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�Introduction

Cardiovascular tissue bioprinting occupies a critical crossroads position between the 
fields of biomaterials engineering, cardiovascular biology, three-dimensional (3D) 
design and modeling, and biomanufacturing [1–4]. This complex area of research 
requires expertise from all these disciplines to provide a multidisciplinary approach 
that enables fabrication of functional and living tissues and organs, whether for 
basic science or translational research applications [5]. A major challenge that ham-
pers this field is the lack of systematic characterization of the physical and chemical 
properties of hydrogel-based bioinks that are applicable to organ and tissue bio-
printing [6–8]. Tailoring bioink properties to mimic the complex native tissue extra-
cellular matrix (ECM) is of great importance and a slight divergence could result in 
pathological or loss of function manifests [9, 10].
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Functional tissue bioprinting holds great promise to combine rationally designed 
biomaterials, functional cells, and macromolecules into 3D constructs that closely 
recapitulate the mechanical, structural, and functional microenvironment of native 
tissues [11]. With precise control over spatial arrangement of the cell-biomaterial 
architecture, 3D bioprinting can provide complex physiochemical and biological 
cues that are necessary for the maintenance and maturation of functional tissue 
analogues. To date, a range of bioprinting platforms have been used to create artifi-
cial tissue constructs, such as extrusion-based [12–15], droplet-based [16–18], and 
laser-based printing [19–21] (Fig. 4.1).

Recent advances in in vitro tissue development has made 3D bioprinting an attrac-
tive means for the next-generation regenerative medicine, specifically as a platform 
for tissue replacement to rescue failed organs in patient-specific therapies [6, 22–24]. 
Some of these applications include pancreatic tissue printing, to address loss of func-
tion in diabetes [25, 26], bioprinted kidney tissue analogues that can be used instead 
of, or in conjunction with, dialysis in kidney failure therapies [27, 28] and cardiac tis-
sue constructs which can be bioprinted to repair the damaged heart tissue post injury 
(e.g., myocardial infarction), or in the case of congenital heart diseases [29–31].

This chapter explores the critical parameters of hydrogel-based bioinks that are nec-
essary for their successful application in functional cardiovascular tissue engineering, 
as tissue analogues for disease modeling and drug screening in vitro, or as implantable 
tissue grafts to treat a range of congenital and acquired cardiovascular diseases. We will 
explore the biophysical, biochemical, and biological considerations for the candidate 
bioinks that enable 3D bioprinting of functional cardiovascular constructs.

�Types of Bioinks

Bioink can be defined as a printable biomaterial, based on naturally occurring 
or synthetically derived polymers (hydrogels), that can recreate some aspects of 
native tissue ECM [6, 7, 14]. In addition to the hydrogel component, bioinks 
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Fig. 4.1  Major methods that are available to bioprint tissue analogues. (a) Extrusion-based bio-
printers use single- or multi-nozzle print heads, squeezing out the bioink using mechanical or 
pneumatic forces. (b) Droplet-based bioprinting uses thermal or piezoelectric forces to discharge 
droplets of bioinks. (c) Laser-based bioprinters use high-energy pulsed laser to eject bioink drop-
lets from a donor layer onto the receiving substrate. (Adapted from [32])
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typically consist of cells and/or small molecules (e.g., growth or angiogenic 
factors) to enhance their bioactivity. Successful bioinks maintain (or promote) 
encapsulated cell survival, adhesion, proliferation, and function in vitro and ulti-
mately in vivo. Some of the desirable features of bioinks include the ability to 
form stable filaments during printing and gentle crosslinking mechanisms, which 
allow for spatial control of hydrogel deposition while maintaining cell viability 
[7, 8, 15, 33]. Currently available bioink formulations are often based on existing 
hydrogel biomaterials, such as alginate [34, 35], fibrin [36, 37], hyaluronic acids 
[38, 39], and gelatin [13, 40–42]. These bioinks can be divided into several broad 
categories based on the specific crosslinking/solidification characteristics of their 
parent hydrogel (Table 4.1). Critical for a successful bioink, it should be able to 
incorporate and protect bioactive compounds within the formed hydrogel. This 
could enhance the bioink functional mimicry to native tissues and enhance the 
function of encapsulated cells [43].

To achieve an optimal bioink formulation and successfully print functional 
tissues, the choice of specific bioprinting process and post-print tissue culture, 
maintenance, and maturation is critically important [6, 7, 14]. Further, hydro-
gel properties such as viscosity, crosslinking mechanism, stiffness, mass transfer 
properties (e.g., diffusion and permeability), and biodegradability must be taken 
into consideration, depending on the specific application [6, 8, 15, 19, 44]. To 
generate a biomimetic niche that can support tissue functionality and cell matu-
ration, the chosen bioink would need to also allow for specific chemical modifi-
cations such as small molecule conjugation and ECM proteins immobilization 
within the 3D printed construct.

�Cardiac Bioink Characteristics

Printability  Printing resolution is dependent on the volume of deposited layer. 
To maintain a fine balance between thin prints (high resolution) and cell viability, 
the bioink should generate relatively low shear stress levels under modest pres-
sures [33, 45, 46]. Shape fidelity at high-resolution prints is critical for building 
up functional tissue analogues, particularly for organs that are highly vascularized 
and have complex tissue organization such as the heart [8, 15, 40, 41]. To maintain 
fidelity, bioinks should have low reflow rate during the printing process and facile 
crosslinking steps and culture conditions (Fig. 4.2). This requires the ability of 
printed construct to be self-supporting at the macroscale, ideally with little to no 
supporting materials. While some support bioinks might be required to maintain 
complex/hollow shapes during printing, they would have to be either incorporated 
as a functional component of the tissue analogue or allow for full removal post-
printing (i.e., sacrificial inks such as pluronic). This is particularly important in 
bioprinting of cardiovascular tissues, considering the remarkably high blood ves-
sel density in the tissue (about 160 capillaries per mm2 of myocardial tissue [47]). 
For cardiac tissue bioprinting, therefore, successful fabrication of self-standing 
and stable, hollow channels at diameters ranging from micrometers (capillaries) 
to centimeters (arteries) would be a major challenge. These perfusable vascular 
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cardiac constructs can provide an invaluable platform for drug screening [27, 48, 
49] and disease modeling studies [2, 27, 48, 50] in vitro, and a new generation of 
cardiac patch devices for in vivo regenerative therapies [38, 51, 52].

Post-print Processing  Post-print processes are required to achieve the adequate 
print fidelity, as bioinks often require crosslinking [7, 53, 54]. Introducing cross-
linking agents via an additional liquid phase may be detrimental to the shape fidel-
ity. Therefore, employing a crosslinking step via long-wave ultraviolet (UV) 
radiation [53, 55] or visible light [40, 56] exposure at appropriate durations and 
intensities would be beneficial. Other types of post-print processes have often been 
used. For instance, promising results have been shown for salt-based post-processing 
after the constructs were printed [57–59]. Regardless of the chosen process, the 
structural and chemical stability of the initial print are critical to maintain reproduc-
ibility of engineered tissues. One challenge with light-based crosslinking is, how-
ever, the possible cell damage due to UV light irradiation [60]. This can be mitigated 
by combining or replacing UV with other more cytocompatible post-processing 
methods. Some alternative processes include aerosolized salt solution spray [61], 
incubation at elevated temperatures (>30  °C) [62], and enzymatic reactions [63] 
(Table 4.1). Additionally, less reliance upon ionic-based crosslinking may mitigate 
the precipitation or salting-out of adjunct proteins [64].

A successful cardiac bioprint will rely on a fast-acting crosslinking reagent 
with negligible cytotoxicity, while capable of retaining high printing fidelities. 
UV-crosslinked hydrogels, such as methacrylate modified gelatin (gelMA), have 
been extensively used for cardiac tissue printing as these hydrogels can generate 

Assessing bioink printability

1. Initial screening
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Fig. 4.2  Schematic demonstration of the typical approach to assess bioink printability. 1: Initial 
screening of bioink formulations to (a) establish fiber versus droplet formation, and (b) success-
fully stack multiple layers without fusing between the layers. 2: Rheological evaluations are per-
formed to determine (a) the flow initiation and yield stress properties, (b) degree of shear thinning, 
and (c) recovery from shear thinning after printing. (Adapted from [14])
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stable yet relatively soft matrices that mimic the physiomechanical and biochemical 
properties of the native heart tissue [5, 65]. GelMA crosslinking via UV light occurs 
at relatively short times and moderate intensities (~2 minutes and between 1 and 
20 mW/cm2), which could help to avoid excessive cell damage and death [16, 65].

Printed Tissue Stability and Controlled Degradation  Swelling and contraction 
of hydrogels upon crosslinking and during tissue culture could be detrimental to the 
printed construct fidelity and cellular interactions/functions [66]. This can also alter 
the final mechanical properties of the bioink and skew its 3D arrangement [67, 68]. 
Controlled degradation and remodeling of bioprinted construct, along with secre-
tion of ECM proteins by encapsulated cells, are critical for engineering a biomi-
metic tissue microenvironment [69]. However, printed tissue breakdown and 
remodeling, in an uncontrolled manner, can severely limit its translational applica-
tions, as they could cause implant detachment and failure in vivo [70, 71]. To allevi-
ate these challenges, extensive research has focused on the development of new 
bioink formulations with tunable degradation profile, to enable cell-mediated tissue 
remodeling, while maintaining the construct integrity [72–79]. Particularly in the 
case of cardiac tissue constructs, a significant degree of matrix remodeling by bio-
printed cells is necessary to achieve the intercellular connectivity and the remark-
ably high cell packing density of the native heart tissue [50, 80–83]. To that end, 
gelMA-based bioinks are specifically favorable as they are both biodegradable and 
chemically defined.

Mass Transfer Properties of Cardiac Bioinks  Incorporating functional vascular-
ization is a critical aspect of tissue bioprinting to generate and maintain large (clini-
cally relevant) tissue constructs [84–93]. This is particularly important for 
bioengineered cardiac constructs, considering the remarkably high vascular density 
in the native myocardial tissue (approximately one capillary per cardiomyocyte) 
[94, 95]. With passive perfusion alone, the maximum thickness of a viable 3D tissue 
construct is usually around 100–250 μm [96, 97] before vascularization is required. 
This distance can potentially be extended to about 600 μm in bioprinted constructs 
that can be prevascularized prior to cell seeding. If the construct’s pore size is large 
enough to allow for more effective passive diffusion, a similar effect can occur 
[98–100].

Tissue-Specific and Chemically Modifiable Bioinks  The ability to incorporate tis-
sue- and cell type-specific materials into the bioink is critically important for achiev-
ing in vivo-like functionality. Modification chemistry can provide the small molecules 
and ECM factors that are specific to the tissue/organ microenvironment [73, 78, 
101]. For this purpose, covalent conjugation, or similar levels of immobilization, 
would be an effective approach to recapitulate the specific tissue cues for bioprinted 
cells and initiate self-directed environmental remodeling. Keeping the modification 
chemistry and bioink preparation steps simple would also be significantly beneficial 
by cutting down on preparation time and equipment and material expenses and by 
enhancing batch-to-batch consistency [6]. Furthermore, the hydrogel bioink should 

M. L. Tomov et al.



69

be xeno-free or consist of entirely chemically defined components, to facilitate trans-
lational use in regenerative medicine and to enhance the reliability for use in in vitro 
assays, such as drug screening and disease modeling [3].

To generate a bioink that is supportive to cardiac cells and recapitulates the 
organ/tissue-specific niche, high-throughput analysis techniques, such as transcrip-
tome analysis (RNA-Seq) and proteomics can be used to characterize the native 
cardiac tissue ECM. For instance, bone morphogenic proteins (BMP2/BMP4) and 
Wnt inhibitors (IWP2) are known to play key roles in generation of early cardio-
myocytes in vitro [102–110]. Incorporating certain concentrations of these factors 
in the tissue generation pipeline (e.g., in cardiac bioink) may promote the regenera-
tive capacity of printed constructs. Further, functionalizing the bioink with ECM 
proteins, such as cadherins, connexins, and collagen, can be used to promote cell 
attachment, migration, and remodeling [86, 111–116]. ECM proteins coupled with 
secreted small molecules such as tumor necrosis factor alpha (TNFα), interleukin 
(IL)-1, IL-6, transforming growth factor beta (TGFβ), angiotensin II, and endothe-
lin 1 can also help promote tissue maturation and vascularization in cardiac con-
structs (Fig. 4.3) [117, 118].

Tunable Mechanical Properties  Altering biomechanical characteristics of the 
bioinks can be achieved via initial or secondary crosslinking processes. Such modi-
fications can provide the specific mechanical cues to encapsulated cells and pro-
mote desired cellular functionalities [14, 119]. The ability to independently tune 
chemical and mechanical properties of these hydrogels is critically important. For 
example, crosslinking of hydrogel matrices can tune their stiffness [120–123], while 
conjugation of various ECM proteins and small molecules can independently pro-
vide biochemical cues to the cells [7, 124]. Mechanical properties play a major role 
in successful application of bioprinted cardiac constructs, as these tissues require 
strictly regulated stiffness values to exhibit proper functionality both in vitro and 

– Vascularization

Vascularization demands

Fig. 4.3  The demand for effective vascularization in vitro increases with tissue construct size and 
complexity
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in vivo (Fig. 4.4) [32, 82, 123, 125, 126]. The post-print crosslinking mechanisms 
that are used for most hydrogel bioinks allow for generating tissues with a relatively 
broad range of stiffness. Therefore, bioprinting technology holds a great potential 
for manufacturing a wide variety of functional tissues.

It has been shown by different groups that cardiomyocytes exhibit maximal 
contractile function on matrix stiffnesses ranging from 1 to 16 kPa [51, 82, 115, 
123, 126]. Thus, an optimal cardiac-specific bioink may be expected to show elastic 
modulus within this range (Fig. 4.5) [126]. Incorporating large numbers of nondi-
viding cardiomyocytes in bioinks can compromise their mechanical properties and 
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Fig. 4.4  Range of ECM stiffness required for proper organ development and functionality of vari-
ous organs and tissues. (Adapted from [127])
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printing fidelity (resolution and stability). To address this issue, cardiomyocytes can 
be combined with proliferative cardiac precursor/stem cells, cardiac, and vascular 
cells (endothelial and smooth muscle cells) and be encapsulated in the bioink at 
remarkably lower cell densities [29, 128–130]. Multiplication, differentiation, and 
maturation of these multilineage cardiac cell populations in bioprinted constructs, 
in association with controlled matrix degradation and remodeling, can lead to gen-
eration of myocardial mimetic tissue constructs at appropriate cell density and 
configuration. The use of stem cell sources for cardiac tissue printing may require 
additional examination and characterization to avoid incomplete or undesirable cell 
differentiation (e.g., tumor formation or reduced functionality of the engrafted tis-
sue) that could impact the clinical application of the printed constructs [131–133].

�Outlook and Conclusions

To maintain cell viability and functionality, hydrogel-based bioinks must fulfill 
several key biophysical and biochemical requirements, before, during, and post-
printing processes. These parameters, together with the need for a functional vas-
cular network in the construct, are critical for generating high fidelity cardiac tissue 
analogues. Initial and/or secondary crosslinking processes would allow for bet-
ter control over the chemical and mechanical cues within the 3D constructs and 
therefore, enable reconstructing diverse tissue microenvironments. Preparing com-
mercially available cardiac bioink kits that can be optimized for a specific tissue 
bioprinting would be a significant advancement in the field, especially if differ-
ent chemical and mechanical properties of the hydrogels could be decoupled and 
independently tuned. A balance must be obtained between cardiac bioink crosslink-
ing degree, stiffness, and biodegradation to allow for bioprinted cells to remodel 
their microenvironment. This is a critical step toward achieving enhanced cardiac 
cell connectivity, maturation, and function. Additionally, keeping bioink synthesis 
and modification chemistry robust and simple would be highly beneficial for wider 
appeal to researchers in the field.

In summary, cardiac bioprinting aims to generate clinically applicable, cardiac 
tissue analogues that can replace damaged/diseased tissue in  vivo or be used as 
biomimetic platforms in vitro to model various diseases. Recent advances in bio-
printing technologies have enabled fabrication of complex, patient-specific, tissue 
architectures at an organ-relevant spatial resolution, while supporting viability and 
function of multiple cell types. However, there remain some challenges for the 
clinical application of bioprinted cardiac constructs. Development of new cardiac-
specific bioinks, using tailored biomaterials and precisely tuned selection of macro-
molecules, could be a great step forward toward clinical bioprinting. New methods 
are also needed to incorporate functional, multiscale vascular networks within 
printed constructs that can be perfused to maintain functionality of large-scale tis-
sue constructs. Further, enhanced temporal and spatial resolutions in the new gen-
eration of bioprinters can help engineering more advanced cardiac tissue substitutes 
for regenerative medicine.
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