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Preface

The 12th WISTP International Conference on Information Security Theory and Prac-
tice attracted research contributions covering theoretical and practical aspects of
security and privacy. Technical concepts from machine learning to real-world security,
provide a global vision of current cybersecurity concerns.

This volume contains the papers presented at WISTP 2018 held during December
10–11 in Brussels.

There were 45 submissions. Each submission was reviewed on average by 3.1
Program Committee members. The reviewing was double-blind, with the identities
of the authors not revealed to the reviewers of the papers and the identities of the
reviewers not revealed to the authors, with some papers leading to intense discussions.
The committee decided to accept 11 papers, yielding a 24% selection rate, together
with two additional short papers. The program also included three invited talks by
Amandine Jambert, Emil C. Lupu, and Damien Vergnaud.

Two papers received extra praised: “First Deep Learning Application in Security
and Privacy – Theory and Practice: A Position Paper,” received the best Student Paper
Award, and “Efficient Information Theoretic Multi-Party Computation from Oblivious
Linear Evaluation.”

We would like to thank the General chairs (Jean-Michel Dricot, Olivier Markowitch,
Yves Roggeman from ULB, Belgium) and the local organizers (Gaurav Sharma,
Rajeev Anand Sahu, Dimitrios Sisiaridis, Suman Bala, Tania Ellinidou from ULB,
Belgium).

We thank all the authors and participants who contributed to make this event a great
success, the Technical Program Committee members and additional reviewers who
worked on the program, and the volunteers who handled aspects of the organization
behind the scenes. We greatly appreciate the input from members of the WISTP
Steering Committee, whose help and advice was invaluable, and the support of
IFIP WG 11.2: Pervasive Systems Security.

And we also want to thank our various sponsors (Centre for Cyber Security,
Belgium; Fédération, Wallonie-Bruxelles, Belgium; IDfix), whose support helped to
keep the registration costs as low as possible and at the same time allowed us to provide
best paper awards and social activities to increase the networking opportunities. We
also look forward to working together again in future WISTP events.

December 2018 Olivier Blazy
Chan Yeob Yeun
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Blockchain and the GDPR: A Data
Protection Authority Point of View

Amandine Jambert(B)

C.N.I.L. - Commission Nationale de l’Informatique et des Libertés, Paris, France
ajambert@cnil.fr

Since the publication, in 2009, of the blockchain founding article by Nakamoto
[3] more and more solutions rely on this architecture. In the process an increasing
number of solution process personal data stored on this type of decentralized
database. In this context the property of undeniability (i.e. once data is recorded,
it cannot be altered or removed) of such solutions raise questions regarding how
to assure compliance to GDPR. The French Data protection authority, the CNIL,
received numerous requests from both the public and the private sector regarding
blockchain projects and GDPR [1]. She thus addressed the matter in November
2018 through a publication on its website [2].

The objective of this talk was to give the main key points of the GDPR, to
underline how they can apply in the blockchain context and finally to show how
we hope for cryptographic techniques to solve part of the problems.

1 How Do the GDPR and Blockchain Interact?

When a blockchain contains personal data, such as public keys of individuals or
personal data stored “within” a transaction, the GDPR may be applicable as it
implies the processing of personal data. The second criteria for applicability will
be whether the processing is performed by controllers or processors established
in the EU or aiming at EU residents. Finally, this legal framework is applicable
to any processing of personal data by a legal person or by a natural person not
acting in the course of a purely personal or household activity. Thus, the GDPR
is applicable to processing on blockchain in a wide array of cases.

Furthermore, some classical blockchain properties, especially transparency
(i.e. all participants can view all data recorded) and undeniability, may have
impacts on individual rights (namely, the right to privacy and the right to per-
sonal data protection) which calls for a specific analysis.

In consequence, the CNIL suggests the following initial analysis and rec-
ommendations to stakeholders who wish to use blockchain when carrying out
personal data processing.

We consider in this short paper only the cases of processing on the blockchain
using the payload to store personal data.

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
O. Blazy and C. Y. Yeun (Eds.): WISTP 2018, LNCS 11469, pp. 3–6, 2019.
https://doi.org/10.1007/978-3-030-20074-9_1
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4 A. Jambert

2 Which Points Require Particular Attention?

Blockchains are a technology, not a processing in itself. In consequence the ques-
tions to be answered while processing data on a blockchain are similar to the
questions that would have been raised for any others processing. However, the
particular properties of the blockchain might interact with those obligations in
positive or negative ways.

2.1 Responsibilities

The first point of attention will be to determine a clearly defined purpose for the
processing using the blockchain and to clarify the responsibilities of the actors
involved.

Regarding the responsibilities, the work carried out by the CNIL has revealed
that, in many cases, the person deciding to register data on a blockchain can
be considered as a data controller given that the participant determines the
purpose (objectives pursued by the processing) and means of data processing
(data format, use of a given blockchain technology, etc).

The miners, or validators, of transactions including personal data on a
blockchain are not involved in the definition of the purpose, thus they would
not be considered as controller by the CNIL. Nevertheless they are still pro-
cessing data, they thus would be, at best, processors. Being a processor in the
GDPR implies numerous obligation stated in article 28 which might be difficult
in practice for public blockchain.

Thus for those last solutions, the CNIL is currently conducting an in-depth
reflection on the matter and promotes the development of solutions to address
contractual relations between participants/data controllers and miners.

2.2 Risk Minimization

The second point can be summed up as the minimization of risks for data sub-
jects when their data are planned to be used in a processing carried out on a
blockchain. In some cases, these technologies are likely to raise issues regarding
the GDPR or to put unnecessary high risks on individuals. Therefore, it is neces-
sary to balance, from an early stage, the needs of using a blockchain rather than
another technology with the objectives and characteristics of each processing.
In addition to questioning the use of a blockchain, the data controller must also
question which type of blockchain, either a public or a permissioned blockchain
(as defined in [5]) should be used and how it will be used to limit the risks on
individuals.

f blockchain properties are not required in order to meet the purpose of
the processing, the CNIL recommends favouring other solutions that allow for
fullcompliance with the GDPR.-Permissioned blockchains should be favoured
as they allow a better control over personal data governance, in particular as
regards transfers outside of the EU.-The requirement for appropriate safeguards
for transfers outside the EU, such as binding corporate rules or standard con-
tractual clauses, are entirely applicable to permissioned blockchain.
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2.3 Data Subject’s Rights

The third point of attention concerns the exercise of rights. Some of them can
be exercised effectively such as the right of access and the right to portability.
Others, like the right to erasure, the right to rectification and the right to object
to processing, are not straightforward. In those cases, the CNIL acknowledges
the existence of technological solutions that should be evaluated.

2.4 Miscellaneous

Finally, while not covered here, actors need to be as cautious as possible
regarding the implementation of obligations concerning sub-contracting and the
rules governing international transfers of personal data, in particular for public
blockchains.

3 What Are the Technical Solutions Considered?

We can define the data manipulated on a blockchain as two categories: the
identifiers (i.e. the public keys of participants) and the payload which is used in
numerous processing on blockchain.

The architecture of most blockchain needs the identifier to be visible to func-
tion, thus the CNIL considers that those data, in those cases, can not be further
minimized and that their retention period will be in line with the blockchain life.

On the contrary, the payload format is chosen by participants independently
to the blockchain architecture. The Privacy by Design principle (Article 25 of the
GDPR) requires the data controller to choose the format with the least impact
on individuals’ rights and freedoms.

The CNIL considered different cryptological solutions to answer the chal-
lenge, from perfectly hiding commitment, as defined in [4], to secure encryption.

As the most protective format, the CNIL considers that personal data should
be preferably registered on the blockchain as a commitment. The choice of a
perfectly hiding commitment scheme would ensure that, upon erasure of the
witness and the data committed (both kept off the blockchain), it would no
longer be possible to prove or verify which information have been committed.
The commit would be considered, by the CNIL, has anonymized in such a way
that it can no longer be considered personal data.

If this is not possible, one may use a hash of the data generated using a
keyed-hash function, or, at least, a ciphertext.

Excluding the specific case of perfectly hidding commitment, those solutions
do not provide a perfect erasure of the data, insofar as the data would still exist
in the blockchain and might be recovered in a distant future depending on crypt-
analysis advances. However, the CNIL observes that they are partially answering
the problem of giving an effective exercise of the right of erasure. Nevertheless,
their acceptability for what concerns the requirements of the GDPR should still
be evaluated.
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The common feature underlying some of these solutions is to store any data in
cleartext outside of the blockchain (such as, for example, on the data controller’s
information system) and to store on the blockchain only a proof of existence of
the data (e.g. commitment, hash generated from a keyed hash function, etc.). It
is technically impossible to grant the request for rectification or for erasure made
by a data subject when cleartext or hashed data is recorded on a blockchain.
It is therefore strongly recommended, from a GDPR point of view, not to reg-
ister personal data in cleartext on a blockchain, and to use one of the others
cryptographic solutions mentioned above.

Nevertheless, if no other solution is applicable, and when justified by its
purpose, a DPIA can be carried out to evaluate whether the risk of storing the
information either as a simple hash or in cleartext would be acceptable. If the
conclusion are that risks on data subject are minimal then it can be exceptionally
envisaged. For example when a data controller have the legal obligation to make
some information public and accessible, without a retention period, the storage
of personal data on a public blockchain can be envisaged, provided that the
DPIA concludes that the risks for data subjects are minimal.

4 Conclusion

Blockchains raise numerous challenges in terms of compliance with human rights
and fundamental freedoms that can be partially answered by technical solution.
Nevertheless, it still call for a response at the European level. As one of the first
authorities to officially address the matter, the CNIL will work cooperatively
with its European counterparts to suggest a strong and harmonised approach.
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Secure Outsourcing
in Discrete-Logarithm-Based

and Pairing-Based Cryptography
(Invited Talk)

Damien Vergnaud1,2(B)

1 CNRS, Laboratoire d’Informatique de Paris 6,
Sorbonne Université, LIP6, Paris, France

damien.vergnaud@lip6.fr
2 Institut Universitaire de France, Paris, France

Abstract. Cryptographic operations are performed everywhere, from
standard laptop to smart cards. Some devices computational resources
can be very limited and it is natural to delegate costly operations to
another device capable of carrying out cryptographic algorithms. In this
setting, it is obviously important to ensure the limited device that the
computation is carried out correctly and that the powerful device does
not learn anything about what is actually computing (including the
secret inputs and outputs). We briefly review the recent advances on
secure outsourcing of group exponentiation (in groups of known prime
order as well as in groups of unknown order) and pairing computation.

1 Introduction

Many widely used public-key cryptographic systems and protocols relies on the
(supposed) computational hardness of the discrete-logarithm or the discrete-root
problems. The core operation of these cryptosystems is group exponentiation in a
finite Abelian group, i.e., computing ua from a group element u and an exponent
a. Besides, since their introduction in cryptography [4,15], pairings proved to be
an amazingly flexible and useful tool for the construction of cryptosystems with
unique features (e.g. efficient identity based cryptography [4]). In this setting,
the core operation is the computation of pairings which is the most expensive
operation in pairing-based cryptographic protocols.

We consider the problem of “outsourcing” group exponentiation and pairing
computation from a weak computational device to a more powerful one. Indeed,
some devices computational resources can be very limited and it is natural, as
most of the devices are online or directly connected to a powerful device (like
a SIM card in a smart phone) to securely delegate sensitive and costly opera-
tions to a device capable of carrying out cryptographic algorithms.Outsourcing
cryptographic computations is a classical problem which was formalized in [13]

c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
O. Blazy and C. Y. Yeun (Eds.): WISTP 2018, LNCS 11469, pp. 7–11, 2019.
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by Hohenberger and Lysyanskaya. In this scenario, the powerful device1 can,
potentially, be operated by a malicious adversary and it is obviously important
to ensure the limited device that the computation is carried out correctly and
that the powerful device does not learn anything about what is actually com-
puting (including the secret inputs and outputs).

2 Group Exponentiation

In the last 30 years, the question of how a computationally limited device may
outsource group exponentiation to another, potentially malicious, but much more
computationally powerful device has been a very active research topic (e.g. [3,
6,7,17,18,26]). Many solutions have been proposed and then cryptanalyzed in
follow-up papers (e.g. [7,14,21–24]). We briefly review the recent advances on
secure outsourcing of group exponentiation.

Recently, Chevalier, Laguillaumie and Vergnaud [7] proposed a taxonomy of
private exponentiation delegation protocols (to a single untrusted computational
resource) in groups of known prime order. Their taxonomy covers all the practical
situations: the group element u can be secret or public, variable or fixed, the
exponent a can be secret or public, and the result of the exponentiation ua can
also be either public or secret. They provided simple constructions in all different
settings and proved that these protocols cannot be significantly improved if
one wants to use a single untrusted computational resource and to limit the
computational cost of the delegating device to a small number of (generic) group
operations. Aguilar-Melchor, Deneuville, Gaborit, Lepoint and Ricosset later
showed [1] that using homomorphic encryption, it is sometimes possible to reduce
the computational costs for privately delegating elliptic-curve operations (but at
the cost of a very large communication complexity).

Another important use case is the setting of RSA exponentiation: a device
wants to delegate the computation of a signature given a public key (N, e), a
public message (or hash value of a message) m and the secret signing exponent
d. By outsourcing some exponentiations to a powerful device, the delegation
protocol outputs a (public) signature σ = md mod N . Most proposed protocols
are variants of two protocols (named RSA-S1 and RSA-S2) that were proposed
by Matsumoto, Kato and Imai in 1988 [18]. Both schemes use a random linear
decomposition of the RSA private exponent d. Several attacks were proposed
on the protocols RSA-S1 and its variants (e.g. [23]). Recently, Mefenza and
Vergnaud [19] proposed an improved lattice-based attack on RSA-S1 and a sim-
ple variant of this protocol that provides better efficiency for the same security
level. They also presented the first attacks on the protocol RSA-S2.

1 Hohenberger and Lysyanskaya also considered delegation protocols to two devices
that are physically separated (and do not communicate) that achieve security as
long as one of them is honest. Since this separation of the two devices is a strong
assumption hard to be met in practice, we consider only protocols to outsource
cryptographic operations to a single untrusted server.
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A cryptographic delegation protocol that does not ensure verifiability may
cause severe security problems (in particular if the computation occurs in the ver-
ification algorithm of some authentication protocol). Di Crescenzo, Khodjaeva,
Kahrobaei and Shpilrain [10] proposed recently private and verifiable protocols
in a large class of cyclic groups. In the presented protocols, the probability that
a cheating server convinces the client of an incorrect computation result can
be proved to be exponentially small (whereas previous best results could only
achieve a constant probability). Their protocols need some pre-computation
depending on the base u and cannot be used easily in practice if this group
element is variable. The different proposals for verifiable group exponentiation
where pre-computation does not depend on the base u are very inefficient and
it is actually better in practice to directly perform the computation on the
restricted device rather than using these solutions. A challenging problem is to
study secure and verifiable outsourcing protocols for group exponentiation that
covers all the practical situations as in [7].

3 Pairings

Pairings (or bilinear maps) were introduced in cryptography in 2000 by Joux [15]
and Boneh-Franklin [4]. A pairing is a bilinear, non-degenerate and computable
map e : G1 × G2 → GT where, in practice, G1 and G2 are subgroups (of prime-
order r) of the group of points of an elliptic curve defined over a finite field Fq

and some finite field extension Fqk (respectively) and the so-called target group
GT is the order r subgroup of Fqk . The pairing computation is more resource
consuming compared to a scalar multiplication on the elliptic curve E(Fq).

In 2005, Girault and Lefranc [11] introduced the first secure pairing delega-
tion protocol via the notion of Server-Aided Verification, which consists in speed-
ing up the verification step of an authentication/signature scheme. Chevallier-
Mames, Coron, McCullagh, Naccache and Scott [8,9] introduced the security
notions of verifiable pairing delegation protocol and proposed the first verifiable
pairing delegation protocol. Later in 2014, Canard, Devigne and Sanders [5]
improved their construction and proposed a much more efficient verifiable del-
egation protocol. Canard, Devigne and Sanders showed that their construction
is more efficient for the client than computing a pairing himself on the so-called
KSS-18 curve [16]. Later, Guillevic and Vergnaud [12] showed that Canard, Devi-
gne and Sanders protocol is actually less efficient than computing a pairing for
the state-of-the-art optimal Ate pairing on a Barreto-Naehrig curve [2] and it
remains open to propose an efficient verifiable delegation protocol for pairing
computation on these curves.

Due to the inefficiency of the known protocols for delegation of a unique pair-
ing, another approach is to propose efficient protocols when the client wants to
compute several pairings at the same time. In 2007, Tsang, Chow and Smith [25]
introduced the security notion of batch pairing delegation protocols and propose
the first verifiable batch pairing delegation protocols when the client wants to
compute several pairings e(Pi, Qi) where Pi ∈ G1 and Qi ∈ G2 for i ∈ {1, . . . , n}
and n ≥ 2. In [20], Mefenza and Vergnaud recently proposed four new efficient
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batch pairing delegation protocols in different settings but it remains open to
construct a generic verifiable batch pairing delegation protocol when both inputs
of the pairing are variable and secret. Another interesting open problem is to
provide lower bounds on the efficiency of verifiable pairing delegation protocols
(as it was done in [7] for private delegation of group exponentiation).
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Abstract. Kleptography is a study of stealing information securely and
subliminally from black-box cryptographic devices. The stolen informa-
tion is exfiltrated from the device via a backdoored algorithm inside an
asymmetricaly encrypted subliminal channel. In this paper, the kleptog-
raphy setting for the TLS protocol is addressed. While earlier proposals
of asymmetric backdoors for TLS lacked the desired properties or were
impractical, this work shows that a feasible asymmetric backdoor can be
derived for TLS. First, the paper revisits the existing proposals of klepto-
graphic backdoors for TLS of version 1.2 and lower. Next, advances of the
proposal by Go�l ↪ebiewski et al. are presented to achieve better security
and indistinguishability. Then, the enhanced backdoor is translated both
to TLS 1.2 and 1.3, achieving first practical solution. Properties of the
backdoor are proven and its feasibility is demonstrated by implement-
ing it as a proof-of-concept into the OpenSSL library. Finally, perfor-
mance of the backdoor is evaluated and studied as a tool for side-channel
detection.

Keywords: Asymmetric backdoor · Cryptovirology · Kleptography ·
TLS

1 Introduction

Tamper-proof devices were proposed as a remedy for many security-related prob-
lems. Their advantage is undeniable since they are protected from physical
attacks and it is difficult to change the executed code. However, they inher-
ently introduce a trust into the manufacturer. It was shown that such devices
are theoretically vulnerable to the presence of so-called subliminal channels [20].
Such channels can be used to exfiltrate private information from the underly-
ing system covertly, inside cryptographic primitives. As a consequence, malware
introduced by a manufacturer or a clever third-party adversary can utilise sub-
liminal channels to break the security of black-box devices.

This paper concerns kleptography – the art of stealing information securely
and subliminally – for the TLS protocol. The field of kleptography was estab-
lished in the 1990s by Yung and Young [18]. Kleptographic backdoors for many
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
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protocols and primitives were proposed ever since. For instance, we mention the
RSA key generation protocol [18] and the Diffie-Hellman (DH) protocol [19].
Using kleptography, an attacker can subvert a target cryptosystem to deny con-
fidentiality and authenticity of transferred data. Thus, it is important to explore
the feasibility of kleptographic backdoors for various protocols, alongside with
the methods for defeating such backdoors.

Several challenges arise when inventing a kleptographic backdoor. First, one
must assure that such backdoor cannot be detected by looking at inputs and
outputs of an infected device. Furthermore, the exploited channel is often narrow-
band and the computing performance of the device should not be overly affected.
Last but not least, one must prove the security of both the original cryptosystem
and the encrypted subliminal channel.

Previous work on kleptography in the TLS protocol [9,21] showed that it is
possible to utilise a single random nonce to exfiltrate session keys. Both back-
doors exploit a random field inside ClientHello message, 32-byte nonce that is
sent to server by a client. The proposal [9] was rather a sketch of an asymmetric
backdoor and it lacked few key properties. The work [21] was an important theo-
retical result and proven asymmetrical backdoor for the TLS protocol. Nonethe-
less, it remains impractical to implement. Also, neither of the papers addressed
TLS of version 1.3. More insight into the related work follows in Sect. 5.

In this work we make the following contributions:

– We modify the backdoor [9] to achieve better security of the backdoor and
also idistinguishability in a random oracle model.

– We prove that our proposal is an asymmetric backdoor for all versions of the
TLS protocol, including TLS 1.3.

– We implement the backdoor as a proof-of-concept into the OpenSSL library,
confirming its feasibility.

– We evaluate the performance of the backdoor and discuss its detectability.

The remainder of the paper is organized as follows. Section 2 gives basic back-
ground on kleptography. In Sect. 3 we show a design of our backdoor. Section 4
comments on how we implemented the backdoor and gives the exact results of
our performance tests. It also shows how a timing channel can be used to detect
our backdoor. Section 5 reviews related work and, finally, Sect. 6 concludes the
paper.

2 Kleptography Background

The work on kleptography utilises cryptology and virology and naturally extends
the study of subliminal channels [20]; those are further encrypted and embedded
into the devices, creating so-called asymmetric backdoors. As of 2018, secretly
embedded backdoor with universal protection (SETUP) is a supreme (and only)
tool in the field of kleptography. One could therefore say that kleptography
studies development of asymmetric backdoors and possible defenses against them
at the same time. Kleptography concerns black-box environment exclusively, as
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in white-box setting scrutiny allows to detect such channel. The aim of this
section is to introduce necessary techniques that are involved in an asymmetric
backdoor design. We begin with a formal description of an asymmetric backdoor
adopted from [20].

Definition 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A SETUP mechanism is an algorithmic modification made to C to
get C ′ such that:

1. The input of C ′ agrees with the public specifications of the input of C.
2. C ′ computes efficiently using the attacker’s public encryption function E (and

possibly other functions) contained within C ′.
3. The attacker’s private decryption function D is not contained within C ′ and

is known only by the attacker.
4. The output of C ′ agrees with the public specifications of the output of C. At the

same time, it contains published bits (of the user’s secret key) which are easily
derivable by the attacker (the output can be generated during key-generation
or during system operation like message sending).

5. Furthermore, the output of C and C ′ are polynomially indistinguishable to
everyone except the attacker.

6. After the discovery of the specifics of the SETUP algorithm and after discover-
ing its presence in the implementation (e.g. reverse engineering of hardware
tamper-proof device), user (except the attacker) cannot determine past (or
future) keys.

Consider that an asymmetric backdoor itself can be a subject of cryptanalysis.
That is why the resulting subliminal channel must be encrypted according to
good cryptographic practice. To keep the notation unambiguous, we call the per-
son who attacks the backdoor an inquirer. We say that an asymmetric backdoor
has (m,n) leakage scheme if it leaks m keys/secret messages over n outputs of
the cryptographic device. The desired leakage bandwidth that asymmetric back-
door should achieve is (m,m), meaning that the whole private information is
leaked within one execution of the protocol. Further, a publicly displayed value
that also serves as an asymmetric backdoor is denoted a kleptogram.

2.1 Example of Asymmetric Backdoor

The paper continues with an example of RSA key generation SETUP [18] to
illustrate the concept of asymmetric backdoors. The backdoor allows for efficient
factorization of RSA modulus by evil Eve. First, Eve generates her public RSA
key (N,E) and embedds it into the contaminated device of Alice together with
a subverted key-generation algorithm:

1. The device selects two distinct primes p, q, computes the product pq = n and
Euler’s function ϕ(n) = (p − 1)(q − 1).

2. The public exponent is derived as e = pE (mod N). If e is not invertible
modulo ϕ(n), new p is generated.
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3. Private exponent is computed as d = e−1 (mod ϕ(n)).
4. Public key is (n, e), private key is (n, d).

After obtaining the kleptogram e contained in public key (n, e), Eve can use
her private key (N,D) to compute

eD = pED = p (mod N).

Thus, Eve can factorize the modulus n, and compute the private exponent d
just by eavesdropping the public key. The reader may notice that the backdoor
requires e to be uniformly distributed on the group (otherwise the backdoor
can be detected), which leaves it unsuitable for real use. Yet, this toy example
illustrates the concept of asymmetric backdoors beautifully. It is not difficult
to prove that the backdoor fullfils all conditions of SETUP, if e is to be picked
uniformly in the clean system. Also, we note that this backdoor exhibits the ideal
leakage bandwidth (m,m). However, this backdoor lacks perfect forward secrecy.
Indeed, when the attacker’s private key (N,D) is compromised, an inquirer can
factorize all past and future keys from the particular key generating device.

2.2 Kleptography in the Wild

Recall that an asymmetric backdoor is a modification of already established algo-
rithm. Detection of such modification therefore proves its malicious nature. In
contrast, when an algorithm is designed to be kleptographic initially, its malev-
olence cannot be decided so easily. To illustrate this aspect, we briefly revisit
the DUAL EC DRBG pseudorandom number generator invented by the NSA1. The
generator was standardized in NIST SP 8000-90A [2]. Later, a bit predictor with
advantage 0.0011 was presented in [8]. Despite this serious flaw we concentrate
on a different problem. In particular, the paper [2] shows potential kleptographic
tampering. To be exact, the generator requires two constants on an elliptic curve,
i.e., P,Q ∈ E(Fp), and the security of the internal state relies on the intractabil-
ity of discrete logarithm problem for these constants. Consequently, if one is able
to find scalar k such that P = kQ, they are able to compute the inner state of
the generator efficiently based on the output. This naturally breaks the security
of the generator. Despite the fact that arbitrary P,Q can be used for the gen-
erator, NIST standard forces the use of fixed constants with unknown origin.
Naturally, NSA is alleged to provided the backdoored constants. The practical
exploitability of backdoored constants was shown in [17]. However, one cannot
prove nor disprove that the constants for the standard are backdoored except
for the NSA. This aspect suggests that not many SETUPs are likely to appear
in the wild, but rather delicate modifications of otherwise secure algorithms are
expected, such that their sensitivity to efficient cryptanalysis can be viewed as
a coincidence.

1 National Security Agency.
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3 Attack Design

Our proposal is based on [9] by Go�l ↪ebiewski et al. However, several drawbacks
are eliminated by our construction, and properties of the backdoor are treated
more rigorously. The needed improvements w.r.t. the proposal [9] were:

– To achieve indistinguishability of kleptogram from random bit string,
– to ensure that reverse-engineering of the infected device will not compromise

security of any session,
– to allow recovery of master secret to attacker even if she misses to eavesdrop

some sessions.

An additional goal was to minimize the computational overhead introduced
by the backdoor to avoid possible detection by timing analysis.

3.1 Backdoor Description

During the TLS handshake, assuming no pre-shared key is involved and a new
session is to be established, all traffic keys are derived from a pre-master secret
and publicly available values. Thus, for an attacker, it suffices to obtain the pre-
master secret to decrypt whole session. Additionally, the pre-master secret can
be derived via DH method, eventually via RSA method in the case of TLS 1.2
and lower2 (The removal of the RSA key exchange method from TLS 1.3 makes
it more difficult to debug or inspect encrypted connections for the industry
– for example in datacenters of intrusion detection systems. This led to two
RFC drafts [10,11] that would mitigate this issue. The former allows for opt-
in mechanism that allows a TLS client and server to explicitly grant access
to the TLS session plaintext. The latter relies on introducing static DH key
exchange method to TLS 1.3. Naturally, both drafts inherently weaken the TLS
1.3 protocol and did not become a part of the final TLS 1.3 RFC. A question
arises, whether the stated motivation behind introducing such drafts was honest,
as debugging and inspection of traffic is possible even with ephemeral DH, only
at a cost of adjusting infrastructure.). In the case of DH method, a shared secret
is established between the server and the client. In the case of RSA method,
server’s certificate is required and used to encrypt random bytes generated on
the client device. Those bytes then serve as the pre-master secret. We exploit the
32-byte random nonce sent by the client during ClientHello message to derive a
secret only the attacker can obtain. We further sanitize that secret and use it as a
seed during the function that creates the client’s contribution to the pre-master
secret.

We begin with the presentation of the original kleptographic construction by
Go�l ↪ebiewski et al. The authors suggest to hardcode a DH public key Y = gX on
an infected device. During the first handshake on the device, a random value k is

2 By DH method we refer to DH modulo prime. Nowadays, Diffie-Hellman over elliptic
curves (ECDH) is mostly used in TLS connections. We stick to the modular case,
even though our method can be translated to elliptic curves easily.
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selected and gk is published as the ClientHello random nonce. During subsequent
executions, the ClientHello random nonce is not subverted, but the PMS is then
derived deterministically from H(Y k, i), where H denotes a hash function and i
is a counter to ensure that the secrets will differ across sessions. Notice that when
an attacker fails to eavesdropp the first handshake, she will not be able to recover
any of subsequent sessions. At the same time, if an inquirer manages to capture
the first handshake and any of k or X, it allows the inquirer for a decryption
of all previous and subsequent sessions. Also, the value Y k must be stored in
non-volatile memory on the infected device and is prone to reverse engineering,
thus violating condition 6 of SETUP. Last but not least, the published nonce gk

can be distinguished from a random bit string since it is an element of a group,
see [6] – this violates condition 5 of SETUP. Our improvements aim to eliminate
all of the presented drawbacks.

The exact design of our proposal is as follows. Prior to the deployment,
a designer generates a DH key pair on the X25519 curve, denoted Y = gX .
The public key Y is then hard-coded into the infected device, together with
the 128-bit key for AES, denoted K and the counter. The initial value of the
counter is 1 and is incremented by 2 after each execution. Suppose that the
infected device connects to the server and the handshake is initiated. When
construction of the ClientHello message is triggered, the infected device generates
32 random bytes denoted k and computes the public key gk. The value gk is
then encrypted with AES-CTR into C = EK(gk) and published as a kleptogram
inside the ClientHello random nonce. Meanwhile, value S = Y k is derived on
the device as a shared secret between the attacker and the device. When the
attacker eavesdropps the value C, she is able to derive gk = DK(C) and then
S = gkX using her private key X. After obtaining S, the attacker can replicate
the computation of the infected device. When the pre-master secret is to be
derived, we differentiate two cases:

1. If the RSA method is used, the value S is stretched to 46 bytes by the TLS
1.2 pseudorandom function (PRF) and sent as the pre-master secret.

2. If the DH method is used, the server first sends the DH parameters to the
client, including the prime p. The value S is then stretched by the TLS 1.2
PRF to the string of the same length as prime p. This bit string is checked to
fulfill requirements for DH private key (not being 0, 1 or ≥ p) and is used as
the client’s private key. If the requirements are not met, the output of PRF
is repeatedly used as an input to PRF until proper key is generated.

Once the pre-master secret is generated, the handshake continues ordinarily.
The backdoor is described by Algorithms 1 and 2. Algorithm 1 generates the

ClientHello random nonce and the seed S. The latter is further processed by
Algorithm 2 to derive the pre-master secret.

The paper [14] proves that the counter mode (CTR) is polynomially indistin-
guishable from random bit string on the assumption that the underlying cipher
is a pseudorandom function (PRF). This holds when the value of the counter
never repeats. We have selected the AES in the CTR mode with a key of 128
bits to achieve indistinguishability. Some properties of this selection must be
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Algorithm 1. Generate kleptogram and seed
Input: A public key Y , AES-CTR key K with counter
Output: The kleptogram C and seed S
k ← 32 random bytes

C ← EK(gk)

S ← Y k

delete value k securely
return (C, S)

Algorithm 2. Generate pre-master secret
Input: Key exchange method, DH parameters and public key of server if

needed, seed S
Output: Pre-master secret PMS
if key exchange method is RSA then

PMS ← PRF(S, 46 bytes)
else

l ← length of DH prime in bits
Z ← DH public key of server
x ← S
do

x ← PRF(x, l bits)
while x = 0 or x = 1 or x ≥ p
PMS ← Zx

end
return PMS

further discussed. First, NIST recommends [2] to limit the number of calls of
pseudorandom number generator (PRNG) keyed with hard-coded value to 248

blocks. Since AES-CTR is essentially a PRNG, this recommendation should be
respected. Consider that birthday collisions are likely to appear only after 264

bits of output, so they are trivially treated by the NIST recommendation. Since
the backdoor uses two blocks of AES-CTR for one handshake, this limits the
functioning of the backdoor to 247 handshakes. It is emphasized that once the
backdoor is reverse engineered and the symmetric key is obtained, the indistin-
guishability is broken.

3.2 Properties of SETUP Proposal

Theorem 1. Under the following assumptions, our proposal is a SETUP:

– A random oracle is used to generate the values k and to sanitize the values
C instead of a TLS PRF.

– AES is a random permutation.
– Computational DH assumption holds.
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Proof. The reader can easily verify that properties 1–3 of SETUP hold for our
backdoor. To prove property 4, we show how the attacker can obtain the seed S
by eavesdropping on the handshake traffic. Notice that once the seed S is known,
anyone can replicate the computation of the device that leads to the pre-master
secret.

When the attacker obtains the ClientHello nonce, she can decrypt it with
the AES key K, obtaining the public key of the device gk. The attacker can
further utilise her private key X to compute the shared value S = gkX = Y k.
Consider that when the DH key exchange method is used, the attacker must also
eavesdrop the public key of the server and the parameters of the exchange; but
those are sent in plaintext. To conclude, property 4 holds as well.

We proceed with the property 5. If AES is a random permutation, then
AES-CTR produces ciphertext indistinguishable from uniformly distributed bit
string as shown in [14]. Thus, one cannot distinguish between the kleptogram C
and random bit strings (unless the collisions occur, which was discussed earlier).
Further, the resulting pre-master secrets (both for RSA and DH method) are
uniformly distributed too, since we utilize the random oracle to sanitize C.

Recall that non-volatile memory of the infected device contains AES key
K with the counter and the public key Y . Only the key Y is relevant to the
confidentiality of the shared secret S. Notice that obtaining shared secret gkX

from gk and gX is equivalent to solving ECDH problem. We therefore conclude
that the property 6 holds. ��

To summarize, properties 1, 2, 3, 4 hold unconditionally for our proposal. The
property 6 requires a computational DH assumption. Moreover, the property 5
requires a random oracle and AES to be a random permutation. This seems
sufficient, as for the practical deployment, speed is more pressing than provable
indistinguishability.

Regarding the perfect forward secrecy, an inquirer is not able to recover past
session secrets if she obtains the private key of the device, k. However, after
obtaining the key X, the inquirer can break all past (and future) sessions.

4 Attack Implementation

We have implemented the asymmetric backdoor into the OpenSSL library of
version 1.1.1-pre2. Choosing this library allowed us to reveal whether the back-
door can pose as a regular malware, without the requirements of a black-box
environment. When one designs malware in black-box setting, she is allowed to
change both implementation and header files of the infected library. On the con-
trary, only the compiled binaries are infected in case of regular malware. The
OpenSSL does not expose many low-level functions from a cryptographic library
to high-level functions that are used in the TLS handshake. Our work shows that
the proposal can be embedded into the compiled binary, leaving the header files
untouched.

The pre-release version of the library was chosen because it provides cer-
tain functions for computations on the X25519 curve not available in previous
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releases. The X25519 is implemented in a different way than other elliptic curves
in OpenSSL and older releases did not allow for the creation of specific keys on
this curve; only random keys could be created. We decided to expose some low-
level functions for direct use to achieve simpler implementation. This resulted
into modification of the header files. Nevertheless, high-level interfaces could be
used instead and the backdoor could be deployed as a compiled library. We faced
no serious obstacles that would prevent the backdoor installation to the library.

4.1 Attack Detection

We have also studied the possible detections of the infected library via side chan-
nels. As we worked in the desktop environment, we limit our attention to the
timing channel. Nonetheless, a power side channel could be a viable detection
mechanism on different platforms. Several code snippets of both infected and
clean version of OpenSSL were isolated and their performance was evaluated
and compared. This creates a possible detection mechanism of the backdoor,
yet, with certain limitations. As expected, the backdoor performs slower than
the clean version. Nevertheless, this does not necessarily create a distinguisher.
Suppose that all devices of a certain kind are infected. Then there exists no refer-
ence to how the uninfected version should perform. The inquirer must therefore
somehow guess the expected performance and measure deviations based on this
estimate. Also, the library could be used on various hardware and outperform
clean versions when running on faster hardware.

Three code snippets were measured for the infected algorithm. In particu-
lar, those were the RSA pre-mater secret generation snippet, the DH private
key generation snippet, and the ClientHello nonce generation snippet. The last
snippet was measured in two versions. The first version contained only one expo-
nentiation (computation of the public-key presented as kleptogram). The second
version was expanded by shared-secret derivation between the attacker and the
device. As the backdoor does not require any initialization except for loading
the AES counter (other keys can be hard-coded in the binary), this aspect was
ignored in the experiments (Table 1).

4.2 Average Execution Times

Our measurements show that the whole subverted version runs by 0.248 ms
(0.282 ms) slower than the clean version when RSA (DH) key exchange method
is used. The subverted RSA key exchange method runs slower by the factor of
2.28 over the clean version. On the contrary, the subverted DH key exchange
method runs slower only by the factor of 1.01. This is because in the case of
RSA, the newly introduced computations take relatively much more time to the
overall key exchange method cost. It also can be seen that such an increase
in time cannot be spotted just by using the device. The interaction over the
network creates the opportunity for obfuscating the computation times. The
exponentiations, or even parts of them, could be precomputed once the hand-
shake is initiated, stored, and only loaded from memory when needed. The more
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Table 1. Average execution times of code snippets.

Code snippet Average computation time in µs

Timer overhead 0.312

gk on X25519 171.132

ClientHello clean 4.726

ClientHello subverted 176.293

ClientHello subverteda 246 843

RSA PMS clean 4.887

RSA PMS subverted 11.185

DH private key gen. clean 3178.587

DH private key gen. subverted 3218.496

TLS context builder 374.5
aVersion with the shared secret precomputation.

complex the underlying protocol is, the larger is the space for obfuscations. It is
also questionable whether the inquirer will be able to isolate the corresponding
snippets on a tamper-proof device to obtain precise measurements.

To conclude, the timing-channel method is not reliable and most likely could
be evaded by a skilled adversary. Nevertheless, the proposal can be detected
when a clean version of the OpenSSL is at hand and benchmarking is available
on the same hardware on which the suspected version is running. As the highest
increase in time is seen when the ClientHello nonce is generated, this could
be the sweet spot for malware detection. Recall that the execution time of the
ClientHello nonce function should correspond to the time in which the library
generates 32 random bytes. If the function takes substantially larger amount of
time, the backdoor is likely to be present.

We do not release the source code for the reason that it could be easily
misused as a malware.

5 Related Work

Our work is based on the concept [9]. In contrast to the original backdoor, our
solution cannot fullfils the conditions 5 and 6 of the SETUP mechanism. The
paper [22] by Young and Yung presents how to generate shared secret with ECDH
that is polynomially indistinguishable from random bit string. Furthermore, they
also mention its applicability to the TLS protocol and provide first asymmetric
backdoor for TLS. However, the proposal is rather impractical as to execute a
single backdoored handshake more than 300 ECDH key exchanges are required.
Injective mappings of strings on elliptic curve points [1,6] could have interest-
ing applications for kleptography, as their inversion could map ECDH keys to
strings that are polynomially indistinguishable from random strings. Regarding
the detection of backdoors via side channels, the paper [12] presents a method
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that studies variance in execution times of functions which might reveal newly
introduced exponentiations to the protocol – a common facet of kleptography.

In recent years, major advances came in the field of defenses against klepto-
graphic adversaries. Most of them were published in [16]. The work achieves a
general technique for preserving semantic security of a cryptosystem, if put into
the kleptographic setting. Also, the paper classifies already proposed defenses
into three categories:

– Abandoning the randomness in favour of deterministic computation [3–5],
– use of a trusted module that can re-randomize subverted primitives [7,13],
– hashing the subverted randomness [15].

6 Conclusions

TLS is an essential protocol for securing data on the transport layer. As such,
TLS is omnipresent in an era of computer networks, having applications in https,
VPN, payment gateways and many others. The widespread use of TLS motivated
us to study its vulnerability in the kleptographic setting. We aimed to answer
whether a kleptographic backdoor can be practically implemented into the TLS
libraries.

Our efforts resulted into a design of an asymmetric backdoor for all versions
of the TLS protocol. Such backdoor can be used to exfiltrate session keys from
a captured handshake by a passive eavesdropper, leading to a denial of confi-
dentiality and authenticity of the whole session. We also demonstrated that it is
fairly simple to implement the backdoor into an open source TLS library while
maintaining a reasonable performance of the library. We stress that to install
our backdoor, an adversary must have access to the target device. In such cases,
other dangerous scenarios arise – we mention ransomware as an example. How-
ever, the important property of our backdoor is that it may stay unnoticed for
a long time on the target device. Also, it may be endorsed into a particular
hardware by its manufacturer or organizations with sufficient resources. We also
showed that timing analysis may prove as an effective defense, depending on the
powers of an inquirer.

For future work, we suggest to study whether an effective defense could be
derived for TLS on a protocol level, for instance, in the form of a protocol exten-
sion. Regarding the offensive techniques, if mappings [1,6] could be combined
with a cryptographic key, they would allow for ECDH secrets indistinguishable
from a random noise.
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9. Go�lȩbiewski, Z., Kuty�lowski, M., Zagórski, F.: Stealing secrets with SSL/TLS and
SSH – kleptographic attacks. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS
2006. LNCS, vol. 4301, pp. 191–202. Springer, Heidelberg (2006). https://doi.org/
10.1007/11935070 13

10. Green, M., Droms, R., Housley, R., Turner, P., Fenter, S.: Data Center use of
Static Diffie-Hellman in TLS 1.3. RFC Draft (2017). https://tools.ietf.org/html/
draft-green-tls-static-dh-in-tls13-01

11. Housley, R., Droms, R.: TLS 1.3 Option for Negotiation of Visibility in the
Datacenter. RFC Draft (2018). https://tools.ietf.org/html/draft-rhrd-tls-tls13-
visibility-01

12. Kucner, D., Kuty�lowski, M.: Stochastic kleltography detecion. In: Public-Key
Cryptography and Computational Number Theory, pp. 137–149. De Gruyter
(2001)

13. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 22

14. Rogaway, P.: Evaluation of some blockcipher modes of operation. Technical report,
Cryptography Research and Evaluation Committees (CRYPTREC) for the Gov-
ernment of Japan (2011)

15. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

16. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security - CCS 2017, pp. 907–922. ACM, New
York (2017)

https://doi.org/10.1007/978-3-662-46803-6_21
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-53018-4_13
https://doi.org/10.1007/11935070_13
https://doi.org/10.1007/11935070_13
https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
https://tools.ietf.org/html/draft-rhrd-tls-tls13-visibility-01
https://tools.ietf.org/html/draft-rhrd-tls-tls13-visibility-01
https://doi.org/10.1007/978-3-662-46803-6_22
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2


Bringing Kleptography to Real-World TLS 27

17. Checkoway, S., et al.: On the practical exploitability of dual EC in TLS imple-
mentations. In: SEC 2014 Proceedings of the 23rd USENIX conference on Security
Symposium, pp. 319–335 (2014)

18. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

19. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

20. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
Hoboken (2004)

21. Young, A.L., Yung, M.M.: Space-efficient kleptography without random oracles. In:
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Abstract. Lightweight cryptography is at the heart of today’s secu-
rity needs for embedded systems. The standardised cryptographic algo-
rithms, such as the Advanced Encryption Standard (AES), hardly fits
the resource restrictions of those small and pervasive devices. From this
observation a plethora of Lightweight Block Ciphers have been pro-
posed. Every algorithm has its own advantages in terms of security,
complexity, latency, performances. This paper presents first a classifi-
cation of some popular Substitution-Permutation-Networks (SPN) class
of lightweight ciphers according to their architecture and features which
share many common operators. From this last point, we studied a round-
based generic hardware architecture that allows a security architect to
dynamically change the lightweight cryptographic algorithms to be exe-
cuted. The results of the ASIC implementation show that the configura-
tion part of the proposed flexible architecture adds significant complexity.
If compared with the parallel implementation of several algorithms, the
complexity ratio becomes interesting when the number of algorithms (or
the level of agility) increases. For instance, if we consider 6 SPN ciphers,
the configurable architecture provides a complexity reduction of 62.5%,
whereas there is no reduction with 4 algorithms.

Keywords: Lightweight cryptography · SPN · ASIC ·
Configurable architecture

1 Introduction

With the intense development of small and pervasive computing devices, as IoTs
and their ability to communicate through insecure networks, it becomes essential
to add security features. Indeed, from connected homes to connected vehicles or
medical devices, security is at the heart of tomorrow’s issues as it will affect our
private lives as much as our health. Hence, all these devices need to be protected
using sound cryptography in order to get a good level of confidentiality, integrity
and privacy. Such devices are constrained by a low complexity with restricted
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chip area, memory and energy, while still needing communication channels. The
security of these devices and the sensitive data they process have to be addressed
by a new generation of Lightweight Cryptography algorithms which provide a
good compromise between security and complexity in terms of area, latency and
energy.

The most common standard symmetric-key cryptographic algorithm used
to secure digital information is the Advanced Encryption Standard (AES) [22].
However, AES does not fit the strong restrictions of small embedded systems.
This observation led to the development of Lightweight Block Ciphers. Plethora
of such ciphers are available in the literature [7]. The NIST has started a
project [19] to develop a strategy for the standardisation of lightweight cryp-
tographic algorithms. Some of these algorithms are based on the same basic
computation steps as AES since they use a Substitution Permutation Network
(SPN) structure [17], some others use Feistel networks as DES [24]. Out of these
numerous algorithms, none have emerged as a clear favorite in terms of becom-
ing a NIST standard. PRESENT [8] has been accepted as an ISO standard [15],
but the impact of standardisation was not as significant as AES. Actually, this
means first, that the security of these algorithms is not officially recognised by an
authority. Second, that some industrial may use modified versions of those algo-
rithms, loosing interoperability and eventually weakening the algorithm. Third,
since the demand for such algorithms is increasing and the maturity of some of
them is becoming evident, the NIST might eventually standardise one of them
rendering obsolete actual devices or protocol implementations. From these three
last points, it appears that the possibility to use a flexible architecture allow-
ing the user to change afterwords the cryptographic algorithm is an interesting
feature. Moreover, this “agility” characteristic increases the security level as the
attacker is thwarted by the unsteady nature of the cryptographic computing. The
point is to know if such flexible architecture is feasible in terms of complexity
and other physical constraints.

We could think this objective could be made possible thanks to the common
operators of SPN algorithms. But the cryptographic algorithms were developed
focussing on different features and the SPN operators have thus been imple-
mented in different manners Most algorithms focus on area, others such as
PRINCE [9] and MANTIS [6] focus on latency thanks to a specific structure,
inspired by SPN, called α−reflection. The objective of low energy consumption
is tackled by MIDORI [3] and PICCOLO [23]. It arises the question of how sim-
ilar those algorithms are, and if these similarities can be used to design a unique
hardware to implement them. This would permit the deployment of those block
ciphers, while being ready to switch as soon as a standard emerges. This Generic
Architecture would also have the advantage of allowing algorithms to be slightly
modified or tweaked if necessary. The basic idea to develop such an architecture
is that the SPN structured algorithms share similar functions. Those functions
can be grouped within steps which have the same function but do not work in
the same way. These steps are further detailed in Sect. 2.
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An original fine-grain FPGA [20] has already been proposed. It is based
on the utilization of Full-adder configurable cells. Other flexible cryptographic
architectures have been proposed [12,25] or [18] which focuses on an agile permu-
tation layer but none of these targeted specifically lightweight cryptography. We
propose in this paper to study a coarse-grain approach by taking into account
the common operators found in the Lightweight algorithms. However, even if
some operators are very close, the Feistel class of algorithms are too far from the
SPN in terms of scheduling. Therefore, the study targets the SPN class only.

Our Contributions. In this paper, we first propose a classification of
lightweight cryptographic algorithms according to their internal scheduling and
functions. From this classification and a detailed study of the differences between
the selected SPN algorithms, a generic round-based hardware architecture has
been proposed. It can be configured for different levels of agility in order to
handle some or all families of ciphers. The permutation layer (P-layer) which
is quite specific to each algorithm has been deeply investigated. A third con-
tribution is the evaluation of the generic architecture and the comparison with
implementations of independent lightweight cryptographic ciphers.

The paper is organised as follows. Section 2 presents the classification of the
different families of SPN lightweight algorithms. It focuses on the different func-
tions which require specific hardware modules. Section 3 describes the design of
the generic architecture. The overall architecture alongside the design of each
step. Section 4 justifies the different design choices of the P-Layer, as the archi-
tectural optimisations in the P-Layer are strongly related to the requirements
of each family of algorithms. Section 5 discusses the results of the architectural
implementations. The hardware resources usage for different levels of agility are
presented and compared to direct implementation of the algorithms. Finally,
Sect. 6 concludes the paper.

2 Classification of the Algorithms

There are multiple ways to classify symmetric cryptographic algorithms, the
main category used is the structure of the algorithm. An algorithm has either
a Feistel structure (SIMON and SPECK [5]), an SPN structure (AES) or a
structure derived from SPN (PRINCE [9], PICCOLO [23]).

Our study focuses on implementing SPN and SPN-like algorithms, as their
functions are similar enough to be handled by the same hardware, and a large
proportion of lightweight cryptographic algorithms use this structure. The SPN
algorithms are composed of three steps:

– The Sbox: S, which corresponds to the confusion
– The P-Layer: P, which corresponds to the diffusion
– The AddKey: K, which corresponds to the addition of the secret

SPN Algorithms can differ by the order in which they execute those steps.
This allow to classify them into three families based on the relative order of these
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steps. The first type is the SKP-type (SKINNY [6]), for which S is followed by
K, itself followed by the P-layer. The second type is the SPK-type (MIDORI [3],
GIFT [4], PRESENT [8]), for which S is followed by the P-layer, itself followed
by K. On the one hand, each family can be implemented without changing the
order, simply by changing the first step of the algorithm. On the other hand, the
two families are not coherent and require extra modules to be handled by the
same architecture. Note that it is also possible to handle both these families by
adding computation to the key since the P and K are both linear layers. The
last family is that of the α − reflective algorithms (PRINCE [9], MANTIS [6])
which change the order of the steps during the encryption.

Table 1 presents a classification proposal.

Table 1. Classification of lightweight ciphers sub-blocs

The P-layer P has two main types of permutations, either at the bit-level
(PRESENT [8], GIFT [4]) or at the nibble-level (SKINNY [6], PRINCE [9]).
These two different approaches require more or less complex permutation mod-
ules and implementing one but not the other has an influence over the cost of
the permutation. An additional matrix multiplication can be used. It can be a
4× 4 multiplication of the nibbles (SKINNY [6], MANTIS [6]) or a 64× 64 mul-
tiplication on the whole word (PRINCE [9]). PRESENT [8], GIFT [4] do not
use matrix multiplication. Each type represents different levels of complexity,
especially if we consider the resources to store the matrix values. Finally, though
most algorithms only use one Sbox, α − reflective algorithms (PRINCE [9],
MANTIS [6]) use two Sboxes: the Sbox and its inverse.

The Key Scheduling block is in charge of generating the round keys. Key
Scheduling is done in very different ways from one algorithm to the other. Despite
basic operations such as rotation or the use of round constants, the Key schedul-
ing uses different functions applied to different parts of the key. Indeed, the sub-
key generation is rather complex to unify as extracting different groups of bits
of variety of size is hard to achieve in hardware without great increase in the
design size. For example, GIFT [4] divides the entire key in 16-bit words and
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extracts two of them (A type), PRESENT [8] extracts two nibbles (B type) and
use the Sbox. In other algorithms such as PRINCE [9] and MANTIS [6] the
key is divided into two parts (C type) used separately. For these reasons, and
because making the key scheduling generic in hardware would be complex and
costly, we have decided to use a buffer that will contain pre-computed round
keys. The round keys will be generated by software in the configuration phase.

Table 2 presents a selection of Lightweight Block Cipher and their implemen-
tations results from the literature.

Table 2. Comparison of area, latency and throughput for implementations of 64-bit
block size lightweight block ciphers

3 Generic Architecture

In order to handle multiple algorithms with the same hardware, the architecture
is designed to be configurable.

The overall architecture is divided between the key scheduling and the con-
figurable SPN structure. Each cipher computes the three steps of the SPN struc-
ture in a specific order, and can skip some of them (completely or at a specific
round). In our design, this is achieved through the use of four 3-way multiplex-
ers (see Fig. 1) which are controlled using configuration bits. These configuration
bits need also to be different from one round to another.

For the desired functionality, there are only 15 different possible options to
order the three steps, therefore all the multiplexers can be configured with only
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Fig. 1. Overall organisation of the generic architecture

4 bits per round. Thus, the number of necessary configuration bits is 4× the
maximum number of rounds that the implemented ciphers need. This can be
further reduced if we store a unique configuration for all the rounds that use the
same configuration.

3.1 Key Scheduling

Initially, as with the rest of the architecture, the key scheduling of each algorithm
was studied in order to identify similarities between each of them. The issue is
that unlike the algorithm itself, which uses a set SPN structure and is broadly
similar to the standardised AES, key scheduling is achieved through a plethora
of methods. Each of these methods applies calculation specific to the algorithm.
An example would be isolating parts of the key, a few bits long, apply a certain
processing such as an LFSR or the algorithm’s Sbox to them, then each part is
reordered and the result is shifted. Not only does this general description not
fit most of the key scheduling but even if it were, being able to isolate different
amounts of different-sized sample represents a real challenge and requires an
important amount of hardware no matter the solution.

Once it had been made obvious that the variety of key scheduling does not
allow a unified implementation at a reasonable cost, a different path had to be
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considered in order to obtain the used round keys. Using a configurable archi-
tecture means this architecture would most likely not work independently and
thereby require to be included within a processor system. Computing the round
keys could be done by software, prior to or in parallel with the configuration
phase and the unrolled key could be stored in a specific buffer. Obviously this
processor system, used for security applications, would have to ensure a secure
way to store and handle the unrolled key. Moreover, as the key is generally not
changed at each encryption, handling the Key Scheduling through software is
not an issue.

3.2 The Sbox: S

The S module is rather straight forward, for each of the 16 possible nibble inputs
there is an output defined through information stored within a RAM bloc. This
module is therefore similar to a LUT. The substitution of each of the 16 nibbles
is done in parallel and therefore requires 16 actual Sboxes. Most algorithms
use the same Sbox throughout the entire encryption process but some of them
require two different Sboxes. This is the case with α − reflective algorithms
which use both an Sbox and its inverse, such as PRINCE [9] and Mantis [6].
Including a second Sbox means having to store twice as much information and
add a mechanism to switch from one Sbox to the other.

3.3 The Key Addition: K

Each algorithm uses a different key for each round, called a round key, which
is computed during the key scheduling. The round key considered here is not
necessarily what algorithms call their round key, it also encompasses the round
constant if any. Thereby, the K step is simply composed of 64 Xor gates in
parallel to add the state to the software precomputed round key. The main
security issue is that the round keys need to be stored in a secure environment,
which is coherent with the natural use of encryption where the key needs to be
stored securely. This mechanism also echoes the fact that the K needs to access
this secure memory once per round, therefore once per cycle. Memory does not
usually have this feature but this can be handled by using a bypass between this
section of the memory and the K module. That part was not implemented and
is a theoretical solution.

3.4 The P-Layer: P

The permutation bloc P for an SPN structured algorithm can include two dif-
ferent parts. The first part, equivalent to the MixColumn function of AES, is a
matrix multiplication.

This matrix multiplication (see Fig. 2) uses the same four bits of the input
with four different bit sets of the matrix to compute four bits of the output. This
means that the matrix multiplication uses four times 64 bits values or a unique
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Fig. 2. The generic matrix multiplication

256 bits value. This seems like a lot but it is still smaller then a full 64 × 64
matrix.

The second part of the P bloc is equivalent to the Shift Row function of the
AES cipher. This part required a lot of attention for multiple reasons. First, in
a classic Lightweight Bloc Cipher, this part generally implemented as a simple
reordering of wires and uses no specific hardware. Second, the algorithms which
do not use a matrix multiplication require permutation at a bit level rather than
the at the nibble level as with AES’s Shift Row. Third, designing a configurable
permutation meant being able to route a signal through a crossbar-like module,
but crossbars are expensive in terms of both area and configuration memory. It
was therefore essential to find a lighter solution. The most efficient solution to
optimise those crossbars was using Banyan switches [13].

Fig. 3. The generic permutation function

The chosen solution (see Fig. 3) was based on a thorough study of each algo-
rithms’ requirements in terms of permutation flexibility and the crossbar-like
modules were optimised to better fit the situation (these optimised crossbar-like
modules will be referred to as Banyan switches for the rest of the paper). More
details on P will be given in Sect. 4.
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3.5 The Configuration

The generic architecture uses configuration parameters to select an algorithm.
These parameters are set during the configuration phase, before the encryption
begins. This allows the algorithm used to be changed dynamically.

Fig. 4. The configuration scheme

The configuration memory bits are distributed throughout the architecture.
A shift register mechanism is used (see Fig. 4) to limit the complexity of the
external configuration interface. Once the shift register’s content is valid, the
configuration data is written by bloc in a configuration register chosen by a
selection signal.

4 Detailed Analysis of the P-Layer

Each module of the Generic Architecture has been designed to allow several
levels of agility depending on the acceptable area overhead. This was achieved
by identifying the common characteristics of different algorithms and designing
the architecture accordingly. The most key part in unifying the architecture to
each algorithm was P.

4.1 Unifying the Matrix Multiplication

The matrices used for the matrix multiplication are of two types. The first type
is considering a 4 × 4 matrix composed of nibbles whose value is either F or
0 (SKINNY [6]). They are represented as 4 × 4 matrix but the multiplication
actually applies to each bit of the state’s 4 × 4 matrix of nibbles, they can
therefore be considered as 4 × 4 matrix of nibbles. The second type is a 64 × 64
bit matrix which is mostly filled with 0s but has 4 16×16 sub-matrices composed
of 1s and 0s (Prince [9]). The latter matrix are themselves composed of 16 4× 4
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Fig. 5. Unifying the different types of matrix multiplication

diagonal matrices, therefore the 16 × 16 matrix can only have 1s placed along
the 4 × 4 matrix’s diagonals (see Fig. 5a).

This property makes it possible to reduce the 64 × 64 matrix to the infor-
mation on the 4 × 4 matrix’s diagonal which compose the 16 × 16 sub-matrix.
There are 16 4 × 4 matrix in each of the 4 16 × 16 sub-matrices, each of which
have 4 bits on their diagonal, which amount to a total of 4× 16× 4 = 256bits of
useful information. The first type only consists of a 4× 4 matrix of nibbles with
a single bit either at 1 or 0. In this type of matrix, the value of a bit is the same
as the other bits of the same nibble, in other word the 4× 4× 4 = 64bits of the
matrix can be summed up as 4 × 4 = 16bits of useful information.

This meant that either some algorithms were discarded in order to maintain
a lower amount of required information, or they had to be harmonised. Doing so
meant turning 16 bits of information into 256 bits without changing the result
of the multiplication. This was achieved by changing every nibble of the 4 × 4
matrix into a 4 × 4 matrix, either filled with 0s if the nibble was a 0 or the
4 × 4 identity matrix if the nibble was a 1 (see Fig. 5b). The result is a 16 × 16
matrix with 4 × 4 × 16 = 64bits of useful information, which is the same as one
of the 16 × 16 sub matrix of the 64 × 64 matrix. The 16 × 16 matrix thereby
obtained was then duplicated four times in order to have the 256 bits of useful
information as with the 64 × 64 matrix. This choice is still costly as 256 bits is
meaningful but is much less than the 64 × 64 = 2048bits of the entire matrix.
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The question remains nonetheless on whether adding the second type of matrix
is worth the cost, this will be discussed later.

4.2 Minimizing the Cost of the Permutation

Permutation was a key issue as it is usually achieved by just reordering the
wires. The overhead of making this bloc configurable could thus be significant.
The simplest way to go is to consider a 64 × 64 crossbar which would allow
any permutation but would be incredibly costly both in terms of area and in
terms of the size of configuration memory. It was therefore essential to identify
similarities between the different permutations in order to limit the area of this
module.

The result was two levels of permutations, as explained beforehand, the bit-
level permutation and the nibble-level permutation. The bit-level permutation
(PRESENT [8], GIFT [4]) allows any layer-input bit to end up as any layer-
output bit within the same 16-bit word, the restriction being that two bits from
the same input nibble may not end up in the same output nibble. This restriction
is coherent with the diffusion properties of a cipher as a bit level permutation
needs to spread the information as much as possible in order to ensure the
security. It requires four sets of Banyan switches each using the same parameters,
which apply to each of the four 16-bit words of the 64-bits state.

Fig. 6. Detailed permutation design

It is composed of two layers (see Fig. 6a). Between these layers, the connection
wires are fixed and cannot be configured. They link each bit of a nibble to a
different nibble. The first layer defines which bit of each nibble will be connected
to which nibble of the second layer, through the use of a 4×4 Banyan switch for
each nibble. The second layer reorders the bits within each nibble with a 4 × 4
Banyan switch for each nibble.

Nibble-level permutation (see Fig. 6b) works similarly and therefore, once
again, any layer-input nibble may end up as any layer-output nibble and the
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restriction is that two nibbles of the same 16-bit input may not end in the same
16-bit word output. There is an exception to this rule in the case of an actual
Shift Register where each nibble is reordered but every nibble stays within the
same 16-bit word. It also requires two layers of Banyan switches separated with
transition wires, which can be configured. There is a set of multiplexers which
allows either to connect the four nibbles of a 16-bit word to four different 16-bit
words or to keep each nibble within the same 16-bit word, which is needed for
the Shift Row function. The first layer defines which nibble goes to which 16-bit
word, and the second layer reorders each 16-bit word. They each use four 4-bit
4 × 4 Banyan switches.

b0

b1

b2

b3

cmd
4

cmd[1]

cmd[0]

cmd[2]

cmd[3]

cmd[4]

Fig. 7. Optimised crossbar-like module, the Banyan switch

Finally, the Banyan Switches are composed of a set of five switches
(see Fig. 7). Each switch allows the reordering of two inputs and is controlled by
a single configuration bit. The 4 × 4 Banyan Switch can thus be configured to
reorder its 4 inputs to get any permutation at the output. The 4 × 3 × 2 = 24
permutations can be controlled with only 5 configuration bits. This structure
allows to reduce the area in terms of logic and configuration memory.

5 Implementation Results

The architecture was implemented targeting the Cadence Free45PDK standard
cells library. Post synthesis results are used to evaluate the area and complexity
of our design.

First the generic architecture complexity is evaluated for different levels of
agility. Second the generic architecture is compared to the cost of implementa-
tion of classic Lightweight Block Ciphers to identify the gain of using such an
architecture.

The Generic architecture can be divided in multiple sub-parts which have
been presented in detail in chapter 3. The results of Table 3 show the cost of
each of these parts. Making the architecture agile has important over-costs. For
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Table 3. Cost of architecture’s sub-parts for the level of agility III

instance, Permutation is usually free in terms of area but making it configurable
will obviously make it costly. It is also true for S which requires a configurable
table and could not be optimised through the use of specific logic functions. The
other two main parts are also new to such an architecture as they do not exist in
a non-agile implementation of cryptographic algorithms. The Route Mux allows
to order each step at each round and therefore uses an important amount of
multiplexers in order to select the path for the entire state. Finally, the most
costly sub-part is the configuration which gathers all the parameters used to
select which algorithm is implemented within the architecture. This last sub-part
is divided between the different aspects which need configuration. It appears that
the Multiplication requires the most important part of the parameters. Indeed,
configuration of the Matrix multiplication has a cost of 256 bits (see Sect. 4.1)
which is a lot more that the 64 bits required for S or the 176 bits used to define
the algorithm’s route at each round. The overhead of the generic architecture is
therefore important but most of it is due to the very nature of the architecture
whose agility has a minimal cost which cannot be canceled. It would therefore
seem that this architecture is not efficient when compared to a single algorithm
but, the more algorithms it implements, the more interesting it becomes.

The next step was thereby comparing different levels of agility in order to
identify how much adding new algorithms costs. This will then lead to a compar-
ison between the cost of the generic architecture and the cost of implementing
multiple algorithms.

Each level of agility, I, II, III and IV from Table 4 allows the implementation
of a certain set of algorithms. Each of these levels is compared to the cost of
each of the algorithms it can handle in Table 5.
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Table 4. Different levels agility for the architecture

Table 5. Comparison between different levels of agility and the sum of the algorithms
it can implement

Level of agility Area of the generic
architecture
(in GE)

Sum of the implementations
(complexity ratio)

I 8494 1.72

II 8245 1.96

III 9212 1

IV 9631 0.625

Figure 8 illustrates the complexity reduction provided by the generic archi-
tecture when the level of agility increases. It shows that balance is achieved
around an agility of four algorithms and that once this limit is exceeded, the
generic architecture offers a real gain.
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Fig. 8. Complexity ratio for different levels of agility
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6 Conclusion

An implementation of a round-based generic architecture of SPN lightweight
ciphers has been presented. The results showed it was possible to compound
multiple algorithms within the same architecture to provide agility features. The
proposed architecture has the advantage of allowing to easily change the config-
uration at a round level and thus implementing the majority of SPN Lightweight
algorithms.

However, the proposed architecture has a significant complexity cost, mainly
due to the configuration logic. Compared to the complexity of a parallel imple-
mentation of different algorithms, we observe a complexity reduction if more
than 4 ciphers are considered. The reduction can reach 62.5% if 6 different algo-
rithms are considered. These results are promising if agility requirement is more
important than complexity.

Apart from optimizing the design complexity by finding more optimal imple-
mentations for each sub bloc, a prospect is to search for ways to implement
countermeasures against physical attacks. Indeed, specific countermeasures have
to be implemented as they have to take into account the flexibility of our archi-
tecture without significantly increasing the global complexity.
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Abstract. In this paper, we present a practical approach to generate
the constraint engine for an effective constraint-based intrusion detection
system (IDS). The IDS framework was designed for safety-sensitive net-
works that involve limited-access closed networks such as the networks
for command and control systems or Air Traffic Control (ATC) systems.
The constraint engine generated by the framework supports real-time
performance while ensuring the intended, normal behaviour of its target
networks. We present the IDS framework in terms of its internal DSL
representation as well as its transformation mechanisms to generate the
constraint engine code. Comparing the autogenerated version against a
manually implemented, optimized version of the constraint engine indi-
cates no significant difference in terms of their performance.

Keywords: Intrusion detection · Domain-specific language ·
Network security · Real-time systems · Source code generation

1 Introduction

As part of a cybersecurity project, we designed an effective framework to gener-
ate a robust constraint-based Intrusion Detection System (IDS) [9] for limited-
access closed networks. The IDS was designed to support real-time detection
of intrusions for safety-sensitive networks while keeping the intended, normal
behaviour of the networks intact for its authentic systems and agents. The IDS
framework is envisaged to generate efficient executable code for all of its com-
ponents, including the constraint engine, from a single specification document.
The framework, therefore, supports practical usability for its constraint engine,
allowing only limited human interventions for its code maintenance and change
management. The key strength of the IDS framework is its realization of three
levels of abstractions as follows:

1. The high-level description of the network protocols along with their con-
straints that can be written by the IDS users like Network Engineers;
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2. The mid-level specification of the constraints represented in an internal DSL
that can be transformed from the high-level description;

3. The low-level abstraction representing the executable constraint engine code
that can be autogenerated from the internal DSL.

In this paper, we present the current state of our IDS framework in terms of
its internal DSL representation that corresponds to the mid-level abstraction
above. We also present the transformation mechanism of the internal DSL that
we have implemented to generate the low-level, executable code for the constraint
engine. The DSL allows expressing different protocol-specific constraints in terms
of their internal data structures and other computational details. Essentially,
the DSL was designed to ensure optimal memory management and real-time
performance for the constraint engine code. Extending based on our previous
work [9], the DSL presented in this paper allows generalizing its mechanism
to accommodate complex constraints that involve multiple valid sequences of
packets with arbitrary order and length.

Prior to proposing the original DSL, we have also presented an optimization
approach for the constraint engine which was manually implemented in C with
promising results [9]. The manual version of the constraint engine code was used
as a guide for our automatic code generation framework presented in this paper.
Evaluating the generated constraint engine on a set of test cases with different
constraints validates the correctness of the autogenerated code. Comparing the
performance of the autogenerated constraint engine against the manually imple-
mented version shows that there is no significant performance penalty to our
autogenerated code.

The focus of our constraint engine is to achieve real-time performance when
inspecting the network packets against a set of constraints and successfully detect
any intrusion. The subsequent response to a detected intrusion, however, is out-
side the scope of our current research. We are currently working on implement-
ing the high-level language to specify different constraints which will be used to
autogenerate the internal DSL code discussed in this paper. We will present the
high-level language along with its transformation mechanism in our next article.

2 Background

The scope of our research is an anomaly-based IDS for limited-access, closed net-
works such as industrial control networks or command and control systems such
as the Air Traffic Control (ATC) systems. A key feature of these systems is that
they all involve a limited number of known protocols with restrictive operations.
The network traffic of these systems therefore involve much less variability than
that of a conventional network. The queries, responses, and commands involved in
these networks tend to have regular patterns that can be predefined and specified
as a set of logical constraints. These constraints can then be used to character-
ize the traffic in terms of their normal, predefined patterns. The IDS can detect
potential intrusions based on traffic that deviates from the specified constraints.

The IDS Framework. Figure 1 presents the high-level architecture of our IDS
framework. The two main components of the framework are the packet parser
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Fig. 1. The IDS framework.

and the constraint engine. Both of these components are automatically generated
from the protocol specification document at the top. The specification document
is meant to be written by the Network Engineers in a language called SCL [13]
using their familiar ASN.1-based notations. SCL allows modular description of
multiple protocols in terms of the syntax and semantics of their network traffic
packets. The generated parser [6] reads the network packets and converts them
into an internal structure for the constraint engine to use. In the process, the
parser also validates the internal structure of the packets [6].

The main task of the constraint engine is to validate different constraints
among the network packets. The engine is responsible for storing constraint-
specific information from the incoming packets that can be used to check the
validity of the later packets. The engine also supports the mechanism of auto-
matically deleting the stored information when no longer needed. The inter-
face between the parser and the constraint engine consists of dedicated callback
entries for each of the protocol-specific packet type recognized by the parser.

As presented in Fig. 1 our IDS framework only requires minimal human inter-
vention for its change management and code maintenance. Any changes to the
network such as the addition of new systems or protocols simply require updat-
ing the protocol specification at the top. The underlying framework of the IDS
will then take care of generating the new executable code for the parser and the
constraint engine based on the updated specification.

The Evaluation Framework. While our IDS framework was designed to sup-
port any kind of network protocol, in order to demonstrate our approach we
consider the Real Time Publish and Subscribe (RTPS) protocol [16] along with
the Internet Group Message Protocol (IGMP) [3] as part of our evaluation frame-
work. The RTPS protocol is a real-time implementation of the Data Distribu-
tion Service (DDS) framework [15], where some systems publish data (e.g. radar
tracks) while the other systems subscribe to the data (e.g., air traffic control
terminal, flight service station). RTPS protocol has been used in many critical
domains and real-time applications such as NASA’s Launch Control Networks
and the Canadian Automated Air Traffic Management System [1]. One of the
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key concepts in DDS is that of a topic which refers to a particular message
type and a quality of service. An example might be a radar track, or flight plan
information. RTPS is a UDP protocol which uses both multicast and unicast
messages. Multicast messages allow a publisher to send a single message that
can be received by all subscribers. However, to track which systems are listening
to multicast packets means we must also analyze the IGMP protocol, which is
used to manage multicast UDP messages. Our IDS framework is being extended
to support other UDP protocols such as the NTP [14], TFTP [21], and NFS [4].

The Threat Model. Our threat model is that the attacker has compromised
one or more nodes of the network through an alternate channel such as USB
and is looking to infect another node or to compromise the network function at
some point in the future. In our case, the IDS must treat each of the incoming
network packets as a suspicious entity. The contents of an incoming packet as
well as its arriving sequence must be evaluated against a set of protocol-specific
constraints in order to validate the packet’s right to exist in the network traffic
as a safe entity. The constraint engine for the anomaly-based IDS, therefore,
requires a set of constraints for each of the protocol-specific packet types that
collectively specify the normal behaviour of its target network.

There are three types of constraints that we are interested in. The first type
involves the constraints specified by the protocol parser to validate the well-
formedness of the network packets. The second type involves describing the
constraints between the incoming packets and the network environment. For
example, radar data and ADS-B [2] data may only originate from a specific set of
systems. Finally, the third type of constraints involves describing the constraints
among multiple packets along with their valid sequences. Three examples of
constraints for the RTPS protocol are: RTPS packets have the correct format and
structure, application data packets originate from the correct source addresses,
and that an intruder has not introduced a new topic in order to suborn the DDS
framework to provide communication between malware components.

3 Generating Constraint Engine Code

Each of the packet types within a network stream must have a set of associated
constraints. A packet type refers to the protocol-specific type of the packet such
as the RTPS DATA message packet. In our approach, the constraints are consid-
ered to be independent from each other. Each of the multipacket constraints
must specify a set of Packet Types, P = {Po, P1, .., Pn, Pt, Pf} that must exist in
a particular order; where, Po is the type of the Initial Packet of the sequence,
P1, .., Pn are the types of the Intermediate Packets leading up to the Target
Packet type, Pt, and the Final Packet type Pf after the Pt marks the closure
of the packet sequence relevant to the constraint.

Each instance of the network constraints corresponds to a tree data structure,
which is referred to as the constraint tree in this paper. Such a tree gradually
collects data for its nodes from the stream of network packets. A constraint tree
can be expressed using the prefix notation: AND(OP(a, b), OP(c, d)); where,
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Fig. 2. Sequence of packets with constraint tree phases.

AND refers to the logical conjunction, OP is a logical operator such as equality
(EQ) or non-equality (NEQ), and a, b, c, and d represent the leaf node data from
different packets that must be evaluated. Hasan et al. [9] proposes a life-cycle
model for the constraint trees with four consecutive phases: Instantiate (I), Bind
(B), Evaluate (E) and Destroy (D). It is the life-cycle model of the constraint
trees that dictates the overall memory management and the optimization of the
constrain engine in order to achieve the real-time performance of our IDS.

3.1 The Constraint Tree Life-Cycle Model

Based on its corresponding constraint specification, each phase of the constraint
tree is triggered by the arrival of a particular packet type within a stream of net-
work packets. Figure 2 illustrates a generic scenario of a constraint that involves
different packet types with a particular arriving sequence. In between the initial
packet, Po and the final packet, Pf , there could be many intermediate packets
of different types; however, within those packets, the constraint is specific about
the existence of three particular types of packets, Px, Py, and the target packet
Pt, that must arrive in the specified order. The constraint tree phases along with
their internal memory management processes are described below.

Instantiate is the first phase of a constraint tree instance which is triggered
by the arrival of the initial packet type, Po from a predefined sequence. In this
phase, a memory space is allocated for the constraint tree and a reference to the
tree is cached in a hash table that can be used by the later phases. The common
values between the initial packet and the consecutive packet(s) are used as the
keys for the hash table. Any data needed from the initial packet to evaluate the
constraint are stored in the tree instance.

Bind is the second phase of a multi-packet constraint that has more than
two packets. This phase involves the following tasks: validate the sequence of the
arriving packets and fill out the empty leaves in the constraint tree. While our
original approach [9] only allowed a single bind phase, the approach currently
allows multiple bind phases to be defined for a constraint. Figure 2 illustrates
that scenario by multiple intermediate packet types between the initial and the
target packet types. In the first bind phase, the constraint engine retrieves the
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tree from the instantiate hash table. In the case of more than one bind phases,
the constraint tree will be passed from one bind phase to the next through one
or more hash tables.

Evaluate is the phase in which the validity of the target packet Pt is eval-
uated. The triggering packet type Pt of this phase should provide the data for
any remaining leaf nodes of the constraint tree. A security violation occurs if
the evaluate phase fails to retrieve the tree from the hash table of the previous
phase or the tree evaluates to a false value. The evaluate phase for the same tree
instance can be executed every time a triggering packet arrives.

Destroy is the final phase of the life cycle which is triggered by the arrival of
the final packet, Pf in the predefined packet sequence. As a result of this phase,
the constraint tree is deleted from all the hash tables to free up memory.

3.2 The DSL Representation of Network Constraints

It should be noted that for the single-packet constraints, the life-cycle model
only involves the evaluate phase for the Pt contents against a known set of
environmental values. For two-packet constraints, the model simply involves the
instantiate phase for the Po and the evaluate phase for the Pt. The life-cycle
model presented above is particularly useful for those constraints that involve
more than two packets in a sequence with multiple alternative valid orders. In
this section, we describe the internal DSL representation using two such con-
straints namely the C5 and C11. Figure 3 illustrates the possible sequences of
packets involved in these two constraints in terms of their constraint tree phases.

Constraint C5. All subscribers and publishers must be valid members of an
IGMP multicast group. These participants must send their membership reports
to specific group addresses before showing their interests in a topic.

Constraint C11. The data of a certain topic is considered valid if it is produced

from a valid publisher and consumed by a valid subscriber.
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As reflected in Fig. 3, the target packet type to evaluate constraint C5 is
RTPS.DATA(W) (the publisher) or RTPS.DATA(R) (the subscriber) submessage of
an RTPS packet. The previous packet types, in order, are an RTPS packet contain-
ing a participant submessage, RTPS.DATA(P), and an IGMP membership report
packet. The IDS parser that we implemented can parse callbacks not only for the
entire packets but also for the meaningful parts of the packets such as the RTPS
submessages. Therefore, the constraint engine can use the RTPS submessage as
a trigger for its phase logic.

1 CONSTRAINT C5 /* Constraint ID */
2 /* Constraint Tree Expression for C5 */
3 V(AND(EQ(SrcIPAddressNewJoin , SrcIPParticipant),
4 EQ(GroupDestIPToBeJoined , DestIPParticipant)))
5 INSTANTIATE
6 IGMP Packet.Type is V2Report
7 if not SEARCH Packet.srcIP , IGMP.groupaddr :Hash=hashIC5
8 Tree.SrcIPAddressNewJoin = Packet.srcIP
9 Tree.GroupDestIPToBeJoined = IGMP.groupaddr

10 Key = Packet.srcIP , IGMP.groupaddr
11 HashInstantiate = hashIC5
12 endif
13 BIND
14 RTPS FULL_RTPS.Type is DATAPSUB
15 REPEAT
16 HashInstantiate = hashIC5
17 KeyInstantiate = Packet.srcIP , Packet.dstIP
18 Tree.SrcIPParticipant = Packet.srcIP
19 Tree.DestIPParticipant = Packet.dstIP
20 Key = Packet.srcIP
21 HashBind = hashBC5
22 EVALUATE
23 RTPS FULL_RTPS.Type is DATARSUB Or FULL_RTPS.Type is DATAWSUB
24 HashBind = hashBC5
25 if SEARCH Packet.srcIP :Hash=hashBC5
26 EVAL Packet.srcIP
27 endif
28 DESTROY
29 IGMP Packet.Type is V2Leave
30 if SEARCH Packet.srcIP:Hash=hashBC5
31 HashBind = hashBC5
32 Key = Packet.srcIP
33 endif
34 END

Listing 1.1. The DSL Code for Constraint C5

Listing 1.1 shows the DSL representation for the constraint C5. The first line
of the code specifies the constraint ID (line 1). The constraint ID is a unique
identifier value that is used as a suffix in the generated code for each constraint.
Next, in line 3–4, we have the constraint tree expression in prefix notation. The
keywords INSTANTIATE, BIND, EVALUATE, and DESTROY correspond to the life-
cycle phases of the constraint tree, each followed by a triggering packet type as
specified in Fig. 3. For instance, the instantiate phase is triggered when reporting
the multi-cast group address of a network; i.e., arrival of the IGMP Membership
Report packet. The V2REPORT in line 6 refers to the Membership Report packet
from the IGMP version 2 specification. The packet type DATAPSUB in line 14
refers to an RTPS participant submessage, RTPS.DATA(P) which triggers the
bind phase. The packet types DATARSUB and DATAWSUB in lines 23 correspond to
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the RTPS subscriber and publisher submessages. In line 29, the V2Leave packet
type corresponds to the leave submessage from the IGMP version 2 specification.

Tree Instance Hashing. The DSL proposed by Hasan et al. [9] had two implicit
hash tables to hold the constraint tree between the instantiate and bind phase,
and between the bind and evaluate phase. In our DSL, each of the instantiate and
bind phase can have an unlimited number of defined hash tables. In Listing 1.1,
line 10 shows an example of assigning key fields from the packet while line 11
defines the hash table name hashIC5. During the bind phase, the constraint
engine should be able to find the constraint tree in the instantiate hash table.
The constraint engine uses key fields from the triggering packet to lookup the
constraint tree instance created in the instantiate phase. In Listing 1.1, the hash
table name for the instantiate is defined in line 16 while the necessary key fields
are defined in line 17.

The bind phase updates the constraint tree by filling the empty leaves with
the appropriate packet fields as in lines 18–19 of Listing 1.1. The bind phase
stores the updated constraint tree in the bind hash table. In Listing 1.1, the
hash table name and key fields for bind phase are defined in lines 20–21. The
hash table name and key fields used by the evaluate phase are defined in lines
24 and 26. Finally, the destroy phase deallocates the constraint tree from the
defined hash tables. Based on the constraint specification, the autogenerated
constraint engine may have an unlimited number of hard-coded definitions of
hash tables for the instantiate and bind phases.

Hash Table Naming. In our current DSL, each hash table should have a
unique name throughout the constraint engine code. In Listing 1.1, the variable
HashInstantiate holds the hash table name for the instantiate phase of con-
straint C5. While the variable HashBind holds the hash table name for the bind
phase. The constraint phases should access any of the hash tables by their unique
names. For example, the bind phase should be able to find the constraint tree
allocated previously at the instantiate phase. Therefore, the HashInstantiate
is specified twice in the DSL of Listing 1.1 - first in the instantiate clause and the
next in the bind clause. The DSL grammar allows the naming of multiple hash
tables when the phase clause holds multiple cases. Listing 1.2 shows an example
of multiple hash tables within the same phase clause for constraint C11. In C11
example, the instantiate phase has two hash tables: hashIC11 DATARSUB and
hashIC11 DATAWSUB. Each one of these hash tables is accessed at different cases
based on the logical sequence.

Hash Table Management. Figure 4 summarizes the hashing mechanism
among the four phases of a constraint tree. During the instantiate phase, the
constraint engine instantiates a tree for the constraint Cx and inserts its ref-
erence to a hash table. The location of the tree reference in the hash table
is determined by the hash key value. The packet fields used to calculate the
key value should be specified in the DSL. For example, Listing 1.1 for C5 defines
srcIP and groupaddr as the key fields for its hash table hashIC5. Based on these
two fields, a reference to constraint tree is located in the hash table hashIC5. In
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some cases, the calculated key value may point to an already existing hashing
slot causing a collision [23]. In such a case of collision, the old tree is deleted
and the hash slot is updated with a new tree instance. At the bind phase, the
instantiate tree reference is copied from the instantiate hash table into the bind
hash table. In C5 example, the bind hash table is hashBC5. At the end of the
bind phase, the copied tree reference is deleted from the instantiate hash table
to free up space. However, the DSL allows disabling this deletion by adding
the keyword SPLIT in the bind clause. In case of collision, the tree update can
be ignored by adding the keyword REPEAT. For example, Listing 1.1 for C5 has
the keyword REPEAT at line 15. During the evaluate phase, the constraint tree
is retrieved from the hash table specified by the name in variable HashBind, if
available. Otherwise, the constraint engine should report a security violation.
The evaluate phase does not change the content of the hash tables. In our app-
roach, the generated hashing uses the linear probing algorithm with a relatively
prime step size [7]. However, other hashing algorithms that support deletion can
be used.

Constraint Generalization. The automatic generation approach takes into
consideration the generality of constraint specifications. One of the challenging
generalizations is the cross scenarios handling. The cross scenarios happen when
the constraint specification permits the same triggering packets for more than
one phase. For instance, the constraint C11 in Listing 1.2. The target of the
constraint determines if a data message of a given RTPS topic is produced by
a valid publisher and consumed by a valid subscriber. Both the instantiate and
bind phases can be triggered by a DATA(W) or a DATA(R) as depicted in Fig. 3.
For such a case, the generated constraint engine must conform to the accurate
scenario by checking if the other packet has already arrived. We use the SEARCH
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function (in Line 8 and Line 24) to check if the other packet has arrived by the
availability of constraint tree in hash table.

In Listing 1.2, we added the if condition at the start of each phase case to
handle the cross scenario generalization. Another example of generalization is
the multiple triggering packets for the same phase. We can observe that C11
specification handles such a case by applying a switch block. Each packet type
in such case will represent a triggering packet type. The same approach can be
applied to extend the C5 specifications. In C5 instantiate and destroy phases,
we add switch statements to handle older versions of IGMP Report packets.
Listing 1.3 shows the two phases after generalization.

1 CONSTRAINT C11
2 V(AND(EQ(SrcIPPublisher , DesIPfromSubscriber), EQ(PublisherSrtPort),
3 EQ(entityIDPublisher), EQ(SrcIPSubscriber)))
4 INSTANTIATE
5 RTPS FULL_RTPS.Type is DATAWSUB Or FULL_RTPS.Type is DATARSUB
6 switch (FULL_RTPS.Type)
7 case DATAWSUB:
8 if not SEARCH HashKey (. pidtopicname_rtps.topicname.name
9 IN Protoco~serializeddata~topicdata:type ,

10 PIDTOPICNAME_RTPS_VAL), Packet.srcIP , Packet.dstIP
11 :Hash=hashIC11_DATARSUB
12 endif
13 case DATARSUB:
14 if not SEARCH HashKey (. pidtopicname_rtps.topicname.name
15 IN Protocol~serializeddata~topicdata:type ,
16 PIDTOPICNAME_RTPS_VAL), Packet.dstIP , Packet.srcIP
17 :Hash=hashIC11_DATAWSUB
18 endif
19 endswitch
20 BIND
21 RTPS FULL_RTPS.Type is DATAWSUB Or FULL_RTPS.Type is DATARSUB
22 switch (FULL_RTPS.Type)
23 case DATARSUB: /* Case Logic */
24 if SEARCH HashKey (. pidtopicname_rtps.topicname.name IN Protocol~

serializeddata~topicdata:type ,PIDTOPICNAME_RTPS_VAL), Packet.dstIP ,
Packet.srcIP :Hash= hashIC11_DATAWSUB

25 endif
26 case DATAWSUB: /* Case Logic */
27 if SEARCH HashKey (. pidtopicname_rtps.topicname.name IN Protocol~

serializeddata~topicdata:type ,PIDTOPICNAME_RTPS_VAL), Packet.srcIP ,
Packet.dstIP:Hash= hashIC11_DATARSUB

28 endif
29 endswitch

Listing 1.2. The DSL Code for Constraint C11

1 INSTANTIATE
2 IGMP Packet.Type is V2Report Or Packet.Type is V3Report
3 switch (Packet.Type)
4 case V2Report: /* Case Logic */
5 if not SEARCH Packet.srcIP , IGMP.groupaddr :Hash=hashIC5
6 endif
7 case V3Report: /* Case Logic */
8 loop for groupaddr in IGMP.grouprecordinfo
9 if not SEARCH Packet.srcIP , Iterator.groupaddr :Hash=hashIC5

10 endif
11 endloop
12 endswitch
13 /* The Bind phase followed by the Evaluate phase [Same as Listing 1] */
14 DESTROY
15 IGMP Packet.Type is V2Leave Or Packet.Type is V3Leave
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16 switch (Packet.Type)
17 case V2Leave: /* Case Logic */
18 if SEARCH Packet.srcIP:Hash=hashBC5
19 endif
20 case V3Leave: /* Case Logic */
21 if SEARCH Packet.srcIP:Hash=hashBC5
22 endif
23 endswitch
24 END

Listing 1.3. DSL Code for Generalized Constraint C5
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Fig. 5. Automatic generation of the constraint engine code.

3.3 Implementation

An overview of our implemented autogeneration framework for the constraint
engine code is presented in Fig. 5. Based on the constraints specified in the DSL
input, the framework requires three kinds of transformations to generate the
necessary C files for the constraint engine. These include the transformations
for the hashing, the constraint tree phases, and the parser callbacks, as depicted
in the figure. We used the TXL [5] as the transformation language between the
DSL and the constraint engine code. After the transformations, all the generated
C files of the IDS are compiled to build a binary executable file. The binary file
includes the parser and the autogenerated constraint engine.

Four snippets of the generated code for constraint C5 are presented in this
section. First is the example of hash.h file in Listing 1.4 that includes the func-
tion prototypes of the generated hashing operations for the C5 constraint tree.
Next, in Listing 1.5, we have the generated code for constraint.h which includes
the function prototypes of the constraint tree phases. Notice how the function
parameters correspond to the C5 DSL in Listing 1.1. For example, the function
instantiateC5 V2Report(..) in Line 1 requires a pair of key fields, followed
by a pair of leaf node values based on lines 8–10 of the instantiate clause in
C5 DSL 1.1. Listing 1.6 presents the generated implementation of the C5 bind
function for the constraint.c file. The bind implementation calls different hash
functions to retrieve and update each tree instance.
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1 typedef struct {
2 uint32_t SrcIPAddressNewJoin;
3 uint32_t SrcIPParticipant;
4 uint32_t GroupDestIPToBeJoined;
5 uint32_t DestIPParticipant;
6 } treeHashC5;
7 int insertIValueC5V2Report (uint32_t key1 , uint32_t key2 , uint32_t

SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined);
8 int deleteValueIhashIC5 (uint32_t key1 , uint32_t key2);
9 treeHashC5* GetValuefromfhashIC5 (uint32_t key1 , uint32_t key2);

10 int insertIValueC5V3Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined);

11 int insertBValueC5hashBC5 (uint32_t key1 , uint32_t SrcIPParticipant ,
uint32_t DestIPParticipant , treeHashC5* treeInst);

12 int deleteValueBhashBC5 (uint32_t key1);
13 treeHashC5* GetValuefromfhashBC5 (uint32_t key1);
14 void clearC5 ();

Listing 1.4. Generated Code in hash.h for C5.

1 int instantiateC5_V2Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long
pktCount);

2 int instantiateC5_V3Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long
pktCount);

3 int bind1C5 (uint32_t instatiate_key1 , uint32_t instatiate_key2 , uint32_t
key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned
long pktCount);

4 int evaluateC5 (uint32_t key1 , unsigned long pktCount);
5 int destroyC5_V2Leave (uint32_t key1 , unsigned long pktCount);
6 int destroyC5_V3Leave (uint32_t key1 , unsigned long pktCount);

Listing 1.5. Generated Code in constraint.h for C5.

1 int bind1C5 (uint32_t instantiate_key1 , uint32_t instantiate_key2 , uint32_t
key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned
long pktCount){

2 if (true){
3 treeHashC5* insTree= GetValuefromfhashIC5(instantiate_key1 ,

instantiate_key2);
4 if (insTree ==NULL){iC5f ++; iC5bindf ++; return -1;}
5 else {}
6 treeHashC5* bindTree=GetValuefromfhashBC5(key1);
7 bool noRepeat=false;
8 if (bindTree !=NULL){if (! noRepeat) return 1;}
9 bool split=false;

10 if (split){
11 treeHashC5* splitedTree=malloc(sizeof(treeHashC5));
12 memcpy (splitedTree , insTree , sizeof(treeHashC5));
13 bindTree=splitedTree ;}
14 else if (! noRepeat){
15 treeHashC5* splitedTree=malloc(sizeof(treeHashC5));
16 memcpy (splitedTree , insTree , sizeof(treeHashC5));
17 bindTree=splitedTree ;}
18 else {bindTree=insTree ;}
19 if (insertBValueC5hashBC5 (key1 , SrcIPParticipant , DestIPParticipant ,

bindTree) == -1)
20 {iC5f ++; iC5bindf ++; return -1;}
21 if (noRepeat){if (!split){if (deleteValueIhashIC5 (instantiate_key1 ,

instantiate_key2) == -1){
22 iC5f ++; iC5bindf ++; return -1;}}}
23 iC5bind ++; return 1;}
24 else return 1;}

Listing 1.6. Snippet of Generated Code in constraint.c for C5
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1 void V2Report_IGMP_callback(V2Report_IGMP *v2report_igmp , PDU *thePDU){
2 struct HeaderInfo *Packet = thePDU ->header;
3 instantiateC5_V2Report (Packet ->srcIP ,
4 v2report_igmp ->groupaddr , Packet ->srcIP ,
5 v2report_igmp ->groupaddr , Packet ->pktCount);}

Listing 1.7. IGMP V2Report with a trigger call to C5 Instantiate Phase.

Finally, Listing 1.7 shows an example of triggering the C5 instantiate phase
within the generated callback function of IGMP V2Report based on the instan-
tiate phase of the C5 DSL in Listing 1.1. The callback function headers are
predefined in the parser and used as inputs for the callback transformation. The
callback functions passes the triggering packets defined in the constraint specifi-
cations and fills the required parameters of the tree phases. The transformation
keeps appending the callback functions into the callback.c file for different
triggering packets based on the constraint tree phases.

4 Results and Evaluation

The generated IDS has been tested against four different constraints with the
test cases listed in Table 1. Each of the cases in the table was intentionally
induced in separate packet capture (pcap) files. As shown in Table 1, each of
the four constraints has a normal scenario where the IDS should pass with no
violations, along with a set of abnormal cases with anomalous packets. The
violation checks reported by the generated constraint engine are consistent with
the test case expectations, proving the correctness of the constraint engine code.

Table 1. Test cases with four constraints.

C5 Tests C8 Tests

✓ Normal Normal

✗ Missing IGMP Packet in the Sequence Wrong Topic Name in DATA(W)

✗ Wrong Group Address in IGMP Report -

C11 Tests C12 Tests

✓ Normal Normal

✗ Wrong SrcIP in IGMP DATA(W) Wrong SrcIP in IGMP DATA(W)

✗ Wrong DestIP in IGMP DATA(W) Wrong SrcIP in IGMP DATA

Figure 6 shows the performance results on the run-time averages of the two
IDS versions on three pcap files. For our evaluation, we used the same set of
pcap files used by Hasan et al. [9] against the same three constraints: C5, C11
and C8. We run each IDS 10 times for each pcap file. Each of the IDS was ran
on an Ubantu Linux 64-bit VM with Intel core i7 processor using 2 GB of RAM.

As we can observe in Fig. 6, the autogenerated IDS is slower with a maxi-
mum drop of less than 6%. The results indicate that there is a slight drop in the
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Fig. 6. Performance comparison between the constraint engines.

performance for the autogenerated IDS in contrast to the manually implemented
version. However, the performance difference is insignificant. These results high-
light that the automatic generation of the constraint engine presented in this
paper does not lead to a significant performance penalty.

5 Related Work and Discussion

While there exist various approaches to develop an IDS [12], the premise of our
approach is an anomaly-based IDS [8] for limited-access closed-networks which
involve a limited number of protocols. Various anomaly-based approaches have
been studied that apply Machine Learning (ML) techniques [22] to identify sus-
picious patterns in the network traffic. However, the ML-based approaches are
typically useful for conventional public networks that involve a broad variety
of protocols with variable traffic patterns that are hard to prognosticate. Since
the target networks of our IDS solely involve a limited number of protocols with
restrictive operational patterns, we did not consider any ML-based technique for
our approach. Our approach is based on the idea of inspecting each of the net-
work packets against a finite set of protocol-specific constraints that are already
known. We considered achieving real-time performance and automatic genera-
tion of our constraint-based IDS [9] to be the key challenges for our approach.

Satisfying network constraints can be considered similar to finding frequent
patterns in the data stream. Various tree-based approaches have been consid-
ered in literature for different applications [11,18,20]. A key limitation of these
approaches is that they require maintaining large constraint trees to express
their desired patterns. Against streaming data in large scale, even with effi-
cient pruning algorithms, traversing and updating such constraint trees would
require continuous memory operation which is bound to cause major bottlenecks
in performance. In our approach, using the constraint tree life-cycle model we
instantiate a simple tree for each of the individual constraints with optimized
memory management. Using the hashing mechanism presented in this paper, our
approach allows accessing the required tree nodes in the memory or removing a
tree from memory, both in constant time.
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Open source tools such as SNORT [17] support rule-based intrusion detection
techniques. The SNORT rules [10] can be used to express similar concerns com-
parable to the single-packet environmental constraints in our approach. However,
when it comes to multi-packet constraints involving a set of valid sequence of
packets, expressing them using SNORT-based rules are not feasible. Writing such
rules would require specifying the exact time frames for the expected arrival of
related packets. In contrast, our approach allows defining the partial-order pat-
terns on the required set of packets without the need to specify any time window.
In a related effort of using a DSL to express network constraints, Salgueiro et al.
[19] present a DSL to describe common attacks on TCP/IP protocols that can
generate solution code. However, the DSL was not designed to handle the kind
of multi-packet constraints that we needed for the DDS networks.

Generating automated code has been used in various Model-Driven Engineer-
ing projects. These projects usually involve generating operational code from a
model specifying the system to be created. Our code generation approach is dis-
tinct in that we are generating the code to validate the network data against the
models. The generated constraint engine code by our IDS framework checks the
validity of the traffic data against a set of protocol-specific behavioural models
of the target networks.

6 Conclusion and Future Work

In this paper, we have presented an effective approach to autogenerate a con-
straint engine through a practical IDS framework. The approach implements
and extends our earlier DSL proposed by Hasan et al. [9] and generalizes its
representation to accommodate any kind of complex multi-packet constraints
that involve alternative sequences of packets with arbitrary length and order.
We have successfully implemented a mechanism to transform the internal DSL
into executable constraint engine code using TXL.

Comparing the performance of the autogenerated constraint engine against
the manually implemented version displays no significant performance overhead.
The correctness of the generated constraint engine was evaluated based on four
different test cases. For our next evaluation, we plan to involve a third-party
Red team to incorporate a comprehensive collection of malicious activities on
our simulation environment for an ATC network.

We are currently working on generating the internal DSL from an SCL-based
high-level constraint specification language suitable for the Network Engineers
to use. The SCL language, already being used to generate the parser for our IDS
framework, is modular, which allows easy specification of multiple protocols for
a given network. Finally, since the IDS framework only allows autogenerating
its constraint engine from a high-level specification, the approach requires mini-
mum human interventions. The intricate implementation details of the constraint
engine are not needed to be coded or managed by humans which eliminates the
possibility of having human-induced errors and heavy maintenance overhead
when adapting a new set of protocols and systems for the IDS.
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Abstract. For a digital signature scheme, unforgeability and non-
repudiation are two main security requirements. In 2017, Galbraith, Petit
and Silva presented GPS signature, an efficient isogeny based signature
with a proven unforgeability. In this paper, we present a successful key
substitution attack on GPS signature which threaten the non-repudiation
of GPS signature. We also suggest how to prevent key substitution attack
in general as well as our attack in this paper. We also present an example
of our attack using Sage to illustrate isogenies of elliptic curves and our
attack.

Keywords: Isogeny-based signature · Non-repudiation ·
Post-quantum cryptography

1 Introduction

The essential security goals of digital signatures include integrity of the signed
data, authenticity of the signed data and the signer, and non-repudiation of the
origin of the signature. The unforgeability of a signature scheme guarantees the
integrity and authenticity of the signature scheme. Therefore, unforgeability and
non-repudiation are two main security requirements for signature schemes. The
forgeability of a signature can be an evidence of the failure of non-repudiation
of the signature scheme, and thus, the issue of non-repudiation of a signature
can be addressed only for unforgeable signatures. However, the unforgeability of
a signature may not guarantee the non-repudiation of the signature [1,6].

It suggests that further analysis on the non-repudiation of unforgeable signa-
ture schemes is necessary, especially for the newly presented signature schemes
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such as post-quantum signatures (secure signatures in the presence of quantum
computers). The isogeny-based public key cryptography is widely studied as a
candidates of post-quantum signatures due to short key sizes and compatibility
with the current elliptic curve primitives [3,4,10,15]. In [12], Galbraith, Petit
and Silva presented an efficient isogeny based signature, which we call it as GPS
signature, by applying the Fiat-Shamir transformation [2] to the De Feo-Jao-
Plût identification [10]. GPS signature scheme is proven unforgeable under the
hardness assumptions of some isogeny problems in the random oracle model [12].

In this paper, we study the non-repudiation of GPS signature scheme. We
present a successful key substitution attack, one of the most basic attack which
threaten the non-repudiation of a digital signature scheme. Our attack on GPS
signature implies that the non-repudiation fails for the current version of GPS
signature. Our result is the first key substitution attack on isogeny based sig-
nature schemes under the consideration of the non-repudiation of the signa-
ture. Since the non-repudiation has not been considered in the current design
of isogeny based signatures even though it is one of the main security issues
of digital signature schemes, we believe that our result would put forward fur-
ther studies on secure design of isogeny based signatures. Our attack on GPS
signature uses isomorphisms on the underlying elliptic curves and the fact that
isomorphic elliptic curves have the same j-invariants. We recommend to restrict
different j-invariants for each public key to prevent our key substitution attack
in this paper. Moreover, we suggest to format the message as specific to each
public key, such as pk||message, prior to signing according to the analysis of
Menezes and Smart [1].

The paper is organized as follows. In Sect. 2, we give preliminaries on isogeny,
non-repudiation of signature and key substitution attack. Section 3 describes
our key substitution attack on GPS signature scheme using isomorphism and
explain why the non-repudiation fails for GPS signature with an example of our
key substitution attack. We also discuss countermeasures of our attack on GPS
signature. Section 4 concludes the paper.

2 Preliminaries

In this section, we review some concepts and properties of isogenies of elliptic
curves and isogeny problems related to GPS signature. We also recall the def-
inition of key substitution attack for digital signature schemes and its impacts
on the non-repudiation of signatures.

2.1 Elliptic Curves and j-invariants

Definition 2.1 (Elliptic curve [9]). An elliptic curve over a field K is a smooth
projective plane curve of genus one having a specified distinguished point. Pro-
jective Weierstrass equation of an elliptic curve over a field K is

E(K) : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3;
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Affine Weierstrass equation of an elliptic curve over a field K is

E(K) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 with ∞;

When char K �= 2, 3, we can write

E(K) : y2 = x3 + ax + b;

with a, b ∈ K such that � = −16(4a2 + 27b2) �= 0 for smoothness condition.

Standard projective coordinates are used to represent the points of elliptic
curve y2 = x3 + ax + b. In standard projective coordinates, the triple (X,Y,Z)
represents the affine point (x = X/Z, y = Y/Z) of the curve. We use the standard
projective coordinates in our example in Sect. 3.2.

Definition 2.2 (j-invariant [9]). Let E be the elliptic curve given by y2 = x3 +
ax + b, where a, b are elements of a field K of characteristic not 2 or 3. Define
the j-invariant of E to be

j = j(E) = 1728
4a3

4a3 + 27b2
.

Given an elliptic curve E, its j-invariant can be found in polynomial-time;
moreover, given a j-invariant j∗ ∈ K, one can find a curve E with j(E) = j∗

in polynomial time. As the name suggests, the j-invariant is invariant under
K-isomorphisms of algebraic sets, and so a j-invariant uniquely identifies a K-
isomorphism class of elliptic curves over K.

Theorem 2.3 [9]. Let E1(K) = {(x1, y1)|y2
1 = x3

1 + a1x1 + b1} and E2(K) =
{(x2, y2)|y2

2 = x3
2 + a1x2 + b1} be two elliptic curves over the field K with the

j-invariants j1 and j2, respectively. If j1 = j2, then there exists μ �= 0 in the
algebraic closure K such that a2 = μ4a1, b2 = μ6b1. The transformation x2 =
μ2x1, y2 = μ3y1 takes one equation to the other.

2.2 Isogeny

Definition 2.4 (Isogeny [9]). Let E and E
′

be elliptic curves defined over a
field K. An isogeny from E to E

′
is a non constant morphism φ : E → E

′
that

maps the neutral element into the neutral element.

An isogeny φ : E → E
′
over a finite field Fq can be represented as a rational

map whose coefficients belong to Fq. An isogeny of degree m, when it is con-
sidered as a rational map, is called an m-isogeny. If φ is a separable isogeny,
then degφ = |kerφ| [10]. If there is a separable isogeny between two curves, we
say that they are isogenous. A theorem of Tate in [7] says that if E and E′ are
defined over a finite field Fq, then E and E′ are isogenous over Fq if and only if
|E(F

′
q) = |E′(F

′
q)| for every finite extension F

′
q of Fq. In [8], it has been shown

that E′ is isogenous to E over Fq if and only if E is isogenous to E′ over Fq.
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The isogeny class of a curve E over Fq is defined to be the set of all curves E′

which are isogenous to E, up to Fq-isomorphism. Since any algebraic morphism
of curves is either constant or surjective [11], if φ : E → E′ is a nontrivial isogeny,
then φ(E) = E′.

An isogeny φ : E → E
′
such that E = E′ is called an endomorphism. The set

of endomorphisms of an elliptic curve E denote End(E). For a finite field F, this
set End(E) is a Z module of rank 2 or 4. We say that E is supersingular if the
rank of End(E) as a Z module is 4, and ordinary otherwise. Any supersingular
elliptic curve E is defined over Fp2 for some prime p, and for each prime m �= p
there are m + 1 isogenies of degree m with domain E (though not all of them
are defined over Fp2 , in general) [10]. These isogenies of degree m are in one-to-
one correspondence with the subgroups of E of order m; moreover, each such
subgroup Φ ⊂ E is the kernel of a unique isogeny φ, and we write φ(E) = E/Φ
[8]. That is, an isogeny can be identified with its kernel [14]. Hence to specify an
isogeny it suffices to specify its kernel, and conversely given a subgroup Φ of E
we can construct the isogeny φ whose kernel is Φ, using Velu’s formulae [13].

If we have two isogenies φ : E → E
′

and φ̂ : E′ → E such that φ · φ̂ and
φ̂ ·φ are the identity maps, we say that φ, φ̂ are isomorphisms and E and E′ are
isomorphic. The isomorphic elliptic curves over finite field can be named with
their j-invariant.

2.3 Computational Isogeny Problems Relating to GPS Signature

There are several hard problem candidates related to supersingular elliptic
curves, we present the problems related to the security of GPS signature scheme.
The GPS signature scheme is based on De Feo-Jao-Plût identification protocol
[10] which uses isogeny smooth prime defined as follows.

Definition 2.5 (isogeny smooth prime [10]). A prime p is called isogeny smooth
prime if p = �e1

1 �e2
2 f ± 1 where �1 and �2 are two distinct small primes, and e1,

e2 and f are positive integers.

The security of GPS signature scheme relies on Computational Supersingular
Isogeny (CSSI) and Decisional Supersingular Product (DSSP) problems from
[10]. Let E0 and E1 be supersingular elliptic curves over Fp2 for an isogeny
smooth prime p, that is, p = �e1

1 �e2
2 f ± 1. Let {R1, S1} and {R2, S2} be bases for

E0[�e1
1 ] and E0[�e2

2 ], respectively.

Problem 2.6 (Computational Supersingular Isogeny - CSSI). Let φ1 : E0 → E′

be an isogeny with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1 are chosen uniformly
at random from Z/�e1

1 Z, and not both divisible by �1. The problem is, given
(E′, (φ1(R2), φ1(S2)), to find a generator of 〈[m1]R1 + [n1]S1〉.
Problem 2.7 (Decisional Supersingular Product - DSSP). Let φ : E0 → E1 be
an isogeny of degree �e1

1 . The problem is, given

((E0, E1), (R2, S2, φ(R2), φ(S2)), (E2, E3)),

to determine from which distribution the pair (E2, E3) is sampled;
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• (E2, E3) such that there is a cyclic group G ⊆ E0[�e2
2 ] of order �e2

2 and E2
∼=

E0/G and E3
∼= E1/φ(G).

• (E2, E3) where E2 is chosen at random among the curves having the same
cardinality as E0, and φ′ : E2 → E3 is a random �e1

1 -isogeny.

As discussed in [10] and [12], the problems CSSI and DSSP are non-standard
isogeny problems since they use special primes as isogeny smooth prime, use
somewhat small isogeny degrees, and reveal auxiliary points. In general, the prob-
lems CSSI and DSSP are proven to be exponentially hard even under quantum
attack [10], but it is known that revealing auxiliary points may be dangerous in
certain context. Even with such concern on the underlying computational prob-
lems CSSI and DSSP, GPS signature is simple to describe and easy to implement
which could be very important advantages in practice.

2.4 Non-repudiation of Signature Scheme and Key Substitution
Attack

A digital signature scheme consists of three polynomial time algorithms

(KeyGen,Sign,Verify)

which are defined as follows:

KeyGen(1λ): On a given security parameter λ, the algorithm KeyGen outputs a
pair (pk, sk) of keys, where pk is a public key for signature verification and
sk is a private key for signature generation. The private key sk is kept secret
by the owner of the public key pk.

Sign(sk,m ∈ {0, 1}∗): On a given message m ∈ {0, 1}∗ and a private key sk, the
algorithm Sign outputs a signature σm.

Verify(m,σm, pk): On a given input ((m,σm), pk), the algorithm Verify outputs
1(= valid) or 0(= invalid).

We say that a digital signature is correct if

Verify(m,Sign(sk,m ∈ {0, 1}∗), pk) = 1

for any (pk, sk) ← KeyGen(1λ) and message m. The existential unforgeability
(EUF) of a signature requires that it is infeasible for anyone to compute a valid
signature under a public key pk without knowing the private key sk. Generally,
a secure signature scheme means EUF-CMA (existential unforgeable against
chosen message attack) secure which is defined as follows.

Definition 2.8 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify)
is EUF-CMA secure if for all probabilistic polynomial-time algorithm A with
access to a signing oracle Sign(·, sk), there is a negligible function ε(·) such that:

Pr

[ {
(pk, sk) ← KeyGen(1λ)

(m∗, σ∗) ← ASign(·,sk)(pk)
: (m∗ /∈ Q) ∧ (Verify(m∗, σ∗, pk) = 1)

]
≤ ε(λ),

where Q is the set of queries which A has accessed to the signing oracle.
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The non-repudiation of a signature requires that it is infeasible for the signer
to repudiate his/her signing on a valid signature under the public key pk of the
signer. For a digital signature scheme, unforgeability and non-repudiation are
two main security requirements which seem to be closely related. The existence
of a forged signature of a signature scheme lets the signer to claim his/her
signed signature as a forged signature. Therefore, issue of non-repudiation of a
signature is to be considered only for EUF-CMA secure signatures. It is known
that unforgeability of signature may not guarantee the non-repudiation of the
signature [1,6].

We focus on the non-repudiation of digital signatures in this paper. The most
basic attack for the non-repudiation is the public key substitution attack. The
goal of public key substitution attack is to compute a new public key pk′ where
a valid signature σ on a message m under a public key pk can be also validated
under pk′. Therefore, any signer can repudiate his/her signing on a signature
σ on a message by using the existence of a successful key substitution attack.
More precisely, the signer, the owner of public key pk, computes pk′ by using a
key substitution attack and claims that the signature σ is signed by the owner
of pk′, not himself/herself. The key substitution attack has been formalized as
follows.

Definition 2.9 (Key Substitution Attack) [6]. Given a signature scheme
(KeyGen,Sign,Verify), a key substitution attack is a probabilistic polynomial-time
algorithm A which on input of valid domain parameters outputs two valid pub-
lic keys pk and pk′ and a message/signature pair (m,σ) where Verify(m,σ, pk)
and Verify(m,σ, pk′) each return 1(= valid). A digital signature scheme is key
substitution secure if it is secure against key substitution attacks.

Since the potential attacker for the non-repudiation of a signature scheme
is the original signer, one can assume that the key substitution attacker for the
non-repudiation of a signature knows the private key of the original signature
and the private information, such as nonce, used during signing process. And
this contrasts the potential attackers against the unforgeability of a signature
scheme.

3 Results

3.1 GPS Signature Scheme

This section recalls a signature scheme in [12], which we call it as GPS signature.
Let p be a large isogeny smooth prime, that is, p = �e1

1 �e2
2 · f ± 1, where �1, �2

are small primes (typically �1 = 2 and �2 = 3). We define a supersingular elliptic
curve E0 over Fp2 with |E0(Fp2)| = �e1

1 �e2
2 · f and a primitive �e1

1 -torsion point
P1 ∈ E0. Define E1 = E0/〈P1〉 and denote the corresponding �e1

1 -isogeny by
φ : E0 → E1. In [12], Galbraith, Petit and Silva apply the Fiat-Shamir transform
[2] to the De Feo-Jao-Plût identification scheme, and construct GPS signature
which is described as follows.
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KeyGen(1λ): On input a security parameter λ, the algorithm proceeds the
following steps:

• generate a prime p = �e1
A �e2

B ·f ±1 with at least 4λ bits for small �1, �2, f
(ideally f = 1, �1 = 2, �2 = 3) and �e1

1 ≈ �e2
2 .

• choose a supersingular elliptic curve E0 with j-invariant j0.
• compute points R2, S2 ∈ E0(Fp2)[�e2

2 ] and a random primitive �e1
1 -torsion

point P1 ∈ E0[�e1
1 ].

• compute an isogeny φ : E0 → E1 with kernel generated by P1, and let j1
be the j-invariant of the image curve.

• set R
′
2 = φ(R2), S

′
2 = φ(S2).

• choose a hash function H with t = t(λ) bits of output.
• output

pk = (p, j0, j1, R2, S2, R
′
2, S

′
2,H), sk = P1.

Sign(sk = P1,m ∈ {0, 1}∗): On the given input, the algorithm proceeds the
following steps:

• for i = 1, . . . , t,
– choose random integers 0 ≤ αi < �e2

2 .
– compute an isogeny ψi : E0 → E2,i with the kernel generated by

R2 + [αi]S2 and let j2,i = j(E2,i).
– compute an isogeny ψ

′
i : E1 → E3,i with the kernel generated by

R
′
2 + [αi]S

′
2 and let j3,i = j(E3,i).

– compute

h = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) = b1b2 · · · bt ∈ {0, 1}t.

• for i = 1, . . . , t,
– if bi = 0 then set zi = αi.
– if bi = 1 then compute ψi(P1) and set zi = (j2,i, ψ

′′
i ) where ψ′′

i :
E2,i → E′

3,i is an isogeny with the kernel generated by ψi(P1).
• output

σm = (h = b1b2 · · · bt, z1, . . . , zt)

Verify(m,σm, pk): On the given input,
• from pk, recover the parameters p,E0, E1.
• for each 1 ≤ i ≤ t, using the information provided by zi, one recompute

the j-invariants j′
2,i and j′

3,i.
– in the case bi = 0 this is done by using zi = αi and computing j′

2,i

from the isogeny with kernel generated by R2 + [αi]S2 ∈ E0 and j′
3,i

from the isogeny with the kernel generated by R
′
2 + [αi]S

′
2 ∈ E1.

– when bi = 1 then the value j2,i and a description of the isogeny
ψ′′

i : E2,i → E′
3,i is provided in zi. The verifier computes j′

2,i = j2,i

and j′
3,i as the j-invariant of the image curve of ψ′′

i which means that
j′
3,i = j(E2,i/Ker(ψ′′

i )) = j(E′
3,i).

• compute h
′
= H(m, j′

2,1, . . . , j
′
2,t, j

′
3,1, . . . , j

′
3,t).

• output 1(= valid) if and only if h
′
= h.
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Theorem 3.1 ([12]). If the problems CSSI (Computational Supersingular
Isogeny) and DSSP (Decisional Supersingular Product) are computationally hard
then the signature above, GPS signature, is secure in the random oracle model
under a chosen message attack.

3.2 Our Attack on the Non-repudiation of GPS Signature

Now we show that GPS signature fails to provide non-repudiation of the signa-
ture. In particular, we present a key substitution attack on GPS signature for
a signer to repudiate his/her signature. We describe our attack in general and
present an example.

3.2.1 A Description of Our Key Substitution Attack
Our attack uses isomorphism of elliptic curves. A legal but malicious user U
creates two public keys

pk = (p, j0, j1, R2, S2, R
′
2, S

′
2,H), and pk′ = (p, j0, j1, ˜R2, ˜S2, ˜R2

′
, ˜S2

′
,H) (1)

• η0(˜P1) = P1, η0(˜R2) = R2, η0(˜S2) = S2 and
• η−1

1 · φ · η0(˜R2) = ˜R2

′
, η−1

1 · φ · η0(˜S2) = ˜S2

′

for some isomorphisms η0 : E′
0 → E0 and η1 : E′

1 → E1 with the inverses
η−1
0 : E0 → E′

0 and η−1
1 : E1 → E′

1, respectively.
The public key pk′ is correctly formulated by using the isogeny η−1

1 · φ · η0 :
E

′
0 → E

′
1 with kernel generated by ˜P1. We set ˜φ = η−1

1 · φ · η0.
The following commutative diagram explains the relations between pk and

pk′.

E′
0 E′

1

E0 E1

E2,i E3,i

η0

˜φ = η−1
1 · φ · η0

ψi

φ

η1

ψ′
i

ψ′′
i

Now we prove that the user with the public key pk
′
succeed a key substitution

attack on GPS signature scheme.

Theorem 3.2. Let the public keys pk = (p, j0, j1, R2, S2, R
′
2, S

′
2,H) and pk′ =

(p, j0, j1, ˜R2, ˜S2, ˜R2

′
, ˜S2

′
,H) of GPS signature be given as in Eq. 1. For any valid

signature σm = (h = b1b2 · · · bt, z1, . . . , zt) on a message m ∈ {0, 1}∗ under the
public key pk, σm is a valid signature on the message m ∈ {0, 1}∗ under the
public key pk′.
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Proof. From the validity of σm = (h = b1b2 · · · bt, z1, . . . , zt) as a signature on
the message m ∈ {0, 1}∗ under the public key pk, the followings hold,

• for the i = 1, ..., t with bi = 0, which implies that zi = αi,
– j2,i = j(E0/〈R2 + [αi]S2〉) and j3,i = j(E0/〈R′

2 + [αi]S′
2〉).

• for the i = 1, ..., t with bi = 1, which implies that zi = (j2,i, ψ
′′
i : E2,i → E′

3,i),
j3,i = j(E2,i/〈Ker(ψ

′′
i )〉) = j(E′

3,i).
• h = b1b2 · · · bt = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t).

Now we show that σm is also a valid signature on m under pk′. From (m,σm),
anyone can verify the validity of σm as a signature on m under pk′ as follows:

• If bi = 0, that is, zi = αi, any verifier computes (j
′
2,i, j

′
3,i) as follows by using

pk′ which turns out (j
′
2,i, j

′
3,i) = (j2,i, j3,i):

– The verifier computes j′
2,i = j(E′

0/〈˜R2 + [αi]˜S2〉) from an isogeny ˜ψi :
E′

0 → E′
2,i whose kernel is generated by ˜R2 + [αi]˜S2. We want to show

that j′
2,i = j2,i. Since η0 : E0 → E′

0 is an isomorphism, we have

j′
2,i = j(E′

0/〈Ker( ˜ψi)〉) = j(E0/〈Ker( ˜ψi · η−1
0 )〉).

We also have that Ker( ˜ψi · η−1
0 ) = 〈R2 + [αi]S2〉 from the fact

η−1
0 (R2 + [αi]S2) = η−1

0 (R2) + [αi]η−1
0 (S2) = ˜R2 + [αi]˜S2.

Therefore, j′
2,i = j(E0/Ker( ˜ψi · η−1

0 )) = j(E0/〈R2 + [αi]S2〉) = j2,i

– The verifier computes j′
3,i = j(E′

1/〈˜R2

′
+ [αi]˜S2

′〉) from an isogeny ˜ψi

′
:

E′
1 → E′

3,i whose kernel is generated by ˜R2

′
+ [αi]˜S2

′
. We want to show

that j′
3,i = j3,i. Since η1 : E1 → E′

1 is an isomorphism, we have

j′
3,i = j(E′

1/〈Ker( ˜ψi

′
)〉) = j(E1/〈Ker( ˜ψi

′ · η−1
1 )〉).

We also have that Ker( ˜ψi · η−1
1 ) = 〈R′

2 + [αi]S′
2〉 from the fact

η−1
1 (R′

2 + [αi]S′
2) = η−1

1 (R′
2) + [αi]η−1

1 (S′
2) = ˜R2

′
+ [αi]˜S2

′
.

Therefore, j′
3,i = j(E1/〈Ker( ˜ψi

′ · η−1
1 )〉) = j(E1/〈R′

2 + [αi]S′
2〉) = j3,i.

• If bi = 1, that is, zi = (j2,i, ψ
′′
i : E2,i → E′

3,i), then any verifier computes j
′
3,i

as follows
j′
3,i = j(E2,i/〈Ker(ψ

′′
i )〉) = j3,i.

• Since the verifier computes (j
′
2,i, j

′
3,i) such that (j

′
2,i, j

′
3,i) = (j2,i, j3,i) for all

i, it is clear to see that

H(m, j′
2,1, . . . , j

′
2,t, j

′
3,1, . . . , j

′
3,t) = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) = h.
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Therefore, σm = (h, z1, . . . , zt) is a valid signature on m ∈ {0, 1}∗ under the
public key pk′ = (p, j0, j1, ˜R2, ˜S2, ˜R2

′
, ˜S2

′
,H). ��

Theorem 3.2 implies that the signer U whose public key is pk can repu-
diate his/her signing of σm on m whenever he/she wants by submitting pk′

as another public key that validates the signature σm on m. Moreover, we
note that the public key pk′ can be computed independently to any valid pair
(message, signature) under pk, the owner U of pk can register pk′ as another
legal user in the system a priori to prepare his/her future malicious actions.
This concludes that GPS signature scheme does not provide the non-repudiation
property.

Remark 3.3. Unruh [5] has given a transform that converts a secure interactive
identification scheme into a signature scheme that is secure against a quantum
adversary. In [12] the authors presented a post-quantum version of GPS signature
using the Unruh transform and prove that it is existentially unforgeable in the
quantum random oracle model if CSSI and DSSP are computationally hard for
a quantum computer. It is easy to see that our key substitution attack on the
(classic) GPS signature scheme works exactly the same for the post-quantum
version of GPS signature scheme, too. Therefore, we see that the post-quantum
version of GPS signature scheme does not provide the non-repudiation property,
too.

3.2.2 An Example
In this section, we present a simple example of our key substitution attack on
GPS signature for a clear view of isogenies and our attack. We compute our
example using Sage with a small prime p for simplicity. We also use the hash
function MD5 in our example, but our attack succeeds independently the under-
lying hash function.

(A Valid Key Generation)

• p = 24 · 33 · 2 − 1 = 863;
• E0 : y2 = x3 + x, an elliptic curve over a finite field Fp2 ;
• a is generator of finite field Fp2 ;
• Choose points P1, R2, S2 ∈ E0 as follows:

P1 = (197a + 648 : 758a + 405 : 1),
R2 = (422a + 27 : 548a + 682 : 1), S2 = (164a + 7 : 478a + 586 : 1)

• Compute an isogeny φ : E0 → E1 of degree 16 with the kernel 〈P1〉 where
E1 : y2 = x3 + (155a + 756)x + (18a + 470) and the isogeny φ is defined as
follows:
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φ = (
q1(x)

q2(x)
,
r1(x, y)

r2(x)
)

q1(x) = x16 + (−36a − 343)x15 + (169a + 373)x14 + (312a + 388)x13

+(284a + 400)x12 + (−398a + 78)x11 + (330a − 125)x10(−41a − 139)x9

+(−295a − 193)x8 + (249a − 353)x7 + (−321a − 224)x6 + (−199a + 165)x5

+(−182a + 265)x4 + (352a + 127)x3 + (−31a + 257)x2 + (−239a + 77)x

+(174a + 150)

q2(x) = x15 + (−36a − 343)x14 + (200a − 339)x13 + (143a + 351)x12

+(−65a − 311)x11 + (195a − 81)x10 + (23a + 395)x9 + (−25a + 252)x8

+(340a − 422)x7 + (329a − 325)x6 + (−24a + 201)x5 + 307a − 158)x4

+(242a − 368)x3 + (−118a − 163)x2 + (147a − 20)x + (48a + 133)

r1(x, y) = x23y + (−286a + 33)x22y + (215a + 131)x21y + (203a − 75)x20y

+(202a − 238)x19y + (203a + 273)x18y + (−348a − 351)x17y

+(−31a − 269)x16y + (412a + 373)x15y + (117a + 414)x14y

+(204a + 157)x13y + (−203a − 363)x12y + (290a − 250)x11y

+(−59a − 49)x10y + (−189a + 349)x9y + (−391a − 360)x8y

+(385a − 231)x7y + (328a − 189)x6y + (−142a − 283)x5y

+(76a + 398)x4y + (−303a + 129)x3y + (352a + 62)x2y

+(−16a − 397)xy + (366a + 237)y

r2(x) = x23 + (−286a + 33)x22 + (184a − 20)x21 + (−60a − 208)x20

+(−235a + 431)x19 + (428a − 178)x18 + (−a + 378)x17 + (327a + 338)x16

+(−27a − 356)x15 + (77a + 351)x14 + (−385a − 137)x13 + (425a − 63)x12

+(226a + 372)x11 + (95a + 156)x10 + (118a − 425)x9 + (−128a + 248)x8

+(344a + 299)x7 + (310a − 417)x6 + (184a + 337)x5 + (371a − 154)x4

+(−105a + 307)x3 + (11a + 243)x2 + (79a + 327)x + (409a − 149)

• Compute j-invariants j0 = j(E0) = 2, j1 = j(E1) = 465a + 831.
• Compute R′

2, S
′
2 ∈ E1 as follows:

R
′
2 = φ(R2) = (347a + 480 : 357a + 737 : 1),

S
′
2 = φ(S2) = (712a + 662 : 268a + 204 : 1)

• Hash function H = MD5 : {0, 1}∗ → {0, 1}128
• Output

pk = (p, j0, j1, R2, S2, R
′
2, S

′
2,H), sk = P1.

(A Key Generation for Key Substitution Attack)

• For the given E0 from the valid key generation, compute an isomorphism
ζ0 : E0 → E

′
0 defined by ζ0(x, y) = (557x, (842a+442)y) for the elliptic curve

E′
0 : y2 = x3 + 2x. Compute η0 = ζ−1

0 : E′
0 → E0, then η−1

0 = ζ0. Note that
η0(x, y) = (251x, (677a + 93)y) and j(E′

0) = j(E0) = j0.
• For the given E1 from the valid key generation, compute an isomorphism

ζ1 : E1 → E
′
1 defined by ζ1(x, y) = (406x, (385a + 239)y) for E

′
1 : y2 =

x3 + (465a + 542)x + (349a + 291). Compute η1 = ζ−1
1 : E′

1 → E1, then
η−1
1 = ζ1. Note that η1(x, y) = (423x, (779a + 42)y) and j(E′

1) = j(E1) = j1.
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• Compute

– ˜P1 = η−1
0 (P1) = (256a + 404 : 23a + 425 : 1)

– ˜S2 = η−1
0 (S2) = (603a + 31 : 164a + 224 : 1)

– ˜R2 = η−1
0 (R2) = (636a + 736 : 825a + 34 : 1)

• Compute the isogeny ˜φ = η−1
1 · φ · η0 : E′

0 → E′
1. Note that the kernel of ˜φ is

〈˜P1〉. Set

– ˜S2

′
= ˜φ(˜S2) = (830a + 379 : 680a + 602 : 1)

– ˜R2

′
= ˜φ(˜R2) = (213a + 705 : 795a + 677 : 1)

• Output

pk′ = (p, j0, j1, ˜R2, ˜S2, ˜R2

′
, ˜S2

′
,H), sk = ˜P1

(A Signature Generation using sk on a message m = message)
A signature σm on the message m = message is computed as follows: First

we compute the first part h of the signature as follows: For a randomly chosen
[αi]1≤i≤t = [15, 5, 6, 18, 2, . . .], compute the following isogenies and j-invariants
for each i:

• ψi : E0 → E2,i with the kernel 〈R2 + [αi]S2〉 and j2,i = j(E0/〈R2 + [αi]S2〉):
j2 = [j2,1, j2,2, j2,3, j2,4, . . .] = [515a + 716, 473a + 144, 473a + 144, 451a + 551, . . .]

• ψ′
i : E1 → E3,i with the kernel 〈R′

2 + [αi]S′
2〉 and j3,i = j(E1/〈R′

2 + [αi]S′
2〉):

j3 = [j3,1, j3,2, j3,3, j3,4 . . .] = [232a+541, 657a+665, 657a+665, 590a+114 . . .]

For the two sequences j2 and j3 of j-invariants, compute the hash value

h = b1b2b3 · · · = H(message, j2, j3) = 10111011 . . ..

Now we compute the second part (zi’s) of the signature as follows:

• From the fact b1 = 1, set z1 = (j2,1 = 515a + 716, ψ
′′
1 ), where

– ψ
′′
1 : E2,1 → E′

3,1 is an isogeny with the kernel generated by ψ1(P1) for
the elliptic curves E2,1 : y2 = x3 + (285a + 129)x + (507a + 262) and
E′

3,1 : y2 = x3 + (713a + 733)x + (70a + 235).

• b2 = 0, and set z2 = α2 = 5.
...

Finally, we have a sequence z = [z1, z2, z3 . . .] = [(515a + 716, ψ
′′
1 ), 5, (473a +

144, ψ
′′
3 ), . . .], and the computed signature is σ = ((h, z),message). This signature

σm = ((h, z),message) can be verified as a valid signature on message under the
public key pk.

(Key Substitution Attack on σm using the public key pk′)

Note that pk′ = (p, j0, j1, ˜R2, ˜S2, ˜R2

′
, ˜S2

′
,H). Suppose that a valid signature

σ = ((h, z),message) under pk is given as follows:
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• h = H(message, j2, j3) = 10111011 · · ·
• z = [z1, z2, z3, . . .] = [(515a + 716, ψ

′′
1 ), 5, (473a + 144, ψ

′′
3 ), . . .] = [(j2,1, ψ

′′
1 :

E2,1 → E′
3,1), α2, (j2,3, ψ

′′
3 : E2,3 → E′

3,3), . . .]

For the verification, anyone compute the values of j-invariants (j′
2 =

[j′
2,1, j

′
2,2, . . .], j

′
3 = [j′

3,1, j
′
3,2, . . .]) for the pk′ as follows:

From b1 = 1 and z1 = (j2,1, ψ
′′
1 ) = (515a + 716, ψ

′′
1 : E2,1 → E′

3,1):

• set j′
2,1 = j2,1 and

• compute the j-invariant j′
3,1 = j(E′

3,1) = 232a + 541, which turns out j′
3,1 =

j3,1.

From b2 = 0, that is, z2 = α2 = 5:

• The verifier computes an isogeny ˜ψ2 : E′
0 → E′

2,2 with the kernel ˜R2 + 5˜S2

and the j-invariant j′
2,2 = j(E′

0/〈˜R2 + 5˜S2〉) = 473a + 144, which turns out
j′
2,2 = j2,2.

• The verifier computes an isogeny ˜ψ′
2 : E′

1 → E′
3,2 with the kernel ˜R2

′
+ 5˜S2

′

and the j-invariant j′
3,2 = j(E′

1/〈˜R2

′
+ 5˜S2

′〉) = 657a + 665, which turns out
j′
3,2 = j3,2.

Similarly, the values of j-invariants j′
2, j

′
3 for the pk′ such that j2 = j

′
2, j3 = j

′
3

are computed. Clearly, h = H(message, j2, j3) = H(message, j′
2, j

′
3), therefore,

the signature σ = ((h, z),message) is valid under pk′.

3.3 How to Prevent Our Attack

Our attack on GPS signature uses isomorphisms of the underlying elliptic
curves and isomorphic elliptic curves have the same j-invariants. Therefore, if
one restricts distinct j-invariants (j0, j1) for each public key, our key substitu-
tion attack can be prevented. However, our result is the first key substitution
attack on isogeny based signature schemes under the consideration of the non-
repudiation of the signature and one could expect a more advanced key substi-
tution attack on isogeny based signature.

In general, there are two ways to prevent key substitution attacks on dig-
ital signature schemes. One is that the certificate authority (CA) for public
keys requires that users to prove possession of user’s private key before issu-
ing certificates. This prevents the adversary mounts key substitution attacks
without knowing the corresponding private key. However, this counter-measure
is not suitable to prevent key substitution attack under consideration of non-
repudiation, since the original signer is considered as a potential attacker and
the original signer knows the related private keys. Another way to prevent key
substitution attack is proposed by Menezes and Smart. They formalize the key
substitution security as a security of signature schemes in multi-user setting and
formatting messages specific to each public key, such as including the signer’s
public key to the message in some unambiguous way prior to signing (e.g.,
pk||message) guarantees the key substitution security if the original signature
scheme is proven unforgeable [1].
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4 Conclusion

GPS signature [12] is an efficient isogeny based signature scheme which is proven
EUF-CMA secure in the random oracle model under the assumption that the
problems CSSI (Computational Supersingular Isogeny) and DSSP(Decisional
Supersingular Product) are infeasible. In this paper, we show that the current
version of GPS signature fails to provided non-repudiation by presenting a pub-
lic key substitution attack on GPS signature. In [12], they also presented a
post-quantum version of GPS signature which is proven EUF-CMA secure in
the quantum random oracle model based on the hardness of CSSI and DSSP.
It is easy to see that our key substitution attack on the (classic) GPS signa-
ture scheme works exactly the same against the post-quantum version of GPS
signature scheme, too. We recommend to use distinct j-invariants (j0, j1) for
each public key of GPS signature scheme to prevent our key substitution attack.
Moreover, we suggest to format messages as specific to each public key, such as
pk||message, prior to signing according to the analysis of Menezes and Smart [1].
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Abstract. Oblivious linear evaluation (OLE) is a two party protocol
that allows a receiver to compute an evaluation of a sender’s private,
degree 1 polynomial, without letting the sender learn the evaluation
point. OLE is a special case of oblivious polynomial evaluation (OPE)
which was first introduced by Naor and Pinkas in 1999. In this article we
utilise OLE for the purpose of computing multiplication in multi-party
computation (MPC).

MPC allows a set of n mutually distrustful parties to privately com-
pute any given function across their private inputs, even if up to t < n of
these participants are corrupted and controlled by an external adversary.
In terms of efficiency and communication complexity, multiplication in
MPC has always been a large bottleneck. The typical method employed
by most current protocols has been to utilise Beaver’s method, which
relies on some precomputed information. In this paper we introduce an
OLE-based MPC protocol which also relies on some precomputed infor-
mation.

Our proposed protocol has a more efficient communication complexity
than Beaver’s protocol by a multiplicative factor of t. Furthermore, to
compute a share to a multiplication, a participant in our protocol need
only communicate with one other participant; unlike Beaver’s protocol
which requires a participant to contact at least t other participants.

1 Introduction

Oblivious polynomial evaluation (OPE) was first introduced by Naor and Pinkas
[10] in 1999. An OPE protocol consists of two participants, a sender, S who holds
a polynomial f(x) and a receiver, R who has a value α. OPE allows R to learn
f(α) without having S learn α and also keeping f(x) private. A more formal
definition, originally given in [5] is presented below:

Definition 1 [5]. An OPE protocol is composed of two parties, S who has a
polynomial f(x) over a finite field F and R who has an input value α ∈ F.
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Correctness is achieved if, at the end of the protocol, R learns f(α). Security
is guaranteed if the following two conditions are met after the protocol has been
executed:

1. S cannot reduce his uncertainty of α.
2. R does not learn any information relating to f(x), other than f(α).

In this article we focus on a special case of OPE, wherein f(x) is of degree at
most one, known as oblivious linear evaluation (OLE). Specifically, we utilise
OLE for the purpose of performing multiplication in multi-party computation
(MPC).

MPC allows a set of n mutually distrustful participants to compute any given
function across their private inputs, without revealing any information relating to
their private inputs. We focus on the threshold setting, where an MPC protocol
is considered secure if a set of t or less participants, where t < n, cannot gain
any information relating to another participant’s private input, other than what
the output of the protocol gives them. More formally:

Definition 2. A (t, n) threshold MPC protocol allows a set of n participants,
P1, · · · , Pn with respective private inputs, x1, · · · , xn to compute a given func-
tion, f(x1, · · · , xn).

Privacy is maintained if, after completion of the protocol, an adversary con-
trolling any subset of up to t participants (t < n), cannot learn more information
(about other participant’s private inputs) than what could be derived from each
participant’s individual, private input and the output of the protocol.

Traditionally, the adversary is classified as either passive or malicious. Par-
ticipants under control of a passive adversary may share information with one
another but do not deviate from the MPC protocol. Participants under control
of a malicious adversary also share information but may act arbitrarily, i.e. they
do not necessarily follow the protocol. Another aspect of the adversary consid-
ered in an MPC protocol is the resources it has at its command. Specifically, an
unconditionally (information theoretic) secure MPC protocol is secure against a
computationally unbounded adversary. Whilst a conditionally (computationally)
secure MPC protocol is secure against a computationally bounded adversary.

In this article we focus on information theoretic (t, n) threshold MPC secure
against a passive adversary. We show the construction of an efficient MPC scheme
based on OLE. In the next section we give some background and motivation on
this topic, following this we then discuss our contribution in depth.

1.1 Background

MPC is an extremely powerful tool that can be used to solve practically any
given problem involving a set of distrustful parties. In classical, unconditionally
secure protocols [2,6,11] each participant, Pi (i = 1, · · · n) shares their private
input, xi by utilising Shamir’s secret sharing scheme [12] to distribute shares
to all participants. To compute a given function, f(x1, · · · xn), participants need
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simply perform all computations on the shares of each input value. For instance,
if a participant wants to compute a share relating to the sum of two distributed
input values he simply adds his two corresponding shares together. At the end
of the protocol, a set of t + 1 or more participants then pool their information
to reconstruct the output.

Due to the homomorphic nature of Shamir’s scheme [3] participants can
easily compute any linear operation by privately computing on their shares.
However, since the inception of MPC [8] the largest limiting factor has been
the high amount of resources required to compute a multiplication. Perhaps the
most widely known and efficient method of computing a multiplication in an
MPC protocol is known as Beaver’s method (A.K.A Beaver’s triples) [1]. For
completeness we review this protocol below.

Beaver’s Method. Beaver’s method [1] for computing a multiplication in MPC
relies on some pre-shared information known as a triple. Specifically, a triple is
composed of three values, a, b and c where a · b = c and a, b, c ∈ Fq such that
q > n and q is a prime number. Each participant has a share of these triples,
such that participant Pk (k = 1, · · · , n) receives the shares ak, bk and ck relating
to (respectively) a, b and c.

Suppose we have participants Pi with input xi and Pj with input xj for
i, j = 1, · · · , n and i �= j. To compute shares of the multiplication γ = xi · xj

we first have both Pi and Pj distribute shares of their private values among the
other participants, where Pk gets xik relating to xi and xjk relating to xj . To
compute a share, γk relating to the product γ, a set of at least t+1 participants
execute the following steps:

1. Each participant, Pk, computes zk = xik − ak and vk = xjk − bk, where zk is
a share of the value z = xi − a and vk is a share of v = xj − b.

2. A set of at least t + 1 participants broadcast their shares, zk and vk amongst
themselves.

3. Participants publicly reconstruct the values of z and v using the shares zk
and vk, respectively.

4. Pk computes his share of γ as γk = zv + zbk + vak + ck.
5. t + 1 or more participants can reconstruct γ = xi · xj by pooling their shares.

In order to construct z and v a set of t + 1 participants is required to cooper-
ate. If all participants in this set wish to compute these values (and consequently,
the multiplication) then each participant must both receive and send t messages.
Since each message would consist of 2 elements from the field Fq (i.e. zk and vk)
the communication complexity of this protocol can be given as O(qt2).

Many recent MPC protocols utilise a resource intensive computationally
secure offline phase to compute these multiplication triples. The actual MPC
is then carried out in a faster information theoretic online phase. For our pur-
poses, we focus solely on the information theoretic online phase. It suffices to
assume that participants gain the shares of the triples via an external party
known as an initialiser, who (after computing and distributing the shares of the
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triples) does not take part in the actual MPC protocol. In the next section we
review the OLE based two-party protocol given by Döttling et al. [7].

TinyOLE. Recently Döttling et al. [7] proposed a two-party protocol (n = 2)
in which the two participants, P1 and P2 use OLE to compute shares to a
multiplication. Specifically, they use OLE to compute multiplication triples in
an offline phase. Their scheme utilises a simple additive secret sharing scheme
wherein a given value, a (for example), is represented as a = a1 + a2, across a
finite field F; where P2 has the share a2 and P1 gets a1. Addition in their scheme
consists of simply adding shares together. Multiplication is achieved by utilising
OLE in a black-box fashion.

To compute a multiplication of two distributed (and not necessarily known)
values, a and b, they rely on the fact that: ab = a1b1 + a1b2 + a2b1 + a2b2. To
compute the “troublesome” terms of the form c = a1b2 they utilise a black-box
OLE. Essentially, P1 acts as a sender and submits the polynomial f(x) = a1x−c1
where c1 is a randomly chosen value. The second participant, P2 acts as receiver
and submits α = b2. Both participants send their values to a black-box OLE, with
P2 receiving back f(α) = a1b2−c1. If we set c2 = f(α) then each participant now
holds a share of c as c = c1 + c2. To compute shares to the entire multiplication
it is easy to see that at least 2 OLEs are needed.

Döttling et al. specifically use this method in a computationally secure offline
phase to compute random multiplication triples, where the values of a and b are
not actually known to either participant. Our proposed scheme differs to theirs in
that we wish to utilise OLE in an information theoretic, online phase to compute
the multiplication of known input values for a given MPC function.

1.2 Our Contribution

In this section we summarise our proposed MPC scheme which utilises OLE to
compute shares to a given multiplication. In contrast to the methods discussed
above our protocol obtains the following desirable properties:

1. Unlike Beaver’s scheme [1] our proposed protocol only requires communica-
tion between two participants to compute a given share to a multiplication i.e.
a participant may compute his share without the assistance of t other partic-
ipants. We achieve this result by having one designated participant who acts
as a sender in an OLE. The other participants need simply privately compute
an OLE with this sender participant to compute a share to a multiplication.
As a result of this, the communication complexity of our protocol is O(qt),
which is more efficient than Beaver’s (at O(qt2)) by a multiplicative factor
of t.

2. We do not rely on a black-box method of OLE and instead provide a specific
construction. Our OLE multiplication scheme is based on the information
theoretic protocol given in [9,13]. This scheme, like Beaver’s scheme, relies on
some precomputed information which can be produced via an offline phase or
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an initialiser. Since we wish to focus solely on the information theoretic OLE-
based MPC scheme itself we will assume that the information is provided via
an initialiser.

3. Our scheme only utilises one OLE per participant to compute a multipli-
cation. In a two party protocol we would only need one OLE. So, for an
individual participant to compute his share (in either a multi-party or two-
party protocol) the complexity cost is just O(q). Using Beaver’s scheme, this
would be O(qt).

4. Lastly, unlike the TinyOLE scheme [7], our scheme is scalable, in that it
extends to the multi-party case with n participants. In fact, computing n
shares (one for each participant) to a single multiplication requires only n−1
OLEs, one for each individual participant to compute his share. We note that
utilising all n participants is not actually necessary. We only really require a
set of t + 1 participants, enough to compute the output of a given multipli-
cation at the end of the protocol.

1.3 Outline

The rest of the paper is organised as follows. In Sect. 2 we go over some of the
sub protocols and tools used in our proposed MPC protocol. Section 3 gives a
high level overview of our protocol as well as a model for security. The actual
construction for our protocol is given in Sect. 4, along with an evaluation and
proof of correctness and security.

2 Preliminaries

In this section we review Shamir’s secret sharing scheme [12] and the information
theoretic OPE originally given by Hanaoka et al. in [9]. Both of these protocols
are fundamental building blocks of our proposed MPC protocol.

2.1 Shamir’s Secret Sharing Scheme

Like all MPC schemes our proposed protocol utilises secret sharing to ensure
privacy. In a secret sharing scheme a set of n participants are each privately
sent a share of a given secret. An authorised subset of these participants can
pool their shares to recover the secret, whilst an unauthorised subset should
get no information. We note that our proposed OLE-based MPC scheme can
potentially work with any linear secret sharing scheme. However, in order to
show a specific implementation we will demonstrate our proposed protocol using
Shamir’s secret sharing scheme [12].

Shamir’s scheme is a (t, n) threshold scheme, meaning that an authorised
subset is any set of t+1 or more participants where t < n. This scheme operates
over a finite field Fq where q > n and q is a prime number. To demonstrate,
suppose we have participant Pi (i = 1, · · · , n) who wishes to distribute his
input value, xi among the other participants. Pi computes a random polynomial,
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g(x) of degree at most t and sets g(0) = xi. He then privately sends to each
participant, Pk (k = 1, · · · n) the share xik = g(k). A set of t + 1 or more
participants can reconstruct xi by performing Lagrange interpolation across their
shares to compute g(x).

2.2 Information Theoretic OPE

Hanaoka et al. [9] introduced an unconditionally secure OPE protocol that
utilises some pre-distributed information to achieve information theoretic secu-
rity. Our proposed OLE-based MPC protocol utilises a modified variant of their
OPE protocol to compute a multiplication. Therefore, for completeness, we dis-
play their full protocol in Fig. 1.

In the initial, setup phase of their protocol a third party, known as an ini-
tialiser assigns some random information to both R and S. Following this the
initialiser takes no further part in the protocol and R and S utilise the assigned
information to compute an OPE in the computation phase of the protocol.

Input: R has a value α and S the polynomial f(x) of degree at most t.
Output: R obtains f(α) and S gets nothing.

Setup The initialiser privately sends:

1. A random polynomial, S(x), of degree at most t to S.
2. A random value, d and the value g = S(d) to R.

Computation

1. R sends the value l = α − d to S.
2. S then computes and sends to R the polynomial V (x) = f(l + x) + S(x).
3. R computes f(α) = V (d) − g.

Fig. 1. Information theoretic OPE [9,13]

3 Model

This section presents a high level overview of our protocol and a set of cri-
teria for evaluating the security of our scheme. We use the traditional setting
of MPC protocols. That is, each party Pj (1 ≤ j ≤ n) distributes its private
input, xj amongst all participants, using a Shamir (t, n) threshold scheme. Lin-
ear functions can be computed by each participant privately. In order to perform
multiplication, however, we must utilise OLE.
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3.1 Overview

Suppose we have a set of n participants who wish to compute shares to the
value γ = xi · xj , where xi and xj are the respective private input values of
participants Pi and Pj , for 1 ≤ i, j ≤ n and i �= j. Further suppose, that Pj

utilises the polynomial fj(x) to share xj among all participants (via Shamir’s
secret sharing scheme), such that a given participant Pk (k = 1, · · · , n) receives
the share xjk = fj(k) of xj .

A simple method for computing shares of γ is to have each participant, Pk,
simply send his share, xjk , to Pi who can then send back the value γk = xixjk .
Due to the homomorphic nature of Shamir’s secret sharing scheme the value
γk is a share corresponding to the polynomial Γ (x) = xifj(x) with free term
xi · xj . The obvious problem with this simple protocol is that neither Pi’s nor
Pj ’s privacy is maintained.

To keep Pi’s input, xi, private we can have Pi introduce a random, private
masking polynomial, hi(x), of degree at most t, with free term hi(0) = 0. Now,
when he receives a given share, xjk , we require Pi to send back γk = xixjk+hi(k).
Each Pk now holds shares to the polynomial Γ (x) = xifj(x)+hi(x). Intrinsically
we can see that, due to Shamir’s secret sharing scheme, the protocol is now t-
private with respect to Pi, as a set of t participants with t shares cannot compute
any information relating to the effectively random polynomial Γ (x). It remains
to ensure the privacy of Pj .

Surprisingly, ensuring that Pj ’s privacy is maintained is actually quite simple.
Rather than having each Pk simply hand his share to Pi we instead have Pk

and Pi utilise an OLE protocol, where Pk acts as the receiver and Pi as the
sender. First Pi computes two polynomials, fi(x) = xi ·x and hi(x) (the masking
polynomial, as before). Each Pk (1 ≤ k ≤ n) then acts as the receiver and
executes an OPE protocol with Pi (who acts as the sender) to privately evaluate
Pi’s polynomial, fi(x) at the point xjk , as before Pi adds the masking polynomial
to his computation.

Fig. 2. Overview of the protocol

Since the OLE protocol does not allow Pi to learn the evaluation point then
the protocol can now be considered t-private for both Pi and Pj . Specifically, Pi’s
privacy is maintained via the masking polynomial and Pj ’s privacy is maintained
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via Shamir’s secret sharing scheme and the OLE protocol. An overview of this
is given in Fig. 2. Note that Pi will also use his share from xj and compute his
own share of γ = xi ·xj (of course, there is no need to perform OLE, as he plays
the role of the sender and receiver at the same time).

3.2 Security and Correctness

In order to prove the security and correctness of our proposed scheme we will
evaluate it against the following criteria specified below:

1. Correctness – Upon completion of the protocol each participant, Pk holds
a share, γk of the polynomial Γ (x), of degree at most t with free term Γ (0) =
xi · xj .

2. Privacy – A set of t or less participants, not including either Pi or Pj , cannot
reduce their uncertainty of xi or xj .

3. Privacy with respect to Pi – A set of t or less participants, including Pj ,
cannot reduce their uncertainty of xi.

4. Privacy with respect to Pj – A set of t or less participants, including Pi,
cannot reduce their uncertainty of xj .

We note that the last three criterion presented here simply encapsulate the
notion of privacy given in Definition 2.

4 Proposed OLE-Based MPC Protocol

Similar to the OPE protocol given in Fig. 1, our proposed multiplication protocol
consists of two phases:

1. The Setup Phase: Where the initialiser privately sends some (essentially
random) information to each participant involved in the protocol.

2. The Computation Phase: Where participants are able to compute shares
to the multiplication.

Where our scheme differs, however, is in the addition of a masking polynomial
(hi(x)) and the limiting of the receivers polynomial to a degree no greater than
1 (OLE).

As per Sect. 3.1 suppose we have a set of n participants P1, · · · , Pn, with
respective private inputs x1, · · · , xn, who wish to compute shares of the value
γ = xi ×xj where i, j ∈ [1, n] and i �= j. Participant Pj first privately distributes
shares for xj amongst all participants, using the polynomial fj(x), such that Pk

(1 ≤ k ≤ n) gets the share xjk = fj(k). To compute a share γk, of γ each Pk

cooperates with Pi to execute our modified OLE protocol, with Pk essentially
acting as the receiver and Pi acting as the sender for each Pk. Note that all
computations are performed in the field Fq where q is a prime number such that
q > n. The full protocol is given in Fig. 3.

In order to compute a share Pk and Pi exchange exactly 3 field elements (l and
V (x)). This gives a communication complexity of O(q). Therefore, the overall
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communication complexity, required for each of the n participants to compute
his share can be given as O(qn). However, since the protocol is based on Shamir’s
(t, n) secret sharing scheme [12] we actually only require t + 1 participants to
ensure the output can be constructed. This gives a communication complexity
of O(qt).

Input: Pi has xi and Pk has the share xjk , of xj .
Output: Pk obtains the share γk, of Γ (x) where Γ (0) = xi · xj .

Setup The initialiser privately sends:

1. A set of n − 1 random polynomials, Sik (x), of degree at most 1 to Pi where
k = 1, · · · , n and k �= i.

2. A random value, dk and the value gk = Sik (dk) to every participant Pk.

Computation
Pi privately computes:

– A masking polynomial, hi(x) of degree at most t with fi(0) = 0.
– The multiplication polynomial, fi(x) = xi · x.

Each Pk then privately executes the following steps with Pi:

1. Pk sends the value lk = xjk − dk to Pi.
2. Pi then computes and sends to Pk the polynomial Vk(x) which is computed

as:
Vk(x) = hi(k) + fi(x + lk) + Sik (x)

3. Pk computes his share of γ as γk = Vk(dk) − gk.

Fig. 3. An information theoretic, OLE-based multiplication protocol for MPC

4.1 Evaluation

In this section we evaluate the proposed protocol against the set of security
criteria given in Sect. 3.2. We note that all four of these criterion evaluate the
specific multiplication protocol and not the actual MPC itself. That is, we eval-
uate the multiplication protocol only and assume that participants have not yet
reconstructed the actual output of the MPC.

Correctness. At the end of our protocol each participant, Pk, will now have a
share of the polynomial: Γ (x) = hi(x) + xifj(x). Since the free term of hi(x)
is equal to zero, we can say that Γ (0) = xifj(0). Now, fj(x) has the free term
xj and both hi(x) and fj(x) are of degree at most t. As a result of this we can
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conclude that correctness is achieved, as each Pk has a share to a polynomial,
Γ (x), of degree at most t, with free term equal to xi · xj .

Privacy

Theorem 1. A set of t participants, not including Pi or Pj, cannot compute
any information relating to xi or xj.

In order to prove this we must first show that the modified OLE protocol is
secure. Following this, we need to prove that a set of t shares relating to the
multiplication reveals no information.

Proof. Suppose that a given participant, Pk executes the multiplication protocol
with Pi. After sending lk to Pi he receivers the polynomial Vk(x) = hi(k)+fi(x+
lk) + Sik(x) which we can simplify as Vk(x) = vk + zkx. Let Sik(x) = κk + ωkx
and recall that fi(x) = xi · x, then we can rewrite the equation as V (x) =
hi(k) + xilk + κk(xi + ωk)x. This gives Pk the following information:

vk = hi(k) + xilk + κk

zk = xi + ωk

Since the values ωk and κk (as well as the coefficients of hi(x)) are chosen at
random, Pk cannot gain any information from the above equations. The next
step in the protocol is for Pk to compute γk = V (dk) − gk, which can be written
as γk = hi(k) + xixij . Individually, this gives no information to Pk as he does
not know the value of either hi(k) or xi, it remains to be seen if a coalition of
participants can compute any information.

Without loss of generality suppose that the first set of t participants,
P1, · · · , Pt pool their information together. Let hi(x) = m1x+m2x

2+ · · ·+mtx
t,

then the coalition can compute the following system:

γ1 = xi · xi1 + m1 + m2 + · · · + mt

γ2 = xi · xi2 + 2m1 + 4m2 + · · · + 2tmt

...

γt = xi · xit + tm1 + t2m2 + · · · + ttmt

Due to the perfectness of Shamir’s secret sharing scheme [4,12] the above
system does not reveal any information to the participants as they effectively
have a set of t shares relating to a degree t polynomial. This becomes even more
evident when we take into account that xik = fj(k) meaning that each Pk has a
share of the polynomial Γ = xifj(x) + hi(x).

The end result being that a coalition of t participants cannot reduce their
uncertainty of xi. The same is also true for xj , as collectively the coalition only
has t shares of fj(x).
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Privacy with Respect to Pi

Theorem 2. A set of t participants, including Pj, cannot compute any infor-
mation relating to xi.

Proof. The proof of this is similar to the proof of Theorem1 along with some
extra information. Namely, we now assume that the coalition of participants has
the values of both fj(x) and, consequently xj . The first, obvious ramification of
this is that the coalition now know the shares of every other participant relating
to xj . This actually gives them no advantage, in regards to the OLE, as they do
not know (and cannot compute) the values given to the other participants by
the initialiser (namely dk and gk). We therefore only need to prove that knowing
fj(x) reveals no information relating to xi.

As before, at the end of the protocol each participant has a share to the
polynomial Γ (x) = xifj(x) + hi(x). It is easy to see that if the coalition can
compute Γ (x) or even hi(x) then they can easily compute xi. However, the
coalition do not hold direct shares to hi(x), so even knowing hi(0) = 0 gives
them nothing. Furthermore, to compute any information relating to Γ (x) would
require the coalition to compute a solution to the system given in the proof of
Theorem 1.

Computing a solution to this system is analogous to solving a system of
equations composed of t + 1 unknowns (xi and the coefficients of hi(x)) and
t equations. We can therefore conclude that a set of participants, including Pj

cannot reduce their uncertainty of xi.

Privacy with Respect to Pj

Theorem 3. A set of t participants, including Pi, cannot compute any infor-
mation relating to xj.

Proof. In the proof of Theorem1 it was shown that the modified OLE is secure,
therefore to prove the above theorem we need to show that a coalition of t
participants, including Pi, with t shares relating to Γ (x) = xifj(x) + hi(x)
and t shares of fj(x) cannot compute any information relating to xj . First, let
fj(x) = xj +W1x+ · · ·+Wtx

t and assume, as before, that a coalition composed
of the first t participants (which includes Pi) pool their knowledge. They can
construct the following system from their shares of Γ (x):

γ1 = xi · (xj + W1 + · · · + Wt) + hi(1)

γ2 = xi · (xj + 2W1 + · · · + 2tWt) + hi(2)
...

γt = xi · (xj + tW1 + · · · + ttWt) + hi(t)
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From the shares of fj(x) we get:

xj1 = xj + W1 + · · · + Wt

xj2 = xj + 2W1 + · · · + 2tWt

...

xjt = xj + tW1 + · · · + ttWt

It is easy to see that the two systems are actually linearly dependent. Since
the values of xi and hi(x) are known to the coalition, this results in a system
composed of t + 1 unknowns (the coefficients of fj(x)) and only t linearly inde-
pendent equations. The net result of this is that each value of xj is, from the
point of view of the coalition, equally likely. Meaning that they cannot compute
any information relating to xj .
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Abstract. We propose a secure integer-wise homomorphic division algo-
rithm on fully homomorphic encryption schemes (FHE). For integer-wise
algorithms, we encrypt plaintexts as integers without encoding them into
bit values, while in bit-wise algorithms, plaintexts are encoded into binary
and bit values are encrypted one by one. All the publicly available divi-
sion algorithms are constructed in bit-wise style, and to the best of our
knowledge there are no known integer-wise algorithm for secure division.
We derive some empirical results on the FHE library HElib and show that
our algorithm is 2.45x faster than the fastest bit-wise algorithm. We also
show that the multiplicative depth of our algorithm is O(l), where l is
the integer bit length, while that of existing division algorithms is O(l2).
Furthermore, we generalise our secure division algorithm and propose a
method for secure calculation of a general 2-variable function. The order
of multiplicative depth of the algorithm, which is a main factor of the
complexity of a FHE algorithm, is exactly the same as our secure division
algorithm.

Keywords: Fully homomorphic encryption · HElib ·
Secure integer arithmetic · Circuit depth

1 Introduction

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme presents a way to perform arbitrary calculations on encrypted data with-
out the requirement of decryption. The first construction of FHE [11,12] was
given by Gentry in 2009. Several improvements [4–6,10,13,14,25,27] have fol-
lowed since then, developing a diversity of features and complexity assumptions.
HElib [17–19] is a library for FHE widely used in applications, which imple-
ments the BGV scheme [3]. It allows for the “packing” of ciphertexts and single
instruction multiple data (SIMD) computations, amortizing the cost for certain
tasks.

There are numerous applications of FHE, but one of the most remarkable is
privacy-preserving delegated computations, such as privacy-preserving machine
learning as a service. In the service, users do not wish to reveal their sensitive
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data to the server, and the server does not want to reveal the cognitive model
to users. FHE enables these scenarios in an elegant way with non-interactivity.
However, because of the inefficiency of existing FHE schemes, most applications
are constructed evading the non-crypto-friendly calculations such as comparison,
division, and some non-linear functions.

Bit-Wise Encryption vs. Integer-Wise Encryption. Most FHE schemes,
including the BGV scheme, feature integer-wise and bit-wise encryption; the
size of the plaintext space in the scheme is variable. In bit-wise encryption the
plaintext space is Z2, and in integer-wise encryption the plaintext space is Zp

where p > 2. Because the main libraries of FHE, including HElib, do not support
some basic integer arithmetic operations such as division and comparison, sev-
eral studies [8,9,28] have been performed on improved arithmetic. The proposed
algorithms are primarily for bit-wise encryption, and they simply leverage the
existing algorithms for such operations on the bit-wise circuit such as Ripple
carry adder, long multiplication, and non-restoring division. Although bit-wise
encryption can perform integer comparison very efficiently [7], integer addition
and multiplication are not practical since they require homomorphic multiplica-
tion. On the other hand, integer-wise arithmetic can naturally perform integer
addition and multiplication efficiently, and recent remarkable privacy-preserving
machine learning such as [1,2,15,20] use integer-wise encryption. However, the
algorithm for these applications evades arithmetic such as division and compar-
ison, which are believed to be inefficient. While a concrete algorithm for secure
integer-wise comparison has been recently proposed in [22], to the best of our
knowledge there is no known concrete algorithm for secure integer-wise division
algorithm. Emergence of efficient algorithms for basic arithmetic operations such
as division and comparison will undoubtedly increase options to optimise higher
level applications of secure computation.

Our Contribution. We present a new concrete algorithm for privacy preserving
integer-wise division. Although several studies have been performed on privacy
preserving bit-wise division algorithms [8,9,28], there is no known concrete algo-
rithm for the integer-wise version. We implement our division algorithm using
HElib, and test its performance. The experimental results show that our algo-
rithm performs 2.45 times faster than the fastest bit-wise algorithm [8]. We also
theoretically analyse the multiplicative depth, which is a barometer for the com-
plexity for the FHE-based algorithm. While the order of the multiplicative depth
of existing division algorithms [8,9,28] is O(l2) for l-bit size integers, we show
that our algorithm can perform with O(l).

Furthermore, we generalise our secure division algorithm and propose an
algorithm for secure calculation of a general 2-variable function; the order of
multiplicative depth of the algorithm is O(l), which is the same as our secure
division algorithm. This is the first result to construct a concrete algorithm
for performing the general 2-variable function, expanding the FHE application
diversity.
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2 Preliminaries

2.1 Notation

In the FHE construction, a ring R is used, whose elements are written in lower
case; for example, r ∈ R. For an integer q, we use Rq to denote R/qR. For
a ∈ R, we use the notation [a]q to refer to a mod q, with coefficients reduced to
the range (− q

2 , q
2 ]. A concrete instantiation for our applications is the quotient

polynomial ring Rq = Zq[x]/Φm(x), where q is a prime and Φm(x) is the m-th
cyclotomic polynomial. We denote a ciphertext of r, which is encrypted with a
FHE scheme, by Cr.

We denote the logarithm to base 2 and the natural logarithm as log(·) and
ln(·), respectively. We denote vectors in bold. The notation v[i] refers to the ith

coefficient of v, while the scalar product of two vectors u,v ∈ Rn is denoted
as 〈u,v〉 =

∑n
i=1 u[i] · v[i] ∈ R. By (a‖b) we denote the concatenation of two

vectors a and b. We write s
U←− S to denote the process of sampling s uniformly

at random over S; when the set S is clear from the context, we will write e ← χ
to denote the process of sampling e according to the probability distribution χ
over S.

2.2 The BGV Scheme

A FHE scheme is a public-key cryptographic scheme that includes two operations
(+, ·) on ciphertexts such that: Dec(Ca + Cb) = a + b, Dec(Ca · Cb) = a · b. The
BGV scheme [3] is a widely used FHE scheme for practical applications, which
is implemented in the FHE library HElib [16]. The security of the scheme is
based on the standard assumptions of the Learning with Error (LWE) problem
[23] or Ring-LWE (RLWE) problem [21]. This is in contrast to the earlier FHE
constructions [11,12] which were based on ad-hoc average-case assumptions on
ideal lattice problems.

The Basic Encryption Scheme. BGV is a public-key cryptography scheme
E = (E.Setup, E.SecretKeyGen, E.PublicKeyGen, E.Enc, E.Dec) defined as follows.

– Setup(1λ). Given the security parameter λ as input, set an integer m = m(λ)
that defines the cyclotomic polynomial Φm(x), and the odd modulus q = q(λ).
If R = Z[x]/Φm(x), the underlying working ring is Rq = Zq[x]/Φm(x).
Set a plaintext modulus p that is relatively prime to q, with the plaintext
space given by Rp = Zp[x]/Φm(x). Set a noise distribution χ = χ(λ) over
the underlying working ring, and N = N(λ) = polylog(q). Output params =
(R,m, q, p, χ,N).

– SecretKeyGen(params). Sample s ← χ. Output the secret key sk = s :=
(1, s) ∈ R2

q .
– PublicKeyGen(params, sk). Take as input the secret key sk = s = (1, s) and

params. Sample a
U←− RN

q and e ← χN . Set b := sa + pe ∈ RN
q , and

output the public key defined as pk = A := (b,−a) ∈ RN×2
q . Notice that

A · s = b − sa = pe, from the definition of b.
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– Enc(params, pk,m). To encrypt a message m ∈ Rp, set m = (m, 0) ∈ R2
p,

sample r
U←− RN

p and output the ciphertext c := m + r�A ∈ R2
q .

– Dec(params, sk, c). Output the message m := [[〈c, s〉]q]p.
The decryption works because

[[〈c, s〉]q]p = [[(m + r�A) · s]q]p = [[m + pr�e]q]p = [m + pr�e]p = m,

where the third equality holds since r and e have small enough entries so that
the value m + pr�e is smaller than the modulus q.

The FHE Scheme. As a FHE scheme, the BGV scheme supports addition and
multiplication over the plaintext and ciphertext spaces. Let ca and cb be cipher-
texts of plaintexts a and b under the same key sk, respectively. The addition of
two ciphertexts is simply a component-wise addition, i.e.

ca + cb = (ca[0], ca[1]) + (cb[0], cb[1]) = (ca[0] + cb[0], cb[1] + ca[1]) = ca+b,

which is a ciphertext of a+b ∈ Rp. The homomorphic multiplication is performed
by the tensor product of two ciphertexts. The tensor product of ciphertexts

ca·b := ca ⊗ cb := (ca[0]cb[0], ca[0]cb[1] + ca[1]cb[0], ca[1]cb[1]) (1)

is a ciphertext of a · b ∈ Rp under the new secret key s′ := s ⊗ s. In this way,
the homomorphic multiplication increases the size of ciphertexts exponentially.
In order to deal with this expanding ciphertext, the BGV scheme features key
switching. The key switching function SwitchKey(τs′→s , c

′, q) takes the ciphertext
c′ under s′ and outputs a new ciphertext c that encrypts the same message under
the secret new key s. Using this function, we can reduce the size of ciphertext
ca·b ∈ R3

q to ca·b ∈ R2
q ← SwitchKey(τs′→s , ca·b). The BGV scheme also features

modulus switching techniques, which reduce the magnitude of the noise of the
ciphertext by switching the modulus from q to the smaller modulus q′. The
modulus switching function Scale(c, q, q′, p), takes a ciphertext c for modulus q
and outputs a ciphertext under same secret for modulus q′.

We now briefly describe the BGV FHE scheme. The scheme is a levelled FHE
scheme.

– FHE.Setup(1λ, 1L). Takes as input the security parameter λ and a number of
levels L. Set an integer m = m(λ,L) that defines the cyclotomic polynomial
Φm(x). Let μ = μ(λ,L, b) = θ(log λ + log L) be a parameter to define the bit
size of the moduli. For j = L (input level of circuit) to 0 (output level), run
paramsj ← E.Setup(1λ, 1(j+1)·μ, b) to obtain a list of parameters, including a
list of moduli {qL ((L + 1) · μ bits), qL−1, . . . , q0 (μ bits)}.

– FHE.KeyGen(paramsj). For j = L down to 0, do the following:
1. Run the basic schemes sj ← E.SecretKeyGen(paramsj), and Aj ←

E.PublicKeyGen(paramsj , sj).
2. Set s′

j ← sj ⊗ sj .
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3. Run τs′
j→sj−1 ← SwitchKeyGen(s′

j , sj−1), where SwitchKeyGen is a gen-
erator function of auxiliary information τs′

j→sj−1 that will be used for
SwitchKey. (Note that we omit this step when j = 0.)

4. Output sk := {sj}L
j=0, pk = {Aj}L

j=0.

– FHE.Enc(params, pk,m). Take a message m in Rp. Run c ←
E.Enc(paramsL,AL,m) of the basic scheme.

– FHE.Dec(params, sk, c). Suppose that the input ciphertext c is under key sj .
Here, we know the level (the index j) of the ciphertext from its augmented
information. Run E.Dec(paramsj , sj , c).

– FHE.Eval(pk, f, c1, . . . , cl). Take as input a circuit f for ciphertexts c1, . . . , cl.
It is assumed that f is a levelled circuit composed of layers of alternating addi-
tion and multiplication gates. FHE.Eval will invoke FHE.Add and FHE.Mult,
which is described next, to compute the circuit. The ciphertext refreshing
procedure FHE.Refresh (described later) is invoked after every multiplication
layer, in order to reduce the noise in the ciphertexts and move it to a different
level.

• FHE.Add(pk, c1, c2). Takes two ciphertexts encrypted under the same sj .
If they are not under the same key, use FHE.Refresh to make one of them,
the level of which is higher than the other, to be encrypted under sj .
Output c3 ← c1 + c2 mod qj .

• FHE.Mult(pk, c1, c2). Takes two ciphertexts encrypted under the same
sj . If they are not under the same key, use FHE.Refresh to make one of
them, the level of which is higher than the other, to be encrypted under
sj . Multiply the two ciphertexts, then obtain the new ciphertext c3 under
the long secret key s′

j = sj⊗sj . c3 is the coefficient vector of 〈c⊗c,x⊗x〉.
Then, output c4 ← FHE.Refresh(c3, τs′

j→sj−1 , qj , qj−1).
– FHE.Refresh(c, τs′

j→sj−1 , qj , qj−1). Takes a ciphertext encrypted under s′
j , the

auxiliary information τs′
j→sj−1 for key switching, and the current and next

moduli qj and qj−1. Perform the following.
1. (Key switching.) Set c1 ← SwitchKey(τs′

j→sj−1 , c, qj), a ciphertext under
the key sj−1 for modulus qj .

2. (Moduli switching.) Set c2 ← Scale(c1, qj , qj−1, p), a ciphertext under the
key sj−1 for modulus qj−1. Output c2.

Multiplicative Depth and Level Parameter L. As mentioned in [3], we do
not need to perform FHE.Refresh after addition. We do not perform SwitchKey
after addition either, since addition does not increase the size of the ciphertext.
Moreover, since addition increases the noise much more slowly than multiplica-
tion, we do not need to perform Scale after addition either. Finally we also note
that in HElib, FHE.Refresh is performed only after FHE.Mult is performed.

The parameter L, which indicates the number of levels of arithmetic circuit
that the scheme is capable of evaluating, is very important when we estimate
the complexity of the FHE circuit. Every time we perform FHE.Mult, we per-
form SwitchKey and move the index j to j − 1. Thus, basically, we set the level
parameter L according to the multiplicative depth of the circuit. The level L is
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Table 1. Basic interfaces for homomorphic evaluation in HElib.

HElib interface Abbreviation we use

Ctxt::addCtxt FHE.Add(c, c′)

Ctxt::multiplyBy FHE.Mult(c, c′)

Ctxt::addConstant FHE.addConst(c, m′)

Ctxt::multByConstant FHE.multConst(c, m′)

related with the complexity of FHE.Add or FHE.Add. Brakerski et al. [3] showed
the order of complexity is O(λL3).

2.3 HElib

HElib [16] is a software library that implements the BGV scheme in C++. HElib
is based on the number theory library NTL [24]. In addition to the basic scheme,
HElib also supports the SIMD feature proposed by Smart and Vercauteren [26].
The SIMD feature enables packing multiple plaintexts into a single element of
Rp with the Chinese Remainder Theorem; it also enables parallel component-
wise evaluation of the plaintexts in the SIMD “slots”. It produces a much better
amortised performance, due to parallelisation.

HElib has an interface for the “constant” evaluation, where addition or mul-
tiplication by a plaintext is performed for ciphertext. Note that Table 1 shows
basic interfaces for homomorphic evaluation in the HElib. These constant eval-
uations are efficient when the addend or multiplier are not encrypted values. In
particular, constant multiplication is quite efficient compared to the homomor-
phic multiplication; the constant multiplication does not increase the dimension
of the ciphertext, and we do not need to perform SwitchKey after the constant
multiplication.

2.4 Polynomial Interpolation and Integer-Wise Secure Comparison

The first integer-wise homomorphic comparison algorithm was proposed in [22].
We refer to the algorithm as Algorithm 1, which is based on the polynomial
interpolation technique.

Polynomial interpolation is a process of constructing a polynomial f(x) of
degree at most n which satisfies yi = f(xi), i ∈ {0, 1, . . . , n}, where {xi, yi} is
given for n + 1 data points such that xi �= xj when i �= j. We can calculate the
polynomial f(x) by

f(x) =
n∑

i=0

⎛

⎝
∏

0≤j≤n,j �=i

x − xj

xi − xj

⎞

⎠ yi. (2)

Note that in Algorithm 1, the polynomial intepolation technique is used to con-
struct the Heaviside step function (i.e, comparison with 0). Our sub-algorithms
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Algorithm 1. Comp(Ca, Cb): Integer-wise Homomorphic Comparison [22]
Input: Ciphertexts Ca, Cb.

Output: C(a≥b), such that C(a≥b) =

{
C0 (a ≥ b),

C1 (a < b).

1: (Precomputation): Using the polynomial interpolation algorithm, find polynomial
f(x) ∈ Zp[x] that satisfies

f(x) =

{
0 (x = 0, 1, 2, . . . , � p

2
�),

1 (x = −� p
2
�, . . . , −2, −1).

For example, with plaintext modulus p = 7, the interpolation polynomial f(x) of
degree 6 is calculated such that

f(−3) = 1, f(−2) = 1, f(−1) = 1, f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 0.

For this example, f(x) = 4x6 − x5 − 6x3 − 4x ∈ Z7[x].
2: Homomorphically computes Ca−b = Ca − Cb.
3: Calculate and output C(a≥b) = f(Ca−b).

ConstDiv and ConstEq are also constructed based on the polynomial interpola-
tion, as discussed in the next section.

3 Our Algorithm for Integer-Wise Homomorphic Division

In this section we present our integer-wise secure division algorithm. In the
algorithm, the polynomial interpolation technique is used as a precomputation,
similar to the integer-wise comparison algorithm from [22] (Algorithm 1).

In the following, we present in Sect. 3.1 the overview of the algorithms
employed in our secure homomorphic division. We describe the algorithms in
detail in Sect. 3.2. Finally, we analyse their complexity and provide empirical
results in Sect. 3.3.

3.1 Overview

Our integer-wise homomorphic division algorithm Div(Ca, Cd) is given in Algo-
rithm 2, and is constructed based on the following subroutines:

– (Algorithm 3) Pows(Ca): Computes powers of a ciphertext Ca.
– (Algorithm 4) ConstDiv(Cpow

a , y): Integer-wise division by public divisor y.
– (Algorithm 5) ConstEq(Cpow

d , y): Integer-wise equality check with a public
input y.

ConstDiv(Cpow
a , y) homomorphically computes the ciphertext of a quotient

	a/y
 denoted as C�a/y	, from the ciphertext of a ∈ Zp denoted as Ca, and public
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Algorithm 2. Div(Ca, Cd): Integer-wise Homomorphic Division
Input: Ciphertexts Ca, Cd.
Output: C�a/d�
1: Csum = 0
2: Cpow

a = Pows(Ca) � Cpow
a := {Ca, C2

a, C3
a, . . . , Cp−1

a }
3: Cpow

d = Pows(Cd) � Cpow
d := {Cd, C

2
d , C3

d , . . . , Cp−1
d }

4: for i = 0 to (p − 1) do
5: C�a/i� = ConstDiv(Cpow

a , i)
6: C(d=i) = ConstEq(Cpow

d , i)
7: Csum = Csum + FHE.Mult(C�a/i�, C(d=i)) � FHE.Mult(C�a/i�, C(i=d)) =
8: end for � C�a/d� if i = d; C0 otherwise
9: Output C�a/d� = Csum

divisor y ∈ Zp. ConstEq(C
pow
d , y) homomorphically computes the ciphertext of

the Boolean value (y = d) denoted as C(y=d), where

C(y=d) :=

{
C1 if y = d;
C0 otherwise.

Note that given Ca, Cd for unknown a, d ∈ Zp, then for an arbitrary public value
y ∈ Zp, we have

C�a/y	 ∗ C(y=d) =

{
C�a/d	 if y = d;
C0 otherwise.

Our main algorithm for homomorphic division of a by d is then based on a simple
idea: calculate C�a/y	 ∗ C(y=d) for all public values y and sum them:

Csum :=
∑

y∈Zp

C�a/y	 ∗ C(y=d) = C�a/d	.

3.2 Algorithms

Main Algorithm. Algorithm 2 shows the integer-wise secure division algo-
rithm Div(Ca, Cd). The algorithm takes two ciphertexts Ca and Cd, which are
ciphertexts of a and d, respectively, then homomorphically calculates a cipher-
text C�a/d	, the decryption of which gives 	a/d
.

The algorithm first calls Pows for both inputs Ca and Cd, to obtain the list
of powers Cpow

a and Cpow
d . This part performs a high number of homomorphic

multiplications, but we store these values and can reuse them. Next, in the for
loop, for all i ∈ {0, 1, 2, . . . , p − 1}, we exhaustively calculate C�a/i	 and C(d=i)

with ConstDiv and ConstEq, then perform the homomorphic multiplication of
C�a/i	 ∗ C(i=d) := FHE.Mult(C�a/i	, C(i=d)). Recall that C�a/i	 ∗ C(i=d) equals to
C�a/d	 if y = d, and C0 otherwise. Thus, at the end of the algorithm we obtain
C�a/d	 = Csum.
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Algorithm 3. Pows(Ca): Computation of powers of Ca

Input: Ciphertexts Ca

Output: Cpow
a := (Ca, C2

a, C3
a, . . . , Cp−1

a )
1: Let l := �log p�.
2: for i = 0 to (l − 1) do
3: for j = 1 to 2i do

4: Calculate C
(2i+j)
a := FHE.Mult(C

(2i)
a , Cj

a).
5: end for
6: end for � Here, we have Ca, C2

a, C3
a . . . , C2l

a .
7: if 2l < p − 1 then
8: for j = 1 to p − 1 − 2l do

9: Calculate C
(2l+j)
a := FHE.Mult(C

(2l)
a , Cj

a).
10: end for
11: end if � Here, we obtain C2l+1

a , . . . , Cp−1
a .

12: Output Cpow
a := (Ca, C2

a, C3
a, . . . , Cp−1

a ).

Pows(Ca). Algorithm 3 shows the sub-algorithm Pows(Ca). The algorithm
takes a ciphertext Ca as an input and homomorphically calculates the pow-
ers of Ca, returning the list of powers Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a ). This

sub-algorithm is the most complex part of the main division algorithm Div.
In Div, this algorithm is called only once per ciphertext. Note that the multi-
plicative depth of Pows(Ca) is �log (p − 1). For example, when p = 17, since
C2

a = FHE.Mult(Ca, Ca), C4
a = FHE.Mult(C2

a , C2
a), C8

a = FHE.Mult(C4
a , C4

a), and
C16

a = FHE.Mult(C8
a , C8

a), multiplicative depth is log(16) = 4. See Sect. 3.3 for a
more detailed complexity analysis.

ConstDiv(Cpow
a , d). Algorithm 4 shows the sub-algorithm ConstDiv(Cpow

a , d).
The algorithm takes a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a )

and a plaintext divisor d as input, then homomorphically calculates a cipher-
text C�a/d	, the decryption of which gives 	a/d
. Note that this algorithm does
not perform homomorphic multiplication, it only requires multiplication by con-
stant multConst, which can be performed efficiently without increasing the size
of the ciphertexts and SwitchKey. Moreover we note that line 1 of Algorithm 4
is performed before the algorithm start, i.e. we precompute coefficient vectors
{afd

}d∈Zp
, which appear in (3), of the interpolation polynomial.

ConstEq(Cpow
a , y). Algorithm 5 shows the sub-algorithm ConstEq(Cpow

a , y). The
algorithm takes a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a )

and a plaintext input y as inputs, then homomorphically calculates a ciphertext
C(a=y), the decryption of which gives 1 when a = y, or 0 when a �= y. This
algorithm is similar to ConstDiv, except that the values of the precomputed
coefficient vectors afy

are different. Thus, the complexity of the algorithm is
almost the same as the ConstDiv, and there is no homomorphic multiplication.
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Algorithm 4. ConstDiv(Cpow
a , d): Integer-wise Constant Division

Input: Cpow
a : Powers of ciphertexts Ca. d: public divisor.

Output: C�a/d�
1: (Precomputing): We define a function for dividing by the fixed constant d as

gd(x) :=
⌊x

d

⌋
.

Given points {gd(x)}x∈Zp , calculate the interpolation polynomial fd(x) that sat-
isfies ∀x ∈ Zp, fd(x) = gd(x). For example, when plaintext modulus p = 7 and
public divisor d = 2, an interpolation polynomial fd(x) is calculated given that

fd(0) = 0, fd(1) = 0, fd(2) = 1, fd(3) = 1, fd(4) = 2, fd(5) = 2, fd(6) = 3.

And we obtain fd(x) = −2x+3x3+x5−2x6. We define aConstDiv
fd

:= (a1, . . . , ap−1) =
(−2, 0, 3, 0, 5, −2) as a coefficient vector of fd(x).

2: Output

C�a/d� := (aConstDiv
fd )�Cpow

a :=

p−1∑
i=1

FHE.multConst(Ci
a, ai). (3)

Note. We note that aConstDiv
fd

is dependent on d, and we precompute aConstDiv
fd

for all

d ∈ Zp: We have a list of coefficient vector {aConstDiv
f0 , . . . ,aConstDiv

fp−1
} as constant.

Algorithm 5. ConstEq(Cpow
a , y): Integer-wise Constant Equality test

Input: Cpow
a : Powers of ciphertexts Ca. y: public constant.

Output: C(a=y)

1: (Precomputing): We define a function for testing the equality to the fixed constant
y as

gy(x) :=

{
1 (x = y),

0 (x �= y).

Given points {gy(x)}y∈Zp , calculate the interpolation polynomial fy(x) that satis-
fies ∀y ∈ Zp, fy(x) = gy(x). For example, when p = 7 and y = 3, an interpolation
polynomial fy(x) is calculated given that

fy(0) = 0, fy(1) = 0, fy(2) = 0, fy(3) = 1, fy(4) = 0, fy(5) = 0, fy(6) = 0.

And we obtain fy(x) = 2x + 3x2 + x3 − 2x4 − 3x5 − x6, the coefficient vector of
which is aConstEq

fy
:= (a1, . . . , ap−1) = (2, 3, 1, −2, −3, −1).

2: Output

C(a=y) := (aConstEq
fy

)�Cpow
a :=

p−1∑
i=1

FHE.multConst(Ci
a, ai).

Note. Note that, as with ConstDiv, we precompute the first step and we have a list
{aConstEq

f0
, . . . ,aConstEq

fp−1
} as constant.
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Table 2. The multiplicative depth and the number of calls of Mult, Add and multConst
in our algorithms for l-bit size input.

Multiplicative depth Mult Add multConst

Pows O(l) O(2l) 0 0

ConstEq 0 0 O(2l) O(2l)

ConstDiv 0 0 O(2l) O(2l)

Div O(l) O(2l) O(22l) O(22l)

3.3 Complexity Analysis and Experiments

Complexity. Although Algorithm 2 might seem exhaustive and inefficient due
to its for loop, this homomorphic computation can be performed efficiently.
This is mainly because:

– ConstDiv and ConstEq do not include FHE.Mult, but include FHE.multConst.
Thus, ConstDiv and ConstEq do not increase the multiplicative depth.

– The most complex part Pows is executed only once for each input ciphertext
Ca and Cd before the for loop.

In the following, we analyse the multiplicative depth and the total complexity
of our algorithm Div. Table 2 shows a summary. In our analysis we denote by l
the bit length of the input integers.

Multiplicative Depth. The multiplicative depth of Pows is O(log p) = O(l), as
shown in Sect. 3.2. The multiplicative depth of Div is also O(l), because we
perform only one FHE.Mult after Pows in one loop in the Div algorithm, and
ConstDiv and ConstEq do not include FHE.Mult. Chen et al. showed that the
multiplicative depth of their bit-wise division algorithm [9] is O(l2). The other
bit-wise division algorithms [8,28] are the same as that of [9], the idea of which is
based on the non-restoring division, since their improvements are mainly for bit-
wise addition and multiplication. Therefore, our algorithm provides quadratic
improvement in regard to the multiplicative depth of homomorphic division.

Total Complexity. It is not trivial to adequately analyse the total complexity of
the FHE circuit, because the cost of the homomorphic calculation depends on
the level parameter L: the order of the cost of the homomorphic calculation is
O(λL3), as we mentioned in Sect. 2.2. Moreover, as mentioned in FHE.Setup, the
level L also defines the parameter m. The parameter m defines the cyclotomic
polynomial Φm(x), which in turn defines the ciphertext space. HElib has a bound
on the value L, and HElib halts if we set L too high because of the bound on
the size of the cyclotomic polynomial, as noted in [9,28]. Probably based on this
fact, the existing works [8,9,28] do not show the results on higher (>4) bits input
integers (see Table 3).

Although ConstDiv and ConstEq do not include homomorphic multiplication
and do not increase the multiplicative depth, we perform them exhaustively
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Table 3. Performance comparison.

l (bits) p L nslots Time (s) Type Method

4 2 21 720 67.94 Bit-wise [9]

4 2 21 720 14.63 [28]

4 2 21 720 7.74 [8]

4 17 9 108 3.15 Integer-wise Our (Div)

5 37 11 340 15.11

6 67 13 165 51.34

7 131 15 138 198.92

8 257 17 396 795.84

in the for loop (from i = 0 to p − 1), and thus we cannot ignore their cost.
However, since this for loop is parallelisable, this issue could be decreased by
parallelisation. In contrast, existing secure division algorithms are not suitable
for parallelisation because of their full-adder circuit (e.g. Ripple Carry adder),
as discussed in [8].

We also note that the memory complexity of our algorithm is relatively high.
In the precomputation of polynomial interpolation, we generate the coefficient
vectors and store them as a matrix, the space for which is Z

p×p
p .

Experiments. We implemented our secure division algorithm on HElib [16],
and compared timings with existing secure division algorithms based on FHE
schemes. We can compare the results only for 4-bit size input, since all the exist-
ing works report only for 4-bit integer division. We also implement for higher bit
values l = 5, . . . , 8, and observe that the results follow our complexity analysis.

Parameters. We set the security parameter λ = 80, following the existing works
of the secure division algorithm [8,9,28]. Let l be a the bit size of the input
integer. Since our algorithm is integer-wise and stores an input integer in Z into
Zp, we define the size p of the plaintext space Rp as p = nextprime(2l). We
set the Hamming weight of the secret vector w = 64. For the level parameter L,
which is related to the multiplicative depth of the circuit, we search the minimum
level by trial and error. As L is the lower level, we can perform the circuit faster.
However, setting L too small leads to incorrectness of the outputs. For the rest
of the parameter including “nslots”, which means the number of the SIMD slots,
we use the default values automatically calculated by HElib. For further details,
we refer the reader to [16].

Results. Table 3 shows our timing results, in addition to results given in existing
work for bit-wise integer division. All timings were generated on a PC with
a 3.4 GHz Intel Core i5 and 16 GB RAM. To the best of our knowledge, the
work by Chen et al. [8] provides the fastest results for 4-bit size input integers;
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Algorithm 6. ConstFunc(Cpow
a , y, g(·, ·)): Integer-wise Constant Function

Input: Cpow
a : Powers of ciphertexts Ca. y: public constant. g(·, ·): 2-variable function.

Output: Cg(a,y) = g(Ca, y)
1: (Precomputing): In this algorithm, fix y. Thus, we consider the input 2-variable

function g(x, y) : Zp × Zp → Zp as 1-variable function gy(x) := g(x, y). For a
fixed y, an interpolation polynomial fy(x) for gy(x) is calculated given the values
g(0, y), g(1, y), . . . , g(p − 1, y). And we can write the interpolation polynomial as
follows: fy(x) = a{1,y} · x + a{2,y} · x2 + a{3,y} · x3 + · · · + a{p−1,y} · x6 mod p.

2: Calculate Cg(a,y) = fy(Ca) = a�
fyC

pow
a mod p, where afy = {a{1,y}, a{2,y}, a{3,y},

. . . , a{p−1,y}}.

thus our algorithm is the fastest secure division algorithm. While existing works
report only for l = 4, we implemented our algorithm also for the higher bit sizes
l = 5, . . . , 8. We can observe that our algorithm requires only L = O(l), following
our analysis given in Sect. 3.3. Moreover, we can observe that required L of our
algorithm is lower than that of the bit-wise algorithm for l = 4. Based on this
fact, and that the bit-wise algorithm requires L = O(l2), we can expect that L
of our algorithm is globally less than that of the bit-wise algorithm.

We also note that nslots of our algorithm, which are automatically calculated
by HElib depending on the other parameters, is lower than in bit-wise algorithms.
This means that the amortised cost of our algorithm might be larger than existing
algorithms.

4 Integer-Wise Homomorphic Evaluation of Arbitrary
2-variable Function

We show that our secure division algorithm can be generalised to integer-wise
secure computation of any 2-variable function with the same computation cost.

4.1 Algorithms

Our integer-wise homomorphic evaluation algorithm of any (predefined) 2-
variable function Func(Ca, Cd) given in Algorithm 7 is constructed based on
Div, by replacing ConstDiv with ConstFunc(Cpow

a , y, g(·, ·)) (Algorithm 6), which
performs 1-variable function gy(x) := g(x, y) over a ciphertext Ca.

ConstFunc. Algorithm 6 shows the ConstFunc algorithm. The algorithm takes
a list of powers of ciphertext Cpow

a := (Ca, C2
a , C3

a , . . . , Cp−1
a ), a plaintext y and

a 2-variable function g(·, ·) (i.e., coefficient vectors of its interpolation polyno-
mial), and then homomorphically calculates a ciphertext Cg(a,y), the decryption
of which gives g(a, y). Recall that, in the ConstDiv(Cpow

a , d), we used polyno-
mial interpolation to construct a function fd(x) = 	x

d 
 for all d ∈ Zp, giving
data points {fd(0), fd(1), . . . , fd(p − 1)}. We can simply generalise ConstDiv as
a general function: in ConstFunc, we use polynomial interpolation to construct a
required function gy(x) defined by given data points {gy(0), gy(1), . . . , gy(p−1)},
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Algorithm 7. Func(Ca, Cb, g(·, ·)): Integer-wise Homomorphic 2-variable function

Input: Ciphertexts Ca, Cb. 2-variable function g.
Output: Cg(a,b) = g(Ca, Cb)
1: Csum = 0
2: Cpow

a = Pows(Ca) � Cpow
a := {Ca, C2

a, C3
a, . . . , Cp−1

a }
3: Cpow

b = Pows(Cb) � Cpow
b := {Cb, C

2
b , C3

b , . . . , Cp−1
b }

4: for i = 1 to (p − 1) do
5: Cg(a,i) = ConstFunc(Cpow

a , i, g) � Cg(a,i) = g(Ca, i)
6: C(i=b) = ConstEq(Cpow

b , i) � C(i=b) = C1 if i = b, C(i=b) = C0 otherwise.
7: Csum = Csum + FHE.Mult(Cg(a,i), C(i=b)) � FHE.Mult(Cg(a,i), C(i=b)) = Cg(a,b) if

i = b, C0 otherwise.
8: end for
9: Output Cg(a,b) = Csum

for all y ∈ Zp. Only the data points (or, coefficient vectors) are different between
ConstDiv and ConstFunc. Thus, the order of multiplicative depth of ConstFunc is
exactly the same as ConstDiv. Note that we precompute the coefficient vectors
afy

for all y ∈ Zp using the polynomial interpolation, as with ConstDiv.

Func. Algorithm 7 shows our algorithm for integer-wise homomorphic evaluation
of the arbitrary 2-variable function, Func. The algorithm takes two ciphertexts
Ca and Cb, which are ciphertexts of a and b, respectively, and a 2-variable func-
tion g(·, ·) (i.e., coefficient vectors of its interpolation polynomial) as inputs. It
then homomorphically calculates a ciphertext Cg(a,b), which decrypts to g(a, b).
This algorithm is almost the same as Div (Algorithm 2), except that ConstDiv
is replaced by ConstFunc. Since the order of multiplicative depth of ConstFunc
is exactly the same as ConstDiv, that of Func is exactly the same as Div.

5 Conclusion

We propose a first secure integer-wise homomorphic division algorithm on fully
homomorphic encryption schemes. We implemented the algorithm on HElib, and
show that our algorithm is over twice as fast as the fastest existing algorithm
given in [8]. We also showed that the multiplicative depth of our algorithm is
O(l) for l-bit size integer, while that of existing division algorithms is O(l2).

Furthermore, we generalise our secure division algorithm and propose an
algorithm for secure calculation of general 2-variable functions. We showed that
the complexity of the algorithm is the same as our division algorithm. This means
that the homomorphic calculation of any 2-variable functions taking integer
inputs can be performed with multiplicative depth O(l).
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Abstract. Modern connected vehicles are composed of multiple elec-
tronic control units (ECUs) holding sensors, actuators but also wired
and wireless connection interfaces, all communicating over shared inter-
nal communication buses. The cyber-physical architecture based on this
ECU network has been proven vulnerable to multiple types of attacks
leveraging remote, direct and indirect physical access. Attacks initiated
from these access vectors go through the internal communication buses
and spread over the whole network of ECUs. For this reason it is impor-
tant to detect, and if possible to mitigate, attacks on the internal buses
of the vehicle.

In this article, a novel intrusion detection system is developed to mon-
itor vehicle state from information collected on internal buses. Based on
supervised machine learning techniques, a normal behavior is learned
and used as a reference to detect deviations. The principle is to learn
how to predict the next state of the vehicle based on information and
sensor values sent over communication buses. Experimental validation is
conducted using data collected from different drivers. Results show that
the approach is able to learn the nominal behavior with high accuracy
for a single driver as well as for a set of different drivers. Results also
demonstrate its ability to predict attacks with low false negative rate.
This motivates the approach to be used for indirect and remote attacks
intrusion detection as well as for safety purposes to detect sensor failures,
lost connection with the sensor, etc.

Keywords: Automotive · Intrusion detection · Machine learning

1 Introduction

Two important requirements of today’s cars are a high level of safety and con-
nectivity with the outside world. This involves the use of advanced technologies
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based on a computing infrastructure composed of numerous electronic compo-
nents –named Electronic Control Units (ECUs)– embedded inside the vehicle.
These ECUs are in charge of processing sensed data through embedded sensors,
and transforming them into commands for the actuators. For this purpose, ECUs
share communication buses. These are used for periodic and event-based mes-
sages that allows the ECUs to monitor the vehicle state through the control and
supervision of sensors and actuators states. The communication bus mostly used
in the automotive domain is the Controller Area Network (CAN, ISO 11898),
which connects together many ECUs.

Recently, the CAN protocol has become the center of multiple cyber-security
issues [2,4]. In this context, Hoppe et al. [7] were the first researchers to point
out the weaknesses of the CAN bus. These findings were further investigated
and confirmed by Koscher et al. [11] and Checkoway et al. [2] who performed
frame replay and frame injection attacks on a real vehicle. In these attacks, the
attacker physically connects to the CAN network and replays or injects messages
on the CAN bus. Miller and Valasek [15] showed that physical access to the
communication bus was not necessary and showcased an attack granting remote
control over a vehicle. In their experiments, the attacker remotely takes control
of a legitimate ECU and use that ECU to send legitimate messages.

To protect against these attacks, multiple solutions have been proposed:

– Protecting the messages payload can be a good approach against an attacker
that has physical access to the communication bus. Nilsson et al. [18] proposed
to send message authentication codes over consecutive CAN frames to authen-
ticate the messages. Hartkopp et al. [6] proposed to use Cipher based Mes-
sage Authentication Code (CMAC) as a symmetric authentication measure
between the sender and the receiver. These types of solution allow the receiv-
ing ECU to verify the integrity and/or the authenticity of the messages and to
filter out forged information sent by the attacker (which is unauthentic).

– A second family of protection solutions is known as in-vehicle network Intru-
sion Detection and Prevention Systems. The role of these systems is to mon-
itor the in-vehicle network for suspicious behavior like frame(s) injection and
replay attacks and either physically kill suspicious frames by causing a frame
error or by filtering them out. Examples of such detection mechanisms are
presented for instance in the work of Taylor et al. [20], and the work of
Marchetti et al. [14]. In general, state-of-the-art detection mechanisms can
be categorized into two main classes: rule-based detection mechanisms and
statistical detection mechanisms. We investigate more in details these types
of solutions in Sect. 2.1.

– Another type of protection solution, specific to the CAN bus focuses on pro-
tecting the identifier. These solutions are useful to protect against reverse
engineering, replay and injection attacks for an attacker that has physical
access to the CAN network. For instance Humayed et al. [8] presented a solu-
tion that can change a message identifier when an attack is detected, thereby
stopping the targeted attack dead. Han et al. [5,12] proposed an identifier
randomization function for the same purpose.
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In the sequel we focus on in-vehicle intrusion detection techniques. State-
of-the-art rule-based intrusion detection uses mechanisms known as identifier
filtering, identifier timing and syntax check. Some of them also focus on payload
content and implement what is known as deep packet inspection techniques.

Contributions. In this paper, we tackle the problem of deep packet inspection
of in-vehicle networks from a practical viewpoint. For an attacker that gains
control over an ECU, we consider that her capacity evolves from simply inject-
ing an extra message on the communication bus, to being capable of modifying
the content (payload) of a legitimate message. This evolution makes the classi-
cal detection mechanisms, based on identifier timing and syntax check, merely
obsolete. In order to detect these kinds of attacks, a novel detection mechanism
is developed. We formulate the problem in a way that allows to learn the normal
behaviour of the system in terms of message payload content. Bad behaviour and
bad payload content are flagged with outlier detection techniques. The method
thus described can be adopted not only as an intrusion detection mechanism,
but also as an online monitoring failure detection and a sensor rationality check
safety mechanisms as described by the “Road vehicles – Functional safety” stan-
dard ISO-26262 [9]. We validate in practice the model with real CAN traces
collected from drive tests. We show that the approach is able to learn the nomi-
nal behavior with high accuracy and low false positives, for three different driving
behaviors separately. Then we show that it is also able to learn a unified nominal
behavior with high accuracy and low false positives, that can accommodate dif-
ferent driving behaviors. Finally we run an attack campaign in order to test the
robustness of the detection rules, and demonstrate its ability to predict attacks
with low false negative rate.

Outline. The remainder of the paper is structured as follows. Section 2 gives
some background on CAN intrusion detection mechanisms, machine learning
techniques and the related work. Section 3 gives details about data collection
and feature engineering. Section 4 presents practical validation results on real
CAN traces. Section 5 concludes.

2 Background

2.1 Intrusion Detection Systems over CAN

Detecting intrusions on the in-vehicle communication buses is important as it
can prevent attacks from spreading to other ECUs. It can be considered as the
last line of defense after protecting ECUs interfaces from the outside world.
Many mechanisms have been proposed to detect possible intrusion on the CAN
bus. Figure 1 gives a high level overview of these mechanisms.
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Fig. 1. High level synthesis of detection mechanisms applied to the CAN frame

Using the frame identifier, an intrusion detection system can establish a list
of allowed and forbidden identifiers, based on which it can decide which frames
to filter. This technique is best known as identifier filtering or identifier white-
listing [15,16]. Such white list can also depend on the context of the vehicle:
for instance the intrusion detection system may allow certain identifiers when
the vehicle is on parking state, and reject them when the vehicle is moving.
This technique is used in particular to enforce the diagnostic security policy by
allowing diagnostic messages only in certain vehicle states.

Another detection mechanisms that uses identifiers is timing analysis [3,7,
16]. It is a very popular technique that works well with periodic messages. It
consists in setting an acceptance time-window for each periodic message. If the
same message is received outside of its acceptance time-window, the system shall
consider it as an intrusion and shall filter it out.

Besides the identifier of the messages, the data length code (DLC) can also
be exploited to detect bad behaviour [16]. In fact, each manufacturer sets-up
a proprietary protocol over the CAN standard. This protocol consists in creat-
ing a mapping between identifiers and payload information (sensor values for
instance), also called signals, shared across all ECUs. This mapping defines a
syntax that can be checked based on the payload length of each message. Mes-
sages that violate this syntax (i.e., messages sent with the wrong DLC) are then
flagged as intrusions.

In this paper we distinguish between two attacker models (Fig. 2). Figure 2a
shows an attacker model that has direct physical access to the CAN bus. Since
modification of a message on the fly is rather difficult (the message being pro-
tected with CRC mechanism), this attacker instead injects extra messages on
the CAN bus. These messages will modify the proprietary communication pro-
tocol defined on top of CAN for instance by modifying the syntax of the message
or its periodicity. These anomalies are caught by the classical detection mech-
anisms described previously. Therefore, an advanced attacker who has indirect
and even remote access over a legitimate ECU (Fig. 2b), might aim at modifying
sensor information and commands directly on the payload without disrupting the
defined protocol. Thus will not be detected by above-mentioned classical detec-
tion mechanisms. Consequently, we need to build mechanisms able to detect bad
behaviour inside the payload. These mechanisms are referred to as deep packet
inspection. The latter encompasses most safety checks. For instance, duplicated
signals, process counters, checksum . . . In this paper, we focus on deep packet
inspection type of detection, as this detection mechanism is well adapted to



Prediction-Based Intrusion Detection System for In-Vehicle Networks 113

sophisticated attacker model. Supervised machine learning techniques are used
in order to build a nominal behaviour based on received signals; then outlier
detection flags deviations from the previously built behavioral model.

ECU 1

CAN-Bus

ECU 2

Attacker

ID DLC Payload

ID DLC Payload

(a) Direct physical access to the CAN-Bus

ECU 1

CAN-Bus

ECU 2

Attacker

ID DLC Payload

(b) Indirect/remote access to the CAN-Bus

Fig. 2. Attacker models. (a) State-of-the-art model. (b) Model investigated in this
paper

2.2 Machine Learning Algorithms and Their Application

In practice there are multiple application domains where machine learning algo-
rithms excel in prediction tasks. They are generally used to study correlation
between different inputs (also called features), to approximate an output func-
tion and/or to discover interesting data structures. For these reasons we decided
to explore the use of machine learning techniques in the context of vehicle cyber-
physical attacks and intrusion detection.

Machine learning algorithms can be divided into two main categories depend-
ing on the learning strategy:

1. Supervised learning: a machine learning algorithm is said to be using super-
vised learning strategy when the training set includes both the input data
and the output data of the algorithm. In that sense the algorithm is train-
ing to learn a mapping function by minimizing a pre-defined cost function.
The trained algorithm is then tested on some other examples that were not
included in the training set. It is said to be generalizing well if the performance
of the trained algorithm on the test set is comparable to its performance on
the training set.

2. Unsupervised learning: a machine learning algorithm is said to be using unsu-
pervised learning strategy if the training only includes the input data but not
the expected output. In that sense, the machine learning algorithm is trying
to discover interesting data structures.
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Machine learning techniques have been used previously in the context of deep
packet inspection for intrusion detection. Kang et al. [10] train a deep neural
network structure to classify normal versus attack packets using probability-
based feature vectors of packet payload bits. Training data were generated by
the Open Car Test-bed and Network Experiments (OCTANE) packet generator
[1]. Normal and attacked packets were necessary in order to train the algorithm.
Loukas et al. [13] use sensor input features along with recurrent neural network
(RNN) to detect attacks on vehicles. The detection mechanism also consists in
learning to classify whether the vehicle is under attack or not with a training
data that included both attacked and normal packets. An important limitation of
the work of Kang et al. [10] and Loukas et al. [13] is that the intrusion detection
system is trained to recognize specific attacks. An important effort is devoted
to generate attacked packets in order for the detection module to learn the
attack profile. Taylor et al. [21] use long short-term memory networks to detect
attacks on the CAN bus. The approach was applied to the identifier, and learns
to predict the next packet identifier on the CAN bus. Highly surprising bits
are then flagged as anomalous. This method draws its strength from repetitive
periodic sequences. This is why it is applied to the identifier field. Nevertheless,
this is hardly the case for payload information that holds sensor information.
Narayanan et al. [17] propose to build Hidden Markov Model of the normal
behaviour of the car based on sensor values (or signals). Their work shows that
it is possible to detect data manipulation attacks like speed discontinuity. In
their work, Narayanan et al. focus on signal changes rather than signal values,
i.e., gradients of signals. As a result, the built model can serve to detect signal
jumps types of anomalies and cannot be used for prevention. Besides, their work
does not evaluate the True Positive Rate and False Positive Rate of the detection
principle.

An important limitation of the previous approaches is that during training,
data representing both attacked and non-attacked states is needed to learn to
recognize attacks. In order to produce this kind of data we need to select and per-
form multiple attacks on the vehicle. Thus it is challenging to generate the data
for a large range of attacks. Besides, the intrusion detection system learns only
to recognize performed attacks included in the training set. Another downside is
that the approach allows only to predict whether the vehicle is under attack or
not but does not deliver more detailed information useful to investigate on the
cause of the attack.

In order to overcome these limitations, we propose a different formulation of
the problem. In fact, instead of predicting whether the vehicle is under attack (or
not) based on payload inputs, we break down the payload information into sig-
nals according to the manufacturer proprietary protocol and we train a machine
learning algorithm to predict the next signal value based on other signals. The
idea is then to compare the predicted signal and the received signal. Under the
assumption that the predictor is accurate enough, we assume the following as a
security metric: if the difference between the prediction and the received value
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is large enough, then, with a high probability, the vehicle is being attacked and
that the predicted signal is the potential cause of the attack.

Input signals are sensor values sent from one ECU to the other ones. They
can either be real-valued or categorical signals:

– An example of real-valued signal is the speed of the vehicle (Fig. 3a). It is sent
over 2 bytes of payload information. The received value is then an integer
between 0 and 65535. A multiplication by 0.01 is necessary to recover the
actual measurement of the sensor to make speed range in [0, 655.35] km/h.

– An example of categorical signal is the brake lights command signal (Fig. 3b).
It is sent over 1 bit of payload data. The received value is a binary information
(0/1) indicating whether to activate the brake lights (1) or not (0).

(a) Speed signal (b) Brake lights command signal

Fig. 3. Example of real-valued and categorical signals

2.3 Problem Formulation

In what follows we formulate our problem as a supervised machine learning
problem. Let D = {(xi, yi)}i∈[1,N ] be the set of input-output pairs. Here D is the
collected Data set, and N is the number of observed examples. Each training
input (xi)i∈[1,N ] is a d-dimensional vector of components representing signal
values/states (s(1)i , s

(2)
i , . . . , s

(d)
i ). These are called features and are stored in an

(N × d) matrix X (Fig. 4). The output (yi)i∈[1,N ] is stored in a 1-dimensional
vector y and represents the target signal that we want to predict. It can be either
real-valued (in this case we will talk about regression) or a categorical value (in
which case we will talk about classification), depending on the signal type.

The object of supervised machine learning is to assume the existence of some
unknown function <f> that maps the inputs to the outputs, as in (1):

f(x) = y, ∀(x, y) ∈ D. (1)

The goal of the learning process is to estimate the function <f> given a labeled
training set and then to make predictions on unseen data xu using the estimated



116 K. Karray et al.

function ŷ = f̂(xu). We denote the probability distribution over possible labels,
given the input vector xu and the training data set Dtrain by p(y|xu,Dtrain).
This probability is conditional on the input vector xu and the training set Dtrain.
When approximating the function <f>, we will use a machine learning model
Mθ, where M is the model, and θ denotes the parameters of the model. The
probability distribution over possible labels becomes also conditioned by the
chosen model, p(y = ŷ|xu,Dtrain,Mθ).

When using regression parametric models, we assume that the estimated
function used for the prediction introduces a residual error ε between the pre-
dictions and the ground truth:

y = ŷ + ε. (2)

We make the assumption that the residual error term ε has a Gaussian normal
distribution, ε ∼ N (μ, σ2). More explicitly we will assume that the probability
distribution over possible labels is as follows:

p(y|xu,Dtrain,Mθ) = N (μθ(xu), σ2). (3)

In order to estimate the model parameters <θ>, we use the maximum likelihood
estimator that maximizes p(Dtrain|θ) =

∏N
i=1 p(yi|xi, θ). It is equivalent to find-

ing the model parameters θ̂ that minimizes the negative log-likelihood which is
the sum of residual errors

∑N
i=1(yi − ŷi)2 =

∑N
i=1 ε2i :

θ̂ = argmin
θ

N∑

i=1

(yi − f̂θ(xi))2. (4)

Once optimal parameters θ̂ are estimated, the prediction model outputs a pre-
dicted signal estimation ŷu = f̂θ̂(xu) for an unseen input vector xu. The received
signal value y is then compared to the estimated signal value. An alert is raised
if the two signals are not similar

Alert = 1 ⇐⇒ |ŷ − y| ≥ tp. (5)

When using classification parametric models, where the output is one out
of C classes, we model the probability over possible labels with a categorical
distribution. Let yij = I(yi = j) be the one-hot encoding of yi:

p(y|xu,Dtrain,Mθ) =
C∏

j=1

μθ,j(xu)I(y=j). (6)

In order to estimate the model parameters <θ>, we use the maxi-
mum likelihood estimator that maximizes p(Dtrain|θ) =

∏N
i=1 p(yi|xi, θ) =

∏N
i=1

∏C
j=1 μθ,j(xi)I(yi=j). This is equivalent to minimizing the negative log-

likelihood which is the cross entropy function:

θ̂ = argmin
θ

N∑

i=1

C∑

j=1

yij log(μθ,j(xi)). (7)
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Once we have the optimal model parameters θ̂, for each unseen input vector xu,
we make a prediction in favor of the class where the probability distribution is
the highest: ŷu = argmax

j∈[1,C]

(μθ̂,j(xu)).

Once optimal parameters θ̂ are estimated, the prediction model outputs a
predicted signal estimation ŷu = f̂θ̂(xu) for an unseen input vector xu. The
received signal value y is then compared to the estimated signal value. An alert
is raised if the two signals are not similar :

Alert = 1 ⇐⇒ ŷ �= y. (8)

3 Data Collection and Feature Engineering

3.1 Data Collection

In order to provide training vectors, the best way is to collect data directly
from a real vehicle. For this purpose we prepared a CAN acquisition device.
The device is composed of a Raspberry Pi with additional CAN-Bus hardware
module running a Linux kernel with SocketCAN drivers. We equipped a vehicle
with the acquisition device connected directly to different CAN buses in order to
have direct access to all sensor information, although not all of them will be used
during training. We collected CAN traces from one vehicle for three different
drivers, driving in different circuits for about 90 min each. Circuits consisted
of multiple driving conditions including city driving, vehicle parking, highway
driving, etc. During those data collections, drivers were asked to drive normally
but also to perform rare but legitimate scenarios like activating cruise control,
activating lane keep assist, activating emergency breaking, etc. For safety reasons
no attacks were performed during data collections step.

3.2 Feature Engineering

After raw data acquisition, the second step consists in preparing the data for pro-
cessing. In this step, the goal is to select and arrange the features in a form that
would be useful during training step. Each CAN identifier sent over the CAN bus
has a payload that is composed of one or multiple signals. A signal is an infor-
mation (sensor value, ECU state, counter, checksum, . . . ) that can occupy one
or multiple bits or bytes depending on the nature of the information. Extraction
of signals requires the knowledge of the proprietary protocol of the car manufac-
turer. Signals included in the payload for safety reasons, like checksums, process
counters, duplicated signals, are checked by safety functions and problems with
those signals, if any, would be handled by appropriate safety mechanisms. Thus,
they are not relevant for this task and therefore are not selected. Typically we
are interested in physical sensor values like speed, acceleration, RPM, etc. The
set of those signals defines the state of the vehicle and constitutes the input fea-
tures that are relevant for learning the normal behaviour and evolution of the car
states. The second selection criteria is the relevance with respect to the target
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signal. In fact, the dimensionality of the training vectors equals the number of
selected signals. However, in general, machine learning algorithms do not work
well with high dimensional inputs. Indeed, as input vectors dimensions grow,
the performance deteriorates, due to the curse of dimensionality. As a result,
we choose to select only signal with high correlation with the target signal. For
instance, the engine oil temperature has no influence on the vehicle speed, thus
would not be selected when building a predictor for the speed signal. On the
other hand, the acceleration of the vehicle is highly correlated to the speed of
the vehicle, thus will be selected as an input to predict the speed. Using this
selection criteria we can guarantee that signals that can explain the most the
target signal are used for prediction. Signals are featured in the form of a matrix
where columns represent signals and lines represent signal values evolution over
time. For each received CAN message that holds selected signal, a new line is
added to the matrix where all signals keep their previous values/states except
the one that has just been received. Figure 4 gives more details about how to
construct the features matrix.

Log File

0X0B9 - S1 xx xx xx xx xx
0X0FA - xx S2 xx xx xx xx
0X320 - S3 S4 xx xx xx xx
0X0B9 - S1 xx xx xx xx xx
0X48A - xx xx xx xx xx S5

Log File Parser Feature Matrix

S2 S3 S4 S5
S2 S3 S4 S5
S2 S3 S4 S5
S2 S3 S4 S5
S2 S3 S4 S5

Target signal

S1
S1
S1
S1
S1

Update S1

Update S2

Update S3 & S4

Update S1

Update S5

Fig. 4. Parsing the log file and building the training data.

4 Experimental Validation and Discussion

In order to validate the approach, we conduct some experiments to predict two
target signals, one of each type (categorical and real-valued), using five selected
input signals. To this end, a total of six signals are extracted. For each target
signal, the remaining five are used as input features.

– Speed, is a real-valued signal sent from the Electronic Stability Program
(ESP) and that is generated by an embedded speed sensor.

– Acceleration, is real-valued signal that is sent from the Electronic Stability
Program (ESP) and generated by an acceleration sensor.

– Engine rotational speed expressed in revolutions per minute (RPM), is a real-
valued signal sent by the Engine Control Module (ECM).

– Torque, is a real-valued signal sent by the Engine Control Module (ECM)
that contains the engine torque.

– Gearbox position, is a categorical signal sent by the Electronic Shifter Module
(ESM), that indicates the gear lever position.

– Brake lights command is a categorical signal that is sent from the Electronic
Stability Program (ESP) module to control brake lights.
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Experimental validation is conducted in two steps. First we train and evaluate
the detection rules using collected data and without performing any attacks. This
step gives us the True Negative rate, that we define hereafter as the accuracy
(Acc) of the supervised learning algorithm, which will be formally introduced
in the Sect. 4.1. The False Positive rate is then derived from the accuracy and
equals (1 − Acc). Then we conduct an attack campaign and measure how many
of the performed attacks are detected. This step gives us the True Positive rate
and the False Negative rate. Table 1 defines the metrics that will be used in the
sequel.

Table 1. Detection metrics

Detected Not-detected

No-attack FP = 1 −Acc TN = Acc

Attack TP FN

4.1 Validation Metrics

Regression Metrics for Real-Valued Signals: The accuracy (denoted as Acc) of a
machine learning prediction algorithm is generally measured using the coefficient
of determination R2. The R2 coefficient of determination is a statistical measure
of how well the regression predictions approximate the observed target values.
The closer it is to 1, the more accurate the prediction is. An R2 of 1 indicates that
the regression predictions perfectly fit the data. We can express the prediction
accuracy with the following:

Acc = R2 = 1 −
∑

(ŷi − yi)2∑
(yi − E(yi))2

= 1 − σ2
ε + μ2

ε

σ2
y

, (9)

where
∑

(ŷi − yi)2 is the residual sum of squares,
∑

(yi − E(yi))2 is the total
sum of squares, σ2

ε and μ2
ε are respectively, the standard deviation and mean of

the error term, and σ2
y is the standard deviation of the target signal y.

Intuitively, comparing the quality of the predictors can be based on the mean
and variance of the prediction error ε. Ideally the error has to be centered around
zero (unbiased predictor) with the smallest possible variance.

To define an intrusion detection system based on the predictor we need to
define an acceptable deviation of the prediction that can be tolerated. Beyond
this acceptable deviation, the received signal can be considered way off compared
to the prediction and an alarm should be raised. This acceptable deviation or
detection threshold tp for the predictor defines the false positives statistically
generated by the predictor (red bars in Fig. 6). More formally we can define the
false prediction, as follows:
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FPtp(y, ŷ) =
{

1 if |y − ŷ| ≥ tp,
0 if |y − ŷ| < tp.

(10)

Tweaking this parameter tp helps increase/decrease the false positives probabil-
ity of the intrusion detection rule that will be defined based on this predictor.
The new accuracy measure with respect to tp becomes Acctp = P (|ε| < tp)
(Fig. 5).

xu P (starget|xu, Dtrain,Mθ)

ML-Algo
Predictor

S1 ∼
S2 ∼
S3 ∼

Sd ∼

Spredicted
target ∼

Starget ∼

Attacker

CMP

Alarm (0/1)

Fig. 5. Prediction principle Fig. 6. Gaussian shaped prediction
error (Color figure online)

Classification Metrics for Categorical Signals: The default accuracy metrics used
in machine learning classification tasks is the correct classification ratio:

Acc =
# correct predictions

# use-cases
(11)

Unlike regression, for classification it is straightforward to define a false predic-
tion which in this case is simply a mis-classification. More formally we can define
the mis-classification function as the following:

MC(s, p) =
{

1 if class(s) �= class(p),
0 if class(s) = class(p). (12)

4.2 Predicting a Real-Valued Signal: Speed

For regression problems, we chose to validate the approach we described in pre-
vious sections on a signal that is important from a safety standpoint. The speed
information is sent by the Electronic Stability Program over the CAN bus for
the other ECUs to be used in other functions. Besides being displayed for user-
information, it is used to compute the effort to be applied on brakes when emer-
gency brakes are activated, to decide when to activate airbags in case of an
accident, also to decide if the car doors should be open or closed, and whether
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or not to accept diagnostics commands and a lot of other functions. In the per-
formed experiments, the goal is to compare between different machine learning
algorithms, as each algorithm has a different way of capturing dependencies
between input features and the target signal. We used a data set of 106 input
vectors from each drive test. The data set was split into a training set and a
test set of 0.7 and 0.3 size ratio respectively. All experiments are done with the
scikit-learn library [19].

In the first experiment, we train and evaluate detection rules for each driver
separately. We used four types of machine learning algorithms: k-nearest neigh-
bors (KNN), Decision Tree, neural network with logistic perceptron and neural
network with rectified linear unit (Relu) perceptron. For each type of machine
learning algorithms, we used different tuning parameters to progressively give
them the ability to capture more complex dependencies, but also that increase
the complexity of the learning algorithm. For instance, this consists in increasing
the depth of a decision tree or in increasing the number of neurons and layers
for neural networks. Table 2 reports evaluation metrics of the tested algorithms.

First, we note that the results of KNN is merely provided as a baseline. In
fact using KNN is advantageous as it gives a very precise local approximation
for dense and uniformly distributed training set. It is nevertheless not useful in
the context of embedded systems as it needs all the training data in memory
in order to make a prediction. Second, each algorithm performs approximately
similarly on the three drivers. Third, for a given algorithm, we note that as
we increase the complexity (tuning parameters) of the learning algorithm, the
accuracy improves. The rule becomes progressively able to capture more depen-
dencies. As a result, it becomes necessary to take into consideration the added
complexity compared to the gain in accuracy. For the decision tree algorithm,
changing the tree depth from 20 to 40 does not improve significantly the accuracy.
Similarly increasing the number of neurons in the Logistic-Neural-Network up to
80 neurons, and increasing the number of layers in the Relu-Neural-Network
up to 10 layers does not have a significant effect on the accuracy for all three
drivers. We conclude that as the complexity of the algorithm increases, its abil-
ity of capturing more dependencies also increases, but reaches a a certain limit
beyond which it is no longer advantageous to increase the complexity. Overall,
and for all three drivers, we can establish that the best results were reported for
the decision tree algorithm tuned with depth parameter equals to 40.

4.3 Predicting a Categorical Signal: Brake Lights Command

For classification problem, we choose to validation the approach on the brake-
lights-command categorical signals. In order for the accuracy metric to make
sense, test data should be balanced, i.e., the number of test vectors should be
roughly the same for each class. Results are reported in Table 3.
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Table 2. Prediction accuracy of detection rules for tp = ±5 km/h trained and tested
with data captures from three different drive tests

ML-Algorithm Tuning Driver 1 Driver 2 Driver 3

Acc (%) Acctp Acc (%) Acctp Acc (%) Acctp

KNN regression k = 1 99.97 99.66 99.97 99.77 99.66 99.22

KNN regression k = 2 99.97 99.78 99.97 99.82 99.71 99.40

KNN regression k = 3 99.97 99.76 99.97 99.78 99.71 99.40

Linear Regression Null 79.88 23.28 83.47 22.61 74.42 59.89

Decision Tree Depth = 10 99.71 98.19 99.67 98.39 98.58 96.17

Decision Tree Depth = 20 99.97 99.89 99.97 99.93 99.67 99.29

Decision Tree Depth = 40 99.97 99.92 99.97 99.96 99.77 99.59

Neural Net (Logistic) 1 Layer, 30 neurons 98.97 94.74 98.22 88.52 75.67 84.94

Neural Net (Logistic) 1 Layer, 35 neurons 98.96 94.90 98.35 88.95 80.38 83.02

Neural Net (Logistic) 1 Layer, 40 neurons 99.01 94.76 98.62 88.66 82.10 84.97

Neural Net (Logistic) 1 Layer, 80 neurons 99.15 94.74 99.07 92.58 97.54 94.20

Neural Net (Relu) 1 Layer, 10 neurons 99.31 92.82 99.11 87.91 97.26 92.52

Neural Net (Relu) 1 Layer, 20 neurons 99.25 92.44 99.35 93.58 97.32 92.55

Neural Net (Relu) 1 Layer, 40 neurons 99.36 93.75 99.29 92.42 97.61 93.65

Neural Net (Relu) 5 Layer, 10 neurons 99.53 95.19 99.46 94.52 97.67 94.11

Neural Net (Relu) 10 Layers, 10 neurons 99.55 95.36 99.55 95.37 98.37 95.90

A similar test procedure was also used for the brake-lights-command sig-
nal. We notice that there are small differences in the accuracy for the same
rule when comparing between different drivers. In fact, practically all the tested
rules perform better on the first and second driver than on the third driver. An
explanation of this result might be that the third drive test contained singular
use-cases that did not appear frequently enough, thus the rules did not train
well enough in order to recognize them. An easy solution to overcome this lim-
itation is to collect more data for these specific use-cases. We also notice that
the decision tree algorithm tuned with depth parameter equals to 40, reported
the best performance for all three drivers.

4.4 Unification of Detection Rule

In the previous section, we reported results on the accuracy of the predictors
trained and evaluated for each driver separately. The resulting detection rules
could be influenced by the driving behaviour of the driver. In this section we
investigate the possibility of building one single detection rule that can accommo-
date all three drivers. According to the previous results, the Decision Tree algo-
rithm outperforms the rest of the algorithms for both predicted signals. Thus, we
use Decision Tree algorithm to build the detection rules in this section. In order
to train the algorithm we combine the data sets collected during the three drive
tests and we split the resulting data set into 0.7 and 0.3 ratio training set and
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Table 3. Prediction accuracy of detection rules for the brake-lights-command signal

ML-Algorithm Tuning Driver 1
Acc (%)

Driver 2
Acc (%)

Driver 3
Acc (%)

KNN classification k = 1 98.96 98.45 97.27

KNN classification k = 2 98.70 98.11 96.14

KNN classification k = 3 98.89 98.34 97.22

Logistic Regression Null 93.68 93.01 90.62

Decision Tree Depth = 10 96.72 95.80 94.65

Decision Tree Depth = 20 99.10 98.63 97.12

Decision Tree Depth = 40 99.36 99.00 97.77

Neural Net (Logistic) 1 Layer, 30 neurons 95.86 94.23 94.56

Neural Net (Logistic) 1 Layer, 35 neurons 95.82 94.11 94.48

Neural Net (Logistic) 1 Layer, 40 neurons 96.01 93.88 94.57

Neural Net (Logistic) 1 Layer, 80 neurons 95.97 94.15 94.55

Neural Net (Logistic) 5 Layer, 30 neurons 95.22 93.43 94.80

Neural Net (Relu) 1 Layer, 10 neurons 96.25 94.59 94.23

Neural Net (Relu) 1 Layer, 20 neurons 96.56 95.26 94.33

Neural Net (Relu) 1 Layer, 40 neurons 96.70 95.38 94.48

Neural Net (Relu) 5 Layer, 10 neurons 96.70 95.49 94.49

Neural Net (Relu) 10 Layers, 10 neurons 96.72 95.67 94.70

test sets. We report results of the accuracy on the test set as well as on the three
data sets separately for the speed signal in Table 4 and for brake-lights-command
in Table 5. Results show that, for both signals, the resulting detection rules have
a high accuracy level on the combined data set as well as on data from each
individual driver. This shows that it is possible to build a single detection rule
that can accommodate the three drivers.

Table 4. Prediction accuracy of the unified detection rules for the speed

ML-Algorithm Tuning All Driver 1 Driver 2 Driver 3

Acc (%) Acctp Acc (%) Acctp Acc (%) Acctp Acc (%) Acctp

Decision Tree Depth=40 99.95 99.66 99.97 99.77 99.98 99.77 99.76 99.43

Table 5. Prediction accuracy of the unified detection rules for the brake-lights-
command

ML-Algorithm Tuning All
Acc (%)

Driver 1
Acc (%)

Driver 2
Acc (%)

Driver 3
Acc (%)

Decision Tree Depth = 40 98.16 99.37 98.16 97.97
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4.5 Evaluation Against Attacks

In order to evaluate the effectiveness of the detection rule, we conduct a test
campaign against simulated attacks. Since we claim that our model can detect
attacker that has full control over one of the ECUs (Fig. 2b), the simulated
attacks consist in replacing the data content of the messages with an attacked
content. Thus the attacker is showcasing a Man-in-the-middle attack between the
signal generator (sensor) and the receiver ECU on which we install the intrusion
detection system.

Attacks Against Real-Valued Signal: For the speed signal monitoring we perform
three types of attacks:

– Random speed injection: in this attack, the attacker substitutes the real sensor
value with a random value.

– Speed offset injection: in this attack, the attacker adds to the real speed sensor
value an offset value.

– Speed Denial of service (signal drop): in this attack, the attacker interrupts
the sending of the frame causing the speed signal to freeze at the last sent
value.
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Fig. 7. Alerts raised by the decision tree (depth = 40) detection rule tested on three
different attacks on the speed signal. On top is the ground truth and attacked signals:
the blue signal represents the ground truth sensor value, the red signal is the attack
signal. On the bottom is the alerts raised by the detection rule when receiving the
attack signal. (Color figure online)

Figure 7 shows the attack use-cases on the speed signal. Note that the detec-
tion rule is set to raise an Alert as long as the received speed value (injected
by the attacker) is outside the acceptance interval of ±5 km/h of the predicted
speed value. Thus we consider that an attack is happening if the injected speed
signal is outside of this acceptance interval. We can see from the Alerts raised
by the detection rule that:
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– For the random speed injection attack: as long as the injected speed value
is outside the acceptance window, alerts are raised. The alert is not raised
when the injected speed value is close to the ground truth value. We obtained
0.13% of false negatives when performing this attack.

– For the speed offset attack, we can see that, the alert is raised as soon as the
attack started. In fact, since the speed offset of the attack is set to +40 km/h,
the received signal is always outside the acceptance window. The detection
in this case is perfect and we obtained 5.810−5% of false negatives.

– For the Denial of service attack, the same reasoning applies. The injected
speed is frozen at around 20 km/h, which means that most of the time the
alarm is raised as the received speed is outside the acceptance window. But
as soon as the ground truth speed value approaches the injected value, the
alarm turns off. We obtained 0.19% of false negatives on this attack.

Attacks Against Categorical Signal: For the brake-lights-command signal moni-
toring we perform three types of test:

– Random command injection: in this the attack, the attacker substitutes the
real command with a (0/1) random command.

– Inverse command injection: in this attack, the attacker inverts to the real
command.

– Denial of service (force to 0): in this attack, the attacker always sends the 0
command value.
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Fig. 8. Alerts raised by the decision tree (depth = 40) detection rule tested on three
different attacks on the brake-lights-command signal. On top is the ground truth com-
mand, in the middle is the attack command and on the bottom is the Alerts raised by
the detection rule when receiving the attack signal.

Figure 8 shows the attack use-cases on the brake-lights-command signal. Note
that the detection rule is set to raise an Alert as long as the received command
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value (injected by the attacker) differs from the predicted command. Thus we
consider that an attack is happening if the injected command signal is different
from the real brake-lights-command signal. We can see from the Alerts raised by
the detection rule that:

– For the random command injection: as long as the injected command differs
from the ground truth command, alerts are raised. The alert is not raised
when the injected and ground truth commands are the same. We obtained a
false negative rate of 0.98%.

– For the Inverse command attack, we can see that, the alert is raised as soon as
the attack started. In fact, since the injected command is always the opposite
of the ground truth command, the predicted signal is always different from
the received signal. Thus an attack is detected from the start, and we obtained
a false negative rate of 1.67%.

– For the Denial of service attack, the injected command is set to 0. The ground
truth brake-lights-command have occurrences of about 70% and 30% for 0 and
1 respectively. Thus, we consider that there is an attack only 30% of the time.
Similarly, the alerts were raised when the injected command differs from the
ground truth command. We obtained a false negative rate of 0.4%.

5 Conclusion

In this article we introduced a novel in-vehicle intrusion detection system capable
of detecting an attacker with full control over an ECU. This intrusion detection
system is based on detection rules built with supervised machine learning tech-
niques. The rules learn nominal behavior of the system and make predictions for
individual signal value. Alarms are raised when the predicted signal value is not
similar to the received value. We showed first the effectiveness of the detection
rules for separate drivers, then for a small set of drivers. We also showed the
effectiveness of the detection rules against examples of attacks. The advantage
of the proposed method relatively to previous work is that it only needs col-
lected data to learn nominal behavior, and does not need examples of attacks in
order to recognize them. Plus, it gives the ability to target individual signals (for
instance most safety critical). Since the detection rules are actually signal pre-
dictors, theoretically the approach could be used for prevention as well. One may
consider the false positive rate of 1% not low enough given the high number of
frames used within the communication buses. For this purpose we can account
for successive alerts as a remedy. In fact, in order to effectively influence the
behavior of the car, the attacker needs to send successive attack frames. Thus,
we can consider that an isolated detection alert could be ignored, and focus on
successive alerts. This technique can tremendously reduce the number of false
positives.
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Abstract. Technology is shaping our lives in a multitude of ways. This
is fuelled by a technology infrastructure, both legacy and state of the
art, composed of a heterogeneous group of hardware, software, services,
and organisations. Such infrastructure faces a diverse range of challenges
to its operations that include security, privacy, resilience, and quality of
services. Among these, cybersecurity and privacy are taking the centre-
stage, especially since the General Data Protection Regulation (GDPR)
came into effect. Traditional security and privacy techniques are over-
stretched and adversarial actors have evolved to design exploitation tech-
niques that circumvent protection. With the ever-increasing complexity
of technology infrastructure, security and privacy-preservation specialists
have started to look for adaptable and flexible protection methods that
can evolve (potentially autonomously) as the adversarial actor changes
its techniques. For this, Artificial Intelligence (AI), Machine Learning
(ML), and Deep Learning (DL) were put forward as saviours. In this
paper, we look at the promises of AI, ML, and DL stated in academic
and industrial literature and evaluate how realistic they are. We also put
forward potential challenges a DL based security and privacy protection
system has to overcome. Finally, we conclude the paper with a discus-
sion on what steps the DL and the security and privacy-preservation
community have to take to ensure that DL is not just going to be hype,
but an opportunity to build a secure, reliable, and trusted technology
infrastructure on which we can rely on for so much in our lives.

Keywords: Security · Privacy · Machine Learning · Deep Learning ·
Application

1 Introduction

Computing technology is an integral part of our lives and has many facets rang-
ing from supercomputing (used in weather prediction, cutting-edge research, and
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business automation) to embedded devices (like smartphones, electronic devices
in a home, and intelligent transport systems). Among many, security and pri-
vacy are considered to be two distinct and unique challenges. In the security
and privacy domain, any protection system has to match a constantly evolving
adversarial actor. According to the Symantec cybercrime report [1], the overall
number of vulnerabilities has increased by 13% in 2018. Similarly, according to
Cybersecurity Ventures [2], zero-day exploits seen in the wild will grow from
one per week (in 2015) to one per day by 2021. It is practically impossible for a
human to keep pace with the sheer number of cybersecurity events (and related
activities) on a daily basis on top of an already daunting threat landscape [3].

In this paper, and as a matter of fact in any context, security and privacy are
relative terms. It is not discussed as an absolute state, but rather as a state with
potential and/or accepted risks. The global cost of data breaches has increased
by 6.4% [4] and has the potential to severely damage an organisation’s bottom-
line, even without taking the potential penalties imposed by the General Data
Protection Regulation (GDPR) into account [5]. As per the GDPR, an organisa-
tion can be fined up to e10 million or 2% of the firm’s global turnover for a small
offence (whichever is greater). For a serious offence, an organisation can be fined
up to e20 million or 4% of a firm’s global turnover (whichever is greater) [5].

Furthermore, there is a crisis of skilled cybersecurity practitioners. According
to Ciccone, the cybersecurity job market will grow by approximately 6 million
USD globally by 2019 – with potential shortages of trained professionals up to
25% [6]. Automation of decisions and actions based on network and system
generated alerts has the potential to help overcome the challenges related to
security and privacy – both in a technological and a business-operations (e.g.
labour shortages) dimension.

Artificial Intelligence (AI) is seen as a potential solution towards the cyber-
security automation challenge in some academic and industrial circles. Machine
Learning (ML) has been successfully deployed in a number of domains including
but not limited to: image classification [7], object detection and recognition [8],
language translation, and voice synthesis [9]. In many cases, Deep Learning (DL),
a type of Machine Learning (ML) method, does not require prior expert knowl-
edge for its learning (an obvious exception is Neuro-Fuzzy techniques). There-
fore, it generally needs less manually engineered feature extraction and specialist
knowledge [10]. DL can detect patterns in raw data by transforming it into higher
and more abstract level representations - a function that is very interesting for
cybersecurity zero-day vulnerability/exploit detection. Similarly, DL is used to
abstract malware’s behavioural features and anomalous activities and can then
be used to detect its existence in a system [11,12].

AI as a cybersecurity tool is expected to capture a large market and it is clear
that AI has the potential to impact the cybersecurity space [13]. Furthermore,
there is sufficient market interest in both commercial (financial incentives) and
academic research. In this paper, we discuss the challenges of deploying AI-based
techniques (ML/DL) to security domains as a general security tool and highlight
the difference between the theory and practice. The discussed challenges come
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from the technical development and exploration of DL methods in the context of
cybersecurity – showcasing the fact that DL techniques in themselves are not the
panacea but mearly a tool that requires a number of correct (and in some cases
trustworthy) features to be effective. It is understood that there is a potential to
mislead an ML/DL deployment as discussed in existing literature [14,15], which
is not the focus of this paper.

The robustness of DL is stated in [14] as inversely proportional to the poten-
tial of an attacker’s ability to find adversarial examples, which can impact
the accuracy of detection and classification of a threat. However, we argue
that robustness, no doubt an important feature, is not just dependent on the
attacker’s ability to find adversarial examples. It is also affected by the interde-
pendent relationship of input data, its accuracy and trustworthiness, its feature-
richness, how representative the data is of all possible case scenarios, and the
potential of adversarial samples. We will discuss these features in further detail
throughout the paper. Furthermore, we examine ML/DL not only from the
view of theoretical and feature/ability specific limitations but also from the
view of practical challenges related to implementation and deployment. For the
most part, existing papers focus on discussing a specific model’s success rate
and implementation/deployment challenges. They do not include discussions
on the general challenges related to ML/DL deployed as security and privacy
mechanisms.

1.1 Structure of the Paper

Section 2 elaborates on the existing academic work that has shown the promise
of ML/DL as an automation tool for security and privacy practices. In Sect. 3,
we dive into the technical discussion of DL and how automation based on it is
designed and developed. The discussion is derived from the author’s first impres-
sions and practical experience coming from a security background. Section 4
articulates the practical considerations that a security practitioner has to take
into account when working on DL deployment. Section 5 is a list of DL fea-
tures that would make the technology a useful security tool for cybersecurity
practitioners.

2 Security and Privacy by Deep Learning

In this section, we survey the types of security and privacy services and applica-
tions in which DL has been deployed successfully – as represented by academic
literature.

2.1 Deep Learning for Security and Privacy

The set of security and privacy services that are being explored in academic
literature to be the target deployment scenarios for DL are as follows:
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1. Malware Detection: Efficient pattern recognition in large datasets is what
ML/DL is purpose built for. A number of proposals are put forward in aca-
demic literature that identify malware with high accuracy [16,17]. In most
of these proposals, pattern recognition is based on a particular behaviour
(communication, syscall and resource usage/utilisation patterns, etc.). For
an adversarial entity, the objective is to hide or exhibit its behaviour within
the scope of genuine applications to avoid detection.

2. Anomaly Detection or Network Intrusion Detection: Both anomaly and net-
work intrusion detection by ML/DL rely on network traffic analysis to find
usage and communication patterns that represent an abnormal behaviour. It
is important to keep in mind that anomalous behaviour is not necessarily a
set of activities that are prohibited by system policies (security/privacy). It
is just an out-of-the-ordinary activity that can be genuine or malicious. For
example, user A has access to client records. Usually, user A only accesses one
record a day, but today user A accesses the entire list of clients. If the access
control policy only focused on access (may user A access client records?) and
not on frequency (how many client records can user A access?), accessing all
client records would be a permitted action and not suspicious. However, this
action might be anomalous. Such classification and detection of out-of-pattern
usages fits nicely within the current capabilities of ML/DL technology [18–20].

3. Distributed Denial of Service (DDoS) Detection: DDoS can be viewed as an
anomalous request to access a particular resource. Therefore, ML/DL can
efficiently identify out-of-pattern access requests based on the access patterns
to a particular resource (e.g. a website or an application) [21,22].

From the above list, we can ascertain that DL is not widely used for privacy-
preservation techniques. There is a potential for exposing data on user access
patterns based on the user connection graph, especially in the context of data
flow analysis. These domains might have unique patterns that can be useful for
an effective DL deployment but an academic literature search for applications
of DL in these fields did not yield substantial results. Below, we explain some of
the identified privacy related services that might be suitable for DL deployment
but limited work has been carried out in academic literature:

1. Data Flow Analysis: The flow of data between any two entities can reveal
data consumption in an organisation. For example, the flow of data between
the consumer database and marketing teams can represent potential value
to consumer profiling, targeted marketing, and campaign analysis. The data
flow and usage in a specific enterprise have a set pattern, even when only
looking at individual features such as ‘data flow’ and the actual ‘contents of
the data’. Therefore, ML/DL can be used to identify anomalies in the usage
of data based on its analysis, and the resulting anomalous data flow patterns
could be very useful for an Intrusion Detection System (IDS) or Intrusion
Detection Prevention (IDP) but not as a privacy preservation function.

2. Data Exposure Potential : Whether in an enterprise environment or in per-
sonal settings, individuals have a circle of other individuals with whom they
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communicate. A community map for each individual can be constructed based
on these communication patterns which can represent not only ‘with whom’
individuals share information but also ‘what information’ is being shared with
their community. For example, an individual shares one type of information
with only a subset of the individuals in his/her community. This is easily
classifiable and based on the patterns, ML/DL can predict whether infor-
mation accessible to an individual at a particular point in time has a high
probability of being shared with certain other individuals. This analysis can
be used to build a data exposure prediction which could be a useful tool for
privacy-preservation and assessment. Furthermore, in the event of an infor-
mation leakage, an analysis of the data flows and the probability of data
exposure can be incorporated into the forensic investigation to quickly find
any potential points (individuals) that could have leaked the information.
The potential of ML/DL has not been fully explored in the context of data
exposure in current academic literature. We believe that the application of
ML/DL for such analysis shows a lot of promise.

Most of the existing literature about privacy and DL is focused on how to
design DL methods in a manner that does not violate the users’ privacy [23–25].
Another application of DL in privacy is to build recommendation systems for
users. For example, Yu et al. [26] put forward a privacy setting recommendation
system (iPhoto) for photo sharing based on image analysis. Most dimensions
related to DL and privacy are beyond the scope of the this paper. The scope of
the paper is how DL itself can be used as a privacy-protection mechanism.

3 Deep Learning - A Deeper Look at Its Application

In this section, we explore the technical aspects of understanding and deploying
DL. The discussion revolves around the pre-requisites for DL deployment, the
tools that can be used, and DL optimisation. Readers are referred to consult
the survey by Fadlullah et al. [27] for an in-depth analysis of DL structures and
methodologies.

3.1 Representation Learning

DL uses representation learning algorithms to automatically identify complex
hidden structures in large datasets [10]. Relations between parameters can be
more or less hidden depending on the features present in the data. Represen-
tation learning works to solve this problem by transforming raw data into a
more useful representation for detection and classification predictors by high-
lighting the important dependencies [28]. The challenge is to generalise as much
as possible while also preserving most of the information in the original dataset.

DL implements the learning technique in the form of a model, a concatena-
tion of multiple, relatively simple layers that each perform a transformation on
the data [28]. The layers’ input is either raw data (input layer) or the previ-
ous layer’s learned representation of its input (hidden and output layers). This
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leads to automatically identified, hierarchical levels of abstraction, also called
feature extraction, with higher level features defined as a composition of lower-
level features [29,30]. During the training phase, the model adjusts the internal
parameters used to transform the data to achieve a more useful result [10].

3.2 Data Normalisation

DL models rely heavily on data as it is the basis of the pre-training and training
phases, which in turn underlie the specialisation of a model to a task.

DL does not need a perfectly curated dataset due to its learning scheme.
Semi-supervised techniques have been shown to alleviate problems, however, a
new training strategy and a better cost function could make training on incom-
plete and noisy data sets more efficient [31]. Whitening data is a known way of
speeding up training convergence, readers are referred to [32] for details on how
to transform the input data.

Ioffe and Szegedy [33] describe batch normalisation, where normalisation
is embedded in the model architecture as another method to reduce training-
times. It works towards fixing the distribution of the layer’s inputs and thereby
solves the problems introduced by internal covariate shift. Internal covariate shift
describes the fact that the layers’ input distribution continuously changes during
training due to the internal parameters updating [33]. The difficulty in changing
the dataset in any way is to preserve as much of the original information as
possible. This can be achieved by normalising the training examples relative to
the entire training data [33]. Other, less efficient ways of combating covariate shift
include lowering the training rate and careful parameter initialisation. Using DL
in combination with Big Data is a popular concept in the industry, however, there
are many challenges that need to be overcome. The three V’s model identifies
them as volume, variety, and velocity.

Chen and Lin [31] provides the authors’ thoughts on how to solve these prob-
lems. According to the authors, the large volume of Big Data (number of inputs,
number of represented classes and high dimensionality of the entries) cannot be
accommodated by a single machine due to its limited memory and computing
capacity. A distributed framework would be more suited to the task. DL has been
successfully utilised for the integration of heterogeneous data, e.g. [34] and [35].
Therefore, the authors believe that DL methods can be applied to Big Data’s
large variety of data structures with further optimisation work. They propose
online learning to combat the velocity (how quickly data is generated).

There are many large datasets ranging across a wide selection of categories
publicly available which can be used in training and testing networks. Examples
are the MNIST database1 of handwritten digits and the Google Audioset2, which
includes thousands of labelled audio clips. Kaggle3 is a platform that hosts ML
competitions and maintains public datasets.

1 http://yann.lecun.com/exdb/mnist.
2 https://research.google.com/audioset.
3 https://www.kaggle.com.

http://yann.lecun.com/exdb/mnist
https://research.google.com/audioset
https://www.kaggle.com
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3.3 Designing Deep Learning Models

There are different neural network architectures used in DL, each with their own
advantages and disadvantages. Convolutional networks are a type of feedforward
network that are designed to process multidimensional signals such as images
and video [36], whereas recurrent networks are adapted to work with sequence
data which makes them more difficult to train but applicable to natural language
processing (NLP) challenges [37]. Deep Belief Networks (DBNs) are made up of
several layers of restricted Boltzmann Machines (RBMs) and are useful for when
the training data set is made up of both labelled and unlabelled entries. They
often perform better than networks trained only with backpropagation [36].

The training distribution and structure can be an important factor in the
choice of model and learning method. Supervised learning methods require
labelled data and tend to have good results when large quantities of data are
available [29]. They adjust the model’s internal parameters based on the training
loss, calculated by comparing the predicted output to the expected output as
defined by the data entry’s label. When it comes to unsupervised learning, the
ultimate goal is to abstract the raw data in a way that identifies the important
factors of variation that apply to all classes. Bengio has had success applying a
transductive strategy by using linear models such as Principal Component Anal-
ysis (PCA), among others, as some of the network’s layers [30]. Semi-supervised
learning makes use of both labelled and unlabelled data. The RBMs that make
up a DBN are pre-trained with an unsupervised greedy layer-by-layer algorithm
and the whole model is then fine-tuned with labelled data and backpropaga-
tion. DBNs often perform better than networks trained solely with backpropa-
gation [36], as the combination of non-linear layers in a model can be sensitive
to the initialisation values. Pre-training, as used with DBNs, can mitigate this
sensitivity [29].

When it comes to optimising a model’s accuracy, tuning the hyperparameters
is an important step. They are values that directly influence the training of a
neural network by configuring a model’s complexity and the learning process [38],
both of which are critical to the model’s performance. However, finding the ideal
values for these parameters can be very difficult as fine-tuning is often based on
experience. According to Bengio, there are two common ways of optimising a
model’s performance through the choice of hyperparameters: manual trial and
error and a grid search. Both approaches run into problems when the number of
parameters is too large [30]. Readers are referred to [30] and [39] for a more effi-
cient optimisation based on random search and greedy exploration. The number
and type of parameters differ between models and learning algorithms. Some
of the most common include the learning rate, momentum, number of hidden
units, number of epochs and batch size.

Training large, distributed networks is slow, as the use of parallel resources
is very inefficient. Denil et al. introduce a way to reduce the number of free
parameters without dropping the accuracy, as many parameters can be predicted
and are, therefore, redundant [40].
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Over- and underfitting describe situations where a neural network has not
learned the ideal generalisation of the training data which leads to poor per-
formance when new data is introduced. This can also be described as the
bias/variance dilemma, a trade-off between high bias and high variance [41].
Common metrics such as training and test error are used to analyse the accu-
racy of a model can help identify over- and underfitting.

High variance means that a model fails to differentiate between the signal
(the general, underlying pattern) and the noise (dataset-specific randomness) of
a dataset. In other words, an overfit model has failed to sufficiently generalise
the features of its specific training distribution and therefore performs poorly on
previously unseen data, as it has no general knowledge it can apply. Overfitting
can occur with a complex model whose learning algorithm has a low bias and a
high variance. Cross validation is a proven method of preventing overfitting by
stopping training before the specification becomes to high [42]. The point in time
at which to stop training is identified by comparing the model’s accuracy on the
training data to its accuracy on the unseen testing data. Training is stopped if
the difference starts growing or is deemed too large, also called early stopping.
Reducing the number of parameters is another method of combating overfit-
ting [42]. Dropout layers have also been shown to be successful because they
prevent the co-adaption of a network’s hidden units [29]. They introduce unpre-
dictable noise into the data by dropping random parameters in each training
iteration.

Bias describes the difference between the model’s expected output and the
correct values. High bias occurs when the model is oversimplified and does not
have enough flexibility to capture the underlying relations of features present in
the data or when there are insufficient parameters. A model is said to be underfit
if it has a low variance but a high bias and this can be identified by a high error
on both the training and the test data. A possible solution to this problem is
changing the model’s structure and parameters so that it better fits the problem
to be solved.

Bias and variance are inversely related. The ideal model minimises the
expected total error of a learning algorithm, which is defined as the sum
of squared bias, variance and irreducible error. While bias and variance are
reducible, the irreducible error comes from modelling the problem itself.

3.4 Deploying Deep Learning Methods

There are many open-source tools and frameworks that support DL which can
vary greatly in overhead, running speed and number of pre-made DL compo-
nents. Following are short descriptions of a small selection of them.

TensorFlow4 is a Python-based library with automatic differentiation capa-
bilities that supports both ML and DL. The high-performance numerical com-
putations, modelled as data flow graphs, can be applied to other domains as
well. TensorFlow is used by companies such as Google, Uber, and AMD.

4 https://www.tensorflow.org.

https://www.tensorflow.org


Deep Learning Application in Security and Privacy 137

PyTorch5 is another such library which enables rapid research on ML net-
works. The focus lies on extensibility and low overhead, which is possible because
the core logic is written in C++. It also supports reverse mode automatic dif-
ferentiation, which is the most important type of differentiation for DL appli-
cations [43] and distributed training. In 2017, Uber AI Labs released Pyro6, a
deep probabilistic programming language (PPL) based on PyTorch.

Caffe7 is a C++ library that provides interfaces for Python and MAT-
LAB [44]. It is a clean and modifiable framework, due to the fact that the
model’s representation is separate from the model’s implementation [45]. It is
very fast in training convolutional networks and allows for seamless switching
between devices (CPU and GPU).

MATLAB8 can be used for DL among other things and allows users to build
and analyse models, even with little expert knowledge in DL. It provides access
to models such as GoogLeNet and AlexNet and is compatible with models from
Caffe and TensorFlow-Keras. MATLAB also supports collaboration with the
PyTorch and MXNet frameworks.

MXNet9 is a very versatile DL framework which supports imperative and
symbolic programming as well as multiple languages, such as C++, Python,
R, Scala, MATLAB and JavaScript. Its running speed is similar to Caffe and
significantly faster than TensorFlow. It is used by both AWS and Azure, among
others [44].

4 Practical Considerations of Deep Learning Deployment

In this section, we discuss the challenges related to deploying DL as part of
the cyber security and privacy-preservation mechanism. We discuss three major
issues related to the DL, which is in no way an exhaustive list. However, the
problems listed in this section have a significant impact on current DL imple-
mentations.

4.1 Training Data Set

Any DL technique requires training to achieve specialisation for a task, therefore
the training data set and its structure are very important. There are two crucial
elements about the training data set: (a) feature-richness and (b) trustworthiness.

Feature-richness means that the training data should include an extensive col-
lection of information so that the DL model can identify as many features as pos-
sible, which will help it differentiate between genuine and malicious behaviours
accurately once it is deployed. Features have to be as extensive as possible; For
example, data related to an activity should cover as much information about that
5 https://pytorch.org.
6 http://pyro.ai.
7 http://caffe.berkeleyvision.org.
8 https://uk.mathworks.com.
9 https://mxnet.apache.org.

https://pytorch.org
http://pyro.ai
http://caffe.berkeleyvision.org
https://uk.mathworks.com
https://mxnet.apache.org
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activity as possible so a malicious entity has as very little room to manoeuvre
and trick the deployed DL system. Furthermore, the training data should include
a diverse set of behaviours. If a training data set is representative of a behaviour
set, the algorithm has a better chance of accurately classifying features in it. If
the behaviour set is not comprehensive, any behaviour that is not part of the
set might be miscategorised because the DL model could fail to differentiate
between a genuine and malicious behaviour correctly. This failure is due to the
fact that DL builds its knowledge base of genuine and malicious behaviour from
the training dataset during the training phase. One of many learning techniques
is re-enforced learning. Many learning techniques can open up a potential avenue
for an adversary to modify the behaviour classification of an ML/DL system.

The second crucial element is the data’s trustworthiness. As one of the most
important elements of DL, data should be sourced from a trusted environment
and this is also true for malicious activities captured (and tagged) for the training
data set. The challenge is to capture malicious activities in a trusted manner from
a real environment or a lab simulation that accurately depict how an attacker
could behave. As a note, training is carried out on a data set that represents
‘past’ attacks (known attack patterns) and will not necessarily be representative
of ‘future’ attacks (unknown vulnerability and attack patterns). The challenges
related to new and unknown attacks are further discussed in Sect. 5.

4.2 Adversarial Samples

There is extensive work in academic literature that discusses the impact and lim-
itation of ML/DL against adversarial samples [46]. From a deployment point of
view, security and privacy practitioners have to keep in mind that a deployed DL
system can be susceptible to adversarial samples. This means that an attacker
could influence the DL model’s training to learn malicious activities as genuine.
By doing so, attackers are enabled to accomplish their goal without DL detect-
ing and flagging them. The challenge related to adversarial samples is crucial, as
organisations deploying DL based security and privacy mechanism would prefer
for them to evolve over time, thereby accommodating the increasing sophistica-
tion in the threat landscape. However, allowing the evolution of a DL model after
initial training opens it up to adversarial samples. On the other hand, a DL tech-
nique restricted to the initial training is not flexible and extensible, two of the
important functions DL needs to cope with the challenges of cybersecurity and
privacy. A potential middle ground could be to select a DL technique that is the
least susceptible and designed to withstand adversarial samples. Unfortunately,
even with such methodologies, the likelihood of adversarial samples cannot be
completely removed. Therefore, adversarial samples are a threat vector that will
see more sophistication in the future as more and more organisations deploy
ML/DL based cybersecurity and privacy-preservation mechanisms.
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4.3 General Data Protection Regulation (GDPR)

Organisations dealing with EU citizens’ data have to comply with GDPR regu-
lations. GDPR gives a number of rights to consumers, among which are the two
that we are going to discuss in this section: Right-to-Know (RtK) and Right-to-
Rectification (RtR).

When it comes to processing user data, the Right-to-Know (RtK, Article
15.1.h) states that data subjects have the right to know about the “the exis-
tence of automated decision-making, including profiling, referred to in Article
22(1) and (4) and, at least in those cases, meaningful information about the
logic involved, as well as the significance and the envisaged consequences of
such processing for the data subject” [5]. This article requires the availability
of meaningful information about the processing method used to process users’
data. As discussed before, DL is chaotic in many instances and the steps taken to
reach a particular decision might have limited traceability or support for reverse-
engineering. As an example, a user is in his or her rights to request information
on why they received a certain result from an organisation. The organisation
then has to explain how the user’s data was processed by the company’s AI to
generate that particular result. GDPR also holds firms accountable for bias and
discrimination in their automated decisions. The challenge of explaining how DL
has reached a specific decision becomes paramount – an aspect of DL that has
not been extensively investigated. To what extent DL’s choice can be explained
and whether that is an acceptable and, more importantly, meaningful explana-
tion to the regulatory-authorities and consumer needs to be further researched.

The Right-to-Rectification (RtR, Article 16) states that “[t]he data subject
shall have the right to obtain from the controller without undue delay the rectifi-
cation of inaccurate personal data concerning him or her” [5]. If a user exercises
RtR, they request changes to their personal data stored in the system. How
these change in the data will impact previous processing and leaning, which are
now based on incorrect data, is still a big question. The challenge is to make
DL rectify its input data selectively post-processing in a manner that does not
require a complete retraining.

On a side note, depending on how DL is deployed, the Right-to-Forget
(RtF, GDPR Article 17) might have an impact if a sufficient number of con-
sumers/users request their data to be deleted. At that point, the knowledge set
reflecting the behaviour of an organisation’s consumers/users will not be accu-
rate anymore. How this impacts DL’s subsequent decisions is still unclear and
requires further investigation.

As a cybersecurity and privacy practitioner, a clear view of the needs and
visions for a DL deployment are necessary. There are plenty of unanswered ques-
tions related to DL in terms of research (Sect. 5), operation, and legislation
(GDPR). It is safe to say that this technology has the potential to be beneficial
by improving security and privacy-preservation. However, the pertinent question
is whether it is ready and mature enough to be deployed extensively as a security
and privacy mechanism. The answer to this is complex and depends on multiple
factors, including:
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1. Organisational requirements and the prioritised security objectives.
2. How the organisation envisions using ML/DL, keeping in mind that ML/DL

are not silver bullets.
3. Understanding the limitations of ML/DL and complimenting these techniques

with traditional security and privacy measures.
4. Accepting that ML/DL are in the early stage of development and might

go through many developments and improvements in the next few years,
therefore deployed systems will have to keep up with rapid change (flexibility,
extensibility, and scalability).

5 Research Challenges for Deep Learning

In this section, we put forward list of relevant topics and questions for ML/DL
research from the perspective of a cybersecurity practitioner.

1. Policy change impact analysis: In an enterprise environment, policies change
regularly, and can be related to the security and privacy aspects of the enter-
prise. The impact assessment of such policies on the enterprise environment
is based on human experts’ knowledge. If the enterprise has deployed ML/DL
as a security and privacy measure, policy changes need to be reflected in the
ML/DL method’s learning and execution. To the authors’ knowledge, there is
no evaluation of how dynamic policies will impact currently deployed ML/DL
implementations. Therefore, predictive impact analysis of policy changes on
DL based security and privacy mechanism would be a important step forward.

2. Defining a new policy : An organisation’s security and privacy objectives are
specified by policies and rule-sets. In existing DL, these policies and rule-sets
are represented in the labelling of individual records in the training data set.
If the policy changes after the deployment of a DL based system, the available
option is to generate a new training dataset based on the new policies and
retraining the DL model. Generating the training data set and retraining can
be considered costs in terms of performance and time. The challenge is to
cut down this cost and make policy changes as similar to traditional security
mechanisms like firewall, access control and IDS, to name a few.

3. Preparing DL to cope with the ‘future’ : The cybersecurity and privacy land-
scape is constantly evolving. To cope with this change, DL has to be flexible
and have the ability to learn new patterns even after deployment. Further-
more, prior knowledge already learned by a particular instance of DL is valu-
able, and the ability to transfer it to other instances (for example among
multiple organisations) would vastly improve the readiness of the collective
cybersecurity field. A potential path forward could be to develop DL tech-
niques with lifelong learning capabilities.

4. Isolated or Collaborative Learning : Isolated learning has its pros and cons.
The positive side is that as an organisation, the training set will include
behaviours specific to your organisation. However, this also means that unless
you experience a cyber attack, you will not be able to profile it. With collab-
orative learning, if a single instance of the collaboration experiences a cyber
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attack, its profiling can then be shared with the other instances in the group.
This has the potential to rapidly improve security countermeasures against
new and previously unknown attacks. Collaborative learning introduces some
additional challenges, such as:

– Knowledge based collaboration: In collaborative learning, should algo-
rithms share their learned knowledge or simply share the raw records
of the out-of-profile observations? It also requires a method for sharing
prior knowledge between multiple DL instances.

– Raw records based collaboration: Sharing raw records seems simple, as each
instance can run its own learning process over it. However, this could leak
security sensitive data and violate privacy requirements. For raw records
based collaboration, efficient and strong anonymisation techniques have
to be developed. This anonymisation technique has to protect privacy and
security sensitive data but at the same retain sufficient features so that
it is still useful for training other DL instances.

5. Making deep learning forget : There are a number of situations where it is
preferable to make the DL de-profile specific records from its knowledge base.
For example, (a) the discovery of malicious data in the training data set that is
now required to be re-labelled as malicious, (b) removing adversarial samples
from the DL knowledge and (c) if a consumer/user exercises RtR (Right-to-
Rectification) or RtF (Right-to-Forget) under GDPR. In such situations, DL
techniques need to ‘forget’ about certain records. How to achieve this seems to
be an open question that will be crucial in a future with increased awareness
about privacy in the general public and adversaries successfully training DL
implementations with adversarial samples.

6 Conclusion

In this paper, we briefly explore the potential, practicality, implications, and
shortcomings of DL mechanisms in fields such as security and privacy preser-
vation mechanisms. There are numerous proposals in academic literature that
advocate the success of DL as an effective mechanism for cybersecurity. We do
not evaluate their claims in this paper. We view DL as a mature domain and
evaluate how a security practitioner would go about deploying it, what chal-
lenges and issues they would have to overcome, and what options are available
to resolve some of these issues. We are of the opinion that DL has come a long
way and can potentially be applied to security and privacy functions with a
defined set of static behaviours. In such situations, DL can efficiently detect any
behavioural violations with high accuracy. However, it is too early to consider
it an extensively useable security measure in its own right. DL has a long way
to go before it is mature enough to be deployed as a standalone Unified Threat
Management (UTM) environment. In this paper, we have discussed the aspects
an organisation should keep in mind when deploying a DL based solution. In
addition, we have also included a list of features that would be useful to security
practitioners if they can be provided by the DL base mechanisms.
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In conclusion, DL has a lot of promise and with the right features, it could
become an impactful tool in the security and privacy arsenal. With the increase of
sophistication and complexity of future technology in the current infrastructure,
AI-based security and privacy countermeasures (ML/DL) might be the next
logical step. For this reason, cybersecurity researchers have to become active
participants in the ML/DL evolution, rather then just deploying them to security
and privacy problems as off-the-shelf kits.
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Abstract. User cybersecurity behaviour is a concern for organisations
as well as home users. This is because cyber-criminals have made a shift
from targeting security systems to targeting the users of the systems. As
a result, an increasing number of studies have been conducted in efforts
to understand user cybersecurity behaviour. The advantage in under-
standing user behaviour is that researchers and security practitioners can
apply this knowledge and begin to change behaviour to benefit cybersecu-
rity. Different studies have categorised similar cybersecurity behaviours,
however the naming conventions differ across studies. This brings out the
first contribution of the paper, unified terminology for the cybersecurity
behaviour. Secondly, most studies were conducted in an organisational
setting. User behaviour in other environments is yet to be identified and
categorised. The second contribution of this study is the identification
and categorisation of home user cybersecurity behaviour. The identifica-
tion and classification of more cybersecurity behaviour is aimed to have
a positive impact in the creation of strategic interventions to change and
maintain good cybersecurity behaviour.

Keywords: Cybersecurity behaviour · Classification · Taxonomy ·
Cybersecurity

1 Introduction

To decrease the number of cyber incidents, it is key that users, especially user
behaviours, are understood to understand how to change user behaviour [1–
3]. An initial step is the identification and classification of user cybersecurity
behaviour (CSB).

1.1 Cybersecurity Behaviour (CSB)

Human behaviour refers to an individual’s actions, reactions, mannerisms and
conduct within different environments [4]. CSB is therefore defined, by the cur-
rent research, as an individual’s actions, reactions, mannerisms, and general
conduct in the cyber domain. The goal of studying user CSB is to promote good
CSB while decreasing malicious or bad CSB.
c© IFIP International Federation for Information Processing 2019
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1.2 Cybersecurity Behaviour Context

Researchers [5,6] have noted that users act differently in different settings. But,
the categorisation of CSB has been focused mainly on behaviour in organisa-
tions. Numerous targets of cybersecurity attacks fall outside the context of the
organisation [7]. Therefore, a gap exists in literature, where other cybersecurity
contexts have been left out. The importance of including different contexts is
the ability to accurately categories CSB.

1.3 Cybersecurity Behaviour Taxonomy

To understand a system, it is necessary to understand the components that make
up that system. A taxonomy is a tool used to classify components in a domain.
Making use of a taxonomy allows for the structural organisation of concepts that
make up the system. CSB have been expressed in the form of taxonomies. More
recently, Bitton et al. presented a taxonomy for mobile cybersecurity awareness
[8]. The current study builds on previously published taxonomies in the classifi-
cation of users’ CSB.

The remainder of the paper is presented as follows. Section 2 presents a liter-
ature review and Sect. 3 presents the proposed conceptual taxonomy. The con-
clusion and future work is presented in Sect. 4.

2 Literature Review

The following section presents literature that focuses on user CSB in the work-
place as well as at home.

2.1 Cybersecurity Behaviour

Context is made up of the circumstances surrounding a behaviour. Context has
an influence on behaviour [10]. An example related to CSB is: social engineering
attacks may be more effective at certain times of the year, such as the festive
season. In this section, the CSB in the work and home context are discussed.

Cybersecurity Behaviour at Work. The CSB of employees is mostly gov-
erned by policies and regulations. Employees are held accountable for misconduct
or not adhering to the organisational rules [1,11,12]. Furthermore, ICT depart-
ments assist users in adhering to policy by sending reminders about software
updates, information on new threats, information best practices, and blocking
dangerous or inappropriate sites [9].

Blythe strived to understand CSB in an organisational setting [13]. In an
organisational setting, cybersecurity is usually evaluated as a function of com-
pliance [14,15]. In an organisation, bad CSB is seen as noncompliance to the
set policies. Blythe contended that behaviour is more entailed than this. The
study argued that the evaluation of compliance is limited in that it tests a small
scope of policies and procedures. Among other behavioural determinants, the
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behaviour is a function of interior and exterior influences. Interior influences
include self-motivation or drive, similar to intentions mentioned in [9], while
exterior influences are features such as the environment [13].

To categorise CSB in organisations, a six-element taxonomy was developed
by Stanton et al. The dependent variables used to group the behaviours were
(1) the amount of expertise required to carry out the behaviour, and (2) the
intention towards the organisation when carrying out the behaviour. The six
categories of the taxonomy where: intentional destruction, dangerous tinkering,
aware assurance, detrimental misuse, näıve mistakes, and basic hygiene [9].

Intentional destruction, detrimental misuse, dangerous tinkering, and näıve
mistakes are examples of bad CSB and aware assurance and basic hygiene are
examples of good CSB. To visualise the taxonomy, the categories of the taxonomy
were put on a two-dimensional plane. On the x-axis, the intention of the user
is plotted; intentions range from malicious to unintentional. On the y-axis, the
user expertise ranging from expert to novice are plotted (see Fig. 1).

Fig. 1. End user security behaviours [9]

Taking and expanding on the work by Stanton et al., Djajadikerta et al.
made use of the four classifications (Intentional Destruction, Dangerous Tinker-
ing, Detrimental Misuse and Näıve Mistakes) to further investigate bad infor-
mation security behaviour [16]. The four classifications were verified by placing
organisational CSB concerns into each group.

Guo observed the disparities in the conclusions of information systems
behaviour research. The different, often contradicting results were hypothesised
to be due to methodological issues or the ill definition of information system’s
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behaviour. The study realised the need for more clear definitions of informa-
tion systems behaviours. Through the review and synthesis of previous studies,
a conceptual framework was designed which incorporates four categorisations
of organisational behaviour: security assurance behaviour, security compliant
behaviour, security risk-taking behaviour, and security damaging behaviour [17].

Chu, Chau, and So developed a typo-logical theory for information secu-
rity deviant behaviour in an organisational setting [18]. The result of the study
categorised cybersecurity into four categories: Misuse of information systems
resources, Information security carelessness, System protection deviance and
Access control deviance.

In terms of CSB at work, Fig. 2 presents a graph with the cybersecurity
categories taken from the studies presented in Sect. 2. The categories are plotted
on the same graph that was used in the research by Stanton et al. [9].

Fig. 2. Cybersecurity behaviour in organisations [9,17,18].

The graph shows most of the categories identified require some level of cyber-
security expertise. This implies that users in organisations, generally, have the
expertise in cybersecurity. An inference can be made that CSB in organisations
is not hindered by the lack of cybersecurity expertise.

The next important observation is that a majority of the security behaviour
categories are not intended on malicious or benevolent behaviour. This neutral
attitude towards cybersecurity is a risk because users, then show no interest in
improving or applying their skills.

Currently, through the graph in Fig. 2, it is not clear what the intentional
difference between Security Risk taking behaviour and Security Compliance
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behaviour is. It is therefore a need that a clear distinction in intentions is derived.
This distinction must also be represented, though the graph.

Cybersecurity Behaviour at Home. Home users are individuals of different
ages that make use of computers or mobile devices that connect to the Internet.
In the home context, users are typically solely responsible for managing their
CSB [22,23]. It is assumed that cybersecurity knowledge, awareness and skills
are much lower for home users, as they are not exposed to training programs [19].
This assumption was later proven false by [20] where it was found that home
users do have cybersecurity knowledge and skills. The knowledge may be gained
from other environments such as work, but the behaviour at home is different
[11,21,22,24].

Lastly, there are home users that do follow cybersecurity principals at home.
Cybercitizens is a term found in the study by Catherine et al. Cybercitizens
describe home users that are proactive in being cybersecurity aware and apply-
ing cybersecurity skills in their environments [19]. The study focuses on the
intentions of cybercitizens and presents interventions to encourage more users
to become cybercitizens. The type of behaviours that a cybercitizen exhibits are
installing and updating antivirus software, be cautious of emails as well as email
attachments, and lastly choosing strong and easy to remember passwords [19].

3 Proposed Conceptual Cybersecurity Behaviour
Taxonomies

The proposed CSB taxonomy addresses the two points: (1) Ambiguity in cyber-
security intentions, and (2) Completeness in the introducing of context as an
independent variable when categorising CSB.

3.1 Updated Work Cybersecurity Behaviour Taxonomy

The current section proposes an updates CSB taxonomy for the work environ-
ment. The contribution in this section is the division of behaviour intentions into
four categories.

Figure 3 presents the CSBs at work with the derived intentions. This new
graph offers the advantage of clearly showing the intentions associated with the
categories of behaviours. Headings should be numbered. Lower level headings
remain unnumbered; they are formatted as run-in headings.

Intentions. Intentions are plans for performing a behaviour. The literature on
CSB intentions can be divided into intentional and unintentional CSB [25].

Intentional Cybersecurity Behaviour. Intentional CSB refers to instances
where the user purposefully wants to harm systems or disregard cybersecu-
rity principals. Opposite to this, users can purposefully uphold or/and promote
cybersecurity principals.

Intentional Bad (IB) Cybersecurity Behaviour. This category of users shows
dysfunctional CSB. The categorisation is adapted from research done by
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Fig. 3. Work CS behaviour with segmented intentions adapted from [9,17,18].

Stanton et al. were categories such as intentional destruction and detrimen-
tal misuse where used to describe users’ dysfunctional CSB [9,16]. Users that
show this type of harmful CSB are called cybercriminals, hackers, crackers and
script kiddies. Examples of behaviour include website defacement, spamming,
unauthorised system access, malware and malware distribution and vulnerabil-
ity exploitation.

Intentional Good (IG) Cybersecurity Behaviour. There exist instances where the
user purposefully upholds cybersecurity principles [9]. This category is adopted
from Stanton et al. where aware assurance and basic hygiene are collapsed into
intentional good CSB. An example of users performing intentional good CSB
are users that create good passwords to protect information belonging to them
or an organisation. Literature has developed terms such as good cybersecurity
hygiene and conscious care behaviour to describe this category of users [9,26].

Unintentional Cybersecurity Behaviour. Unintentional CSB refers to
instances where the user does not intend on disregarding nor upholding cyber-
security principals. In these instances, good or bad CSB is a by-product of other
actions or intentions.

Unintentional Bad (UB) Cybersecurity Behaviour. Behaviours categorised as
unintentional bad CSB are those where the user does not intend to cause mali-
cious harm or purposefully disregard cybersecurity principals. Ifinedo referred to
these behaviours as counterproductive computer security behaviours [27], while
Stanton et al. referred to it as dangerous tinkering and näıve mistakes [9] and
Chu et al. refers to it as information security deviant behaviour [18]. An example
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of unintentional bad CSB is a user that writes their password down or recycles
their password [28].

Unintentional Good (UG) Cybersecurity Behaviour. Behaviours categorised as
unintentional good CSB are behaviours where users preserve cybersecurity
because of other intentions or actions. The study by Virginia Tech found that
even though users complied with password change policies, the users still felt
that cybersecurity is an obstacle. In this case, the intention of the behaviour is
to comply, and it is not to practice good CSB [29]. Unintentional good CSB is
not ideal, because for a behaviour to be repeated the user must be intentional
in repeating as well as sustaining the behaviour.

3.2 Home Cybersecurity Behaviour Taxonomy

Categories captured in Fig. 3’s graph focus on CSB that occur at work. In the
interest of completeness, the next section of the study aims to categorise CSBs
of home users. To do so, different CSBs were extracted from literate. These
behaviours were plotted on a similar graph as used in Fig. 4. However, the y-axis
had to be adjusted. According to the literature presented, home users do have
cybersecurity knowledge and skills. In the home environment the application of
these knowledge and skills is more distinguishing of the behaviours as opposed
to having the knowledge and skills. Therefore, the y-axis is divided into None
or Limited Knowledge and Skills, Knowledge and Skills but No Implementation
and finally, Knowledge and Skills with Implementation.

Eight CSB categories were derived for the home user behaviour taxon-
omy: Hacking, Aggravative, Disrupting, Unconcerned, Cognitive Laziness, Con-
venience, Proactive and Knowledge Gaining. The categories are a result of plot-

Fig. 4. Home users’ cybersecurity behaviour categories
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ting 95 CSBs on a graph similar to Fig. 4. CSB plotted close together were then
grouped together to form the resulting graph in Fig. 4.

In Fig. 4 in the Knowledge and Skills with Implementation there are three
behaviour categories, namely Hacking, Aggravating and Proactive. Hacking and
Aggravating behaviours are intentional bad behaviours, while Proactive is inten-
tional good behaviour. Hacking are behaviours that seek out to cause harm to
other systems and people though technical expertise, while aggravate behaviours
are targeted at other people especially on social media sites.

In the Knowledge and Skills with no Implementation there are three
behaviour categories, namely Disrupting, Unconcerned and Knowledge Gain-
ing. Disrupting behaviours are intentional bad CSBs. The behaviours under this
category show neglecting of cybersecurity principals through the reckless actions
such as downloading torrents from peer-to-peer networks. The category Uncon-
cerned describes careless CSBs. However, the intention of these behaviours in
not to intentionally cause harm. Knowledge gaining CSB is intentionally good
behaviour. However, without applying the knowledge and skills these behaviours
have little use in maintaining cybersecurity.

In the No or Limited Knowledge row there are two behaviour categories,
namely Cognitive Laziness and Convenience. These terms were taken from
[30]. Cognitive Laziness is unintentional bad CSB. This category of behaviours
describes behaviour that is done mindlessly without consideration of any cyber-
security. Finally, the Convenience category describes unintentional good CSB.
These behaviours are done only if the cybersecurity related task is convenient.

4 Conclusion

The aim of the paper was to provide a clear representation and visualisation of
CSB. The study reviewed literature on CSB in the workplace. The literature was
consolidated and represented on one graph. Previous research had represented
user intentions of CSB on an ordinal scale ranging from malicious to benevolent.
The current study improved on this measurement by dividing intentions into
smaller units of measurement. The result was four categories to describe user
CSB intentions. The second half of the paper focused on home user CSB. Eight
categories of home user CSB were presented. The categories were obtained by
plotting home user CSB found in literature against knowledge and skill imple-
mentation and user intentions. The information in this study contributes to the
understanding of user CSB and can be used by researchers and practitioners of
cybersecurity. This research aids in specifying the question from “How to change
CSB?” to “How to change CSB of home users who exhibit Cognitive Laziness
behaviour”. Future work will need to conduct an experiment to verify the con-
clusions found in this study. Future work will also need to address the influences
of CSBs.
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Abstract. Trusted Execution Environments (TEEs) are rapidly emerg-
ing as a root-of-trust for protecting sensitive applications and data
using hardware-backed isolated worlds of execution. TEEs provide robust
assurances regarding critical algorithm execution, tamper-resistant cre-
dential storage, and platform integrity using remote attestation. How-
ever, the challenge of remotely managing credentials between TEEs
remains largely unaddressed in existing literature. In this work, we
present novel protocols using mutual attestation for supporting four
aspects of secure remote credential management with TEEs: backups,
updates, migration, and revocation. The proposed protocols are agnostic
to the underlying TEE implementation and subjected to formal verifica-
tion using Scyther, which found no attacks.

Keywords: Credential management · TEEs · Security protocols

1 Introduction

Trusted computing offers robust, on-device protection of security-critical data
and the ability to securely report evidence of platform integrity, which has cul-
minated in efforts such as the Trusted Platform Module (TPM). Until recently,
however, such technologies were relatively restricted: neither arbitrary applica-
tion execution nor secure input/output (I/O) are realisable with TPMs without
substantially increasing the hardware-software Trusted Computing Base (TCB),
say, through the use of virtual machines [11]. Trusted Execution Environments
(TEEs), discussed further in Sect. 2, have emerged as the forerunner for address-
ing these shortcomings, particularly for constrained devices [19]. Unlike TPMs,
TEEs provide hardware-enforced isolated execution of critical applications and
data on the same underlying hardware. TEEs aim to thwart sophisticated soft-
ware adversaries from a conventional Operating System (OS) irrespective of its
protection mode, e.g. Rings 0–3. Modern Intel and ARM chipsets offer Intel
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Software Guard eXtensions (SGX) and ARM TrustZone respectively for instan-
tiating a TEE from the CPU or System-on-Chip (SoC).

Despite widespread availability, managing TEE data credentials throughout
their life-cycle has received little attention by the community. Such credentials,
whether derived from a public-key certificate, password or another value, are
typically used to authenticate sensitive actions and transmitted data. Chal-
lenges arise, however, when credentials require migrating, revoking, updating
or backing-up in a secure and trusted manner with bi-directional assurances
between both end-points. Firstly, large numbers of TEEs must be administered,
thus limiting the feasibility of human intervention, potentially over a multitude
of communication mediums. Secondly, heterogeneous TEEs must be accommo-
dated: Intel SGX, for example, is confined to Intel CPUs on more powerful
devices, while ARM TrustZone is limited to ARM-based SoCs. Hence, for the
first time, we address four key challenges when managing heterogeneous TEE
credentials over its lifetime with bi-directional trust assurances for remote migra-
tion (Sect. 3), revocation (Sect. 4), backups (Sect. 5), and updates (Sect. 6). This
paper presents the following contributions:

– An examination of existing smart card and TPM work relating to each cre-
dential management challenge and their applicability to TEEs.

– A suite of proposed protocols for facilitating TEE credential management
with mutual attestation. The protocols are agnostic of the TEE and commu-
nication medium, and employ a Trusted Service Manager (TSM) in line with
the GlobalPlatform TEE specifications [10].

– The proposed protocols are subjected to formal symbolic verification using
Scyther, which found no attacks. We publicly release the verification specifi-
cations for further research1.

2 Trusted Execution Environments (TEEs)

GlobalPlatform defines a TEE as an isolated execution environment that “pro-
tects from general software attacks, defines rigid safeguards as to the data and
functions a program can access, and resists a set of defined threats” [9]. TEEs
aim to isolate applications from integrity and confidentiality attacks from the
untrusted OS, e.g. Android, or Rich Execution Environment (REE), by allocat-
ing distinct memory regions with accesses controlled by hardware. We summarise
the foremost commercial TEEs for Intel and ARM chipsets; the reader is referred
to [22] for a detailed survey of secure and trusted execution environments.

Intel Software Guard eXtensions (SGX) is an extension to the x86-64
instruction set that enables the creation of per-application ‘enclaves’. Enclaves
reside in isolated memory regions within RAM with accesses mediated by the
CPU, which is considered trusted [6]. Secure storage is provided via the sealing
abstraction, where data is encrypted to the untrusted world using a key derived
from a processor-specific Storage Root Key (SRK). Enclave- or author-specific

1 Available online at: https://cs.gl/extra/wistp18-scripts.zip.

https://cs.gl/extra/wistp18-scripts.zip
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keys can be derived; that is, respectively, binding data to only that enclave,
or from an ID string to preserve persistence between enclaves from the same
author. Remote attestation enables remote verification of enclaves and secret
provisioning using the Enhanced Privacy ID (EPID) scheme [4], which authen-
ticates enclave integrity measurements without revealing the CPU’s identity.

GlobalPlatform (GP) TEE with ARM TrustZone maintains two
worlds for all trusted and untrusted applications (see Fig. 1). A TEE kernel is
used for scheduling, memory management, cryptographic methods and other OS
functions, while user-mode TEE Trusted Applications (TAs) access OS functions
exposed by the GP TEE Internal API. The GP TEE Client API [9] defines the
interfaces for communicating with TAs from the REE. The predominant method
for instantiating the GP TEE is with ARM TrustZone, which enables two iso-
lated worlds to co-exist in hardware using two virtual cores for each world per
physical CPU core and an extra CPU bit (NS bit) for distinguishing REE/TEE
execution modes. TrustZone provides secure I/O with peripherals connected over
standard interfaces, e.g. SPI and GPIO, by routing interrupts to the TEE kernel
using the TrustZone Protection Controller (TZPC) for securing on-chip periph-
erals from the REE, and the Address Space Controller (TZASC) for memory-
mapped devices. Both TZASC and TZPC utilise the NS bit for access control.
The GP TEE implements secure storage using the sealing abstraction described
previously, or to TEE-controlled hardware, e.g. Secure Element (SE).

Fig. 1. GlobalPlatform TEE system architecture [22].

Credential Management. Security credentials are the evidence that a commu-
nicating party possesses for accessing privileged data and services. Credentials
are typically programmed initially into a TEE during the personalisation phase
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following the procurement of the SoC and TEE software, but prior to deploy-
ment. After this, a Trusted Service Manager (TSM) – incorporated into the
device manufacturer or outsourced – is responsible for maintaining the TEE, its
TAs and on-board credentials thereafter. We define TEE credentials as the set,
C, of key material, certificates and other authentication data issued by TSM
that is provisioned into a TA. TEE credentials may also comprise a key derived
from a password-based key derivation function using a password from an oper-
ator, or encapsulated by biometrics, e.g. iris and fingerprint, or a behavioural
model that maps device continuous data to authentication states [21].

2.1 Credential Management: Security and Functional Requirements

The GP Trusted Management Framework (TMF) does not stipulate particu-
lar secure channel protocols, but only that the TSM and TEE should mutually
authenticate over a channel that preserves the “integrity and the confidential-
ity of the exchanges,” and addresses replay attacks against a Dolev-Yao adver-
sary [10]. These basic requirements omit desirable features identified in existing
literature [2,12,20], such as assurances that the target TEE is authentic and inte-
gral. This is typically realised using Remote Attestation (RAtt) where, firstly,
system measurements are taken at boot-time or on-demand, which are collected
and signed by a trusted measurer under a device-specific key; RAtt protocols
subsequently transmit the measurements over a secure channel to a remote ver-
ifier, who evaluates the platform’s integrity based on these values.

In sensitive deployments, mutually authenticating both end-points is use-
ful during TEE-to-TEE communication; for example, between uploading back-
ups from a GP TEE to a cloud-based backup enclave using Intel SGX. Here,
RAtt protocols can be conducted independently for each end-point, or using a
mutual attestation protocol wherein both parties are attested in a single protocol
instance. We refer to such mutual attestation protocols, e.g. [20], as providing a
Secure and Trusted Channel Protocol (STCP) in this work. We now formalise
the baseline security and functional requirements from issues raised in related
work and those stipulated in the GlobalPlatform specifications:

(S1) Mutual key establishment : a shared secret key is established for communi-
cation between the two entities.

(S2) Forward secrecy : the compromise of a particular session key should not
affect past or subsequent protocol runs.

(S3) Trust assurance: the proposal shall allow third-parties to verify the target
platform’s integrity prior to credential transmission.

(S4) Mutual trust verification: both end-points shall successfully attest the state
of the other before permitting the establishment of a secure channel.

(S5) Mutual entity authentication: each communicating end-point shall authen-
ticate the other’s identity to counter masquerading attempts.

(S6) Denial of Service (DoS) resilience: resource allocation shall be minimised
at both end-points to prevent DoS conditions from arising.

(S7) Key freshness: the shared key shall be fresh to the session in order to
prevent replay attacks.
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(F1) Avoidance of additional trust hardware: the protocol shall avoid the need
for additional security hardware, e.g. TPMs and SEs, other than the TEE.

(F2) TEE agnosticism: the protocols shall remain agnostic of the underlying
TEE architecture to facilitate interoperability.

Setup Assumptions. A public-key infrastructure is assumed in which a Cer-
tificate Authority (CA) issues certificates to the TSM, TAs, and backup (BA),
revocation (RA) and maintenance (MA) authorities used for managing backups,
revoking credentials and physically maintaining devices respectively. The TEEs
themselves are assumed to be trusted and to possess certified, device-specific
attestation and command keys for signing quotes and requests to the TSM.
Quotes are a widely-used remote attestation abstraction for TPMs and TEEs,
comprising the TEE’s identity and the platform integrity measurements col-
lected by a TEE-resident trusted measurer. The resulting quote is signed using
the attestation key and transmitted to the remote verifying authority. The cre-
dentials are assumed to be securely stored within the TEE, usually performed by
encrypting them under a device-specific SRK, as well as secure means of random
number generation and key derivation.

3 Migration

TEE migration is the process of transferring and re-provisioning credential data
from TAA to TAB in distinct TEEs. Migration is crucial in preserving creden-
tials during a device replacement or relocation, where credentials can be remotely
transferred without incurring reinitialisation costs. Migrating credentials across
TEEs has already attracted some attention in related literature [3,16]. We sum-
marise these schemes and their contributions.

Arfaoui et al. [3] tackle the challenge of credential migration on GlobalPlat-
form TEEs. The authors introduce a trusted TEE Admin, which possesses a
Security Domain (SD) with a TA and key-pair on the source device, to mediate
and authenticate the authorisation and migration procedures. Two PKI-based
protocols are developed for performing the migration between the target TA
and the service provider’s TA. Both protocols are subjected to formal verifica-
tion using the AVISPA analysis tool. While the authors note the importance of
remote attestation to verify the target TEE, it is not presented or verified as part
of the protocol; it is also omitted during the credential transfer process between
the TEEs. Moreover, mutual trust assurances between the service provider and
TEE is not discussed.

Kostiainen et al. [16] tackle migration for TEE open credential platforms
where service providers can provision arbitrary credentials, say, for virtualised
access control cards. The authors propose encrypting and backing-up credentials
on a trusted server using a tokenised password known only to the user. The
credentials are migrated by re-entering the password, which is re-tokenised on the
receiver device, and transmitted and verified by the backup server that releases
the encrypted credentials. However, like [3], the proposal lacks trust assurances
between the TSM and both TEEs, nor is it subjected to formal analysis.
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3.1 Proposed High-Level Migration Procedure

Credentials must be deleted on the device from which they are migrated, while
transferring them over a secure channel with mutual trust assumptions. In Fig. 2,
we show how migration can be performed between remote TAs accounting for
the shortcomings in related work, which comprises the following messages:

1. A mutual remote attestation protocol [2,12,20] is executed between TSM
and TAA to bootstrap a secure and mutually trusted channel (STCP).

2. TSM transmits the begin migration command to TAA.
3. TAA unseals credentials, C, from its secure storage for transmission.
4. TAA acknowledges to TSM that the credentials were unsealed success-

fully.
5. A separate STCP instance is executed between (TSM,TAB).
6. TSM instructs TAB to prepare for credential provisioning.
7. TAB acknowledges to TSM that it is ready to receive credentials.
8. TSM transmits the ID of TAB to TAA, e.g. IP address, to which to

transmit the unsealed credentials.
9. An STCP is formed using mutual remote attestation between TAA and

TAB .
10. The credential transfer occurs between TAA and TAB .
11. The transferred credential is provisioned into the secure storage of TAB .

12–13. TAB acknowledges its provisioning success to TAA and TSM .
14. TSM instructs TAA to delete its migrated credential(s).

15–16. TAA deletes C and acknowledges its success to TSM .

TAA REEA TSM REEB TAB

1. STCP

2. Initiate Migration

3. Prepare C 4. Ack.

5. STCP

6. Prepare Migration from TAA

7. Ack.

8. ID of TAB

9. STCP

10. Transfer C

11. Provision C12. Ack.

13. Success

14. Delete Credentials

15. Delete C 16. Success

Fig. 2. Proposed TEE credential migration procedure.
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The high-level procedure uses three STCPs with mutual attestation between
(TSM,TAA), (TSM,TAB) and (TAA, TAB), thus addressing the absence of
bi-directional trust assurances in existing work. The proposal avoids unneces-
sarily exposing credentials to the TSM by transmitting data directly between
the mutually authenticated TAs. Implicitly, the protocol avoids specifying TEE-
specific functionalities; rather, for F2 (TEE agnosticism), we abstract the proto-
col appropriately to allow migrations between heterogeneous TEEs by allowing
either a GP TEE application or Intel SGX enclave to act as either TA. For TEE-
specific implementation guidance, the reader is referred to existing work such as
the GlobalPlatform TMF specifications [10], and the work by Arfaoui et al. [3]
for managing and authorising SDs on the GP TEE. In Sect. 7, we specify the
protocols and procedures formally, and detail an enhanced mutual attestation
protocol for STCP for satisfying the remaining requirements from Sect. 2.1.

4 Revocation

Credentials are typically revoked when they reach the end of their predefined
lifespan as part of a key rotation policy; if the OEM discovers a vulnerability
in the TA or TEE kernel code, and the credentials were potentially compro-
mised; or the device is retired from service, say, due to obsolescence. Revoca-
tion has attracted much attention in related TPM and smart card literature.
Chen and Li [5] address credential revocation in TPM 2.0 Direct Anonymous
Attestation (DAA). Like conventional group signatures, DAA allows the signer
to demonstrate knowledge of its individual private key corresponding to the
group’s public key; however, this complicates revocation because the signer’s
identity is not revealed, even to the group manager. The authors review two
solutions: rekey-based, where the issuer regularly updates its public key (which
may or may not include its corresponding secret key), allowing only legitimate
non-revoked signers to update their credentials accordingly; and Verifier-Local
Revocation (VLR), where the verifier inputs a revocation list (RL), to the DAA’s
verification function and accepts only signatures from signers S /∈ RL.

Lueks et al. [18] address revoking attribute-based credentials (ABCs) for
smart cards anonymously. Here, the RA possesses an RL of anonymous revoca-
tion values, gr

ε,v, submitted by the user or verifier (user- and system-instantiated
revocation), where r is the revocation value in the user’s credential. A revocation
‘epoch’, ε, corresponding to a time period, is used to provide unlinkability by
re-computing and re-sending the new valid RLs to the verifiers at each epoch;
that is, RLε,V = sort({gr

ε,V | r ∈ MRL}), where MRL is the master revocation
list. Using bloom filters, this occupies only 4–8 MB for 221 revoked credentials
depending on the chosen probability tolerance.

Katzenbeisser et al. [15] propose revocation for TPM 1.2 using blacklisting
and whitelisting. For blacklisting, a list of revoked keys, BL, is ordered into a
hash chain and encrypted under the TPM’s Storage Root Key (SRK); the final
hash chain value is stored in a TPM register to maintain integrity. Before loading
a key, k′, each ki ∈ BL is fed sequentially into the TPM, where it is decrypted,
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and k′ ?= ki is tested. Whitelisting incrementally creates keyed hashes of each
permitted key under the TPM’s SRK and internal secure counter representing
the whitelist’s ‘version’. A key is valid iff the keyed hash counter value matches
the TPM’s internal counter. Revocation is performed by incrementing the TPM’s
counter and updating all non-revoked hashes with the new value.

4.1 Proposed High-Level Revocation Procedure

Privacy-preserving credential schemes, e.g. DAA and anonymous credentials, are
beneficial in verifying credentials without divulging or linking users’ identities.
However, to serve as an initial baseline, we scope the focus of this work is scoped
to centralised deployments for applications where the concern of violating cre-
dential privacy has far fewer consequences than government electronic ID cards
or TPMs on consumer devices. As such, we consider Industrial IoT (IIoT), logis-
tics, and public devices in smart cities to serve as three potential application
domains. Relaxing this constraint provides us with headway to pursue simpler,
PKI-based solutions as a first step for providing TEE credential revocation with
mutual attestation. We suggest two approaches for blacklisting and whitelisting
using a trusted RA, the procedure for which illustrated in Fig. 3 and described
as follows:

1. TSM and TA form a STCP using mutual remote attestation to verify
each platforms’ integrity and bootstrap a secure channel.

2–3. TSM instructs TA to reveal the current credentials in use, C, which are
then unsealed from storage, e.g. encrypted in untrusted storage or an SE.

4. C is transmitted to the TSM over the STCP by TA.
5. The TSM forms a STCP with the revocation authority, RA, who main-

tains the master revocation list of white- or blacklisted credentials.
6–8. TSM submits C to RA, who returns a list of the revoked credentials in

C, i.e. RC ⊆ C, from its master revocation list (MRL).
9–11. TSM instructs TA to revoke RC internally; TA performs the deletion

and acknowledges its success.

Note that a malicious device may purposefully fail to update the status of
RC internally and attempt to reuse revoked credentials. Consequently, the use of
revoked credentials should be reported to MA responsible for decommissioning
compromised devices, a simple protocol for which is listed in Steps A–E in Fig. 3
based on mutual attestation involving (MA,RA). Like [18], delegating revoca-
tion list management to RA removes the burden of potentially multiple verifiers
synchronising a single list; the TSM can submit a lookup request to the RA, who
queries the blacklist or whitelist in O(1) using an associative array. Either black-
or whitelisting can be performed in this model. For blacklisting, the RA main-
tains a master revocation list (MRL) of revoked credentials that should not be
used in any transaction in which the MA submits credentials it wishes to revoke
to RA (maintainer-instantiated revocation). Here, RA tests the revocation sta-
tus of C by verifying C /∈ MRL. Whitelisting, conversely, comprises a list of
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TA REE TSM RA MA

A. STCP

B. Add Revoked Creds.

C. Success

D. Report Attempts

E. Ack.

1. STCP

2. Reveal C

3. Unseal C 4. Show C

5. STCP

6. Lookup C

7. Revoked RC

8. Ack.

9. Revoke RC
10. Update

RC ∈ C 11. Success

Fig. 3. Proposed credential revocation. Steps A–E are independent of 1–11.

only the permitted credentials; a credential is revoked by removing it from the
whitelist and, if applicable, updating the list with its replacement. Revocation
is tested by verifying C ∈ MRL.

5 Remote Backups

Backup is the process of securely retrieving the set of credentials, C, belonging
to a TA for remote storage. In standard practice, backups underpin disaster
recovery plans – as stipulated by ISO 27001:2013 [14] – for recovering data
from corruption and accidental deletion. Backups may also constitute part of
a data retention policy, where device data is used as evidence of regulatory
adherence. Secure backup is beneficial when the original credential has non-
trivial reinitialisation costs. Next, we examine related work in the backup of
remote credentials aboard secure and trusted execution technologies.

Kostiainen et al. [17] address TEE credential backup, restoration and dis-
abling on consumer mobile phones, proposing two solutions. The first uses a SE
– a SIM card – in which the TEE credentials are protected under a SIM-specific
key provisioned by its provider. This allows the user to uninstall a familiar hard-
ware element, i.e. the SIM, before releasing the device for repairs or to lend to an
untrusted user. On reinserting the SIM, an on-board TEE credential manager is
used to decrypt and re-initialise the encrypted credentials. The second solution
involves the use of a removable microcontroller to counter an honest-but-curious
remote server, RS. RS possesses a shared key Ks with the TEE, and stores the
backups using a secure counter for rollback protection. To prevent RS reading
the credentials, the TEE encrypts them under a separate key, K, derived from
a local counter on the microcontroller, and re-encrypts them under Ks.

Akram et al. [1] examine credential restoration for multi-application smart
cards on smartphone SEs. The SE’s Trusted Environment and Execution Man-
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ager (TEM), which dynamically enforces the smart card’s run-time security poli-
cies, is expanded to facilitate credential backups and restoration. A Backup and
Restoration Manager (BRM) is added to the smart card software stack that inter-
faces with a TEM-resident backup token handler, which stores tokens issued by
application service providers. The user first registers the BRM with a backup
server (BS) and, when the user wishes to perform the backup, the BRM encrypts
the token(s) and communicates them to BS. To restore data, such as to a new
card, the user provides the BRM with his/her BS credentials to download the
backed-up tokens. A secure channel is formed and the token(s) authenticate the
credential restoration from the service provider(s).

5.1 Proposed High-Level Backup Procedure

We introduce a trusted Backup Authority (BA) responsible for storing retrieved
credentials. This may be a cloud-based storage provider or Hardware Security
Module (HSM) possessed by the credential issuing authority; the precise means
by which BA securely stores credentials is out-of-scope in this work. Importantly,
we note that credential restoration can be performed by executing the proposed
Remote Update procedure in Sect. 6. The proposed procedure between the target
TA and BA is shown in Fig. 4, which is described as follows:

1–4. TSM and BA establish a secure and trusted channel with mutual attes-
tation, and TSM requests BA to prepare for backup.

5–6. TSM forms an STCP with TA and commands it prepare the credentials
for remote backup; TSM also provides the identity of BA.

7–8. TA unseals the credentials to transmit to BA, and notifies TSM that
they were unsealed successfully.

TA REE TSM BA

1. STCP

2. Backup Request

3. Prepare4. Ack.

5. STCP

6. Prepare Backup to BA

7. Unseal C 8. Ack.

9. STCP

10. Transmit C

11. Store C12. Ack.

13. Success

Fig. 4. Proposed high-level remote credential backup protocol.
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9–12. TA and BA form a STCP over which C is transmitted to and stored
securely by BA. While TSM is considered trusted, a direct connection
between TA and BA mitigates the risk of unnecessary credential exposure
to TSM .

13. BA notifies TSM that C from TA was backed-up successfully.

6 Remote Updates

Remotely updating credentials is beneficial during routine renewal schedules;
for example, with X.509 certificates that reach their validity expiry date, or the
device is relocated and the organisational unit to which the credential is issued
is no longer valid. Generally speaking, update is the process by which an out-
dated credential, ci, is securely replaced by a freshly issued c′

i. Once replaced, ci

should be revoked to prevent reusing obsolete credentials. Little work has been
conducted regarding TEE credential updates, which is likely due to the simplicity
of a TSM transmitting a new credential over a secure channel or, indeed, the sim-
ilarity with backup restoration (Sect. 5). Updates can be considered a variation
of backup restoration where c′

i is retrieved from an update server; the addition
is revoking ci, achievable using the revocation process proposed in Sect. 4. Next,
we describe how this can be achieved with mutual attestation.

6.1 Proposed High-Level Update Procedure

We reintroduce the maintenance authority (MA) from Sect. 4, which issues cre-
dential updates as part of a standard rotation policy. If desired, the MA is also
responsible for registering obsolete credentials with the revocation authority. The
high-level update mechanism is as follows (Fig. 5):

1. MA, who provides the updated credentials, establishes an STCP with
TSM .

2–3. MA notifies the TSM of an updated credential. This may include iden-
tities of which TEEs need updated or all TEEs.

4–5. An STCP is conducted between (TSM,TA) and an update preparation
command is transmitted to TA, along with an optional ID of MA from
whom to retrieve the update.

6. TA is locked, i.e. prevented from interacting with the REE, until the
update is performed in order to prevent the use of outdated credentials.

7. TA acknowledges to TSM that it is ready to update.
8–10. TA establishes a STCP with MA to receive the credential update; MA

transmits the updated credential, c′
i, to TA.

11–12. TA seals c′
i to its secure storage for future use; ci should be deleted

internally before unlocking. TA acknowledges that c′
i was initialised suc-

cessfully.
13–16. (MA,RA) use an STCP to white- or blacklist the obsolete credential, ci.

Lastly, MA acknowledges completion of the update procedure to TSM .
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TA REE TSM MA RA

1. STCP

2. Update Ready

3. Ack.

4. STCP

5. Update Ready
6. Prepare

and Lock TA 7. Ack.

8. STCP

9. Fetch Credential Update

10. Transmit New Credential c
′
i

11. Seal c
′
i

and Unlock 12. Ack.

13. STCP

14. Revoke ci

15. Ack.

16. Success

Fig. 5. Proposed credential update procedure.

7 Proposed Protocol Analysis

We now formalise the protocols from the high-level procedures presented pre-
viously, which are listed in Protocols 1 to 6 using the notation from Table 1.
In Sect. 2.1, we outlined the requirements and assumptions of the protocols,
which are referred to throughout. Each proposed protocol is underpinned by
an enhancement of the BTP mutual attestation protocol in [20] for establishing
the STCP between the TEEs. This protocol (Protocol 6), which establishes a
TEE-to-TEE secure channel after exchanging and verifying attestation quotes,
is simplified to support authenticated encryption (AE), e.g. AES in GCM mode,
rather than a non-AE symmetric scheme with an additional HMAC as in orig-
inal proposal. This simplification is aimed at reducing protocol implementation
complexity and improving performance based on existing benchmarks [13]. The
protocol is based on ephemeral Diffie-Hellman key agreement that achieves ses-
sion forward secrecy (S2), mutual key establishment (S1) and key freshness (S7).
Moreover, TEE quotes are mutually exchanged for verifying the integrity of each
platform, thus satisfying S3 and S4 (mutual trust verification). The signed attes-
tation values, command instructions, e.g. Prep Backup and Revoke Success,
and the shared secret provides mutual entity authentication (S5).

Crucially, the protocols avoid the use of additional trusted hardware, such
as TPMs, secure elements and smart cards (F1). The protocols are designed
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Protocol 1. Proposed Migration Procedure with BTP (MPBT)
1: Execute BTP (TSM , TA1)
2: TSM → TA1 : [(Init Migrate || XTSM )σTSM ]AEK

3: TA1 → TSM : [(TA1 Ack || XTA1)σTA1]AEK

4: Execute BTP (TSM , TA2)
5: TSM → TA2 : [(Prep Migrate || X ′

TSM )σTSM ]AEK′
6: TA2 → TSM : [(TA2 Ack || X ′

TA2)σTA2]AEK′
7: TSM → TA1 : [(IDTA2 || XTSM )σTSM ]AEK

8: Execute BTP (TA1, TA2)
9: TA1 → TA2 : [(C || X ′′

TA1)σTA1]AEK′′
10: TA2 → TA1 : [(TA2 Ack || X ′′

TA2)σTA2]AEK′′
11: TA2 → TSM : [(TA2 Done || X ′

TA2)σTA2]AEK′
12: TSM → TA1 : [(Delete Creds || XTSM )σTSM ]AEK

13: TA1 → TSM : [(TA1 Success || XTA1)σTA1]AEK

Protocol 2. Proposed Revocation Lookup with BTP (RLBT)
1: Execute BTP (TSM , TA)
2: TSM → TA : [(Reveal Creds || XTSM )σTSM ]AEK

3: TA → TSM : [(C || XTA)σTA]AEK

4: Execute BTP (TSM , RA)
5: TSM → RA : [(Lookup || C || X ′

TSM )σTSM ]AEK′
6: RA → TSM : [(Revoked || RC || X ′

RA)σRA]AEK′
7: TSM → RA : [(TSM Ack || X ′

TSM )σTSM ]AEK′
If RC �= ∅:

8: TSM → TA : [(Revoke || RC || XTSM )σTSM ]AEK

9: TA → TSM : [(Revoke Success || XTA)σTA]AEK

Protocol 3. Proposed Revocation Procedure with BTP (RPBT)
1: Execute BTP (MA, RA)
2: MA → RA : [(Revoke || C || XMA)σMA]AEK

3: RA → MA : [(Revoke Success || XRA)σRA]AEK

4: If reported credentials (RepC �= ∅):
RA → MA : [(Report || RepC || XRA)σRA]AEK

MA → RA : [(Report Success || XMA)σMA]AEK

Protocol 4. Proposed Backup Procedure with BTP (BPBT)
1: Execute BTP (TSM , BA)
2: TSM → BA : [(Prep Backup || XTSM )σTSM ]AEK

3: BA → TSM : [(BA Ack || XBA)σBA]AEK

4: Execute BTP (TSM , TA)
5: TSM → TA : [(Prep Backup || IDBA || X ′

TSM )σTSM ]AEK′
6: TA → TSM : [(TA Ack || X ′

TA)σTA]AEK′
7: Execute BTP (TA, BA)
8: TA → BA : [(C || X ′′

TA)σTA]AEK′′
9: BA → TA : [(Backup Ack || X ′′

BA)σBA]AEK′′
10: BA → TSM : [(Backup Success || XBA)σBA]AEK
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Protocol 5. Proposed Update Procedure with BTP (UPBT)
1: Execute BTP (MA, TSM)
2: MA → TSM : [(Update Ready || XMA)σMA]AEK

3: TSM → MA : [(TSM Ack || XTSM )σTSM ]AEK

4: Execute BTP (TSM , TA)
5: TSM → TA : [(Prep Update || X ′

TSM )σTSM ]AEK′
6: TA → TSM : [(TA Ack || X ′

TA)σTA]AEK′
7: Execute BTP (TA, MA)
8: TA → MA : [(Fetch Update || X ′′

TA)σTA]AEK′′
9: MA → TA : [(c′

i || X ′′
MA)σMA]AEK′′

10: TA → MA : [(New Cred Ack || X ′′
TA)σTA]AEK′′

11: Execute BTP (MA, RA)
12: MA → RA : [(Revoke || ci || X ′′′

MA)σMA]AEK′′′
13: RA → MA : [(Revoke Success || X ′′′

RA)σRA]AEK′′′
14: MA → TSM : [(Update Success || XMA)σMA]AEK

Protocol 6. Adapted Bi-directional Trust Protocol (BTP) from [20]
1: A → B : IDA || IDB || nA || gA || ARB

2: B → A : IDB || IDA || nB || gB || [
(XB)σB || (VB)σB

]
AEK

|| ARA

XB = H(IDA || IDB || gA || gB || nA || nB)
VB = QB || nB || nA

3: A → B : [ (XA)σA || (VA)σA ]AEK

XA = H(IDA || IDB || gA || gB || nA || nB)
VA = QA || nA || nB

to incorporate abstract TAs, which are verified using the quoting abstraction,
whether they be Intel SGX enclaves of GP TEE TAs, thus providing TEE agnos-
ticism (F2). Note, however, that this abstracts away the precision of related work,
e.g. Arfaoui et al. [3], which addresses migration specifically in the context of
the GP TEE. Such work incorporates GP TEE-specific entites, such as security
domains (SDs) and root SDs, which do not exist on Intel SGX or earlier TPM-
based TEEs like Intel TXT [11]. As such, users of this work should be aware of
the implementation specifics when deploying these protocols; we refer users to
[3] and [10] for guidance for GP TEEs, and [6] for Intel SGX.

Formal Symbolic Verification. Scyther by Cremers [7] was employed to ver-
ify the correctness of the proposed protocols. A protocol is first specified in the
Scyther description language, comprising communicating parties (roles), mes-
sages and the desired security properties (claims). Scyther verifies whether the
protocol specification satisfies those claims under the ‘perfect cryptography’
assumption, whereby an adversary learns nothing from an encrypted message
unless the decryption key is known, against all possible behaviours of a Dolev-Yao
adversary. Despite the challenge of security protocol verification being undecid-
able in general, many practical protocols can be proven correct; notably, Scyther
has been used to verify IKEv1 and IKEv2, and the ISO/IEC 9798 authentication
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Table 1. Protocol notation.

Notation Description

TSM TEE trusted service manager

BA Credential backup authority

MA Device maintenance authority

RA Revocation authority

TAX TEE trusted application on device X

nX Secure random nonce generated by X

H(D) Secure one-way hash function, H, on D

X → Y Message transmission from X to Y

IDX Identity of X

A || B Concatenation of A and B

gX Diffie-Hellman exponentiation of X

ARX Attestation request on target entity X

QX Attestation quote from TEE X

(A)σX Signed message A from X under a
private-public key-pair (K, P )

[m]AEK Message m is encrypted using
authenticated encryption under session
key K derived from the protocol’s
shared secret

D′ Data specific to a separate session to D

protocol family [8]. We analyse all protocols using Scyther, testing for the secrecy
of transmitted quotes from both parties, e.g. (Secret, qta1) and credentials
(Secret, c); aliveness (Alive); replay protection, i.e. non-injective agreement
(Niagree) and non-injective synchronisation, (Nisynch), defined in [7]; session
key secrecy (SKR, K); and the reachability of all entities, e.g. (Reachable, TA).
We publicly release the protocol specifications for future research by the com-
munity (see Sect. 1). Scyther found no attacks on any protocol.

8 Conclusion

TEEs are emerging as a flexible mechanism for providing a range of assurances
regarding the on-device protection of security-critical applications, credentials
and related data. In this work, we presented a suite of proposals for remote TEE
credential management using mutual attestation for secure migration, revocation,
backups, and updates. After summarising the features of leading TEE implemen-
tations, we formalised the threat model, requirements and assumptions for a
typical TEE credential deployment in a centralised setting. Next, we reviewed
the state-of-the-art for each credential management challenge, before proposing
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procedures and protocols for securely realising these notions. The protocols were
formalised and subjected to symbolic verification using Scyther, which found no
attacks under the Dolev-Yao adversarial model; the protocol specifications are
also published publicly for further research. In future work, we aim to incorpo-
rate privacy-preserving attestation into our protocol suite, which we considered
out-of-scope in this work for centralised deployments, through the use of tech-
niques like DAA and Blacklistable Anonymous Credentials (BLACs). We also
wish to address decentralised deployments, where devices have intermittent or
potentially no access to a centralised TSM.
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Abstract. Botnets have been part of some of the most aggressive cyber-
attacks reported in recent years. To make them even harder to be
detected and mitigated, attackers have built C&C (Command and Con-
trol) infrastructures on top of popular Internet services such as Skype
and Bitcoin. In this work, we propose an approach to detect botnets with
C&C infrastructures based on the Bitcoin network. First, transactions
are grouped according to the users that issued them. Next, features are
extracted for each group of transactions, aiming to identify whether they
behave systematically, which is a typical bot characteristic. To analyse
this data, we employ the OSVM (One-class Support Vector Machine)
algorithm, which requires only samples from legitimate behaviour to
build a classification model. Tests were performed in a controlled envi-
ronment using the ZombieCoin botnet and real data from the Bitcoin
blockchain. Results showed that the proposed approach can detect most
of the bots with a low false positive rate in multiple scenarios.
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1 Introduction

Botnets are a significant threat to the Internet security. By compromising hun-
dreds or thousands of Internet nodes, attackers can coordinate distributed large-
scale attacks, which usually are very aggressive. Botnets are composed of three
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main elements: bots, botmasters, and the C&C (Command and Control) infras-
tructure. Bots are regular network nodes that attackers compromise to be under
their control. Botmasters are malicious users who design the attacks and send
instructions to bots for attacks execution. The C&C infrastructure is the log-
ical communication infrastructure that botmasters use to send instructions to
bots. C&C architectures have evolved over the years. Attackers have built cen-
tralised infrastructures, based on protocols such as IRC (Internet Relay Chat)
and HTTP (Hypertext Transfer Protocol), as well as distributed ones, which
rely on peer-to-peer networks [1,8].

Attackers have also been investing in C&C infrastructures that explore legit-
imate applications to keep their operations covered. In these scenarios, bots and
botmasters operate as clients of widely used services such as instant messen-
gers [14], online social networks [11] and blockchains [3]. Once these services are
designed to share data with as many people as possible, attackers build their
C&C structure on top of them. Therefore, they have resilient environments to
rely on, which are kept up by the services’ owners. Moreover, their actions are
harder to detect because their traffic may be mistaken as the legitimate traf-
fic from regular clients of these services. These botnets are also referred to as
stealthy botnets [2,14].

In this work, we propose an approach to detect Bitcoin-based botnets. In
these botnets, botmasters send instructions piggybacked on Bitcoin transactions
to the bots. These botnets are not observable in general traffic features such as
packet size, volume of packets, and bit rate, because they use the same Bitcoin
network protocols as regular users. Therefore, we assume that, in Bitcoin-based
botnets, the systematic behaviour typically found in bots can be observed in
transactions attributes such as their values, numbers of inputs, numbers of out-
puts, and addresses.

The proposed approach makes use of the One-class SVM (Support Vector
Machine) algorithm and can be divided into two main steps. First, data about
legitimate transactions are collected from the Bitcoin blockchain, which is pub-
licly available, to create a classification model with OSVM. Then, transaction
data are retrieved from network packets and compared to the model, allowing
the classification of the traffic as legitimate or malicious. To evaluate the app-
roach, we built a controlled environment using the ZombieCoin botnet [3]. The
results showed that our approach could detect the most of the bots, keeping a
low false positive rate.

To the best of our knowledge, no other work has proposed a systematic
approach to detect Bitcoin-based botnets. The key contributions of our study
are:

– an approach to detect Bitcoin-based botnets that analyses only transactions
attributes. It is independent of traffic features such as packets size, volume of
packets, and bit rate;

– design of the detection approach based on the OSVM algorithm, which, unlike
supervised techniques, does not require samples of malicious observations to
create a classification model.
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The remaining of this paper is organised as follows. Section 2 presents the
related work. In Sect. 3, we discuss the proposed model. Section 4 shows the
evaluation. Finally, Sect. 5 draws the final conclusions.

2 Related Work

Researchers have proposed multiple approaches for botnet detection in recent
years. They range from methods that do not aim at any specific type of botnet
to approaches designed specifically to Web-based, P2P, or stealthy botnets.

In [13], Wang and Paschalidis proposed a detection method that does not
have any specific botnet type as a goal. They assume that activities are more
correlated among malicious nodes than among legitimate ones, and botmasters
and attack targets present distinguishable network traffic because they commu-
nicate with many other nodes. Their approach starts by employing the large
deviations principle to detect anomalies in IP flows. It also models interaction
graphs from source/destination data in network packets and makes use again of
the large deviations principle to detect anomalies in these graphs. The outputs
of these two processes are analysed to find out the most active nodes, which are
supposed to be botmasters or targets. Then, community detection techniques
are used to identify bots from the interactions of the most active nodes.

Sakib and Huang [8] proposed an approach to detect HTTP-based botnets.
The proposed solution applies three anomaly detection algorithms in two steps.
In the first step, HTTP requests features are analysed using Chebyshev’s Inequal-
ity, One-class SVM, and Nearest Neighbor based Local Outlier Factor to find
out if the requests were generated by human actions or bots (legitimate or mali-
cious). In the second step, Chebyshev’s Inequality is used to classify the bot
requests as malicious or legitimate. Hsu et al. [4] also analysed HTTP packets to
detect HTTP-based botnets. However, unlike [8], they computed metrics based
on the number of distinctly accessed servers and the payload size similarity. To
detect the bots, they compare these metrics to thresholds.

Wang et al. [12] proposed the BotCluster, a botnet detector that inspects
IP flows to detect P2P-based botnets. At first, it combines unidirectional IP
flows to turn them into bidirectional flows. Next, the system filters out non-
P2P flows using a whitelist and the flow loss response rate. Then, DBSCAN, an
unsupervised clustering algorithm, is applied to separate the legitimate P2P flows
from the malicious ones. The authors assumed that botnets behaviour presents
high regularity, as well as actions from different bots in the same botnet are
correlated, the both being observable in IP flows. Zhang et al. [14] proposed to
detect stealthy P2P botnets following a similar sequence of two steps. First, they
identified all hosts that were part of P2P communications. Next, they analysed
the P2P flows to detect the malicious ones. To do so, they selected the more
active P2P clients, considering them as bot candidates. Then, they investigated
the hosts the bot candidates interacted to. According to the authors, bots usually
communicate with the same hosts, which was observed to distinguish them from
legitimate clients.
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Albanese et al. [2] also proposed a system to detect stealthy botnets. This
system explores the periodicity of traffic associated with data exfiltration using
periodogram analysis. Additionally, the authors discussed techniques to find the
best places in the network to deploy the solution, and the use of moving tar-
get defence to neutralise stealthy bots evasion movements. Venkatachalam and
Anitha [11] proposed a system to detect Stegobot, a stealthy botnet proposed
by [6] that makes use of steganography to leak the target data in images shared
on online social networks (OSN). The proposed system extracts features from
OSN profiles regarding uploaded images, level of activity, and relationships with
other profiles. Then, these profiles are classified into legitimate or malicious by
supervised classification techniques such as SVM, k-Nearest Neighbour, Decision
Tree, and Naive Bayes.

Unlike the previous work [12–14], in this work we do not rely on IP flow anal-
ysis. In Bitcoin-based botnets, once bots communicate with peers to disseminate
transactions in the same way regular users do, there are no flow statistics that can
disclose bot-related activities. Instead, we analyse transaction attributes such as
the number of inputs and outputs, values of outputs, and rates of transactions to
detect bot traffic. In this sense, our work follows a strategy similar to that used
by [4,8,11], which also make use of information extracted from bots activities
on a low-level basis. Nonetheless, it is important to highlight that, to the best
of our knowledge, it is the first time a systematic approach has been proposed
to detect Bitcoin-based botnets.

3 Proposed Approach

In this section, we present the proposed approach to detect Bitcoin-based bot-
nets. We discuss first the approach rationale, and then the details on the two
modules: Model Creation Module and Botnet Detection Module.

3.1 Approach Rationale

Different works on botnet detection assumed that bots present a more system-
atic behaviour than regular nodes. Depending on the work, this regularity was
observed on the correlation between bots behaviour [12,13], features extracted
from HTTP packets [4,8], the time the bots kept active [14], and the periodicity
of traffic related to data exfiltration [2].

In this work, we explored the regularity of bots behaviour regarding the
transactions attributes. Each transaction has different attributes such as number
of inputs and outputs, addresses, and values. Figure 1 illustrates a transaction.
It contains an identifier, which is the hash of the transaction, and the inputs and
outputs with their addresses and values. In the transaction illustrated, a user
is transferring $1.0 from its account holding the address “12cb...Tu3S” to the
accounts with addresses “1Q2T...Jvm3” and “1bee...Vwq8”, which will receive
$0.8 and $0.2, respectively. We assumed that bots present a more systematic
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behaviour for these attributes because they are programmed, and so they may
not follow the same behaviour as a human being making Bitcoin transfers.

To be able to compute the evolution of these attributes throughout multiple
transactions, we grouped these transactions according to the users that issued
them. The blockchain is composed of a set of transactions denoted as T =
{t1, . . . , tn}. Considering the set of users U = {u1, . . . , un} that issued these
transactions, we assume that each user ui has its set of transactions Tui

, where
Tui

⊂ T . Each transaction t is defined by the 3-tuple (ts, I, O), where ts denotes
the transaction timestamp, I the set of inputs, and O the set of outputs.

Transaction ID: f4184f...31e9e16 

Input #1
address: 12cb...Tu3S 

value: $1.0

Output #1
address: 1Q2T...Jvm3 

value: $0.8

Output #2
address: 1bee...VwQ8 

value: $0.2

Fig. 1. Example of a transaction.

Having the set of transactions Tui
for a user ui, we can extract the features to

distinguish botnet traffic from regular traffic. Algorithm1 shows how the features
are extracted. In this algorithm, |X| denotes the amount of elements in the set
X, e.g., |t1.I| represents the number of inputs in the transaction t1.

Algorithm 1. Extracting a feature vector for a set of transactions
Input : List of transactions Tu = {t1, t2, . . . , tn} for user u, and the timestamp

startT ime referring to the oldest transaction of the dataset
Output: Feature vector f for user u

1 Function extractFeatures(T = {t1, t2, . . . , tn}, startT ime)
2 f.inMedian ←median(|t1.I|, |t2.I|, . . . , |ti.I|);
3 f.inIQR ←iqr(|t1.I|, |t2.I|, . . . , |ti.I|);
4 f.outMedian ←median(|t1.O|, |t2.O|, . . . , |ti.O|);
5 f.outIQR ←iqr(|t1.O|, |t2.O|, . . . , |ti.O|);
6 f.lowV Median ←median(lowestOutput(t1),. . . ,lowestOutput(ti));
7 f.lowV IQR ←iqr(lowestOutput(t1),. . . ,lowestOutput(ti));
8 f.iatMedian ←median(t2.ts − t1.ts, t3.ts − t2.ts, . . . , ti.ts − ti−1.ts);
9 f.iatIQR ←iqr(t2.ts − t1.ts, t3.ts − t2.ts, . . . , ti.ts − ti−1.ts);

10 f.txT ime ← (ti.ts − startT ime) ÷ (|Tu|);
11 f.addressPerTx ← (|inputAddrs(Tu)|) ÷ (|Tu|);
12 return f

13 end
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Almost all the features extracted are based on two statistical measures: the
median (denoted in Algorithm 1 as the function median(x1, . . . , xn)), and the
interquartile range (IQR, denoted in Algorithm1 as iqr(x1, . . . , xn)). The median
is a measure of central tendency, while the IQR measures the data dispersion.
The objective is to determine the central tendency and the dispersion of some
transaction attributes for a particular user, modelling its behaviour. All the
extracted features are discussed next.

– The median (inMedian) and the IQR (inIQR) of the number of inputs,
and the median (outMedian) and the IQR (outIQR) of the number of out-
puts of each transaction. Legitimate users can build transactions with various
amounts of inputs and outputs depending on their needs, while bots, being
programs, might present a more systematic behaviour.

– The median (lowV Median) and the IQR (lowV IQR) of the lowest output
value of each transaction. Bot transactions cannot involve high amounts of
funds, because their operation must be as profitable as possible to the attack-
ers. This way, it is expected that the lowest output value of bot transactions is
usually smaller than the one found in legitimate transactions. Besides, unlike
bots, legitimate users are expected to present more variability in these val-
ues. In Algorithm 1, lowestOutput(t) denotes a function that take as input a
transaction and returns its lowest output.

– The median (iatMedian) and the IQR (iatIQR) of the time intervals between
two subsequent transactions. Bots are expected to present more periodicity
than legitimate users, since they usually perform some automatic tasks.

– The relation (txT ime) between the amount of transactions and the time
elapsed. Bots may present a high level of interaction with botmasters, par-
ticularly when they are receiving instructions to launch attacks. This way,
it is expected that they receive more transactions within a particular time
interval than a legitimate user.

– The relation (addressPerTx) between the number of distinct input addresses
and the number of transactions. The decision on how to use (or reuse)
addresses is programmed in bots, while legitimate users can change it from
one transaction to another. Therefore, the number of distinct addresses can
vary from legitimate to bot users. In Algorithm 1, inputAddrs(T ) represents
a function that takes a set of transactions as input and returns the set of
distinct input addresses used in these transactions.

To classify the feature vectors as legitimate or malicious, we employed the
OSVM technique. In supervised machine learning techniques, usually employed
in botnet detection, a classification model is built from data instances represent-
ing the different classes the data can be classified into. For example, to detect
botnets, samples from malicious and legitimate behaviour should be labelled and
presented to the classifier, which would construct a model that could be used to
classify future samples as legitimate or malicious. This can be problematic when
the labelling process is labour-intensive and error-prone, or samples of some of
the classes hardly occur [5].
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A solution to address this issue is to use one-class classifiers. In these tech-
niques, only samples of one class are presented to the classifier to build the
classification model, e.g., samples of legitimate behaviour. Then, the upcoming
samples are classified as belonging or not to this class. Therefore, the labelling
process is no longer necessary. The OSVM algorithm is a one-class classifica-
tion technique that was successfully used in many domains [5]. This technique
creates hyperplanes that work as boundaries around the region containing the
training data. This way, if an instance is inside these boundaries, it is classified
as belonging to the modelled class. Otherwise, it is classified as an anomaly. In
our case, we provided data from legitimate Bitcoin users to create the model.
Then, all data instances that are outside the boundaries set for this class are
classified as bots.

3.2 Model Creation Module

The objective of the Model Creation Module, represented in Fig. 2, is to create
a classification model from information available on the Bitcoin blockchain.

Blockchain

Users
Identification

Feature
Extraction

Users Filtering OSVM Model
Creation

User 1 
lowest.iqr

lowest.median

... 
inputs.median

inputs.iqr

User 2 
lowest.iqr

lowest.median

... 
inputs.median

inputs.iqr

User n 
lowVIQR

lowVMedian

... 
inMedian

inIQR

Block 1 

Transaction 1
Transaction 2 

Transaction n
...

Block 2 

Transaction 1
Transaction 2 

Transaction n
...

Block n 

Transaction 1
Transaction 2 

Transaction n
...

User 1 

Transaction 1
Transaction 2 

Transaction n
...

User 2 

Transaction 1
Transaction 2 

Transaction n
...

User n 

Transaction 1
Transaction 2 

Transaction n
...

User 1 

pk.rate
time.tx.rate 
time.tx.iqr

...

User 2 

pk.rate
time.tx.rate 
time.tx.iqr

...

User n 

txTime
iatMedian 

iatIQR
...

Model

Fig. 2. Creation of classification model from Blockchain data.

The first step for the model creation is to retrieve a set of blocks from the
blockchain. All the transactions from the retrieved blocks are extracted to a list
denoted as T = {t1, . . . , tn}. Next, the Users Identification step is performed.
The objective of this step is to assign every transaction in T to a user u.

As already discussed in Sect. 3.1, a Bitcoin transaction t has a set of inputs
and outputs. Inputs and outputs are associated with addresses, which are derived
from the public keys of the users involved in the transaction. These addresses are
pseudonyms, and a single user can have multiple addresses. When a user wants
to send funds to someone, it signs the transference using its private key and
informs the public keys of the fund destinations. It is recommended that users
generate new keys for every transaction, avoiding that transactions are traced
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and the users identified [7]. Even so, it is possible to group Bitcoin transactions
according to their source. We followed two strategies to do it:

– As many users do not generate new keys to make new transactions, it is possi-
ble to explore this fact to group them. Let t1 and t2 be two transactions, and
inputAddrs({t1, . . . , tn}) a function that returns the set of input addresses
for a given set of transactions. If inputAddrs({t1}) ∩ inputAddrs({t2}) �= ∅,
then we assume that these two transactions were generated by the same user.

– The second strategy explores a heuristic based on multi-input transactions
[7,10]. Sometimes, a user does not have enough funds attached to a single
address to complete a transaction. To avoid breaking this transaction into
smaller ones, the user includes multiple inputs, each one associated to an
address, in a single transaction. Therefore, it is possible to assume that all
the input addresses of this kind of transaction belong to the same user.

After assigning the transactions to the users, the next step is to extract the
feature vectors from them. To do so, all the transactions of each user are ordered
by timestamp. Then, for a given user ui, the transactions in Tui

are processed
according to Algorithm 2. The main idea of Algorithm2 is to generate feature
vectors as the transactions were being assigned one by one to the user. For
example, let’s suppose a user has six transactions {t1, . . . , t6} and minTxs is
4. Then, three different feature vectors would be extracted: f1 extracted from
t1, t2, t3 and t4, f2 extracted from t1, t2, t3, t4 and t5, and f3 extracted from
t1, t2, t3, t4, t5 and t6. The function extractFeatures(T, startT ime) present in
Algorithm 2 is defined in Algorithm 1.

Algorithm 2. Extracting feature vectors for one user
Input : List of transactions Tu = {t1, t2, . . . , tn} for user u, the timestamp

startT ime referring to the oldest transaction present in all blockchain
collected data, and the minimum number of transactions per user
minTxs

Output: List of feature vectors Fu for user u
1 for i ← minTxs to n do
2 f ←extractFeatures({t1, t2, . . . , ti},startT ime);
3 add f to Fu;

4 end

The idea behind this approach is related to the way the Botnet Detection
Module works, classifying users every time they have new transactions. If the
Botnet Detection Module waits until it gathers a large number of transactions
for a particular user to start analysing it, the bot detection might take a long
time. Otherwise, if the Botnet Detection Module analyses this user every time
a transaction is assigned to it, it might detect a bot quicker, after only a few
transactions has been assigned to this user. Once the Model Creation Module
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is building a classification model for the Botnet Detection Module, it has to
emulate the same process followed by the latter one.

After extracting the features, the next step is Users Filtering. Users with
high dispersion for the number of inputs and outputs and the output values
are more likely to be legitimate. Therefore, in this step, we filter this kind of
user out. Only legitimate users that may be more similar to bots are included
in the OSVM model, since they demand a more sophisticated technique to be
differentiated from bots. The filtering process is detailed in Algorithm3. Three
thresholds, tin, tout and tlow, are set by computing the first quartile (denoted in
Algorithm 3 as the function firstQuartile(x1, . . . , xn)) of three features, namely
inIQR, outIQR and lowV IQR. All feature vectors in F are considered to com-
pute these thresholds. Next, all feature vectors that hold values below the thresh-
olds are included in a new list of feature vectors F ′. In F ′, a feature f ′ is defined
by the 5-tuple (lowV Median, iatMedian, iatIQR, txT ime, addressPerTx).

Algorithm 3. Filtering out users with high dispersion
Input : List of feature vectors F = {f1, f2, . . . , fn}
Output: List of remaining feature vectors F ′ = {f1, f2, . . . , fm}, where m ≤ n

1 tin ← firstQuartile({f1.inIQR, f2.inIQR, . . . , fn.inIQR}) ;
2 tout ← firstQuartile({f1.outIQR, f2.outIQR, . . . , fn.outIQR}) ;
3 tlow ← firstQuartile({f1.lowV IQR, f2.lowV IQR, . . . , fn.lowV IQR}) ;
4 foreach f in F do
5 if f.inIQR ≤ tin ∧ f.outIQR ≤ tout ∧ f.lowV IQR ≤ tlow then
6 add f to F ′;
7 end

8 end

The last step performed by the Model Creation Module is OSVM Model Cre-
ation. In this step, firstly, all features for each feature vector are scaled according
to their minimum and maximum values between a range from 0 to 1, as defined
by Eq. (1):

xf [j] =
xf [j] − min(x[j])

max(x[j]) − min(x[j])
,∀f ∈ F ′,∀j ∈ J (1)

where f corresponds to a given feature vector, F ′ to all feature vectors extracted,
j to a feature in the J feature space, and xf [j] to the value present in feature j
for the feature vector f . The OSVM algorithm receives the normalised feature
vectors as input and provide as output a model of the behaviour of the users
represented by these feature vectors.

3.3 Botnet Detection Module

The Botnet Detection Module analyses network packets to detect the presence of
bots in the monitored network. Therefore, in a real network, this module would
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be placed in the border between the monitored network and the Internet, being
able to analyse all Bitcoin packets exchanged between internal and external
nodes. We assume that Bitcoin-based bots are implemented as SPV (Simplified
Payment Verification) clients due to their low memory and traffic footprint.
Unlike full Bitcoin clients, SPV clients do not receive all the transactions that
other clients broadcast, and do not keep a copy of the entire blockchain. They
rely on full nodes, which forward to SPV clients the transactions of their interest.
An overview of this module is presented in Fig. 3.
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User n 

Transaction 1
Transaction 2
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Fig. 3. Botnet detection using data extracted from transactions and the model created
previously.

The first step of the Botnet Detection Module is to inspect Bitcoin packets,
one by one, and extract transaction data from them. Then, this data is used
to update a user profile. The users are determined according to the packets’ IP
addresses, since SPV nodes only receive transactions of their interest. A user
u has a list of transactions Tu = {t1, . . . , tn}, which were forwarded to the
u’s IP address. Every time a new t is added to Tu, u is classified again. To
classify u, it is necessary to extract its features. The list Tu containing all the
transactions that u received so far is passed as an argument to the function
extractFeatures(T, startT ime) in Algorithm 1. This function returns a feature
vector fu.

With fu, it is possible to perform an attempt of classification using the thresh-
olds set in Algorithm 3. If the user cannot be classified based on those thresholds,
the OSVM algorithm is used. Before applying the OSVM algorithm, the feature
vector fu is scaled following the normalisation step in Eq. (1), except that this
time, the max(x[j]) and min(x[j]) are the same as the ones used when the model
was created. As it was done in the Model Creation Module, only the features
lowV Median, iatMedian, iatIQR, txT ime, and addressPerTx are used in the
OSVM classification. Algorithm 4 shows how the classification process works. In
this algorithm, the normalisation step is denoted as the function normalise(x),
and the OSVM classification algorithm is denoted as the function OSV M(x).
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Algorithm 4. Classifying user
Input : A feature vector f for user u
Output: Classification of u: “legitimate” or “malicious”

1 if f.inIQR > tin ∨ f.outIQR > tout ∨ f.lowV IQR > tlow then
2 classification ← “legitimate”;
3 else
4 f ′ ← normalise(f);
5 classification ← OSVM(f ′);
6 end

4 Evaluation

In this section, we describe the experiment performed to evaluate the proposed
approach. First, some concepts of the ZombieCoin botnet [3] are presented. Next,
the details of the experimental design are provided. Finally, the results are pre-
sented and discussed.

4.1 ZombieCoin

To evaluate our approach, we built an instance of the ZombieCoin botnet, which
was proposed by Ali et al. [3]. This botnet makes use of the Bitcoin network to
allow the botmaster to transmit instructions to the bots. Both the botmaster
and the bot are developed with the BitcoinJ library as SPV clients. This botnet
explores a function in Bitcoin transactions referred to as OP RETURN. This
function allows users to include up to 80 bytes of data into the transaction. It
may be used, for example, to add textual information about the transaction like
clients usually do in conventional banking transfers. Next, we present an outline
of ZombieCoin operation:

– The botmaster has a key pair (public and private keys) that is used to protect
its account and sign its transactions. When the botmaster is installed, it
provides a command line interface to the user with a list of instructions that
can be transmitted to the bots.

– The bot has the public key of the botmaster hardcoded. Using this key, it
can request the botmaster transactions to its peers and authenticate them.
Once the bot is installed, it can receive transactions with instructions from
the botmaster, decode them and perform actions as requested.

– All the communication between bots and botmaster is based on standard
Bitcoin protocol specification.

We implemented three commands in the ZombieCoin bot and botmaster:
REGISTER, SYN FLOOD ATTACK, and UDP FLOOD ATTACK. When a
bot receives the REGISTER command, it generates a file with a unique bot
identifier, the current timestamp, and some information about the compromised
host such as the number of processors, processor architecture, operating system,
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and available memory. This file is uploaded to a Dropbox account belonging to
the botmaster. Botmasters send this kind of command periodically to enumer-
ate the active bots and have some control and detailed information about the
compromised machines [3,14]. When SYN FLOOD ATTACK or UDP FLOOD
ATTACK commands are sent, the bot launches the respective DoS attack against
the selected target.

4.2 Experiment Design

To emulate the malicious traffic, we built a network with six nodes. An instance
of the ZombieCoin botmaster was deployed in an Amazon Web Service (AWS)
host. To implement the bots, five Linux containers were created in a host at our
laboratory, and each container hosted a ZombieCoin bot instance. Containers
are lightweight virtual machines that emulate a machine with its own operating
system, but share the host’s operating system kernel with other applications.
LXC1 was used to create and manage the containers. The botmaster host had
a public IPv4 address attributed by AWS. Private IPv4 addresses were assigned
to the bots’ hosts. The botmaster and the bots had access to the Internet. The
software Wireshark2 was installed in the machine hosting the bots’ containers,
being able to capture all the packets the bots transmitted and received.

Bots and botmaster were executed for nearly two hours, and the botmaster
sent twelve commands to the bots. The objective was to reproduce a situation
with an attacker actively using its botnet to launch DDoS attacks, while check-
ing the status of its bots periodically. These commands will be detailed in the
next section, when a particular scenario is discussed to show how the approach
detected the malicious commands.

The legitimate behaviour was emulated with 239,495 transactions collected
from blocks appended to the main Bitcoin blockchain between 17-06-2018 and
20-06-2018. They were grouped into users, composing a database of legitimate
users.

Multiple experimental scenarios were set according to two parameters: the
number of legitimate users used to create the model (lmodel) and the number of
legitimate users present in the botnet detection step (ldetection). The idea behind
the first parameter was to observe if the performance proposed by the approach
improves depending on the size of the sample of legitimate users used for the
model creation. The second parameter was defined to analyse if different num-
bers of legitimate users could influence the task of distinguishing malicious and
legitimate instances. Higher amounts of legitimate users increase the probability
of having more diverse legitimate behaviour, which might confuse the botnet
detector.

Five different values were assigned to lmodel: 100, 200, 300, 400, and 500 users.
ldetection received the values 10, 20, 30, 40, and 50. The combination of these
values resulted in twenty five experimental scenarios. Ten rounds were executed

1 https://linuxcontainers.org/.
2 https://www.wireshark.org/.

https://linuxcontainers.org/
https://www.wireshark.org/
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for each scenario, and, at each round, the legitimate users were randomly selected
from our database. The five malicious users were included in all rounds for all
scenarios.

The performance of the proposed approach was evaluated according to the
following metrics [9]:

– TPR: TP
TP+FN among all feature vectors extracted from malicious users, how

many were correctly classified.
– FPR: FP

FP+TN among all feature vectors extracted from legitimate users, how
many were incorrectly classified as malicious.

– AUC: 1
2 (TPR + (1 − FPR)) combines TPR and FPR into a single metric,

facilitating the comparison between different experimental rounds.

TP, TN, FP, and FN stand for true positives, true negatives, false positives,
and false negatives, respectively. The RBF (Radial Basis Function) kernel was
used for the OSVM algorithm. For all tests, minTxs was set to 3 transactions.

4.3 Results and Discussion

Firstly, we searched for a common value for the OSVM hyperparameter ν that
could allow the different scenarios to reach a good performance. For each sce-
nario, the proposed approach was executed with ν ranging from 0.05 to 0.95 in
steps of 0.05. The ν values that yield the best AUC for each scenario were com-
puted, and Fig. 4 shows the histogram for these values. It is possible to observe
that ν = 0.05 is the most frequent value, which was assumed for the remaining
tests.

Fig. 4. Histogram for best values of ν considering different scenarios.

Another objective of the evaluation was to investigate how the number of
legitimate users selected to create the model (denoted as lmodel) and the num-
ber of legitimate users present in the detection step (denoted as ldetection) could



Detection of Bitcoin-Based Botnets Using a One-Class Classifier 187

affect the results. Figure 5 shows the performance of the approach taking into
consideration the arithmetic mean of the AUC calculated throughout the ten
rounds at each combination of lmodel and ldetection. Although most of the sce-
narios presented good results, with the mean AUC above 0.8, the scenario with
lmodel = 500 users was clearly the best one. Different values for ldetection did
not affect the results in any situation. We assumed lmodel = 500 users for the
remaining tests.

Fig. 5. AUC mean for different combinations of lmodel and ldetection.

The next step is to analyse the results for the metrics AUC, TPR, and FPR
considering lmodel = 500, ν = 0.05, and ldetection = {10, 20, 30, 40, 50}. The
mean (1.00) and the standard deviation (0.00) computed for TPR indicate that
this metric was equal to 1.00 for all the rounds. This means that even creating
different classification models at each round and changing ldetection, the proposed
approach was able to classify correctly all the feature vectors related to malicious
users. The mean FPR was very low (0.01), and its standard deviation (0.02)
shows that the values computed for this metric throughout the multiple rounds
were not significantly higher than its mean. Once AUC is a function of TPR
and FPR, its results were also good, with the mean = 0.99 and the standard
deviation = 0.01.

Finally, we analysed a particular case to observe the characteristics of the
true positives and the false positives. To carry out this analysis, we selected the
case that presented the closest AUC to the mean for this metric, which was 0.99.
The selected case was the sixth round of the experiment with lmodel = 500, and
ldetection = 40. For this case, we had 54 true positives, 248 true negatives, 1 false
positive, and 0 false negatives. Table 1 presents the classification of the feature
vectors generated from the commands received by the malicious users.

As soon as the proposed approach started analysing the transactions, it
detected the bots. minTxs was set to 3, so the approach waited for three trans-
actions of a user to begin analysing it. In our tests, the botmaster sent the third
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Table 1. Malicious commands sent and their detection.

Elapsed time (min) Command User 1 User 2 User 3 User 4 User 5

0 REGISTER NA NA NA NA NA

7 REGISTER NA NA NA NA NA

14 SYN FLOOD ATTACK TP TP TP TP TP

22 REGISTER TP TP TP TP TP

35 SYN FLOOD ATTACK TP TP TP TP TP

37 REGISTER TP TP TP TP TP

52 REGISTER TP TP TP TP TP

54 UDP FLOOD ATTACK TP TP TP TP TP

64 UDP FLOOD ATTACK TP TP TP TP TP

67 REGISTER TP TP TP TP TP

82 REGISTER TP TP TP TP TP

97 REGISTER TP TP TP TP TP

transaction 14 min after the beginning of the experiment. Table 1 shows that the
two first transactions were not analysed (“NA”) and, after that, all the analysed
transactions sent for the bots were classified as malicious (“TP”). The only false
positive was raised to a user that presented a very low dispersion for the number
of inputs, outputs, and transferred value. Besides, its number of outputs was
unusually high and its transfer value uncommonly low, when compared to other
normal users.

Overall, the approach presented a high predictive performance. We evaluated
different scenarios with multiple numbers of legitimate users, and the results for
true positives and false positives were good for most of them. The scenarios that
included more users (500) in the model creation step were the ones with the best
results. In these scenarios, all malicious feature vectors were correctly classified
as so in all rounds, and there were only a few false positives. Still, in all these
scenarios with 500 users for model creation, the proposed approach was able to
detect the bots as soon as it gathered the minimum number of transactions that
allowed an analysis. This means that, for these cases, the proposed approach
detected the bots right after the botmaster sent the third transaction in a row,
only 14 min after the experiment had started.

5 Conclusion

Botnets have been the protagonists of severe attacks on the Internet. As attack-
ers started building their C&C infrastructures on top of widely-used services,
they became harder to be detected and mitigated. In this paper, we proposed an
approach to detect Bitcoin-based botnets. The approach is based on the OSVM
classifier, which requires only legitimate samples to build the classification model.
To detect the bots, the proposed approach extracts information from different
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transactions belonging to the same user, aiming to identify whether the traffic
belongs to a bot. Tests were conducted using the ZombieCoin botnet and real
transaction data from Bitcoin blockchain. The results demonstrated a high pre-
dictive performance, with high true positive rates and low false positive rates
in several scenarios. The study of a particular case showed that the proposed
approach detected the bots after the botmaster had sent only three commands.
As future work, we intend to extend the proposed approach to detect botnets
based on other blockchain applications such as Ethereum.
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Abstract. We introduce a set of four twisted Edwards curves that sat-
isfy common security requirements and allow for fast implementations
of scalar multiplication on 8, 16, and 32-bit processors. Our curves are
defined by an equation of the form −x2 + y2 = 1 + dx2y2 over a prime
field Fp, where d is a small non-square modulo p. The underlying prime
fields are based on “pseudo-Mersenne” primes given by p = 2k − c and
have in common that p ≡ 5 mod 8, k is a multiple of 32 minus 1, and
c is at most eight bits long. Due to these common features, our primes
facilitate a parameterized implementation of the low-level arithmetic so
that one and the same arithmetic function is able to process operands
of different length. Each of the twisted Edwards curves we introduce in
this paper is birationally equivalent to a Montgomery curve of the form
−(A + 2)y2 = x3 + Ax2 + x where 4/(A + 2) is small. Even though this
contrasts with the usual practice of choosing A such that (A + 2)/4 is
small, we show that the Montgomery form of our curves allows for an
equally efficient implementation of point doubling as Curve25519. The
four curves we put forward roughly match the common security levels
of 80, 96, 112 and 128 bits. In addition, their Weierstraß representations
are isomorphic to curves of the form y2 = x3 − 3x + b so as to facilitate
inter-operability with TinyECC and other legacy software.

1 Introduction

Elliptic Curve Cryptography (ECC), introduced independently by Koblitz [22]
and Miller [26] in the mid-1980s, is nowadays widely considered the most viable
alternative to RSA and other traditional public-key cryptosystems [10]. The main
attraction of ECC is the absence of a subexponential-time algorithm for solving
the Discrete Logarithm Problem (DLP) on a general elliptic curve over a finite field
[8,20]. Therefore, elliptic curve cryptosystems can use much smaller groups than
their “classical” DLP-based counterparts to achieve a certain level of security.
Smaller groups normally implies shorter keys and, in turn, savings in execution
time, energy consumption, memory requirements, as well as transmission band-
width, all of which is important in the embedded and mobile domains. The expan-
sion of the Internet of Things (IoT) in recent years has created a strong demand for
lightweight implementations of ECC that can accommodate the stringent resource
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
O. Blazy and C. Y. Yeun (Eds.): WISTP 2018, LNCS 11469, pp. 193–206, 2019.
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constraints of wireless sensor nodes, RFID tags, and various other kinds of smart
devices [31]. According to the Ericsson Mobility Report from November 2017
[16], the number of devices connected to the Internet is expected to grow from
roughly 19 billion in 2018 to more than 30 billion by the end of 2023. However,
only about one third of these 30 billion devices will be classical computers (PCs,
laptops, tablets, smart phones), while the remaining two thirds (i.e. around 20
billion devices) will be related to the IoT. Consequently, in a few years, “things”
like machines, meters, point-of-sale terminals, consumer electronics, electrome-
chanical sensors, actuators, wearable gadgets, and medical devices will most likely
account for far more deployments of ECC than classical computers.

An elliptic curve has to satisfy various security and efficiency requirements
to be suitable for cryptographic algorithms [6,9,13,17]. Most importantly, the
group of rational points on the curve must contain a (large) subgroup of prime
order since this order determines the computational cost of the Elliptic Curve
Discrete Logarithm Problem (ECDLP). However, determining whether a curve
has a near-prime cardinality requires one to count the number of points on the
curve, which is a complicated and computation-intensive endeavor [20]. There-
fore, it is common practice to use “standardized” curves that were generated to
meet certain security requirements. A multitude of standardization bodies has
recommended domain parameters for elliptic curves of different cryptographic
strength, in most cases comparable to that of 128, 192, and 256-bit AES. The
currently most important and widely-used curves are the ones specified by the
US National Institute of Standards and Technology (NIST) [28], which provide
security levels in the range of 80 to 256 bits. These so-called NIST curves were
allegedly generated by Jerry Solinas in the 1990s, who was an employee of the
National Security Agency (NSA) at that time [7]. Five of the NIST curves are
defined over prime fields and given by a Weierstraß equation of the form

EW : y2 = x3 + a4x + a6 (1)

where a4 fixed to −3 for efficiency reasons [20]. However, the Weierstraß form
is performance-wise not state-of-the-art anymore since alternative curve models
for special families of curves allow for much faster execution times.

Two examples of special elliptic curves with excellent arithmetic properties
are (twisted) Edwards curves [3,15] and Montgomery curves [27]. The addition
law of twisted Edwards curves is much more efficient than that of conventional
Weierstraß curves and has the further advantage of completeness when certain
conditions are met [5]. Also Montgomery curves are attractive for practical use
due to an extremely simple, yet very fast, scalar multiplication technique, the
so-called Montgomery ladder [27]. In the recent past, a number of new curves
in Edwards or Montgomery form, most of them defined over a pseudo-Mersenne
prime field, have been published, e.g. [1,4,9,19,29]. Almost all of these curves
target security levels of 128 bits and above, which is somewhat surprising given
the rapid proliferation of the IoT along with the fact that many applications in
such domains as home automation and consumer electronics do not really have
high security requirements. The only proposals for smaller curves we are aware
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of came from Aranha et al., who introduced in [1, Sect. A] Montgomery curves
over 159 and 191-bit prime fields, as well as Edwards curves over 157, 168, and
191-bit fields, respectively.

In this paper, we present a set of four twisted Edwards curves over pseudo-
Mersenne prime fields that we generated in a transparent and verifiable way to
meet common security and efficiency requirements. These four curves, which we
call LiTE curves (an abbreviation for Lightweight Twisted Edwards), provide
security levels of about 80, 96, 112, and 128 bits, respectively, and are suitable
for IoT applications running on restricted devices. Using curves that offer less
than 128 bits of security allows for large savings in execution time1 and makes
particular sense for applications with low or medium security requirements. The
four twisted Edwards curves we present in this paper differ from the Edwards
curves introduced by Aranha et al. in [1] in two important aspects. Firstly,
we chose the prime fields and generated the curves with the goal of having
consistency across security levels, which means they share many basic properties
like the group structure. Most notably, all our curves are defined over prime fields
with p = 2k − c elements and have in common that k is a multiple of 32 minus
1 (i.e. k = 159, 191, 223, or 255) and c has a length of at most eight bits. This
consistency facilitates a parameterized implementation2 of the field-arithmetic
operations, which minimizes the code size when different security levels are to be
supported and has some other benefits like reduced development cost. The second
difference is that we aimed for curves capable to reach top performance with
the twisted Edwards representation and the birationally-equivalent Montgomery
representation. Aranha et al. [1], on the other hand, specified two sets of curves,
namely Montgomery curves with a small parameter A and Edwards curves with
a small parameter d; in both cases the rationale was to improve the arithmetic
performance. The four twisted Edwards curves we put forward have a small
parameter d and a fixed to −1, which implies the parameter A of the birationally-
equivalent Montgomery curves has the property that 4/(A − 2) is small. While
this contrasts with the usual choice of (A − 2)/4 being small, it is possible to
perform a point doubling equally fast as on e.g. Curve25519 thanks to a simple
modification of the doubling formula.

2 Preliminaries

In 1987, Peter Montgomery introduced a new model for elliptic curves and
demonstrated its practical use by speeding up algorithms for integer factor-
ization [27]. Formally, a so-called Montgomery curve over a non-binary field Fq

can be described through the equation
1 For example, the results in [25] show that a scalar multiplication on a 192-bit ellip-

tic curve (providing about 96 bits of security) takes less than half of the execution
time of a scalar multiplication on a 256-bit curve (128 bits of security).

2 A parameterized implementation of a field-arithmetic operation can support fields
of different order (i.e. fields of different bit length), typically in steps of 32 bits. The
parameters include besides the operands (or pointers to operands held in RAM) an
additional parameter that specifies the length of the operands.
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EM : By2 = x3 + Ax2 + x (2)

where A,B ∈ Fq and A �= ±2, B �= 0 (or, equivalently, B(A2 − 4) �= 0). Curves
of such form allow a full scalar multiplication k · P to be carried out using the
x coordinate only, which is clearly more efficient than when both the x and
the y coordinate are involved in the point arithmetic. A point P ∈ EM (Fq)
given in projective coordinates of the form (X : Z) can be doubled with only
three multiplications (3M) and two squarings (2S) in the underlying finite field.
On the other hand, a differential addition of two points (i.e. the calculation of the
sum P+Q of two points P,Q ∈ EM (Fq) whose difference P−Q is known) requires
two multiplications (2M), two squarings (2S), as well as a multiplication by the
constant (A + 2)/4. The so-called Montgomery ladder for scalar multiplication
has an overall computational cost of about 5� multiplications and 4� squarings
for an �-bit scalar, i.e. 5M + 4S per bit [2].

Exactly 20 years after Montgomery’s discovery, Harold Edwards introduced
a normal form to describe certain elliptic curves, which have since then become
known as Edwards curves [15]. Bernstein and Lange [5] showed that curves in
Edwards form have good cryptographic properties with respect to performance
and protectability against side-channel attacks. Twisted Edwards curves (in the
following abbreviated as “TE curves”) were presented in [3] as a generalization
of Edwards curves with similarly good implementation properties. A TE curve
over a non-binary field Fq is defined by the equation

ET : ax2 + y2 = 1 + dx2y2 (3)

where a and d are distinct elements of F∗
q . The additive group ET (Fq) contains

a neutral element O = (0, 1), which can, under some conditions, be used as an
input to the addition formula given in [3]. More concretely, when a is a square
and d a non-square in the underlying field Fq, then the addition law from [3] is
complete and yields the correct sum for any pair P, Q ∈ ET (Fq), including the
corner cases P = O, Q = O, and P = Q. Hişil et al. presented in [21] extended
projective coordinates, the currently fastest means of point addition on a curve
in TE form. When a = −1, then a “mixed” addition P + Q, where P is given in
extended projective coordinates and Q in extended affine coordinates, requires
seven multiplications (7M) in Fq, while the cost of a point doubling amounts to
three multiplications (3M) and four squarings (4S) [12,18].

Montgomery curves and TE curves are closely related due to the fortunate
fact that every Montgomery curve over Fq is birationally equivalent over Fq to
a TE curve and vice versa [3]. Specifically, if a, d are distinct and non-zero in
Fp, then the TE curve ET given by Eq. (3) is birationally equivalent over Fp to
the Montgomery curve EM given by Eq. (2) with the parameters

A =
2(a + d)
a − d

and B =
4

a − d
. (4)

Bernstein et al. demonstrated in [3] that also the converse holds. Namely, when
A ∈ Fp \{−2, 2} and B ∈ F

∗
p, then the Montgomery curve EM given by Eq. (2)

is birationally equivalent over Fp to the TE curve given by Eq. (3) where
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a =
A + 2

B
and d =

A − 2
B

. (5)

This curve always exists since A �= ±2 and B �= 0. In some sense, the TE form
and Montgomery form complement each other in an optimal way and facilitate
so the implementation of elliptic-curve cryptosystems. The Montgomery shape is
well suited for scalar multiplication k ·P with a variable base point (i.e. P is not
known in advance), but little attractive in settings where P is fixed. Fortunately,
such fixed-base scalar multiplication is exactly the domain in which the TE shape
excels. Various algorithms for scalar multiplication with a fixed base point, such
as the comb method or window method [20], are extremely fast on TE-form
elliptic curves due to the high efficiency of the addition law [3,9]. The birational
equivalence between these two curve models is particularly useful in ephemeral
ECDH key exchange [20], where each involved entity has to perform a fixed-base
scalar multiplication (to generate an ephemeral key pair) as well as a variable-
base scalar multiplication (to get the shared secret). The former can be efficiently
computed on a curve in TE form using e.g. a comb method, while the latter can
take advantage of the simple yet fast Montgomery ladder on the birationally-
equivalent Montgomery curve (see [25] for details).

3 LiTE Curves

We decided to base our new curves for lightweight ECC on the TE model due
to its excellent arithmetic properties that enable fast scalar multiplication and
effective protection against (certain kinds of) side-channel attacks. A TE curve
over Fp is fully specified by the prime p and the two coefficients a and d of its
defining equation, which is Eq. (3). We fix a to −1 so that implementers can
unleash the full performance of the extended coordinates described in [21]. As
a consequence, the curve-generation procedure boils down to finding a suitable
prime field and second coefficient. For efficiency reasons, it is common practice
to use primes of some “special” form that allow one to minimize the cost of the
modular reduction operation and to choose the coefficient d to be small since
it appears as operand of a multiplication in the addition formulae specified in
e.g. [3] (for both projective and inverted coordinates) and [21, Sect. 3.1].

3.1 Selection of Prime Fields

An analysis of recent proposals for new curves shows that the underlying fields
are based on three main classes of primes, namely generalized-Mersenne primes
[28], pseudo-Mersenne primes, and primes for which Montgomery reduction can
be optimized, i.e. “Montgomery-friendly” primes [13]. Pseudo-Mersenne primes
seem to be particularly attractive since they were used by the majority of the
recent curve proposals, e.g. [1,2,4,6,9,29]. Formally, a pseudo-Mersenne prime
can be written as p = 2k − c where c is small in relation to 2k. The reduction
of a 2n-bit integer x modulo p requires, in essence, just a multiplication of the
upper half of x (i.e. the k most significant bits of x) by c, and then an addition
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of the product to the lower half of x (see e.g. [2,9] for further details). Besides
excellent arithmetic efficiency, these primes offer the virtue of minimizing the
surface for side-channel attacks since the reduction can be easily implemented
to have constant (i.e. operand-independent) execution time. Pseudo-Mersenne
primes also allow for a parameterized implementation of the modular reduction
operation so that one and the same reduction function can be used for primes
of different length, which is not possible with the generalized-Mersenne primes
of the NIST curves. This combination of desirable features led to our decision
to use pseudo-Mersenne prime fields for the LiTE curves.

Now that the basic form of the primes is fixed to p = 2k − c, the next
step is to determine the actual values for the exponent k and constant c. Since
we aim for elliptic curves providing security levels of (approximately) 80, 96,
112, and 128 bits, their cardinalities need to contain a large prime factor of
magnitude 2160, 2192, 2224, and 2256, respectively, which requires due to Hasse’s
theorem [20] that the underlying prime fields have about the same order. This
suggests to use k = 160, 192, 224, and 256, yielding primes whose bit-lengths
are a multiple of 32, similar to the NIST primes [28]. However, choosing the
exponents in this way does not necessarily lead to peak performance. Namely,
as shown in [2], it can be beneficial to use a prime with a bit-length that is a
tad below the “nominal” bit-length for the targeted security level, e.g. a 255-bit
prime instead of a 256-bit prime. Having on bit of “headroom” simplifies the
implementation of the field arithmetic when one aims for both high performance
and resistance to side-channel attacks via constant (i.e. operand-independent)
execution time [9]. Therefore, we decided to fix the values of k to 159, 191, 223,
and 255.

The concluding step in the process of selecting a pseudo-Mersenne prime is
to determine the constant c, which is typically chosen as the smallest integer so
that p = 2k − c is prime [2]. An additional criterion often taken into account is
the congruence class of p modulo 4, whereby the two most common choices are
p ≡ 3 mod 4 and p ≡ 5 mod 8 (which implies p ≡ 1 mod 4)3. In the former case
(i.e. p ≡ 3 mod 4), it is possible to find a TE curve with the property that the
curve and its quadratic twist have both a minimal co-factor of 4 [23]. Unfortu-
nately, −1 is always a non-square modulo such a prime and, consequently, the
fast addition for TE curves from [21] is not guaranteed to be complete. On the
other hand, if p ≡ 5 mod 8, then −1 is definitely a square in Fp, but either the
TE curve or its quadratic twist will have a co-factor of at least 8. However, we
consider having a fast and complete addition law clearly more important than
minimal co-factors, and thus we chose the values for c as the smallest integers
that yielded primes congruent to 5 mod 8. The four primes we obtained in this
way are 2159 − 91, 2191 − 19, 2223 − 235, and 2255 − 19. A TE curve over these
primes with a = −1 can safely use Hişil et al.’s point-arithmetic formulae with-
out compromising completeness [21]. To summarize, the four pseudo-Mersenne
primes we put forward share the following three basic features, which facilitate

3 These two choices allow for an efficient computation of square roots in Fp (which is
needed for the decompression of compressed points [8]) through exponentiation.
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a “parameterized” implementation of the field arithmetic: (i) the exponent k is
a multiple of 32 minus 1, (ii) the constant c is at most eight bits long, (iii) p is
congruent to 5 mod 8, i.e. −1 is a square in Fp. The second feature guarantees
that a reduction modulo each of our primes can be efficiently implemented on
8, 16, and 32-bit microcontrollers since c always fits into a single register.

3.2 Requirements

State-of-the-art curve-generation procedures, in particular the ones described in
[9,17], put a strong emphasis on transparency and reproducibility to help the
obtained curves find acceptance and trust in the cryptographic community. An
important ingredient of such procedures is a set of well-explained and clearly-
specified requirements to convince potential users of the curves that they were
generated in a highly systematic and rigid fashion [6]. Our LiTE curves are, in
essence, based on four major requirements, namely (i) security, (ii) arithmetic
efficiency of operations in both the field and the group, (iii) consistency across
security levels, and (iv) inter-operability with “legacy” cryptographic hardware
software that supports only the Weierstraß form.

Security requirements for elliptic curves mainly consist of criteria to ensure
the hardness of the ECDLP, but may also take certain implementation aspects
into account, e.g. to prevent non-obvious side-channel pitfalls [17]. In our case
(i.e. TE curve over a large prime field), the ECDLP is generally assumed to be
a hard problem if (i) the group of points on the curve ET contains a large sub-
group of prime order � (or, equivalently, the co-factor h = #ET (Fp)/� of ET is
small) and (ii) the curve does not belong to some special class of “weak” curves
for which discrete logarithms can be computed in less than the 0.886

√
� steps

required by Pollard’s rho method [6]. Like Montgomery curves, TE curves have
a co-factor of h ≥ 4 [3,27]. Fortunately, most standards for ECC accept curves
with small co-factors (e.g. h ≤ 8 as in [23, Sect. A.1]), and some standards even
tolerate not-so-small co-factors. For example, the NIST permits implementers
of ECDSA to use an elliptic curve with a co-factor of up to 210 if � is between
160 and 223 bits long, while h can become as big as 214 for � lying in the range
of 224 to 255 bits [28, Table 1]. When generating new TE curves, it is common
practice to discard candidates that enable a multiplicative transfer or feature
an efficient endomorphism because these properties would allow an attacker to
“shortcut” the computation of discrete logarithms [1,6]. Therefore, one has to
check whether a curve candidate has a large embedding degree4 e and a large
Complex-Multiplication (CM) field discriminant D [17]. Some recent proposals
for curve generation, e.g. [23, Sect. A], explicitly exclude also curves with trace
t = 0 (i.e. supersingular curves) and t = 1 (i.e. anomalous curves), but this is

4 For a TE curve ET over Fp with #E(Fp) = h�, the embedding degree is defined as
the smallest positive integer e such that � divides pe − 1.
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redundant5 when targeting TE curves over Fp. An additional requirement often
taken into account is twist security, which means that not only the TE curve
ET , but also its quadratic twist E′

T , meets the security criteria specified above
(i.e. small co-factor and large embedding degree6) [6]. Twist security is a useful
feature for x-coordinate-only ECDH key exchange based on Montgomery-form
curves, such as X25519 [23], because it eliminates the need to check whether an
incoming x-coordinate belongs to a point on the curve or on the twist [13]. All
LiTE curves are twist-secure since ECDH is one of their main applications.

The second requirement we put on LiTE curves is to enable efficient imple-
mentations and facilitate state-of-the-art optimization techniques for both the
field and group arithmetic. More precisely, we aim for curves that allow one to
reach peak performance not only with the TE model, but also when using the
birationally-equivalent Montgomery representation of the curve. A wide range
of IoT devices (e.g. wireless sensor nodes) are equipped with small 8-bit micro-
controllers whose limited computational capabilities may introduce long delays
or high energy consumption when executing scalar multiplications. This makes
a good case to take efficiency aspects—at both the field and group level—into
account in the curve generation. Our approach of choosing a set of prime fields
with good arithmetic properties, even on 8-bit microcontrollers, was explained
in Subsect. 3.1. The addition law of TE curves can be fast and complete when
a = −1 is a square in Fp and d a non-square; ideally, d is a small non-square so
that a multiplication by d becomes less costly than an arbitrary multiplication
in the field Fp. On the other hand, when generating a Montgomery curve, it is
usual practice to fix B to 1 and choose a small A congruent to 2 modulo 4 to
ensure a multiplication by (A + 2)/4 is fast [2,27]. Unfortunately, a TE curve
with “ideal” coefficients (i.e. a = −1 and d is small) is birationally-equivalent
to a Montgomery curve with coefficients that are far from ideal. Namely, as can
be seen from Eq. (4), the coefficient A of the corresponding Montgomery curve
is 2(a + d)/(a − d) = 2(1 − d)/(d + 1), which is normally not small. We tackle
the problem of non-ideal Montgomery coefficients through a small modification
of the (projective) Montgomery doubling to minimize its execution time when
4/(A + 2) is small instead of (A + 2)/4 (see Sect. 4 for details).

Our third requirement is consistency across security levels, which means the
curves should share certain properties about the structure of the elliptic-curve
groups (e.g. co-factor, sign of trace) and the prime fields. Consistency enables
a parameterized software implementation of the group arithmetic (i.e. addition
and doubling of points) and the scalar multiplication so that one and the same
arithmetic function can be used for curves of different order, e.g. ranging from

5 A TE curve ET over Fp can never be anomalous since a co-factor of h ≥ 4 implies
#ET (Fp) �= p and also � �= p. Supersingular curves are implicitly excluded because
they do not have a large embedding degree. Concretely, a supersingular TE curve
ET over Fp has an order of #ET (Fp) = p + 1, which means its embedding degree is
e = 2 since p + 1 = h� divides p2 − 1 and, consequently, � divides p2 − 1.

6 There is no need to check the CM field discriminant of E′
T since ET and E′

T share
the same endomorphism ring and, therefore, have the same discriminant.
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159 to 255 bits in steps of 32 bits. Similar to efficiency, also consistency affects
both the selection of fields (which we already discussed in Subsect. 3.1) and the
generation of curves. The four LiTE curves we introduce in this paper have in
common that the coefficient d is positive and small enough to fit into a single
32-bit word, which makes it straightforward to write a parameterized function
for point addition. Besides point arithmetic also other operations, such as the
generation of secret scalars for x-coordinate-only ECDH key exchange, can be
implemented in a parameterized way, provided the set of curves meets certain
conditions. If, for example, the bitlength of the underlying prime fields differs
by a fixed amount (e.g. 32 bits) and each curve has a co-factor of 8 and a neg-
ative trace (like Curve25519), then a single parameterized function7 suffices to
generate scalars for all curves. Implementing or using a parameterized software
library for the field/group arithmetic (and other operations) in settings where
different levels of security need to be supported provides two major advantages
compared to a separate implementation for each curve. First, it allows for sub-
stantial savings in (binary) code size, which is an important asset in the realm
of the IoT. Second, the software development effort is significantly lower since
each arithmetic function needs to be written and tested only once [13].

Finally, the fourth requirement is inter-operability with legacy elliptic-curve
hardware and software that only supports the standard Weierstraß model given
by Eq. (1). For efficiency, the coefficient a4 of a Weierstraß curve is often fixed
to −3, while the second coefficient a6 is typically chosen to be a non-square in
Fp in order to prevent the existence of points whose x-coordinate is 0. This is
necessary because, as noted in [14, Sect. 3], some legacy ECC implementations
encode O as (0, 0), which would cause an ambiguity with one of the two points
(0,±√

a6) when point compression is applied. Our LiTE curves are required to
have a Weierstraß-form representation that is isomorphic to a Weierstraß curve
with a4 = −3 and a non-square a6. We clearly prefer an isomorphism over an
isogeny to keep the cost of converting points between different representations
at a minimum. The need for point conversions between the Montgomery or TE
form and the Weierstraß form arises when a state-of-the-art cryptosystem like
X25519 [23] or EdDSA has to be implemented on top of some legacy hardware
accelerator or software library for scalar multiplication. A well-known example
of such legacy software is TinyECC [24], a lightweight ECC library for wireless
sensors that supports solely Weierstraß curves with a4 = −3. Another scenario
requiring a conversion of points is discussed in [30] and concerns standardized
cryptosystems like ECDSA, which use (affine) Weierstraß coordinates as “wire
format.” Instantiating ECDSA with a TE curve allows an implementer to take
advantage of the high performance of the TE addition law for point arithmetic
at the (small) expense of a conversion from TE to Weierstraß form during the
signature generation, as well as a conversion in the opposite direction (i.e. from
Weierstraß to TE form) when verifying a signature.

7 This parameterized function can follow the approach of Curve25519, which means
it first generates an array of (pseudo-)random bytes of the same byte-length as the
underlying prime field and then “prunes” the first and last byte as in [23, p. 8].
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3.3 Curve Generation

Since we have already chosen the prime fields of our LiTE curves and fixed the
coefficient a to −1, the final step of the curve generation consists of finding the
smallest coefficient d that satisfies all requirements discussed in Subsect. 3.2. In
fact, these requirements can be condensed into five basic conditions, which are
specified in the following definition of a LiTE curve.

Definition 1. Let Fp be a prime field with p ≡ 5 mod 8. A LiTE elliptic curve
is a twisted Edwards curve over Fp given by the equation

ET : −x2 + y2 = 1 + dx2y2

where d is the smallest element of Fp\ {−1, 0} so that the following five condi-
tions are met

1. d is a non-square in Fp

2. ET has a co-factor of h = 8 and a negative trace (i.e. #ET (Fp) > p), while
its quadratic twist E′

T has a co-factor of h′ = 4 and a positive trace
3. ET has an embedding degree of e ≥ (� − 1)/100 and E′

T an embedding degree
of e′ ≥ (�′ − 1)/100

4. ET has a CM field discriminant of |D| > 2100

5. the Weierstraß representation of ET is isomorphic to a curve defined by an
equation of the form y3 = x3 − 3x + b where b is a non-square in Fp

The first condition is necessary to ensure that Hişil et al.’s “extended” addi-
tion formulae from [21] reach maximum performance and are complete, which is
an efficiency requirement on our LiTE curves. In contrast, the second condition
is related to security and to consistency. It guarantees, on the one hand, a basic
prerequisite for the complexity of the ECDLP, namely the existence of a large
cyclic subgroup of ET (and of E′

T ). Since we use prime fields with p ≡ 5 mod 8
(which implies p ≡ 1 mod 4), it is not possible that both the curve ET and its
quadratic twist E′

T have a minimal co-factor of 4 [23]; either h or h′ has to be
at least 8. We followed the approach of Curve25519 [2] and opted for h = 8 in
order to prevent the accidental leakage of a bit of the secret scalar in protocols
that involve a co-factor multiplication [23, Sect. A.1]. On the other hand, the
second condition contributes to consistency because a negative trace means � is
always slightly larger than a power of 2, which enables a parameterized imple-
mentation of a function to generate secret scalars as discussed in the previous
subsection. The third and fourth condition are linked to security; their purpose
is to exclude curves with a transfer or a (fast) endomorphism. Both conditions
are not new since they can be found in a similar form in [6,14,23]. Finally, the
fifth condition guarantees inter-operability with legacy ECC hardware/software
that supports only Weierstraß curves with a4 = −3 and ensures the conversion
of points through an isomorphism (the conversion of points between isogenous
curves would be more complex [11]). An arbitrary Weierstraß curve over Fp is
isomorphic to one governed by the equation y3 = x3 − 3x + b when −3/a4 has
a fourth root in Fp, which holds in our case for 25% of all values of a4 [8].
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We used the computer algebra system Magma V2.24 to compute the coeffi-
cient d according to Definition 1 for each of the four levels of security we consider
in this paper. More concretely, we wrote a Magma script that essentially consists
of a loop in which d gets incremented in each iteration until all five conditions
are satisfied. This script output the coefficients 49445, 141087, 987514, as well
as 4998299, which define the four LiTE curves:

LiTE-P159: −x2 + y2 = 1 + 49445x2y2 mod 2159 − 91
LiTE-P191: −x2 + y2 = 1 + 141087x2y2 mod 2191 − 19
LiTE-P223: −x2 + y2 = 1 + 987514x2y2 mod 2223 − 235
LiTE-P255: −x2 + y2 = 1 + 4998299x2y2 mod 2255 − 19

Our smallest coefficient d (which is the one of the 159-bit curve) is only 16
bits long, whereas the largest coefficient has a length of 23 bits. The execution
time of the script on a 2.4 GHz Xeon E5-2407 v2 processor ranged from 11 min
(for the 159-bit curve LiTE-P159) to roughly 87 hours (LiTE-P255).

4 Birationally-Equivalent Montgomery Curves

For a LiTE curve (or any other TE curve with a = −1), the coefficients A and
B of the birationally-equivalent Montgomery curve are

A =
2(a + d)
a − d

=
2(1 − d)
1 + d

, (6)

B =
4

a − d
= − 4

1 + d
= −2(1 − d) + 2(1 + d)

1 + d
= −(A + 2). (7)

Consequently, the Montgomery representation of a LiTE curve is given by
an equation of the form

− (A + 2)y2 = x3 + Ax2 + x. (8)

The Montgomery-coefficient A obtained via Eq. (6) does not correspond to
the common perception of efficiency since it is normally not small (and likely
also not congruent to 2 modulo 4). In other words, when generating an efficient
TE curve (i.e. a TE curve with a = −1 and small d), one can not expect that the
birationally-equivalent Montgomery curve is also efficient. This problem exists
in the opposite direction as well; for example, the TE curve that is birationally-
equivalent to Curve25519 does not have a small coefficient d [30]. One way to
deal with this issue is to generate, for each targeted security level, a TE curve
with ideal coefficients and a distinct Montgomery curve with ideal coefficients
(like in [1]). Unfortunately, this approach is not useful in the case of ephemeral
ECDH key exchange, where one typically aims to reach maximum performance
with the TE shape and the Montgomery shape of one and the same curve (see
Sect. 2 and [25]). Bos et al. [9] approached this problem by exploiting isogenies
between elliptic curves; concretely, they generated efficient Montgomery curves
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that are isogenous to efficient TE curves. In this way, they were able to obtain
elliptic curves that simultaneously feature a small coefficient A in their Mont-
gomery representation and a small coefficient d in the isogenous TE form. Also
Curve448 (an efficient Montgomery curve over a 448-bit prime [19]) is specified
in [23] together with an isogenous Edwards curve with a small d. However, the
conversion of points between isogenous curves is rather costly; for example, the
4-isogeny maps for Curve448 provided in [23, p. 6] are much more complicated
than the birational maps for point conversion from [3].

The approach we take in this paper is to generate “ideal” coefficients for the
TE model, but compensate the disadvantage of having a large coefficient A in
the birationally-equivalent Montgomery representation by a slight modification
of the point doubling for Montgomery curves. As pointed out before, when the
coefficient a of a TE curve is set to −1, then the resulting coefficient A of the
birationally-equivalent Montgomery curve is 2(1 − d)/(d + 1), which means the
constant (A + 2)/4 is not small. However, we found its reciprocal 4/(A + 2) to
be small when a = −1 and d is small. More concretely, due to Eq. (7) we have
4/(A + 2) = d + 1, and this implies 4/(A + 2) is small when d is small.

4XnZn = (Xn + Zn)2 − (Xn − Zn)2 (9)
X2n = (Xn + Zn)2(Xn − Zn)2 (10)
Z2n = (4XnZn)

[
(Xn − Zn)2 + ((A + 2)/4) (4XnZn)

]
(11)

Montgomery provided in [27] the above formulae for the doubling of a point in
projective (X : Z) coordinates. The computation of 4XnZn takes two squarings
(2S) in Fp and, then, the computation of X2n and Z2n requires a multiplication
(1M) each, which means the overall cost amounts to 2M + 2S, plus a multipli-
cation by (A + 2)/4. Fortunately, these formulae can be easily adapted for the
Montgomery representations of our LiTE curves, whose A coefficients have the
property that 4/(A + 2) is small. Namely, by simply multiplying both X2n and
Z2n by 4/(A + 2), we obtain the doubling formulae below, which do not contain
a multiplication by the constant (A + 2)/4 anymore.

X2n = (Xn + Zn)2(Xn − Zn)2 (4/(A + 2)) (12)
Z2n = (4XnZn)

[
(Xn − Zn)2 + ((A + 2)/4) (4XnZn)

]
(4/(A + 2))

= (4XnZn)
[
(Xn − Zn)2 (4/(A + 2)) + (4XnZn)

]
(13)

This modification does not change the affine x-coordinate x2n = X2n/Z2n,
and so we can safely use these formulae for the Montgomery ladder. Similar to
the original doubling method, 4XnZn has to be computed first and, thereafter,
the product of (Xn − Zn)2 and 4/(A + 2) can be formed. This product serves
then as operand for the computation of X2n and Z2n, respectively, which means
the total cost amounts to 2M +2S and a multiplication by 4/(A+2). Apart from
that, two additions and two subtractions in Fp have to be executed, exactly as
with the original formulae [27]. In summary, performing a scalar multiplication
on the Montgomery curves that are birationally-equivalent to our LiTE curves
takes exactly the same number of Fp-operations as when a Montgomery curve
with a small coefficient A and B = 1 is used, e.g. Curve25519.
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Abstract. Gateways prevail in IoT (Internet of Things) set-ups for
connectivity, privacy, and other reasons; however, there has not been
a generic and open-source framework offering authentication, identity
management, policy administration and policy evaluation as a service
for such a scenario. Meanwhile, cloud-based security solutions are avail-
able, but they use too much memory and CPU to be deployed in low-cost
hardware typically used for IoT gateways such as the Raspberry Pi.

In our work, we identified critical requirements for a generic secu-
rity framework that could be deployed to low-cost hardware used for
IoT gateways. From this point on, we implemented the security frame-
work, and modified a Content Management System (CMS) to rely on
the framework for authentication and policy evaluations.

We evaluated our component’s runtime performance and computa-
tional resource consumption in comparison to a popular attribute-based
security framework written in Java. We measured the CPU, memory,
and network usage for each security framework, their databases, and the
CMS across three different hardware platforms. To ensure our results are
not biased towards a particular hardware set-up, we chose hardware with
two different processor architectures, different capabilities and vendors.
Our results indicate that our framework not only requires less time to
complete requests but also makes less intensive use of the processor and
the memory, i.e., the most critical capabilities for IoT gateways today.

Keywords: Access control · IoT gateway · Identity management

1 Introduction

Affordable single-board computer hardware equipped with WiFi, Bluetooth, I/O
pins, among other features lets developers and makers create applications to
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obtain information from sensors easily1. Also, the increasing privacy awareness
has influenced users to store sensor data locally instead of delivering it directly
to IoT clouds and services2 when possible.

Keeping data locally is undoubtedly one step towards data privacy; how-
ever, in scenarios where gateways need to offer multi-tenant support, there is
an additional need to enforce security policies on data stored in the gateway
and other services running in the same environment. To support this, we have
developed a prototypical implementation of a security framework, called agile-
security3. Agile-security allows applications running inside or outside the gate-
way to rely on authentication, identity management, policy administration and
authorization as a service. In this way, access to sensors, application APIs, or
other security-sensitive assets can be managed centrally by the security frame-
work hosted in the gateway. Agile-security supports a generic attribute-based
identity and access control model to remain as flexible as possible.

Despite considerable research towards IoT application security, there has not
been an open-source solution to handle the security requirements for gateway-
based scenarios in a generic, lightweight and scalable manner. On the one hand,
researchers have previously argued for a capability-based approach whereby a
certificate referencing a subject, i.e., user, and its access rights is presented to
the service provider, i.e., a device [9,15]. However, this requires Certification
Authorities (CA)s to sign certificates and assumes that users interact directly
with devices. Closer to our research, there have been efforts towards enforcing
security policies for brokers or gateways using MQTT, HTTP and CoAP bro-
kers [5,6,12]; however, these integrations with specific protocols fail to provide
a generic framework to build security solutions.

From a different perspective, cloud systems rely on centralized components
offering authentication, attribute-based authorization and policy management
as a service. There are commercially available implementations from Oracle [2],
Microsoft [1], and IBM [14], as well as an open-source implementation called
WSO2 Balana [3]. However, cloud-based security components require compu-
tational resources beyond the capabilities of affordable single-board computers
commonly used to host IoT gateways. Instead, our solution can be deployed in
smaller single-board computers, and uses less resources than WSO2 and scales4

to medium cloud-based set-ups with some configuration adjustments.
Our contributions can be summarized as follows: (1) we outline require-

ments and challenges faced while developing of a generic, lightweight, and scal-
able attribute-based security framework. (2) we explain how we addressed such
challenges during the implementation of our security framework. (3) we perform
a quantitative comparison between our framework and the WSO2 server in a
realistic scenario. To this end, we use automated UI-testing to visit a modified

1 Single-board computers such as the Raspberry Pi, the Beaglebone board or the
UPBoards are computers (ARM- or Intel-based) available from 30 to 60 USD.

2 There are several IoT specific clouds, sich as Xively, Amazon IoT or Thingspeak.
3 Available at: https://github.com/agile-iot/agile-security.
4 Scalability means the agile-security can be configured differently depending on the

hardware available, e.g., to use more resources and provide responses faster.

https://github.com/agile-iot/agile-security
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CMS using one of the two security frameworks to assess the runtime performance
as well as the usage of computational resources.

This paper is structured as follows: We introduce basic terminology used
across the paper in Sect. 2. Afterward, we describe the requirements and provide
an overview of the security framework in Sect. 3. Section 4 shows an example of
how agile-security can implement role-based access control policies. After con-
cluding the conceptual description of the framework, we evaluate it in compari-
son to WSO2 in Sect. 5. Finally, we present related work and our conclusions in
Sects. 6 and 7, respectively.

2 Attribute-Based Access Control Definitions

For clarity, we describe our work using well-established terminology presented
in the attribute-based concepts provided by NIST from Hu et al., which states:

“A logical object -sometimes referred to as a resource- is an entity to be
protected from unauthorized use.

The term subject is used to denote a human or non-person-entity requesting
access to an object.

Privileges represent the authorized behavior of a subject; they are defined by
an authority and embodied in policy or rules.

Digital Policy (DP): Access control rules that compile directly into machine
executable codes or signals. Subject/object attributes, operations, and environ-
ment conditions are the fundamental elements of Digital Policies, the building
blocks of Digital Policies rules, which are enforced by an access control mecha-
nism.

Meta Policies (MP): A policy about policies, or policy for managing policies,
such as the assignment of priorities and resolution of conflicts between Digital
Policies or other Meta Policies.” [10]

3 Overview of the Security Framework

We start by listing the requirements addressed by our security framework. Then,
we explain conceptually how generic Digital and Meta Policies can be achieved,
followed by a description of the policy evaluation process, the identity model and
the support for authentication mechanisms. We have used Node JS, a server-side
JavaScript runtime, for the development of the agile-security framework.

3.1 Requirements

The security framework must:

R1. Allow users to define entities, i.e., objects and subjects, and security policies
with the highest flexibility possible.

R2. Be usable from different kinds of applications (web, mobile, cron-jobs, com-
mand line programs, and other applications) and regardless of their location
and operating system (running on the gateway or in a server).
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R3. Perform efficiently in affordable single-board computer hardware, as well
as more expensive servers (cloud).

R4. Be modular and extensible, so developers can add or disable functionality
easily to fulfill their particular needs.

R5. Be easy to integrate for developers through libraries, standard interfaces,
or rapid prototyping tools used in IoT environments.

3.2 Generic Digital Policies and Meta Policies

To address R1, developers must be able to define their own security policies
with the highest flexibility possible. Thus, we need to provide a generic entity
model that allows developers to define subjects and objects freely. Agile-security
tackles this by letting developers specify entities to represent subjects and objects
in the same way. Also, there are two key considerations. First, the framework
must allow developers to define Digital Policies on the attributes and actions
corresponding to entities. Second, the model needs to provide means to specify
who is the authority for each attribute, i.e., a Meta Policy, generically.

A policy evaluation mechanism is the main building block for a framework
for managing identities and access control rules. To represent how we lever-
age the policy evaluation mechanism across agile-security, Fig. 1 illustrates the
relationship between the policy evaluation mechanism, Digital Policies, Meta
Policies and the representation of entities in the identity model. First of all,
Fig. 1 shows the mechanisms to evaluate and manage Digital and Meta Policies
in grey. They are shown in the same color because they use the same policy
evaluation mechanism described in Sect. 3.3. Digital Policies enforce access to
attributes and actions that can be performed by, or on, entities. Furthermore,
the picture illustrates different levels of customization that may be required by
specific applications.

The first level, on the left-hand side of Fig. 1, shows a mechanism with enough
flexibility to evaluate Digital Policies on attributes and actions of entities. How-
ever, in the first level, such a model would not allow users to define who can
update Digital Policies. As a result, policies can only be applied to every kind
of entity in the same way without giving users the possibility to update policies.
This kind of mechanism is commonly referred to as Mandatory Access Control
(MAC) because users cannot choose to override security mechanisms applied
system-wide.

On the second level, the security model can be extended with the capability
to evaluate Meta Policies, i.e., policies enforcing access to Digital Policies. Hav-
ing fixed Meta Policies creates the opportunity for users to update the Digital
Policies. In other words, models implemented with 2 levels or more allow for Dis-
cretionary Access Control (DAC), as users can update Digital Policies according
to Meta Policies. Similarly, three levels allow to update the Meta Policies.

The result of our work implements a security framework that can evaluate
policy hierarchies of level n. Notwithstanding, we do not foresee the need of
using any level higher than 3, as this would increase the complexity of the system
significantly and make it prone to human errors.
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Fig. 1. Policy interactions to realize the security model

3.3 Policy Evaluation Framework

We used the UPFROnt policy evaluation framework5. UPFROnt defines policies
as a collection of blocks specifying restrictions on reading or writing operations.
Users can execute read, or write, operations as long as there is at least one read,
or write, block allowing this. Figure 2a shows an example where a read operation
would be allowed, while write operations would be denied. Besides, within each
block, there can be zero or more locks where each one evaluates to a boolean
value. All locks must evaluate to true to allow a block of the policy, i.e., white
read block in Fig. 2a. Thus, the evaluation of a block is calculated by joining the
boolean value returned by every lock with an and operator. Figure 2b shows two
locks: the read block on the left is allowed, while the read block on the right is
not allowed. More to the point, in the case of Fig. 2b, the read action would still
be allowed overall, as the requirement is to have at least one block allowing the
operation. The composition of locks and blocks in this way creates a boolean
formula in Disjunctive Normal Form (DNF).

The approach followed by UPFROnt is an extension to the parametrized
locks proposed by Broberg and Sands [4]. During policy evaluations, locks receive
attributes for both entities, i.e., subject and object, and additional parameters
specified in the policy. For example, an attributeEquals lock would receive two
arguments: the attribute name, and the expected value. In this way, this lock
can be used to assert that a user has an admin role by specifying a policy with
a block, which contains the attributeEquals lock with the arguments “role”
and“admin”. Similarly, the isOwner lock verifying if a subject owns an object
does not take any arguments, but compares the “id” attribute of the subject
with the“owner” attribute of the object.

A flexibility aspect of the UPFROnt component is that developers can plug
in their code to evaluate locks. These locks are executed within the policy frame-
work and can have a state; moreover, the lock implementation can use any API
offered by the Node JS framework which contributes to the generic approach

5 UPFROnt has been developed by Daniel Schreckling and is available at https://
github.com/SEDARI/UPFROnt.

https://github.com/SEDARI/UPFROnt
https://github.com/SEDARI/UPFROnt
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(a) Policy blocks (b) Locks within a block

Fig. 2. Policy components

(R1) and modularity (R4). Initially, UPFROnt includes the attributeEquals
and the isOwner lock. We have developed new locks to support logging of actions
and management of groups.

As shown by Fig. 1, the evaluation mechanism described in this section
applies to Digital Policies governing write and read access to attributes and
actions that can be performed on entities. Moreover, the policy evaluation based
on locks is also used to evaluate Meta Policies enforcing access to Digital Policies.

3.4 Identity Model

Based on the policy evaluation already presented, the identity management com-
ponent within agile-security lets developers define the entity format, i.e., which
fields are required for each type of entity through a JSON schema specification
loaded from a configuration file. For example, a developer can specify that he
requires a kind of entity called “sensor” with the possible attributes“location”,
and “dataType”. Also, developers can specify which attributes are allowed, their
type, and whether they are mandatory. If developers choose so, they can even
restrict possible values an attribute can take.

The identity management has privileged attribute names that cannot be used
by developers; these are “id”, “owner”, “entity type” and“auth type”. We do this
to ensure that the identity management system assigns an “id”, an“owner”, and
an “entity type” for every entity during its creation. The owner’s identifier is set
to match the identifier of the entity’s creator except for users. Users own them-
selves as they are the root of the ownership hierarchy. Further, as agile-security
supports several authentication mechanisms, the identity management ensures
that users always have the“auth type” to determine which authentication mech-
anism must be used.

Identity management handles entities and performs access control on
attributes. To achieve this, identity management validates whether the user send-
ing a request can perform the action, e.g., update attribute. If this check is suc-
cessful, the relevant read or write Digital Policies for each attribute are evaluated.
Subsequently, if a user can read an entity but the Digital Policies disallow access
to a particular attribute, then the identity management framework removes the
attribute from the response. This allows for a simple declassification mechanism
and grants access to attributes selectively based on the user’s Digital Policies.

Like with the definition of entities, the configuration file for agile-security
includes default Digital Policies enforcing access to each attribute. This allows
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developers to set-up a security model based on their needs. The definition of
Digital Policies on attributes specify who is the authority, according to the NIST
definitions, to update or read the attribute. In addition, the configuration file
also specifies the level of Meta Policies supported according to Fig. 1 and default
MetaPolicies applied to each Digital Policy. As a result, developers can decide
whether they need Meta Policies, how many levels, and how they should rule the
access to Digital Policies. Last but not least, we solve the bootstrapping problem
by including information in the configuration file to create entities to be created
in the first boot, e.g., first administrator of the system.

3.5 Wide Support for Authentication Mechanisms

Applications can rely on agile-security as an OAuth2 Identity Provider (IdP).
On the one hand, this tackles ease of integration requirement (R5) because many
libraries are implementing OAuth2 clients in many programming languages and
operating systems. On the other hand, by implementing every token grant speci-
fied by OAuth2 in agile-security, we ensure that all sorts of applications running
inside or outside the gateway can rely on agile-security as an IdP (R2). Par-
ticularly, as we implemented all the authorization flow grants from OAuth2,
we ensure that not only Web applications are supported. Also, command line or
even cron-jobs can rely on agile-security. In addition to offering standard OAuth2
interfaces, we developed a JavaScript library encapsulating the authentication,
identity management, policy administration, and policy decision for ease of inte-
gration (R5). We also provide extensions for Node-RED, a visual development
environment used for IoT applications, connecting the policy framework too.

For ease of integration into existing applications that already rely on other
IdPs, e.g., Google, agile-security addresses the extensibility requirement R4 by
letting developers define passport source files (a Node Js authentication frame-
work) to add new authentication mechanisms besides local users handled by
agile-security. To exemplify this, agile-security already contains strategies to rely
on authentication from Google, Dropbox, PAM (Linux Pluggable Authentication
Modules) and WebID.

4 Digital Policies Example (Role-Based Access Control)

This section illustrates an instance where the security model is used to rep-
resent a simple role-based access control model using identity definitions and
policies. Even though passwords are not needed when developers rely on exter-
nal authentication mechanisms, e.g., Google, we show an example of role-based
access control where users do have a password attribute. First, the entity schema
needs to specify the “role” and“password” attributes.

The policies represented by Fig. 3 rely on the attributeEquals and isOwner
locks from Sect. 3.3 to define the role-based access control model6. The left-hand
6 In addition to these policies, a policy allowing everyone to execute an action may

also be needed. To this end, a block without any locks lets the user access everything.
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side shows a policy allowing only users who own an entity to perform an action
the attribute, Digital Policy or Meta Policy. Similarly, the figure on the right-
hand shows a policy where only administrators are allowed.

Fig. 3. Policy samples

In addition to the evaluation process presented in Sect. 3.3, UPFROnt has a
hierarchical way of evaluating policies for simplicity and efficiency. In particular,
entities are objects containing attributes that can be strings, numbers, but also
objects. As a result, entities can have nested attributes. To avoid forcing users to
set a policy for each nested property, UPFROnt uses the concept of a top-level
policy. The top-level policy from any point in the object hierarchy applies to
child nodes of a given attribute.

Figure 4 shows a possible agile-security configuration implementing a simple
role-based access control model using the policies introduced in Fig. 3 and the
top-level concept. To ensure that only administrators can create users, the top
level policy for the user entity is set to allow everyone to read, but ensure that
only owners or administrators can write to attributes within the entity (unless
elements below in the hierarchy override them). As the creation of a user implies
writing the attributes of the newly created user to set them, agile-security pre-
vents non-admin users from creating users in this setting.

For clarity, we show light grey policies in front of the attributes when they
have been inherited by a top-level policy above them, i.e., id and owner. In addi-
tion to this, we show an entity model where only administrators can set the
attribute role. This ensures that users cannot upgrade their privileges on their
own because there is no writeOwner policy for the role attribute. Conversely,
the password attribute can be set by the owner and administrators; however,
administrators cannot read the password. The previous example shows how to
achieve interesting properties to handle the password and role attribute to bal-
ance the authority for a role attribute (set role), and the user’s privacy (read
password).

In more complex scenarios where Meta Policies are involved, agile-security
links them using the tree structure presented in Fig. 1. In this way, the security
framework traverses the tree, starting from the entity or action, to validate
whether a particular Digital Policy or Meta Policy can be changed. If there is
no parent for a Digital or Meta Policy, this means it cannot be updated.
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Id
Owner
Role
Password

Id : [readAll , writeOwner, writeAdmin]
Owner : [readAll , writeOwner, writeAdmin]
Role : [readAll, writeAdmin]
Password: [readOwner, writeOwner, writeAdmin]

En ty’s A ributes Policies
[readAll , writeOwner, writeAdmin]         Top Level Policy for En ty

Fig. 4. Role-based access control model example

5 Evaluation

Every system faces a trade-off between using computational resources and pro-
viding a good response time. For example, loading all data in memory instead
of placing it in a hard drive decreases the response time but may starve other
processes of memory. To validate how well our security framework can execute in
single-board computers, as well as bigger setups (R3), we perform an extensive
quantitative evaluation. This is critical to obtain all aspects related to trade-offs
between resource consumption and efficiency.

5.1 Scenario

To obtain a realistic scenario, we modified the most popular CMS7 currently,
i.e., WordPress, to outsource authentication and authorization to an external
security framework. We created two branches of WordPress version 4.9.5 over-
riding security functions validating whether users are allowed to see a particular
page or open the administrative dashboard. One branch of WordPress uses the
Balana WSO2is server version 5.3.0, and the other one uses agile-security.

A factor motivating us to use WordPress as an example is that it evaluates
more than 70 capabilities (mapped to each security framework) while actions are
taken by a user; more to the point, each capability is evaluated separately. This
sub-optimal setting is not desirable for a production environment because it trig-
gers a separate network request with headers or XML content from WordPress
to the security framework. However, this sub-optimal environment provides us a
worst-case scenario where an application makes intensive use of the APIs from
the security frameworks under evaluation. What is more, if we can establish that
our security framework works for this environment, the runtime performance and
resource use can only improve after optimizations are applied.

Concerning the software set-up, we always had a modified WordPress rely-
ing on one of the two security frameworks (WSO2 or agile-security). However,
agile-security can be executed in two ways: either using an external database
(MongoDB) or using a database running in the same process (LevelDB). This
helps agile-security to remain flexible to the requirements of a given applica-
tion and execute in less or more resource-constrained environments. Thus, we

7 As of October 2018, WordPress has 59.9% of the CMS market share: https://
websitesetup.org/popular-cms/.

https://websitesetup.org/popular-cms/
https://websitesetup.org/popular-cms/
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evaluate the performance of WSO2 connected to an external MySQL database,
agile-security connected to an external MongoDB database, or agile-security
using LevelDB (same process as the security framework).

To isolate resource consumption per component, we have deployed Word-
Press, the security frameworks and their databases (when they are separate
processes) in separate containers. In turn, this allows us to use docker APIs to
monitor the amount of memory, network, and CPU used by each component.
Also, to ascertain properties for the security frameworks used without relying on
a particular hardware implementation, and to obtain a big picture on the perfor-
mance of the security frameworks, we executed the evaluation on three different
hardware devices shown in Table 1. All our experiments use 64-bit processors
and use the two most prominent processor architectures.

Table 1. Hardware configurations

Property Raspberry Pi 3(B) Upboard(UP-CHT01) Lenovo T470S

Memory 1 GB 2 GB 16GB

CPU Quad Core 1.2 GHz Quad Core 64 1.92 GHz Quad Core 2.70 GHz

Storage SD card size 16 GB 500GB (Solid state)

Architecture ARMv7 x86 64 x86 64

Also, we created an automated web test to interact with the WordPress
interface to log in a user, open the dashboard, log out and visit the public site,
using Cypress (a Web UI automation framework). Figure 5 shows the use of
the docker containers, the security frameworks, and the UI testing framework.
We recorded resource consumption continuously, while 100 interactions were
performed automatically by the UI testing framework. Each interaction from
the UI framework had two actions. First, an admin user logged in and then
WordPress would forward him to the administrative dashboard page. Afterward,
the user would log out and therefore load the public site. We recorded the time
to load the dashboard and the public page, i.e., login and log out.

WordPress

Security
override

Security  
Framework 

Docker

Browser

Automatic
UI Testing

Computational
Resource
Monitoring 

security-containerwordpress-container database-container

Security
Framework
Database

Fig. 5. Evaluation set-up
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In the following measurements, there are no results for WSO2 on the Rasp-
berry Pi 3 because WSO2 requires the hardware to have at least 2GB of RAM
to execute. On the contrary, we show that agile-security can be executed in the
Raspberry Pi 3, and therefore imposes much less restrictive requirements on the
hardware level than WSO2.

5.2 Runtime

We calculated the mean of 100 WordPress interactions, and their standard devi-
ations to assess the response time of WordPress while relying on WSO2 or agile-
security to evaluate the policies associated with the capabilities required to ren-
der the dashboard or log out the user. Figures 6a and b show the results measured
in seconds to load each page. The amount of time measured during the page load
is higher than the actual time due to the execution of the automation frame-
work to interact with the UI. Still, this quantitative measure helps to compare
the performance of each setting. To represent the results intuitively, we sort the
hardware, in ascending order, from less to more powerful.

(a) Login and loading of dashboard (b) Logout and loading of public stie

Fig. 6. Mean and standard deviation of loading time for 100 visits

From both figures, it can be observed that agile-security has a setting, either
with levelDB or MongoDB, that offers better speed than WSO2. Also, in the
case of agile-security it is better to use LevelDB, i.e., running the database code
within the same process as the security framework, than executing a separate
database, i.e., MongoDB, for small single-board computers, e.g., the Raspberry
Pi. Notwithstanding, as more hardware is available for the external database, it
is more efficient to separate the security business logic from the database to take
advantage of the computational resources and achieve a better response. For both
actions, login, and log out, the point where one should divide the database from
agile-security lies somewhere between the resources available in the Upboard and
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the Lenovo laptop. The standard deviations represented for both figures show
that measurements have stable values across the 100 experiments.

Figure 6a also shows that agile-security provides the same loading time on a
Raspberry Pi 3 than the time achieved in the Lenovo laptop for WSO2. Besides,
agile-security provides better loading time for the dashboard (log in) than WSO2
for all our experiments. We must also clarify that, although the deviations seem
bigger in Fig. 6b, this is a visual effect due to the change of scale, i.e., all logout
actions lie below 1.2 s.

5.3 Resource Consumption

It is clear that agile-security provides better runtime performance than WSO2.
However, this section assesses the computational resource consumption to vali-
date whether the performance improvement is sustainable in terms of hardware.

We obtained the number of bytes used in memory, the number of bytes sent
through the network, and the number of processor ticks used by each component.
Even though counting ticks does not have an intuitive meaning, it provides a way
to compare the use of computational power in each scenario. We opted for this
approach instead of showing percentage of use of CPU, as the latter is inherently
biased by the underlying hardware, i.e., 10% of use in the Lenovo laptop is not
comparable to 10% of use the Raspberry.

Docker provides one event every second with statistics on resource consump-
tion. Thus, we calculate the average consumption value per second for every
resource and then plot it in Table 2. Moreover, we use the same ordering as
Sect. 5.2 to improve readability. On top, we represent values in the table as a
heat-map showing higher numbers with a darker background. The values are only
compared vertically; that is to say, there are separate scales for memory, net-
work and CPU ticks. Also, the agile-leveldb set-up does not contain a database
measurement because LevelDB is executed in the same memory space as the
agile-security framework and therefore does not require a separate process.

By considering the results of the runtime evaluation, agile-security should
be used without the database in both single-board computers because agile-
security requires more processing power, network and memory than LevelDB.
On the contrary, it is sensible to use agile-security with MongoDB for the Lenovo
laptop, where there is a runtime improvement in comparison to LevelDB.

Following this reasoning, the table shows that agile-security and its database
make intensive use of the network; especially, if this compared to the network
consumption between WSO2 and MySQL. This is clearly due to the transport
protocols used, i.e. MySQL is binary and MongoDB uses HTTP. Luckily, inten-
sive use of network between agile-security and its database is not an issue when
users deploy the security framework and the database in the same device. Even
though communications between agile-security and its database are classified
as networking in our experiment, this traffic is routed through the loopback
interface, without requiring actual network transmissions.

On the other hand, WSO2 uses more networking between the security frame-
work and WordPress. Unlike in the case of agile-security and its database, WSO2
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Table 2. Memory, network and CPU consumption per component

(or agile-security) and WordPress are more likely to be deployed in separate hard-
ware as WordPress is a relying party decoupled from the security framework.
Also, WSO2 makes intensive use of memory and processor in both scenarios
where it can be executed, i.e., Upboard and Lenovo. These are resources that
are critical to ensuring that additional applications can be deployed in an IoT
gateway.

Even though we already established that WSO2 has lesser runtime perfor-
mance than agile-security for all the hardware we tested, it is particularly prob-
lematic to use WSO2 for deployments where the IoT gateway has limited memory
capacity. In particular, Table 2 shows that WSO2 consumes 1.6 GB out of 2 GB
available to the whole system in the Upboard. Also, the overhead of the eXten-
sible Access Control Markup Language (XACML) policies can be observed by
an increase in the amount of memory and processor required by WordPress in
comparison to the settings where agile-security was used in the same hardware.

5.4 Limitations

We performed precise measurements regarding resource consumption and inter-
actions involving the system modified to use the security frameworks, i.e., Word-
Press. However, we were able to run experiments only to the point equivalent to
a medium-sized server, i.e., 16 GB of RAM. So, even though we conclude that
our framework is better for IoT gateways and medium-sized set-ups, we do not
assert that agile-security replaces the niche where WSO2 is currently used, i.e.,
bigger cloud set-ups. In this sense, Java technologies are deployable in enterprise
servers to form clusters, which lie beyond the capabilities of agile-security.
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6 Related Work

Fysarakis et al. described an instance where a centralized ABAC system was
used to enforce policies in a Smart Home environment based on the Sun Java
implementation of XACML. Although their approach focuses on attribute-based
access control, like ours, their contribution is on an architectural level [8]. Also,
The approach from Fysarakis et al. requires capabilities beyond affordable single-
board computers, i.e., at least 4 GB of RAM to execute the policy decision point.

Colombo et al. [6] and Niesse et al. [12] propose the integration of poli-
cies for the IoT directly within MQTT brokers. Although this approach shares
the gateway-centric perspective, it goes into details regarding each protocol.
Instead, we provide a security component usable from internal and external
applications. Hao et al. proposed JACPoL: a simple access control policy lan-
guage in JSON [11]. Their approach is to provide an attribute-based language
more lightweight than XACML. Their evaluation was done using 16 GB memory
and a 2.6 GHz and considered only the time required to reply to policy requests.
Although we also use a JSON-based policy language, we based our approach
on parametrized locks [4] which allows developers to integrate code for the pol-
icy evaluation. Also, our evaluation is more concerned with a realistic scenario
and provides a better overview of computational resource consumption. There is
an analysis of gateway-centric scenarios sharing data with third parties [13] by
Parra et al., but their focus considers only architectural aspects and technologies
useful to provide access control towards some parties involved. Also, there have
been extensions to provide an OAuth2-based architecture for the IoT [5] and to
extend the WSO2 server to use flows authenticate devices [7].

7 Conclusion

XACML-based access control is used for enterprise large-scale applications,
where there is trained personnel to configure XACML policies, and policy deci-
sion points. However, the knowledge required to specify policies and the nuances
related to its configuration are baffling to most developers dealing with smaller
set-ups. On top, the resource consumption of XACML servers, e.g., WSO2, is
prohibitively high for an IoT set-up. Thus, we close the gap where develop-
ers need authentication and attribute-based policies deployed in a single-board
computer.

To save resources while offering flexibility for the policy definition and eval-
uation, agile-security loads an entity specification along with default policies
applied to new entities of each type such as users, OAuth2 clients, devices, or
any other entity defined by developers. Also, agile-security can allow the update
of Digital Policies used to enforce access to attributes and other read or write
actions on entities. This is achieved through a generic, hierarchical, structure of
policies that yield Meta Policies. For clarity, we show a simple scenario where
agile-security is used to implement a role-based access control model. In this
model, the role attribute is protected from unauthorized writes, yet keeping the
user’s password secret even from administrators.
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The policy framework lowers the entry barrier for developers to use a security
framework, in comparison to XACML servers. In particular, agile-security allows
the definition of policies based on atomic and simple building blocks, i.e., locks,
computed for the policy evaluation. At the same time, security experts and
developers can plug-in custom logic in locks achieving extensibility. From the
authentication perspective, agile-security can be used as an IdP from a vast set
of applications ranging from batch jobs to mobile or web applications because it
supports all authorization codes specified in the OAuth2 protocol.

Aside from showing the way to achieve flexibility, extensibility, and ease of
deployment, we evaluate the resource consumption and response time of agile-
security in comparison to WSO2, a popular open-source Java XACML solution.
We establish that our approach saves resources and provides a lightweight frame-
work. Also, our solution scales as more hardware is available after changing the
configuration settings and using an external database.

After executing experiments with 100 visits to a modified WordPress
instance, we conclude that our framework offers better runtime performance
than WSO2 in all scenarios. More to the point, computational resource con-
sumption is also lower as our solution uses more networking in the loopback
interface than the WSO2 server, but saves memory and CPU: the most limited
resources in an IoT gateway. Still, we clarify that our analysis in the scope of
the paper does not claim that agile-security outperforms WSO2 in all set-ups.
We believe there is a clear need for services like WSO2; however, such services
should not be used for IoT gateways due to their high resource consumption.
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