consists of three steps:
computing and selecting the sphere to define S, defining the neighborhood based
on S, intensifying the search in the neighborhood. This process is repeated until
reaching some defined stopping criterion.

Finally, VPLS requires the following parameters to be set:

1. δ, is the radius of spheres.
2. total time limit, is the total running time allowed for VPLS before stopping.
3. node time limit, is the maximum running time given to the solver to solve

the restricted MILP formulation.
4. UB time limit, is the running time allowed to the solver to compute an initial

solution.
5. cons sol max, serves as a stopping criterion: VPLS stops when the number

of consecutive intensification steps finding solutions with the same objective
function values is equal to this parameter.

4 Computational Experiments

Database. Among the numerous existing databases, CMU-HOUSE database is
selected in this experiment [13]. It contains 111 (attributed and undirected)
graphs corresponding to 3D-images of houses. The particularity of this database
is that graphs are extracted from 3D-images of houses, where the houses are
rotated with different angles. This is interesting because it enables testing and
comparing graphs representing the same house but positioned differently inside
the images. The total number of instances is 660.
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Experiment Settings and Comparative Heuristics. VPLS algorithm is imple-
mented in C language. The solver CPLEX 12.7.1 is used to solve the MILP
formulations. CPLEX solver is configured to use a single thread, and the rest of
the parameters are set to default. Experiments are ran on a machine with Win-
dows 7 × 64, Intel Xeon E5 2.30 GHz, 4 cores and 8 Gb of RAM. The following
heuristics are selected from the literature in the comparison: SBPBeam [10],
IPFP and GNCCP [1]. Their parameters are set to the values as mentioned
in the references. VPLS parameters are set empirically to the following val-
ues: δ = 2, cons sol max = 5, total time limit = 10 s, node time limit = 2 s,
UB time limit = 4 s. For each heuristic, the following indicators are computed:
tmin, tavg, and tmax are the minimum, average and maximum CPU times in
seconds over all instances. Correspondingly, dmin, davg, and dmax are the devi-
ations of the solutions obtained by one heuristic, from the best solutions found
by all heuristics (i.e. given an instance I and a heuristic H, deviation percentage
is equal to solutionH

I −bestI
bestI

× 100, with bestI the best solution for I found by all
heuristics).

Table 1. VPLS vs. heuristics on CMU-HOUSE instances

VPLS SBPBeam IPFP GNCCP

tmin 5.76 7.54 0.03 6.85

tavg 9.24 8.50 0.18 9.61

tmax 10.03 9.72 0.32 11.70

dmin 0.00 0.00 0.00 0.00

davg 13.13 330.24 313.05 336.81

dmax 294.41 5502.39 34308.00 32426.89

ηI 537 126 310 440

Results and Analysis : Based on the results reported in Table 1, VPLS seems
to be the best heuristic in terms of solutions quality, with the best average
deviation at 13% and ηI at 537. The difference is remarkably high (around 300%)
compared to the deviations obtained by other heuristics. Even when looking at
worst deviations the difference is very high. However, in terms of average running
time, the fastest heuristic is IPFP with tavg at 0.18 s, while other heuristics
including VPLS reaches 9 s. Eventually, VPLS has been able to outperform the
existing heuristics by obtaining very good solutions.

5 Conclusion

In this work, a VPLS heuristic is designed for solving the GED problem. This
heuristic is based on performing local searches on the basis of a MILP formula-
tion. To perform local searches, the neighborhoods are defined based on special
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variables determined by extracting characteristics from the instance at hand.
By doing so, the performance of VPLS improves, which was shown in the exper-
iments where VPLS outperformed the existing heuristics in terms of solution
quality. This is a second matheuristic designated to solve the GED problem after
the first and successful attempt with local branching [7]. Indeed, matheuristics
are effective and are new ways for solving the GED problem. Meanwhile, it will be
interesting to combine VPLS and local branching into one matheuristic by uni-
fying the neighborhood definitions. As well, more evaluations and experiments
need to be performed to test the methods on different kinds of graphs.
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Abstract. In this paper, we introduce a new graph dataset based on
the representation of RNA. The RNA dataset includes 3178 RNA chains
which are labelled in 8 classes according to their reported biological func-
tions. The goal of this database is to provide a platform for investigating
the classification of RNA using graph-based methods. The molecules are
represented by graphs representing the sequence and base-pairs of the
RNA, with a number of labelling schemes using base labels and local
shape. We report the results of a number of state-of-the-art graph based
methods on this dataset as a baseline comparison and investigate how
these methods can be used to categorise RNA molecules on their type
and functions. The methods applied are Weisfeiler Lehman and optimal
assignment kernels, shortest paths kernel and the all paths and cycle
methods. We also compare to the standard Needleman-Wunsch algo-
rithm used in bioinformatics for DNA and RNA comparison, and demon-
strate the superiority of graph kernels even on a string representation.
The highest classification rate is obtained by the WL-OA algorithm using
base labels and base-pair connections.

1 Introduction

Ribonucleic acid (RNA) is chemically very similar to DNA in their polymer
of nucleotides [1]. These nucleotides have sequences that can encode genetic
information [2]. DNA stores genetic information while RNA, copied from DNA,
carries and provides this genetic information to other biological process. RNAs
are also well known to play important regulatory and catalytic roles [3]. These
roles including transcriptional regulation, RNA splicing, and RNA modification
and maturation [3]. RNA also very important for treatment of diseases including
viral and bacterial infections, and cancer [4]. RNA is therefore crucial to all life
and it is important to understand its function.

The primary structure of the RNA consists of nucleotide sequences, this
nucleotide sequences can fold onto itself to create secondary and tertiary struc-
ture of the RNA. Unlike DNA, RNA is single strand and is encouraged to fold
into complex shapes, like proteins, by the matching of base-pairs from the same
strand. The secondary structure is formed by both Watson-Crick base pairs [5],
c© Springer Nature Switzerland AG 2019
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(A-U, C-G) and non-standard pairs. The base pairs between A-U, C-G, and the
wobble pair between G-U are referred to as canonical base pairs while base pairs
between other base pairs are called non-canonical base pairs [6]. The canoni-
cal base pairs are more stable and important than non-canonical bases in the
structure of the RNA [6]. The secondary structures is the topology of the RNA
folding, and it consist of five main structural components: called internal loops,
hairpins, bulges, junctions, and stems. The geometric shape of the RNA is its
tertiary (3D) structure.

The objective of this paper is to present a new, large, graph RNA dataset
which can be used to investigate graph-based methods for RNA classification
and discovery. We also investigate the performance of some standard methods
on the dataset and the role of different elements of the RNA representation,
particularly the labelling, topology and geometry of the RNA.

Outline of the Paper: In Sect. 2 we will explain related works. In Sect. 3 we will
demonstrate our dataset. In Sect. 4 we will represent RNA molecules. In Sect. 5
we will explain sequence alignment, Weisfeiler-Lehman optimal assignment ker-
nel, all paths and cycle embedding, and shortest path embedding methods. In
Sect. 6 we will show our experimental results. In Sect. 7 we will discuss on our
experiments and conclude the paper.

2 Related Work

DNA and RNA have chemical and structural similarities. Both molecules are
nucleic acid composed of nucleobases, although the sugar backbone of the poly-
mer is different. The structure of the molecule is determined by the nucleotide
sequence. Because of this, sequence alignment is commonly used to determine
the biological function of the DNA, such as the Needleman Wunch algorithm
[7]. This is essentially a string edit distance between the strings of base-labels.
The nucleotide sequence is the primary structure of the RNA. Because RNA is
single strand, it can fold on itself, and the folds can be held in place by base-pair
bonding between bases at different points on the RNA strand. This creates the
potential for a more complex topology than RNA. This structure is called the
secondary structure and can naturally be represented by a (labelled) graph.

Graph Theory is a branch of mathematics which has been used in various
areas, such as road systems, neurosciences, irrigation networks, chemical pro-
cesses and structures, computer science, and bioinformatics [1]. Graph-based
data is becoming more abundant in chemical pathways and protein structures,
protein or gene regulation networks, and social networks [8]. Graph Kernels allow
the application of kernel methods to graph data [10] and allow using a range of
algorithms for pattern recognition [9]. Graph kernels bridge the gap between
graph-structured data and a large spectrum of the machine learning algorithms
such as SVM kernel regression, kernel PCA [8], KNN and ensemble classifiers
(Subspace KNN, Subspace Discriminant, Bagged Trees, and Boosted Trees). In
this work, the goal of applying graph kernels is to measure similarities between



80 E. Algul and R. C. Wilson

two patterns, while the goal of the Machine learning is to classify these simi-
larities. Kernel methods are widely used in the field of the bioinformatics, such
as in Lodhi and Huma [10] where the spectrum kernel, marginalise kernel and
fisher kernel were applied for sequence analysis.

3 Database

There exist large databases of DNA, RNA and protein structures. In the reviewed
literature, most of the dataset are in fasta and protein data bank (pdb) file for-
mats. The fasta files include the basic sequence of macro-molecules (protein,
DNA, RNA) [11,12]. The pdb files include the information of each atom of the
macro-molecules, their sequence information, and their atomic coordinates. The
data which was used in recent studies are in the pdb format which is standard-
ised according to the atomic coordinates [13]. The pdb files provided by the
many organisations. The three largest of them are the Protein Data Bank Japan
(PDBj) [14], Nucleic Acid Database (NDB) [15], and The Research Collabora-
tory for Structural Bioinformatics Protein Data Bank (RCSB PDB) [16].

The pdb files consist of more than one chain of information of the RNA
molecules. For instance, in the same pdb files there might be different kinds of
chains belong to a different type of RNA or DNA or RNA-Protein interaction. For
instance, in 1XNR.pdb file, chain A is 16S ribosomal RNA, chain X is anticodon
TRNA, chain M is MRNA, and other chains such as chain B, C, D, ..., T, V are
16S ribosomal protein. It is not straightforward to extract single RNA chains
from this type of data. The largest classified database of RNA structure (i.e.
RNA strands with functional labels) known to us is that of Klosterman et al.
[17] which contains 419 RNA strands.

RNA Bricks [18] downloaded pdb files from the World Wide Protein Data
Bank web site and split each pdb files by their chains. Their dataset is publicly
available. We have extracted 3178 RNA chains from this dataset. For each of
this molecules, we have investigated the literature to classify them into one of 8
possible RNA classes. The first step is to look at the MOL-ID field in the pdb
files which include information of the type of RNA molecules. In some pdb files,
the type of the RNA is not very clear from this field. For these, we undertook a
more elaborate investigation using information derived from the HEADER, the
TITTLE, the KEYWDS, and HD-RNA [19] in order to determine the type of
the RNA chains. We then removed any chains where we were still unsure of the
type. The result is a curated database of 3178 RNA molecules with 8 possible
class labels which is available for download [20].

The RNA classes from the Table 1, ribozyme is a type of the RNA which
catalyses chemical reactions, riboswitches behave like ribozymes and participate
gene regulation, ribonucleases are very important enzymes in RNA degradation
and maturation pathways, signal recognition particle (SRP) RNA, a part of
ribonucleo-protein (protein-RNA complex), involves in targeting translocation
of membrane proteins and secretory proteins. We labelled all other RNA classes,
which the number of classes too small, in the OTHER section. We did not
labelled our dataset according to the source of the organism.
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Table 1. The labelled classification of the RNAs and their descriptions. The number
of each type of RNAs represents in the brackets.

Classes Keywords/Description

RIBONUCLEASE (14) RIBONUCLEASE P, RNASE P

RIBOSWITCH (227) APTAMER

MRNA (179) UTR, EXON

RIBOZYME (259) S-TURN, CATALYTIC RNA, HAMMERHEAD, GLMS

RRNA (1135) 4.8S, 5S, 5.8S,16S, 18S, 23S, 25S, 26S, 28S, 30S, 40S,
50S, 60S, 70S, 80S, A-SITE OF HUMAN RIBOSOME,
A-SITE OF HUMAN MITOCHONDRIAL
RIBOSOME, A-SITE OF BACTERIAL RIBOSOME,
SARCIN/RICIN 28S RRNA

SRP (57) 4.5S, 7S, 7SL

TRNA (581) A-site, P-site, tRNA X-MER, FMET, FME,
INITIATOR, INI, PRIMER CODON, ANTICODON,
ACCEPTOR, tRNA-fragment

OTHER (726) viral RNA, miRNA, snoRNA, IRES RNA, and some
undefined RNAs such as 5’ RNA, 16-MER, 192-MER,
28-MER, 119-MER, 97-MER etc.

In our data set, 332 RNA chains’ nucleotide lengths are from 6 to 9, 1798
RNA chain’s nucleotide sizes are from 10 to 100, 469 RNA chains nucleotide sizes
are from 101 to 500, 277 RNA chain’s nucleotide sizes are from 1326 to 1861, 286
RNA chain’s nucleotide sizes are from 2227 to 2912, 15 RNA chain’s nucleotide
sizes are from 3119 to 3662, and nucleotide size of one chain is 4298. The per-
centage of the each type of the RNA molecules are 35.71% (RRNA), 22.84%
(OTHER), 18.28% (TRNA), 8.15% (RIBOZYME), 7.14% (RIBOSWITCH),
5.63% (MRNA), 1.79% (SRP), and 0.44% (RIBONUCLEASE).

4 RNA Representation

The main component of Nucleic Acid is 5 carbon sugar (2-deoxyribose or ribose),
a phosphate group and a base (one of four molecules = adenine, guanine, cyto-
sine, and uracil/thymine). There is two macro nucleic acids called as deoxyribonu-
cleic acid (DNA) and ribonucleic acid (RNA). Ribonucleic Acid (RNA) consist of
nucleotides. The nucleotides are composed of purine nucleobases, namely Adenine
(A), Guanine (G), and pyrimidine nucleobases calling Cytosine (C) and Uracil (U).

The base sequences represents the primary structure of the RNA such as the
following sequence is single stranded (strand B) of an Escherichia coli Riboswitch
‘4Y1M’:
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Fig. 1. 3D and secondary structure of the Escherichia coli Riboswitch derived from
4Y1M.pdb. The secondary structure’s image produced using RNApdbee 2.0 [21] and
3D structure’s image produced using Matlab molviewer.

“GAUUUGGGGAGUAGCCGAUUUCCGAAAGGAAAUGUACGUGUCAA
CAUUUUCGUUGAAAAACGUGGCACGUACGGACUGAAGAAAUUCAGU
CAGGCGAGACCAUAUCC”

The primary structure of the RNA folds on to itself to build secondary struc-
ture and 3D structure of the RNA as represented in Fig. 1. 2D structure of the
RNA is widely used to classify and define RNA molecules with their functions.
The main components of the 2D RNAs are hairpin loop, bulge, internal loop,
multi-loop, and stem. As represented on Fig. 1; the uninterrupted base-paired
portion of the RNA molecules is called a stem, the hairpin loops are sets of
unpaired bases which connect to only one stem and occur at the end of the some
sections. The multi-loop occurs among more than two stems while internal loops
exist between only two stems. The internal loop is defined as two strands of
unpaired bases occuring between two stems. The bulges are similar to internal
loop it occurs between two stems, the only difference is that one strand’s bases
are unpaired.

The RNA is encoded as a graph using a straightforward representation. Each
vertex represents an RNA residue and is labelled with the base code (A, G, C,
U or a rare non-standard base). An adjacency matrix encodes the graph edges,
which join all residues in sequence and any base pairs. Base-pairs are detected
using the X3DNA program ‘find-pairs’ [22]. The vertices are also labelled with a
geometric ‘type’ label; 1 if it is part of a base pair, 2 if it is unpaired but within
6.5 Å of another base, and 3 otherwise. Two sets of 3D coordinates are also



A Database and Evaluation for Classification of RNA Molecules 83

provided, firstly for the backbone position of the residue (the position of atom
C3’) and secondly the centroid position of the base. From this data, information
about the secondary and tertiary structure can be inferred. A set of classification
labels from the 8 classes in Table 1 is also provided.

5 Classification Methods

In this section, we present the results of applying some standard classification
algorithms on our database. These are sequence alignment (SA), the shortest
path kernel (SP), all-paths and cycles kernel (APC), and the Weisfeiler Lehman
optimal assignment method (WL-OA). These methods are described briefly in
the following sections. SP and APC have an explicit embedding in vector space,
which is used. WL-OA produces a kernel matrix which is embedded using kernel
embedding. Sequence alignment produces a distance measure which is embedded
using multi-dimensional scaling (negative dimensions use the absolute value [23]).

5.1 Sequence-Based Methods

Sequence-based methods mostly use in the study of the DNA. We have applied
this method on the primary structure of the RNA for comparison. The sequence
of the RNA is the primary structure of the RNA. The nucleotides are represented
as strings such as adenine (A), guanine (G), cytosine (C), and uracil (U). The
Needleman - Wunsch algorithm [7] to align the strings (A, G, C, U), and Jukes
- Cantor score used to calculate the distances between RNA sequences, which
are significantly larger than amino-acid sequences. The running time of this
algorithm is therefore quite high. The equation of the Jukes - Cantor score:

d = −3
4

log(1 − 4
3
p). (1)

Here, p denotes the distance between them in terms of the fraction of letters
which differ.

5.2 Weisfeiler-Lehman Optimal Assignment (WL-OA)

The Weisfeiler-Lehman optimal assignment (WL-OA) graph kernel [24] is a
state-of-the-art method for labelled graph comparison which utilises an opti-
mal assignment kernel with the labelling generated by the WL method [8]. The
method generated vertex labels using the WL label refinement process, with ini-
tial labelling corresponding to the RNA vertex labels. An implicit optimal assign-
ment is sought which minimises the labelling difference, and the kernel value is
the count of label differences for this optimal assignment. WL-OA performs
favourably compared to state-of-art graph kernel in a wide range of datasets.



84 E. Algul and R. C. Wilson

5.3 Shortest Path Embedding

The walk kernel counts the similar walk in graph pairs. The shortest path kernel
(SPK) [25] is a type of walk kernel which counts only the shortest walks between
each pair of nodes in a graph:

KSP (G,H) =
∑

pi∈SP (G)

∑

pj∈SP (H)

KB(pi, pj) (2)

where SP (.) is the set of shortest paths in a graph and KB is a base kernel
which compares paths. In the case that the base kernel is the delta kernel, this
has an explicit embedding as the histogram of the shortest paths, where each
path is denoted by its sequence of labels. This method also called shortest path
embedding. Each labelled shortest path in the molecule is generated, and the
embedding is a histogram of these paths.

5.4 All Paths and Cycles Embedding(APC)

The all-paths graph kernel is a recently proposed extension to the shortest path
kernel, which counts all paths (up to a maximum length).

KAPC(G,H) =
∑

pi∈PC(G)

∑

pj∈PC(H)

KB(pi, pj) (3)

Here, PC(G) denotes a set of all paths and simple cycles (a cycle is
v1v2...vnv1, v1 < 1 < vn is distinct) on G and KB(., .) is a base kernel for
paths [26]. In order to evaluate this kernel in a computationally efficient way,
the maximum path length and the number of distinct labels must be limited. We
therefore label bases with three labels G/C, A/U and other. This is embedded
in the same way as the shortest path kernel, as a histogram of distinct labelled
paths.

6 Results

In this work, we presented our graph-based RNA dataset. We classified this
dataset in 8 type of RNA categories as listed in Table 1. We also demonstrate
here that graph based methods can be used to classify RNA molecules. To eval-
uate the effect of different types of structure (broadly corresponding to the pri-
mary, secondary and tertiary structure), we include information from the topol-
ogy, sequence, and the geometry of shape of the RNA. Seq includes the graph
edges corresponding to the sequence only, and the base labels. Top includes the
graph edges (including the sequence and base-pair edges) but no base labels. Geo
adds additional labels to the bases corresponding to the geometry type labels
described earlier. The combinations are the union of these sources of information.

Then, we have applied graph-based embedding methods and a classifier to
find the most effective methods on our RNA dataset to determine the accuracy.
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Table 2. Classification accuracies for the RNA dataset using Weisfeiler Lehman Opti-
mal Assignment (WL-OA), Shortest Path (SP), All-Paths and Cycle methods (APC),
Sequence Alignment (SA), and a variety representations

Seq only Top only Geo only Seq + Top Geo + Top Geo + Seq All

WL-OA 92.0 73.1 86.8 92.4 87.1 89.5 90.2

SP 91.3 79.5 86.7 91.1 86.7 91.1 90.8

APC 90.3 85.4 84.3 89.9 85.5 ... ...

SA 89.2 ... ... ... ... ... ...

We tried a variety of classifiers; Subspace KNN, Subspace Discriminant, Linear
discriminant, Boosted Trees, Cosine KNN and Bagged Trees. In our experiments,
Subspace KNN outperform the results with APC methods, and SP methods on
three source of information of the RNA. Bagged Trees outperform best results
with SA method. On the other hand, WL-OA performed its best results from
variety methods on a variety of representations. Subspace KNN performs best
result on Geometry Label, Geometry Shape of the RNA + Topology, Geometry +
Residue Label, and All Label; Subspace Discriminant and Linear Discriminant
demonstrate best results on Residue Label, and Residue + Topology Label;
Boosted Trees performs best result on Topology Label (Table 2).

Fig. 2. Confusion Matrix and ROC Curve on WL-OA method on Sequence + Topology
Label

The experimental results on the RNA dataset represents that, Weisfeiler-
Lehman Optimal Assignment (WL-OA) methods outperform the Shortest Path
(SP) method, All Path Cycle (APC) method, and Sequence Alignment (SA)
method. The accuracy with WL-OA increased up to 92.4%, which is the best
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performance in all methods. The results here largely support the results of [2]
in that all graph based methods outperform sequence alignment even when only
the sequence data is available. It is clear that the base labels are important to
the classification, with a drop-off of between 4–10% when they are not included.
The all-paths kernel can only be evaluated with three labels, which means that
it cannot be used on the experiments with rich label sets and explains the lower
performance overall.

7 Conclusion

In this work, we have described graph based methods and kernel based methods
for encoding RNA molecules. Then, we applied these methods on our RNA
dataset using MATLAB classifiers. We have demonstrated that, graph kernels
can be used to classify RNA in high accuracy. We received the best results on the
Residue Label (sequence information) and Topology Label using WL-OA with
an accuracy of 92.4%. We received the worst results on nucleotide sequences
using general Sequence Alignment method with an accuracy of 89.2%.
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Abstract. This paper introduces an unsupervised graph-based rank
aggregation approach for event prediction. The solution is based on the
encoding of multiple ranks of a query, defined according to different cri-
teria, into a graph. Later, we embed the generated graph into a feature
space, creating fusion vectors. These vectors are then used to train a
predictor to determine if an input (even multimodal) object refers to
an event or not. Performed experiments in the context of the flooding
detection task of the MediaEval 2017 shows that the proposed solution is
highly effective for different detection scenarios involving textual, visual,
and multimodal features, yielding better detection results than several
state-of-the-art methods.

Keywords: Rank aggregation · Graph-based rank fusion ·
Graph embedding · Event prediction

1 Introduction

Nowadays event analysis and especially disaster event is a hot topic that attracts
a lot of attention in many parts of the world. Among the different natural dis-
asters, flooding event is one of the most observed and harmful. In this con-
text, natural disaster monitoring is a fundamental task to create prevention
strategies, as well as to help authorities to act in the control of damages. Many
research works have been proposed in the literature combining heterogeneous
data sources (remotely sensed information and social media) to analyze natural
disasters. In [26], authors point out the benefit to explore and fuse multi-modal
features with different models. Moreover, combining different kinds of features
(local vs holistic) improve substantially the retrieval precision [23], and most
retrieval fusion approaches are based on rank fusion [7,9,23].

This paper introduces an unsupervised graph-based rank aggregation app-
roach for event prediction. We propose a late-fusion method based on the repre-
sentation of multiple ranks, defined according to different criteria, into a graph.
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Graphs provide an efficient representation of arbitrary structures and inter-
relationships among different elements of a model. We embed the generated
graph into a feature space, creating fusion vectors. Next, a regressor is trained
to predict if an input multimodal object refers to a target event or not, following
their fusion vectors.

Experimental results for the flooding detection task of the MediaEval 2017
demonstrate that the proposed solution is robust for different detection scenar-
ios involving textual, visual, and multimodal features, yielding better detection
results than state-of-the-art methods. While most previous initiatives for event
prediction are solely based on either CNN-based descriptors in isolation, feature
concatenation [4,8,10,11,16,21], or graph-based early-fusion [3,22], our method
works on top of state-of-the-art descriptors for both visual and textual data,
properly designed for the task, along with an extension of a competitive late-
fusion approach for generic retrieval tasks [9]. It also has the advantage to be
unsupervised and provides a robust way to leverage multiple multimodal rankers.

2 Preliminaries

Let a sample s be any digital object, such as a document, an image, a video, or
even a hybrid (multimodal) object. A sample is characterized by a descriptor,
D, which relies on a particular point of view to describe s as a vector, graph or
another data structure ε(s). Descriptions allow samples to be compared to each
other. Therefore, descriptors are the basis for retrieval and learning models.

A comparator C, applied over a tuple (ε(si), ε(sj)), produces a score ς ∈
R

+ (e.g., the Euclidean distance or the cosine similarity). Either similarity or
dissimilarity functions can be used to implement C. A query sample, or just
query q, refers to a particular sample taken as an input object in the context
of a search, whose purpose is to retrieve response items from a response set (S)
according to relevance criteria. A response set S = {s1, s2, . . . , sn} is a collection
of n samples, where n is the collection size. A ranker is a tuple R = (D, C),
which is employed to compute a rank τ for q, denoted by τq to distinguish its
corresponding query. A rank is a permutation of SL ⊆ S, where L � n in general,
such that τq provides the most similar – or equivalently the least dissimilar –
samples to q from S, in order. L is a cut-off parameter.

A ranker establishes a ranking system, but different descriptors and compara-
tors can compose rankers. Besides, descriptors are commonly complementary, as
well as comparators. For m rankers, {R1, R2, . . . , Rm}, used for query retrieval
over a collection S, for every query q we can obtain Tq = {τ1, τ2, . . . , τm}, from
which a rank aggregation function f produces a combined rank τq,f = f(Tq),
presumably more effective than the individual ranks τ1, τ2, . . . , τm.

Descriptors have specific pros and cons, because each one focuses on a certain
aspect of the data: one may be particularly specialized for either object detec-
tion, scene detection, corner detection, keywords, etc. For this reason, descrip-
tors often provide complementary views, when adopted in combination. Early-
fusion methods emphasize the generation of composite descriptions for samples,
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Fig. 1. Proposed graph-based rank fusion for event prediction.

whereas late-fusion methods perform a combination of techniques focused on a
target problem. Majority voting of classifiers and rank aggregation functions are
examples of late-fusion methods. Late-fusion methods are especially useful when
the raw data from the objects are not available, and are potentially more effective
than early-fusion methods because they are specifically designed or optimized
for the problem being solved.

3 Graph-Based Rank Fusion for Event Prediction

Figure 1 presents an overview of our method – an event predictor based on
rank-fusion graphs. The solution is composed of three main generic components,
briefly described here and detailed in the following sections. Two stages are
adopted. The offline stage comprehends the modeling of the response set in
terms of multiple rankers, as fusion graphs and then as fusion vectors. This
step performs a graph embedding of fusion graphs and the training of an event
prediction model. The online stage refers to the event prediction preceded by a
rank-based late-fusion approach. The offline stage is performed only once, while
the online stage is performed per prediction. The first two components – fusion
graph extraction and graph embedding – are used in both stages.

The fusion graph extraction component (component 1 in the figure) generates
a fusion graph G for a given query sample q. G consists of an aggregated repre-
sentation of multiple ranks for q, thus capturing and correlating information of
multiple ranks. This formulation is presented in Sect. 3.1. Graph Embedding (2)
projects fusion graphs into a vector space model, producing a corresponding
fusion vector V for G. We propose an embedding formulation in Sect. 3.2. At
the end, an event predictor (3) is built based on the response fusion vectors, in
order to predict for queries (also modeled as fusion vectors). This component is
detailed in Sect. 3.3.

3.1 Fusion Graph Extraction

This component produces a fusion graph G for a given query sample q, also
in terms of m rankers and n response items. A fusion graph is a graph-based
encoding of multiple ranks for q, that encapsulates and correlates ranks.
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Fig. 2. Extraction of a fusion graph (adapted from [9]).

We follow the fusion graph formulation from [9], referred to as FG, that
defines a mapping function q → G, based on its ranks τ ∈ Tq and ranks’ inter-
relationships. The proposed formulation also includes a dissimilarity function
for FG, and a retrieval model based on fusion graphs. Here, however, we focus
on the definition of FG, extending its use as part of a rank-based late-fusion
approach for event prediction, without these components.

The process is illustrated in Fig. 2. Given a query q, m rankers and a response
set of size n, m ranks are generated. These ranks are then normalized to allow for
producing the fusion graph G for q. In rank normalization, the scores in the ranks
generated by dissimilarity-based comparators are converted to similarity-based
scores. Besides, all ranks have their scores rescaled to the same interval. G, for q,
includes all response items from each τq ∈ Tq, as vertices. Vertices are connected
by taking into account the degree of relationship between their corresponding
response items, and the degree of their relationships to q.

3.2 Fusion Graph Embedding

Let G = {G1,G2, . . . ,Gn} be the fusion graph set related to the response set of a
certain collection. From G, a fusion graph embedding function E defines a vector
space model in order to project a fusion graph G into that space as a fusion
vector V, i.e. V = E(G) for any G.

E can be defined by unsupervised or supervised approaches. We propose a
straightforward yet effective unsupervised approach, and we leave the investiga-
tion of supervised formulations for future work. For the following definitions, let
w(v) be the weight of the vertex v, if v ∈ G, otherwise 0. Similarly, let w(e) be
the weight of the edge e, if e ∈ G, otherwise 0. Also, let N be the dimensionality
of the vector space model defined by E , such that V ∈ IRN.

EV is an embedding which derives V from the vertices of G. There is one
vector attribute relative to each response object, therefore N = |G|. V is derived
from G such that |V| = N , V[i] is the importance value of the i-th attribute, and
V[i] = w(vi). Despite the vector space increases linearly to the collection size, the
resulting fusion vectors are mainly sparse, i.e., composed of few non-zero entries,
which makes this embedding formulation simple and efficient in practice.

A fusion vector is a concise representation of multi-ranked objects, and allows
efficient similarity computation and representation storage, being therefore suit-
able for search and classification tasks. Dissimilarity scores between fusion vec-
tors can be obtained by traditional vector comparators, ranging from correla-
tion metrics to traditional distances and dissimilarity functions, such as Jaccard,
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cosine, or the Euclidean distance. The vector representation is important to pro-
mote efficient comparisons and query processing time of multi-ranked objects,
in contrast to prediction or retrieval models based solely on fusion graphs.

3.3 Event Prediction from Fusion Vectors

Fusion vectors allow the creation of predictors (e.g., binary or multi-labeled clas-
sifiers), regressors, and also ad-hoc retrieval systems, depending on the underly-
ing demanded task. In this work, we adopt them to model an event predictor,
where training objects, associated with ground-truth information, are used to
train an estimator for a certain input object be considered an event or not.

Let S be a training corpus of size n. An event predictor can be modeled
as a regression model, Y ≈ f(X,β), where f is an approximation function, X
are the independent variables, Y is the dependent variable (target), and β are
unknown parameters. A learning model explores S to find a f that minimizes
a certain error metric. The training samples are generally labeled, so Y may
be categorical. Still, a regressor can be built, as E(Y |X) = f(X,β), so that
posterior probabilities are inferred in order to estimate a confidence of a sample
to refer to an event of not. X, in our case, refers to the fusion vectors, acting as
variables that describe the samples in terms of their multiple multimodal ranks.

4 Experimental Evaluation

We present, in this section, the experimental protocol used to evaluate the
method, and the results achieved comparatively to state-of-the-art baselines.

4.1 Validation Scenario

We validate our method on the task MediaEval 2017 Disaster Image Retrieval
from Social Media [5], which requests event prediction models to infer whether
images and/or texts refer to flood events or not. A development set (devset) is
provided, consisting of 5,280 sample images and their textual metadata, labeled
as either flood (1) or non-flood (0). A test set of 1,320 samples is also provided.
The dataset provides one image per sample, along with pre-extracted feature
vectors by 9 classical image content descriptors, such as Auto color correlogram
(ACC) [13] and Color and Edge Directivity Descriptor (CEDD) [6]. Furthermore,
textual data, composed of title, description, and tags, are provided.

Three evaluation scenarios are designed. In the first one, called “visual,” only
visual data are used. In the second scenario, called “textual,” only textual data
are used. In the third scenario, called “multimodal,” both visual and textual
data are expected to be used. The correctness is evaluated, over the test set,
by the metric Average Precision at K (AP@K) at various cutoffs (50, 100, 250,
480), and by their mean value (mAP).
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Although the task may be seen as a multimodal binary classification prob-
lem, the evaluation metrics require ranking-based solutions, or equivalently
confidence-level regressors, so that the first positions are the most likely to refer
to a flood event. We model our solution as a rank-fusion approach, as for a
retrieval system, followed by a flood estimator based on rank-fusion vectors. This
approach intends to validate our hypothesis that unsupervised graph-based rank
aggregation functions can lead to effective event prediction models.

We selected three visual descriptors and three textual descriptors, for indi-
vidual analysis in the designed evaluation scenarios, and to evaluate different
possibilities of rank-fusion aggregations. The descriptors compose rankers, which
are employed to generate ranks in our rank aggregation formulation. Our method
varies with respect to which rankers are used to compose late-fusion representa-
tion, whether visual rankers, textual ranks, or even combinations of visual and
textual rankers for the multimodal scenario are applied.

For the event predictor component, we adopt SVR, an L2-regularized logistic
regression based on linear SVM in its dual form, with probabilistic output scores,
and trained over the fusion vectors from devset. Probabilistic scores are used so
that we can sort the test samples by confidence expectancy of being flood.

Based on the textual metadata, we adopt the following descriptors:

– Bag of Words (BoW) with Term Frequency (TF) weighting;
– 2grams with TF weighting;
– 300-dimensional doc2vec [15] pre-trained on English Wikipedia dataset, of

about 35M documents and dumped at 2015-12-01.

The doc2vec model promotes document-level embeddings for texts, and it is
based on word embeddings [17], a preliminary work that assigns vector repre-
sentations for words in order to capture their semantic relationships. We refer
to these three adopted descriptors as BoW, 2grams, and doc2vecWiki, and we
perform the same preprocessing steps for them: lower case conversion, digit and
punctuation removal, and English stop word removal. For BoW and 2grams, we
also apply Porter stemming.

Despite the visual features provided, we ended up choosing descriptors based
on Convolution Neural Networks (CNN). In preliminary analysis, we noticed that
CNN-based descriptors surpassed most classical descriptors by large margins. We
adopt the following state-of-the-art image descriptors:

– ResNet50IN : 2048-dimensional average pooling of the last convolutional layer
of ResNet50 [12], pre-trained on ImageNet [19], a dataset of about 14M images
labeled for object recognition;

– VGG16P365 : 512-dimensional average pooling of the last convolutional layer
of VGG16 [20], pre-trained on Places365-Standard [25], a dataset of about
10M images of labeled scenes;

– NASNetIN : 2048-dimensional average pooling of the last convolutional layer
of NASNet [27], pre-trained on ImageNet dataset.
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For the deep networks used for visual feature extraction, as well as in the
textual feature extraction with doc2vec, we take advantage of pre-trained mod-
els. This practice, known as transfer learning, has been effective in many sce-
narios [14], and it is also particularly beneficial for datasets that are not large
enough to generalize the training of such large architectures, as in our case.

Because the problem requires prediction of flood images, we prioritize, in the
selection of visual descriptors, datasets for pre-training that focus on images of
scenes, aiming at better generality to the target problem.

Table 1. Base results of the chosen descriptors, along with a SVR regressor.

(a) Visual.

Descriptor AP@50 AP@100 AP@250 AP@480 mAP
ResNet50IN 100.00 98.90 98.02 85.92 95.71
NASNetIN 100.00 100.00 96.01 85.60 95.40
VGG16P365 100.00 97.74 93.65 84.59 94.00

(b) Textual.

Descriptor AP@50 AP@100 AP@250 AP@480 mAP
BoW 81.85 78.62 72.29 65.51 74.57
2grams 82.01 76.58 73.63 65.40 74.43
doc2vecWiki 77.06 77.40 71.86 64.72 72.76

From the chosen descriptors, rankers are defined as tuples of (descriptor,
comparator), where the comparator corresponds to a dissimilarity function. We
define the ranker for each descriptor by choosing appropriate comparators. For
the textual descriptors BoW and 2grams, we adopt the Weighted Jaccard dis-
tance, defined as 1 − J(u,v), where J is the Ruzicka similarity metric (Eq. 1).
Jaccard is a well-known and widely-used comparison metric for textual classic
descriptors, specially for short texts, as in our case. For the remaining descrip-
tors, we choose the Pearson correlation distance, defined as 1 − ρ(u,v) (Eq. 2),
which is a general-purpose metric due to its suitability for highly dimensional
data and scale invariance.

J(u,v) =
∑

i min(ui, vi)∑
i max(ui, vi)

(1)

ρ(u,v) =
(u − ū) · (v − v̄)

‖(u − ū)‖2‖(v − v̄)‖2
(2)

4.2 Effectiveness Results

We report, in Tables 1a and b, the results in the visual and textual scenarios,
achieved by the three visual and textual selected descriptors, along with a SVR
regressor. We take these results as an initial baseline.

As the task only mentioned AP@480 and mAP in their leaderboard, we focus
our discussions on these two metrics. The correctness for the visual scenario is
already high within these baselines, around 85% in AP@480. In the textual
scenario, AP@480 is around 65%, which suggests more room for improvement.



Event Prediction Based on Unsupervised Graph-Based Rank-Fusion Models 95

Table 2. Flood detection based on visual features.

Method AP@50 AP@100 AP@250 AP@480 mAP

FV-ResNet50IN+NASNetIN+VGG16P365 100.00 100.00 98.55 88.41 96.74

FV-ResNet50IN+NASNetIN 100.00 100.00 99.00 87.24 96.56

S. Ahmad et al. (2017) [2] 86.81 95.73

Bischke et al. (2017) [4] 86.64 95.71

FV-ResNet50IN+VGG16P365 100.00 100.00 97.89 86.40 96.07

K. Ahmad et al. (2017) [1] 84.94 95.11

Avgerinakis et al. (2017) [3] 78.82 92.27

Dao et al. (2017) [8] 77.62 87.87

Nogueira et al. (2017) [18] 96.20 93.69 87.30 74.67 87.96

Lopez-Fuentes et al. (2017) [16] 67.54 70.16

Hanif et al. (2017) [11] 64.90 80.98

Zhao and Larson (2017) [24] 51.46 64.70

Tkachenko et al. (2017) [21] 50.95 62.75

BoKG (Werneck et al. 2018) [22] 81.11

BoCG (Werneck et al. 2018) [22] 47.94

Fu et al. (2017) [10] 19.21

Table 3. Flood detection based on textual features.

Method AP@50 AP@100 AP@250 AP@480 mAP

FV-BoW+2grams+doc2vecWiki 100.00 93.88 84.67 73.81 88.09

FV-BoW+doc2vecWiki 97.56 93.16 83.47 73.74 86.98

FV-BoW+2grams 92.63 88.19 82.11 71.20 83.54

Tkachenko et al. (2017) [21] 66.78 74.37

Hanif et al. (2017) [11] 65.00 71.79

Zhao and Larson (2017) [24] 63.70 75.74

Bischke et al. (2017) [4] 63.41 77.64

Nogueira et al. (2017) [18] 88.24 84.41 72.61 62.80 77.02

Lopez-Fuentes et al. (2017) [16] 61.58 66.38

Dao et al. (2017) [8] 57.07 57.12

Avgerinakis et al. (2017) [3] 36.15 39.90

K. Ahmad et al. (2017) [1] 25.88 31.45

S. Ahmad et al. (2017) [2] 22.83 18.23

Fu et al. (2017) [10] 12.84

For both visual and textual scenarios, we analyze three variants of our method
with respect to the input rankers for late-fusion. For the visual scenario, the
combinations are ResNet50IN + NASNetIN, ResNet50IN + VGG16P365, and
ResNet50IN + NASNetIN + VGG16P365. For the textual scenario, the com-
binations are BoW + 2grams, BoW + doc2vecWiki, and BoW + 2grams +
doc2vecWiki.

As for the multimodal scenario, we investigate some combinations taking one
ranker of each type, two of each, and three of each. Six multimodal combinations



96 I. C. Dourado et al.

Table 4. Flood detection based on multimodal features.

Method AP@50 AP@100 AP@250 AP@480 mAP

FV-ResNet50IN+VGG16P365+

BoW+doc2vecWiki

100.00 100.00 99.57 90.96 97.63

FV-ResNet50IN+NASNetIN

+VGG16P365+BoW+2grams+doc2vecWiki

100.00 100.00 99.50 90.94 97.61

FV-ResNet50IN+VGG16P365+BoW+2grams 100.00 100.00 99.60 90.68 97.57

FV-ResNet50IN+NASNetIN+BoW+2grams 100.00 100.00 99.13 90.54 97.42

Bischke et al. (2017) [4] 90.45 97.40

FV-ResNet50IN+NASNetIN+BoW+doc2vecWiki 100.00 100.00 99.08 90.00 97.27

FV-ResNet50IN+BoW 100.00 100.00 99.11 89.09 97.05

Nogueira et al. (2017) [18] 100.00 100.00 97.76 85.85 95.90

Dao et al. (2017) [8] 85.41 90.39

S. Ahmad et al. (2017) [2] 83.73 92.55

Lopez-Fuentes et al. (2017) [16] 81.60 83.96

Zhao and Larson (2017) [24] 73.16 85.43

Tkachenko et al. (2017) [21] 72.26 80.87

Avgerinakis et al. (2017) [3] 68.57 83.37

Hanif et al. (2017) [11] 64.60 80.84

K. Ahmad et al. (2017) [1] 54.74 68.12

BoKG (Werneck et al. 2018) [22] 86.90

BoCG (Werneck et al. 2018) [22] 73.85

Fu et al. (2017) [10] 18.30

are evaluated: ResNet50IN + BoW, ResNet50IN + NASNetIN + BoW + 2grams,
ResNet50IN + NASNetIN + BoW + doc2vecWiki, ResNet50IN + VGG16P365
+ BoW + 2grams, ResNet50IN + VGG16P365 + BoW + doc2vecWiki, and
ResNet50IN + NASNetIN + VGG16P365 + BoW + 2grams + doc2vecWiki.

We present our results achieved for the three scenarios, using the combi-
nations proposed, along with the results of the 11 teams that participated in
the competition. We also show the results achieved by [22] in the visual and
multimodal scenarios, which relied on early-fusion techniques.

In the visual scenario, only [2,4] performed better, in terms of AP@480 and
mAP, than our preliminary base setup, based on individual descriptors along
with the SVR regressor. As for the textual scenario, only [21] in 12 initiatives
surpassed BoW + SVR in AP@480, and [4,18,24] in mAP. This indicates that
descriptors properly selected to the target problem can overcome more complex
models, also requiring less effort.

Our method was superior in the visual scenario to all baselines, for two
of three proposed variants of ranker combinations. Compared to the strongest
baselines considering this scenario, our method presents gains from around 1 to
2% in AP@480, and 1% in mAP. Compared to the visual base results, from the
individual descriptors, 3 to 4% in AP@480, and 1 to 2% in mAP.

In the textual scenario, our gains were even more expressive. It was superior
in the textual scenario to all related works, for all three proposed variants of
ranker combinations. Compared to the strongest baselines, our method presents
gains from 5 to 7% in AP@480, and 6 to 11% in mAP. Compared to the textual
base results, from the individual descriptors, 6 to 8% in AP@480, and 14 to 16%
in mAP. In the multimodal scenario, considered baselines were more competitive.
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Again, however, our method presents gains over them, of 0.5% in AP@480 and
0.23% in mAP.

5 Conclusions

In this paper, we introduced a graph-based rank fusion approach for event pre-
diction. Our solution is based on encoding multiple ranks into a graph represen-
tation, which is later embedded into a vectorial representation. Next, a regressor
is trained to predict if an input multimodal object refer to a target event or not,
given their graph-based fusion representations.

The proposed method extends the fusion graphs, first introduced in [9], to
the context of supervised tasks, specifically for event prediction. It also proposes
a graph embedding mechanism in order to define the fusions vectors, a new
late-fusion vector representation that encodes multiple ranks and their inter-
relationships automatically. Performed experiments in the context of the flooding
detection task at MediaEval 2017 demonstrates that our solution leads to highly
effective results overcoming several state-of-the-art solutions.

Future work will focus on investigating the impact of different graph embed-
ding approaches. We also plan to investigate the use of our solution in other
multimodal prediction problems.
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1 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France
{nicolas.boria,bougleux}@unicaen.fr, luc.brun@ensicaen.fr

2 Normandie Univ, INSA ROUEN Normandie, LITIS, Rouen, France
benoit.gauzere@insa-rouen.fr

Abstract. Computing a graph prototype may constitute a core element
for clustering or classification tasks. However, its computation is an NP-
Hard problem, even for simple classes of graphs. In this paper, we propose
an efficient approach based on block coordinate descent to compute a
generalized median graph from a set of graphs. This approach relies on a
clear definition of the optimization process and handles labeling on both
edges and nodes. This iterative process optimizes the edit operations to
perform on a graph alternatively on nodes and edges. Several experiments
on different datasets show the efficiency of our approach.

Keywords: Median graph · Graph Edit Distance · Optimization

1 Introduction

In a wide variety of scientific domains, attributed graphs provide a powerful
structure to represent, process and analyze data. However, determining funda-
mental tools such as a distance or an average graph is non trivial. Given a space
G of attributed graphs, Graph Edit Distance (GED) is a natural choice for com-
paring graphs [2,16]. It measures the minimal amount of distortion needed to
transform a graph into another by means of edit operations. It can be defined
as a minimal-path problem which relies on a cost function acting as a metric in
G, and rewritten as a special quadratic assignment problem close to the graph
matching problem. Computing Graph Edit Distance is NP-Hard and still cannot
be solved in a reasonable time for graphs exceeding a dozen of vertices, even for
simple cost functions. Therefore, several strategies have been explored to provide
tight upper-bounds in polynomial time [16]. Computing a representative of a set
of graphs G ⊂ G is even more difficult. It commonly consists in finding a gen-
eralized median graph, i.e. a graph Ḡ ∈ G that minimizes the sum of distances
(SOD) to all the graphs in G [10]:

Ḡ ∈ arg min
G∈G

∑

G′∈G
d(G,G′) (1)
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where d : G × G → R+ denotes Graph Edit Distance. Exact methods are
restricted to labeled graphs with particular cost functions or datasets containing
a small total number of vertices [5]. To estimate median graphs in a reasonable
computational time, several methods reduce the SOD by a local search around an
initial candidate graph, by genetic search [10], greedy search based on partition-
ing vertices of different graphs [9], greedy adaptive search [13], or linearization
and discrete optimization [12]. A different strategy is based on graph embedding
[3,6–8,14], usually with distances between graphs as coordinates. A representa-
tive is more easily computed within this space. Then a median graph is recon-
structed by going back to the original space of graphs. While these approaches
are able to tackle the complexity of the previous ones, the link with the defini-
tion of a generalized median graph is not trivial and difficult to analyze. Other
approaches use the relationship between common-labeling and the median graph
to derive bounds on the SOD [15], or extend the concept of representative to
correspondences between graphs [11].

In this paper, we propose to estimate a generalized median graph by a block
coordinate descent that iterates two minimization steps from an initial candidate
(Sect. 3): one for updating the SOD w.r.t. edges and attributes on nodes and on
edges, and the other w.r.t. distances. The order of the resulting graph is fixed
before the descent process by the order of the initial candidate. This candidate
is set to a set-median, i.e. a graph of G minimizing the SOD (G restricted to G
in Eq. 1). While the first step of the descent shares similarities with the update
presented in [10], the update rules are not the same, and any algorithm can be
used to estimate GED in the second step or for initialization. The first empirical
results on two datasets (Sect. 4) show on the one hand that the proposed method
systematically reduces the SOD associated with the initial candidate, i.e. a set-
median, and on the other hand that the accuracy of the approximate GED
has more impact on the descent than on the computation of a set-median. The
following section introduces the expressions we use to facilitate the derivation of
the proposed algorithm.

2 Graph Transformations and Graph Edit Distance

We consider simple undirected attributed graphs. An attributed graph G of order
n can be encoded by a triplet (ϕ,A,Φ) (Fig. 1). The n-tuple ϕ = (ϕi)i associates
an attribute (or feature) ϕi of a space Fv to each integer i ∈ [n] = {1, . . . , n}
(vertices are represented by the set [n]). A ∈ {0, 1}n×n is the vertex-vertex
adjacency matrix of G, i.e. ai,j = 1 if there is an edge (i, j), else ai,j = 0.
Φ = (φi,j)i,j associates an attribute φi,j of a space Fe to each pair (i, j) ∈ [n]×[n].
When (i, j) is not an edge, φi,j can be equal to any value, it does not affect the
following expressions. Obviously, A and Φ are symmetric. Let G be the space of
all attributed graphs for Fv and Fe fixed. In this paper, each space of attributes
is restricted to a finite set of positive integer labels, or to the Euclidean space.

A graph G = (ϕ,A,Φ) of order n can be transformed into a graph G′ =
(ϕ′, A′, Φ′) of order n′ by applying a composition of elementary transformations,
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Fig. 1. Labeled graphs (label 0 if no edge) and a transformation (π, π′) of their vertices.
Induced operations on edges: φ2,3 = φ3,2 substituted by φ′

3,2 = φ′
2,3, (1, 4), (2, 4), (3, 4)

removed from G, (1, 2) inserted in G from (1, 3) in G′ with φ1,2 = φ2,1 = φ′
1,3.

a.k.a. edit operations, to G. An edit operation transforms a graph into another
by either removing an element (a vertex or an edge), substituting an attribute
attached to an element by another attribute, or by inserting an element and its
attribute (between two existing vertices for edges). Moreover, if each element
of both graphs is assumed to be involved in exactly one edit operation, the
number of operations is minimized, and the transformation of G into G′ is fully
described by the transformation of the vertices of G into the ones of G′. Here,
this transformation, a.k.a. error-correcting matching [2,16], is defined as a pair
(π, π′) ∈ [n′ + 1]n × [n + 1]n

′
so that πi = k ∈ [n′] ⇔ π′

k = i ∈ [n] (Fig. 1).
Each vertex i of G is either substituted by a vertex k of G′ (πi = k and π′

k = i),
or removed (πi = n′ + 1). Each vertex k of G′ that is not substituted to a
vertex of G is inserted (π′

k = n + 1). The transformation of the edges of G
into the ones of G′ is induced by the transformation of the vertices. The set
{(i, j) ∈ [n]×[n] | ai,j = 1∧πi ∈ [n′]∧πj ∈ [n′]∧aπi,πj

= 1} defines the substituted
edges, the set {(i, j) ∈ [n] × [n] | ai,j = 1 ∧ ((πi ∈ [n′] ∧ πj ∈ [n′] ∧ aπi,πj

=
0) ∨ πi = n′ + 1 ∨ πj = n′ + 1)} defines the removed edges, and the set {(k, l) ∈
[n′]× [n′] | a′

k,l = 1∧ ((π′
k ∈ [n]∧π′

l ∈ [n]∧aπ′
k,π′

l
= 0)∨π′

k = n+1∨π′
l = n+1)}

defines the inserted edges. Since π′ can be obtained from π, we omit π′ for
simplicity, and we denote by Π(G,G′) all the transformations of G to G′.

A transformation π� ∈ Π(G,G′) is said to be minimal if its cost is minimal,
i.e. if c(π�, G,G′) = minπ∈Π(G,G′) c(π,G,G′), with c(π,G,G′) = cv(π, ϕ, ϕ′) +
1
2ce(π,A, Φ,A′, Φ′) the cost for transforming G into G′ using π, and

cv(π, ϕ, ϕ′) =
n∑

i=1

δπi
cvfs(ϕi, ϕ

′
πi

) + (1 − δπi
)cvr +

n′∑

k=1

(1 − δπ′
k
) cvi (2)

ce(π,A, Φ,A′, Φ′) =
∑n

i=1

∑n
j=1 δπiπj

ai,j a′
πi,πj

cefs

(
φi,j , φ

′
πiπj

)

+ cer
∑n

i=1

∑n
j=1 δπiπj

ai,j(1 − a′
πi,πj

) + (1 − δπiπj
)ai,j

+ cei
∑n

i=1

∑n
j=1 δπiπj

(1 − ai,j)a′
πiπj

+ cei
∑n′

k=1

∑n′

l=1(1 − δπ′
kπ′

l
)a′

k,l

(3)

the costs for transforming attributed vertices and edges, respectively. δπi
= 1 if

πi ∈ [n′], else 0, and δπiπj
= δπi

δπj
. Functions cvfs : Fv × Fv → [0,+∞) and

cefs : Fe × Fe → [0,+∞) measure costs to substitute vertices and edges. In this
paper, the costs for removing and inserting elements are restricted to positive
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constants, denoted cvr, cvi, cer, cei. When any substitution of elements is no
more expensive than removing and inserting these elements, Graph Edit Distance
(GED) between G and G′ is equal to the cost of a minimal transformation [16]:
d(G,G′) = minπ∈Π(G,G′) c(π,G,G′). This case is considered in the sequel.

3 Estimating a Generalized Median Graph

Given a set of graphs G = {Gp}p ⊂ G, with Gp = (ϕp, Ap, φp) of order np, a
generalized median graph Ḡ = (ϕ̄, Ā, φ̄) ∈ G of G minimizes the sum of distances
(SOD) to the graphs of G [5,10]: s(Ḡ,G) = minG∈G s(G,G), with s(G,G) =∑

Gp∈G d(G,Gp) =
∑|G|

p=1 minπp∈Π(G,Gp) c(πp, G,Gp). We propose to use a block
coordinate descent to estimate both Ḡ and the minimal transformations (πp)p.

3.1 Proposed Algorithm

First, Ḡ is initialized to a set-median of G, i.e. Ḡ = arg minGp∈G s(Gp,G). It can
be computed in O(a|G|2) time [5], where a is the complexity of the algorithm
used for computing or estimating GED. This also provides the minimal trans-
formations (π̄p)p from Ḡ to the graphs of G. The order n̄ of Ḡ is then fixed, i.e.
considered as a constant in the optimization process. Then, (ϕ̄, Ā, Φ̄) and (π̄p)p

are alternatively updated as follows:

Ḡ = (ϕ̄, Ā, Φ̄) ← arg min
ϕ∈F

n̄
v

A∈{0,1}n̄×n̄

Φ∈F
n̄×n̄
e

|G|∑

p=1

cv(π̄p, ϕ, ϕp) + 1
2ce(π̄p, A, Φ,Ap, Φp) (4)

∀p ∈ {1, . . . , |G|}, π̄p ← arg min
πp∈Π(Ḡ,Gp)

c(πp, Ḡ, Gp) (5)

until convergence, that is, until a stability is reached both in Ḡ and (π̄p)p. The
resolution of the minimization of the sum of distances when the transformations
are fixed (Eq. 4) mainly depends on the nature of Fv and Fe, as well as the
form of the cost functions cvfs and cvef. This is detailed later in this section, in
particular it can be solved in O(n̄2|G|) time under some conditions. The update
of the transformations (Eq. 5) consists in solving |G| times GED problem, so in
O(a|G|) time. Since the order n̄ is fixed, and GED can usually be only estimated,
the algorithm may not converge to the true generalized median graph.

We assume that an algorithm for computing GED is given, and we focus
on the minimization of the sum of distances w.r.t. the graph (Eq. 4). It can be
decomposed into two independent minimizations as long as the attributes ϕp

and Φp are independent for each p, that we consider in this paper:

ϕ̄ ← arg min
ϕ∈Fn̄

v

sv(ϕ), (Ā, Φ̄) ← arg min
A∈{0,1}n̄×n̄

Φ∈F
n̄×n̄
e

se(A,φ) (6)
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with sv(ϕ) =
∑|G|

p=1 cv(π̄p, ϕ, ϕp) and se(φ,A) =
∑|G|

p=1 ce(π̄p, A, φ,Ap, φp). The
minimization of each term is detailed in the two following sections. Note that
some results are already presented in [10], in particular for vertices. There are
obtained in a different way, allowing to take into account more easily different
spaces of attributes and cost functions associated to edit operations.

3.2 Updating Vertex Attributes

Only the cost function cvfs depends on vertex attributes in the expression of
cv (Eq. 2). So the attributes ϕ̄ in Eq. 6 are updated by solving the equivalent
problem arg minϕ∈Fn̄

v

∑n̄
i=1 fi(ϕi), with the function fi : Fv → R+ defined by

fi(ϕi)=
∑|G|

p=1 δπp
i
cvfs(ϕi, ϕ

p
πp

i
). The objective function is a sum of positive and

independent terms fi, so the attributes are updated by:

∀i = 1, . . . , n̄, ϕ̄i ← arg min
ϕi∈Fv

fi(ϕi) (7)

The solution depends on Fv and on the cost function cvfs.
When attributes are labels (Fv ⊂ N), the cost for substituting a label x ∈

Fv by a label y ∈ Fv is defined as cvfs(x, y) = cvs(1 − δx,y), with cvs > 0
a constant, i.e. 0 if the labels are the same, and cvs otherwise. Then fi can
be rewritten as fi(ϕi) =

∑|G|
p=1 δπp

i
cvs(1 − δϕi,ϕ

p

π
p
i

) = cvs(|Si| − h0
i (ϕi)), where

Si = {πp
i |πp

i ∈ [np], p = 1, . . . , |G|} is the set of vertices that are substituted to i

by the mappings πp, and h0
i : Fv → {0, . . . , |G|} ⊂ N, h0

i (ϕi) =
∑|G|

p=1 δπp
i
δϕi,ϕ

p

π
p
i

,

counts the number of times i is substituted by a vertex having the same label
(with zero cost). So the attributes (Eq. 7) are updated by:

∀i = 1, . . . , n̄, ϕ̄i ← arg max
ϕi∈Fv

h0
i (ϕi) (8)

Notice that h0
i can be pre-computed in O(|G|) time for each label of Fv. The labels

are thus updated for all the vertices of Ḡ in O(n̄|G|) time at each iteration.
When Fv = R

m is equipped with the scalar product xT y =
∑m

k=1 xkyk and
the l2-norm ‖x‖ =

√
xT x, the cost for substituting an attribute x by an attribute

y is defined by cvfs(x, y) = ‖x−y‖2. In this case, we have: fi(ϕi) =
∑|G|

p=1 δπp
i
‖ϕi−

ϕp
πp

i
‖2. Any attribute ϕ̄i satisfies ∇fi(ϕ̄i) = 0, i.e. 2

∑
p δπp

i
(ϕ̄i − ϕp

πp
i
) = 0, or:

∀i = 1, . . . , n̄, ϕ̄i ← 1
∑|G|

p=1 δπp
i

|G|∑

p=1

δπp
i
ϕp

πp
i

=
1

|Si|
∑

p∈Si

ϕp
πp(i) (9)

In other words, the optimal attribute for a vertex i is given by the mean attribute
of the vertices substituted to i (the set Si defined in the previous paragraph).
Once more, updating all the attributes is done in O(n̄|G|) time at each iteration.
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3.3 Updating Edges and Their Attributes

The edges of Ḡ, and their attributes, are computed at each step of the descent
(Eq. 4) by minimizing se (Eq. 6). By removing the constant terms in se, i.e. in
ce (Eq. 3), it is easy to show that the minimization of se can be rewritten as:

arg min
A∈{0,1}n̄×n̄

Φ∈F
n̄×n̄
e

se(A,φ) = arg min
A∈{0,1}n̄×n̄

Φ∈F
n̄×n̄
e

n̄∑

i=1

n̄∑

j=1

fi,j(ai,j , φi,j) (10)

with the function fi,j : {0, 1} × Fe → R+ defined by:

fi,j(ai,j , φi,j) = ai,j

∑|G|
p=1 δπp

i πp
j
ap

πp
i ,πp

j
cefs(φi,j , φ

p
πp

i ,πp
j
)

+ cerai,j

∑|G|
p=1 1 − δπp

i πp
j
ap

πp
i ,πp

j

+ cei(1 − ai,j)
∑|G|

p=1 δπp
i πp

j
ap

πp
i ,πp

j

= ai,j

∑|G|
p=1 δπp

i πp
j
ap

πp
i ,πp

j
cefs(φi,j , φ

p
πp

i ,πp
j
)

+ cerai,j (|G| − |Si,j |) + cei(1 − ai,j)|Si,j |

(11)

where Si,j = {(πp
i , πp

j ) |πp
i ∈ [np] ∧ πp

j ∈ [np] ∧ ap
πp

i ,πp
j

= 1, p = 1, . . . , |G|} is the

set of edges that are substituted to (i, j) by the mappings πp. The terms fi,j are
positive and independent from each others, so Eq. 10 is equivalent to:

∀(i, j) ∈ [n̄] × [n̄], i �= j, (āi,j , φ̄i,j) ← arg min
ai,j∈{0,1}

φi,j∈Fe

fi,j(ai,j , φi,j) (12)

Since ai,j can only take two values, if ai,j = 0 (no edge) then fi,j(0, φi,j) =
cei|Si,j | for any φi,j ∈ Fe, and if ai,j = 1 then fi,j(1, φi,j) is minimized for any

φ�
i,j ∈ arg min

φi,j∈Fe

|G|∑

p=1

δπp
i πp

j
ap

πp
i ,πp

j
cefs(φi,j , φ

p
πp

i ,πp
j
) (13)

By consequence fi,j is minimized for φ̄i,j = φ�
i,j and

āi,j =
{

1 if fi,j(1, φ̄ij) < cei|Si,j |
0 else (14)

Solutions are finally obtained by solving Eq. 13. It depends on Fe and cefs.
When Fv ⊂ N and cefs(x, y) = ces(1 − δx,y), with ces > 0 a constant, is the

classical cost for labels, then fi,j (Eq. 11) becomes

fi,j(ai,j , φi,j) = ai,j

(
ces

(|Si,j | − h0
i,j(φi,j)

)
+ cer (|G| − |Si,j |)

)
+(1−ai,j)cei|Si,j |

where h0
i,j(x) =

∑|G|
p=1 δπp

i πp
j
ap

πp
i ,πp

j
δx,φπ

p
i

,π
p
j

counts the number of times (i, j) is

substituted by an edge having the label x. Then Φ̄ and Ā are updated for all
(i, j) ∈ [n̄] × [n̄] by:

φ̄i,j ← arg max
x∈Fe

h0
i,j(x) (15)
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and

āi,j ←
{

1 if h0
i,j(φ̄i,j) > |G| cer

ces
+ |Si,j |

(
1 − cer+cei

ces

)

0 else
(16)

Each edge (i, j) is thus labeled with one of the most present labels among the
ones substituted to (i, j). Notice that h0

i,j : Fe → {0, . . . , |G|} and |Si,j | can be
computed in O(|G|) time. So Φ̄ and Ā are computed in O(n̄2|G|) time.

Unlabeled graphs can be considered as labeled with a unique label, e.g. Fe =
{1}. In this case cefs = 0 and h0

i,j = |Si,j |, so from Eq. 16 Ā can be computed in
O(n̄2|G|) time by:

āi,j ←
{

1 if |Si,j | > |G| cer
cer+cei

0 else
(17)

Remark. Similar results can be derived for directed graphs, other spaces of
attributes and other cost functions, for both vertices and edges. Due to lim-
ited space, it is restricted here to the cases considered in the experiments.

4 Experimental Results

In order to evaluate the validity of our method, the algorithm was implemented
in C++ and tested on the datasets Letter (HIGH) [16] and Monoterpenoides1, a
chemical dataset, on a computer using an intel(R) i7-8700 CPU with 12 parallel
threads. The Monoterpenoides dataset has 286 graphs unevenly divided in 8
classes of at least 10 graphs. Both nodes and egdes are labeled, and the average
order is 11.003. Edit costs were set to cvs = ces = 1 and cvi = cei = cvr = cer = 3.

Remember that, in a first phase, the proposed algorithm (Sect. 3.1) iden-
tifies a set-median by computing all pairwise distances in the dataset. These
distances are computed through two heuristics: bipartite [16], and IPFP [1]. In
a second phase, the algorithm iterates the update of a triplet (ϕ̄, Ā, Φ̄) according
to Eq. 6 (i.e. for vertices either Eq. 8 for Monoterpenoides or Eq. 9 for Letter,
and for edges, Eqs. 15–16 for Monoterpenoides or Eq. 17 for Letter), and the
update of the transformations π̄p using either bipartite or IPFP. We denote by
mBipartite and mIPFP the multistart counterparts of Bipartite, and IPFP
[4], where the number of randomly generated initializations was set to 40.

Table 1 sums up our results regarding SOD. In Letter and Monoterpenoides,
respectively 50 and 10 graphs were picked randomly in each class, and each
experiment was repeated 50 times. The results presented in Table 1 represent
the averages over all classes and all experiments. The four columns SOD SM,
t(SM), SOD GM and t(GM) list the SODs and computation times in seconds for
the set-median (SM), and the generalized median (GM). Note that t(GM) refers
to the computation time of the second phase only. Using state of the art GED
heuristics and making the most of the computed transformations π̄p to efficiently
perform the descent (conversely to many other approaches which use GED only
to evaluate candidate medians, without using the detailed transformations), our

1 GREYC Chemistry dataset: https://brunl01.users.greyc.fr/CHEMISTRY/.

https://brunl01.users.greyc.fr/CHEMISTRY/
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algorithm produces median graphs with SODs much lower than the set-medians’
with a very low running time. It is noteworthy that the time dedicated to identify
the set-median (first phase) is systematically higher than the one dedicated to
the generalized median (second phase). Indeed, |G|2 distances must be computed
in the first phase, while p|G| distances are computed in the second phase, where
p denotes the number of iterations before convergence. In practice, we verified
that, in most cases, p < 2 on the letter dataset, and p < 7 on Monoterpenoides.
Interestingly enough, in the hybrid versions of the algorithm (using Bipartite in
the first phase and IPFP in the second phase), the alternate descent still produces
median graph with reasonably low SOD while starting from a set-median of lesser
quality (i.e. with higher SODs).

Table 1. SOD computed using different GED approximations.

Algorithms Letter (HIGH) Monoterpenoides

1st phase 2nd phase SOD SMt(SM)SOD GMt(GM) SOD SMt(SM)SOD GMt(GM)

Bipartite Bipartite 142.69 0.01 87.80 6 ∗ 10−4 402.50 0.002 253.11 8 ∗ 10−4

Bipartite IPFP 142.87 0.013 87.61 0.003 398.01 0.002 128.45 0.179

IPFP IPFP 135.99 0.057 87.22 0.003 202.75 0.162 104.11 0.136

mBipartitemBipartite142.04 0.014 89.47 9 ∗ 10−4 283.94 0.027 186.15 0.01

mBipartitemIPFP 142.19 0.018 87.66 0.013 281.14 0.031 83.11 0.545

mIPFP mIPFP 135.99 0.274 87.23 0.015 106.10 1.159 75.08 0.288

Finally, note that the range between best and worst computed SODs is partic-
ularly low on the Letter dataset, while it is rather high on the Monoterpenoides
dataset. This seems to indicate that approximate computed distances are close
to the optimum in Letter, and far from it in Monoterpenoides.

Picking random trainsets in each class 10% and 30% the size of the class,
set-medians and generalized medians were computed for each class, and the
classification accuracy of a 1-nn algorithm [5] was evaluated using as training
examples: (SM) only the set-median, (GM) only the generalized medians and
finally (TS) the whole trainset. Each experiment was repeated 50 times, and
Table 2 presents our results, giving the average preprocessing time pt (i.e. the
time spent in computation of set-medians and generalized medians), as well as
classification precisions (denoted by %) and times for all three training exam-
ples considered. Note that the GED heuristic used in the second phase of the
algorithms were also used in computing distances by the classifier.

Let us note that our approach competes with a 1-nn classification over the
whole trainset, especially when all the distances are computed with a more pre-
cise heuristic, such as mIPFP. Whenever a precise heuristic is used to compute
it, the generalized median appears as a better representative of the class than
the set-median. Obviously, classification times are much faster using only the
median graphs as training example.
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In few cases, the classification accuracy enabled by set-medians is higher
than that enabled by generalized medians. This only happens in cases where
computed distances and edit-paths are looser approximations, i.e. this always
happens on the Monoterpenoides dataset with the mBipartite heuristic used
in the initialization phase.

Table 2. Classification results for Letter (HIGH) and Monoterpenoides datasets

Letter (HIGH) dataset

TS 1st phase 2nd phase pt % SM t(SM) % GM t(GM) % TS t(TS)

10% mBipartite mBipartite 0.023 76.42 0.325 82.82 0.325 83.01 5.275

mBipartite mIPFP 0.195 77.40 5.857 84.16 5.771 83.30 110.48

mIPFP mIPFP 0.447 78.24 5.951 84.60 5.801 82.95 111.84

30% mBipartite mBipartite 0.181 79.94 0.251 84.24 0.250 87.24 11.44

mBipartite mIPFP 0.878 81.83 4.323 86.06 4.234 86.86 239.14

mIPFP mIPFP 3.437 81.59 4.316 86.08 4.245 86.86 240.96

Monoterpenoides dataset

TS 1st phase 2nd phase pt % SM t(SM) % GM t(GM) % TS t(TS)

10% mBipartite mBipartite 0.054 32 0.984 29.44 0.957 51.86 3.830

mBipartite mIPFP 1.586 53.38 47.96 57.49 51.03 60.69 186.85

mIPFP mIPFP 2.044 54.06 47.31 62.38 48.01 60.69 187.83

30% mBipartite mBipartite 0.373 36.39 0.747 34.28 0.732 67.92 8.571

mBipartite mIPFP 5.148 54.06 36.54 67.79 37.07 75.82 419.81

mIPFP mIPFP 15.38 58.37 36.15 74.12 36.57 75.94 419.31

5 Conclusion

We proposed an innovative general method to compute the generalized median
graph based on an alternate gradient descent. We showed its efficiency through
experiments on two datasets using different edit-cost structures. Computed
graphs have much lower SODs than set-medians, and can efficiently be used
as representatives in a clustering framework. Quality of computed graph median
increases when using accurate rather than fast GED approximation algorithms
as sub-routines, especially in the alternate descent phase, while the initialization
phase may use different GED heuristics to reach different time/quality compro-
mises. Future developments regarding this promising method include the exten-
sion to new edit-cost structures, as well as the possibility to modify the order of
the median graph during the optimization process.

Acknowledgments. This work is supported by Région Normandie through RIN
AGAC project.
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Abstract. Nowadays, the tremendous usage of multimedia data within
Online Social Networks (OSNs) has led the born of a new generation
of OSNs, called Multimedia Social Networks (MSNs). They represent
particular social media networks – particularly interesting for Social
Network Analysis (SNA) applications – that combine information on
users, belonging to one or more social communities, together with all
the multimedia contents that can be generated and used in the related
environments. In this work, we present a novel expert finding technique
exploiting a hypergraph-based data model for MSNs. In particular, some
user ranking measures, obtained considering only particular useful hyper-
paths, have been profitably used to evaluate the related expertness degree
with respect to a given social topic. Several preliminary experiments on
Last.fm show the effectiveness of the proposed approach, encouraging
the future work in this direction.

Keywords: Multimedia Social Networks · Social Network Analysis ·
Expert finding · Hypegraphs

1 Introduction

In the last decades, the tremendous diffusion of Online Social Networks (OSNs)
has introduced a new communication paradigm, where by now people around
the world interact among them and spread/share any kind of information for
different purposes within large user communities using Internet-enabled social
networking applications (e.g., Facebook, Instagram, Last.fm, Twitter, Flickr,
TripAdvisor, YELP, etc.).

Currently, there is not a generally one well-established definition for OSNs.
Schneider et al. [6] define OSNs as users’ communities composed by people that
share common interest, activities, backgrounds, and/or friendships and can inter-
act with others in numerous ways, directly or by means of posted information.
Other definitions consider OSNs as a new particular type of virtual community
[3] or advanced social networking software applications [5], heightening respec-
tively social or technological innovatory aspects at the basis of their utilization
and diffusion.
c© Springer Nature Switzerland AG 2019
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In addition, the fast advance of the Information and Communication Tech-
nologies has enhanced OSN features, enabling users to share their lives, behav-
iors, works and interests by increasingly using multimedia items (e.g., text, audio,
video, image) and to interact with such objects in order to provide feedbacks,
comments, opinions or feelings with respect to the posted data.

This phenomenon has led to the born of a new type of OSN, called Multimedia
Social Network (MSN) [1,2]. It can be seen as a particular social media network
that combines information on users, belonging to one or more social communities,
together with all the multimedia contents (such as music, images, posts, etc.)
that can be generated and used within the related environments.

A lot of classical Social Network Analysis (SNA) applications, including influ-
ence analysis, social recommendation, viral marketing, event recognition, expert
finding, community detection, user profiling, social data privacy and so on, can
effectively take advantage of MSNs’ characteristics as the different kinds of rela-
tionships (i.e., among multimedia contents, among users and multimedia content,
in addition to those among users themselves) that are typical of such networks
or, furthermore, multimedia features of shared objects [1,2].

In this work, we present a novel expert finding technique within social net-
works exploiting a hypergraph-based data model for MSNs. In particular, the
hypergraph model permits to easily represent all the described MSNs’ relation-
ships and to enable several kinds of analytics, such as finding experts, by means
of the introduction of some ranking criteria. User ranking measures, obtained
considering only particular useful hyperpaths, can be profitably adopted to eval-
uate the expertness degree with respect to a given social topic. We also propose
a strategy for hypergraph building from data coming from different OSNs (e.g.
Facebook, Twitter, Flickr, Instagram, Last.fm, Youtube).

The paper is organized as the following. Section 2 discusses the related work
concerning expert finding within social networks. Section 3 describes the adopted
MSN data model together with the related ranking/centrality measures and the
hypergraph building process. Section 4 outlines the expert finding system archi-
tecture with some implementation details. Finally, Sect. 5 reports some experi-
ments using a dataset from Last.fm and provides conclusions and future work.

2 Related Work

The large amount of heterogeneous data shared on Multimedia Social Networks
requires novel techniques and methodologies to support users in addressing their
needs.

Concerning social networks having as main purpose to share comment and
opinions on specific topics/items, users’ choice for a given object is made difficult
by the high number and heterogeneity of reviews. Thus, identifying users having
knowledgeable in specified areas, also called experts, is a critical challenge for a
lot of applications.

The existing expert finding approaches can be classified into two main groups:
authority-oriented and topic-oriented.
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The approaches of first family are mainly focused on link analysis on whom
users are ranked. In [4] the authors propose a technique based on HyperLink
Induced Topic Search (HITS) to classify users in spammers and experts within
Twitter on the basis of some features of tweets. Zhu et al. [13] introduce an expert
finding framework based on link analysis approach for ranking user authority
by considering information belonging to relevant knowledge categories. Another
methodology based on chains of social referrals and profile matching on local
information in OSNs has been described by [9]. Furthermore, an interesting
approach has been detailed by Zhao et al. [10] using a ranking learning metric
that combines users relative quality rank w.r.t. given questions and their social
relations. Finally, Zhao et al. [11] propose a graph-regularized matrix comple-
tion algorithm for inferring user ranking employing also information from social
networks to deal with missing values problem.

In turn, the second family approaches are mainly focused on latent topic
modelling techniques. A topic-sensitive probabilistic model has been described in
[12] combining link and user analysis for identifying experts in Question Answer
Communities. A system for expert finding, namely BMExpert, has been the
proposed by Wang et al. [7] combining relevance of documents with respect to the
query topic, importance of documents, and associations between documents and
experts. Finally, Wei et al. [8] introduce a semi-supervised graph-based ranking
approach that combines three different types of relations (between users, lists
and users and list) for computing global authority of users.

The proposed approach combines some characteristics of topic and link anal-
ysis based techniques, leveraging also multimedia objects’ features for ranking
user authority about a given topic. In particular, the proposed approach is based
on a data model relying on hypergraph data structure to represent the well-
known heterogeneous relationships of MSN and exploits some ranking criteria
obtained considering only useful MSN hyperpaths.

3 Modeling Multimedia Social Networks

3.1 Basic Definitions

In our vision, a MSN is basically composed by three different entities:

– Users - the set of persons and organizations constituting the particular social
community. Several information concerning their profile, interests, prefer-
ences, etc. can be opportunely considered in our model.

– Objects - the user-generated multimedia content that is of interest within
a given social community. Object can be obviously described using metadata
(eventually correlated to some annotation schemata) and low-level features.

– Topics - the most significant terms or named entities of one or more domains,
exploited by users to describe multimedia items and eventually derived from
the analysis of textual information, mainly tags but also keywords, labels,
comments, reviews etc.
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Several types of relationships can be established among the described entities:
for example, a user can annotate an image with a particular tag, two friends can
comment the same post, a user can listen a song, a user can share some videos
within a group and so on. Due to the variety and intrinsic complexity of these
relationships, we decided to leverage the hypergraph formalism to model an MSN.
In the following, we provide all the basic definitions necessary to characterize
our model.

Definition 31 (MSN). An Multimedia Social Network MSN is a triple
(V ;E = {ei : i ∈ I};ω), V being a finite set of vertices, E a set of hyper-
edges with a finite set of indexes I and ω : E → [0, 1] a weight function. The set
of vertices is defined as V = U ∪O ∪T , U being the set of MSN users, O the set
of multimedia objects and T the set of topics. Each hyperedge ei ∈ e is in turn
defined by a ordered pair ei = (e+i = (V +

ei
, i); e−

i = (i, V −
ei

)). The element e+i is
called the tail of the hyperarc ei whereas e−

i is its head, V +
ei

⊆ V being the set of
vertices of e+i , V −

ei
⊆ V the set of vertices of e−

i and Vei
= V +

ei
∪ V −

ei
the subset

of vertices constituting the whole hyperedge.

An hypergraph related to a MSN can be also denoted by an incidence matrix
H with entries as:

h(v, ei) =

{
1, if v ∈ Vei

0, otherwise
(1)

Actually, vertices and hyperedges are abstract data types and we use the
“dot notation” to identify the attributes of a given vertex or hyperedge: as
an example, ei.id, ei.name, ei.time, ei.source and ei.type represent the id, name,
timestamp, source (social network) and type of the hyperedge ei, respectively.
In turn, the weight function can be used to define the “confidence” of a given
relationship.

Definition 32 (Social Path). A social path between vertices vs1 and vsk
of an

MSN is a sequence of distinct vertices and hyperedges vs1 , es1 , vs2 , ..., esk−1 , vsk

such that {vsi
, vsi+1} ⊆ Vesi

for 1 ≤ i ≤ k − 1. The length of the hyperpath is
α ·∑k−1

i=1
1

ω(esi
) , α being a normalizing factor. We say that a social path contains

a vertex vh if ∃esi
: vh ∈ esi

.

Social paths between two nodes can “directly” or “indirectly” connect two
users because they are “friends” or as they commented the same video.

Definition 33 (Distances). We define minimum distance (dmin(vk, vj)),
maximum distance (dmax(vk, vj)) and average distance (davg(vk, vj)) between
two vertices of an MSN the length of the shortest hyperpath, the length of
the longest hyperpath and the average length of the hyperpaths between vk

and vj, respectively. In a similar manner, we define the minimum distance
(dmin(vk, vj |vz)), maximum distance (dmax(vk, vj |vz)) and average distance
(davg(vk, vj |vz)) between two vertices vk and vj, for which there exists a hyper-
path containing vz.



114 V. Moscato et al.

Definition 34 (λ-Nearest Neighbors Set). Given a vertex vk ∈ V of an
MSN, we define the λ-Nearest Neighbors Set of vk the subset of vertices NNλ

k

such that ∀vj ∈ NNλ
k we have dmin(vk, vj) ≤ λ with vj ∈ U . Considering only

the constrained hyperpaths containing a vertex vz, we denote with NNλ
iz the set

of nearest neighbors of vk such that ∀vj ∈ NNλ
iz we have d̃min(vk, vj |vz) ≤ λ.

If we consider as neighbors only vertices belonging to user type, the NNλ set
is called λ-Nearest Users Set and denoted as NNUλ, similarly in case of objects
we define the λ-Nearest Objects Set as NNOλ.

3.2 Relationships

We have identified three different categories:

– User to User relationships, describing user actions towards other users;
– Similarity relationships, describing a relatedness between two objects, users

or topics;
– User to Object relationships, describing user actions on objects, eventually

involving some topics or other users.

In the following, we provide the definition for each class of relationship.

Definition 35 (User to User relationship). Let Û ⊆ U a subset of users in
a MSN, we define user to user relationship each hyperedge ei with the following
properties:

1. V +
ei

= uk such that uk ∈ Û ,
2. V −

ei
⊆ Û − uk.

Examples of “user to user” relationships are properly represented by friend-
ship, following or membership of some online social networks.

Definition 36 (Similarity relationship). Let vk, vj ∈ V (k 	= j) two vertices
of the same type of a MSN, we define similarity relationship each hyperedge ei

with V +
ei

= vk and V −
ei

= vj. The weight function for this relationship returns
similarity value between the two vertices.

The similarity relationships are defined on the top of a similarity function
fsim : V × V → R. It is possible to compute a similarity value: (i) between two
users by considering different types of features (interests, profile information,
preferences, etc.); (ii) between two objects using the well-known (high and low
level) features and metrics proposed in the literature; (iii) between two annota-
tion assets exploiting the related topics and the well-known metrics on vocabu-
laries or ontologies.

In our model, a similarity hyperedge is effectively generated if ω(ei) ≥ θ, θ
being a given threshold.
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Definition 37 (User to Object relationship). Let Û ⊆ U a set of users in
a MSN and Ô ⊆ O a set of objects, we define user to multimedia relationship
each hyperedge ei with the following properties:

1. V +
ei

= uk such that uk ∈ Û ,
2. V −

ei
⊆ Ô ∪ T .

Examples of “user to object” relationships are represented, as an example,
by publishing, reaction, annotation, review, comment (in the last three cases the
set V −

ei
also contains one or more topics) or user tagging (involving also one ore

more users) activities.

3.3 Hypergraph Building

The proposed hypergraph building process consists of three different stages: (i)
hypergraph structure construction; (ii) topic distribution; (iii) similarity learn-
ing. First, extracted data related to relationships between objects, users and
objects and users themselves are initially used to construct the hypergraph struc-
ture in terms of nodes and hyperedges.

For the user to object relationships, textual annotations are then analyzed
by the LDA approach to learn the most important topics and to infer relations
between topics and textual annotations. From the other hand, similarity val-
ues between users, objects and topics are eventually determined using proper
strategies.

3.4 Centrality Measures for Expert Finding

One of the fundamentals in Social Network Analysis is to compute the centrality
measures for ranking user nodes of a social graph. As well known, the centrality
represents the “importance” of a given user within the related community and
can be easily exploited for several applications.

Here, we propose to use centrality as the main measure for detecting experts
in a certain domain, analyzing Multimedia OSN.

In the literature, there exists a lot of measures to determine the centrality of
a node in a social graph. In this work, we define a new centrality measure based
on the concept of “neighborhood” among users through λ-Nearest Neighbors Set
in MSNs. In particular, the novelty of this centrality measure concerns the use
of multimedia object and annotation asset for defining new paths to connect two
users

Definition 38 (Neighborhood Centrality). Let vk ∈ V a vertex of a MSN
and λ a given threshold, we define the neighborhood centrality of vk as:

nc(vk) =

∣∣NNλ
vk

∩ V
∣∣

|V | − 1
(2)

NNλ
k being the λ-Nearest Users Set of vk.
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The neighborhood centrality of a given node can be measured by the number
of nodes that are “reachable” within a certain number of steps using social paths.
The introduced measure can be computed locally with respect to a community of
users (Û ⊆ U ⊆ V ) and considering only vertices of user type for the end-to-end
nodes of hyperpaths. In this manner, centrality is refereed to user importance
within the related community. We define user centrality such kind of measure.

In addition, in order to give more importance to user-to-content relationships
during the computation of distances for the user neighborhood centrality, we
can apply a penalty if the considered hyperpaths contain some users; in this
way, all the distances can be computed as d̃(vk, vj) = d(vk, vj) + β · N , N being
the number of user vertices in the hyperpath between vi and vj and β a scaling
factor. This strategy has been chosen because an expert, in our opinion, is defined
according to its behavior on MSN describing by published multimedia object and
annotation asset.

Eventually, we can obtained a topic-sensitive user neighborhood centrality
considering in the distances’ computation only hyperpaths that contain a given
topic node:

nc(uk|Û , tz) =

∣∣∣NNUλ
uktz ∩ Û

∣∣∣∣∣∣Û ∣∣∣ − 1
(3)

Û being a user community, uk a single user and tz a given topic.

4 System Architecture

Figure 1 shows an overview of the proposed system architecture. More in detail,
it can be divided into the following three main layers: Data Ingestion, Knowledge
Management and Social Network Analysis that provides expert finding tools.

In the first layer data coming from heterogeneous OSN (such as Facebook,
Twitter, LastFM etc.) are crawled by using their owner API and stored into
a No-SQL columnar database Cassandra1 for properly storing large amount of
data.

The Knowledge management layer has the aim to extract information from
the No-SQL database for building the MSN data model (Hypergraph Build-
ing Module) and storing it into HypergraphDB2, a No-SQL database based on
hypergraph data structure.

Eventually, the Social Network Analysis layer is composed by the Expert
Finding module relying on HyperX3, a framework built upon Apache Spark4

for processing hypergraph, to rank users using centrality with respect to a given
topic and Visualization module, based on Jung API5, to represent and provide
insights about the analyzed network.
1 http://cassandra.apache.org/.
2 http://www.hypergraphdb.org/.
3 https://github.com/jinhuang/hyperx.
4 https://spark.apache.org/.
5 http://jung.sourceforge.net/.

http://cassandra.apache.org/
http://www.hypergraphdb.org/
https://github.com/jinhuang/hyperx
https://spark.apache.org/
http://jung.sourceforge.net/
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Fig. 1. Architectural overview.

5 Results and Discussion

In this section we describe the preliminary experiments for evaluating the effec-
tiveness of the proposed approach. The evaluation has been made on a music col-
lection6 containing a set of data extracted from the Last.fm multimedia social net-
work in the first half of 2009. Table 1 shows in detail the MSN characterization.

Table 1. MSN characterization

Element Number

Crawled user 99,405

Annotations 10,936,545

Items 1,393,559

Tags 281,818

Groups 66,429

The set of nodes is composed by users, topics unveiled by the analysis of
tags in the annotation and multimedia items; hyperarc set is in turn composed
by the following relationships: friendship, membership, annotation and user and
multimedia similarity. In particular, the similarity between two users has been

6 http://carl.cs.indiana.edu/data/last.fm/.

http://carl.cs.indiana.edu/data/last.fm/
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Fig. 2. Topic User Ranking computed on three different communities of users (POP,
RAP and POP-RAP).

Table 2. Ranking comparison (PageRank (PR), K-Step Markov (KS), MSN Topic
User Ranking (MSNTUR), Human Ranking (HR).

τ ρ

MSNTUR - PR 0,48 0,58

MSNTUR - KS 0,65 0,78

MSNTUR - HR 0,80 0,91

PR - HR 0,70 0,74

KS - HR 0,67 0,82

computed according to neighborhood values provided by the Last.fm API whilst
Spotalike7 facilities (based on the low-level features) together with Last.fm sim-
ilarity score is used for evaluating similarity between two songs.

Figure 2 shows the average values of users ranking for each community vary-
ing λ. As easy to know, the ranking value for each user assumes the same value
when λ’s value grows up.

Thus, we compare the proposed ranking method based on the Neighborhood
Centrality, choosing λ = 2, some well-known approaches and a human-generated
ranking (representing the unique gold standard8) of users within Pop, Rap and
Pop-Rap communities. Table 2 shows the obtained results in terms of Kendall’
Tau (τ) and Spearman’s Rank Correlation (ρ) coefficients.

Finally, Fig. 3 shows an example of the visualization module.

7 http://www.spotalike.com/.
8 We ask a group of our students to rank the users expertness w.r.t. the different

communities considering number and relevance and of the related comments.

http://www.spotalike.com/
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Fig. 3. Example of the visualization module.

6 Conclusion

In this paper we propose an expert finding technique based on hypergraph data
model in which multimedia objects and annotation assets plays a key role. The
obtained results shows the goodness of the approach in detection expert finding
w.r.t. human ground truth and encourage the future work in this direction.
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Abstract. This paper presents an on-line learning method to automat-
ically deduce the insertion, deletion and substitution costs of the graph
edit distance, which is inspired in a previously published off-line learning
method. The original method is based on embedding the ground-truth
node-to-node mappings into a Euclidean space and learning the edit costs
through the hyper-plane in this new space that splits the nodes into the
mapped ones and the non-mapped ones. The new method has the advan-
tage of learning the edit costs and computing the graph edit distance can
be done simultaneously. Experimental validation shows that the match-
ing accuracy is competitive with the off-line method but without the
need of the whole learning set.

Keywords: On-line learning · Graph edit distance ·
Learning edit costs · Graph-matching algorithm

1 Introduction

Attributed relational graphs are commonly used as abstract representations for
common structures such as documents, images or chemical compounds, among
others [12]. Nodes of graphs represent local parts of the object and edges rep-
resent the relations between these local parts. Error-tolerant graph matching
algorithms [3,19] are applied to deduce the distance between prototypes repre-
sented by attributed graphs. Error-tolerant graph matching algorithms are based
on finding a mapping between nodes so that both graphs look similar when their
nodes are mapped according to this node-to-node mapping. One of the most used
frameworks to define the error-tolerant graph matching is through the graph edit
distance [6,16,18]. The main idea is to define the difference between graphs as
the amount of distortion required to transform one graph into another through
substituting, deleting or inserting nodes and edges. To do so, some penalty costs
are defined for these edit operations.

In this paper, we present an on-line method to learn the graph edit distance
costs. The aim is to recompute these values automatically when new data is
available. Thus, in a recognition process, the graph edit distance can be com-
puted having these costs as input parameters, which have been found trough our
optimisation process. In this way, the recognition process can be carried out at
c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 121–130, 2019.
https://doi.org/10.1007/978-3-030-20081-7_12
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the same time than the learning process. The method is inspired by an off-line
learning algorithm recently published [1]. Nevertheless, our algorithm is not a
simple iterating process on the off-line algorithm, but some processes have been
incorporated to keep the algorithm learning with the minimum data.

Note that, in some object retrieval applications, in which elements are repre-
sented by graphs, the aim is to deduce which are the most similar graphs, without
the graphs being previously classified. In these cases, it is crucial the learning
method to learn the edit costs such that the best node-to-node mapping between
pairs of graphs is computed instead of maximising the classification ratio. This
is the reason why the whole process we present is dependent on a ground-truth
node-to-node matching. Recently, a graph database generator that returns pairs
of graphs with their ground-truth correspondence has been presented [15].

To our knowledge, any on-line method has been published yet to learn the
graph edit distance parameters, although there are several published off-line
methods that learn them [1,2,4,5,7,10,11,17]. An important feature of these off-
line methods is the type of costs the learning algorithm obtains: a self-organising
map [10], a probability density function [11] or linear functions [1,2,4,5,7,17].

The main characteristic of the off-line methods is they learn with the whole
data at once, however, the on-line methods receive subsets of data and make
successive learning processes with them. We present an on-line method that
learns the insertion and deletions costs (similarly to [1,4]) and the weights on
the substitutions costs (similarly to [1,2,5,7]).

The outline of the paper is as follows. In the next section, we define attributed
graphs and graph edit distance. In Sect. 3, we present our learning strategy. In
Sect. 4, we show the experimental validation and finally, in Sect. 5, we conclude
the article.

2 Graph Edit Distance

The graph edit distance (GED) between two attributed graphs is defined as the
transformation from one graph into another, through the edit operations, that
obtains the minimum cost. These edit operations are: substitution, deletion and
insertion of nodes and also edges. Every edit operation has a cost depending on
the attributes on the involved nodes or edges. This graph transformation can be
defined through a node-to-node mapping f between nodes of both graphs.

Having a pair of graphs, G and G′, a correspondence f between these graphs
is a bijective function that assigns one node of G to only one node of G′. We sup-
pose both graphs have the same number of nodes since they have been expanded
with new nodes that have a concrete attribute. We call these new nodes as Null.
Note that the mapping between edges is imposed by the mapping of the nodes
whose edges are connected.

We define Gi as the ith node in G, G′
a as the ath node in G′, Gi,j as the edge

between the ith node and the jth node in G, G′
a,b as the edge between the ath

node and the bth node in G′. Nodes and edges have N and M attributes, which
are real numbers, respectively. Moreover, γt

i is the tth attribute of node Gi and



On-Line Learning the Edit Costs Based on an Embedded Model 123

βt
i,j is the tth attribute of edge Gi,j . We also define the mapping f(i) = a from

Gi to G′
a, we say that it represents a node substitution if both nodes are not

Null. Contrarily, if node G′
a is a Null and Gi is not, we say that it represents a

deletion. Finally, if node Gi is a Null and G′
a is not, we say that it represents an

insertion. Similarly happens with the edges. The case that both nodes or both
edges are null is not considered since it is defined as the cost is always zero.

We define the GED as follows:

GED(G,G′) = min
f :G→G′

⎧
⎨

⎩

∑

∀Gi

Cn(i, f(i)) +
∑

∀Gi,j

Ce(i, j, f(i), f(j))

⎫
⎬

⎭
(1)

Where, functions Cn(i, f(i)) and Ce(i, j, f(i), f(j)) represent the cost of map-
ping a pair of nodes (Gi and G′

f(i)) and a pair of edges (Gi,j and G′
f(i),f(j)),

respectively, and they are defined through the cost functions in Eqs. 2 and 3.

Cn(i, a) =

⎧
⎪⎨

⎪⎩

Cn
S (i, a) if Gi �= Null ∧ G′

a �= Null

Cn
D(i) if Gi �= Null ∧ G′

a = Null

Cn
I (a) if Gi = Null ∧ G′

a �= Null

(2)

Ce(i, j, a, b) =

⎧
⎪⎨

⎪⎩

Ce
S(i, j, a, b) if Gi,j �= Null ∧ G′

a,b �= Null

Ce
D(i, j) if Gi,j �= Null ∧ G′

a,b = Null

Ce
I (a, b) if Gi,j = Null ∧ G′

a,b �= Null

(3)

Where Cn
S (i, a) is the cost of substituting node Gi by node G′

a, Cn
D(i) is the

cost of deleting node Gi and Cn
I (a) is the cost of inserting node G′

a. Similarly,
Ce

S(i, j, a, b) is the cost of substituting edge Gi,j by edge G′
a,b, Ce

D(i, j) is the
cost of deleting edge Gi,j and Ce

I (a, b) is the cost of inserting edge G′
a,b.

In this paper, we impose the restrictions Cn
I (a) = Cn

D(i) = Kn and Ce
I (i, j) =

Ce
D(i, j) = Ke, where Kn and Ke are real numbers. Moreover,

Cn
S (i, a) =

∑N
t=1 wn

t

∥
∥
∥γt

i − γ
′t
a

∥
∥
∥ and Ce

S(i, j, a, b) =
∑M

t=1 we
t

∥
∥
∥βt

i,j − β
′t
a,b

∥
∥
∥,

where wn = (wn
1 , ..., wn

N ) is the vector of nodes attributes’ weights and we =
(we

1, ..., w
e
M ) is the vector of edges attributes’ weights. Furthermore,

1 =
N∑

t=1

wn
t 1 =

M∑

t=1

we
t (4)

3 Learning the Graph Edit Costs

In this section, we first plainly summarise the off-line method presented in [1]
and then we move on to explain our on-line proposal. It is crucial to explain the
off-line method since our method is inspired in it.
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3.1 Off-Line Learning the Graph Edit Costs

The basic scheme of the off-line method is summarised in Fig. 1. The system
receives a set of triplets composed of two graphs and a ground-truth correspon-
dence between them, {(G,G′, f)1, (G,G′, f)2, ...}, and outputs the substitution
weights on nodes and edges and also the deletion and insertion costs on nodes
and edges. Figure 1 only shows one triplet composed of two graphs that have five
and four nodes, respectively. The ground-truth correspondence is represented
through the dashed arrows. Four nodes are substituted and one node is deleted.

Fig. 1. Basic scheme of the off-line learning method.

The algorithm is composed of three main steps:
In the first step (Embedding), the ground-truth node-to-node mappings are

embedded into a Euclidean space S, being S = (Sn
1 , ..., Sn

N , Se
1 , ..., S

e
M , SKe) of

dimension N + M + 1. Each node substitution is transformed into a point in
this space and it is assigned to the “+1” class. Moreover, each node deletion
is transformed into Ñ points, which are assigned to the “−1” class. Ñ is the
number of substituted nodes in the ground-truth correspondence. The ground-
truth correspondence in Fig. 1 makes the embedding step to generate four points
that represent the four node substitution operations (one point per substitution)
and four points that represent the only one node deletion (the number of points
that generate each deletion is the number of substituted nodes).

In the second step (Classifier), a linear hyper-plane is computed that has
to be the best linear border between both classes. Authors in [1] describe that
any known linear classifier that return the hyper-plane can be used. Equation 5
defines this border, as described in [1]. Note the constants in this hyper-plane
are the substitution weights wn

2 , ..., wn
N and we

2, ..., w
e
M and also the insertion and

deletion costs on nodes and edges Kn and Ke, respectively. Finally, note that
wn

1 and we
1 do not appear in Eq. 5.

Sn
1 + wn

2 · Sn
2 + ... + wn

N · Sn
N + Se

1 + we
2 · Se

2 + ... + we
M · Se

M+
Ke · SKe + Kn = 0

(5)

For explanatory reasons, Fig. 2 shows the specific case of N = M = 1, where
S is a 3D dimensional space. In this example, graphs have three and two nodes
(not shown in the figure). The ground-truth correspondence imposes two nodes
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to be substituted (they generate two points) and one node to be deleted (that
also generates two points).

Fig. 2. Hyper-plane obtained in the learning process when M = N = 1.

Finally, in the last step (Deduce), weights wn
2 , ..., wn

N and we
2, ..., w

e
M and also

constants Kn, and Ke are extracted from the hyper-plane constants. Moreover,
wn

1 and we
1 are obtained through Eq. 4.

3.2 On-Line Learning the Graph Edit Costs

While the off-line method embeds all the set of triplets at once, the on-line
method receives a triplet (G,G′, f) at a time and computes Kn, Ke, wn and
we each time it is executed. To do so, it is needed the algorithm to input not
only (G,G′, f) but also two sets of embedded points D−1 and D1 that have been
computed in the previous execution (they are empty sets in the first iteration of
the algorithm). The algorithm is composed of four main steps (Fig. 3):

Embedding (G,G′, f) into the Euclidean space S is the first step of the
algorithm (Line 1) and it is done in the same way that the off-line method [1]
does. More precisely, it generates two sets, new D1 and new D−1, composed of
points in the space S that represent the node substitutions and node deletions
in (G,G′, f), respectively.

Feeding (Lines 2 and 3) is a simple process in which the new sets new D1

and new D−1 and the previous ones D1 and D−1 (which are input parameters
of the algorithm) are put together.

Then, Data reduction (Lines 4 to 14) updates sets D1 and D−1 with the
aim of reducing the amount of points but holding two main properties of these
sets. The first one is keeping the general distance between points as well as their
positions. This means that we want to have less points but maintain the same
information of the sets as much as possible. The second property is keeping
the same relation of the number of points of both sets. This is because, all the
classifiers are biased by the order of the sets. In this case, we want to keep the
number of points proportion to be as much reliable as possible to the input data.
The input parameter kmeans is the maximum number of points that will have
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Fig. 3. Basic scheme of the on-line learning method.

the sets when each iterations finishes and the algorithm returns the graph edit
distance parameters. From Line 4 to Line 11, the algorithm decides the number
of elements that the updated sets D1 and D−1 will have. Finally, in Lines 12
and 13, the reduction is done in each set. Note that we have selected the K-
means clustering method [8] to perform this reduction although other reduction
algorithms could be explored. Note the generated sets D1 and D−1 are returned
by the algorithm and feed the next iteration.

Finally, in the Classifier step (Lines 15 and 16), wn
2 , ..., wn

N , we
2, ..., w

e
M , Kn

and Ke are extracted from the hyper-plane constants that a linear classifier
returns as the border of sets D1 and D−1. Moreover, wn

1 and we
1 are obtained

through Eq. 4.

On-line Algorithm

Input(Kmeans, D1, D−1, (G,G′, f)) → Output(Kn, Ke, wn, we, D1, D−1)

1. (new D1, new D−1) = Embedding(G,G′, f)
2. D1 = D1 ∪ new D1

3. D−1 = D−1 ∪ new D−1

4. If |D1| > Kmeans ∨ |D−1| > Kmeans

5. If |D1| ≥ |D−1|
6. Kmeans

1 = Kmeans

7. Kmeans
−1 = Kmeans ∗ (|D−1 | / |D1 |)

8. Else
9. Kmeans

1 = Kmeans ∗ (|D1 | / |D−1 |)
10. Kmeans

−1 = Kmeans

11. End if
12. D1= k-means(D1, Kmeans

1 )
13. D−1= k-means(D−1, Kmeans

−1 )
14. End if
15. [Kn, Ke, wn

2 , ..., wn
N , we

2, ..., w
e
M ] = Classifier (D1,D−1)

16. wn
1 = 1 − ∑N

t=2 wn
t we

1 = 1 − ∑M
t=2 we

t

End Algorithm
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4 Experimental Validation

The method we present has been tested using the Tarragona-Graph repository
detailed in [9]. This repository has the main characteristic that each regis-
ter is composed of a pair of graphs, a ground-truth correspondence between
them (mapping between their nodes), and their class. It contains three graph
databases: Letter Low, Letter Med and Letter High that represent artificially
distorted letters of the Latin alphabet with an increasing level of distortion. In
each data base we have used a set of 37, 500 pairs of graphs for learning and a
different set of 37, 500 pairs of graphs for testing. Every set generated 150, 000
points in the embedding space. We used the matching algorithm [13,14].

Fig. 4. Letter Low accuracy.

The average matching accuracy obtained in the three data sets is shown in
Figs. 4, 5 and 6, given a number of introduced triplets (G,G′, f) taken from
the test set and also different values of Kmeans. The value Kmeans = Inf rep-
resents no reduction of the data, which is the same than applying the off-line
algorithm [1], given the specific number of introduced triplets.

In Letter Low (Fig. 4), accuracies generated by different values of Kmeans

are stable and almost similar except for the ones generated by Kmeans = 50.
Nevertheless, in Letter Med (Fig. 5) and Letter High (Fig. 6), the stability is
achieved at Kmeans = 2,000 and Kmeans = 3,000, respectively. The off-line
method (Kmeans = Inf) becomes to be the most stable. Note that, higher is
the number of points Kmeans allowed in sets D1 and D−1, slower is the algorithm
(see Table 1). Thus, we wish to keep this value as lower as possible. Nevertheless,
we observe that this is a parameter that depends on the level of noise of the
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Fig. 5. Letter Med accuracy.

Fig. 6. Letter High accuracy.

databases. Comparing our method to the off-line one [1], we realise that we
achieve competitive accuracies, although having a huge data reduction. Note
that in these databases, the off-line method generates 150,000 points but the
on-line algorithm only needs 3,000 points, in the worst case (Letter High).
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Table 1. Run time in seconds given several Kmeans

Kmeans 50 500 1000 2000 3000 Off-line

Letter Low 1.3 6.5 11.7 29.8 52.3 51.7

Letter Med 1.3 5.5 11.1 25.6 68.4 52.1

Letter High 1.2 6.6 12.0 25.7 67.1 55.4

5 Conclusions

We have presented an on-line method to learn the edit costs based on embedding
the ground-truth correspondence into a Euclidean space. This space, which was
previously defined in an off-line method, has the particularity that the border
between node substitutions and deletions is set as a hyper-plane defined by the
edit cost parameters. The learning method is limited to the applications that
substitution costs are represented as a normalised euclidean distance and inser-
tion and deletion costs are constants. Note that the weights and costs deduced
through our algorithm do not guarantee to be the optimal ones in an optimal
graph-matching algorithm. Each time our method is executed, the weights and
edit costs are returned and also some embedded points. These points and the
new node-to-node mappings are the input of the next algorithm iteration. From
a practical point of view, our method has three main advantages. First, the
learned weights and costs can be used each time the algorithm is computed. Sec-
ond, only parameter Kmeans has to be tuned. And third, the graph edit distance
does not need to be computed in the learning process, as it is needed in other
methods. Moreover, the experimental validation shows the learned parameters
obtain an accuracy that is similar to the off-line method in few iterations and
having an important data reduction.
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Abstract. A digital image can be perceived as a 2.5D surface consisting
of pixel coordinates and the intensity of pixel as height of the point in the
surface. Such surfaces can be efficiently represented by the pair of dual
plane graphs: neighborhood (primal) graph and its dual. By defining ori-
entation of edges in the primal graph and use of Local Binary Patters
(LBPs), we can categorize the vertices corresponding to the pixel into
critical (maximum, minimum, saddle) or slope points. Basic operation of
contraction and removal of edges in primal graph result in configuration
of graphs with different combinations of critical and non-critical points.
The faces of graph resemble a slope region after restoration of the contin-
uous surface by successive monotone cubic interpolation. In this paper,
we define orientation of edges in the dual graph such that it remains
consistent with the primal graph. Further we deliver the necessary and
sufficient conditions for merging of two adjacent slope regions.

1 Introduction

Configuration of such critical points and slope lines of a surface in term’s of earth
topography were discussed in [2,11]. Lee in [10] investigated the configurations
of critical points of a Morse function of two variables with it’s graphical repre-
sentation. Moving a century ahead, in [3], authors used the neighborhood graph
and explained the use of Local Binary Patterns (LBPs) in predicting the critical
(maxima, minima and saddle) points and the slope points in digital images. By
performing contraction and removal operations on edges, they formed a stack of
graphs called graph pyramid. Cerman et al. [4] provide a practical application of
multi-resolution image segmentation using graph pyramids. Similar approaches
are used by Wei in [12] where a hierarchical structure similar to graph pyra-
mid were constructed by using superpixels. The literature except [3] does not
consider the topological aspect of the surfaces which are covered by the papers
mentioned in the following paragraph.

In [6,7] Edelsbrunner et al. propose an algorithm of constructing a hierarchy
of increasingly coarse Morse-Smale complexes to decompose a piecewise linear
c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 131–140, 2019.
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2D-manifold with all its critical points being distinct. In our previous research
work [8,9], we further generalize this concept beyond Morse-Smale complex and
present a new hierarchy of increasingly coarse complexes decomposing 2D con-
tinuous surfaces denoted as slope complexes.

We also discussed properties of monotonic paths and provided a formula to
count the number of slope regions at the top level of the pyramid with all its
critical points being distinct. Our main aim was to preserve the critical points
of the surface at the top level of the pyramid and to connect them with the
minimum number of slope regions calculated using Euler’s formula [5, Theorem
4.2.7].

In the past, the graph pyramids [3] are build on the top of the pair of dual
graphs. The contraction of edges generates self-loops and multiple edges. The
empty self-loops and multiple edges can be removed and simplified. This simpli-
fications are controlled by the dual graphs. These dual graphs were not oriented
and also were not used to capture the non topological properties of the graph.
The main contribution of this paper is to provide orientation to the dual graph.
A first step in this direction was done in [9] but here we provide it’s interpre-
tation in the image context and give properties of the oriented dual graphs to
provide a reduction technique to meet our aims.

The paper is organized as follows: We start with the basic definitions in
the field of images from the topological point of view. In Sect. 3, we define a
concept to orient the dual graphs and the consistency of LBP categories. We also
introduce a technique to orient the monotonic paths which contains level curves
in the primal graphs. Section 4 provides necessary and sufficient conditions for
both primal and dual graph to merge two slope regions. In Sect. 5, we show some
experimental results for multi-resolution image segmentation. We end the paper
with a note of what is attained from the paper and the possible extensions.

2 Orienting the Primal Graph

This section provides necessary definitions that form the basis of the further
document. A discrete 2D image P where the intensity of a pixel p denoted by
g(p), can be represented as a neighborhood graph G = (V,E) also referred to
as primal graph. Every pixel p in the image P corresponds to a vertex v ∈ V
with gray value (g-value) g(v) := g(p). Vertex v is connected to it’s four adjacent
vertices by edges e ∈ E.

The dual of primal graph G is denoted by G = (V ,E), where V being the
vertex set of G which is associated with the faces of G, while E is the edge set
of G which corresponds to the borders separating the faces of G. In other words,
there is an edge e in the dual graph G for every edge e in primal graph G as
mentioned in [5, Section 4.6]. There is a one-to-one correspondence between the
edges of G and G so as the faces of G and vertices of G. By performing the
contraction and removal operations successively on the graph G, we obtain a
stack (pyramid) of successively reduced plane1 graphs (Gk, Gk), k ∈ [1, 2, . . . , n].

1 There is a topological and a combinatorial isomorphism between G and G and it is
a unique pair of graphs embedded in a surface [5, pp. 70-80].
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The base level of this pyramid is denoted as G = G0. A Contraction operation
in Gk, 0 ≤ k ≤ n − 1 corresponds to removal in Gk and a removal operation in
Gk (merging of two faces) corresponds to contraction of two vertices in Gk.

Definition 1. The orientation of an edge (v, w) ∈ E in the primal graph
G = (V,E) is directed from vertex v ∈ V to vertex w ∈ V iff g(v) > g(w), all
the other edges are not oriented.

Orientation of edges can now be used to categorize the vertex v ∈ V into
critical (maximum, minimum, saddle) or slope point.

Definition 2. A vertex v ∈ V is a local local maximum ⊕ if all the edges
incident to v are oriented outwards.

Definition 3. A vertex v ∈ V is a local minimum � if all the edges incident
to v are oriented inwards.

Definition 4. A vertex v ∈ V is a saddle point ⊗ if there are more than
two changes in the orientation of edges when traversed circularly (clockwise or
counter-clockwise direction).

Definition 5. A vertex v ∈ V is a slope point if there are exactly two changes
in the orientation of edges when traversed circularly (clockwise or counter-
clockwise direction).

Categorizing a vertex using orientation of edges incident to it is equivalent
to that of LBP code. The LBP value of an outward oriented edges are encoded
as 1 and inward orientated edges are encoded as 0. The LBP code of a vertex
is formed by concatenating LBP values of the incident edges in clockwise or
counter-clock wise direction. The LBP code of a maximum will consist of 1 only
while the LBP code of a minimum will consist of 0 only. The LBP code of slope
points will have exactly 2 bit switches and saddles will have more than 2 bit
switches. By use of orientated edges, we avoid the calculation of derivatives and
eigen-values of the Hessian matrix to categorize a vertex.

Definition 6. A path π(v1, vr) = (Vπ, Eπ) is a non empty sub-graph of G =
(V,E), where Vπ = {v1, . . . , vr} ⊂ V and Eπ = {(v1, v2), . . . , (vr−1, vr)} ⊂ E.

A path π(v1, vr) is a monotonic path if all the oriented edges (vi, vi+1), i ∈
[1, r − 1] have a same orientation.

Remark 1. All the oriented edges on a monotonic path have the same orienta-
tion consequently defining the orientation of a monotonic path. Observe that if
g(vi) = g(vi+1),∀i ∈ [1, r − 1] is called a level curve and it is a special case of
monotonic paths.

A monotonic path π(v1, vr) can be further extended by adding an edge ori-
ented in the same direction as the direction of monotonic path π(v1, vr). A
monotonic path which cannot be further extended is called a maximal mono-
tonic path. The end points of a maximal monotonic path will always be a local
maximum and a local minimum.
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2.1 Contracting Plateaus

A connected sub-graph having the same g-value for all the vertices is referred
to as a plateau region where every pair of vertices v, w ∈ V of the sub-graph
satisfies g(v) = g(w). The LBP encoding (see next subsection) is performed after
contraction of all the edges in the plateau regions where each plateau region
collapses either to a single vertex in the best case or a set of self-loops attached
to a vertex, surrounding every hole in the plateau region [8].

Nevertheless, the vertices on the boundary of the image need to be treated
differently. First, the case where the plateau region is connected to the boundary
as shown by the shaded region in the left images of Fig. 1(a), (b), needs to be
treated specially. To preserve the topology, we first perform contraction on the
vertices corresponding to the pixel on the boundary of the image.

As a result we get the vertices through which the border is connected to the
plateau region, and then collapse the remaining part of the plateau region into
a level curve as shown in the right images of Fig. 1(a), (b). Simultaneously, it
also explains the reason to perform the operations on border independently and
prior to the edges encapsulated by the border.

Fig. 1. Plateau regions connected to the boundary.

3 Orientation of Dual Graphs

In this section, we introduce a method to orient the edges of the dual graph cor-
responding to the oriented edges of the primal graph and explore it’s properties
to help merging of faces in the primal graph. Maintaining generality, e in Gh is
normal to the tangent at any point on the edge e in Gh.

Definition 7 (Orientation of edges in dual graph). The orientation of an
edge e in G is from vr to vl, where vr and vl are the vertices in G corresponding
to the faces on the right and the left side of the respective edge e in G while
walking in the direction of orientation of e.

Remark 2. The condition where the LBP code of v in G consists of only 0*
or only 1* can never exist as it corresponds to a cyclic sub-graph in Gk and
it contradicts the orientation of edges initially defined for the primal graph.
Nevertheless, directed cycles in the dual graph can appear and they surround
extrema in the primal.

Presence of level curves in Gk may complicate the orientation of the corre-
sponding edge in Gk which we address later in this document.
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Fig. 2. Orientated dual graph for slope and saddle regions in primal graph.

Definition 8 (Slope region). A face in Gk is a slope region iff the corre-
sponding vertex v in Gk is a slope point.

Imagine the primal graph G0 as a terrain with height corresponding to the g-
value of the vertex, then a face in G0 will be a slope region or a saddle region2 in
the terrain. Definition 7 remains consistent to this concept and gives a matching
LBP category of a vertex in dual as shown in Fig. 2.

Lemma 1 ([9]). The boundary of a slope region S in the primal graph G is
either composed of exactly two monotonic paths connecting two extrema or it is
a level curve.

Lemma 2 [1, Lemma 1]. After contracting plateaus and adding dummy saddle
points inside non-well composed configurations, all the vertices in the dual graph
are slope points.

4 Merging of Two Slope Regions

This section starts with basic requirements for merging of two slope regions.
Then we provide the prototype of two adjacent slope regions sharing a com-
mon boundary. Finally we enumerate all the possible configurations of two slope
regions deduced from the prototype and provide the constructive statements
which are the necessary conditions for merging of two slope regions.

Two slope regions sharing a common boundary can be merged together by
removal of the common boundary which results to form a merged slope region.
We do not constrain the number of vertices and edges on the boundary of the
slope regions. Hence the boundaries of the slope regions are referred as paths
which may contain more than one vertices and edges. From Lemma 1 and prop-
erties of monotonic paths, the boundary of a slope region consist of exactly one
level curve or two monotonic paths connecting one maximum and one minimum
‘with respect to the slope region’. Note that by the usage of term ‘with respect
to the slope region’, we constrain the connections of the vertex with the interior
and the boundary of the slope region. We do not consider the connections of
the vertex with the remaining graph where it can be categorized into a different
LBP category.
2 Region with a non well-composed configuration which requires insertion of a saddle

point [3].
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Merging of two slope regions may not necessarily result in a slope region.
The merging of two slope regions can be done by checking whether the resulting
merged region is a slope region or not.

Remark 3. Two adjacent slope regions in the primal graph can be merged iff the
dual vertex corresponding to the merged slope region would be a slope point.

According to Lemma 1, the boundary of a slope region should be composed of
two separate monotonic paths connecting the maximum and minimum of the slope
region. The vertices at the end point of the common boundary between the two
slope regions are already part of two monotonic paths, one from each slope region.
To be a part of a monotonic path, these two vertices should either be an extremum
or a slope point with respect to the monotonic path. If this condition is violated,
it will contradict to the orientation of the monotonic path on the boundary of the
resulting slope region. Now the proof of this boils down to demonstrate that the
dual vertex corresponding to a face (in the primal graph) surrounded by exactly
two monotonic paths is a slope point. Considering the circular permutation of the
LBP codes of above mentioned dual vertex, we will have exactly two switches which
as per Definition 5 is a slope point.

Let us consider sub-graphs of two slope regions S1 and S2 with their extrema
⊕1, �1, ⊕2 and �2 respectively. While formulating rules for merging two slope
regions, the position of an extrema on the boundaries and it’s connection with
the common boundary are the main features to be considered. Besides extrema,
the boundaries are composed of slope points with respect to the slope region. In
this way we provide conditions which are independent of the number of edges
and vertices on the boundary of the slope regions S1 and S2.

Fig. 3. Prototype for merging of two slope regions.

Figure 3a shows the prototype of two slope regions with a common boundary
π(c1, c2) between them. The paths connecting the vertices in the prototype may
consist of any number of vertices and edges completing the respective connection.
The orientation of paths π(a1, a2), π(b1, b2) and π(c1, c2) is predefined by assum-
ing that ⊕1 ∈ {a1, c1}, ⊕2 ∈ {b1, c1}, �1 ∈ {a2, c2} and �2 ∈ {b2, c2} posi-
tions. The theory remains the same if the positions of ⊕1 and ⊕2 are interchanged
with �1 and �2 thereby reversing the orientation (flipping) of respective edges3.
3 This configuration can be achieved by switching positions of ⊕i and �i in the previ-

ously mentioned configuration.
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Moreover, all the combinationswhere the orientation of pathπ(a1, a2) andπ(b1, b2)
are opposite, for example ⊕1 at a1 and ⊕2 at b2 will not be valid because it con-
tradicts the orientation of path π(c1, c2) unless it is a level curve (which is taken
into account in Case 5). By putting restrictions on positions, we reduce the number
of possible combinations to 24 = 16 configurations, which can be further reduced
(by interchanging S1 and S2) for investigative purpose and still keeping the rules
general.

The removal of a path π(c1, c2) with n edges consists of following two steps:

1. Contract (n− 1) edges as a result of which the path will be composed of only
1 edge connecting the end points.

2. Perform the removal operation on the remaining edge.

Following are enumerations in which the two slope regions S1 and S2 can
be merged such that the resulting slope region will still obey Definition 8 and
preconditions of Lemma 1. Preserving the condition, the number of different
configurations which can be generated by interchanging labels S1 and S2 are
mentioned in the brackets after each condition.

Case 1: We start with the most simple case of Fig. 4a, where S1 and S2 share
the same extrema on the common boundary, i.e. ⊕1 = ⊕2 at c1 and �1 = �2 at
c2. In this case, remaining paths are directed from c1 to c2, one through a1 and
a2, and the other through b1 and b2 [2 combinations].
Case 2: If the common boundary is composed of one extremum from S1 and one
extremum from S2 as shown in Fig. 4b [2 combinations].
Case 3: If both of the end points of the common boundary contains extrema
from a single slope region irrespective of the position of extrema from other
slope region as shown in Fig. 5a. For example: ⊕1 at a1 and �1 at a2 respec-
tively while ⊕2 and �2 contribute to the end points of the common boundary
[6 combinations].
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Fig. 4. Slope regions contributing at-least one extremum to the common boundary.

Case 4: None of the extrema contribute to the common boundary, but both
extrema of one slope region are connected to the common boundary through a
level curve as shown in Fig. 5b. The blue vectors besides the graph shows the
orientation of the monotonic path which consist of level curves [1 combination].
Case 5: If one extremum of a slope region contributes to the end point of the
common boundary and the other is connected to the common boundary through
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a level curve irrespective of the position of extrema of the other slope region. For
example refer to Fig. 5c, d. The dashed line in the figure refers to the level curve
and the blue vectors besides the graphs shows the orientation of the monotonic
path [6 combinations].

Fig. 5. At-least one extremum of a slope region is connected to the common boundary
through a level curve.

In all the above cases, the common boundary path π(c1, c2) has orientation in
a single direction. We also take into consideration the cases where the common
boundary have orientations of edges in different direction like shown in Fig. 3b,
where the vertex m is a slope point with respect to the slope regions. In its
local neighborhood, m can be a slope point or a saddle point. Note: This case
is counted under the condition where both the slope regions share common
extrema and hence the slope regions can be merged. There may be cases where
only one of the two common slope points m is present and the monotonic paths
are directly connected to an extremum. Removal of path π(⊕,�) in Fig. 3b will
result in pending edges connecting m and the extrema in the primal graph.
Corresponding to this pending edge, there will a self-loop surrounding a single
vertex in the dual graph.

Proposition 1. Any two slope regions S1 and S2 sharing a common boundary
can be merged together if they follow one of the following condition:

1. The common boundary is composed of at least one extremum of S2 and
another extremum is either on the common boundary or is connected to the
common boundary through a level curve.

2. The common boundary is composed of one extremum from each slope region.

For all the cases in Figs. 4b and 5, the edges incident to the dual vertex S1

have the same orientation as the dual vertex S2 when traversed in a circular
(clockwise or counter clockwise) order. Similar observations can be made in the
corresponding primal graphs.
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Fig. 6. Result after contrac-
tion of edge (S1, S2) in Fig. 5

In other words, both of the vertices in the dual
exhibit the same LBP code after eliminating redun-
dancy of bits when traversed in same direction. The
vertex in Fig. 6 is a slope point formed as a result
of the contraction operation on the dual graph in
Fig. 5. Similarly we get a slope point after contract-
ing the dual edge connecting the two dual vertices
in Fig. 4b.

Few examples can be viewed in Fig. 7 where the
extrema are connected to the common boundary
without a level curve or the orientation of the level curve is reversed. We observe
that the vertices in the dual graph have different LBP codes when traversed in
the same direction.

Fig. 7. Configurations of slope regions that cannot be merged and their oriented dual
graphs.

Proposition 2. The contraction of the dual edge e connecting two slope points
v1 and v2 in dual graph G will result in a single slope point iff the edges incident
on the vertices v1 and v2 exhibit the same orientation (the same LBP code)
between the bit switches when traversed in same order and direction.

Proposition 2 provides sufficient conditions for contraction of edge e in G
connecting two slope points such that the resulting dual vertex is also a slope
point. This contraction is equivalent to the removal of the corresponding edge e
in G such that the resulting region is a slope region.

4.1 Orientation of Level Curves Shared by Multiple Monotonic
Paths

Technically level curves follow the surface along the same height. Hence they are
not oriented. The corresponding (level) paths can be concatenated with adjacent
monotonic paths if all the involved monotonic paths have the same orientation.
They then form a combined monotonic path in which the level paths inherit their
orientation from the orientation of the combined monotonic path. This may lead
to inconsistencies if the same level path or a sub-sequence of it is simultaneously
concatenated with a monotonic path of the opposite orientation. In such cases
preference will be given to the orientation of the level path which is involved
in the merging of slopes. The priority of merging slopes may depend on higher
objectives like making slope regions of the global extrema as large as possible.
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5 Conclusion

In this paper, we represent a surface by a pair of dual plane graphs and provide
a novel solution of collapsing the plateau region which basically is the collection
of degenerated surface points. Then we categorize the vertices into maximum,
minimum, slope or saddle depending on the orientation of the incident edges
and avoiding the calculations of differentiation. We also define the orientation
of the edges in the dual graph and show that the LBP category of the dual
vertex is consistent with the corresponding face in the primal graph. Then we
give the necessary and sufficient conditions for merging of two adjacent faces in
the primal graph of a well composed sampled surface such that the merged face
is a slope region. Finally we offer the sufficient conditions for the resulting dual
vertex to be a slope point produced after contracting the respective dual edge.
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Abstract. In different application fields, such as biology, databases,
social networks and so on, graphs are a widely adopted structure to
represent the data. In these fields, a relevant problem is the detection
and the localization of structural patterns within very large graphs; such
a problem, formalized as subgraph isomorphism, has been proven to be
NP-Complete in the general case. Moreover, the continuously growing
size of the graphs to face, actually of hundred thousands of nodes, is
making the problem even more challenging also for the most efficient
algorithms in the state of the art, requiring days or weeks of compu-
tational time. This huge amount of time is also consequence of the fact
that most of the algorithms do not exploit any kind of parallelism, even if
the problem is suitable to be solved adopting parallel approaches. In this
paper we present a new parallel algorithm for subgraph isomorphism,
namely VF3P, based on a redesign of the well known algorithm VF3.
The effectiveness of VF3P has been experimentally proven on a publicly
available dataset of very large graphs, confirming that the algorithm is
able to efficiently scale w.r.t. the number of used CPUs without affecting
the memory usage.

Keywords: Exact graph matching · Subgraph isomorphism ·
Parallel algorithms · VF3

1 Introduction

Graphs are discrete mathematical structures representing objects in terms of
their parts and the relationships among these parts, using abstractions called
nodes and edges respectively. Such a representation is much more expressive
than the vector-based one, but it requires more complex algorithms, and thus
a higher computational effort, also to perform simple operations like evaluating
the similarity between two objects. Nevertheless, there are several cases where
graphs are preferred to vectors because the latter are ineffective to model the
complexity of the objects especially when these are composed by parts suitably
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interconnected each other and the application at hand exploits this relevant
structural information [16,18,26].

Nowadays, the field of social networks [15,27], databases, semantic web and
biology require to use bigger and bigger structural information, typically rep-
resented in term of graphs [3,21]. Among them, the latter is undoubtedly the
most promising and challenging area [5,9,13,14], where many biological entities
are naturally represented as graphs; moreover, the quantity of data generated
every year and needed to be analyzed, is enormous. Noteworthy examples are
molecular and protein structures, interaction networks and more recently the
genome, that for many years has been represented as a string of bases [4,23].

In this context graph matching algorithms play an important role because
they allow to perform the basic operations required to apply pattern recognition
methods, such as the computation of the similarity (i.e. the distance) or the
search for a structural pattern.

It is important to say that all the previously cited fields provide, year by year,
new challenges to graph matching algorithms, due to the continuously growing
size of the graphs they require to deal on. It it important to note that, actually,
even a graph of thousand nodes is considered small in many cases, for instance
when working with the genome of an individual that is composed of billions of
bases. Therefore, even a frequent operation like searching for a pattern structure
inside a graph, namely the subgraph isomorphism problem, becomes very time
expensive also for the most efficient algorithms in the state of the art.

The current graph matching algorithms have been generally designed accord-
ing to a sequential computational paradigm, even if many operations required
by them can be potentially done in parallel; indeed, analyzing the literature it
is possible to find extremely efficient algorithms, such as VF3 [8,11,12,14] and
RI [5], able to work with graphs of thousands of nodes using a very limited
quantity of memory and CPU, but requiring a large amount of time when the
size and the density of the graphs increase (e.g. weeks of computational time).

Another important evidence of the need for parallel graph matching algo-
rithms, is the growing interest in parallelizing the computation of the graph edit
distance recently arisen in the scientific community [1,2,6,24].

Realizing efficient parallel graph matching algorithms is not as easy as it
would appear. Indeed, starting from a sequential algorithm and making in par-
allel some of its steps and procedures is, in most of the case, useless. The big
challenge is to design the algorithm so as to take full advantage form a specific
parallel architecture, such as multicore systems using CPU, GPU, clusters and
so on. Distributed subgraph isomorphism methods to deal with very large graphs
have been proposed in [7,28], but there still remains the problem of reducing the
high communication cost among the nodes of the cluster. Concerning the GPUs,
some papers [20,29] have proposed interesting performance analysis on graph
matching algorithms for GPU highlighting the bottlenecks and the reasons why
graph algorithms are not able to exploit the architecture CPU-GPU at the best.
A parallel approach on multicore CPUs has been recently proposed by McCreesh
et al. [22]. The authors have proposed a simple parallel constrain programming
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approach based on LAD [25]; they have focus the attention on specific paralleliz-
able steps and have presented an analysis limited to the execution time, without
discussing efficiency and speedup.

In this paper we propose a parallel algorithm for multicore CPUs obtained
from VF3-Light [11] by realizing a state-level parallelization. The effectiveness
of our proposal have been proved by analyzing the memory requirements, the
speed-up and the efficiency with respect to the original sequential algorithm.

2 VF3-Light: The Sequential Algorithm

In this section, we briefly present some fundamental concepts on graph match-
ing and VF3-Light required to understand the design choices discussed in the
successive sections, the reader who is interested in deepening the algorithm is
referred to [8,11].

2.1 Graphs and Graph Matching

A graph is an ordered pair G = (V,E) where V and E ⊂ V × V are the set of
nodes and edges respectively. Given a node u ∈ V , the set of its successors (the
nodes connected to u by outgoing edges) is denoted as S(u), while the set of
its predecessors (the nodes connected by incoming edges) is denoted as P(u). In
a more general definition, graphs can carry also attributes or labels attached to
their nodes and edges. Hence, two additional sets are considered: the set of node
labels Lv and the set of edge labels Le; two labeling functions, λv : V → Lv and
λe : E → Le, are used to associate each node or edge to the corresponding label.

Considering two graphs, namely G1 = (V1, E1) and G2 = (V2, E2), graph
matching is the problem of finding a function M : V1 → V2, namely the mapping
function, satisfying some structural constraints. In the case of subgraph iso-
morphism [16], the constraints are that M is injective and structure preserving,
i.e. the nodes put in correspondence must have the same structure considering
both the presence and the absence of edges. It is important to note that the map-
ping function is not unique, but the problem can have several distinct solutions
where the nodes in V1 are mapped to different subsets of nodes in V2. In general,
we are not interested in finding the first solution only, but all the possible ones.

2.2 VF3-Light

VF3-Light is the most recent successor of the well-know algorithm for subgraph
isomorphism VF2 [17]; it has been proposed in [11] as a lightened version of
VF3 [8] where some of the heuristics, required to deal with large and dense
graphs, have been relaxed to reduce the overall computational time when facing
small or sparse graphs. All the algorithms, designed from VF2, share the same
structure and use a depth-first approach search (DFS) over a tree-structured
search space of states. Each state sn represents a partial mapping M(sn) between
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the nodes in V1 and those in V2. Two additional sets M1(sn) ⊆ V1 and M2(sn) ⊂
V2 are used to represent the nodes of V1 and V2, respectively, that are in M(sn).

That said, the algorithm starts from a root state s0 where the mapping M(s0)
is empty and proceed until it reaches a leaf state sl whose mapping M(sl) is
complete, i.e. it involves all the nodes in V1. The exploration from the root to a
leaf proceed by extending the nodes involved in the mapping M ; at each state
sn a new one is generate by adding to the mapping M(sn), a new couple of
nodes un ∈ V1, vn ∈ V2 that are not yet in M(sn). Only some of the couples are
feasible to generate a state that is consistent with the constrains of the subgraph
isomorphism and so are used to generate a new state. Finally, the leaves are also
consistent, namely the goal states, represent the solutions of the problem.

In order to avoid an expensive bind search over the whole search space, VF3-
Light uses the feasibility rule (Eq. 1) to explore the sub-space composed of only
consistent states.

IsFeasible(sn, un, vn) = Fs(sn, un, vn) ∧ Fc(sn, un, vn) (1)

The function Fs verifies the semantic consistency of node and edge labels (or
attributes), while Fc verifies the structural consistency. Such a rule aims at ensur-
ing that the addition of a couple (un, vn) to a consistent state sn will not produce
an inconsistent state.

3 Parallel Algorithms

Designing a parallel algorithm starting from a sequential one is not an immediate
task, but it requires to analyze different aspects. A widely adopted methodolog-
ical approach, proposed by Ian Foster in [19], organizes the design of a parallel
algorithm in four steps: Partitioning, Communication, Agglomeration and Map-
ping. The first is the arrangement of the data into discrete chunk of work that
can be distributed to multiple tasks. Two basic ways to perform this process
are: domain decomposition, aimed at decomposing the data into many small
partitions to which parallel computation may be applied, and functional decom-
position where the problem is decomposed in terms of operations that can be
performed simultaneously. Once the decomposition have been defined, it is nec-
essary to define how the task communicate each other; for instance if they work
in a coordinated way or asynchronously. Then the agglomeration step aims at
reducing the number of tasks generated during the partitioning in order to reduce
communication costs, that is the most influencing factor in parallel algorithms
performance. Finally, in the mapping step we define where each task is to run
in order to minimize the execution time. For instance, we can map on the same
processors tasks that need a strong communication while on different processors
tasks able to run concurrently.

The exploration of the search space is a problem suitable to effectively exploit
the data parallelism, thus, according to the partitioning strategies proposed by
Foster, we have designed a parallel algorithm, namely V F3P , based on a domain
decomposition where each task is responsible to explore a single state. It is worth
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to point out that we have considered each task as performed by a single thread,
therefore we will use equivalently the terms thread and task. The communication
is realized through a global state stack ; a task extracts the state to explore from
the stack, then puts the feasible states generated in it. Each task stops when no
further states have to be explored, such a condition is verified when the global
stack is empty and all the other tasks have finished to explore their last extracted
state, thus no other state is going to be put in the stack. Adopting such a strategy,
the agglomeration is implicitly realized by the way the tasks communicate each
other through the global structure. An outline of the procedure performed by
each task in V F3P is shown in Fig. 1. On the one hand, the used strategy allows
to reach a high efficiency because all the threads work for most of the time; but,
on the other hand, it requires a high level high level of synchronization among the
threads that can affect the efficiency when the number of threads grows. To deal
with this problem, we have designed a further optimization of V F3P , namely
V F3PLS , aimed at reducing the synchronization through the use of a side state
stack used privately by the tasks. Each task has its local state stack where it puts
the generated states to be successively explored. Therefore, until a task does not
need to access the global stack it is able to work independently from the others.
It is worth noting that using the local stack only does not guarantees that the
workload is balanced among all the thread, this can cause a loss of efficiency
due to the fact that some tasks are unoccupied. To avoid this problem, the local
stack has a limited size, thus, when it is full the task is force to put the exceeding

1: function V F3P-Task(s, G1, G2, Sg, out Results)

2: if IsEmpty(Sg) then

3: return CheckActiveTasks()

4: s := PullFromStack(Sg)

5: if IsGoal(s) then

6: append M(s) to Results

7: else

8: for (un, vn) ∈ NextCandidates(s, G1, G2)

9: if IsFeasible(s, un, vn) then

10: sn := ExtendState(s, un, vn)
11: PushInStack(sn, Sg)

12: NotifyEndOfExploration()

13: return True

14: end

Fig. 1. Outline of V F3P task procedure. Each task pull the next state to process
from the global stack Sg. If the state is not a goal one, the task explores all of its
descendant and put in Sg only those are feasibile. Since the condition IsEmpty(Sg) is
not sufficient to guarantees that no more states have to be explored, each task notifies
the start of the exploration when it pulls a state from the stack and uses the procedure
NotifyEndOfExploration to communicates to the others when it finished. When Sg

is empty and no more tasks are involved in exploring a state, than all the tasks will
stop working.
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states in the global stack. It is worth to note that, if the size of local state stack
is configured taking into account the maximum depth of the search space (the
size of the pattern graph) and the density of the two graphs, each task will be
able to explore the space, from the root to leaves, without picking states from
the global stack. Moreover, considering how the DFS works, each task maintains
in its local stack the states corresponding to the higher levels of the state space,
while it tends to put in the global stacks the states belonging to the lower levels.

The two algorithms, V F3P and V F3PLS , differ in the procedures Pull-
FromStack and PushInStack (see Fig. 1). Indeed, while the tasks of V F3P
work directly using the global stack, in V F3PLS each a task checks firstly if the
local stack is empty (full) before accessing the global stack to pull (put) a state.

4 Experiments

The benchmark of parallel algorithms is not limited to time and memory require-
ments; indeed, two relevant performance measures (see Eq. 2) are speed-up (Sp)
and efficiency (Ef). The first represents the improvement of the execution time
evaluated as the ratio between the run time Ts of the most efficient sequential
algorithm and Tp, the one of the parallel algorithm. The second characterizes how
the parallel algorithm is efficient in exploiting the available hardware resources
and is obtained dividing the speed-up by the number of CPUs.

Sp =
Ts

Tp
Ef =

Sp

#CPU
(2)

The goal for a parallel algorithm is to reach a linear speed-up, where the value
of the ratio is exactly the number of used CPUs. Very rarely, it is also possible to
witness a superlinear speed-up, when the speed-up ratio is higher than the number
of the CPUs. In general, a linear speed-up is very difficult to achieve because it
requires that all the CPUs have always the same amount of workload and are able
to execute their task independently or with few interactions. Unfortunately, not
for all the problems it is possible to design algorithms exposing a linear speed-
up. This is the case of graph algorithms, where this difficulty is confirmed by
the fact that, until now, they have not been implemented effectively on modern
GPU architectures, that are designed to exploit algorithms suitable to exhibit a
linear speed-up such as low level image processing ones.

As previously introduced, computing the speed-up and the efficiency requires
to choose a reference sequential algorithm, that is usually selected among the
most efficient ones solving the problem under analysis. In our case, since the
proposed parallel algorithms have been realized starting from VF3-Light, it is the
most suited to this purpose, even because it has been proved to be one of the most
efficient subgraph isomorphism algorithms. Therefore, in our experiments we
have computed the aforementioned performance measures by executing V F3P
and V F3PLS with 2, 4 and 8 working threads respectively, in order to evaluate
how the performance measures evolve when the number of thread grows.
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Table 1. Speed-up of the parallel algorithms over different target graph size and num-
ber of CPU cores employed.

Dataset Target size Speed-up

V F3P V F3PLS

2 core 4 core 8 core 2 core 4 core 8 core

η = 0.2 Uniform 1000 0.76 0.75 0.70 0.99 0.84 0.76

2000 1.59 2.34 3.42 1.55 2.63 3.74

4000 1.56 2.96 5.16 1.69 3.14 5.61

10000 1.79 3.44 6.36 1.82 3.53 6.63

Non-Uniform 1000 0.70 0.75 0.61 1.06 0.76 0.57

2000 1.54 2.16 2.98 1.51 2.33 3.11

4000 1.70 2.98 4.77 1.72 3.12 4.97

10000 1.77 3.37 6.11 1.80 3.47 6.41

η = 0.3 Uniform 1000 1.72 2.63 3.46 1.79 2.69 3.59

2000 1.46 3.00 5.19 1.54 3.24 5.64

4000 1.78 3.36 6.05 1.81 3.47 6.39

6000 1.85 3.56 6.68 1.88 3.65 6.89

8000 1.88 3.64 6.82 1.90 3.69 6.96

Non-Uniform 1000 1.65 2.53 2.93 1.77 2.55 3.17

2000 1.59 2.93 4.91 1.66 3.15 5.30

4000 1.76 3.27 5.69 1.77 3.38 6.28

8000 1.86 3.60 6.74 1.88 3.66 6.91

The experimental environment has been properly configured so as to collect
unbiased measures and ensure that each thread run on the same core during all
the execution time. The experiments have been performed on a Ubuntu 18.04
server where all the unnecessary services and the swap area have been deacti-
vated. The server is equipped with two Intel(R) Xeon(R) CPU E5-2650 v2 and
256 Gb of Ram. Each Xeon E5-2650 has 8 physical core and three level of cache,
in particular 256 Kb of L2 cache dedicated to the each single core and 20 Mb of
L3 cache shared by all the cores laying on the same CPU. Hyperthreading has
been deactivated to let the operating system to run one thread per physical core.
One of the CPUs hosted the threads of the operating system and the experi-
mental environment, while the other has been completely dedicated to run the
working threads of the algorithms; thus, by setting the affinity we have ensured
that each thread was executed on a dedicated core. In this way, we are able to
properly measure how the algorithms improves speed-up and efficiency w.r.t. the
number of cores by setting the wanted number of running threads.

The experiments have been performed over a subset of the MIVIA LDG,
a standard dataset firstly used in [8,10,11] to benchmark VF3. The dataset is
composed of very large and dense random Erdős and Rényi graphs, both labelled
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Table 2. Efficiency of the parallel algorithms over different target graph size and
number of CPU cores employed.

Dataset Target size Efficiency

V F3P V F3PLS

2 core 4 core 8 core 2 core 4 core 8 core

η = 0.2 Uniform 1000 0.38 0.18 0.08 0.49 0.21 0.09

2000 0.79 0.58 0.42 0.77 0.65 0.47

4000 0.78 0.74 0.64 0.84 0.78 0.70

10000 0.89 0.86 0.79 0.91 0.88 0.83

Non-Uniform 1000 0.35 0.18 0.07 0.53 0.19 0.07

2000 0.77 0.54 0.37 0.75 0.58 0.38

4000 0.85 0.74 0.59 0.86 0.78 0.62

10000 0.88 0.84 0.76 0.90 0.86 0.80

η = 0.3 Uniform 1000 0.86 0.65 0.43 0.90 0.67 0.45

2000 0.73 0.75 0.64 0.77 0.81 0.71

4000 0.89 0.84 0.75 0.90 0.87 0.80

8000 0.94 0.91 0.85 0.95 0.92 0.87

Non-Uniform 1000 0.83 0.63 0.38 0.89 0.63 0.40

2000 0.79 0.73 0.61 0.83 0.78 0.66

4000 0.88 0.82 0.71 0.89 0.85 0.79

8000 0.93 0.90 0.84 0.94 0.92 0.86

η = 0.2 η = 0.3

M
em

or
y

(a) (b) (c) (d)

Target Size
V F3 − Light V F3P (2 Core) V F3P (4 Core) V F3P (8 Core)
V F3PLS (2 Core) V F3PLS (4 Core) V F3PLS (8 Core)

Fig. 2. Memory usage on η = 0.2 and η = 0.3 random graphs of both V F3P and
V F3PLS , by varying the number of used cores.
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and unlabelled, having densities (η) of 0.2, 0.3 and 0.4 respectively. The target
graphs size ranges from 300 to 10, 000 nodes, while the size of the pattern graphs
is 20% with respect to that of the corresponding target. As discussed in [10],
although in the MIVIA LDG dataset there is only one solution for each pair of
graphs, the computational effort required to search for the solution and explore
the whole search space to confirm the absence of other solutions is very high.
Therefore, due to its complexity such a dataset is very suitable to stress the
algorithm in terms of CPU usage, so as to highlight possible loss of efficiency.

In Tables 1 and 2 we present the results of the experiments in terms of speed-
up, efficiency on the considered datasets. Analyzing the speed-up it is possible to
note that both the parallel algorithms are able to scale w.r.t. the number of cores.
In particular, in the case of η = 0.2, the best speed-up is achieved by V F3PLS

for graphs larger than 8, 000 node, and it is of 1.7, 3.5 and 6.6 when using
2, 4 and 8 cores respectively. On η = 0.3 graph, the best results is still obtained
by V F3PLS ; it is worth to note that, in this case, the speed-up using 8 cores is
about 7. The effectiveness of the proposed algorithms is also confirmed by the
achieved efficiency, especially when the CPUs is more stressed, i.e. for graphs
larger than 4, 000 nodes; as expected, both the algorithm are able to obtain values
higher than 0.8 irrespective from the number of cores. Of course, using less cores
the efficiency is higher due to the lower time lost in synchronization. Anyway,
when the number of cores increases, the benefit of the local stack, adopted by
V F3PLS , in reducing the amount of synchronization time lost, is more evident
both on the speed-up and on the efficiency.

Differently happens for the memory, there are not notable benefits in using
the local stack because both the solutions requires the same amount of memory
to manage the communication; indeed looking at the Fig. 2 the curves are com-
pletely overlapped. It is worth to note that, the higher is the number of cores
the higher is the memory usage because of the higher is the number of states
generated and buffered in the communication stacks; even if the growth in the
usage of memory is very limited if compared with that of VF3-Light.

5 Conclusions

In this paper we have proposed V F3P , a parallel algorithm to solve subgraph
isomorphism. The effectiveness of the proposed algorithm has been proved using
very large and dense graphs considering three performance measures: the speed-
up, the efficiency and the memory usage. On the base of the achieved results
we have demonstrated that the proposed algorithm is very efficient and able
to scale w.r.t. the number of used CPUs. Nevertheless, a deeper analysis can
be performed to explore other aspects impacting the performance and further
improvements to the efficiency can be achieved by adopting different communi-
cation schemas and agglomeration.
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Abstract. Building highly discriminative graph has an important
impact on the quality of graph-based hyperspectral image segmentation.
For this purpose, we propose to weight graph edges using Local Binary
Pattern (LBP) descriptor that takes into account the texture informa-
tion of the hyperspectral images. Nodes in the graph embed spectral LBP
features computed from the different hyperspectral bands, while edges
encode the spatial relationship between these features.

The multiphase level set method is then applied on the constructed
graph to segment the image. We validate the proposed method, using
Overlapping Score evaluation metric, on several popular hyperspectral
images. The results show that our method is very efficient compared to
other state-of-the-art one.

Keywords: Hyperspectral image · Graph · LBP · Segmentation ·
Multiphase level set

1 Introduction

Hyperspectral imaging has recently gained in popularity as a promising optical
image acquisition modality, after having been limited to costly remote sensing
devices. Hyperspectral sensors can provide a fine sampling of the visible and near
infrared spectrum. Hyperspectral data are represented in a three-dimensional
image: two spatial dimension and one spectral dimension. Each image pixel cor-
responds to a high dimensional vector of hundreds of spectral bands captured
at this pixel called spectrum. This increased spectral information may, in turn,
contribute to a sharper image analysis including hyperspectral image (HSI) seg-
mentation. The aim of HSI segmentation is to partition the image into a set of
regions sharing the same properties and characteristics, which may serve as a
prior step to many applications such as classification.

Over the past decade, a considerable amount of research has focused on HSI
segmentation and classification [2,4,7].

Among proposed methods, one can notice the rise of graph-based algorithms,
which have become well-established tools for HSI segmentation problems.
c© Springer Nature Switzerland AG 2019
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Graph-based algorithms on the other hand rely upon the construction of a
discriminant graph representation.

Moreover, the graph construction is not constrained to usual regular-grid
topologies, where each pixel is connected to its adjacent neighbors, but can
be adapted to each particular application. One can mention large or complete
neighborhood for textured images or Region Adjacency Graphs (RAG) where
pixels are replaced by regions or superpixels, and so on.

In a recent study [10] the spatial-spectral structure of weighted graphs has
shown its potential for HSI segmentation with the multiphase level set method. In
the aforementioned method [10], the weighting of the graph edges was limited to
calculating the spectral angle mapper between the image pixels which represent
the vertices in the graph.

In this paper, we propose a new metric for edges weighting based on the
generalization of the LBP feature on graphs.Our idea is inspired from the Local
Binary Pattern (LBP) which was originally proposed by [8] for texture analy-
sis and has later been used in many fields including visual inspection [5], face
recognition [6] and motion analysis [1].

LBP is a non-parametric descriptor whose aim is to efficiently summarize the
local structures of images. Its advantage over other approaches are its simplicity
and effectiveness. This motivated us to propose a novel graph construction based
on LBP features. Our aim is to capture the dominant features of the vertices
with their neighbors and to encode the local structure around each vertex, before
to obtain a small set of the most discriminative LBP-based features for better
performance.

2 Preliminaries

In this section we give some basic definitions of important terminologies which
are used throughout this paper.

2.1 Graph

A graph G = (V,E) consists of a finite nonempty set of vertices V = (v1, ..., vn),
and a finite set of edges E = {(u, v) ∈ V × V |u ∼ v} where ∼ means that u
and v are adjacent vertices, and a weight function, denoted ω: V × V → [0, 1],
which represents the weight of each edge in G corresponding to the amount of
interaction between two vertices.

In the rest of this paper we denote ω(u, v) by ωuv. By convention, this func-
tion verifies the following properties:

ωuv

⎧
⎨

⎩

∈ [0, 1] ∀(u, v) ∈ E
= 0 ∀(u, v) /∈ E
= ωvu symmetry

(1)

We now review some operators on weighted graphs [3]. For a given discrete
function f which assigns a real value f(u) to each vertex u ∈ V , the weighted
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discrete partial derivative operator of f applied on an edge (u, v) ∈ E is:

∂vf(u) =
√

ωuv (f (v) − f (u)) (2)

Based on this definition, two weighted directional difference operators are
defined. The external and internal difference operators are respectively:

∂+
v f(u) =

√
ωuv (f (v) − f (u))+ (3)

and
∂−

v f(u) = −√
ωuv (f (v) − f (u))− (4)

with (x)+ = max(0, x) and (x)− = min(0, x). The weighted gradient of f at
vertex u, denoted ∇w is the vector of all edge directional derivatives:

(∇wf)(u) = (∂vf(u))T
(u,v)∈E (5)

The external and the internal weighted gradient operators of f , denoted
respectively ∇+

w and ∇−
w are:

(∇±
wf)(u) =

(
∂±

v f(u)
)T

(u,v)∈E
(6)

2.2 Local Binary Patterns

The LBP feature has originally been introduced by Ojala et al. [8] for 2D texture
analysis. LBP is a non-parametric approach, which accurately summarizes local
image structure by comparing central pixels with their neighbors, encoding their
relations using a binary code.

Formally, the original LBP operator [8] computes binary codes of image pixels
by thresholding the 3 × 3 neighborhood of each pixel with the center value
in a clockwise rotation starting from the top-left one. Pixel neighbors whose
intensities are greater or equal to the central pixel’s are marked as 1, otherwise
as 0. The resulting sequence of 0 and 1 is considered as a 8-digit binary number.
Converting this binary sequence into a decimal number we obtain the LBP code
of the central pixel.

Figure 1 summarizes the different steps of the LBP calculation. In the context
of texture classification using LBP method, the occurrences of the codes (decimal
values of LBP codes) in an image are collected in a histogram. The classification
is then performed by a simple calculation of distance between histograms.

One limitation of the basic LBP operator is that its small 3×3 neighborhood
cannot capture dominant features with large scale structures. To deal with the
texture at different scales, the operator was later generalized to use neighbor-
hoods of different sizes [9]. A local neighborhood is defined as a set of sampling
points evenly spaced on a circle which is centered at the pixel to be labeled,
and the sampling points that do not fall within the pixels are interpolated using
bilinear interpolation, thus allowing for any radius and any number of sampling
points in the neighborhood.
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Fig. 1. Overview of LBP computing process

Depending on the scale of the neighborhood used, some regions of interest
such as corners or edges can be detected by this descriptor.

Figure 2 shows some examples of the extended LBP operator, where the
notation (N , R) denotes a neighborhood of N sampling points on a circle of
radius of R.

Fig. 2. Examples of the extended LBP operator: the circular (8, 1), (16, 2), and
(24, 3) neighborhoods

3 LBP-based Graph Construction

In this section we illustrate the graph construction method using LBP features
for a hyperspectral image. The first step consists in representing a HSI (X,Y,Λ),
where X, Y and Λ represent respectively the number of lines, columns and
spectral bands, as a set of overlapping patches {Pi, i = 1...m}, each patch Pi

being extracted around a representative pixel pi = (xi, yi, λi)t.
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The m pixels of the image are the centers of m patches of radius R. Each
pixel in the HSI is represented by a vertex in the graph connected to the 4
nearest spatial vertices with a weighted edge. For each representative pixel pi,
we compute a LBP code over each HSI band λ as follows:

LBPλi
(pi) =

N−1∑

n=0

sign(Sλi
(n) − Sλi

(c)) × 2n (7)

where Sλi
(c) represent the spectral value on the band λi of the central pixel,

Sλi
(n) represent the spectral value on the same band of its neighbors and N

represent the total number of pixel in a Patch Pi, and sign(x) is a sign function
defined by sign(x) = 1 where x ≥ 0 and 0 otherwise. So, the LBP (pi) (8) is
a vector feature which can be seen as a serial concatenation of standard LBP
codes computed over each HSI band separately (7).

LBP (pi) =
Λ∑

k=0

LBPλk
(pi) × 2k×N (8)

Once these LBP vector codes are calculated for each representative pixel (i.e
vertex in the constructed graph), the Hamming distance is used to compute the
weights of the graph edges between each vertices pair (u,v). This is performed
by applying the XOR operator between the binary chains of the LBP vector
codes of corresponding vertices, which gives as results the number of positions at
which the binary chains are different. Figure 3 and Eq. (9) explains the Hamming
distance calculation between the two LBP binary chains of u and v, where

⊕

means the XOR operator.

dHamming(u, v) =
N×Λ∑

i=0

(LBPbinaryu
(i)

⊕
LBPbinaryv

(i)) (9)

In this paper, we proposed to study the distribution of the Hamming distance
between LBP binary codes for encoding the actual changes of pixels values.

A normalization step is finally applied to set all edge values within the [0, 1]
interval. In this paper, and without being exhaustive, we used the following
normalization (10), where σ represents the standard deviation calculated over
all Hamming distances:

ω(u, v) = exp(−dHamming(u, v)2

σ2
) (10)

4 HSI Segmentation

After HSI graph construction and calculating W affinity matrix which repre-
sents the weight of all the edges in the graph, we apply the multiphase level set
graph based method [10] to partition the graph into n regions and deduce HSI
segmentation.
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Fig. 3. Hamming distance calculation between LBP codes

We first initialize the n level set functions φi by n initial contours on the
image, then we compute the averages in each region composed by the superpo-
sition of these contours and we calculate the speed propagation function Fn to
solve the curve evolution equation as follows:

∂φn(u, t)
∂t

=

⎧
⎨

⎩

Fn(u, t) ||(∇+
ω φn)(u, t)||, if Fn(u, t) > 0

Fn(u, t) ||(∇−
ω φn)(u, t)||, if Fn(u, t) < 0

0, otherwise
(11)

where (∇+
ω φn)(u, t) and (∇−

ω φn)(u, t) are the external and internal operators
of weighted gradients. Based on Eqs. (3), (4) and (6), the external and internal
operators of weighted gradients of φn can be defined by:

(∇±
ω φn)(u) = ±√

ωuv((φn (v) − φn (u))±)T
(u,v)∈E (12)

Finally we iterate the last three steps. We show in Fig. 4 an example of initial
contours using the four-phase (with two level set functions) models.

Fig. 4. Two contours split the image into 4 regions: c11 = {φ1 > 0, φ2 > 0}, c10 =
{φ1 > 0, φ2 < 0}, c01 = {φ1 < 0, φ2 > 0}, c00 = {φ1 < 0, φ2 < 0}
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5 Experiments

In this section, we evaluate the proposed LBP-based graph construction method
for HSI segmentation on some popular HSIs: the Pavia University, the Indian
Pines and the Salinas hyperspectral images.

The Pavia University image was captured during a flight campaign over Pavia
university in northern Italy and it was acquired by the ROSIS-03 optical sen-
sor. This image contains 610 × 340 pixels on 103 spectral bands with a spatial
resolution of 1.3 m/pixel. The AVIRIS Indian Pine image, which was recorded
by the AVIRIS sensor contains 145 × 145 pixels with 200 spectral reflectance
bands. The third image is the AVIRIS Salinas scene which was recorded by the
224-band AVIRIS sensor over Salinas Valley, California. This image comprises
512 × 217 pixels with a high spatial resolution of 3.7 m/pixel.

We evaluated the proposed LBP-based graph construction method with a
patch size 7 × 7 corresponding to a circular (24, 3) neighborhoods (Fig. 2). We
compared our construction graph approach with the 4-neighborhood graph con-
struction using the multiphase level set segmentation proposed in [10].

Figure 5 represent a zoom on some different regions taken from our HSIs
and the segmentation results in this regions presented in line-wise, from top to
bottom, line 1 and 4 shows the RGB original images, line 2 and 5 shows the
segmentation results using the four-phase model with the proposed LBP-based
graph construction, when line 3 and 6 show the segmentation results with the
aforementioned method [10].

From this visual comparison of our results with the other method, we can
see that our proposed method can obtain more meaningful region with accurate
boundary. It can be observed that our method can well segment the texture
images (the meadows, the brick) and it has high discriminative power to detect
objects from different backgrounds.

To evaluate the results obtained for HSIs segmentation we compute the Over-
lapping Score (OS) to compare the segmented image S and the ground truth G.
The OS metric is defined by:

OS =
|S ∩ G|

min(|S|, |G|) (13)

Table 1. Overlapping Score (OS) for the Pavia University, Indian Pines and Salinas
images segmentation with both graph construction methods (four-phase segmentation)

HSI Method

4-neighborhood graph construction LBP-based graph construction

Pavia University 0.8387 0.9102

Indian Pines 0.8563 0.9275

Salinas 0.8392 0.9134
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Fig. 5. Visual comparison of our results with the other method (Lines (1 and 4) RGB
regions of interest extracted from Pavia University, Indian Pines and Salinas images,
lines (2 and 5) the four-phase level set segmentation results on LBP-based graph con-
struction, lines (3 and 6) the four-phase level set segmentation on 4-neighborhood graph
construction)
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Evaluation of segmentation results is given in Table 1, with the best results
highlighted in bold for each measurement. It is obvious to see that the proposed
LBP-base graph construction method ranks the first place compared with the
other method.

6 Conclusion

In this paper, we propose a new method based on the LBP descriptor to con-
struct the graph for hyperspectral image segmentation. The proposed method
is invariant to uneven light conditions and noise benefiting from the usage of
LBP patches. The proposed method is evaluated by extensive experiments on
three popular HSI, and is quantitatively compared with some other standard
algorithms. The experimental results have shown the potential of our method
and its efficiency in HSI segmentation. Our future work will focus on the effects
of the LBP patch size on the segmentation performance of our proposed method,
we will also analyze how it varies with respect to the number of sample points
in the LBP patch.
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1 Université de Tours, Computer Science Laboratory (LIFAT - EA6300),
64 Avenue Jean Portalis, 37000 Tours, France

donatello.conte@univ-tours.fr
2 Dipartimento di Informatica, Università degli Studi di Milano,
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Abstract. In parallel computation domain, graph coloring is widely
studied in its own and represents a reference problem for scheduling of
parallel tasks. Unfortunately, common graph coloring strategies usually
focus on minimizing the number of colors without any concern for the
sizes of each color class, thus producing highly skewed color class distri-
butions. However, to guarantee efficiency in parallel computations, but
also in other application contexts, it is important to keep the color classes
highly balanced in their sizes. In this paper we address this challenging
issue for large scale graphs, proposing a fast parallel MCMC heuristic
for sparse graphs that randomly generates good balanced colorings pro-
vided that a sufficient number of colors are made available. We show its
effectiveness through some numerical simulations on random graphs.

Keywords: Balanced graph coloring ·
Markov Chain Monte Carlo method · Greedy colorer ·
Parallel algorithms

1 Introduction

The vertex coloring (or graph coloring) problem is one of the fundamental and
most difficult combinatorial problems. Given an undirected graph G, one is look-
ing for an assignment of colors to the vertices of G such that no two adjacent
vertices share the same color and the number of different colors used is mini-
mized. Vertex coloring is known to be NP-hard even for planar graphs [7]. Graph
coloring has many applications in different research fields. For example, it can be
used to register medical or biometric images [4,16] and to find good resource allo-
cation scheme for device-to-device (D2D) communications [3,22], used in mod-
ern wireless communication systems [11]. Moreover, graph coloring is extensively
c© Springer Nature Switzerland AG 2019
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used in social networks problem such as Community Identification in Dynamic
Social Networks [21], summarization of social networks messages [19], and for
Collective Spammer Detection [6]. A common characteristic of these tasks is
that the graphs have very large size, thus requiring a speed up of the traditional
greedy sequential coloring heuristics [2], obtained introducing parallelization. In
Patter Recognition, also, there are many applications of graph coloring, that are
intractable without efficient parallelization: e.g. stochastic pyramids construc-
tion [17], graph classification [9], and so on.

In the literature, parallel graph coloring problem has been tackled by several
approaches but, at the best of our knowledge, very few address the problem of
balancing in parallel manner. One category of them is based on the search of
a maximal independent set of vertices on a progressively shrunk graph and the
concurrent coloring of the vertices in the found independent set. Often the inde-
pendent set itself is computed in parallel using some variant of the Luby’s algo-
rithm [15]. Examples of such approaches are [8,13]. Another category includes
methods that color as many vertices as possible concurrently, tentatively tolerat-
ing potential conflicts, while detecting and solving conflicts afterwards (e.g. [1]).
Despite these solutions are effective in producing a proper coloring, generally
minimizing the number of colors, they produce highly skewed color classes, unde-
sirable for many applications, such as parallel job scheduling, that requires bal-
ancing among the classes. At the other extreme, one could search for a coloring
being equitable, that is a coloring that guarantees that the sizes of any two
color classes differ by at most one [18]. This constraint is very expensive and
somehow too stringent for practical applications. Balanced coloring relaxes the
equitable constraint requiring that any two color class sizes differ by an integer
l greater than 1. Few approaches have been proposed to tackle Balanced graph
coloring (e.g. [14,20]). However, the limit of these methods is still that they are
intrinsically sequential thus not scalable, becoming unfeasible on large graph.

A promising direction of research on graph coloring concerns the Markov
Chain Monte Carlo (MCMC) methods that allow sampling from non analytic
complex distributions. The idea is to define an ergodic Markov chain whose
steady state distribution is defined over the set of colorings we wish to sample
from. Within the framework of graph coloring using Markov chains several con-
tributions have been proposed. In [12] a simple sequential solution based on the
Glauber dynamics has been adopted. The Glauber dynamics produces a Markov
chain on a proper coloring where at each step a random vertex v is recolored,
choosing a color uniformly at random from the permissible ones.

In this article we present an algorithm based on MCMC method produc-
ing balanced graph coloring in a parallel way. The main contribution is the
introduction of a proposal distribution, independently for each vertex, that pro-
motes overall balancing objectives. The key computational property is that the
generation of colorings with such distributions can be carried out on parallel
computational models. The technique is tested on large random graphs showing
experimentally its effectiveness.
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The remainder of the paper is organized as follows: Sect. 2 describes the
proposed algorithm and in Sect. 3 we prove quantitatively, by some experimental
results, the effectiveness of our method.

2 Parallel MCMC Sampling

2.1 Notations

Let G = 〈V,E〉 be a simple undirected graph of n = |V | vertices and [k] =
{1, . . . , k} be a set of colors used to label the vertices. A k-coloring is an assign-
ment c : V → [k] such that c = (c(1), . . . , c(n)) ∈ [k]n is called proper if adjacent
vertices receive different colors, otherwise it is termed improper. It is well-known
that, if Δ(G) is the maximum degree of G, k = Δ(G) + 1 colors are sufficient to
properly color the graph by a sequential greedy algorithm. For a given coloring
c, let N (v) denote the neighborhood of node v in G, and cN (v) ⊆ [k] be the set
of colors occupied by vertices N (v) and c̄N (v) its complement. The neighbor-
hood of v induces the partition {cN (v), c̄N (v)} of [k] for which hv(c) = |cN (v)|
and h̄v(c) = |c̄N (v)| denote their cardinality. We will also consider the absolute
frequency of the color j in c: fj(c) = |{u ∈ V : cu = j}|.

Hereafter we will use lowercase letters, e.g. c, c′, c∗, for given colorings and
uppercase for random colorings, e.g. C,C ′, C∗. For example the probability of
C ′ = c′ given C = c will be denoted P(C ′ = c′ | C = c) or P(c′ | c) for short.

2.2 Markov Chain Monte Carlo for Sampling Colorings

Monte Carlo estimation methods [23] are a broad class of statistical sampling
techniques based on the idea of estimating an unknown quantity with averaging
over a large set of samples. Due to the strong law of large numbers, the estimate
is guaranteed to almost surely converge to the unknown quantity. When the
iterative sampling scheme is based on the distribution of a Markov Chain it is
termed Markov Chain Monte Carlo (MCMC). Due to the lack of space here, we
refer to [23] for a comprehensive introduction to the topic.

Our objective is to define a 1st-order ergodic Markov chain (Ci)∞
i=1 consisting

in a sequence of k-colorings of a simple undirected graph G = 〈V,E〉 with n = |V |
nodes, whose stationary distribution π strongly depends on the set of conflicts
(edges with endpoints sharing the same color) involved in each coloring c ∈
[k]n. A natural target stationary distribution for the Markov chain is the Gibbs
distribution, expressed in the form

π(c) =
e−β#(c)

Z(β)
, with Z(β) =

∑

c′∈[k]n

e−β#(c′), (1)

where #(c) : [k]n → N counts the number of conflicts of the coloring c.
The choice of Gibbs distribution (1) turns out to be useful since, when β

is sufficiently large, it is close uniformly and with exponential rate to the uni-
form distribution over the proper colorings, which is our desired working set.
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It is known from MCMC theory that the latter distribution is asymptotically
approached in the sampling process when the chain is suitably constructed using
the established Metropolis-Hastings algorithm [10]. This technique prescribes the
specification of a proposal probability encapsulating the acceptance ratio and a
transition probability for the chain.

As for the transition probabilities of the Markov chain, given a coloring C = c
we sample the successive coloring C∗ in two phases acting according to a typi-
cal “rejection sampling” scheme [23]: first a candidate coloring C ′ is generated
according to a suitable proposal probability r(c, c′) := P(C ′ = c′ | C = c), then
the proposal C ′ is accepted effectively as successive coloring C∗ according to the
acceptance ratio α(c, c′):

P(C∗ = c′ | C = c) = α(c, c′) := min
{

π(c′)r(c′, c)
π(c)r(c, c′)

, 1
}

, where c′ �= c

while the old coloring C = c is retained with remaining probability 1 − α(c, c′).
The proposal coloring C ′ is sampled with probability r(c, c′) as follows. Each

node v ∈ V is drawn independently and with identical distribution P(c′
v | c) of

colors so that the overall proposal probability is

r(c, c′) =
∏

v∈V

P(c′
v | c). (2)

Notice that, in the construction of the acceptance ratio also the backward prob-
ability r(c′, c) is required, hence r(c, c′) is called forward probability.

The choice of the node proposal probability P(c′
v | c) is a key step and

is hence detailed distinctly in the following subsection. It is also important to
observe from the computational viewpoint that the independent drawing of all
c′
v, v ∈ V , allows for the generation of the new coloring in a parallel manner.

2.3 Generation of Proposal Color

Here we specify the proposal probability in algorithmic vein so that the stochastic
evaluations follow consequently from the analysis of the color generation. First,
the behavior of the algorithm splits into two cases based on the old coloring c.
When there is some conflict locally for v, namely cv ∈ cN (v), the new proposed
color C ′

v for v shall be redrawn with the aim of reducing the possible conflicts. We
draw it from the available colors c̄N (v) following a nearly uniform distribution
of C ′

v = j given c:

ηv(j, c) =

{
1−εhv(c)
k−hv(c)

if j ∈ c̄N (c)

ε if j ∈ cN (c).

The rationale behind such definition is that we want with high probability to
generate a color equally likely among those available, in order to aim at the
balancing objective of the method. Nevertheless, we keep a negligible chance
ε > 0 to pick a color that is not available, in order to widen the search space.
In the clearly rare case of no available colors, the algorithm maintains the old
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color cv with high probability, 1 − ε(n − 1), and selects another color with small
probability ε.

As for the case of no conflict for v, cv ∈ c̄N (c), it is desirable to keep the old
color cv nearly surely to facilitate the convergence of the algorithm, or otherwise
pick another color with a small chance ε. Hence, for the node v the proposal
color C ′

v = j given c in the case of no conflict is distributed as

ζv(j, c) =

{
1 − ε(n − 1) if j = cv

ε if j �= cv.

So far, we have presented the elements for determining the forward probabil-
ity r(c, c′) in (2). Indeed, from the discussion above one can derive the following

Proposition 1. The proposal probability of each node v is

P(c′
v | c) =

{
ηv(c′

v, c) if hv(c) < k, cv ∈ cN (c)

ζv(c′
v, v) otherwise.

On the other hand, the backward probabilities

r(c′, c) = P(C ′ = c | C = c′) =
∏

v∈V

P(C ′
v = cv | C = c′)

can be obtained by symmetrical reasoning, i.e. exchanging the role of c and c′

in the calculations outlined above. This allows to compute then the acceptance
ratio α(c, c′).

2.4 Algorithm

We can now describe more formally the procedural steps corresponding to our
method providing Algorithm 1. As for the convergence properties of the proposed

Algorithm 1. Parallel MCMC Balanced Graph Coloring
Input: Graph G = 〈V, E〉 with n = |V |; Number k of colors; Gibbs parameter β � 1
Output: Random proper coloring C ∈ [k]n

1: C := some initial arbitrary coloring ∈ [k]n

2: while #(C) > 0 do
3: for each v ∈ V in parallel do
4: Calculate CN (C) and hv(C) := |CN (C)|
5: Compute P(c′

v | C) according to the rule in Prop. 1
6: Generate proposal color C′

v with distribution P(c′
v | C)

7: Proposed coloring C′ := (C′
1, C

′
2, ..., Cn)

8: Compute forward and backward probabilities r(C, C′), r(C′, C)

9: α(C, C′) := min{ r(C′,C)
r(C,C′) e

−β(#(C′)−#(C)), 1}
10: Accept proposed coloring, C := C′, with probability α(C, C′)
11: return C
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algorithm, since we cannot guarantee that the number of conflicts #(C) strictly
decreases at each iteration, due to the randomness of the MCMC methodology,
we are able to give a characterization of the convergence in stochastic terms as
in the following proposition, which is stated without proof for lack of space.

Proposition 2. Let Ct and Ct+1 be the random coloring in iteration t and t+1,
respectively, of Algorithm 1 on G. Provided a number of colors k ≥ Δ(G) + 1, it
holds the expectation inequality:

E[#(Ct+1)] < E[#(Ct)].

It follows that, the number of colors #(C) in the algorithm converges in proba-
bility to 0, i.e. limt→∞ P(#(Ct) < θ) = 1 ∀θ > 0.

3 Numerical Simulations

In this section we report some numerical simulation results of the parallel MCMC
method exploiting the Erdős-Rènyi graph (ER) model [5]. This model is widely
used to generate random graphs and has some valuable properties to leverage
in order to asses the behaviour of the proposed coloring strategy both for fixed
graph sizes and asymptotically.

In the ER model G(n, p), a n-vertex graph is constructed by connecting
vertices randomly and including each edge with probability p independently
from every other edge. Equivalently, the probability that a vertex v has degree
k is Binomial, i.e. P(deg(v) = k) =

(
n−1

k

)
pk(1 − p)n−1−k, with expected value

E[deg(v)] = (n − 1)p. As n goes to infinity, the probability that a graph in
G(n, 2 ln(n)/n) is connected, tends to one. Another relevant property of ER
graphs is the edge density which is a random variable with expectation exactly
equal to the background probability p.

The role that ER model plays in this picture is important because it ensures
the possibility to provide graphs with certain properties, giving us at same time
an effective and sound algorithmic procedure to compute them in practice.

To compare our MCMC strategy with other techniques designed for the same
purpose, we choose a fast parallel greedy algorithm inspired by Luby’s work [15].
Luby has described a greedy parallel strategy to find a maximal independent set
(MIS) of vertices (i.e. a subset of vertices such that no two vertices are neighbors)
in undirected graphs. Consequently, given that any MIS can be colored in paral-
lel, a greedy graph coloring strategy could be defined by repeatedly finding the
largest MIS on subgraphs gradually resulting from pruning previous recovered
MIS.

Clearly, the Luby inspired colorer is not meant for balanced graph coloring
problem. However, we use it for two reasons: on one hand just for sake of com-
parison with a simple scheme graph colorer, on the other hand to empirically
show that the two algorithms have comparable computational times on sparse
graphs.
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3.1 CUDA Parallel Implementations

We developed a fast parallel implementation of both the MCMC and the Luby-
greedy coloring algorithms, called respectively MCMC-GPU and Luby-GPU,
using the NVIDIA CUDA programming paradigm. NVIDIA GPU processors
feature up to 5000 processing cores, hence a very large number of processing
threads can be scheduled and executed concurrently in a shared memory model.
Thanks to this, parallelization in both MCMC-GPU and Luby-GPU occurs at
vertex level, i.e. a thread is assigned to each vertex of the graph which is therefore
processed concurrently to every other vertex.

MCMC-GPU implementation closely follows Algorithm 1: during the iter-
ations, each vertex v is assigned to a processing thread which evaluates both
P(c′

v | c) and P(cv | c′) (the forward and backward probabilities) and draws the
new color cv accordingly. Thread synchronization occurs only at the end of each
iteration, where the total number of conflicts and the rejection factor α(c, c′) of
the new coloring have to be evaluated. In MCMC-GPU the algorithm is executed
until a proper k-coloring is found, or the maximum number of allowed iterations
is reached.

Also in Luby-GPU parallelization occurs at vertex level: each vertex is
assigned to a thread that evaluates its status (free or not-free) and randomly
adds itself to the current MIS if and only if it does not generate any conflict.
Synchronization is more invasive, since it has to be performed in every stage of
the MIS assembly.

3.2 Performances on ER Graphs

Here we report some preliminary experimental results on ER graphs comparing
the MCMC-GPU and Luby-GPU algorithms running on NVIDIA GPU devices.

We aim at measuring the quality of balancing in the color class sizes produced
in particular by MCMC-GPU, which works by improving the balancing of an
existing (improper) coloring moving vertices from one color class to another
on the basis of random choices, as highlighted by the proposed distribution over
colors given in Sect. 2.3. Let us first introduce a measure of deviation of a coloring
c ∈ [k]n from a perfectly balanced coloring where each color class j has size
nj = n/k, for each j ∈ [k]. This can be quantified by defining γn,k(j) = |fj −n/k|
which represents the target to be minimized in respect of which our heuristic will
perform local random arrangements. An overall measure of balancing quality
closely related to the standard deviation of the color class sizes can be then
defined as

Γn,k(c) =

⎛

⎝1
k

k∑

j=1

γ2
n,k(j)

⎞

⎠
1/2

(3)

called unbalancing index hereafter. Clearly, a coloring c is perfectly balanced if
Γn,k(c) = 0.
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Fig. 1. Average unbalancing index achieved by MCMC-GPU and Luby-GPU on ER
graphs of various size and densities 0.1% and 0.5% respectively.

A demonstration on how MCMC-GPU and Luby-GPU perform in terms of
color balancing is given in Fig. 1, where the curves represent the unbalancing
index (3). More precisely, the graphics relate to average amounts achieved on
ER graphs of various size and densities 0.1% and 0.5% respectively. To capture a
wide scale of ER graphs, once the density p has been fixed, we varied the graph
size n up to 500K vertices, averaging over 10 trials for each pair (n, p) to reach
satisfactory confidence level.

Concerning the number of colors k used by MCMC-GPU, assuming a regular
structure of the generated graphs we fix k = 
np� corresponding to the expected
vertex degree, which anyway assures the existence of proper coloring with high
probability. Note that, under this setting a coloring c for a graph in G(n, p) has
balancing index

Γn,�np	(c) ≈
⎛

⎝ 1
np

k∑

j=1

γ2
n,k(j)

⎞

⎠
1/2

.

As can be noticed in the plots, MCMC-GPU not only outperforms Luby-GPU,
but also provides invariant unbalancing index with respect to the graph sizes,
being Γn,�np	(c) ≈ constant (with very low standard deviation), for all n in
the range 25K ÷ 500K. In spite of the limited number of experiments, as a
general trend we have that the sum of within-class deviations γ2

n,k(j) roughly
grows linearly with the number of vertices, i.e.

∑k
j=1 γ2

n,k(j) ≈ pcpn, where cp

is a constant depending on the density p. For instance, in Fig. 1, the constants
cp = 26.29 and cp = 11.84 are shown for p = 0.1% and p = 0.5% respectively.

With regard to the computational times of the conducted experiments, their
averages are reported in Fig. 2. Whereas we can notice very high speedups (up to
20) between sequential and parallel MCMC implementations, the times spent by
MCMC-GPU and Luby-GPU remain comparable (they turn in favor of Luby-
GPU only for 500K).
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Fig. 2. Average execution times of Luby-GPU, MCMC-CPU and MCMC-GPU on ER
graphs of various size and densities 0.1% and 0.5% respectively.

Fig. 3. Average unbalancing index achieved by MCMC-GPU (left) and Luby-GPU
(right) on ER graphs varying both vertex degrees d = �np� and color number k.

A second experiment is aimed at studying the balancing quality achieved
when varying both the graph density and the number of colors made available
to MCMC-GPU. In particular, here we set the graph density in terms of vertex
degree d = 
np�, with d falling in the range 100 ÷ 350, while the number
k = r 
np� of colors is scaled down by a factor r ∈ (0, 1) ranging from 0.5 and 1.
Average values of the unbalancing index over colorings carried out by the two
algorithms are plotted in Fig. 3 (note that the ratio between the scales of the
two graphs is about 33).

4 Conclusions

In this paper we have proposed a new parallel algorithm for graph coloring
problem based on Markov Chain Monte Carlo techniques. The main goal of
this new method is to produce balanced solutions, which is a direction not much
explored yet in the literature. Experiments show the effectiveness of the approach
on random graphs. Given the encouraging results shown in this article, further
investigations are deserved. In particular we intend to generalize the model in



170 D. Conte et al.

order to be able to optimize several forms of balancing, possibly redefined at each
iteration of parallel coloring; furthermore, we will study a theoretical analysis of
the model, and finally we will extend the experiments testing the algorithm on
different graph typologies and comparing it with other parallel approaches.
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Abstract. In this paper, we propose an embedding method for
attributed graphs. For an attributed graph, we commence by using a
tree-index method with the objective of strengthening the vertex labels.
For each iteration of the tree-index method, we compute a probability
distribution in terms of the frequency of the strengthened labels. With
each probability distribution, we compute a Shannon entropy to measure
the uncertainty of the strengthened labels. For an attributed graph, with
the required Shannon entropies of different TI iterations to hand, we com-
pute an entropy trace vector by measuring how the entropies vary with
the increasing TI iterations (i.e., we embed the attributed graph into
a vectorial space). We explore our method on several standard graph
datasets abstracted from bioinformatics databases. The experimental
results demonstrate the effectiveness and efficiency of our method. Our
method can easily outperform state of the art methods in terms of the
classification accuracy.

1 Introduction

In pattern recognition, graph based representations are powerful tools for struc-
tural analysis. Unfortunately, most of the standard pattern recognition and
machine learning algorithms are developed for vectors, and are not available
for graphs. One way to overcome this problem is to embed the graph data into a
vector space, and then deploy vectorial methods. Specifically, in the embedding
space, similar graph structures are expected to be close while dissimilar ones far
apart.

In order to embed graphs into a vector space, Riesen and Bunke [11] have
proposed a dissimilarity embedding method for graphs. For a sample graph, they
compute the edit distance from the graph to a number of prototype graphs to
give a vectorial description of the graph in the embedding space. Similar to the
work of Riesen and Bunke, Bai and Hancock [2] have developed a new dissimi-
larity embedding method by computing the Jensen-Shannon divergence between
a sample graph and a number of prototype graphs. For a sample graph and
a prototype graph, the Jensen-Shannon divergence is computed by measuring
the entropy difference between the individual graph entropies and a composite
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entropy of a composite structure formed by the graphs. Wilson et al. [13] have
proposed an embedding method by representing a graph structure using permu-
tation invariant polynomials that are computed from the spectrum matrix based
on algebraic graph theory. Ren et al. [10] have proposed an embedding method
by computing permutation invariant features of a graph via the Ihara zeta func-
tion. Here, each feature represents the number of a class of main cycles. All
these methods bridge the gap between the powerful graph based representation
and the algorithms available for the vector based representation. Unfortunately,
these methods tend to request burdensome computation for graphs of large sizes
(e.g., a graph having thousands of vertices).

To overcome the shortcoming, a family of graph entropy measure methods
have been developed. Examples include (1) the approximated von Neumann
entropy developed by Han et al. [8], and (2) the Shannon entropy from the
information functionals developed by Dehmer et al. [5,6]. Since the computa-
tional complexities of these methods are only in quadratic or cubic number of
graph vertices, both the methods can be efficiently computed. Unfortunately,
the graph entropy measure methods only provide us an one dimensional feature
for graphs, and thus cannot reflect interior graph topology information. To over-
come this ineffectiveness, Bai and Hancock [1] have developed a novel framework
of measuring depth-based complexity traces for graphs. For a graph, they com-
mence by identifying a centroid vertex which has the minimum shortest path
length variance to the remaining vertices. For the graph, a family of centroid
expansion subgraphs is derived from the centroid vertex. The depth-based com-
plexity trace of the graph is computed by measuring how the entropies of the
centroid expansion subgraphs vary with the increasing size of the subgraphs.
The complexity trace of a graph can not only be efficiently computed but also
provide us a high dimensional entropy based features. Unfortunately, all these
existing methods are restricted on unattributed graphs.

To overcome the shortcomings of existing methods, in this paper we aim
to propose a novel graph embedding method for attributed graphs. For an
attributed graph, we commence by performing a tree-index (TI) label strength-
ening method (i.e., the TI method defined in [4]) for the purpose of strengthening
the vertex labels. For each iteration h of the TI method, we compute a probability
distribution in terms of the frequency of the strengthened labels. With the prob-
ability distribution for each iteration h, we compute a label Shannon entropy to
measure the uncertainty of the strengthened labels. For an attributed graph, we
thus compute a new entropy trace by measuring how the label Shannon entropies
vary with the increasing TI iteration h (i.e., we embed the attributed graph into
a vectorial space). Since the computational complexity of the TI method on an
attributed graph is only linear in the number of edges or quadratic in the number
of vertices, our new embedding method not only provides us a high dimensional
entropy features for the graph but also can be efficiently computed. We explore
our method on standard graph datasets abstracted from some bioinformatics
databases. The experimental results demonstrate the effectiveness and efficiency
of our method. Our method can easily outperform state of the art methods in
terms of the classification accuracy.
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Section 2 gives the concept of a tree-index based vertex label strengthening
algorithm. Moreover, a label Shannon entropy is also defined. Section 3 gives
the definition of the new embedding method for attributed graphs. Section 4
provides our experimental evaluation. Finally, Sect. 5 concludes our work.

2 A Vertex Label Strengthening Method

In this section, we describe how to use a tree-index method to strengthen the
vertex labels for an attributed graph. We commence by reviewing the definition
of a tree-index vertex label strengthening method described in [4]. Then we show
how to compute a label Shannon entropy for the probability distribution over
the strengthened labels.

2.1 A Tree-Index Based Vertex Label Strengthening Method

In this subsection, we review the concept of a TI method that has been intro-
duced in [4] for strengthening the vertex label of a graph. Assume an attributed
graph G(V,E) with vertex set V and edge set E, the discrete label of a vertex
v ∈ V is denoted as f(v). Using the TI method, the new strengthened label for
vertex v at the iteration h is defined as

TIh(v) =
{

f(v) if h = 0,
∪u{TIh−1(u)} otherwise. (1)

where each vertex u ∈ V is adjacent to vertex v. At each iteration h, the TI
method takes the union of neighbouring vertex label lists as a new label list
for v from the last iteration h − 1 (the initial step is identical to listing). This
procedure creates an iteratively deeper list corresponding to a subtree rooted at
v of height h.

Unfortunately, the above method may lead to a rapid explosion of the
strengthened label length. Furthermore, taking the union of the neighbouring
label lists does ignore the original vertex label information, since the union dose
not take any information of the original label for the rooted vertex. One way to
overcome this problem is to strengthen the label of a vertex by taking the union
of both its label and its neighbouring vertex labels, at each iteration h. Moreover,
we use the Hash function for the purpose of compressing the augmented label
into a new short label. For the graph G, the neighbourhood of a vertex v ∈ V is
N (v) = {u|(v, u) ∈ E}. For G and each vertex v, the pseudocode of the TI algo-
rithm associated with a Hash function at iteration h is shown in Algorithm 1.
Note that, for step 4 of Algorithm 1, we use the same vertex label function F
for any graph. This guarantees that all the identical labels of different graphs
are mapped into the same index.
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Algorithm 1. Strengthen the vertex label using TI method
1: Initialization.

– Input an attributed graph G(V, E).

– Set h=0. Initialize the vertex labels. For a vertex v of G, assign the original label

feature(v) as the initial label Lh(v).

2: Sort the labels of neighbourhoods for each vertex.

– For each vertex v of G, sort the labels of its neighbourhood N (v) in ascending

order as Lh
N (v) = {Lh(u)|u ∈ N (v)}.

3: Update the label for each vertex.

– Set h=h+1. For each vertex v of G, assign a new label as

Lh(v) = {Lh−1(v), Lh−1
N (v)}.

4: Compress the vertex label into a new short label.

– Using the a vertex label function (i.e. the Hash function) F : L → Σ, compress

the label Lh(v) into a new short label index for each vertex v of G as

Lh(v) = F (Lh(v)). (2)

5: Check h.

– Check h. Repeat steps 2, 3 and 4 until the iteration h achieves an expected value.

2.2 A Label Shannon Entropy

In this subsection, we compute a Shannon entropy associated with the label prob-
ability distribution for an attributed graph [3]. This entropy measures the ambi-
guity of the subtrees corresponded by the particular strengthened vertex labels.
Specifically, let L = {l1, . . . , li, . . . , lI} be a label set that contains all possible
vertex labels for different graphs, including both the original and strengthened
vertex labels. Given an attributed graph G(V,E) and its compressed strength-
ening label Lh(v) defined in Eq. (2) for each vertex v ∈ V at iteration h, we
commence by computing the frequency of each particular label li contained in
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G(V,E), i.e. nh
G(li) for iteration h. The probability phG(li) of a label li for G(V,E)

at iteration h is

phG(li) =
nh
G(li)∑I

i=1 n
h
G(li)

. (3)

With the probability distribution Ph
G = {phG(l1), . . . , phG(li), . . . , phG(lI) of

G(V,E)} to hand, we compute the Shannon label entropy HL
S for G(V,E) at

iteration h as

HL
S (G) = HL

S (Ph
G) =

I∑
i=1

phG(li) log phG(li). (4)

3 The Embedding Method for Attributed Graphs

In this section, we commence by defining a new embedding method for attributed
graphs by using the TI method introduced in Sect. 2. Furthermore, we also give
the computational complexity analysis of our new embedding method.

3.1 The Attributed Graph Embedding Method Through the TI
Algorithm

In this subsection, we investigate how to embed an attributed graph into a
vector by measuring the different label Shannon entropies from the different TI
iteration.

Definition: For an attributed graph G(V,E), we commence by strengthening
the vertex labels using the TI method. For each iteration h of the TI method, let
Ph
G is the probability distribution in terms of the frequency of the strengthened

labels. The entropy trace vector ETG for G(V,E) is defined as

ETG = {HL
S (P 0

G),HL
S (P 1

G), . . . , HL
S (P 2

G), . . . , HL
S (Ph

G), . . . , HL
S (PH

G )}T , (5)

where H is the largest number of the TI iteration h, and HL
S (·) is the label Shan-

non entropy associated with the probability distribution Ph
G defined in Eq. (4).

Note that, the label Shannon entropy HL
S (P 0

G) is computed based on the original
vertex label.

Clearly, the dimension of the embedding vector ETG from the proposed
method relates to the largest TI iteration number H, i.e., the dimension equals to
H +1. The embedding vector from Eq. (5) provides a high dimensional vectorial
representation for an attributed graph.

3.2 The Computational Complexity Analysis

In this subsection, we give the computational analysis of the new attributed
graph embedding method. For N graphs (each graph has n vertices) and their
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label set L, computing the embedding vectors from Eq. (5) requires time com-
plexity O(HN2n2). This is because computing the compressed strengthened
labels for a graph at each iteration h (0 ≤ h ≤ H) needs to visit all the n2

entries of the adjacency matrix, and thus requires time complexity O(Hn2) for
all the H iterations. Computing the probability distribution for a graph requires
time complexity O(HNn2) (for the worst case, i.e. each vertex label for the N
graphs at all the H iterations are all different and there thus are NHn different
labels in L), because it needs to visit all the HNn entries in L for the n vertices.
Computing the label Shannon entropy for each graph requires time complexity
O(HNn). As a result, the complete time complexity is O(HN2n2). This verifies
that the proposed embedding method for attributed graphs can be computed in
a polynomial time.

4 Experimental Evaluation

We empirically evaluate the performance of the proposed embedding method
for attributed graphs. Our experimental evaluation consists of two parts. First,
we test the embedding method on classification problem using standard graph
datasets. These datasets are abstracted from bioinformatics. Second, we evaluate
the stability of the method.

Table 1. Information of the graph based bioinformatics datasets

Datasets MUTAG NCI1 NCI109 ENZYMES D&D CATH1 CATH2

Max # vertices 28 111 111 126 5748 568 568

Min # vertices 10 3 4 2 30 44 143

Mean # vertices 17.93 29.87 29.68 32.63 284.32 205.70 308.03

# graphs 188 4110 4127 600 1178 712 190

# classes 2 2 2 6 2 2 2

4.1 Datasets

We demonstrate the performance of our new embedding method on seven stan-
dard graph datasets from bioinformatics databases [1]. These datasets include:
the MUTAG, NCI1, NCI109, ENZYMES, D&D, CATH1 and CATH2 datasets.
More details of these datasets are shown in Table 1.

MUTAG: The MUTAG dataset consists of graphs representing 188 chemical
compounds, and aims to predict whether each compound possesses mutagenicity.
The maximum, minimum and average number of vertices are 28, 10 and 17.93
respectively. As the vertices and edges of each compound are labeled with a real
number, we transform these graphs into unweighted graphs.
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NCI1 and NCI109: The NCI1 and NCI109 datasets consist of graphs repre-
senting two balanced subsets of datasets of chemical compounds screened for
activity against non-small cell lung cancer and ovarian cancer cell lines respec-
tively. There are 4110 and 4127 graph based structures in NCI1 and NCI109
respectively. The maximum, minimum and average number of vertices in NCI1
and NCI109 are 111, 3 and 29.87, and 111, 4 and 29.68 respectively.

ENZYMES: The ENZYMES dataset consists of graphs representing pro-
tein tertiary structures consisting of 600 enzymes from the BRENDA enzyme
database. In this case the task is to correctly assign each enzyme to one of the 6
EC top-level classes. The maximum, minimum and average number of vertices
are 126, 2 and 32.63 respectively.

D&D: The D&D dataset contains 1178 protein structures. Each protein is rep-
resented by a graph, in which the vertices are amino acids and two vertices are
connected by an edge if they are less than 6 Angstroms apart. The prediction
task is to classify the protein structures into enzymes and non-enzymes. The
maximum, minimum and average number of vertices are 5748, 30 and 284.32
respectively.

CATH1 and CATH2: The CATH1 dataset consists of proteins in the same
class (i.e. Mixed Alpha-Beta), but the proteins have different architectures (i.e.
Alpha-Beta Barrel vs. 2-layer Sandwich). CATH2 contains proteins in the same
class (i.e. Mixed Alpha-Beta), architecture (i.e. Alpha-Beta Barrel), and topol-
ogy (i.e. TIM Barrel), but in different homology classes (i.e. Aldolase vs. Gly-
cosidases). The CATH2 dataset is harder to classify, since the proteins in the
same topology class are structurally similar. The protein graphs are 10 times
larger in size than chemical compounds, with 200−300 vertices. There are 712
and 190 test graphs in the CATH1 and CATH2 datasets.

4.2 Experiments on Graph Datasets

Experimental Setup: We evaluate the performance of our attributed graph
embedding method (AGEM) on graph classification problems. We also compare
our method with alternative state of the art graph based learning methods.
These methods include (1) the von-Neumann thermodynamic depth complexity
(VNTD) [7,8], (2) the von-Neumann graph entropy (VNGE) [8], (3) the Shannon
entropies using the information functionals fV1 (FV1) and fP1 (FP1) [5], (4)
the coefficients from the Ihara zeta function for graphs (CIZF) [10], and (5) the
hybrid reproducing kernel (HRK) [14].

For all methods, we calculate the vectors or characterization values of graphs
as features. We then perform 10-fold cross-validation using the Support Vector
Machine Classification (SVM) associated with the Sequential Minimal Optimiza-
tion (SMO) [12] and the Pearson VII universal kernel (PUK) [9] to evaluate the
performance of our method and the alternative methods. We use nine folds for
training and one fold for testing. For each method, we repeat the experiments
10 times. All parameters of the SMO-SVMs were optimized for each method on
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different datasets on a Weka workbench. We report the average classification
accuracies of each method and the Runtime in Tables 2 and 3. The runtime is
measured under Matlab R2015a running on a 2.5 GHz Intel 2-Core processor
(i.e. i5-3210m).

Note that, for our method we vary set the largest iteration for the TI method
as 10. The reason for this is that the strengthened labels of all the vertices over
all the graphs at iteration h = 10 are nearly all different. In other word, after
h = 10 the probability distributions in terms of the frequency of the vertex labels
are nearly the same.

Experimental Results: In terms of the classification accuracies, our AGEM
embedding method outperforms all the alternative methods, excluding the FP1
entropy measure method on the MUTAG dataset. The reasons of the effective-
ness of our AGEM embedding method are explained as follows.

• Compared to the VNTD, VNGE, FV1, FP1 and HRK complexity or
entropy methods, our AGEM method can provide us a high dimensional vec-
torial representation for a graph. By contrast, the VNTD, VNGE, FV1 and
FP1 methods only represent a graph in an one dimensional space in terms
of the complexity or the entropy feature. Furthermore, our AGEM can also
capture the attributed information residing on the vertices through the TI
vertex label strengthening method. By contrast, the VNTD, VNGE, FV1,
FP1 and HRK methods cannot accommodate the vertex label information.

• Compared to the CIZF method, both our AGEM method and the CIZF
method can provide us a high dimensional representation for a graph. The
CIZF method represents a graph in terms of a set of polynomial coefficients
(i.e., the number of different main cycles) via the Ihara zeta function. How-
ever, like the VNTD, VNGE, FV1, FP1 and HRK methods, the CIZF method
is also restricted on unattributed graphs. By contrast, our AGEM method can
accommodate the attributed graphs.

• Through Tables 2 and 3, we also observe that the CIZF, FV1 and FP1
methods may generate infinite feature values for graphs of large sizes, since
the average sizes of the graphs in the D&D, CATH1 and CATH2 datasets are
obviously larger than those in other datasets. This indicates that our AGEM
method can also accommodate graphs of large sizes.

In terms of the runtime, our AGEM method is not the fastest method, but
our AGEM can finish the computation in a polynomial time on any dataset.
Key to the efficiency is that the computational complexity of the TI method
on an attributed graph is only linear in the number of edges or quadratic in
the number of vertices. By contrast, some methods (i.e., the VNTD and CIZF
methods) cannot finish the computation on some datasets, which contain graphs
of large sizes, in one day.

4.3 Stability Evaluation

In this subsection, we investigate the stability of our attributed graph embedding
method AGEM. We randomly generate two seed graphs. We then apply random
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Table 2. Classification accuracy (in %) on different datasets.

Datasets MUTAG NCI1 NCI109 ENZYMES D&D CATH1 CATH2

AGEM 82.44 65.79 66.00 33.50 76.31 99.01 77.36

VNTD 83.51 − − 30.50 − − −
VNGE 85.10 62.21 62.15 22.33 75.38 98.59 75.78

FV1 84.57 62.04 62.15 24.17 − − −
FP1 85.63 62.09 62.37 23.33 − − −
CIZF 80.85 60.05 62.79 32.00 − − −
HRK 84.46 64.86 65.72 24.38 75.36 94.75 71.15

−: can not be finished in one day or the feature values are infinite.

Table 3. Runtime in seconds on different datasets.

Datasets MUTAG NCI1 NCI109 ENZYMES D&D CATH1 CATH2

AGEM 4′′ 2′20′′ 2′20′′ 23′′ 7′10′′ 2′50′′ 1′10′′

VNTD 17′43′′ >1 day >1 day 4 h 30′ >1 day >1 day >1 day

VNGE 1′′ 1′′ 1′′ 1′′ 1′′ 1′′ 1′′

FP1 2 8′′ 8′′ 1′′ − − −
FP1 2 8′′ 8′′ 1′′ − − −
CIZF 2′′ 37′′ 37′′ 5′′ >1 day − −
HRK 3′′ 3′10′′ 3′10′′ 3′′ 2′30′′ 18′′ 4′′

−: the feature values are infinite.

edit operations on the seed graphs to simulate the effects of noise. The edit
operations are vertex deletion and edge deletion, respectively. For each seed
graph, we randomly delete a predetermined fraction of vertices or edges to obtain
noise corrupted variants. The feature distance between an original seed graph
Go and its noise corrupted counterpart Gn is defined as their Euclidean distance,
defined as

dGo,Gn
=

√
(ETGo

− ETGn
)T (ETGo

− ETGn
). (6)

We show the results in Figs. 1 and 2. Figures 1 and 2 show the effects of vertex
and edge deletion respectively. The x-axis represents 1% to 35% of vertices or
edges are deleted, and the y-axis shows the Euclidean distance dGo,Gn

between
the original seed graph Go and its noise corrupted counterpart Gn. From the
experimental results, we observe that there is an approximate linear relation-
ship in each case. This implies that the proposed method possesses ability to
distinguish graphs under controlled structural-error.
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Fig. 1. Stability evaluation vertex edit operation

Fig. 2. Stability evaluation edge edit operation

5 Conclusion

In this paper, we have defined a new embedding method for attributed graphs.
Our embedding method is based on a tree-index (TI) label strengthening algo-
rithm on attributed graphs. We compute a label Shannon entropy using the
probability distribution associated with the frequency of strengthened labels at
each TI iteration h. For an attributed graph, we embed the graph into a vec-
tor by measuring how the label Shannon entropies vary with the increasing
TI iterations. Comparing most state of the art methods, our method can not
only provide us a high dimensional entropy features for graphs but also can be
efficiently computed. Moreover, our method also overcomes the restriction on
unattributed graphs that arises in the existing graph embedding methods. We
explore our method on several standard graph datasets. We demonstrate the
effectiveness and efficiency of our method.

Our further work is to extend the tree-index based algorithm used in this
paper to hypergraphs, and then define a new embedding method for attributed
hypergraphs.
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Abstract. First-person video summarization has emerged as an impor-
tant problem in the areas of computer vision and multimedia communi-
ties. In this paper, we present a graph-theoretic framework for summa-
rizing first-person (egocentric) videos at frame level. We first develop a
new way of characterizing egocentric video frames by building a center-
surround model based on spectral measures of dissimilarity between two
graphs representing the center and the surrounding regions in a frame.
The frames in a video are next represented by a weighted graph (video
similarity graph) in the feature space constituting center-surround dif-
ferences in entropy and optic flow values along with PHOG (Pyramidal
HOG) features. The frames are finally clustered using a MST based app-
roach with a new measure of inadmissibility for edges based on neigh-
bourhood analysis. Frames closest to the centroid of each cluster are
used to build the summary. Experimental comparisons on two standard
datasets clearly indicate the advantage of our solution.

Keywords: First-person video · Center-surround model ·
Spectral graph dissimilarity · Video similarity graph · MST ·
Inadmissible edge

1 Introduction

Easy availability of more and more commercial wearable devices like GoPro,
Google glass, Microsoft Sense-Cam and looxcie cameras [1] enables an user to
record huge amount of first-person (egocentric) video data. First-person videos
are more challenging to process due to variations like constant head motion-blur,
illumination change, unstable background and frequent changes in people and
objects that naturally occur due to constant movement of the user. Hence, many
existing methods for video summarization fail to capture proper summary for
the first-person videos. In this paper, we present a graph-theoretic framework
for summarizing first-person (egocentric) videos at frame level. The two major
contributions of this work are:

(1) We develop a center-surround model (CSM) for ego-centric video frames
based on spectral measures of dissimilarity between two graphs representing
the center and the surrounding regions in a frame.

c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 183–193, 2019.
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(2) We propose a new measure for inadmissible edges in a Minimum Spanning
Tree (MST) based clustering applied to the video similarity graph (con-
structed to represent different frames in a video) to obtain the summary.

2 Related Works

We mention here some of the recently reported works in the field of first-person
video summarization. Lee et al. [2] created a visual summary of egocentric video
by focusing on the most important objects from a video using feature and object
segmentation. Lu et al. [3] extracted objects from an image and used the detected
objects to build a story driven egocentric summarization. In contrast, our pro-
posed model captures more interesting activities/events which often appear in
the center of the egocentric video frames. Recently, Guo et al. [10] introduced
the spatial and temporal scoring mechanism at shot level to summarize ego-
centric video. For generating a video title, Song et al. [5] have applied fully
unsupervised approaches. For some works on supervised learning based video
summarization, please see [4,6,7]. These supervised learning approaches tend
to outperform the unsupervised methods. Very recently, deep learning methods
[7–9] become increasingly popular for video summarization. In [7,9], the authors
have proposed supervised video summarization using some deep architectures
with recurrent models such as LSTMs. The authors in [8] have used deep features
for video summarization. Finally, the authors in [14] adopted a graph based hier-
archical clustering approach for video summarization. In this paper, we present a
graph-theoretic approach with a graph-based center-surround model and a mod-
ified MST based clustering for summarizing first-person videos. Our solution is
completely unsupervised in nature. To the best of our knowledge, graph based
complete solution has not been reported for first-person video summarization.

3 Proposed Method

Our solution pipeline consists of the following steps: (A) Graph based center-
surround model, (B) Frame based feature extraction, (C) Construction of the
video similarity graph, and (D) MST based improved clustering. An overview
of this framework is described in form of a block diagram in Fig. 1. A detailed
description of each of the components is now provided below.

3.1 Graph Based Center-Surround Model

In a first person video, important objects mostly tend to appear in the central
region of the constituent frames [2]. We propose a graph based center-surround
model [15] to better discriminate between the center and surrounding regions in
each frame of a egocentric video. A frame f of dimension W × H is divided into
a center region c of dimension aW ×bH and a surrounding region s of dimension
(1 − a)W × (1 − b)H, where (0 < a, b < 1). We now show how to compute for
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Fig. 1. Schematic of the proposed method (CSM: Center-Surround Model, VSG: Video
Similarity Graph, MST C∗: Modified MST based clustering.)

each frame the optimal set of (a, b) using graph-theory. We represent the center
region and the surrounding region by two weighted graphs Gc(v, e) and Gs(v, e)
respectively. For Gc(v, e), the pixels within c form the vertices. Similarly, for
Gs(v, e), the pixels within s represent the vertices. The edges in both the graphs
are established from the 4-connectivity of the pixels (vertices) within that graph.
We denote the absolute difference in intensity between two pixels i and j by ΔIij .
So, we write:

ΔIij = |Ii − Ij | (1)

Similarly, the absolute difference in the motion between pixels i and j, repre-
sented by difference in the magnitude of the corresponding optical flow vectors
(u(i), v(i)) and (u(j), v(j)) is denoted by ΔMij . So, we write:

ΔMij = |
√

u(i)2 + v(i)2 −
√

u(j)2 + v(j)2| (2)

Spatial affinity between the two pixels i and j is now expressed as the product
of ΔI(i, j) and ΔM(i, j) and is deemed as the weight wij of the edge connecting
them. Thus, we write:

wij = ΔIij × ΔMij (3)

We use the spectral measure of graph dissimilarity [16] for Gs and Gc. Let AGc

and AGs
be the weighted adjacency matrices, DGc

and DGs
be the diagonal

degree matrices, and LGc
and LGs

be the Laplacian matrices of the graphs Gc

and Gs respectively. Then, the Laplacian matrices are given by:

LGc
= DGc

− AGc

LGs
= DGs

− AGs

(4)

We use the similarity matching score Δ(Gc(v, e), Gs(v, e)) between Gc and Gs

by computing the difference of the top k = min(k1, k2) eigenvalues, where k1



186 A. Sahu and A. S. Chowdhury

eigenvalues (λ11, λ12, · · · , λ1k1) of LGc
and k2 eigenvalues (λ21, λ22, · · · , λ2k2) of

LGs
(separately) contain 90% of energy. So, we write:

Δ(Gc, Gs) =
k∑

i=1

(λ1i − λ2i)2 (5)

Here, kp, p ∈ [1, 2], is determined using the following equation:

min
j

(
∑kp

i=1 λji∑np

i=1 λji

> 0.9), p ∈ [1, 2] (6)

In the above equation, n1 and n2 respectively denote the total number of eigen-
values of LGc

and LGs
respectively. Optimal values of (a, b), denoted by (a∗, b∗),

correspond to the maximum value of Δ(Gc, Gs). Hence, we write:

(a∗, b∗) = argmax
a,b∈(0,1)

{Δ(Gc, Gs)} (7)

In this way, we find optimal center and surround regions for each frame.

3.2 Frame Based Feature Extraction

In this work, we have used PHOG [17] for feature extraction. We choose PHOG
because it represents the local shape and spatial information of the shape. We
used three levels of pyramid for building the PHOG features at optimal center
region of a video frame. At level 0, the entire frame is considered as one single
region and the histogram of edge orientation is calculated for that region. For
level 1, the frame is partitioned into four cells and for level 2, the frame is
partitioned by into sixteen cells as shown in Fig. 2. Then HOG is determined for
21 (= 1 at level 0 + 4 at level 1 + 16 at level 2) regions. We have also used 12
bins of histogram. Hence, the final PHOG descriptor of the entire center region
of a video frame is a vector of size 12×∑2

l=0 4l = 252. This is illustrated in Fig. 2.
Number of levels and bins are chosen to balance accuracy and execution time.
For the surrounding region of a video frame, since the information content is
somewhat less, we have used two levels of pyramid. Thus, the PHOG descriptor
of that region is a vector of size 12 × ∑1

l=0 4l = 60.
In addition to PHOG features, we also use differences in the entropy and

motion values between the center and the surrounding regions [15]. A video
frame is finally represented by a 314-dimensional feature vector (252 elements for
PHOG at the center + 60 elements for PHOG at the surrounding + 1 element for
center-surround difference in entropy + 1 element for center-surround difference
in motion).

3.3 Construction of the Video Similarity Graph

A weighted complete graph, termed as the video similarity graph (V SG) is built
in the 314-dimensional feature space for representing all the frames in a video.
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Fig. 2. Extraction of PHOG features from a video frame: partition at different pyramid
resolution for different level (top-row): (a) L = 0, (b) L = 1, (c) L = 2 and (bottom
row): (d)–(f) concatenation of all the HOG vectors in three pyramid resolutions to
obtain the PHOG feature of a frame

Here, each frame acts as a vertex. All the vertices are connected to each-other.
The edge weight wmn, between the vertices m and n with respective feature
vectors fm and fn, is given by:

wmn =
314∑

j=1

|fmj − fnj | (8)

We choose the city-block distance for better execution time.

3.4 MST Based Improved Clustering

We apply a MST based clustering in the above VSG with a new measure for inad-
missible (inconsistent) edges. After the clustering is complete, a frame nearest
to the centroid of each cluster is chosen to build the summary. MST based clus-
tering is chosen because it can detect clusters of any shape (i.e., a cluster need
not be regular or convex) and number of clusters need not be known in advance
[18]. In MST-based clustering, the inadmissible edges need to be removed suc-
cessively to get different clusters. To obtain k clusters (where k corresponds to
length of the summary), it is necessary to eliminate k − 1 inadmissible edges.
Performance of MST-based clustering naturally depends on how one determines
an inadmissible edge [13]. We propose a new measure of edge inadmissibility
by incorporating a neighborhood analysis of the two connected vertices. Since,
we also consider weights of the neighborhood edges, the proposed criterion for
inadmissibility becomes more robust. Let us consider an edge eab connecting the
vertices a and b. Further, let us assume the degree of a to be m and that of b to
be n. Now, we define the following:

wna =
∑

i,i �=b

wia/m (9)
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Similarly,
wnb =

∑

i,i �=a

wib/n (10)

The inadmissibility measure for the edge eab is given by:

δab = (wna − wab)2 + (wnb − wab)2 (11)

The more the difference of the weight of an edge (wab) connecting two ver-
tices (a, b) with the average weights of the other incident edges to these vertices
(wna, wnb), the higher is the inconsistency (δab). Thus, the most inadmissible
edge in the MST will have the highest value of δ and so on.

4 Time-Complexity Analysis

We now present the computational complexity of the modified MST-based clus-
tering. Let n be the number of frames in a video. Then, construction of the VSG
would take O(n2) time. This VSG contains n vertices and n2 edges. Construc-
tion of MST from VSG takes O(n2logn2) time. Let the degree of an edge eab
connecting the two vertices a and b in this MST be p and q respectively. Then,
δab can be computed in O(p) + O(q) time. Let there be r edges in the MST. So,
inconsistency measure for all r edges can be computed in r(O(p) + O(q)) time.
These r edges need to be sorted based on their inconsistency measure, which
can be achieved in O(r2) time. Finally, (k − 1) most inadmissible edges to build
k clusters can be removed in (k − 1)O(1) time. So, the overall complexity is:
(O(n2)+O(n2logn2)+ r(O(p)+O(q))+O(r2)+ (k − 1)O(1)) ≈ O(n2logn2) (as
p, q, r << n).

5 Experimental Results

We have used two standard video summarization datasets, namely, SumMe [4]
and TvSum50 [5] for experimentation. Detailed information on these datasets are
given in Table 1. For performance evaluation, we have used average F-score of all
videos [4,5]. All experiments are carried out in MATLAB R2018a environment
on a desktop PC with Intel Xeon(R) CPU E5-2690 v4 @ 2.60 GHz, 16 Core
and 128 GB of DDR2-memory. Results are compared with two baseline methods
and several state-of-the-art approaches [4,5,8,10]. For fair comparisons, we set
the threshold of the total duration of key-frame as 15% of the original video
length (for both datasets). On average six largest eigenvalues are compared (see
Eqs. (5) and (6)) for the graph-based center-surround model.

5.1 Tuning of the Parameters

In this section, we discuss evaluation of the parameters a and b in a way similar
to [12]. We demonstrate this with the help of Fig. 3. Here, the surface plot
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Table 1. Information about experimental datasets.

Type Dataset Video name Duration
(hr:mm:ss)

Frames Content

Egocentric SumMe [4] Base jumping 00:02:38 4729 User videos

Bike Polo 00:01:42 3064

Scuba 00:01:14 2221

Val. Downhill 00:02:52 5178

TvSum50 [5] Changing vehicle Tire (VT) 00:09:49 14019 You tube
videos

Getting vehicle unstruck (VU) 00:05:29 9870

Parkour (PK) 00:04:34 6580

Bee keeping (BK) 00:06:20 11414

shows variations of the center-surround difference Δ(Gc, Gs) (along z-axis) with
changes in a (along x-axis) and b (along y-axis). The optimal parameter values
are those for which the center-surround similarity matching value is maximized.
The step-size (of 0.1) chosen for obtaining optimal a and b is based on a trade-off
between computational efficiency and accuracy. For a frame from Base jumping
dataset, the optimal parameter values are found to be: a∗ = 0.5 and b∗ = 0.2.
Currently, this process is repeated for each individual frame.

Fig. 3. Parameter estimation strategy a and b

5.2 Ablation Study

We separately show the impacts of (i) graph-based center-surround model (CSM)
with adaptive PHOG features (3 levels in the center and 2 levels in the sur-
rounding), denoted by (PHOG CSM)∗ and (ii) MST based clustering with a
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new measure for inadmissible edges, denoted by MST C∗ by comparing with a
center-surround model without graph and non-adaptive PHOG (2 levels for the
entire frame), denoted by PHOG CSM and MST-based clustering with simply
the weight of an edge as the measure for inadmissibility, denoted by MST C.
Successive improvements in the F-score values are clearly revealed in Table 2.

Table 2. Ablation study based performance analysis.

Dataset Video name Approach F-score

SumMe Base jumping (PHOG CSM) + MST C 0.1840

(PHOG CSM)∗ + MST C 0.2331

(PHOG CSM)∗ + MST C∗ 0.2688

5.3 Cluster Validation

Our proposed measure of inadmissibility is expected to yield better cluster-
ing results. We next demonstrate this using two cluster validation measures,
namely, Calinski-Harabasz Index (CHI) (the higher, the better) and Davies-
Bouldin Index (DBI) (the lower the better) [11]. For this part of the experimen-
tation, we keep the same set of features (PHOG CSM)∗ and compare K-means,
MST and MST C∗. The results in Table 3, clearly indicate that MST C∗ yields
the most superior results.

Table 3. Clustering performance analysis

Dataset Video name Methods (PHOG CSM)∗

CHI (↑) DBI (↓)

SumMe Base jumping K-means 0.0696 × 103 0.9040

MST C 0.1399 × 103 0.7634

MST C∗ 0.1595 × 103 0.6575

5.4 Results on SumMe Dataset

We compare our method with four state-of-the-art video summarization meth-
ods, namely, [4,5,8,10] and two baseline methods (K-means clustering and MST
clustering) on this dataset. For K-means and HK-means, we set K equal to
l = 15% of the length of the input video. The keyframes closest to the cluster
centers are included for the final summary. The results, presented in Table 4,
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indicate that our approach is almost 19.73 � 20% better than [4,5,10] as well
as [8], which uses deep semantic features (using VGG net) on SumMe [4] dataset.

Table 4. Experimental results on SumMe dataset

Video name Computational methods

K-means Gygli
et al. [4]

Song
et al. [5]

Otani
et al. [8]

Guo
et al. [10]

OURS
(MST C)

OURS
(MST C∗)

Base jumping 0.1523 0.1210 0.2990 0.0770 0.2050 0.2331 0.2688

Bike polo 0.1464 0.3560 0.1839 0.2350 0.1910 0.2256 0.2571

Scuba 0.1701 0.1840 0.1390 0.1540 0.2040 0.2061 0.2490

Val. Downhill 0.1522 0.2400 0.2482 0.2580 0.2500 0.2150 0.2587

Mean: 0.1552 0.2252 0.2176 0.1810 0.2125 0.2199 0.2584

In Fig. 4, we show the important key frames (key actions) as a part of the
summary which match very well with the ground truth scores of an egocentric
video entitled “Base jumping” using the proposed method. Our summary cap-
tures key actions like person used head mounted “GoPro” camera for recording,
opening the parachute, flying with the parachute and the exact moment of landing
(from left to right). These frames are however reported as missed by a recent
first-person video summarization method [4].

Fig. 4. Comparison of summary obtained using ours method (bottom bar) with respect
to ground-truth (top-bar) where red label indicates important keyframe regions and
green label indicates the normal frames for a base jumping video from the SumMe
dataset. Frames show important actions. (Color figure online)

5.5 Results on TvSum50 Dataset

For the TvSum50 dataset [5], we compare our method with [5] and two baseline
methods (K-means clustering and MST clustering). In Table 5, the results clearly
indicate that our approach, with F-score 0.5242 outperforms K-means, MST
and [5].
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Table 5. Experimental results on TvSum50 dataset

Video name Computational methods

K-means Song
et al. [5]

OURS
(MST C)

OURS
(MST C∗)

Changing vehicle Tire (VT) 0.4247 0.5200 0.5105 0.5197

Getting vehicle unstruck (VU) 0.4063 0.5500 0.5355 0.5591

Parkour (PK) 0.4010 0.4400 0.4965 0.5298

Bee keeping (BK) 0.3946 0.4700 0.4640 0.4880

Mean: 0.4066 0.4950 0.5016 0.5242

6 Conclusion

In this paper, we presented a solution for first-person video summarization using
a graph-theoretic framework. The two major contributions include a graph-based
center-surround model for characterizing ego-centric video and a new measure of
edge inadmissibility in MST based clustering. Experimental comparisons clearly
show the advantage of our formulation. In future, we plan to experiment with
other features like SIFT or SURF as well as deep features (CNN). Another
direction of future research will be to explore graph kernels and graph entropies
in our model to achieve better accuracy.
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Abstract. The inference of network representations that capture causal
relations in time series is a challenging problem. In this paper, we explore
the use of information theoretic tools for characterising information flow
between time series, and how to infer networks representing time series
data. We explore two different approaches. The first uses transfer entropy
as a means of characterising information flow and measures network
similarity using Jensen-Shannon divergence. The second uses time series
correlation and used Kullback-Leibler divergence to compare the distri-
bution of correlations across edges for different networks. We explore
how both weighted and unweighted representations derived from these
two characterisations perform on real-world time series data. Experi-
ments on time series data for the New York Stock Exchange show that
transfer entropy results in better localisation of temporal anomalies in
graph time series. Moreover, the method leads to embeddings of network
time series that better preserve their temporal order.

Keywords: Kullback-Leibler divergence · Multidimensional scaling ·
Transfer entropy

1 Introduction

In complex systems, the analysis of causal relationships between dynamic system
components remains a challenging problem. Although there are several ways to
characterise the similarity between time series, such as cross-correlation, Granger
causality and transfer entropy, the inference of causal relationships is prone to
noise and error. As a result, many linear and nonlinear approaches to identify
causal relationships have been suggested. For instance, Granger published one of
the first examples in 1969 [7]. This method provides a means of robustly inferring
the causal relationship between time series, and has been widely used in the field
of economics for many years. However, this method relies on a linear model and
is not easily adapted to non-linear systems.

In the context of information theory, several techniques have been developed
to define the relationship between variables using information theory. Mutual
information (MI) is a model-free method [10,14] that indicates how much infor-
mation we can obtain about one variable from information conveyed by a second
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one. Nevertheless, causal relations cannot be identified by MI alone due to its
symmetry. In other words, if we attempt to determine if the first variable is
affected by the second variable, the relationship between them will always be
the same, and we can not assign a cause to either variable. To this end, trans-
fer entropy (TE) was developed by Schreiber [15]. While mutual information
is a symmetric measurement, transfer entropy is an asymmetric measurement
between two variables, and thus transfer entropy represents directional infor-
mation transfer. The TE can also be characterised as a time-lagged conditional
mutual information [12].

We explained transfer entropy as a means of both edge inference and edge
weighting in our previous work [4]. The weighted graph representation is used to
compute graph entropy, primarily with the aim of analysing sector graphs and
investigating their advantages over non-sectorial representations of the stock
market. The sector graph is a structure which distinguishes between stocks of
different kinds (e.g. IT, motor industries, food industries, commodities etc.) and
represents the within and between sector interactions using the total transfer
entropy for edges within and between sectors. We performed PCA on vectorisa-
tion of both the sector graphs and the non-sectorial graphs to obtain time series
embeddings. We applied these methods to a dataset developed at York that con-
tains sector class labels for the different stock and the closing prices of stock.
We showed that the sector graph captures interesting information not conveyed
by the non-sectorial representation.

This paper, on the other hand, aims to explore how network representing time
series can be constructed using different edge weighting schemes based on infor-
mation flow between nodes representing different time series. The first of these
uses transfer entropy between nodes, together with Jensen-Shannon divergence
as a means of comparing different networks. The second uses the Kullback-
Leibler divergence between the distribution of correlation coefficients on the
edges as a measure of similarity. We also compare the performance when fully
connected graphs and graphs with connections inferred from transfer entropy
and time series correlation are used. We do not consider sector graphs. The
focus of the paper is which graph representation allows the best determination
of anomalies in the stock market time series. The edge weighting is based on
information theoretic measures derived from the transfer entropy, rather than
transfer entropy itself. To analyse the distribution of graphs, we compute a ker-
nel matrix whose elements are computed from either (a) the Jensen Shannon
divergence in the case of transfer entropy or (b) the Kulback-Leibler divergences
between the distribution of correlation coefficients for the corresponding edges
of different networks. This is used to embed the networks into a Euclidean space
using MDS. We apply the resulting methods to a new dataset, which is based in
econometric measures rather than raw stock closing price. The conclusion from
this study is that the new representations provides a more stable characterisation
of network evolution, that is less susceptible to noise in the post-2000 trading
period, where computerised trading and other factors result in rather volatile
stock market behaviour. In other words, we aim to robustly infer the existence
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of changes in the pattern of causal relationships for a complex system repre-
sented by a graph rather than the individual causal relationships. To do this,
we explore different strategies for characterising the significance of each causal
relation, i.e. each edge, using an evidential weight.

2 Entropic Analysis of Information Flow on Edges

2.1 Preliminaries

Suppose G(V,E,W ) is a weighted graph with vertex set V , edge set E ⊆ V ×V ,
and edge weight set W . We use the transfer entropy or cross-correlation to define
an edge weight wu,v for the edge (u, v) ∈ E. The weighted adjacency matrix A
is defined as follows

A(u, v) =

{
wu,v, if wu,v > threshold.

0, otherwise.
(1)

for an undirected graph wu,v = 1. We explore the use of both weighted graphs
consisting of edges passing the weight threshold and complete weighted graphs
(all possible weighted connections are considered).

The degree matrix of graph G is a diagonal matrix D whose elements are
given by D(u, u) = du =

∑
v∈V A(u, v). The normalised Laplacian matrix of the

weighted graph G is defined as L̃ = D−1/2LD−1/2, where L = D − A is the
Laplacian matrix and has elements

L̃ =

⎧⎪⎨
⎪⎩

1 if u = v and dv �= 0
−1√
dudv

if (u, v) ∈ E

0 otherwise

(2)

From the eigenvalues of the normalised Laplacian matrix, i.e. λ̃i, i = 1, ..., |V |
we can compute the von Neumann entropy. This quantity was originally defined
in quantum mechanics and can be expressed in terms of the Shannon entropy
associated with the eigenvalues of the density matrix. The normalised Laplacian
matrix L̃ can be interpreted as the density matrix of an undirected graph [13],
and the von Neumann entropy of the undirected graph can be defined as,

HV N = −
|V |∑
i=1

λ̃i

|V | ln
λ̃i

|V | (3)

where |V | is the number of nodes in the graph. Han et.al. have shown how
to approximate von Neumann entropy for undirected graph in terms of sim-
ple degree statistics using the quadratic approximation to the Shannon entropy
x ln x ≈ x(1 − x) [8].

HV N ≈ 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(4)

This allows the efficient calculation for the network entropy in O(N2) rather
than O(N3) from the normalised Laplacian spectrum.
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2.2 Information Flow Between Time Series and Edge Weighting

Here we are interested in weighted graphs where the edges are assigned an infor-
mation theoretic measure of their significance. To this end we explore two weight-
ing schemes. Each node of the graph is characterised by a time-series and the
edge weight captures the significance of the correlation or information trans-
fer between the time series. We explore two ways of capturing this information
transfer. The first is based on the transfer entropy between time series. The
second is based on the Kulback-Leibler divergence between the node time series
correlations.

Time Series Transfer Entropy; To compute transfer entropy, we first require
some basic concepts from information theory. Consider the random variable X,
following a probability distribution P (x). The Shannon Entropy [16] of the dis-
tribution P (X) is defined as H(X) = −∑

x∈X P (x) log2 P (x) The base of the
logarithm determines the units used for measuring information, and in base
2 the results are given bits [11] if base the is natural the results are given
in nits [6]. The joint entropy of the random variables X and Y is defined as
H(X,Y ) = −∑

x∈X

∑
y∈Y P (x, y) log2 P (x, y) and the conditional entropy of

X given Y [1] is H(X | Y ) = −∑
x∈X

∑
y∈Y P (x, y) log2 P (x | y)

For the case of three random variables X, Y and Z, the Conditional Mutual
Information [5,6,9] of X and Y given Z is then defined as, I(X,Y |Z) =
H(X,Z)+H(Y,Z)−H(Z)−H(X,Y,Z) in terms of joint entropies of the random
variables. It can be re-written as I(X,Y |Z) = H(X|Z) + H(Y |Z) − H(X,Y |Z).

We can now define the Transfer Entropy Tu→v between the time series for
nodes u and v. Suppose that Xu

t is the time series data for node u. Transfer
entropy is the information transfer from the distribution of random variable Xv

to the distribution of random variable Xu, were these variables represent samples
from the time series for the two nodes defining an edge. This can be written as
a Conditional Mutual Information

Tu→v = I(Xu
t+1,X

v
t |Xu

t ) = H(Xu
t+1|Xu

t ) − H(Xu
t+1|Xu

t ,Xv
t )

= −
∑

xt∈Xu,yt∈Xv

P (xt+1, xt, yt) log2
P (xt+1, xt, yt)P (xt)
P (xt+1, xt)P (xt, yt)

(5)

at different time epochs t and t + 1. Here Xu
t and Xv

t are the past states of Xu

and Xv respectively, and t is the time index.
While the mutual information is a symmetric measurement between two vari-

ables, the transfer entropy is asymmetric measurement between two variables,
as the transfer entropy represents the directional information transfer.

We use the transfer entropy to compute the similarity between different
graphs using Jensen-Shannon divergence (JSD) [3] and have subsequently use
this for embedding. The JSD graph kernel is kJSD(P (x), Q(x)) = ln 2 −
JSD(P (x), Q(x)) where JSD(P (x), Q(x)) is the Jensen-Shannon divergence
between two probability distribution P(x) and Q(x). The JSD between two
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graphs defined as,

S(i, j) = JSD(Gi, Gj) = H(Gi ⊕ Gj) − H(Gi) + H(Gj)
2

where H(Gi) is the entropy associated with the probability distribution of graph
Gi, and H(Gi⊕Gj) is the entropy associated with the corresponding probability
distribution over of the union graph Gx [2]. We have used transfer entropy to
compute the JSD for each constituent edge of the individual graphs Gi and Gj ,
and the union graph Gi ⊕ Gj , and have summed these to give the total JSD for
each pair of graphs.

Edge Weighting via Time Series Cross-Correlation; We compute the
Pearson Correlation coefficient between the node time series to compute an edge-
weight. For nodes u and v the Pearson coefficient is

ρ(u, v) = Cov(Xu,Xv)/V ar(Xu)V ar(Xv)

where Cov(Xu,Xv) is the covariance of the two time series and V ar(Xu)
and V ar(Xv) are their individual variances. The edge weight is given by
w(u, v) = abs(ρ(u, v)). The cross-correlation is calculated for all pairs of time
series and gives a V ×V cross-correlation matrix. We convert the correlations to
probabilities in order to compute Kullback-Leibler Divergence (KLD) between
graphs.

To compute the similarity between graphs we use the Kullback-Leibler Diver-
gence (KLD). This is an asymmetric measurement of the difference between the
discrete probability distributions P and Q defined on the same probability space.

KLD(P ||Q) =
∑
x∈X

P (x) log2
P (x)
Q(x)

If KLD(P ||Q) = 0, the distributions are equal. It is asymmetric; KLD(P ||Q) �=
KLD(Q||P ) and always positive; KLD(P ||Q) ≥ 0.

Turing our attention to the representation of similarity of pairs of graphs
based on distribution of correlation coefficient, the edge (u, v) the probability is

pu,v =
wu,v∑
(wu,v)

(6)

To populate the elements of the edge probability distribution we vectorise the
upper triangular (or lower triangular) component of the edge probability matrix.
We compute the KLD with the probabilities in the upper triangle for each pair
of graphs. For the graph Gi the probability distribution is P (Gi). The resulting
KLD for a pair of graphs is not in general symmetrical due to the properties
of KLD listed above, and MDS cannot be applied to asymmetric matrices. To
overcome this problem we use the symmetrical KLD (j divergence)

S(i, j) = KLD(P (Gi)||P (Gj)) + KLD(P (Gj)||P (Gi))
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2.3 Embedding Using Multidimensional Scaling

Multidimensional scaling (MDS) is a way of visualising similarity that preserves
distances. Suppose we have an N×N distance or similarity matrix S for a sample
of N data, then we can apply double centering,

K = (I − J

N
)S(I − J

N
) (7)

where I is the N × N identity, J = eeT is an N × N matrix of all 1’s and e is
the all-ones vector e = (1, 1, ...1)T . The eigendecomposition of K is K = ΦΛΦT ,
where Λ is the N ×N diagonal matrix containing the ordered eigenvalues on the
diagonal, and Φ is the N × N matrix with the ordered eigenvectors as columns.
The matrix containing the embedding co-ordinates is

X =
√

ΛΦT

We take the leading n rows of X to given an embedding into and n-dimensional
space. In our experiments n = 2.

We have applied MDS to the similarity matrices for the JSD between edge
transfer entropies and the KLD between edge correlation coefficents. The result
is an embedding of the time series of graphs.

3 Experiments

In this section, we test and compare our different approaches to edge inference
and edge weighting on real-world datasets. The Stock Market Network Dataset
gives the daily closing prices from 1986 to 2011 for stock on the New York
Stock Exchange (NYSE). This dataset has been subject to earlier analysis [17]
involving correlation-based and thermodynamic analysis of topological variations
of the market network during financial crises [18]. We use the correlation-based
and entropy-based networks to represent the structure of the stock market [4].
Here, we have 347 stock that with historical data from 1986 to 2011 [17]. Each
stock has approximately 6000-days of unbroken data. We compute the cross-
correlation and transfer entropy between the time series for each pair of stock
over a time window of 28 days and create an edge between stocks if the correlation
coefficient is among the highest 5% of the total cross-correlation coefficients.
Transfer entropy based weight values were calculated similarly.

3.1 Graph Entropy

Our aim is to explore which network characterisation allows the cleanest identi-
fication of market crises events. To this end we construct representations based
on the time evolution of both edge weighted (correlation-based and transfer-
entropy-based) and unweighted market networks. Given the network structure
at each time epoch, we compute the von Neumann entropy using weighted from
the correlation coefficient (Eq. 6).
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For a weighted network according to Eq. 3 and unweighted network according
to Eq. 4. We also calculate the mean and standard deviation of the entropy.
We threshold the entropy and count how many crises correspond to drops in
entropy below the threshold without false positives. For each method we vary
the threshold to locate the maximum number of crises without false positives.
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Fig. 1. This figure shows comparison of entropy obtained using the correlation-based
unweighted network and transfer-entropy-based unweighted network. Each shaded
areas represent different financial crises through time. Red dash-line represent a thresh-
old value to detect crisis points. (Color figure online)

In Fig. 1 we show two plots of entropy. The upper plot shows von Neumann
entropy values for the undirected correlation-based network for each time epoch,
while the lower plot shows entropy values from the undirected entropy-based
network for each time epoch. When there are no market crises, the entropy values
generally very slowly. For crises, on the other hand, local entropy anomalies
appear. In Figs. 1 and 2 we have shaded areas which represent stock market
crashes and financial crises during 1986–2011. Examples include Black Monday,
13th Friday mini-crisis, 1990–1991 recession, 1997 Asian Financial Crisis, and
the 27 October mini-crisis, 1998 Russian Financial Crisis, dot-com bubble, 9/11,
Chinese Stock bubble, U.S. Bear Market and European Dept Crises, respectively.
The red-dash line is a reference line which shows the mean entropy minus 2
standard deviations.

In Fig. 2 the upper plot shows the von Neumann entropy for the correlation-
based weighted network for each time epoch, and the lower plot shows the
entropy from the entropy-based weighted network. The crises as mentioned ear-
lier refer to the times indicated here as well.

The main features to note from these plots are as follows. First, when we
use transfer entropy to either weight or threshold the edges, the crises are more
cleanly detected than if we use time series correlation. Second, the weighted
transfer entropy network gives the cleanest localisation of crisis entropy anoma-
lies. These conclusions are further supported if we compute the local mean and



Network Time Series Analysis Using Transfer Entropy 201

06-1987
02-1990

11-1992
08-1995

05-1998
02-2001

11-2003
08-2006

04-2009
5.8455

5.846

5.8465

5.847

5.8475

5.848
von Neumann Entropy with CC

06-1987
02-1990

11-1992
08-1995

05-1998
02-2001

11-2003
08-2006

04-2009
5.845

5.8455

5.846

5.8465

5.847
von Neumann Entropy with TE

Fig. 2. Comparison between the correlation-based weighted network and transfer-
entropy-based weighted networks.

variance of the entropy. Using a time window of 28 days, the variance in local
mean is smallest for the unweighted transfer entropy network and largest for the
weighted correlation network. These conclusions are supported by the data in
Table 1.

Table 1. The first line shows how many crises points cross the red-dashed line without
false positive, second line average rolling mean for whole network, and third line is the
rolling variance for the whole network

Unw. CC Unw. TE Weighted CC Weighted TE

Crisis points (M-2std) 0 3 0 9

Mean −3.9420e−09 −5.5790e−11 −6.2928e−08 −5.1781e−09

Variance −3.1117e−10 −1.1743e−11 −1.7885e−09 −6.1654e−10

3.2 Network Embedding

For both the KLD and JSD embeddings we visualise the embedded time series in
the space spanned by the leading 3 dimensions. The results of the KLD embed-
ding can be seen in the upper two scatter plot in Fig. 3 while the results of the
kernel-JSD embedding are shown in the lower two plots. The plots in the left-
hand column are obtained from unweighted correlation networks, those in the
right-hand column are obtained from unweighted transfer entropy networks.

In order to make the evaluation, we calculated the distance between suc-
cessive points in the ordinal time sequence. We then determined whether the
points were closer to the neighbouring points in the sequence than to out of
sequence points. The embeddings contain 5970 points, and in the best-case sce-
nario, 32% and 20% following points were found close to each other, and these
graphs generated by TE (Table 2).
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Fig. 3. Two different embedding method produced two different weighed edge network.
Different colour represent different crisis times but light-blue represent non-crisis times.
(Color figure online)

Table 2. Embedding from correlation-based have minimum average distance between
consecutive points however second results show unrelated points closed each other.

MDS (CC) MDS (TE) kernel-JSD (CC) kernel-JSD (TE)

Average distance 6.4810e−07 1.0070e−06 0.0011 0.0026

Number of nearest conseq 1596 1935 1054 1216

4 Conclusion

We have explored how cross-correlation and transfer entropy can be used to con-
struct both unweighted and weighted network representations of time evolving
data. We explore how the entropy of these graphs can be used to detect net-
work anomalies. Our conclusion is that transfer entropy outperforms times series
cross-correlation. Moreover, the characterisations are more stable if unweighted
networks are used, and the two measures are used to threshold edges rather than
weighting them.

In the future, we plan to explore whether we can define divergence measures
on an edge-by-edge basis rather than in the global manner adopted here. We also
intend to explore how transfer entropy can be used to perform analysis on single
networks and used to cluster nodes and explore node salience using centrality
and related measures.
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Abstract. We study the problem of reconstructing small objects from
their low-resolution images, by modelling them as r-regular objects. Pre-
vious work shows how the boundary constraints imposed by r-regularity
allows bounds on estimation error for noise-free images. In order to uti-
lize this for noisy images, this paper presents a graph-based framework
for reconstructing noise-free images from noisy ones. We provide an opti-
mal, but potentially computationally demanding algorithm, as well as a
greedy heuristic for reconstructing noise-free images of r-regular objects
from images with noise.

Keywords: Object reconstruction · r-regularity

1 Introduction

Whenever new imaging techniques enable us to improve image resolution, we
find something smaller scale or further away that we would like to investigate.
As a result, the ability to reconstruct objects whose size is on a similar scale as
the resolution, is and remains a highly relevant problem, which finds applications
in fields as diverse as microscopy and astronomy, see Fig. 1, left. Reconstruction
of such small objects is hampered by the fact that all information about the
object is contained in just a few pixel intensities. In this paper we assume that
the imaged object satisfies r-regularity, which reduces the possible complexity of
the object and therefore enables inference with bounds on precision (see Sect. 2
for a precise definition of r-regularity).

Previous work by Svane and du Plessis [16] studied ideal images of r-regular
objects. By ideal images, we mean images of completely black objects placed on
completely white backgrounds, taken with a perfect camera so that the intensity
of each pixel is exactly equal to the fraction of the pixel that is covered by

This research was supported by Centre for Stochastic Geometry and Advanced
Bioimaging, funded by a grant from the Villum Foundation. The authors thank François
Lauze and Pawel Winter for valuable discussions.

c© Springer Nature Switzerland AG 2019
D. Conte et al. (Eds.): GbRPR 2019, LNCS 11510, pp. 204–214, 2019.
https://doi.org/10.1007/978-3-030-20081-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20081-7_20&domain=pdf
http://orcid.org/0000-0002-1171-7694
http://orcid.org/0000-0002-9945-981X
https://doi.org/10.1007/978-3-030-20081-7_20


Reconstructing Objects from Noisy Images at Low Resolution 205

the original object. In real life, ideal images are rare, maybe even non-existent.
Hence we would like to use our knowledge of ideal images to reconstruct r-regular
objects from their noisy images. The strength of this approach is that there are
relatively strict limitations on which configurations of black, grey and white
pixels can occur in an ideal image of an r-regular object. Thus, by considering
noisy images as distortions of ideal ones, we aim to use these limitations to
deduce the most likely corresponding ideal image. From this idealised image, we
apply techniques developed for ideal images to suggest a reconstruction of the
original object.

Fig. 1. Left: Noisy image of distant galaxies from [12]. Astronomers are interested in
knowing the shape of such galaxies: Are they circular, ellipsoid or do they have spiral
arms? Right: An r-regular set with osculating r-balls shown.

We formulate the idealisation of a noisy image as a graph problem which can
be solved using integer linear programming (ILP); this is explained in Sect. 3.
As finding an optimal solution using ILP is NP-hard, we also suggest a less com-
putationally demanding greedy algorithm, which makes stepwise locally optimal
improvements starting from a trivial initialization. This algorithm generally pro-
duces a suboptimal output, but in practice it performs well when aggregated over
multiple runs.

2 Related Work

While “object reconstruction” aims to infer any geometric or topological prop-
erty of the original object, the ultimate goal is to reconstruct the object itself,
a task which largely coincides with image segmentation. Modern image segmen-
tation algorithms such as deep convolutional neural networks [8] work as pixel
classifiers which cannot possibly return the underlying object itself. At the very
best, they return an ideal image of the object. Our proposed algorithm thus
should not be viewed as an alternative to these segmentation tools, but rather
as a tool to be used together with them, estimating object boundaries from pixel
classification output.
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2.1 Related Reconstruction Approaches

The task of reconstructing an object from its digital image depends on the
image model used and on what kind of properties one wishes the reconstructed
set to have. A classical digitisation model is subset digitisation, where a spatial
object is intersected with a grid and the Voronoi cell centered at a grid point
is coloured black if that grid point is inside the object, and white otherwise.
Pavlidis [10] and Serra [13] both studied such digitisations and independently
introduced r-regular sets in their work on reconstructing a set from the black
cells of its subset digitisation. Serra proved that under certain conditions, the
homotopy type is preserved under subset digitisation of an r-regular object by a
hexagonal grid, and Pavlidis proved that under certain conditions an r-regular
set is homeomorphic to its subset digitisation by a square grid. Stelldinger and
Köthe [14,15] argued that the notions of homotopy type or homeomorphism are
not sufficient to capture human perception of shape similarity and introduced
two stronger similarity criterions called weak and strong r-similarity, with which
they aimed to capture both topological properties and physical distance between
an object and its reconstruction. They showed that under certain conditions, an
r-regular object and the black cells of its subset digitisation are both weakly and
strongly r-similar, and extended their results to blurred images.

Other discretisation schemes have also been studied. In [11], Ronse and Tajine
study which discretisations are optimal in the sense that given a set X and a
discrete set D, which subset(s) of D minimises the Hausdorff distance to X.
In [7], Latecki et al. argue that a realistic digitisation model is obtained by
covering the object of interest with a square grid and assigning to each pixel in
the grid an intensity which is a monotonic function of the fraction of the pixel
that is covered by the object. They show that when applying any threshold to
such an image and considering the set of black pixels as the reconstructed set,
an r-regular set and its reconstruction is homotopy equivalent under certain
conditions, and even homeomorphic when the r-regular set is a manifold with
boundary (they conjecture that all r-regular sets are manifolds with boundary -
this was later proven by Duarte and Torres in [4]).

Our digitisation model is a special case of the one proposed by Latecki et al.
[7], since we will assume each pixel intensity to be exactly the fraction of the
pixel covered by the object. However, where Latecki et al. applied a threshold
to their resulting image, we have kept the information about the grey pixels in
our approach and proposed a reconstruction set with smooth boundary.

2.2 Related Segmentation Algorithms

A number of classical image segmentation algorithms aim to estimate object
boundaries from images. For instance, variational segmentation algorithms aim
to estimate either the object [9] or its boundary [1,2,6,18] by optimizing a func-
tional which measures the fit between the proposed object (boundary) and the
image. In Active Shape Models [3], this is done with the additional information
of a statistical object model. In [5], simulated annealing is used to reconstruct the
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entire object (and therefore, implicitly, its boundary) using a statistical image
model based on thermodynamics.

As these methods are based on non-convex optimization, they are not guar-
anteed to find an optimal solution, and therefore work best when one has some
initial idea about what object to find. In contrast, under the assumption of
r-regularity, Svane and du Plessis [16] obtain bounds on the error of the recon-
structed object boundary, at least in the non-noisy case. We therefore propose
estimating the optimal non-noisy image from a noisy one, as explained in Sect. 3.
The object boundary can then be reconstructed from the non-noisy image with
guarantees.

Note, additionally, that the assumption of r-regularity is a local restriction
on the shape of the original object, and not a global assumption as the one that
is needed in e.g. the Active Shape Model approach [3].

2.3 Reconstructing r-regular Objects from Ideal Images

The strength of our approach is the assumption of r-regularity of the objects
that we are looking for, since this puts restrictions on their possible ideal images.
Let us introduce the concept of r-regularity:

Definition 1. Let r ∈ (0,∞). A closed set X ⊆ R
n is said to be r-regular if,

for any point p ∈ ∂X, there exist two balls Br(xb) ⊆ X and Br(xw) ⊆ Xc of
radius r such that Br(xb) ∩ Br(xw) = {p}, see Fig. 1, right.

In [16], Svane and du Plessis studied digital images of r-regular objects con-
structed in the following way:

Definition 2. Let X ⊆ R
2 be a subset and (dZ)2 ⊆ R

2 a lattice. To each lattice
square C, we assign an intensity λ ∈ [0, 1] given by

λ =
Area(X ∩ C)

d2
∈ [0, 1].

The image of X (by (dZ)2) is now the collection of pairs (C, λ) of lattice cubes
and their corresponding intensities.

In this paper, we will consider noisy images. In a noisy image, the intensities
are distorted, so it will most likely be hard to use intensities for reconstruction.
Hence, we may as well restrict ourselves to only consider pixels as being either
black, grey or white. We therefore introduce the following:

Definition 3. Let I be an image. The trinary image J (of I) is the image I
where all grey values are set to 0.5. If I is ideal, we call J the trinary ideal
image.

Theorem 1 (Proved in [16]). Let J be a trinary ideal image of an r-regular
object X by a lattice (dZ)2, with d

√
2 < r. Then we can construct an object Y

from J such that dH(∂X, ∂Y ) < d, where dH denotes the Hausdorff distance.
The running time for this reconstruction algorithm on an n ×n image is O(n2).
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Empirical results suggest that we can improve the Hausdorff distance between
object and reconstruction, but for now it will have to remain a conjecture.

In the process of proving this theorem, the following theorem popped up,
and it will be essential later on:

Theorem 2 (Proved in [16]). In the trinary ideal image of an r-regular object
by a lattice (dZ)2 with d

√
2 < r, there are at most 562 different configurations

of 3 × 3 pixels. These are the ones shown in Fig. 2, along with their rotations,
mirror images and interchanging of black and white colours.

Furthermore, there are limits on which configurations can be combined with
which in such an image.

Fig. 2. Up to rotation, mirroring and interchanging of black and white pixels, these
are the only 3× 3 configurations of pixels we expect to see in the image of an r-regular
object with d

√
2 < r

Sketch of proof of Theorem 1: A detailed proof of Theorem 1 is too long for this
paper, but we sketch the basic ideas here: Firstly, we prove Theorem 2. This
proof is rather long and technical since it involves a lot of cases, but the basic
idea is to rule out trinary configurations that do not permit the existence of inner
and outer r-balls tangent to some boundary point, as required by r-regularity.

The reconstructed object is then constructed in the following way: Consider
two grey pixels sharing a side. Either the pixels are part of some configuration of
2 × 2 grey pixels, or they are not. If they are, we place an auxiliary point at the
midpoint of the 2×2 configuration, otherwise we place an auxiliary point on the
midpoint of the common edge between the two grey pixels. After some further
manipulation we get a chain of auxiliary points where each two neighbour points
in the chain are one grey pixel apart.

We then fit circle arcs through each three consecutive points of auxiliary
points and interpolate between the resulting arcs to construct a smooth curve -
this is the boundary of our reconstruction. We prove that this curve separates
the white pixels from the black ones. Since the original set boundary has the
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same property, we may put an upper bound on the Hausdorff distance between
the original object and our reconstruction. We refer to [16] for details.

3 Noisy Images

Consider a noisy image I of an r-regular object X where d
√

2 < r. We want to
use our knowledge of trinary ideal images of r-regular objects to find the trinary
ideal image of X from the noisy one. Henceforth, the only ideal images we will be
working with will be trinary, so we will often omit the word ‘trinary’ for brevity.
We will say that a noisy image I has an underlying (trinary) ideal image J that
is not observed.

By Theorem 2 there is a collection C = {Ck}k∈K of ideal 3 × 3 pixel con-
figurations that we may see in the image of an r-regular set when d

√
2 < r.

We use these to formulate the problem as a graph problem. Let Ii,j denote the
3 × 3 pixels centered at the (i, j)’th pixel of the noisy image I.

Over each configuration Ii,j in I, the ideal configurations in C are possible
configurations in the same position of the underlying ideal image J . These ideal
configurations form the vertices of a graph. An ideal configuration Ck ∈ C sitting
over the noisy configuration Ii,j is given a weight pi,jk measuring the similarity
between Ck and Ii,j . Two ideal configurations are connected by an edge if they
sit over neighbour configurations in I and match on their overlap, see Fig. 3.
By ’neighbour configurations’ we here mean any two 3×3 configurations sharing
6 pixels.

The problem is now to choose an ideal configuration over each noisy config-
uration in I, such that the chosen configurations match their neighbours on the
overlap, and the sum of their similarity weights are maximised. If this problem
is solved, we may piece an ideal image together from the configurations chosen.
This image is then optimal in the sense that the sum of its similarity weights is
maximal among all ideal images.

The problem can be formulated as an integer linear programming problem
in the following way: Let

c
(i,j)
k =

{
1 if k′th configuration is chosen at position (i, j)
0 otherwise

.

The sum to be maximised is then∑
i,j,k

c
(i,j)
k p

(i,j)
k , where

∑
k∈K

c
(i,j)
k = 1

for each (i, j), since we only choose one configuration over each configuration in
the noisy image. Stacking c

(i,j)
k to a vector c, let A be the adjacency matrix of

the graph. Requiring that each chosen configuration is connected to its chosen
neighbour configuration may be formulated as Ac ≥ Bc, where B is a diagonal
matrix whose (l, l)’th element is the number bl of neighbour configurations of
configuration l.

Solving these equations is a well-known optimisation problem with a range
of software options available, of which we used CPLEX [17].
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Fig. 3. Over each 3×3 configuration in a noisy image I, we have a set of possible config-
urations for the underlying image J . These configurations form the vertices of a graph
and are given weights quantifying their deviation from the observed configuration. Two
configurations are connected by an edge if they sit over neighbour configurations in I
and match on their overlap.

4 A Greedy Local Algorithm

As ILPs are generally NP-hard, the running time for the above algorithm quickly
increases for large images. Therefore, we also tried another approach: We start
with one solution to the graph problem and try to improve it.

Let I be a noisy image with underlying ideal image J . We suggest the greedy
algorithm detailed in Algorithm 1, which was implemented in MatLab.

5 Similarity Weights

In Sect. 3 we needed weights pi,jk on ideal configurations Ck measuring their
similarity to an observed noisy configuration Ii,j . We propose to construct the
weights as follows:

Let p1 be a pixel from the noisy image and p2 a trinary pixel from one of the
ideal configurations. We measure the distance between p1 and p2 with a function
d̂ given by

d̂(p1, p2) =

{
0 if p2 = 0.5 and 0 < p1 < 1
|p1 − p2| otherwise

We can then define the weight pi,jk as

pi,jk =
√∑3

r,s=1d̂(Ii,j(r, s), Ck(r, s))2,

where Ii,j(r, s) denotes the (r, s)’th entry in Ii,j .
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Algorithm 1. Pseudo-code for the local algorithm
INPUT Noisy image I
Ĵ = Suggestion for I, initialised to an all white image.
Weights =Matrix of weights of the configurations in current Ĵ
[XMin, Y Min] =Position of minimal value of Weights
Update configuration at position [XMin, Y Min] in Ĵ to configuration with a black
pixel in the middle, and greys around it.
Update Weights to match this new Ĵ
NbList =Positions of horisontal/vertical neighbour configurations of altered ones.
k = 0
while k=0 do

TempNbList=NbList;
Find the entry (i, j) in TempNbList where changing white pixels of corresponding
configuration in Ĵ to greys and centre pixel to black would cause the largest
increase in Weights(i, j).
if Such a configuration exists then

Check if this update of Ĵ contains any illegal configurations
if It does not then

Update Ĵ
Update Weights
Update NbList by adding positions of neighbour configurations

else
Remove position (i, j) from TempNbList

end if
else

k = 1
end if

end while
if n connected component are expected in the image then

Repeat the above n times
end if

6 Experiments

Results from both the ILP algorithm and the greedy local algorithm are shown
in Table 1. The noisy images were obtained from ideal ones by adding Gaussian
white noise with mean 0 and variance 0.1. The greedy algorithm was run several
times with different starting points (s.p.), giving different outputs. The results
using the three most likely starting points are shown in columns 3–5. In column 6
the minimum of 8 outputs of the greedy algorithm with different starting points
is shown. Since the minimum image may contain configurations not in the list
from Theorem 2, we may not use our reconstruction algorithm on it. Therefore we
have used the ILP algorithm on it to remove illegal configurations, see column 7.
Finally, in column 8 we have used the ILP algorithm directly on the noisy image.
The yellow lines in the figures in column 3–5 and 7–8 are reconstructed bound-
aries from Theorem 1.
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7 Discussion

The ILP algorithm reconstruction to the far right in Table 1 works well, although
there are more grey pixels in the reconstructed image than in the original one.
This may partly be due to boundary effects, since configurations near the bound-
ary have fewer neighbour configurations they need to match.

The main problem with the ILP algorithm is that the NP-hardness makes it
very time-consuming. Several tests indicate that for images only slightly bigger
than those in this paper, the ILP algorithm is so slow that it is of no practical use.

The running time for the greedy algorithm is O(n4 log2 n) for an n×n image,
but images with many white pixels are processed faster than images with many
black pixels. In practical cases, the greedy algorithm is much faster and therefore
easier to work with. However, results from the greedy algorithm are generally not
as nice as results from the ILP algorithm. The output quality depends greatly on
the starting point and the algorithm is not good at finding large black areas or
the right number of components. This is due to the construction of the algorithm,
which may still be improved. The algorithm can also not reconstruct loops, since
this requires addition of a configuration not in the list C.

All of these flaws are present in the outputs of the greedy algorithm in Table 1.
However, the superposition is a good approximation of the object, and when the
ILP and greedy algorithms are used together, we get a good suggestion for the
reconstruction as seen in column 7 of the table. Empirical results seem to indicate
that the running time of the ILP algorithm on the superposition of the outputs
from the greedy algorithm is a bit shorter than the running time of the ILP
algorithm used directly on the noisy image, but note that the ILP algorithm
used with the greedy algorithm is still rather slow since the ILP is still solving
an NP-hard problem.

To sum up, the ILP algorithm gives the best output, but its running time
must be brought down if it is to be of practical relevance. The greedy algorithm
is faster, but the quality of the output is less reliable. We are still working on
improving running time and output for both algorithms.
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14. Stelldinger, P., Köthe, U.: Shape preservation during digitization: tight bounds

based on the morphing distance. In: Michaelis, B., Krell, G. (eds.) DAGM 2003.
LNCS, vol. 2781, pp. 108–115. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45243-0 15
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Abstract. In this paper, we propose to embed edges instead of
nodes using state-of-the-art neural/factorization methods (DeepWalk,
node2vec). These methods produce latent representations based on co-
ocurrence statistics by simulating fixed-length random walks and then
taking bags-of-vectors as the input to the Skip Gram Learning with Neg-
ative Sampling (SGNS). We commence by expressing commute times
embedding as matrix factorization, and thus relating this embedding to
those of DeepWalk and node2vec. Recent results showing formal links
between all these methods via the spectrum of graph Laplacian, are
then extended to understand the results obtained by SGNS when we
embed edges instead of nodes. Since embedding edges is equivalent to
embedding nodes in the line graph, we proceed to combine both exist-
ing formal characterizations of the line graphs and empirical evidence in
order to explain why this embedding dramatically outperforms its nodal
counterpart in multi-label classification tasks.

Keywords: Network embedding · SGNS · Line graph · Spectral theory

1 Introduction

The recent success of neural graph embeddings such as LINE [18], DeepWalk [14]
and node2vec [7] has opened a new path for analyzing networks. Despite these
embeddings outperform spectral ones in tasks such as link prediction and multi-
label node classification, Spectral Graph Theory [3] is still key tool for under-
standing and characterizing neural embeddings [16].

In this paper, we contribute with empirical evidence showing that neural
embeddings (Sect. 2) can boost their performance in multi-label classification
by embedding edges instead of nodes. We conjecture that this fact is due to the
spectral properties of line graphs, whose nodes are the edges of the original graphs
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(Sect. 3). However, since general line graphs have not been fully characterized yet,
we can only correlate our empirical findings (Sect. 4) with some of the well known
properties of line graphs and the spectral characterization of neural embeddings.

2 Classic vs Neural Embeddings

2.1 Classic Embeddings

Let G = (V,E,A) be a graph/network with n = |V | nodes, m = |E| edges,
where E ⊆ V × V , and adjacency matrix A. Then, node embedding consists of
finding a mapping f : V → R

d (with d � n) so that the resulting d-dimensional
vectors capture the structural properties of each vertex. As a result, we have
||f(i) − f(j)||2 → 0 if nodes i and j are structurally similar within the graph G.
Traditionally, nodal structural similarity was associated with the reachability of
node j from node i (and vice versa) through random walks [10]. This characteri-
zation leaded to define both hitting times Hij (expected steps taken by a random
walk to reach j from i) and commute times CTij = Hij +Hji (which also includes
the expected steps needed to return to i from j). Since random walks are encoded
by transition matrices of the form P = D−1A, where D = diag(d1, . . . , dn) is
the diagonal matrix with the degrees of the nodes, the spectral analysis of P is a
natural way of understanding both hitting and commute times. More precisely,
let λ1 = 1 ≥ λ2 ≥ . . . ≥ λn ≥ −1 be the spectrum of the transition matrix. It
is well known that hitting times and commute times are highly conditioned by
the spectral gap λ = 1 − max{λ2, |λn|}. When several communities are encoded
by a connected graph G, then Hij and CTij are only meaningful when λ → 0
(small bottlenecks between communities); otherwise, these quantities rely on
the local densities (degrees) of the nodes i and j, and one cannot discriminate
whether two nodes belong to the same community or not [11]. Consequently,
the applicability of node embeddings based on commute times to clustering is
quite limited (see representative examples of image segmentation and tracking
in [15]). In this regard, recent research is focused on simultaneously minimizing
the spectral gap and shrinking (whenever possible) inter-community commute
distances via graph densification [4,5] before embedding the nodes.

Therefore, once G is processed (or rewired) commute times embedding leads
to learn two matrices X,Y ∈ R

n×d, whose rows are denoted by xi and yi

respectively and xi is the embedding of the node i. Following [15], the commute
times embedding matrix X results from factorizing

vol(G)G = XYT , (1)

where vol(G) =
∑n

i=1 di is the volume of the graph and G is its Green’s function,
i.e. the pseudo-inverse of the normalized graph Laplacian L = I−D−1/2AD−1/2,
whose spectrum is 1 − λ1 = 0, 1 − λ2, . . . , 1 − λn ≤ 2, i.e. if λi is an eigenvalue
of P then 1 − λi is an eigenvalue of L.
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2.2 Neural Embeddigs

Neural embeddings such as LINE [18], DeepWalk [14] and node2vec [7], exploit
random walks in a different way. Namely, they simulate a fixed number N of
random walks with fixed length L emanating from the nodes of G and then
capture co-ocurrence statistics of pairs of nodes. The first node of the i-th path
wi, assimilated to a word in a textual corpus (skip-gram model), is sampled from
a prior distribution P (wi). Then, the context of wi is given by the nodes/words
surrounding it in a T -sized window wi−T , . . . , wi−1, wi+1, . . . , wi+T , according
to the transition matrix P. Then, the node-context pairs (w, c) are given by
(wi−r, wi) and (wi, wi+r) for r = 1, . . . , T . All these pairs are added to the
multiset D used for learning with negative sampling. Negative sampling implies
not only to consider likely node-context pairs (w, c) but also b unlikely ones
(w, c′): the negative samples c′, are nodes that can be drawn from the steady-
state probability distribution of the random walk, i.e. PN (i) = di/vol(G). This
process is called Skip Gram Learning with Negative Sampling (SGNS) and leads
to the following factorization [9]:

M = XYT , with Mij = log
(

#(wi, cj)|D|
#(wi)#(cj)

)

− log b, (2)

where: #(wi, ci) is the number of times the corresponding node-context pair is
observed,#(wi) is the number of times the node i is observed and similarly for
node #(cj); finally log(.) is the element-wise logarithm and b is the number of
negative samples.

2.3 LINE and DeepWalk vs node2vec Factorizations

These strategies differ in the way they sample (and thus vectorize) the graph for
SGNS. LINE and DeepWalk rely on first-order random walks whereas node2vec
is driven by second-order random walks.

LINE and DeepWalk. LINE’s factorization is a direct result from the cost
function associated with SGNS. In particular, the latent representations of both
the word/node xi and the context yj are assumed to be correlated with the
existence on an edge between nodes i and j, i.e. Aij log g(xT

i yj) is maximized,
where g(.) is the sigmoid function. Following [16], this leads to

xT
i yj = log

(
vol(G)Aij

didj

)

− log b ⇒ log
(
vol(G)D−1AD−1

) − log b = XYT .

(3)
DeepWalk, on the other hand, leads to a more complex factorization. Assum-
ing that the first node of each random walk is drawn from the steady state
distribution, we have that, when L → ∞,

#(wi, cj)|D|
#(wi)#(cj)

p→ vol(G)
2T

(
1
dj

T∑

r=1

Pr
ij +

1
di

T∑

r=1

Pr
ji

)

(4)
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where
p→ denotes convergence in probability. This yields

log

(
vol(G)

T

(
T∑

r=1

Pr

)

D−1

)

− log b = XYT , (5)

which is equivalent to LINE for T = 1.

node2vec. The underlying idea of this embedding is to add more flexibility
to the random walk. This is done by defining two parameters p and q, that
control, respectively the likelihood of immediately revisit a node in the walk
and making the walk very local. To that end, node2vec needs to evaluate the
probability of the next nodes given the preceding one in the walk, i.e. we have
a 2nd-order random walk. This walk is characterized by the hypermatrix P,
where Pi(jk) denotes the probability of reaching j from j given that the node
preceeding j is k. Thus, the 2nd order random walk can be reduced to a 1st
order one on the edges of the graph [1] as it is done in the implementation of
node2vec. The stationary distribution Xik for this type of random walks satisfies∑

k Pi(jk)Xik = Xij . Qiu et al. [16] have found that

#(wi, cj)|D|
#(wi)#(cj)

p→
1
2T

∑T
r=1

(∑
k XikPr

j(ik) +
∑

k XjkPr
i(jk)

)

(
∑

k Xik) (
∑

k Xjk)
(6)

and, despite the matricial expression for the factorization is more elusive, the
final factorization differs significantly from those of DeepWalk and LINE.

3 Node vs Edges Embedding

3.1 The Line Graph

In this paper, we are mainly concerned with the impact of embedding the edges
of G instead of its nodes. This means that a word wi in the previous expressions
is not yet associated with a node of G but with a node of its line graph LG. The
nodes of LG are the edges of G and there is an edge in the line graph if two edges
in G share a node. More formally, given the n×m incidence matrix B where Biα

is 1 if the link α is related to node i and 0 otherwise, we have that the m × m
adjacency matrix C = BTB − I has elements Cαβ =

∑n
i=1 BiαBiβ(1 − δαβ).

3.2 Spectral Analysis

Some interesting properties of line graphs vs G:

– Boosted edge density. A single node i in G leads to a clique of di(di − 1)/2
edges in LG (see Fig. 1). Despite this gives a high prominence to notable
nodes of G it flexibilizes community detection [6]. In addition the steady
state distribution of a random walk in LG is PN (α(i,j)) = dα/vol(LG) where
dα = di + dj − 2 and vol(LG) =

∑
α,β Cαβ =

∑n
i=1 di(di − 1).
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– Redundant spectrum for m > n. Let λ1(LG) ≥ λ2(LG) ≥ . . . ≥ λm(LG) be
the spectrum of C. Then, for m > n, λn+1 = . . . = λm = −2. As a result,
λi(L(LG)) ≥ 4, for the largest m−n eigenvalues of L(LG), the unnormalized
Laplacian matrix of LG [19]. This increases significantly the medium-large
eigenvalues of L(LG) with respect to L(G) (see Fig. 2).

– Majorization of the spectrum of G. This is really a conjecture derived from
the bound λ2(LG) ≤ m

2 − 1 in comparison to that for G: λ2(G) ≤ n
2 − 1.

Empirical data shows that the lowest part of the spectrum of L−I in the line
graph majorizes that of G (blue lines in Fig. 2). Since the spectrum driving
DeepWalk is (approximately) of the form 1

T

∑T
r=1 λr

i this leads (in general)
to small spectral gaps for the line graphs, and thus slower mixing times of the
random walks (more randomness). Green lines show the real spectra driving
random walks in DeepWalk. In all cases, T = 10.

Fig. 1. Barbell graph linking two cliques (left) and its line graph (right)

4 Experiments and Discussion

4.1 Datasets (Networks)

– CiteSeer for Document Classification [17]. Citation network containing
3312 scientific publications with 4676 links between them. Each publication
is classified in one of 6 categories.

– Cora [17]. Citation network containing 2708 scientific publications with 5278
links between them. Each publication is classified in one of 7 categories.

– Wiki1. Contains a network of 2405 web pages with 17981 links between them.
Each page is classified in one of 19 categories.

– Facebook social circles [13].

1 https://github.com/thunlp/MMDW/.

https://github.com/thunlp/MMDW/
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Fig. 2. Eigenvalues of the original (top) and line graph (bottom), for Cora (left) and
CiteSeer (right) databases (Color figure online)

Nodes Edges Line graph edges Gap Con. comps Labels Multi-label

wiki 2405 12761 355644 0.000000 45 19 No

cora 2708 5278 52301 0.000000 78 7 No

citeseer 3327 4676 27174 0.000000 438 6 No

ppi 3890 38739 3018220 0.000000 35 50 Yes

pos 4777 92517 49568882 0.576132 1 40 Yes

facebook 4039 88234 9314849 0.000837 1 10 Yes

– Wikipedia Part-of-Speech (POS) [12]. Co-ocurrence of words appearing
in the first million of the bytes of the dumping of Wikipedia. The categories
correspond to the labels of Part-of-Speech (POS) inferred by the Stanford
POS-Tagger. Contains 4777 nodes, and 92517 undirected links. Each node
may have several labels. We have 40 labels (categories).

– Protein-Protein Interactions (PPI)2 [2]. We use a subgraph of the PPIs
associated with the Homo Sapiens. The network has 3890 nodes and 76584
links. Each node may have several labels corresponding to the 50 possible
categories.

2 https://downloads.thebiogrid.org/BioGRID.

https://downloads.thebiogrid.org/BioGRID
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Facebook, PPI and POS have been retrieved from SNAP3 [8]. CiteSeer and
Cora have been retrieved from LINQS4.

All the networks are considered as undirected graphs. Originally single-
labelled networks are transformed into multi-label networks when their line-
graph is computed (or sampled, for the sake of efficiency). Nodes with more
than one label are the border nodes between two categories (inter-class), and the
nodes that hold one label are intra-class nodes.

Inter-class nodes Intra-class nodes

wiki 4526 (35%) 8235 (65%)

cora 1003 (19%) 4275 (81%)

citeseer 1190 (25%) 3486 (75%)

We have used the implementations of node2vec and DeepWalk included in the
framework. OpenNE5. The default values for p and q in node2vec are p = q = 1.
After optimizing p and q in the range {0.25, 0.5, 1, 2, 4} the maximum improve-
ment of node2vec wrt DeepWalk in the classification score is 0.014 (micro and
macro). Regarding spectral embeddings, CTE and LLE have been only tested
in networks with a single connected component (pos and facebook). In particu-
lar, commute times (CTE) have a poor performance in multi-label classification
because their factorization relies on the Green’s function and this means that
only the inverse of each eigenvalue is considered. However, DeepWalk is con-
trolled by a polynomial associated with each eigenvalue.

node2vec DeepWalk cte lle

Nodes Edges Nodes Edges

Micro-F1 citeseer 0.591071 0.768626 0.595833 0.780930 – –

cora 0.808715 0.903557 0.817578 0.920538 – –

wiki 0.663342 0.840709 0.692436 0.859129 – –

pos 0.447845 0.697572 0.471620 0.696640 0.375037 0.393165

ppi 0.197435 0.590731 0.205786 0.609937 – –

facebook 0.911516 0.999900 0.911516 0.999900 0.239217 0.231214

3 https://snap.stanford.edu/node2vec/.
4 https://linqs.soe.ucsc.edu/data.
5 https://github.com/thunlp/OpenNE.

https://snap.stanford.edu/node2vec/
https://linqs.soe.ucsc.edu/data
https://github.com/thunlp/OpenNE
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node2vec DeepWalk cte lle

Nodes Edges Nodes Edges

Macro-F1 citeseer 0.544490 0.730930 0.545774 0.745995 – –

cora 0.798782 0.898863 0.804928 0.917838 – –

wiki 0.528603 0.764205 0.597948 0.787771 – –

pos 0.084183 0.773035 0.094148 0.774001 0.041637 0.033617

ppi 0.168237 0.566912 0.178405 0.587934 – –

facebook 0.821899 0.999377 0.822243 0.999407 0.108742 0.045155

Fig. 3. Evolution of the performance as a function of the fraction of known labels in
the training set. Micro-F1 (top) and Macro-F1 (bottom)
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Fig. 4. t-SNE embeddings. Original graph (top) and line-graph (bottom), for Facebook
(left), Cora (center) and CiteSeer (right) databases.

In Fig. 3, we show the performance in multi-label classification (according to
the percentage of nodes with known labels). The line-graph versions of node2vec
and DeepWalk clearly outperform their nodal counterparts. The similarity in
terms of performance of node2vec and DeepWalk is due to the fact that the
2nd order random walk of node2vec is not applied at the level of edges (it is
unfeasible for large networks). Finally, in Fig. 4 we show the t-SNE embeddings.
Edge embeddings clearly produce denser communities.

5 Conclusions

In this paper, we have contributed with empirical evidence showing that embed-
ding edges clearly outperforms node-based embeddings in neural SGNS strate-
gies. We conjecture that this is due to the slower mixing times of random walks
in line graphs. Future work includes a detailed check of this conjecture as well
as more efficient (in time and space) strategies for designing walkers on the line
graphs.
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Abstract. Many learning problems can be cast into learning from data-
driven graphs. This paper introduces a framework for supervised and
semi-supervised learning by estimating a non-linear embedding that
incorporates Spectral Graph Convolutions structure. The proposed algo-
rithm exploits data-driven graphs in two ways. First, it integrates data
smoothness over graphs. Second, the regression is solved by the joint use
of the data and their graph in the sense that the regressor sees convolved
data samples. The resulting framework can solve the problem of over-
fitting on local neighborhood structures for image data having varied
natures like outdoor scenes, faces and man-made objects. Our proposed
approach not only provides a new perspective to non-linear embedding
research but also induces the standpoint on Spectral Graph Convolu-
tions methods. In order to evaluate the performance of the proposed
method, a series of experiments are conducted on four image datasets
in order to compare the proposed method with some state-of-art algo-
rithms. This evaluation demonstrates the effectiveness of the proposed
embedding method.

Keywords: Graph-based embedding · Supervised learning ·
Semi-supervised learning · Spectral graph convolutions ·
Discriminative embedding

1 Introduction

Graph-based supervised and semi-supervised learning can be used by many real
world applications. Graph-based methods exploits data structure in discover-
ing the sought models. Besides, these approaches can encode the relationship
between the nodes of labeled or unlabeled samples data. They can be used for
reducing the dimensionality of data.

In graph-based learning field, several effective algorithms were developed in
the past: Locally linear embedding (LLE) [16], Laplacian Eigenmap (LE) [1] and
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ISOMAP [17] are classical graph-based non-linear embedding algorithms. Flex-
ible Semi-Supervised Embedding algorithm (FSSE) was proposed in [4]. This
method simultaneously estimates a non-linear embedding and its linear regres-
sor. Manifold Regularized Deep Learning Architecture Algorithm (MRDL) [19]
proposed a deep architecture to learn the high-level features for scene recogni-
tion in an unsupervised fashion. In [7], the authors proposed a joint embedding
learning and sparse regression (JELSR) for unsupervised feature selection. Semi-
Supervised Discriminant Embedding (SDE) [18] is the semi-supervised extension
of Local Discriminant Embedding (LDE) [3]. It is a linear projection method that
is based on manifold smoothness and a regularizer that controls the complexity
of learning. Semi-Supervised Discriminant Analysis (SDA) [2] extends the clas-
sic Linear Discriminant Analysis (LDA) [12] by adding a geometrically-based
regularization term in the objective function of LDA.

This paper introduces a framework for supervised and semi-supervised learn-
ing by estimating a flexible non-linear embedding that incorporates Spectral
Graph Convolutions structure. The proposed algorithm exploits data-driven
graphs in two ways. First, it integrates data smoothness over graphs. Second,
the regression is solved by the joint use of the data and their graph in the sense
that the regressor sees convolved data samples.

The main contributions of the paper are as follows:

– We propose an unified framework for the non-linear embedding. This frame-
work integrates manifold smoothness, large margin concept, and sparse
regression for image classification. Besides the jointly estimated regressor
function utilizes the Graph Spectral Convolutions, where the graph is sparse
data-driven.

– We provide a closed-form solution to the optimization problem.
– The proposed framework can be used by both settings: supervised and semi-

supervised.
– Extensive experiments demonstrate that the proposed non-linear embedding

method can be superior to many state of the art graph-based methods.

The rest of the paper is structured as follows. Section 2 introduces the nota-
tions and definitions used in this paper, and briefly reviews some related works.
Section 3 presents the proposed framework for non-linear embedding. Section 4
reports and analyzes some experimental results obtained with four public image
datasets. Finally, Sect. 5 concludes the paper. In this paper, capital bold letters
denote matrices and small bold letters denote vectors.

2 Related Work

2.1 Notation and Preliminaries

In this section, we introduce the notations adopted in the paper. We define
the data matrix by X = [x1,x2, · · · ,xl,xl+1, · · · ,xl+u] ∈ R

d×(l+u), where
xi

∣
∣l
i=1 and xi

∣
∣l+u
i=l+1 are the labeled training samples and unlabeled test sam-

ples, respectively, l and u being the total numbers of labeled train samples and
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unlabeled test samples data, respectively, and d being the sample dimension.
Let N = l + u be the total number of samples data and nc be the total number
of labeled samples in the cth class. The labeled train samples are denoted by
the matrix Xl = [x1,x2, · · · ,xl] ∈ R

d×l. The label of each sample xi is denoted
by yi ∈ (1, 2, ..., C), where C is the total number of classes. The unlabeled
(test) samples are denoted by the matrix Xu = [x1+1,xl+2, · · · ,xl+u] ∈ R

d×u.
Let S ∈ R

(l+u)×(l+u) be the graph similarity matrix associated with the
data matrix X where S(i, j) represents the similarity between xi and xj , i.e.,
S(i, j) = sim(xi,xj). The function sim(., .) can be any symmetric function that
measures the similarity between two samples. This can be given by the Cosine
or the Gaussian Kernel.

The Laplacian of the similarity matrix S is denoted by L and is given by
L = D − S where D is a diagonal matrix whose elements are the row or column
(since the matrix is symmetric) sums of S matrix. The normalized Laplacian
matrix L is defined by L = I−D−1/2SD1/2 where I denotes the identity matrix.
The normalized Laplacian matrix L could be decomposed by its eigenvectors
matrix U, L = I − D− 1

2 SD− 1
2 = UΛUT , where Λ means a diagonal matrix of

eigenvalues of L.

2.2 Manifold Regularized Deep Learning Algorithm (MRDL)

The Manifold Regularized Deep Learning Algorithm (MRDL) in [19] estimates
a Non-linear Sparsity Preserving Projection [9]. It adopts a cascade of layers. In
each layer, a sparse graph is computed and then the non-linear projections are
estimated using sparsity preserving criterion.

The objective function allowing the estimation of the similarity (graph)
matrix S is:

min
S≥0

‖X − XS‖22 + α‖S‖ 1
2 + β‖S‖22 (1)

where α and β are two positive regularization parameters.
Once the graph matrix S is computed, the non-linear projections Y =

(y1,y2, · · ·yn) can be estimated by solving the following optimization problem:

min
Y

∑

i

∥
∥
∥
∥
∥
∥

yi − 1
2

∑

j

(D−1(ST + S)ijyj)

∥
∥
∥
∥
∥
∥

2

= min
Y

tr(YD
1
2 (I − S̃)2D

1
2 YT )

⇒ min
G

tr(GT (I − S̃)2G) (2)

where S̃ = 1
2 (S + ST )D−1, G = D

1
2 YT . The optimal solution for G (or equiva-

lently Y) is given by the smallest eigenvectors of (I − S̃).
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2.3 Graph Convolutional Networks (GCN)

The Graph Convolutional Networks(GCN) algorithm in [8] presents an approach
for semi-supervised learning on graph-structured data that is based on an effi-
cient variant of convolutional neural networks which operate directly on graphs.

For semi-supervised label propagation, a two-layer GCN model has the fol-
lowing form:

E = f(X,A) = softmax(ÂReLU(ÂẊW(0))W(1)) (3)

where Ẋ ∈ R
N×d denotes the input data with N samples and d dimensions, Â is

a renormalized graph matrix, W(0) ∈ R
d×H is an input-to-hidden weight matrix

for a hidden layer with H features, ReLU () is the rectified linear activation
function, and W(1) ∈ R

H×M is a hidden-to-output weight matrix with M feature
maps. M denotes the number of classes. Softmax denotes the softmax activation
function. E ∈ R

N×M is the matrix of labels.
It motivates the choice of convolutional architecture via a localized first-

order approximation of spectral graph convolutions. The GCN is used for semi-
supervised classification on graph-structured data, such as citation networks or
on a knowledge graph dataset.

3 Proposed Method

The GCN which is introduced in last section motivates us to jointly use the data
and their associated graph in order to derive a non-linear embedding of the data
and not only their label as it is the case [8]. The basic idea is to replace data
samples by their convolution with a certain graph. To this end, we may use a
first order approximation of spectral graph convolutions to replace the original
samples data in regression model. Our goal is to estimate a final non-linear
embedding in which the regressor is based on graph convolution.

Spectral convolutions on graph defined as the multiplication of a signal x ∈
R

N with a filter gw = diag(w) where w ∈ R
N is parameterized in Fourier

domain:

gw � x = U · gw · UT · x (4)

where UT x and gw could be regarded respectively as the graph Fourier transform
of x and a function of Λ which is g(Λ).

The computational complexity of (4) is O(N2). For solving the problem of
expensive computing cost, [6] proposed Chebyshev polynomials to unfold gw:

gw′ ≈
K∑

k=0

wk
′ · Tk(Λ̃) (5)
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where Tk refer to Chebyshev polynomials. Tk(x) = 2xTk−1(x) − Tk−2(x), and
T0(x) = 1, T1(x) = x. The largest eigenvalue of the Laplacian matrix L is
denoted by λmax. Λ̃ = 2

λmax
Λ − I. wk

′ is Chebyshev coefficients. So the spec-
tral convolutions on graphs with a truncated expansion in terms of Chebyshev
polynomials could be rewritten:

gw′ � x ≈
K∑

k=0

wk
′ · Tk(L̃) · x (6)

where L̃ = 2
λmax

L − I. If we just expand 1st-order polynomial in (6) to limit
convolution operation, and according to further approximate in the linear for-
mulation where k = 1 and λmax ≈ 2 in the (6), we get:

gw′ � x ≈ w′
0x + w′

1(
2

λmax
L − I)x = w′

0x − w′
1D− 1

2 SD− 1
2 x

⇒ w(I + D− 1
2 SD− 1

2 )x (7)

where w0
′ and w1

′ are free parameters. If we consider to constrain the number
of parameters to address over-fitting and to minimize the number of matrix
multiplications, w = w0

′ = −w1
′ could be used in the above formula (7).

We approximate λmax ≈ 2 which means that the eigenvalues of I+D− 1
2 SD− 1

2

are between 0 and 2. In fact, this operator will lead to numerical unstable. So the
renormalization trick is introduced which replaces I+D− 1

2 SD− 1
2 by D̂− 1

2 ŜD̂− 1
2 ,

where Ŝ = S + I and D̃ii =
∑

j S̃ij .
In the end, we acquire the samples data X ∈ R

d×N and its non-linear pro-
jection data by imposing that Z = D̂− 1

2 ŜD̂− 1
2 XT · W ∈ R

N×d. W is filter
parameters matrix or transform matrix and Z is convolved signal matrix or
regarded as regarded as projection matrix in graph theory. We also could add a
bias term b:

Z = D̂− 1
2 ŜD̂− 1

2 XT · W + 1bT (8)

Our proposed algorithm not only inherits the latent advantages of spectral
graph convolutions which such a model can alleviate the problem of over-fitting
on local neighborhood structures for graphs with wide node degree distributions,
(e.g., scene and face images), but also provides the advantages of margin-based
discriminant embedding and manifold smoothness. So the objective function
focuses on the joint estimation of the non-linear projection data Z, the linear
transform matrix W and the shift vector b. Thus, the following is minimized
under a constraint:

h(Z,W,b) = tr(ZT (L + λM̃l)Z) + μ(‖W‖22
+γ

∥
∥
∥D̂− 1

2 ŜD̂− 1
2 XT · W + 1bT − Z

∥
∥
∥

2

2
) s.t. ZT D̂lZ = I (9)
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In the sequel, L + λ M̃l will be denoted by V. λ, μ and γ are regulariza-
tion parameters. The above criterion simultaneously attempts to provide graph
smoothness criterion in locality preserving, margin maximization of labeled data
samples, linear transform regularization (‖W‖2) and spectral graph convolution
based regression. The final goal is to estimate a non-linear embedding and its
regression transform.

In the sequel, we show how the optimal solution for function (9) can be
derived.

We vanish the derivatives of the objective function (9) with respect to W
and b. This yields:

b =
1
N

(ZT 1 − WT X̂T 1) (10)

W = γ(γX̂T Hc · HT
c X̂ + I)X̂T Hc · Z (11)

where X̂ = D̂− 1
2 ŜD̂− 1

2 XT and Hc = I− 1
N11T . Besides, let P denotes the matrix

γ(γX̂T Hc · HT
c X̂ + I)X̂T Hc, thus Eq. (11) can be rewritten as W = P · Z. So

the spectral graph regression could be deduced by:

X̂W + 1bT = X̂PZ +
1
N

11T Z − 1
N

11T X̂PZ

= (I − 1
N

11T )X̂PZ +
1
N

11T Z

= HcX̂PZ +
1
N

11T Z (12)

Let Q = (I − 1
N 11T )X̂P + 1

N 11T , thus Eq. (12) can be written in a more
compact form X̂W + 1bT = Q · Z. By plugging Eqs. (10), (11) and (12), into
(9), this one becomes:

h = tr(ZT VZ) + μ tr(ZT PT PZ)
+μγ · tr((QZ − Z)T (QZ − Z))

= tr(ZT (V + μPT P + μγ(Q − I)T (Q − I))Z) (13)

The constrained optimization problem becomes:

Z = arg min
Z

tr(ZT (V + μPT P + μγ(Q − I)T (Q − I))Z) s.t. ZT D̂lZ = I (14)

Finally, the optimization problem in (14) is solved by Eigen-decomposition
of (V + μPT P + μγ(Q − I)T (Q − I)) matrix which picks up the eigenvectors
corresponding to the smallest eigenvalues.

Once the non-linear projection Z is estimated, W and b could be obtained
using Eqs. (10), (11). Algorithm 1 summarizes the main steps of the proposed
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Algorithm 1. Proposed Algorithm
Input: Data matrix: X; parameters: μ, λ and γ.
Output: Non-linear embedding matrix Z; linear transform W and bias term b;

1: Estimate the sparse graph matrix S using (1);

2: Renormalize the matrix Ŝ = I + S using D̂− 1
2 ŜD̂− 1

2 ;

3: Compute the spectral graph convolutions matrix X̂ = D̂− 1
2 ŜD̂− 1

2 XT ;
4: Update Z, W and b using Eqs. (14), (11) and (10) respectively;
5: Compute the non-linear embedding matrix Z as Z = X̂ ·W + 1bT ;

algorithm. If an unseen test data xu ∈ R
d×1 is given, the sample data graph-

embedding is obtained by zu = WT x̂u + b. x̂u is computed as follows. First,
we compute the edge weights between xu and the original data samples X. This
allows to expand the original graph matrix, S, by one row and one column. This
expanded graph matrix is then renormalized in the same way described above.
x̂u is obtained by AN+1 X ′T where AN+1 denotes the last row in the normalized
graph matrix and X ′T is the augmented data matrix.

It is worth noting that although our model is inspired from the concept
of Graph Convolution [8], it has several differences with the latter one. First,
our work addresses flexible non-linear data embedding while the work of [8]
addresses label propagation. Second, the application domain in [8] is the semi-
supervised document classification for which binary graphs are defined. In our
work, we address image datasets for which similarity graphs are more challenging
to estimate.

4 Experimental Results

This section presents the performance of the proposed embedding on different
kinds of image data which include scene, face and object datasets. The datasets
used are 8 Sports Event Categories dataset, Scene 15 dataset, Extended YALE
Face dataset and COIL-20 object dataset. In the 8 Sports Event Categories
and Scene 15 datasets, we use block-based Local Binary Patterns [14] as image
descriptor. For these two datasets, the number of blocks is set to 10 × 10 and
the LBP descriptor is the uniform one having 59 features. For the face datasets,
due to the small size of the face images, we use image raw brightness as image
descriptor.

4.1 Datasets

8 Sports Event Categories Dataset: The 8 sports event categories dataset
[11] is provided by Li and Fei-Fei. This dataset contains 8 sports event cate-
gories: rowing (250 images), badminton (200 images), polo (182 images), bocce
(137 images), snowboarding (190 images), croquet (236 images), sailing (190
images), and rock climbing (194 images). These images are high-resolution. We
use 130 images in every category, The total number of images is 1040 images.
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We randomly select 50% and 70% of data as the training set and use the remain-
ing 50% and 30% of data as the test set.

Scene 15 Dataset: Scene 15 dataset [10] contains 4485 gray images of 15
different scenes including both indoor scenes and outdoor scenes. The dataset
does not provide separated training and test sets. We use 130 images in every
category. The total number of images is 1950 images. We randomly select 50%
and 70% of data as the training set and use the remaining 50% and 30% of data
as the test set.

Extended YALE Face Dataset: The cropped version that contains 38 indi-
viduals has been used in our experiments. The images of the cropped version
contain illumination variation and facial expression variation. The images are in
gray scale, and we have rescaled them to 32 × 32 pixels in our experiments. We
use a subset of the database containing 50 images for each person, and randomly
select 20% and 40% of data as the training set and use the remaining 80% and
60% of data as the test set.

COIL-20 Object Dataset: This dataset (Columbia Object Image Library) [13]
consists of 1440 images of 20 objects. Each object has 72 images corresponding
to 72 rotations of the object, where the rotation angle between two images is 5
degrees. We use a subset of images containing 70 images for each object, and
randomly select 10% and 20% of data as the training set and use the remaining
90% and 80% of data as the test data.

4.2 Experimental Setup

We compare the proposed framework with several state-of-the-art algorithms:
Flexible Semi-Supervised Embedding algorithm (FSSE) [4], Manifold Regu-
larized Deep Learning Architecture Algorithm (MRDL) [19], Kernel Flexible
Model Embedding (KFME) [5], Joint Embedding Learning and Sparse Regression
(JELSR) [7], Supervised Laplacian Eigenmaps (SLE) [15], Semi-Supervised Dis-
criminant Analysis (SDA) [2], Semi-Supervised Discriminant Embedding (SDE)
[18], LLE [16]. All the above methods provide data embedding except the KFME
method which is a label propagation method. Once the embedding is com-
puted data are classified in the obtained space using the Nearest Neighbor
Classifier (NN).

In Sect. 2.2, we have briefly introduced the MRDL algorithm. It is used with
two layers in our tests. Besides, Sect. 2.2 proposed a kernel sparse algorithm for
acquiring similarity matrix S which is also used in our paper. We use the nor-
malized graph Laplacian matrix L = I − D− 1

2 SD− 1
2 . For the JELSR and FSSE

methods, we use two types of graphs: the classic KNN graph and the kernel sparse
graph of [19] to compare the performance of the different graphs. The proposed
method has three balance parameters: λ, μ and γ. We set each parameter to a
subset of values belonging to {10−3, 10−2, 1, 10−1, 1, 101, 102, 103, 106, 109}. We
then report the top-1 recognition accuracy (best average recognition rate) of all
methods from the best parameter configuration. All results are obtained with
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ten random splits of the data into a train set and a test set. For train sets, two
different percentages are considered for every dataset.

According to [7], JELSR algorithm is used for unsupervised feature selection
by computing the scores of all features. It also can be used for graph-based
embedding.

4.3 Method Comparison

The performance of the different competing methods are summarized in Table 1.
The results correspond to 4 different datasets and different train data percent-
ages. These results correspond to an average over 10 random splits.

Figure 1 depict the average performance of the competing methods (KFME,
LLE, JELSR, MRDL, SSFE and proposed algorithm (FDEFS)) as a function of
the number of non-linear features. These figures respectively correspond to the
8 Sports and Scene 15 datasets. The KFME algorithm does not depend on the
feature dimension since it is a label propagation method. Indeed, the maximum
dimension of SDA method is given by C − 1, where C is the number of classes.

Table 1. Best average recognition rate (%) obtained on the 8 Sports Event and Scene
15 dataset using 10 random splits with two different percentages for the training part.

Dataset 8 Sports event Scene 15 dataset Extended Yale BCOIL-20

Method P=50%P=70%P=50%P=70%P=20%P=40%P=10%P=20%

LLE 54.92 59.10 44.26 47.42 91.47 95.75 91.81 94.71

SLE 51.40 50.90 50.48 50.65 83.20 93.39 82.03 88.56

SDA 63.46 66.06 61.52 63.73 89.96 96.54 95.33 98.07

SDE 51.98 55.96 46.10 48.07 85.92 92.76 89.10 95.33

MRDL 51.77 52.85 46.59 47.91 76.78 78.97 88.00 88.86

KFME 62.58 65.03 60.89 63.74 90.39 92.85 96.98 98.56

JELSR 55.92 57.60 51.83 58.59 85.31 90.13 93.80 96.88

JELSR (KNN) 52.46 55.48 41.37 44.24 75.03 84.54 85.48 93.01

FSSE 64.72 67.18 64.78 68.17 93.71 98.31 93.60 97.83

FSSE (KNN) 50.96 63.24 50.96 55.62 93.36 98.18 86.19 93.61

Proposed algorithm67.04 69.97 67.26 70.36 93.88 97.53 95.47 98.76

From the obtained results depicted in the previous tables and figures, we can
draw the following conclusions:

– Our proposed algorithm has achieved very good performance in all four
datasets: 8 Sports Event Categories Dataset, Scene 15 Dataset, Extended
YALE Face Dataset and COIL-20 Object Dataset. For the first two dataset
the superiority of the proposed method is obvious. This can be explained by
the fact the use of Graph Convolution principle in the regression function can
tackle the class high variability.
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The proposed method was slightly outperformed by KFME on COIL-20
dataset corresponding to the 10% train data experiment and FSSE on
Extended YALE dataset corresponding to the 40% train data experiment.

– By inspecting the results obtain by FSSE, FSSE (KNN), JELSR, JELSR
(KNN), we can see that the kernel sparse graph used in graph smoothness
has significantly improved the performance of the same frameworks that use
the classic KNN graph.

– From Fig. 1, we can observe that by increasing the feature dimension the
rate cannot be improved. In fact, the highest rate always happen with very
few features indicating that the proposed method has achieved a very good
dimensionality reduction.
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Fig. 1. Recognition accuracy vs. feature dimension for 8 Sports Event Categories
Dataset and Scene 15 Dataset. Test samples per class were 50%. The classifier used
was 1-NN.

5 Conclusion

We proposed a framework for discriminative non-linear Graph-based embedding
with Spectral Graph Convolutions Structure. This framework can solve the over-
fitting on local neighborhood structures for graphs. The framework combine
with many criteria: manifold smoothness, Margin Discriminant Embedding and
regression with Graph Spectral Convolutions. Experiments on scene, face and
object image datasets have shown the outstanding ability of the model with
superiority with respect to many competing algorithms.

Future work will investigate two directions. On the one hand, we will consider
other varieties of regression, even sparse regression. On the other hand, we will
explore more effective Graph Spectral Filter or polynomial expansion algorithm.
Moreover, the algorithm could be used for more types of data, such as social
networks, citation networks, knowledge graphs and many other real world graph
datasets.
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Abstract. Genetics has known an extraordinary development in the last
years, with a reduction of several orders of magnitude in the costs and
the times required to obtain the sequence of nucleotides corresponding to
a whole genome, leading to the availability of huge amounts of genomic
data. While these data are essentially very long strings, several graph-
based representations have been introduced to perform efficiently some
operations on a single genome or on a set of related genomes. In this paper
we will review the most important types of genetic graphs, together with
the algorithmic challenges and open issues related to their use.

Keywords: Graph representation of genomic data · Sequence graphs ·
De Bruijn graphs · Genome graphs

1 Introduction

Deoxyribonucleic acid (DNA) encodes genetic instructions used in the growth,
development, functioning and reproduction of any organism. DNA molecules,
called chromosomes structured as two twisted strands of nucleotides arranged
in a double helix form. Each DNA strand is composed of four kinds of nitrogen-
based nucleotides: Cytosine, Guanine, Adenine and Thymine (shortened as C, G,
A and T). Two separate strands are bound together according to base pairing
rules: A with T and C with G. Thus, given the sequence of one strand, the
complementary sequence of the other one can be automatically derived. The
length of a DNA sequence is measured in base pairs (bp).

The era of DNA sequencing begun in 70s when F. Sanger developed a
reliable method based on the DNA polymerization chain-termination concept,
where a DNA strand is broken in several fragments, called reads (usually 300bp
to 1000bp), and each of them is decoded using a sequential process. In the
early 2000s Next Generation Sequencing (NGS) approaches (also known as
c© Springer Nature Switzerland AG 2019
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High Throughput Sequencing) were proposed, where many short reads (50bp
to 250bp) are produced and analyzed in parallel, reducing per-base costs and
computational time dramatically (nowadays, a whole human genome can be
sequenced in 44 h with a cost of about $1000).

Many genome analysis techniques use a data representation based on graphs:
sequencing and alignment are two important examples. In this paper, after a brief
introduction to the different DNA analysis problems (Sect. 2), we will describe
the most important types of graphs that are used for supporting the solution of
these problems (Sect. 3) and will provide a short overview of the tools adopting
these graphs (Sect. 4). Then we will discuss about the challenges and open issues
in Sect. 5.

2 DNA Analysis Problems

2.1 Genome Assembly

Sequencing machines (both those based on Sanger’s approach and those adopting
NGS) produce a large set of overlapping reads, that are subsequences of the
desired chromosome sequence of bases; these reads are relatively long for Sanger’s
method, and much shorter (even 50bp) for NGS. NGS machines, additionally,
produce reads from both strands of DNA at the same time, thus adding the
complexity of attributing each read to the correct strand.

The first step to be accomplished in order to reconstruct the whole genome,
is the composition of all the reads into a single sequence; this process is known
as assembly. The assembly problem has to variants: the first, called de novo
assembly, can only use the information obtained from the reads. This is the case
when the DNA of a species is sequenced for the first time. The other variant is
resequencing : a reference genome for the same species is available, and is used to
guide the choices of the sequencing algorithm. A subtask of resequencing is the
matching of a read with one or more reference genomes: this is called mapping.

As detailed in [2,18], the most adopted schemes for de novo assembly, and
many schemes for resequencing, are based on some graph representation.

2.2 Sequence Alignment

Given two sequences, Sequence Alignment is the process of finding the corre-
spondence between their positions that minimizes the number of edit operations
required to eliminate the differences between the two sequences. A generalization
to more than two sequences is called Multiple Sequence Alignment (MSA).

Exact alignment algorithms exist (e.g. Smith and Waterman’s), but their
complexity is O(NM) (N and M are the lengths of the two sequences); thus
they are not practically applicable to large genomic data.

Suboptimal solutions can be found by indexing either the query or target
set of sequences to efficiently obtain patterns of exact matches; with the gen-
erated indices, candidate sub-regions can be quickly found and examined for
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more sensitive alignment. This intuition is at the basis of the two famous align-
ment algorithms FASTA and BLAST. In recent approaches, especially for MSA
problems, graphs-based data structures like De Bruijn and Cactus graphs (see
Sect. 3) have been successfully used [4,19].

2.3 Variant Calling and Pangenomics Analysis

Given a population of individuals belonging to the same species, their genomes
have small differences. Variant Calling is the process of determining, for each
individual, the set of variations with respect to a reference genome. Competition
fostered by the 1000 Genome Project [17] encouraged the development of variant
calling algorithms based on a variety of principles.

An efficient representation of the whole population (the pangenome) is the
starting point for more complex kinds of analysis, related to the population or to
the species as a whole, that form the domain of pangenomics [1]. Several recent
approaches advocate for the use of graphs for representing a set of genomes
[5,13].

3 Graph-Based Representation for DNA Sequences

3.1 Overlap Graphs

The starting point for defining an overlap graph is a set of segments S =
s1, . . . , sn, where each segment contains a string of nucleotides obtained by a
read. The segments in general do not have the same length.

Given two segments s and t, the maximal proper overlap ov(s, t) is defined
as the longest string y such that s = x|y and t = y|z, where | is the string con-
catenation operator, and x and y must be non-empty strings. An error-tolerant
version can be defined for taking into account a small number of reading errors;
this function can be easily computed using dynamic programming.

An overlap graph is a directed graph G = (V,E) which has n nodes
v1, . . . , vn ∈ V , each labeled with a segment l(vi) = si. Two nodes vi and vj
are connected with an edge eij ∈ E if and only if:

k = |ov(si, sj)| > τ (1)

where τ is a suitably defined threshold. The edge is labeled with l(eij) = k.
Overlap graphs have been used in one of the earliest graph-based sequencing

approaches, named Overlap-Layout-Consensus (OLC, [6]). They have been the
standard sequencing algorithm for projects adopting Sanger sequencing method,
that produces a (relatively) small number of long segments (e.g. the Human
Genome Project worked with 150 kb segments).

In OLC, sequencing hypotheses are generated as maximal Hamiltonian paths
inside the overlap graph, i.e. paths that traverse each node at most once, usually
with additional constraints derived from additional knowledge about the problem
(e.g. certain edges must be present in the path). Since the Hamiltonian path
problem is known to be NP-Hard, heuristics are used to find a solution in an
acceptable time.
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3.2 String Graphs

Overlap graphs are a suitable representation for information coming from first
generation sequencers, but they have some problems with the Next Genera-
tion Sequencing approach. First, the NGS sequencers obtain samples from both
strands of DNA, thus each segment must be considered equivalent to its reversed
complement (e.g. the segment ATATCGA must be considered equivalent to
TCGATAT, obtained reversing the segment and replacing every base with its
paired one). A second issue is that the length of the segments is shorter, and
this creates a problem with repeated sequences: the overlap graph cannot rep-
resent unambiguously repetitions whose length is greater than the length of the
segments covering them.

The string graph, introduced by Myers in 2005 [11], is an attempt at modi-
fying the overlap graph for taking into account these problems.

In the string graph, for each segment there are two nodes, representing the
endpoints of the segment. The nodes are connected by directed edges, which
are associated to sequences of nucleotides; an edge can be also traversed in
the reverse direction, and in that case it represents the reversed complemented
sequence. The overlaps between segments are represented by additional edges
linking their endpoints.

An additional information associated to each edge is its multiplicity, which
is inferred in a preprocessing step from the analysis of the frequencies of obser-
vations of each segment, compared with a probabilistical model of sequence
repetitons.

In this way, the string graph can represent in an unambiguous way all the
information that is obtained from a NGS sequencer. The assembly is performed
by looking for a modified form of Eulerian paths in the graph (i.e. paths that
traverse the edges in the graphs with constraints on the minimum and maximum
number of times each edge is traversed). This is a problem that can be solved
in polynomial time (in the worst case, the time is quadratic with respect to the
number of edges). Furthermore, an important property of string graphs is that
every path is read coherent, i.e. it represents a valid assembly of the obtained
reads; other types of graphs (e.g. the De Bruijn graphs) lack this property, and
thus require additional computational steps to filter out incoherent paths.

3.3 De Bruijn Graphs

Properly called De Bruijn graphs are a formal tool introduced in the 1940s
to solve the mathematical problem of finding the shortest string containing all
the possible substrings of length k over a given alphabet. Since this problem
has similarities to the sequencing problem, and the solution based on De Brujn
graphs is quite effective, a slightly modified version of these graphs has been
introduced in the late 1990s for DNA data [14].

De Bruijn graphs, or DBG, are based on k-mers, which are substrings of
length k of a read. Dividing the reads into k-mers is not expected to cause a
significant loss of information with NGS sequencers, since they produce reads
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that are already short, and with a very small per-base error probability (so each
k-mer is almost certainly correct). The advantage of working with k-mers is
that they can be efficiently encoded (e.g. with a single 32 bit word for k = 16),
allowing the use of fast binary operations for comparing and manipulating them.

For a given k, the nodes in a De Bruijn graph are associated to the (k − 1)-
mers found in the reads. For each k-mer s in the reads, a directed edge (v1, v2)
is added to the graph between the node v1 containing the first k − 1 bases of
s, and v2 containing the last k − 1 bases of s. For example, if k = 4 and s =
ATAG, an edge is added between the node ATA and the node TAG. In some
variants (colored DBG) additional information is added to the edges to represent
the frequency of a k-mer.

Once the DBG has been built from a set of reads, the sequencing problem can
be solved using Eulerian paths that, as mentioned in the previous subsection,
can be found with fast algorithms. Unfortunately, while the correct sequencing
is represented by a Eulerian path in the DBG, not every Eulerian path yields a
valid sequencing; additional heuristics are used to filter out unvalid paths.

3.4 Genome Alignment Graphs

For the problem of (Multiple) Sequence Alignment described in Sect. 2.2, align-
ment graphs have been proposed as a suitable representation by [15]. An align-
ment graph Ga has a node for every base in each of the sequences being aligned.
Two nodes belonging to different sequences are connected by an undirected edge
if an alignment has been established between the corresponding bases. Also, the
graph nodes have a partial ordering relation ≺, with v1 ≺ v2 iff they are in the
same sequence and v1 precedes v2.

A more compact representation of an alignment is provided by base graphs,
that can be constructed from alignment graphs: a base graph Gb has a node for
each connected component of Ga; thus a node vb in Gb represents a set of nodes
in Ga. A directed edge (vb

1, v
b
2) is added to Gb if there are two Ga nodes, n ∈ vb

1

and m ∈ vb
2, such that n ≺ m.

Enredo graphs are a generalization of alignment graphs to manage bidirec-
tional alignments; a further extension of Enredo graphs are the Cactus graphs
[12], whose nodes correspond to tree-like substructures in the base graph.

3.5 Tiled Graphs and Sequence Graphs

After the Multiple Sequence Alignment has been performed for the genomes of
a set of individuals, a compact graph-based representation of the genomes of the
considered population (the so-called pangenome) can be constructed, avoiding
the repetition of the parts common to several individuals. This is useful to effi-
ciently compare a new genome with those of the whole population (pangenome
alignment) and for other genetic investigations.

The first graph-based representation of a pangenome has been the tiled graph
[16]. In a tiled graph, the aligned genomes are broken into small, fixed-size pieces
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(tiles), which are associated to the nodes of the graph. A tile that is present in
several genomes is only represented once in the graph. However, if the same
subsequence is present at several positions in a genome, it is represented by
different nodes. A directed edge (v1, v2) is added if in at least one of the genomes,
the tile associated to v1 is followed by the one of v2. The resulting graph is
directed and acyclic.

The main inconvenient of tile graphs is the inefficiency related to the fixed
tile size: if the size is too small, a large number of nodes is required, even in
long parts of the pangenome that are common to the whole population; on the
other hand, whenever the genomes differ in a position (even by a single base),
the whole tile has to be duplicated, and this lead to an inefficient redundancy
when the tiles are large.

Sequence graphs [1] overcome the limitations of tiled graphs, by associating
variable-length sequences of bases to each node. Thus, long subsequences that are
common to all the members of the population are represented by a single node in
the graph. On the other hand, when there is a single-base variation in a certain
position (a so-called Single-Nucleotide Polymorphism), the corresponding node
only contains the changed base. Directed edges represent the adjacency relation,
in a similar way to tiled graphs.

The simplest form of sequence graph is the sequence DAG (Directed Acyclic
Graph). In this kind of sequence graph, the repetition of subsequences in a
genome (a phenomenon known as Copy Number Variants) requires the dupli-
cation of nodes. In the general (cyclic) version of the sequence graphs, these
repetitions can be represented by introducing cycles in the graph (see Fig. 1 for
an example).

Fig. 1. An example of a cyclic sequence graph.

3.6 Variation Graphs

Variation graphs [5] have been recently introduced as a representation for
pangenomes, and can be considered as an extension of sequence graphs.

A variation graph G = (V,E, P ) is composed of three entities:

– a set V of nodes; a node v is associated to a sequence seq(v) of bases; however
a node can be traversed also in the reverse direction, and in this case it
represents the complemented reversed sequence; we will denote as v the node
v in the reverse direction;
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– a set E of directed edges; also edges can be traversed in the reverse direction,
and the reversal of (v1, v2) is equivalent to edge (v2, v1); a variation graph
can contain reversing edges (edges like (v1, v2)), self-loops (edges like (v, v))
and reversing loops (edges like (v, v));

– a set P of paths; each path in P correspond to one of the genomes used to
build the graph; the addition of this information makes possible the precise
reconstruction of the original genomes, which otherwise would not be possible.
Paths are also used in the implementation of edit operations on variation
graphs.

A variation graph retains all the information present in the original collection
of genomes, and can represent in a compact way all the kinds of variations (for
instance, an individual may have a copy of a subsequence that is reversed with
respect to the other individuals).

4 Graph Based Tools for Genome Analysis

In this section we overview the most relevant tools leveraging an internal graph
representation for addressing genome read mapping and processing.

In the context of mapping, GenomeMapper [16] is one of the first effective
tools supporting simultaneous mapping of short reads against multiple genomes
by integrating several genomes into a single graph structure. Besides the efficiency
improvement, authors have demonstrated also a reduction in the reference bias.
Limasset et al. [7] have proposed an approach relying on a pipeline called GGMAP
(GreedyGraphMAPping).The novelty of the contribution is the procedure tomap
reads on branching paths of the graph, that exploits a custom designed heuristic
algorithm called BGREAT (de Bruijn Graph REAd mapping Tool). The GGMAP
approach has shown the ability to map millions of reads per CPU hour on a De
Bruijn graph built from a large set of human genomic reads. In [8] Liu et al. have
introduced the de Bruijn Graph-based Aligner (deBGA), a graph-based seed-and-
extension algorithm to align NGS reads to a reference genome, organized and
indexed using a De Bruijn graph. deBGA has proven to obtain good sensitivity and
accuracy without penalizing speed, thanks to the advanced handling of repeats.

Maciuca et al. [9] propose Gramtools, using a form of Sequence DAGs for
representing a pangenome, with the addition of indexing structures based on
the FM-index. This approach is simple and allows for a linear-time indexing of
the pangenome, but it still presents a query time that is 100 times slower than
competing methods. Eggertson et al. have proposed the tool GraphTyper [3],
that uses a standard short read aligner to align Illumina reads against the ref-
erence genome. Whereas alignments present soft clips and apparent differences
from the reference, they are matched to a sequence DAG built from the ref-
erence and variant calling data. GraphTyper uses the graph reference system
internally to improve algorithm performance, but the results are projected back
into the linear reference. The method has efficient and accurate performance
on exceptionally large resequencing problems, justifying its utility of the graph
realignment approach.
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In recent times, there is an increasing trend in using haplotype information
to retrieve the constrained sequence search space of a graph-based reference
genome. This is the case of CHOP [10], a path indexer for graphs that incorpo-
rates haplotype-level information to constrain the resulting index. It decomposes
the graph into a set of linear sequences, so that reads can be aligned by estab-
lished methods, such as BWA or Bowtie2. The approach enables typical sequence
aligners to perform read alignments to graphs that store any type of variation.
The method can achieve increased sensitivity for variation detection by itera-
tively integrating variation into a graph and can be applied to large and complex
datasets (the authors apply it on a graph-based representation of chromosome
6 of the human genome encoding the variants reported by the 1000 Genomes
Project). CHOP, on the other hand, can only use short-range haplotype infor-
mation in read mapping.

5 Main Issues and Challenges for Use of Graph for DNA
Analysis

The open problems related to graphs in genomics are essentially of three kinds:
first, finding an efficient representation for the graphs; second, improve the algo-
rithm performance, both in terms of speed and in terms of accuracy; third,
develop new operations that work on the graphs as a whole.

Regarding the first problem, consider that the graphs used in genomics have
typically at least hundreds of millions nodes. The data coming out of a sequencer
for a single human genome are around 200 Gb, and if the graph must preserve all
the information in the reads (as is required for some problems, such as de novo
alignment), you have to keep this information, even if it is redundant (the same
part of the sequence is covered by several reads); furthermore you have to add
the edges to the graph, and usually you need some kind of index data structure
to quickly find the nodes containing a given substrings. Since it is important to
ensure that the whole graph can fit in RAM (not on a typical workstation; you
need to have a well endowed cluster, with, say 256 Gb of memory), a significant
reasearch effort is being directed at techniques of graph compression that reduce
the size of the graph without loosing information (or too much of it).

The second problem is related to the fact that the main graph-related tasks
(mapping and alignment) are performed using heuristic algorithms with no guar-
antee of optimality. For instance, mapping uses index structures to quickly search
a string of bases within the nodes of the graph; however, these indices often have
problems when the string is present but split between two adjacent nodes. This
may cause a false miss that would not have happened if the string were matched
against a linear reference genome. Also, exact matching is a problem when the
read is affected by errors (which are more common in NGS sequencers). The chal-
lenge here is both to provide new heuristic algorithms or index data structures
that can improve the precision of the mapping, and to make these algorithms
faster, so as to be applicable to larger graphs (e.g. pangenomes derived from
larger populations). Regarding the speed, some of the existing tools are able
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to use a limited parallelism, assuming a shared memory architecture. One chal-
lenging question is if they can be modified to support a massively distributed
processing model, like the Map-Reduce paradigm made popular by Google.

The third problem is related to the fact that many operations still rely on
the conversion of graph data into another format so as to be able to use estab-
lished algorithms, because of the lack of corresponding algorithms defined in the
space of the graphs. For example, a genome graph can be constructed from a set
of genomes; however, if we have two genome graphs, with the actual tools the
only way to join them so as to represent the union of the two populations is to
reconstruct the original sequences from the two genome graphs and then re-run
the graph building algorithm from scratch. Also, while there are tools for com-
paring an individual with a population represented by a genome graph, there are
not yet established tools for comparing two populations. Two examples of graph
operations that have been successfully applied in other fields are the subgraph
isomorphism and the computation of graph edit distance. While for both these
operations there are heuristic algorithms, none of them appear currently to be
able to support such large graphs. If is it possible to devise such algorithms, is
another open question for the research community.

6 Conclusions

DNA data are becoming increasingly easy to obtain in large amounts, and their
processing is important for several emerging applications in medicine and biology.
While DNA data are essentially strings, non-linear, graph-based representations
have been used for several years for problems like the sequencing and the align-
ment, and are becoming very important for applications where populations (as
opposed to single individuals) have to be considered.

We have reviewed the more important kinds of graphs, highlighting how and
why they are used in genomic research, and discussing the open issues and chal-
lenges for the future. More compact representations, faster and more accurate
algorithms, but especially the possibility of operating on the graph structures as
a whole, may contribute to build the future fundamental tools of new research
fields like pangenomics.
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