®

Check for
updates

RNA Therapeutics: How Far Have
We Gone?

Maria Francisca Coutinho, Liliana Matos,
Juliana Inés Santos, and Sandra Alves

Abstract

In recent years, the RNA molecule became
one of the most promising targets for thera-
peutic intervention. Currently, a large number
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71 Introduction

The RNA molecule has traditionally been viewed
as an intermediate between DNA and protein.
Recently though, this reductive view has been
abandoned as more classes and functions of RNA
have been discovered as well as therapeutic
applications involving this molecule are being
developed. RNA therapeutics can either mimic or
antagonize the endogenous RNA functions and
have several advantages. They can act even on
targets that were previously “undraggable” and,
most importantly, they are easy to design, cost
effective, stable and easy to combine with other
drugs presenting also low immunogenicity.
Despite these advantages, the use of RNAs as
drugs requires the overcoming of two major
obstacles: the poor pharmacological properties of
RNA, which is rapidly degraded by RNases and
the difficulties in its delivery to the target organs
and tissues. In this chapter we present the major
RNA-based therapeutics currently  under
research, discussing the challenges to their trans-
lation into the clinic and the recent advances in
delivery strategies. RNA tools such as ribozymes,
riboswitches and SINE-UP strategy are no less
important but will not be discussed in this
chapter.
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7.2  Antisense Oligonucleotides

7.2.1 Brief Overview

Antisense oligonucleotides (AONs) are short
synthetic oligonucleotides that bind to RNA
through standard Watson-Crick base pairing and
can modulate the function of their target RNA [1,
2]. AONs can function in various ways (Fig. 7.1).
For example, AONs can mediate targeted gene
knockdown through the recruitment of endoge-
nous RNAse H to degrade mRNA at sites of
DNA:RNA hybridization caused by AON bind-
ing (Fig. 7.1a). They can also be designed to bind
to translation initiation sites on mRNAs in cyto-
sol to block translation (Fig. 7.1b). Another
approach uses single-stranded AONs to modulate
miRNAs expression; these AONs directly bind
target miRNAs to inhibit their function (anti-
miRs), and thus depress their target gene
(Fig. 7.1c). Moreover, AONs can also be used to

T/
a
=
j::ﬂ
TITITT mRNA
RNase H

modulate pre-mRNA splicing in the target gene
bypassing the disease-causing  mutation
(Fig. 7.1d) [3, 4]. These AONs are designated
Splice Switching Oligonucleotides (SSOs) and
are single stranded 15-25 nucleotides long,
which direct pre-mRNA splicing to a new path-
way by binding sequence elements and sterically
blocking access to the transcript by the spliceo-
some and other splicing factors [1, 5-7].

The modification of gene expression, using a
synthetic single stranded DNA, resulting in inhi-
bition of mRNA translation was demonstrated for
the first time by Paterson and colleagues in
1977 in a cell-free system [8]. Almost a year
later, Zamecnik and Stephenson showed that in
chicken fibroblast tissue culture containing Rous
Sarcoma virus, the addition of a synthetic 13-mer
oligonucleotide complementary to the 3’ end of
the virus, could inhibit its replication and the sub-
sequent transformation of fibroblasts into sar-
coma cells [9]. Since then, remarkable progress

b
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Fig. 7.1 Antisense mechanisms of RNA-based drugs.
Antisense oligonucleotides (AONs) impact in gene
expression through four different mechanisms: (a) RNase
H-mediated mRNA degradation; (b) steric block of ribo-

Ribosome
TITTTITIT pre-mRNA
: I )
l mRNA (spliced)
d

some binding; (¢) complementary binding to target
microRNAs (miRNAs) in order to inhibit their function
(antagomirs); and (d) splicing modulation
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has been made in oligonucleotide drug develop-
ment and currently, antisense technology is a
powerful tool that can be used for target valida-
tion and to correct or alter RNA expression for
therapeutic benefit [1, 10-12].

Initially, AONs were just synthetic unmodi-
fied DNA or RNA molecules, which despite
delivering some promising results, would prove
to be quite ineffective in biological systems due
to their susceptibility to degradation by nucle-
ases, poor affinity for their target mRNA, multi-
ple off-target effects, inability to cross the cell
membrane given their negative charge, and weak
binding to plasma proteins, leading to rapid clear-
ance by the kidney [1, 3, 13]. Therefore, a wide
variety of chemically modified analogues of
nucleotides have been developed since then.
These chemical modifications were made in the
oligonucleotides, generating three categories of
AONs, commonly known as generations, with
different chemical and pharmacological
properties.

7.2.2 Antisense Oligonucleotides
Chemistry

Several characteristics need to be fulfilled for the
clinical application of antisense oligonucleotides.
First, the sequence of the antisense oligonucle-
otide must be specific enough to avoid off-targets.
Other important aspects to be taken into account
are the chemistry of the AON and its resistance to
degradation by nucleases in order not only to
maintain the integrity of the molecule but also to
ensure that it is present in an amount, which is
sufficient for a true efficacy. In addition, ideal
AON should have good pharmacokinetic (PK)
and pharmacodynamic (PD) properties and,
above all, should not be toxic. Finally, and a very
fundamental thing to check, is whether the
designed AONSs are possible to deliver to target
tissues or organs. To try to cope with these desired
AON properties, several chemical modifications
have been made to the backbone, ribose sugar
moiety or nucleobase components, which have a
profound effect on the enhanced stability, bind-

ing strength and specificity to the target RNA
sequence [13] (Fig. 7.2).

The first generation of AONs is characterized
by alterations in the backbone, the most common
being the phosphorothioate (PS) backbone,
accomplished by the replacement of one of the
non-bridging oxygen atoms by a sulphur atom.
AONSs bearing PS linkages are compatible with
recruitment of RNase H, which cleaves the target
of AONs. This modification allows for an
improved nuclease resistance, as well as strong
binding to plasma proteins, reducing renal clear-
ance, but still presents poor binding affinity, low
specificity and poor cellular uptake [1, 7, 10,
13-15]. Despite these disadvantages, PS oligo-
nucleotides are still the most commonly used
AONs and were the first antisense-based drug
approved for clinical use in 1998 with fomivirsen
(Vitravene®)  used  for  repression  of
cytomegalovirus mRNA translation [16]. It
gained U.S. FDA (U.S. Food and Drug
Administration) approval for intraocular treat-
ment of cytomegalovirus retinitis in immunosup-
pressed patientsin 1998 [16] and was discontinued
later due to commercial considerations.

In order to surpass the downsides of the first
generation oligonucleotides, a second generation
was developed through modifications at the 2’
position of the ribose. The most widely studied
second generation AONs are 2'-O-methyl (2'-
OMe) and 2'-O-Methoxyethyl (2’-MOE), which
present higher nuclease resistance and higher
affinity for the target RNA, while also reducing
non-specific protein binding and toxicity [7, 10,
13, 15]. These second generation AONs, how-
ever, do not support RNase H-mediated cleavage
of the target mRNA, which impairs their usage
for purposes of gene downregulation [1, 14, 17].
This limitation has been minimized with the
development of “gapmer” structures where 2’
sugar-modified residues are present on either side
of a central “gap” region comprising 8-10
PS-modified nucleotides. The external sugar
modified residues thus increase affinity and
nuclease resistance, while the internal ‘“gap”
region allows RNase H-mediated cleavage of the
target RNA [1, 6, 18, 19].
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Fig. 7.2 Chemical modifications of antisense oligonu-
cleotides. First generation antisense oligonucleotides
(AONSs) are characterized by phosphorothioate (PS) back-
bone; second generation AONs contain a methyl or

Finally, the third generation of oligonucle-
otides is characterized by modifications of the
furanose ring of the nucleotide, with the most
common being peptide nucleic acids (PNAs),
locked nucleic acids (LNAs) and phosphoroami-
date morpholino oligomers (PMOs) [12, 14].
These modifications further increase nuclease
and protease resistance, target affinity, specificity
and in vivo stability of antisense drugs, while
reduce non-specific interactions with proteins [1,
13, 14, 20, 21]. Nevertheless, PNAs and PMOs
present poor cellular uptake, low water solubility
and are rapidly cleared from the blood due to
their uncharged nature [1, 10, 20, 22] whereas
LNAs appear to generate higher toxicity than
other chemical modifications, questioning their
safety for therapeutic applications [1, 20].

methoxyethyl group at the 2’ position of the ribose;
finally, third generation AONs are characterized by modi-
fications of the furanose ring structure

7.2.3 Recent Successful
Applications of Antisense
Oligonucleotides

The therapeutic application of AONs is very
promising. A huge amount of preclinical data has
been produced in recent years and many studies
have even undergone clinical trials (Table 7.1).
Of those, four drugs with different AON chemis-
tries and treatment targets reached, or almost
reached clinical practice [12] (Fig. 7.3). One of
them is Mipomersen (Kynamro®; Genzyme) that
was approved by the U.S. FDA in 2013 for the
treatment of familial hypercholesterolemia (FH).
Mipomersen is a gapmer of 20 nucleotides and
has a sequence complementary to a segment of
the Apo b-100 mRNA. Its binding creates a
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Fig. 7.3 Antisense drugs for clinical practice. Currently,
four drugs with different AON chemistries and mechanisms
of action have either obtained U.S. FDA approval
(Mipomersen, Nusinersen and Eteplirsen) and reached
clinical practice, or are seeking accelerated approval soon,
with significant pre-clinical data supporting their rapid
translation into clinic (Miraversen). (a) Mipomersen
(Kynamro®; Genzyme), a 2'-MOE-modified AON
approved by the U.S. FDA in 2013 for the treatment of

DNA:RNA hybrid that is substrate for the enzyme
RNase H thus inducing the cleavage of the human
Apo b-100 mRNA. The drug has a PS backbone,
with 2’-MOE-modified ends, which when com-
pared with earlier antisense technologies, pro-
vides greater biological stability and higher
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familial hypercholesterolemia (FH); (b) Miravirsen
(SPC3649, Santaris Pharma), an antagomir to miR-122,
seeking approval for hepatitis C treatment; (¢) Nusinersen
(Spinraza®, Biogen), a fully modified 2’-MOE AON,
approved by U.S. FDA in 2016 for the treatment of spinal
muscular atrophy (SMA) and, (d) Eterplirsen® (EXONDYS
51TM, Sarepta), a PMO approved by the U.S. FDA in 2016
for the use in Duchenne muscular dystrophy (lightning
symbol means the existence of a pathogenic alteration)

affinity to the target mRNA [12, 67]. When
administered subcutaneously at a dose of 200 mg
per week, it was shown to reduce ApoB-100 pro-
duction and low-density lipoprotein cholesterol
(LDL-C) in a dose-dependent fashion [68]. In
general, the results achieved with Mipomersen
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point to its efficacy, safety, and tolerability, dem-
onstrating its suitability for use in the target
patient population, and providing a tangible tool
for use in the management of FH and severe
hypercholesterolemia [11, 12, 68]. However,
mild-to-moderate injection site reactions, flu-like
symptoms and hepatic effects (despite transient
and generally reversible) limited its utilization
and therefore its commercial success [11].

AONs complementary to mature miRNAs
(antagomirs) are also being developed to coun-
teract miRNAs implicated in disease pathogene-
sis. An example is Miravirsen (SPC3649,
Santaris Pharma), an antagomir to miR-122, a
liver-specific microRNA that the hepatitis C
virus (HCV) requires for replication. Miravirsen
is designed to recognize and sequester miR-122,
making it unavailable to HCV. As a result, viral
replication is inhibited, and the level of HCV
infection is reduced [12]. Positive results were
observed in a phase II study. The use of
Miravirsen in patients with chronic HCV geno-
type 1 infection showed prolonged dose-depen-
dent reductions in HCV RNA levels without
evidence of viral resistance [50]. The updated
results revealed no long-term safety issues
among 27 Miravirsen-treated patients [51, 69].
Moreover, there was a prolonged decrease in
miR-122 plasma levels in patients dosed with
Miravirsen but the plasma levels of other miR-
NAs were not significantly affected by antago-
nizing miR-122 [69, 70].

The above examples use AONs to alter gene
expression, either directly or indirectly, to change
disease progression. Another precise method to
alter gene expression is to manipulate pre-mRNA
splicing using SSOs. This is the case of
Nusinersen (Spinraza®, Biogen), a fully modified
2'-MOE AON, approved by U.S. FDA in 2016
for the treatment of spinal muscular atrophy
(SMA). SMA is an autosomal recessive neuro-
muscular disease caused by progressive loss of
alfa-motor neurons in the anterior horn of the spi-
nal cord [12, 71]. The most severe form, infant
onset or type 1, is the most common one, repre-
senting 50% of all SMA cases. Type 2 is less
severe, but also very debilitating. These infants

never walk, and as they grow the disease pro-
gresses and patients begin to lose the capacity of
lift even their arms. In humans, a parolog gene of
SMA exists, the SMN2 gene that differs of the
SMNI by 5-11 nucleotides. However, in the
majority of the SMN2 transcripts the exon 7 is
lacking, resulting in a truncated protein, which is
rapidly degraded [72]. Nusinersen induces the
inclusion of exon 7 in the SMN2 mRNA by tar-
geting and blocking an intron 7 internal splice
site. This action increases SMN protein produc-
tion, thus improving its function [73]. Intrathecal
injection of Nusinersen (every 4 months) allows
therapeutic delivery directly into the cerebrospi-
nal fluid (CSF) bathing the spinal cord, the site of
motor neuron degeneration and, substantially
prolonging survival of type 1 infants, while also
resulting in improvements in all measures evalu-
ated [32]. Similar benefit was demonstrated in
patients with later onset type 2 SMA [33]. More
remarkable, treatment of type 1 pre-symptomatic
infants with Nusinersen has been demonstrated
to result, in many cases, in achievement of motor
milestones at the age expected for healthy infants.
Moreover, 92% of the infants treated prior to the
development of symptoms were able to sit with-
out support, a milestone never achieved by a type
1 SMA infant before Nusinersen treatment was
introduced and 50% were able to walk without
support [74].

Another SSO, already in the market is
Eterplirsen® (EXONDYS 51™, Sarepta) that
was approved by the U.S. FDA in 2016 for use in
Duchenne muscular dystrophy (DMD) patients,
a severe, childhood-onset disease that results
mostly from deletions within the dystrophin
gene. DMD is a progressive, neuromuscular dis-
ease, occurring mainly in males (1 in 3500-5000
males born worldwide) [75, 76]. It is caused by
an absence of the protein dystrophy, a membrane-
associated protein that forms a network with sar-
colemmal glycoproteins by linking the
cytoskeleton actin in muscle fibers within the
first few extracellular matrix [77], which results
in altered myocyte integrity, muscle wasting and
relentlessly progressive weakness. Becker mus-
cular dystrophy (BMD) is a milder disease
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caused by dystrophin truncations (due to “in
frame” deletions) rather than its absence. A via-
ble strategy for generating truncated, but func-
tional, dystrophin protein involves the skipping
of exons to correct DMD-linked mutations
(which includes 83% of mutations in DMD)
[78]. This can reduce the severity of the disease
and produce a milder phenotype, similar to that
of BMD. Eteplirsen, the first PMO drug ever
approved, binds to the exon/intron splice site at
the beginning of exon 51, resulting in its skip-
ping, giving origin to an in frame transcript,
which prevents the unwanted degradation of the
mutant transcripts by the nonsense-mediated
mRNA decay (NMD) pathway, and allowing the
production of an internally deleted but functional
dystrophin protein [79]. Eterplirsen is applicable
for approximately 14% of patients with DMD
mutations. It is administered via intravenous
infusion and was found to be well tolerated, with
no adverse effects, in several clinical trials [79].
In addition, over 3 years of follow-up,
Eterplirsen-treated patients showed a slower rate
of decline in ambulation assessed by the 6-min
walk test compared to untreated matched histori-
cal controls from two DMD natural history
cohorts: the Leuven Neuromuscular Reference
Center (LNMRC) and the Italian Telethon regis-
try [80]. Previously, the ability of Eteplirsen to
induce expression of dystrophin had been dem-
onstrated by an observed increase of dystrophin-
positive fibers in skeletal muscle of DMD
patients [35]. Recently, Kinane and coworkers
compared the pulmonary function data from
DMD patients, who received Eteplirsen in stud-
ies 201/202 (included 12 patients treated with
Eteplirsen over 5 years) with the natural history
data published. This study verified that the dete-
rioration of respiratory muscle function with
Eteplirsen treatment as measured by forced vital
capacity was half of that seen in natural history.
Maximum expiratory pressure and maximum
inspiratory pressure also declined more slowly
in Eteplirsen treated patients compared to natu-
ral history, thus demonstrating its potential to
preserve respiratory function in patients with
DMD [81].

7.2.4 Antisense Oligonucleotides
Delivery

One of the major issues for the use of AONs for
therapeutic purposes is the efficient delivery to
their target site. AONs need to reach the target
tissue and, once there, they must reach the appro-
priate intracellular compartment [2, 7]. Parenteral
injection, such as intravenous infusion or subcu-
taneous injection is the main method at the
moment of delivery of PS modified single-
stranded AONs formulated in a simple saline
solution [15, 21]. However, even though AON
activity has been observed in many tissues such
as lung, stomach, bladder, and heart, AONs pre-
dominantly accumulate in liver, kidney, bone
marrow, adipocytes, and lymph nodes [21].
Therefore, delivery problems must be considered
in terms of sets of barriers to movement of AON
within the body. Tissue barriers to delivery
include the vascular endothelial barrier, first-pass
renal excretion (which strongly affects PK and
bio-distribution of AONs), and the blood brain
barrier (BBB) that AONs cannot cross due to
their size and charge, limiting their access to the
central nervous system (CNS), in the case of
CNS diseases. The one exception to this is intra-
thecal injection of single-stranded AONs with
specific chemical modifications into the CSF,
which allows AONs into the CNS [21].

Two main strategies are being developed to
improve AON delivery: viral and non-viral deliv-
ery. Despite viral vectors are efficient systems for
the delivery of genetic material and for the capa-
bility to infect a large number of cell types, they
also showed some constraints, such as immuno-
genicity, tumorogenicity risks, limited loading
capacity and scaling-up problems [7]. However,
adeno-associated viruses (AAVs), which are non-
integrative vectors and therefore present a low
risk of genomic insertions, have been used in in
vitro cells and in animal models to efficiently
deliver AONs sequences embedded into modified
snRNA systems (modified Ul snRNAs and mod-
ified U7 snRNAs). Indeed, promising therapeutic
results were obtained with this strategy to induce
exon-skipping in diseases like Leber Congenital
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Amaurosis [82] and DMD [83-87] and exon-
inclusion in SMA [88, 89] (for a more extended
review on this subject see [90]). Non-viral deliv-
ery also represents a good alternative and the
conjugation of free AONs with non-viral delivery
carriers can be achieved by different strategies.
One option is to conjugate AONs (or their carrier)
to a ligand that interacts selectively with a cell
surface receptor. Ideally, one such receptor
should be expressed only in the tissue to be tar-
geted. Additionally, it should also be abundantly
expressed, rapidly and extensively internalized,
and have a high affinity to its ligands, so that they
become readily available. Some receptors used to
target AONss include integrins, G protein-coupled
receptors (GPCRs), human receptor tyrosine
kinase (RTK), scavenger receptors, asialoglyco-
protein receptor (ASGR), Toll-like receptors
(TLRs) and folate receptor [91-97], as reviewed
in [98]. However, receptors fulfilling all the
above-referred criteria are not available for the
majority of tissues and, once the AONs reach the
cell surface of the target cell, they must be
internalized by endocytosis and packed into a
vesicle, termed endosome. Then, the endosomes
fuse with lysosomes, organelles rich in hydro-
lases, which ultimately degrade a high portion of
the internalized AONs. In fact, one strategy to
improve delivery of AONSs is the use of short cell-
penetrating peptides (CPPs), sequences of short
cationic and/or amphipathic peptides (fewer than
30 amino acids) that translocate small drugs/
cargo across cell membranes. CPPs are attached
to their cargo through covalent linkages or
through the formation of noncovalent nanoparti-
cle complexes [99] that can promote uptake of
macromoleclues via endocytosis. CPPs cova-
lently conjugated to AONs were already used for
therapeutic purposes in DMD [100-105]
Myotonic Dystrophy type I [106] and SMA [107,
108]. However, CPPs have a limited endosomal
escape and overcoming the rate-limiting step of
endosomal escape into the cytoplasm remains a
major challenge to their successful use. Several
studies tried to overcome this and some relevant
results have been obtained. For instance, specific
synthetic endosomal escape domains (EEDs) sig-
nificantly enhanced cytoplasmic delivery in the

absence of cytotoxicity [109] and a CPP-adaptor
system capable of efficient intracellular delivery
was also recently developed [110]. Another pos-
sibility is to incorporate AONs into nanoparticles
(NPs) that based on their size and materials, will
determine the AON biodistribution and interac-
tion. In fact, the progress of nanotechnology has
provided several nanosystems with the aim to
increase the drug targeting efficacy. The most
common types used for drug delivery are solid
lipid nanoparticles (SLNs), polymer nanoparti-
cles, lipid-based nanoparticles (LNPs) and
carbon-based nanomaterials [110]. For example,
cationic core-shell NPs named T1 and ZM2 (a
type of polymer nanoparticles) were used to con-
jugate AONs for exon skipping application in
preclinical studies in DMD mice [110, 111]. As
these obstacles of delivery are overcome, the
advantages of antisense technology will warrant
that antisense oligonucleotide therapeutics will
be one of the most promising clinical approaches
to genetic diseases in the future.

7.3 U1 snRNA-Mediated Therapy

7.3.1 Brief Overview

Since its discovery in the early days of splicing
research, Ul snRNA has been recognized as a
crucial player in the first stages of the splicing
process [112-114]. Ul snRNA is a 164 nucleo-
tides long molecule with a well-defined structure
consisting of four stem-loops, which primarily
exerts its function in the form of a
ribonucleoprotein (RNP) complex (termed Ul
snRNP) containing seven Smith antigen (Sm)
proteins and three Ul-specific proteins UlA,
UIC and U1-70K [115] (Fig. 7.4a). It is now
well-established that U1 snRNP initiates spliceo-
some assembly by binding to the 5’ splice donor
site (ss) through base pairing between the single
stranded 5’ tail of the Ul snRNA molecule and
the moderately conserved stretch of nucleotides
at the 5'ss (CAG/GURAGU; R-purine) marking
the exon-intron boundary [116]. However, not all
base pairs at different 5’ss positions are equally
important, and their contribution to splicing
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Fig. 7.4 Role of Ul small nuclear ribonucleoproteins
(snRNPs) in splicing. (a) The 5" end of Ul snRNA base
pairs to the 5" splice site (ss) in order to define a functional
splice donor site. This process is positively and negatively
modulated by different splicing factors, which bind to
exonic and intronic splicing enhancer and silencer motifs
(ESE, ISE, ESS and ISS, respectively). (b) The 5’ss motif.
The height of each nucleotide corresponds to its conserva-
tion at the corresponding positon (=3 to —1 are exonic
positions, while +1 to +8 correspond to intronic posi-
tions). The most conserved 5’ss positions are +1 and +2,
which determine the 5’ss subtype: the GU subtype

roughly correlates with their conservation
(Fig. 7.4b). In the 9 nucleotides consensus
sequence the most conserved 5’ss positions lie at
the first two intronic nucleotides (+1 and +2), and
the sequence GU at these positions accounts for
~99% of all 5'ss. The next most conserved 5’ss
positions are —1G and +5G, which form strong
G-C base pairing with U1 [117]. Once the donor
site does not always conform to the consensus
sequence, but can instead have a degenerate pat-
tern feature, it is understandable that many other
additional elements such as splicing silencer and
enhancer motifs, the presence of alternative

=

+1 +2 +3 +4 +5 +6 +7 +8

accounts for ~99% of 5’ss. Minoritary subtypes have a
mismatch to Ul at either +1 or +2 and include the GC and
the very rare AU 5'ss. The next most conserved 5’ ss posi-
tions are -1G and +5G, which form strong G-C base pairs
with Ul through three hydrogen bonds. Consensus nucle-
otides —2A, +3A, +4A, and + 6U are also conserved but
have a lesser although important contribution to 5’ss
strength because their base pairing to U1 involves only the
formation of two hydrogen bonds. The 5’ss positions +7
and +8 do not exhibit substantial conservation in humans,
yet several lines of evidence indicate that these positions
can base-pair to Ul and contribute to splicing

splice sites, secondary structures and regulatory
proteins can influence the splice site selection
(Fig. 7.4a) [117, 118].

Ul snRNA is classically known for its role in
pre-mRNA splicing events. However, the finding
that Ul snRNA levels far exceed other spliceoso-
mal associated snRNA levels led to the notion
that it may have additional roles in the cell apart
from splicing regulation [115, 119]. Indeed,
emerging evidence suggests that Ul snRNA
plays a key role in transcription initiation and in
the protection of pre-mRNAs from degradation,
as also has a regulatory function in the 3’-end for-
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Fig. 7.5 Ul snRNA-mediated therapy for mutations
affecting 5’ splice site (ss). (al) A wild-type endogenous
Ul small nuclear ribonucleoprotein (snRNP) does not bind
to 5’ss due to the presence of a 5’ss mutation. (a2) An exog-
enous U1 snRNP (first generation particle) is modified in 5’
tail with a compensatory alteration (semi-circle) that allows
for base-pairing with the mutated 5'ss and the restoration of

mation, protecting pre-mRNA transcripts against
premature polyadenylation and contributing to
the regulation of alternative polyadenylation
[115, 119-121].

Splicing mutations at the 5’ss, which are fre-
quent among defects that cause human disease,
compromise Ul snRNA binding and can prevent
spliceosome assembly and subsequent splicing,
which results in exon skipping, intron retention
or activation of cryptic splice sites [117, 122].
The most deleterious mutations at a 5’ss are those
affecting the nearly invariant GU dinucleotide at
the positions +1 and +2. For the remaining nine
positions the effects on splicing are less under-
stood. Indeed, nucleotide substitutions in the less
conserved positions can cause splicing defects in
several but not all 5'ss, suggesting that this 5'ss
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exon recognition and inclusion. (b) The presence of a 5'ss
mutation does not allow the correct 5’ss recognition by Ul
snRNP but an exon-specific Ul snRNP (second generation
particle) with an engineered 5 tail which binds a down-
stream non-conserved intronic region can activate the
mutated 5’ss, through a mechanism not yet fully under-
stood, allowing the correct exon recognition and inclusion

positions and/or the general context define at
what level splicing is changed [117, 123].

7.3.2 Two Generations
of Engineered U1 snRNAs
to Correct Splicing Defects

As donor splice site mutations disrupt the com-
plementarity of the donor site with the endoge-
nous Ul snRNA, restoring the complementarity
through engineered modification of the Ul
snRNA represents a valuable approach
(Fig. 7.5al, a2). In fact, in the mid-80s, Zhuang
and Weiner [124] demonstrated for the first time
that modified Ul snRNAs were able to suppress
5’ss mutations. Since then, the physiological role
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of the Ul snRNA to promote exon inclusion in
the presence of 5’ss mutations affecting different
positions of the donor site, has been extensively
exploited as a possible therapy for numerous dis-
eases. Significant correction levels have been
achieved for mutations located in less conserved
5’ss positions in diseases like Neurofibromatosis
type 1 [125], Coagulation factor VII deficiency
[126, 127], Retinitis pigmentosa [128, 129],
Propionic acidemia [130], Phenylketonuria [131]
and Bardet-Biedl syndrome [132, 133].
Furthermore, recent studies have also demon-
strated the feasibility of this approach in the more
conserved GU region. In fact, partial correction
of splicing defects caused by mutations in the +1
position of 5’ss was observed, not only in a
Fanconi anemia case [134], but also in Sanfilippo
C disease patient cells [135]. Also, for a mutation
in the +2 position causing Hemophilia B, the
treatment with a modified Ul snRNA led to an
increase in the proportion of correct transcripts
(~20%) [136]. In general, though, results of Ul
snRNA therapeutic approaches can vary
depending on the nature of the mutation and on
the overall genomic context.

Until now, modified Uls effects in vivo were
only addressed in two studies. In the first one,
Balestra and co-workers [137] showed the rescue
of the expression of a splicing-defective human
factor VII (hFVII) mutant by a mutation-adapted
Ul snRNA which improved hFVII circulating
levels in mice, highlighting the potential of this
strategy as a therapy for FVII coagulation defi-
ciency. In the second study, Lee et al. [138] dem-
onstrated the therapeutic effect of a
mutation-adapted Ul snRNA in a knock-in
mouse model of Aromatic L-amino acid decar-
boxylase (AADC) deficiency.

In common with other rescue strategies based
on targeting RNA by complementarity, modified
U1 snRNAs have to deal with potential off-target
effects. This is particularly dangerous for modi-
fied Ul snRNAs with only one base change from
the natural Ul snRNA, which might activate nor-
mally silent cryptic donor splice sites and induce
aberrant splicing in other genes [139]. The conse-
quences of such unwanted side reactions are hard
to predict and depend on the function of the

spliced transcript. However, the binding site
sequence screening and mapping against the
human genome to rule out sequence homologies
should extensively decrease nonspecific events
although their total exclusion cannot be guaran-
teed [140]. Therefore, experimental analysis
should be performed whenever possible to test
the effect of the U1 treatment on non-target tran-
scripts. In mutation-adapted Ul snRNA in vitro
approaches to correct 5’ splicing defects in
Retinitis pigmentosa [129] and Bardet-Biedl syn-
drome [133], this type of test was performed and
no missplicing events were found in the non-
target transcripts. Also, in the in vivo Ul snRNA
therapeutic strategy for AADC deficiency, the
treatment was well tolerated and no toxic effects
were seen within the study period [138]. However,
in the in vivo study for hFVII deficiency [137],
the authors observed hepatotoxicity, most proba-
bly caused by the binding of the engineered U1 to
similar consensus 5’ss in other genes.

It was previously shown that Ul snRNAs do
not necessarily have to bind at the 5’ss to promote
exon definition. Some atypical 5'ss are recog-
nized by Ul snRNA shifted by one nucleotide
[141] and U1 snRNAs complementary to intronic
sequences downstream of the 5’ss were origi-
nally reported to enhance the recognition of 5’ss
in model gene systems [142, 143]. Given this, to
reduce the possible interaction of modified Ul
snRNAs with non-target 5’ss, a second genera-
tion of engineered Uls called Exon-Specific Ul
snRNAs (ExSpeUls) was developed. The
ExSpeUls have engineered 5’ tails that direct
their loading into non-conserved intronic regions
downstream of the 5'ss of a specific exon, and are
expected to improve specificity and reduce poten-
tial off-target events [139, 144] (Fig. 7.5b). In dif-
ferent cellular models (i.e. minigene assays,
patient’s cells or iPSC’s), a number of ExSpeUls
has been successfully applied, allowing an effi-
cient rescue of exon skipping caused by various
types of splicing mutations in Hemophilia B
[144, 145], Cystic Fibrosis [144], SMA [144,
146, 147], Fanconi anemia [148] and Netherton
syndrome [149]. The ExSpeU1 strategy has also
been investigated in mouse models. For SMA,
Dal Mas et al. [146], reported that AAV-mediated
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delivery of ExSpeUl corrects splicing, increas-
ing the inclusion of SMN2 exon 7 in different tis-
sues/organs. In another study, Rogalska and
colleagues [150] created a mouse expressing a
particular ExSpeU1 and, after crossing it with a
severely affected SMA mouse, observed
increased inclusion of the missing exon, followed
by SMN protein production and increased mice
lifespan. Possible gene expression side effects
were also addressed and, from a panel of 12,414
analysed genes, only 12 had altered expression
after treatment.

ExSpeUl molecules have also successfully
rescued splicing in a transgenic mouse model of
Familial Dysautonomia, a rare genetic disease
with no treatment [151]. For Hemophilia B,
another ExSpeU1 was explored in mice express-
ing two natural F9 splicing defective variants at
5’ss or 3’ss, and efficiently rescued human F9
splicing in liver resulting in an increase of the tar-
get protein and coagulation activity [152]. This
study, as the pivotal one developed by Fernandez
Alanis et al. with the ExSpeUl strategy [144],
interestingly showed that a single ExSpeUl can
be used to correct exon-skipping mutations at the
consensus 5’ss (apart from canonical GU dinu-
cleotide), the polypyrimidine tract, and even at
exonic regulatory elements, thus extending the
applicability of ExSpeUls to panels of mutations
and cohorts of patients with the same genetic
disorder.

Despite the promising results obtained with
ExSpeUls in different studies, its precise mecha-
nism of action for splicing correction is not
totally clear. Pagani and co-workers demon-
strated that ExSpeUls are assembled as Ul-like
particles and that their splicing rescue activity is
dependent on the U1-70K protein and on the loop
IV structure of the U1 snRNA; not on the recruit-
ment of endogenous Ul snRNP to the upstream
5’ss [150]. This may indicate that ExSpeUls pro-
mote correct exon recognition through the
recruitment of splicing factors that subsequently
activate the mutated 5’ss [144, 146, 149-152].
However, it is important to stress that the splicing
stimulator activity of ExSpeUls was also respon-
sible for the activation of a cryptic 5'ss in an
approach attempted to correct a splicing defect

causing Intrahepatic Cholestasis, which resulted
in the production of an additional splice tran-
script with intron retention [153].

Globally, both mutation-adapted Ul snRNA
and exon-specific Ul snRNA constitute a novel
therapeutic strategy to correct splicing defects
associated to defective exon definition in several
human disorders. Once the Ul snRNA-mediated
approaches act at pre-mRNA level, they have the
main advantage of maintaining the regulated
expression of the targeted gene in the normal
chromosomal context [139, 154]. Also, given that
the Ul snRNA gene used for splicing rescue
includes promoter and regulatory sequences, it
has the capability of guaranteeing long term cor-
rection of the genetic defect [139]. Despite these
advantages, Ul snRNA-mediated therapies may
also face some problems such as the presence of
off-target effects and low efficacies. Therefore, in
a near future, it will be imperative not only to
develop a specific method or tool to search for
off-target effects, but also to adjust the expression
levels of Ul snRNA therapeutic particles in pre-
clinical in vivo studies [154].

7.3.3 Engineered U1 snRNAs
Delivery

Ul snRNA-mediated therapies also have to deal
with the challenge of an efficient delivery to a tar-
get tissue. In the in vivo studies already devel-
oped, one of the most successful gene therapy
systems available nowadays — AAV vectors — has
been chosen as the method for Ul snRNA-
engineered particles delivery into mice [137, 138,
146, 150, 151]. AAV vectors allow a highly effi-
cient delivery to various tissues following sys-
temic injection, even though dependent on the
viral serotype used [90, 155]. Also, the low pack-
aging capacity of AAV vectors is quite adequate
for Ul snRNA-based approaches given the small
cassette size to package [90]. However, despite
the modifications that have been introduced in
viruses, the potential for antiviral immunity and
phenotoxicity of the transgene are still major
limitations to the use of viral vectors for therapy.
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Possible alternatives to viruses are liposomes and
nanoparticle delivery [155].

Among the several RNA tools enabling the
rescue of splicing, both mutation-adapted Ul
snRNA and ExSpeU1 snRNA therapeutic strate-
gies have already shown their efficacy to repair
different types of splicing defects at least in ani-
mal models of disease. Still, further develop-
ments will be necessary for this therapeutic
approach to be translated to human trials.

7.4  siRNA-Based Drugs

7.4.1 Brief Overview

The last decade of the twentieth century has also
witnessed the discovery of a new mechanism of
gene regulation whose therapeutic potential is
still being unveiled: RNA interference (RNAI).
Interestingly, the first experimental observation
of this mechanism came up from a failed genetic
experiment aimed at developing more attractive
petunia flowers. In fact, in 1990, Jorgensen and
co-workers attempted to genetically engineer
flower pigmentation genes, to be inserted into the
target plant genome. To their surprise, however,
instead of generating more colorful flowers, they
ended up producing a generation of plants that
had virtually lost all pigmentation, thus becom-
ing white. This observation prompted additional
studies to check the expression levels of endoge-
nous genes involved in the natural pigmentation
biosynthetic pathway and most of them were
strongly reduced. Thus, a concept of co-
suppression, whereby sequence-related genes
could negatively regulate each other, was born
[156, 157]. Still, little was known on its underly-
ing mechanism. The first major breakthrough
came from the pivotal studies by Andrew Fire
and Craig Mello. By introducing various forms
of long RNA molecules into C. elegans, their
team observed that those with a double-stranded
presentation (double stranded RNAs, dsRNAs)
were the actual inducers of the silencing phe-
nomenon, which was then coined RNAi [158].
Thus, the work by Fire and Mello, which earned
them the 2006 Nobel Prize of Medicine, has not

only represented a major advance in the under-
standing of RNA1 basic mechanism, but also pro-
vided a simple and reproducible method by
which long dsRNAs could be used to induce spe-
cific gene silencing in lower organisms com-
monly used in genetic research, such as C.
elegans [159] and D. melanogaster [160]. In the
meantime, other teams kept their focus in plant
systems, aiming at a better understanding of the
role that RNAi and additional silencing processes
assume in plant homeostasis. Soon it became
clear that gene silencing operating at the RNA
level has roles in adaptative protection against
viruses [161], genome defense against mobile
DNA elements [162, 163] and developmental
regulation of gene expression (reviewed in
[164]). A second component of RNA silencing,
in addition to dsRNAs, was then identified and
coined short interfering RNAs, which resulted
from the processing of dsRNAs into 21-26 nt
counterparts [165]. Interestingly, those short
interfering RNA molecules could be sorted into
two classes depending on their size, and soon it
became clear that each of those classes assumed
different functions. The long ones (24-26 nt)
were dispensable for sequence specific mRNA
degradation, but essential for systemic silencing
and methylation of homologous DNA [164].
Another interesting contribution to the deeper
understanding of the overall RNA silencing pro-
cess came from a work of Cogoni and co-workers,
who described a new biological function for
RNA silencing in Neurospora called quelling,
which can be activated upon the introduction of
transgenic DNA. These authors observed that
quelling  targets preferentially transgenes
arranged in large tandem arrays and its effectors
are also short interfering RNAs [166], reviewed
in [167]. Altogether, these works unveiled an
unexpected complexity in the RNA silencing
process in plants, prompting additional studies to
check whether the same would also apply in ani-
mals. By this time, however, no one foresaw that
the RNAi mechanism would also work in mam-
malian systems because long dsRNAs were
already known to induce a strong interferon
response. The first demonstrations that RNAi
also works in humans came from the work of two
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independent groups in Germany, one operating at
the Max Planck Institute, and the other at the
University of Bayreuth, and a third one in the
United States, operating at the NIH, Bethesda.
The team at the Max Plank Institute showed that
synthetic versions of short dsRNA molecules
were able to trigger a strong gene silencing effect
in mammalian cells without inducing the inter-
feron response. Moreover, they tested a series of
design features for those short dSRNAs including
length, blunt or sticky ends and chemical modifi-
cations, finding that structurally defined 21-23
base-pair small RNAs, with 2 nucleotide unpaired
overhangs at the 3’ ends, were the most efficient
mediators of RNAIi [168, 169]. This fundamental
work was published in Nature in 2001, and
became the scientific content for a key patent in
the field called “Tuschl II”. In parallel, the NIH
team came up with another demonstration that
synthetic siRNAs can induce gene-specific inhi-
bition of expression in C. elegans and in cell lines
from humans and mice. They did it by systemati-
cally comparing the level of gene expression
decrease caused by siRNAs versus that caused by
single stranded AONs [170]. Their work, pub-
lished in PNAS, was another step to open a path
toward the use of siRNAs as a reverse genetic and
therapeutic tool in mammalian cells, as the
authors themselves have stated. Around the same
time, at the University of Bayreuth, Kreutzer and
Limmer had also reasoned that short fragments
of dsRNA would putatively mediate a RNAi
response similar to the one originally described
by Fire and Mello and, even though their findings
have never been published, they did file key pat-
ents around the discovery. Additional studies on
the subject ended up unveiling the endogenous
RNA silencing pathway that was being fed by
small dsRNAs, from now on called small inter-
fering RNAs (siRNAs). It also became evident
that the same pathway is also able to process
microRNAs (miRNAs), as previously seen
(Fig. 7.1c). Here, we will focus solely on the
RNAI process triggered by siRNAs.

The siRNA pathway starts with the cytoplas-
mic cleavage of long dsRNAs by an enzyme
called Dicer. As a result, short dSRNA duplexes
are formed. Then, those dsRNAs are incorpo-

rated into the RNA-induced silencing complex
(RISC), where the strands are separated, and one
strand guides RISC to the complementary region
of target mRNA (Fig. 7.6). The heart of RISC is
the Argonaute (AGO) proteins. In humans there
are 8 AGO proteins, 4 from AGO clade (AGO1-
4) and 4 from P-element induced wimpy testis
(PIWI) clade (PTWI1-4; [171]). Still, not all AGO
proteins are cleavage competent. In fact, AGO?2 is
the sole executer that accomplishes siRNA-
induced silencing. Thus, whenever the siRNA
strand loaded into RISC has complete sequence
complementarity with its target mRINA sequence,
it triggers site-specific mRNA cleavage, which
ultimately results in a reduced expression of that
mRNA and of the target protein (Fig. 7.4;
reviewed in [172]). This exact same process can
also be induced by direct exogenous supply of
synthetic siRNAs. Over the years, a series of
empirical and rational guidelines started accumu-
lating from the analysis of hundreds of functional
siRNAs. There are now a number of guidelines
one should follow in order to design an effective
siRNA, which have been well reviewed else-
where [173]. There are also many websites and
companies that either offer reliable methods for
the design of effective siRNAs or even design
them on demand. Because of their small size, the
chemical synthesis of siRNAs is relatively easy
and nowadays, several companies offer them
delivered in ready-to-transfect format. This is,
therefore, a simple, easy-to-handle RNAi-effector
for virtually every lab need.

Since the half-life of siRNA is short, an alter-
native RNAi-effector molecule has also been
developed: short hairpin RNAs (shRNAs), which
are not directly transfected into their target cells.
Instead, shRNAs are transcribed in the nucleus
from an exogenous DNA expression vector bear-
ing a palindromic sequence with a spacer in
between, whose transcript folds into a short
dsRNA with a terminal loop. The shRNA tran-
script is processed by Drosha, an RNase III endo-
nuclease. The resulting pre-shRNA is exported to
the cytoplasm, where it can then be processed by
another RNase III, called Dicer, and incorporated
into RISC, thus triggering the same RNAi pro-
cess previously described (reviewed in [172]). In
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Fig. 7.6 The RNA interference (RNAi) mechanism.
Entry of double-stranded RNA (dsRNA) into eukaryotic
cells results in targeted RNA-induced silencing complex
(RISC)-mediated cleavage of messenger RNA (mRNA)
through activation of the endogenous RNAi mechanism:
dsRNAs are recognized and cleaved into shorter frag-
ments by Dicer, and subsequently loaded into a multipro-

general, shRNAs are harder to complex/internal-
ize. Still, by delivering DNA instead of the effec-
tor RNA molecule, they take advantage of the
cell’s transcription machinery to produce specific
shRNA transcripts, they allow for high potency
sustainable effects using low-copy numbers. One
such approach results in less off-target effects,
putatively ensuring greater safety. Additionally, a
shRNA expression vector does also cost less than
the bulk manufacturing of siRNAs (reviewed in
[174]).

Once all cells have the RNAi machinery and,
in principle, any gene can be knocked down, soon
siRNAs became invaluable tools in the lab,
enabling the easy genetic knockdown of any
sequence. RNAi was rapidly exploited as a tool
to promote unbiased genome-wide screening to

RISC-mediated

 — cleavage of mRNA

tein conglomerate called RISC, which facilitates the
separation of the two RNA strands. Once the double-
stranded RNA is separated, one strand gets degraded
while the other associated with RISC acts as a template
for RISC-mediated cleavage of complementary RNA,
thus reducing protein translation

search for relevant genes involved in specific bio-
logical processes, first in invertebrate cells [170,
175-177] and latter in mammalian cells [178—
182]. In fact, this knockdown technique provides
a valuable tool for the functional annotation of
mammalian genes [183, 184], for the creation of
knockout animals [185] and for the identification
of new drug targets (reviewed in [186]), but these
are far from being the major application of this
technology. In fact, RNAi has been regarded as
one of the major breakthroughs in the field of
molecular medicine, and its potential as a thera-
peutic effector has been largely tested over the
last decades.

The need to optimize the technique and take it
from bench to clinic is also prompting extra
research efforts to gain a deeper understanding of
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the overall RNAi mechanism. For example, in
order to function, siRNAs need to escape to the
cytosol, where the RISC works. Thus, release
from the endosome is an important barrier.
Understanding the mechanism(s) that promotes
and limits endosomal release may help to opti-
mize this limiting step. This remains, though, a
major area of investigation for all nucleic acid
therapeutics [11].

7.4.2 Recent Successful
Applications of siRNA-Based
Drugs

Being a naturally occurring post-transcriptional
gene silencing process, this mechanism has sev-
eral advantages when compared to other AON
technologies, and that recognition triggered
major investments in RNAi-based drug develop-
ment by large pharmaceutical and biotechnologi-
cal companies [187]. The potential of siRNA
therapeutics was first demonstrated by Song and
co-workers 15 years ago, when injection of Fas
siRNAs protected mice from autoimmune hepati-
tis. Fas-mediated apoptosis is implicated in a
broad spectrum of liver diseases, where inhibit-
ing hepatocyte death can be life-saving. These
authors investigated the silencing effect of siRNA
duplexes targeting the gene encoding the Fas
receptor (Fas), to protect mice from liver failure
and fibrosis in two models of autoimmune hepa-
titis. Intravenous injection of Fas siRNA specifi-
cally reduced both Fas mRNA and Fas protein
expression levels in mouse hepatocytes, and the
effects persisted without diminution for 10 days
[188]. This pioneer work has not only shown that
siRNA-directed Fas silencing could work in vivo
and be of therapeutic effect for preventing and/or
treating acute and chronic liver injury [188], but
also provided the proof-of-principle on the poten-
tial of the overall RNAi technology to treat or
prevent disease (reviewed in [189]). Since then,
drug development has been rapid, with siRNAs
facing virtually the same obstacles as AONSs.
Fortunately, some of the AON strategies could be
adapted to siRNA therapeutics, thus accelerating
siRNA preclinical drug development and clinical

evaluation. In general, RNAI clinical trials are
progressing well. Clinical Phase I and II studies
of siRNA therapeutics have demonstrated potent
(as high as 98%) and persistent (lasting for
weeks) gene knockdown effects, especially in
liver, with some signs of clinical improvement
and without unacceptable toxicity (reviewed in
[189]). There are also several trials in Phase III
development (Table 7.2; reviewed in [11]).

Early this year Alnylam has announced
U.S. FDA acceptance of New Drug Application
(NDA) and Priority Review Status for Patisiran,
an investigational RNAi therapeutic for the treat-
ment of hereditary transthyretin amyloidosis
(hATTR) [225]. Almost at the same time, the
company presented new clinical results from the
APOLLO Phase III study of this drug at the 16th
International Symposium on Amyloidosis. The
APOLLO Phase III trial was a randomized,
double-blind, placebo-controlled, global study
designed to evaluate the efficacy and safety of
Patisiran in hATTR amyloidosis patients with
polyneuropathy. The primary endpoint of the
study was the change from baseline in modified
Neurologic Impairment Score +7 (mNIS+7) rela-
tive to placebo at 18 months. According to the
general manager of the transthyretin (TTR) pro-
gram at Alnylam, “the clinical results presented
further highlight the robust profile of Patisiran
and provide evidence supporting Patisiran as a
potentially transformative treatment approach
for patients with hATTR amyloidosis”. Also the
results obtained in the cardiac subpopulation,
which corresponded to approximately 50% of the
patients enrolled in the APOLLO study, revealed
significant improvements in measures of cardio-
myopathy, the leading cause of death in patients
with hATTR amyloidosis, relative to placebo
[201]. Finally, in August 2018, the drug got its
U.S. FDA approval, and is now commercialized
under the designation Onpattro™ [226].

Hopefully, the approval of the first RNAI ther-
apeutic will pave the way for approval of other
targets (reviewed in [227]), especially if we take
into account that there are several other siRNA
drugs under evaluation, which have recently
advanced for phase III development (Table 7.2;
reviewed in [11]). The most relevant examples
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include Revusiran, which is a second siRNA drug
under evaluation as a treatment option for patients
with familial amyloid cardiomyopathy by reduc-
ing plasma TTR levels [220]; QPI-1002, which is
being developed for the treatment of delayed
graft function for kidney transplants [192];
Fitusiran, a potent siRNA drug under study for
patients with hemophilia, which aims at amelio-
rating the disorder by reducing the plasma levels
of anti-thrombin [198], and Inclisiran, which tar-
gets proprotein convertase subtilisin/kexin type 9
(PCKD9) to reduce the risk of cardiovascular dis-
ease [200], as reviewed in [11].

7.4.3 Delivery of siRNA-Based
Drugs

Intracellular delivery of double-stranded siRNAs
is more challenging than delivery of single
stranded AONs [186]. Still, it is also worth men-
tioning that, as suggested by the best estimates,
only a few hundred cytosolic siRNAs per cell are
needed for efficient and sustained gene knock-
down [228, 229]. This happens because the guide
strand of the siRNA remains stable within the
RISC for weeks, even though it gets diluted with
every cell division [230]. Thus, the same siRNA
molecule can target multiple transcripts, knock-
ing down gene expression in slowly dividing or
non-dividing cells over the same period. Overall,
as noticed by several authors, this actually con-
tributes to turn the delivery obstacle into a less
formidable one than that faced by other antisense
mechanisms, which act on a one-to-one basis
[230] (reviewed in [229]).

Still, knowing that the translation of siRNAs
from the bench to the clinic would be hindered by
their limited cellular uptake, low biological sta-
bility and unfavorable pharmacokinetics, the
development of appropriate delivery methods
became mandatory to proceed with preclinical
studies. Therefore, different approaches have
been (and are being) attempted to ensure safer
and long-lasting delivery methods for siRNA-
based drugs, for both systemic and targeted deliv-
ery. Most of these developments were made in
parallel with siRNA drug development and only

through the combined efforts of several indepen-
dent teams were these drugs modified in ways
that allowed their clinical evaluation, with the
promising results highlighted in the previous sec-
tion. Whatever the case, an effective delivery sys-
tem must fulfill a series of criteria, which have
already been listed by Tatiparti et al. amongst
other author: be stable at the body temperature
and pH variations, have an endocytosis promot-
ing shape, cannot be toxic, must exhibit high
siRNA loading abilities and have a size that
avoids rapid renal and hepatic clearance [231]. In
general, all the delivery systems developed for
gene therapy may also be adapted for siRNA
delivery [232].

7.4.4 Non-targeted Delivery

Early strategies for solving the dual problems of
intracellular delivery and rapid excretion involved
incorporating siRNAs into LNPs — smaller, more
homogeneous analogues of lipoplexes used for
laboratory transfection [233-235], (reviewed in
[189]). LPNs were first shown to be effective in
targeting the hepatitis B virus (HBV) in mice,
where the LPN-formulated siRNA was given in 3
daily injections of 3 mg/Kg/day. This treatment
regimen resulted in a decrease of HBV levels by
1-2 orders of magnitude [236], as reviewed in
[237]. Nevertheless, these complexes (and other
nanoparticle strategies for siRNA delivery) accu-
mulate in the liver and other filtering organs,
which limits their effectiveness in penetrating
other tissues [235, 238] (reviewed in [189]).
Furthermore, the administration of siRNAs with
LNP delivery vehicles is quite pro-inflammatory.
In fact, lipid-based vehicles can become
entrapped in endosomes [237], where the Toll-
like receptors (TLR) will recognize various moi-
eties in dsSRNAs, modified siRNAs or even from
their degradation products [239], eliciting an
undesirable innate inflammatory response. So, in
most circumstances the siRNAs require pretreat-
ment regimens including antihistamines, non-
steroidal anti-inflammatories and even relatively
high doses of glucocorticoids [190, 191, 240]
(reviewed in [11]).
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Still, recent developments by several indepen-
dent teams have demonstrated the feasibility of
systemic administration of either chemically
modified or complexed siRNAs. In fact, even
though unmodified siRNAs do not distribute
broadly to tissues after systemic administration
(reviewed in [11]), simple chemical modifica-
tions of the 2'-position of the ribose and substitu-
tion of phosphorothioate linkages, such as the
ones described for AONs in the first section of
this chapter (2’-OMe and 2'-MOE), and 2’-fluoro
(2'-F), protect siRNAs from nuclease digestion,
thus prolonging their half-lives, both in serum
and other body fluids [236, 241] (reviewed in
[189]). 2’-modifications can also prevent recog-
nition by innate immune receptors by blocking
the binding to TLR [242-244] and reduce off-
target effects that could arise from the suppres-
sion of partially complementary sequences [245]
(reviewed in [189]). As already referred, these
modifications had been previously designed for
use in AONs and not siRNAs and, even though
they did show effective in improving stability,
specificity and immunogenic properties, they do
not improve potency. Recently, however, two
novel, siRNA-optimized 2’-O modifications,
were shown to increase in vivo activity of siR-
NAs, not only by increasing their potency but
also their in vivo duration compared to their
unmodified counterparts when delivered using
LNPs:  2’-O-benzyl and  2'-O-methyl-4-
pyrimidine (2’-O-CH2Py(4); [246]). Several
teams have also been assessing different com-
plexation methods with functional peptides [247]
and/or different vectors: exosomes [248] includ-
ing lipid nanocarriers such as pegylated immuno-
liposomes (PILs; [249)),
stable-nucleic-acid-lipid-particles (SNALPs;
[250]), or polyhydroxyalkanoate-based nanove-
hicles [251], reviewed in [252]. Also under con-
sideration are siRNA delivery strategies that use
viral particles. The viral delivery of siRNAs is
composed of two main strategies: siRNAs are
either chemically synthesized and loaded into a
viral capsule, or they can be expressed from the
DNA of a recombinant virus (reviewed in [253]).

Meanwhile, second generation LPNs were
also developed. Constructed with the anionic

lipid dilinol eylmethyl-4-dimethylaminoburyate
(DLin-MC3-DMA), they mediate potent gene
knockdown at reduced doses compared with first
generation LNPs, while improving delivery [190,
217]. Partisiran (previously termed ALN-TTRO02;
ChemlIDplus-Partisiran), for example, is exem-
plary of a minimally chemically modified siRNA
delivered primarily to the liver in a second gen-
eration liposome formulation.

7.4.5 Targeted Delivery

Overall, there has been a huge progress over the
last decade concerning not only non-targeted but
also targeted delivery of siRNA drugs. In fact,
siRNAs can also be targeted for uptake in
selected tissues or cell types by taking advantage
of high-affinity antibody or antibody fragments
[254-256], aptamers (nucleic acids selected for
high-affinity binding; [257-259] or receptor
ligands [260-264], which bind to specific cell
surface receptors and mediate cell-specific
uptake. The targeting moieties can be either
directly conjugated to siRNAs (bound non-
covalently) or incorporated into LPNs or other
nanoparticles (reviewed in [189]). In general,
targeted uptake has the advantages of being
effective at a lower dose while exhibiting lower
toxicity, which may potentially occur from
knockdown effects in unintended tissues. It is
also a tool of great advantage for the treatment of
non-systemic diseases. The easiest organ to tar-
get is the liver, which is a filtering organ that
traps nanoparticles. It is also the primary site of
synthesis of many circulating proteins. That is
why it has been the target organ in most early
clinical attempts at translating RNAi (reviewed
in [186]). Furthermore, several diseases, which
directly affect this organ may benefit from a
straightforward liver targeting method. The most
successful possibility under study includes a
series of more drastic chemical modifications,
where siRNAs have a trivalent
N-acetylgalactosamine (GalNAc) moiety conju-
gated to the 3’ terminus of one of the strands
[220, 264] (reviewed in [11]). GalNAc mediates
hepatocyte uptake through the hepatocyte-
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restricted asialoglycoprotein receptor (ASGPR),
thus being a suitable mediator for whole-liver
delivery [265] (reviewed in [189]). Uptake by
this receptor is primarily through clathrin-depen-
dent endocytosis [97]. Examples of GalNAc-
modified siRNAs include Revusiran and
Fitusiran (ChemIDplus-Revusiran; ChemIDplus-
Fitusiran (reviewed in [11]). Also, local delivery
to the CNS, a region that is difficult to deliver
drugs to due to the BBB, is being addressed,
with promising results. First preliminary evi-
dence that in vivo downregulation of specific
genes by RNAi could work at the CNS level
came from studies in rats and mice using inva-
sive local delivery methods (reviewed in [266]).
Lately, however, evidence is accumulating on
the successful brain delivery of si/shRNAs using
specifically designed vectors and/or modifica-
tions that include the use of enzyme-sensitive
LPNs [267], carbosilane dendrimers [268], cho-
lesterol modifications [269], and recombinant
fusion proteins [270]. Also, the pharmaceutical
industry is investing in developing BBB-directed
vectors. One of those examples is a family of
vectors that take advantage on the existence of
specific receptors and transport systems, which
are highly expressed at the BBB to provide
essential substances to brain cells. These vectors
comprise a full-length protein (Melanotransferrin)
and may be used to facilitate receptor mediated
drug delivery into the brain to treat CNS disor-
ders [271]. Recently, the application of this new
peptide vector to siRNA and ongoing studies
addressing the brain delivery of Iduronate 2-sul-
fatase (I2S) for the treatment of Hunter
Syndrome, a rare X-linked lysosomal storage
disorder, was discussed and its results in knock-
out mice were quite promising [272].

7.5  CRISPR-Cas Gene Editing

In addition to the most well known RNA-based
therapeutics (antisense drugs and siRNA-based
drugs) several other mechanisms of action are
also potential strategies. Recently, a new gene
editing  technology, Clustered Regulatory

Interspaced Short Palindromic Repeats (CRISPR)
and the CRISPR-associated protein 9 (Cas9)
(CRISPR-Cas 9) system, has received unprece-
dented acceptance in the scientific community
for a variety of genetic applications (reviewed in
[273]) (Fig. 7.7a). Even though this technology
lies beyond the scope of this chapter, it does
deserve some attention, as it may become a lead-
ing method for gene editing and even RNA-based
therapeutics, in the long term.

Similarly to what had already happened with
RNAI, the CRISPR-Cas system was not specifi-
cally developed as a method for gene editing.
Instead, it is a naturally occurring prokaryotic
immune defense strategy against non-self DNA
based invasions (e.g., viruses, plasmids), which
was recently discovered in bacteria and archaea
[273-276], and latter adapted for bench applica-
tions [277, 278]. Also like RNAI, the specificity
of CRISPR-Cas relies on the antisense pairing
of RNAs (here termed single guide RNA,
sgRNA) to specific genes but instead of binding
directly to RNA, sgRNAs bind to chromosomal
DNA. Another relevant difference between the
RNAIi and CRISPR technologies has to do with
the transiency of their effect. In fact, unlike siR-
NAs, sgRNAs induce stable changes in gene
expression, which are invaluable for in vivo
gene screening. Thus, genomic targeting
through CRISPR-Cas creates indels that can be
adapted for stable eukaryotic genome engineer-
ing, namely Cas-mediated gene knockdown
(reviewed in [186, 273]). In general, the appli-
cation of CRISPR/Cas9 for DNA editing as well
as for mammalian gene editing was established
in the 2012-2013 period and, in just 3 years,
this technique has revolutionized the entire gene
editing field. Currently, CRISPR-Cas gene
knockdown in zygotes provides a fast method
for the development of different animal models,
when compared to homologous recombination.
Nevertheless, it does hold a series of drawbacks
and raises a number of concerns, particularly
when its therapeutic potential is considered. In
fact, since this technique has the ability to mod-
ify the genome, its ethical and safe concerns are
enormous. Furthermore (and like every other
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Fig. 7.7 Additional RNA-based drug mechanisms. (a)
CRISPR/Cas9: CRISPR/Cas9 induces double strand
breaks (DBS) when targeted to a specific genomic site by
an appropriate guide RNA (sgRNA). This property may
be used for mutation correction, by adding a donor DNA
sequence that has homologous overlaps to the DBS (typi-
cally 100-1000 bp of overlap is used), thus promoting
homologous repair of the cleaved genomic DNA; (b)
Modified mRNAs: This approach consists in introducing
chemically modified, stabilized mRNAs into cells to be
translated to protein. Once internalized, sense-RNA drugs
can be used for transient in vivo transcription (IVT) of

antisense technology), CRISPR-Cas holds
potential for both on- and off-target effects.
Moreover, by creating double-stranded DNA
breaks, the Cas endonuclease can also lead to
oncogenic gene translocations and trigger a
DNA damage response, ultimately causing cell-
cycle arrest or even cell death. Finally, depend-
ing on the repair pathway which is activated,
gene editing may be imprecise [186]. Still, it
must be noticed that in the 5 years following the

mRNAs to replace mutated proteins or for vaccination
without the risk of genomic alteration; (¢) Aptamers:
Aptamers take advantage of their selection for high-
affinity binding to molecular ligands, often in the nano-
molar or subnanomolar range. They can be compared to
nucleic acid antibodies, having many of the advantages of
conventional protein antibodies. They can be either ago-
nists or antagonists, linked for bifunctional targeting and
conjugated to other RNAs, small-molecule drugs, toxins
or peptides. However, unless modified, they are rapidly
excreted and do not activate immune functions, as other
antibodies do

publication of the method, several improve-
ments to reduce off-target effects and provide a
better control of the whole mechanism, while
enhancing its efficiency have been developed
and reported (reviewed in [186, 279]). It should
also be mentioned that CRISPR/Cas9 is cer-
tainly a more versatile technique than RNAI,
has it may not only induce indels but also repress
or activate gene expression and cause both heri-
table and non-heritable genomic changes [280-
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Fig. 7.7 (continued)

282]. In fact, CRISPR/Cas9 can be adapted to
upregulate gene expression in different ways:
the first, most obvious approach consists in
using this technology to stably introduce consti-
tutive active promoter elements to a gene, thus
stably enhancing its expression. Alternatively, a
modified Cas9 (fused to a transcriptor activator
protein) may be targeted to any gene of interest,
driving a transient enhancement in gene expres-
sion known as CRISPR activation (CRISPRa;
[273]). In addition, the emergence of newer
gene editing tools such as the Cpfl enzyme,
which is a single RNA-guided endonuclease,
will eventually strengthen the portfolio of appli-
cations that may be achieved by CRISPR medi-
ated genome engineering [283]. Therefore, it is
becoming clear that clinical CRISPR-Cas stud-
ies will also be a trend in research over the next
years, starting with ex vivo editing of differenti-
ated cells, which may then be infused into
patients. Furthermore, as other authors have
already stated, it will also greatly benefit from
the accumulated knowledge on other non-RNA-

High-affinity
ligand

V2R

Aptamer-siRNA
conjugate

Aptamer-toxin
conjugate

Aptamer-protein
conjugate

based gene editing tools, such as zinc-finger
nucleases and on the delivery methods previ-
ously developed for AON- and siRNA-based
drugs.

7.6  Messenger RNA as a Novel

Therapeutic Approach

Another RNA-based approach is to introduce
chemically modified stabilized mRNAs into
cells, where those exogenous mRNAs will even-
tually be translated to protein (Fig. 7.7b). In fact,
in vitro transcribed (IVT) mRNA has recently
come into focus as a potential new drug class to
deliver genetic information. Such synthetic
mRNAs can be engineered to transiently express
proteins by structurally resembling natural
mRNAs [186, 284]. One advantage of mRNA-
based therapy over viral gene delivery is that
mRNA does not transit to the nucleus, thereby
mitigating  insertional = mutagenesis  risks.
Moreover, mRNA provides transient, half-life-
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dependent protein expression, while avoiding
constitutive gene activation and maintaining dose
responsiveness. Because of these advantages,
IVT mRNA treatment is an emerging class of
therapy, with multiple mRNA-based cancer
immunotherapies and vaccines currently in clini-
cal trials [284-286]. However, the fact that IVT
mRNA, despite its strong resemblance to natu-
rally occurring mRNA, can be recognized by the
innate immune system may play an important
part in its applicability. For vaccination
approaches, the inflammatory cytokine produc-
tion resulting from mRNA-induced immune
stimulation might add to the effectiveness of the
evoked immune  response. For  non-
immunotherapy approaches, however, the story is
different and so far, cancer immunotherapy is the
only field in which mRNA based therapeutics
have reached clinical trials [287-294].
Nevertheless, the potential of IVT mRNA is cur-
rently being explored for a variety of applica-
tions, ranging from inherited or acquired
disorders to regenerative medicine, all of which
remain at the preclinical stage [295, 296]. In fact,
an increasing number of preclinical studies has
evaluated mRNA-based therapy for a wide range
of diseases such as surfactant B deficiency, myo-
cardial infarction [297] sensory nerve disorders
[298], fulminant hepatitis [299] hemophilia B
[300, 301], congenital lung disease [302], cancer
[303], liver and lung fibrosis [304], and
methylmalonic acidemia [305]. However, the
main hurdle in implementation of mRNA for
therapeutics, the systemic delivery of mRNA
molecules to target cells, remains a challenge.
Better understanding of the factors that deter-
mine translational efficiency as well as RNA rec-
ognition by innate immune receptors, has
improved the intracellular stability and function-
ality of mRINA transfected to cells. Still, when
aiming to harness mRNA molecules for gene
therapy purposes, this progress was insufficient.
The need for mRNA protection from degradation
in extracellular compartments, as well as for
enabling its entry to the cell, has raised the
demand for suitable delivery platforms [285,
295]. A possible solution for this challenge relies
in the rapidly evolving field of nucleic acid-

loaded NPs. In fact, the progress in the field of
NPs-mediated RNAi-based therapy, has led to
similar development of nanocarriers for
mRNA. Particularly, the widely investigated fam-
ily of LNPs was proposed to be such appropriate
mRNA nanocarriers [296, 305, 306]. Moreover,
the use of polyplex nanomicelles has also been
explored [298, 299]. In order to achieve high effi-
cacy in vivo some IVT mRNA specific formula-
tion adjustments should be done in a near future.
These adjustments are more important when sys-
temic administration is required. Moreover, in
order to expand the variety of mRNA-based ther-
apies, cell specific targeted delivery systems are
also needed especially in diseases involving a
certain organ, which is inaccessible by standard
LNPs, as well as in many types of solid tumors
[296]. In conclusion, innovative design of nano-
carriers for IVT mRNAs delivery will help to
increase their potential and turn them into a valid
therapeutic approach.

7.7  Aptamer-Based Drugs

Another potential class of RNA therapeutics are
oligonucleotide aptamers (see Fig. 7.7c). The
term aptamer comes from the Latin word “aptus”,
which means “to fix”, as a clear reference to the
lock and key relationship of aptamers and their
targets [307, 308].

Aptamers are short (20-70 bases) single
stranded  oligonucleotides  (ssRNA/ssDNA),
which bind to their targets through 3D conforma-
tional complementarities with high affinity and
specificity. Unlike the previously referred strate-
gies, aptamers can be tailored selectively against
a variety of targets, from nucleotides to amino
acids, proteins, small molecules or even live cells
[309]. Still, proteins are the major targets in
aptamer research  (reviewed in  [310]).
Oligonucleotide aptamers have affinity and spec-
ificity capacities, which are comparable to those
of monoclonal antibodies, whilst having minimal
immunogenicity, high production, low cost and
high stability. These oligonucleotides can be
selected trough an in vivo process called
Systematic Evolution of Ligands by Exponential
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enrichment (SELEX), which dates back to 1990.
This method was originally described and per-
formed by Szostak and Gold [307, 308]. The
whole process starts with the synthesis of a
screening library formed by a large number of
randomly combinatorial ssDNA and/or ssRNAs.
Each one of those random ssDNA/ssRNAs has
one conserved sequence at each end. That
sequence allows primer binding and amplifica-
tion. The random library is then incubated with
the target proteins, under proper conditions.
Then, through a partition step, the sequences that
had bind to target proteins are separated from
those that did not bind. In the third step, the bind-
ing sequences are eluted and amplified with
primers complementary to their conserved
sequences, either by PCR (for ssDNA) or RT-PCR
(for ssRNA). All these steps form a single SELEX
cycle. This selection process is then repeated for
about 7-20 rounds of incubation, partitioning
and amplification. Ultimately, this results in the
identification of a small number of binding
sequences with high affinity and specificity for
further processing and optimization. Generally,
the binding sequences are then transformed into
bacteria (E. coli) for further sequencing and char-
acterization (reviewed in [310]). Naturally, in the
post-SELEX process, the synthesized aptamers
(as every other AON) can be chemically modified
for therapeutic purposes, to stabilize and protect
them against nucleases in vivo. Recent advances
in SELEX technology, with the introduction of
chemically modified bases and the use of deep
sequencing to analyze enriched RNAs in early
rounds of selection, have greatly reduced the time
needed and the likelihood of identifying high-
affinity aptamers (reviewed in [186]).

Over approximately 10 years, starting in 2005,
when the first aptamer Pegaptanib (PubChem,
Pegaptanib) was approved for wet age-related
macular degeneration (AMD) therapy by
U.S. FDA, oligonucleotide aptamers were grow-
ing more and more popular. Until 2016, when the
last estimates were published online, there had
been over 900 aptamers developed against vari-
ous targets for diagnostic and therapeutic pur-
poses [311]. Nevertheless, drug development of
aptamers is currently not very active, with big

pharmacological companies being much more
focused on the technologies reviewed in the pre-
vious sections of this chapter. Still, it is worth
mentioning that these oligonucleotides could
substitute for some applications of therapeutic
antibodies, with lower risk of developing immu-
nological responses. They could also be used for
targeted intracellular delivery of other molecules,
including RNA-based drugs.

7.8  Conclusion

Over the last decades, an exceptional increase on
the understanding of the versatile roles of RNAs
has sparked the development of new classes of
RNA-based drugs. Therapeutic RNA-based
applications are emerging, in different fields,
from inherited genetic diseases, oncology, viral
infections and diabetes to neurological, cardio-
vascular, bone-related and ocular diseases. Over
the last years in particular, much effort has been
focused on the development of RNA-based thera-
peutics. Currently, even though there are a num-
ber of RNA-based therapeutic strategies, which
may be attempted in order to either correct or
modulate gene expression, there has been a clear
prevalence of studies focused on splicing modifi-
cation and gene expression inhibition using dif-
ferent types of AONs. Actually, the first
AON-based drugs were recently approved,
closely followed by the first siRNA-based thera-
peutic drug, which was approved last year. Still,
there is a strong need to optimize the delivery
steps of RNA-based technologies and to improve
the drug-like properties of therapeutic nucleic
acids. Expanding the range of targeted cells and
tissues will require the development of robust
strategies for cytosolic delivery, thus overcoming
the two major hurdles of getting across the
plasma membrane and out of the endosome.

In conclusion, as the first generation of nucleic
acid therapeutics become drugs, the barrier for
investing in RNA-based therapeutics will be low-
ered, and more resources will become available
for exploring other mechanisms of action for
RNA-based drugs apart from splicing modula-
tion and single-gene knockdown. As already
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pointed out by other authors, the flexibility of
RNA design should allow for the facile construc-
tion of potent multifunctional drugs that have
more than one mode of action and disrupt multi-
ple targets. One such multifunctional drug may
hold the promise of substituting for drug cock-
tails in a future not so distant. There is also the
largely unexplored potential of targeting other
RNA species and disrupting their functions.
Therefore, in the near future, RNA-based drugs
may become an increasing component of the
pharmacopoeia, greatly expanding the universe
of druggable targets and providing affordable
treatment options for previously untreatable dis-
eases. Ultimately, this kind of drugs may hold
potential to actually cure genetic diseases [186].
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