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Abstract
Throughout evolution, eukaryotic cells have 
devised different mechanisms to cope with 
stressful environments. When eukaryotic cells 
are exposed to stress stimuli, they activate 
adaptive pathways that allow them to restore 
cellular homeostasis. Most types of stress 
stimuli have been reported to induce a decrease 
in overall protein synthesis accompanied by 
induction of alternative mechanisms of mRNA 
translation initiation. Here, we present well-
studied and recent examples of such stress 
responses and the alternative translation initia-
tion mechanisms they induce, and discuss the 
consequences of such regulation for cell 
homeostasis and oncogenic transformation.
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6.1	 �Introduction

Most eukaryotic mRNAs are translated into pro-
teins through a 5′-end m7G cap-dependent trans-
lation mechanism. Translation initiation is 
marked by the formation of a ternary complex 
(TC) composed of eukaryotic initiation factor 2 
(eIF2) bound to Met–tRNAi

Met and GTP [1]. 
eIF2B, a guanine nucleotide exchange factor 
(GEF), controls TC assembly by converting 
eIF2–GDP into the active eIF2–GTP complex 
before each round of translation [2]. Once prop-
erly assembled and active, the TC binds the 40S 
ribosomal subunit, forming the 43S pre-initiation 
complex (43S PIC). Several initiation factors, 
such as eIF1, eIF1A, eIF3 and eIF5, help this 
binding [3–8]. Separately, eIF4E binds the 5′-end 
m7G cap of the mRNA and recruits eIF4G and 
eIF4A forming the eIF4F complex [8] and stimu-
lating eIF4A’s helicase activity, which promotes 
mRNA restructuring [9, 10]. eIF4G is the scaf-
fold for the eIF4F components and binds to 
poly(A)-binding protein (PABP) and eIF3 at sub-
units c, d and e, helping recruit the 43S PIC to the 
transcript [11]. Following recruitment, 43S PIC 
will often require scanning downstream in order 
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to find the initiation codon [12, 13], unless this 
one is within close reach, in which case scanning 
is unnecessary and instead a specific Kozak 
sequence termed TISU can help prevent “leak-
age” to a downstream AUG [14, 15]. In most 
cases, however, the AUG is relatively far from the 
5′-end and the 5′ untranslated region (UTR) is at 
least mildly structured, so scanning of – or jump-
ing over, during a phenomenon named ribosomal 
shunting [16]  – the 5′ UTR by the 43S PIC is 
often a requisite for translation initiation and typ-
ically entails the hydrolysis of ATP, eIF1, eIF1A, 
and DHX29 [3, 17]. ATP hydrolysis can be used 
by eIF4A to unwind secondary structures in the 
mRNA, and actively displace the ribosome in a 5′ 
to 3′ direction. At the same time, the ribosome is 
prevented from backsliding, because the 
unwound structures behind it resume their initial 
winding conformation [18, 19]. Scanning, when 
necessary, usually stops when the 43S PIC 
reaches the first AUG codon positioned in a 
favourable Kozak context (a purine, usually ade-
nine, in position −3 and a guanine in position +4) 
[12]. At this point the 48S pre-initiation complex 
(48S PIC) is formed, with pairing of all three 
nucleotides of the anticodon and release of eIFs 
from the small subunit. Upon recognition of the 
initiation site, eIF5 and eIF5B promote the hydro-
lysis of eIF2–bound GTP [20, 21]. eIF5B–GTP 
binds to the 40S subunit and stimulates the 60S 
subunit joining, requiring a second step of GTP 
hydrolysis in order to make the 80S ribosome, 
which will be ready to start decoding the message 
[22, 23]. When this happens, eIF2 is completely 
released from the ribosome in its GDP-bound 
form that latter must be reverted to GTP-bound 
again to allow reassembly of the TC for another 
round of translation. The formed eIF2–GTP is 
only stable when Met–tRNAi

Met joins in to form 
the TC [2].

Although the translation process may be hin-
dered at several stages, the translation initiation 
phase is the rate-limiting step and involves more 
factors and sub-steps that are prone to error, and 
many of them may be inactivated, modified or 
adjusted under adverse cell conditions [24]. In 
fact, translation initiation is globally impaired 
under stress conditions and overall protein syn-

thesis is reduced, a response that has been termed 
Integrated Stress Response (ISR). Such reduction 
can happen due to eIF4E’s or eIF2’s inability to 
bind eIF4G/5′-end cap or integrate the TC, 
respectively. The first occurs for example during 
stress conditions that inhibit the mTOR prolifera-
tion and survival pathway; as inactivated mTOR 
kinase is no longer able to phosphorylate 
4E-binding proteins (4E-BP) and the resulting 
hypophosphorylated 4E-BP binds to eIF4E pre-
venting its association with eIF4G and the forma-
tion of eIF4F. The core event of the ISR however, 
is the second mechanism, involving phosphoryla-
tion of serine 51 of the eIF2α subunit by any of 
several protein kinases activated by a wide range 
of different stress conditions. This phosphoryla-
tion stabilizes the interaction between eIF2B and 
eIF2–GDP and prevents the formation of the 
eIF2–GTP–Met–tRNAi

Met complex (TC).
Repression of global protein synthesis is often 

accompanied by selective translation of mRNA 
encoding crucial stress-responsive proteins that 
can lead to either stress recovery and survival or 
cell death. This selective translation involves 
alternative initiation elements, often RNA struc-
tures or modifications, and may not require some 
of the more common elements such as the 5′-end 
m7G cap. Genes that can maintain their expres-
sion under stress conditions may contribute to 
modify cell fate if they operate on repair, survival 
or programmed death pathways. Many cancer 
cells take advantage of this ability in transcripts 
such as XIAP, HIF1α or VEGF to escape apopto-
sis, resist to hypoxic conditions, or vascularise 
the tumour surroundings, respectively. It is well 
reported that many of these stress-response tran-
scripts can maintain expression because of the 
alternative mechanisms of initiation that mediate 
their translation. Out of these mechanisms, inter-
nal ribosome entry at internal ribosome entry 
sites (IRES) has been the most widely studied 
and is accepted as a backup mechanism for cells 
to cope with conditions when canonical transla-
tion is shut down.

In this chapter, we aim to compare the differ-
ent mechanisms of translation initiation involved 
in stress-response. We will also briefly consider 
to what extent these mechanisms may create an 
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adaptive advantage to the eukaryotic cell under 
stress conditions or how sometimes this advan-
tage turns into a burden to the organism when 
coupled with processes of cellular 
transformation.

6.2	 �Translation Initiation 
in Stress Response

Throughout evolution, eukaryotic cells have 
devised different mechanisms to cope with stress-
ful environments. When eukaryotic cells are 
exposed to stress stimuli, they activate a common 
adaptive pathway that allows them to restore cel-
lular homeostasis: the integrated stress response 
(ISR) [25]. Most types of stress stimuli have been 
reported to activate the ISR [26, 27], including 
hypoxia [28], nutrient deprivation [29], oxidative 
stress, heat shock [30], viral infection (dsRNA) 
[31], endoplasmic reticulum (ER) stress / 
unfolded protein response (UPR) [32], UV irra-
diation [33], proteasome inhibition [34] and 
oncogene activation [35]. They all lead to the 
phosphorylation of eIF2α and consequent inhibi-
tion of TC formation, by activating kinase haem-
regulated inhibitor (HRI), protein kinase activated 
by double-stranded RNA (PKR), general control 
non-derepressible-2 (GCN2) or PKR-like endo-
plasmic reticulum kinase (PERK) [26, 36]. As a 
consequence, there is a decrease in overall pro-
tein synthesis. However, several selected genes 
that participate in cellular stress response are still 
translated under such conditions [26, 37]. Below, 
we discuss some well-studied examples of stress 
stimuli, the inhibition they induce and the alter-
native mechanisms they activate, as well as the 
consequences of such regulation for cell homeo-
stasis and transformation.

6.2.1	 �Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) is a central 
organelle in which proteins are translated and 
properly folded, may undergo some post-
translational modification and from there are sent 

to the Golgi complex and sites of action. When 
perturbations in ER homeostasis occur, causing 
an accumulation of unfolded proteins in the ER, 
these perturbations are sensed and transduced to 
the whole cell and an evolutionarily conserved 
response is activated—the unfolded protein 
response (UPR) [38–40]. The UPR consists of 
three branches, each of which can be distin-
guished by the action of a different stress sensor 
protein: inositol-requiring protein-1α (IRE1α), 
protein kinase RNA (PKR)-like ER kinase 
(PERK) and activating transcription factor 6 
(ATF6) [39, 40]. In normal conditions, the UPR 
modulators IRE1, PERK and ATF6 interact with 
molecular chaperone Binding immunoglobulin 
protein (Bip)/GRP78 and remain inactive [39–
42]. However, when unfolded proteins accumu-
late in the ER, BiP is required to assist with the 
folding and the sensor proteins are liberated and 
activated. Other proteins have also been shown to 
regulate IRE1α and the other sensors [43]. Upon 
activation, all three stress sensors induce signal 
transduction in order to deal with the stress and 
reduce the amount of misfolded proteins. This 
includes a tight reprogramming of transcription 
and translation to ensure less and more specific 
gene expression [44]. The key regulatory path-
way for this response is the PERK/eIF2α/ATF4 
pathway in which the kinase PERK phosphory-
lates eIF2α (eIF2α-P). This signal then induces 
overall translational impairment, but it also 
enables translation of the transcription factor 
ATF4 mRNA [44]. ATF4 is a transcription factor 
whose translation has been shown to be regulated 
through reinitiation at upstream open reading 
frames (uORF) [45] and also by an Internal ribo-
some entry site (IRES) stimulated by eIF2α phos-
phorylation [46] (see also below section 
“Translation initiation by internal ribosome 
entry” and Fig. 6.1).

Translation of HIAP2 (a member of the inhib-
itor of apoptosis protein family) is also mediated 
via an inducible IRES element during ER stress 
[47]. HIAP2 IRES activity is enhanced during 
ER stress through the caspase-mediated proteo-
lytic processing of eukaryotic initiation factor 
p97/DAP5/eIF4G2/NAT1 (DAP5), which produces 
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a fragment that specifically activates IRES [47]. 
In fact, DAP5 is a translation initiation factor that 
can regulate the expression of a selected group of 
mRNAs during ER stress via internal ribosome 
entry [48, 49]. Other DAP5 targets include IRES 
in c-Myc, Apaf-1, XIAP and HMGN3 mRNA. In 
this regard, DAP5-mediated translation seems to 
be crucial in cell differentiation and death, stress-
ing the role of IRES translation in deciding cell 
fate [49]. Furthermore, DAP5 translation itself is 
mediated by an IRES element within its 5′ UTR, 
thus generating a positive self-regulatory loop 
that allows its continuous translation under con-
ditions impairing 5′ end ribosome entry–depen-
dent translation [49, 50].

6.2.2	 �Hypoxia

Hypoxia results from the decrease in the oxygen 
available to reach the different organs and cells. 
Under hypoxic stress, a group of transcription 
factors known as hypoxia inducible factors (HIF) 
are stabilized and initiate a cascade of cell signals 
by activating target genes in the nucleus [51]. 
Inhibition of protein synthesis and consequent 
energy saving is an advantage for hypoxic cells, 
so, in order to achieve this, canonical translation 
initiation is drastically reduced under such condi-
tions. However, hypoxic cells need to translate 
mRNAs critical for an adaptive response to low 
oxygen levels [52]. To accomplish this selective 
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Fig. 6.1  During 
canonical translation 
initiation the ribosome is 
recruited to the 
5′-terminal m7G cap 
(top). Cell stress and 
cancer induce alternative 
methods of translation 
initiation such as 
internal ribosome entry 
at a structured internal 
ribosome entry site 
(IRES) or at a 
methylated site (center). 
The 5′-end may 
sometimes still be 
required for this 
initiation (indicated by 
the dashed arrow). 
Another type of 
alternative initiation 
involves the use of 
non-AUG start codons 
(bottom)
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translation, cells use non-canonical mechanisms 
of translation initiation, such as IRES-mediated 
translation. IRES elements present within the 5 
UTRs of several transcripts have been proved to 
mediate translation of stress-regulated mRNAs, 
such as vascular endothelial growth factor 
(VEGF), HIF-1α and -2α, glucose transporter-
like protein 1, p57(Kip2), La, BiP, and triose 
phosphate isomerase (TPI) transcripts [52].  
Many proteins share such characteristics. 
Phosphofructokinase 1 (PFK1), the major  
regulatory enzyme of the glycolytic pathway, 
converts fructose-6-phosphate to fructose-1,6-
bisphosphate. This pathway is highly dynamic 
and may be affected by different stress condi-
tions, such as hypoxia, which is known to signifi-
cantly influence the glycolytic pathway [53, 54]. 
Ismail and colleagues showed that PFK1’ss 5′ 
UTR includes a hypoxia-responsive IRES ele-
ment, which was established to be the possible 
mechanism responsible for PFK1 protein upregu-
lation [55]. These authors found that, after 48 h of 
chemically induced hypoxia in C6 glioma cells, 
PFK1 protein levels were upregulated with no 
significant change in the counterpart mRNA lev-
els; this may explain the astrocytes’ increased 
glycolytic capacity upon brain hypoxia [55].

6.2.3	 �Starvation

In the absence of nutrients, amino acids, growth 
factors and cytokines, which contribute to the 
activation of signal pathways related to cell sur-
vival and proliferation, the ISR facilitates cellular 
adaptation to stress conditions through the com-
mon target eIF2α [56]. Under starvation, there 
have been examples of leaky scanning and reini-
tiation events through which cells can make alter-
native protein products by selecting downstream 
initiation codons to better respond to the stress 
[56]. Reinitiation in ATF4, for example, is gov-
erned by the eIF2α pathway and also subjected to 
regulation by mRNA m6A methylation. Zhou 
et  al. demonstrated that m6A in the 5′ UTR  
controls ribosome scanning and start codon 
selection [56].

IRES-mediated translation initiation is the 
most common alternative to canonical translation 
under starvation. One of the most widely used 
models to understand this mechanism in eukary-
otes is the X-linked inhibitor of apoptosis (XIAP) 
mRNA [57]. When ternary complex (TC) is 
available, XIAP mRNA translation is maintained 
in a 5′-end m7G cap-dependent mode; however, 
under serum deprivation, the XIAP IRES can ini-
tiate translation in an alternative eIF5B-dependent 
manner circumventing low TC numbers due to 
eIF2α phosphorylation [58]. Notably, not all cel-
lular IRES use eIF5B-dependent mode of tRNA 
delivery during serum deprivation [27].

6.2.4	 �DNA Damage

Apaf-1 has a central role in DNA damage-
induced apoptosis and its depletion contributes to 
malignant transformation [59]. As such Apaf-1 
provides a good example of specialized DNA 
damage translation since the human Apaf-1 
mRNA can initiate translation through an alterna-
tive mechanism, possibly involving an IRES [60, 
61]. This internal ribosome entry site has been 
reported to require the assistance from a free 
5′-end in cis [62], though it does not need m7G 
cap recognition by eIF4E [60]. Under DNA dam-
age conditions m7G cap-binding factor eIF4E is 
often suppressed, but structured 5′ UTR regions 
such as IRES may mediate m7G cap-independent, 
5′-end-dependent translation initiation, which 
leads to preferential translation of some mRNAs 
like Apaf-1 [60]. A group of mRNAs including 
53BP1, HIF1α, BRCA-1, and GADD45a, has 
also been shown to be more actively translated in 
response to DNA damage in breast cancer cells, 
through a selective eIF4G1-dependent process 
and with reduced dependence on eIF4E [63].

6.2.5	 �Heat Shock

Although we can find living organisms in a wide 
range of temperatures (from the freezing point of 
water, or below, to 113 °C) [64], each of them has 
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adapted to a certain optimal growth temperature. 
Heat above such temperatures becomes a major 
stressor, with often temperatures only moderately 
above the optimum growth temperature already 
causing a significant barrier to survival [65]. Heat 
stress can cause protein unfolding, entanglement, 
and unspecific aggregation [65]. During cellular 
heat shock response, a class of molecular chaper-
ones, the heat shock proteins (Hsp), is up-
regulated in response to protein misfolding [65]. 
Heat shock goes beyond the unfolding of 
individual proteins, causing deleterious effects 
on the internal organisation of the cell, such as 
defects of the cytoskeleton [65].

Translation of Hsp70, a stress-induced molec-
ular chaperone that also modulates tumour cell 
responses to cytotoxic agents and inhibits apop-
tosis [66], is mediated through internal ribosome 
entry, most likely due to increased m6A modifica-
tions in its mRNA [67]. The increasing number 
of m6A-containing transcripts results from the 
exposure to different cellular stresses that drive a 
widespread redistribution of m6A [67]. A recent 
study by Coots et al. established the effect of m6A 
in the 5′ UTR translation initiation [68]. They 
showed that when eIF4F-dependent translation is 
impaired, cells use the m6A-dependent mode of 
translation initiation. They identified the ATP-
binding cassette subfamily F member 1 (ABCF1) 
as a critical mediator of m6A-dependent transla-
tion. This protein acts as an alternative to recruit 
the ternary complex during non-canonical trans-
lation as it can interact with eIF2 and ribosomes, 
thus playing a critical role in mRNA translation 
initiation under stress conditions [69, 70]. The 
HSP70 5′ UTR has also been shown to drive m7G 
cap-independent translation via an IRES struc-
ture [71]; however, it is not yet known whether/
how both features cooperate to enhance transla-
tion of heat shock-responsive proteins. 
Translation of the BiP protein was also found to 
be enhanced by continuous heat stress that acti-
vates an IRES-dependent translation [72]. This 
suggests that the IRES-dependent mechanism of 
translation initiation can be used by cells sub-
jected to heat shock, being critical to cell survival 
and proliferation under stress [72].

Recently, the switch to activate a specialized 
ribosome for alternative translation of stress 
response genes was shown to be regulated by an 
alternative translation initiation process itself 
[73]: Mitochondrial ribosome protein-encoding 
MRPL18 mRNA was shown to translate into a 
shorter isoform from a downstream non-
canonical CUG initiation codon following expo-
sure to heat shock and phosphorylation of eIF2α. 
The shorter isoform is translated in frame but 
lacks the mitochondrial targeting signal in the 
N-terminus and is localized to the cytoplasm 
where it integrates – not the usual mitoribosome 
but now – the cytosolic 80S ribosomes promoting 
the specific synthesis of stress-proteins such as 
Hsp70.

6.2.6	 �Oxidative Stress

Under oxidative stress, NRF2, a master regulator 
of the oxidative stress response, is also transla-
tionally induced through an IRES [74–76]. NRF2 
IRES-dependent translation is enhanced due to 
stimulation of an IRES element present within its 
5′ UTR by La autoantigen IRES transacting fac-
tor (ITAF) binding [76]. Translation of some 
transcription factors is also mediated by IRES 
elements upon oxidative and genotoxic stress, 
such as p53, the octamer-binding protein 4 
(OCT4) whose translation is stimulated by H2O2 
treatment in breast cancer and liver carcinoma 
cells [77], and runt-related transcription factor 2 
(RUNX2), whose translation is stimulated by 
mitomycin C [78]. BiP is also induced during 
oxidative stress through a mechanism that 
involves an alternative, less usual procedure for 
translation initiation, the usage of a non-canonical 
initiation codon, UUG, in a uORF [79]. The 
UUG-initiated uORF in the 5′ UTR of BiP and 
eIF2A were shown to be necessary for BiP 
expression during oxidative stress. At the same 
time, the uORFs generate peptides that could 
serve as major histocompatibility complex class I 
ligands.
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6.3	 �Mechanisms of Alternative 
Translation Initiation

6.3.1	 �Translation Initiation 
by Internal Ribosome Entry

Internal ribosome entry site (IRES)-mediated 
translation is an additional and alternative mode 
of translation initiation used by some transcripts, 
which can be regulated independently of the 
canonical system. IRES-mediated translation has 
been extensively investigated. It has been esti-
mated that at least 10–15% of cellular mRNAs 
can be translated by an IRES-dependent mecha-
nism, in which the 40S ribosomal subunits bind 
the transcript internally, not at the 5′-end, often in 
a cap-independent manner and with a different 
requisite of translation factors [80]. We subdi-
vided here this alternative internally initiated 
translation into two large groups: one more com-
prehensively studied, involving a structured RNA 
region usually just referred to as IRES; and a sec-
ond more recently identified mechanism for 
internal entry that involves a methylated RNA 
site (Fig.  6.1). To note that it is still currently 
unknown how often actually these two mecha-
nisms might overlap.

6.3.1.1	 �Internal Ribosome Entry @ 
Structured RNA Regions

According to a recent systematic screen for 
IRES-mediated translation activity, about 10% of 
all human 5′ UTRs have the potential to be IRES-
translated [81], and these can be present in the 
coding region as well [82]. This translation initia-
tion mechanism allows cells to cope with envi-
ronmental changes affecting their viability, and 
thus must be essential for cellular life itself. In 
order to understand how central and elementary 
the mechanisms that govern IRES function are, 
Colussi et al. investigated if IRES could initiate 
translation in bacteria and saw that the IRES ele-
ment could bind directly to both eukaryotic and 
bacterial ribosomes by occupying the space nor-
mally used by tRNAs [83]. Some IRES use 
dynamic RNA structures to target core and  
conserved, ancient domains of the translation 
machinery while circumventing organism-

specific regulations to effectively initiate mRNA 
translation of specific transcripts in a large vari-
ety of cell types and cell conditions and with few 
requirements [83]. This is important because pro-
teins with crucial roles in main cellular processes 
need backup regulation, their expression levels 
must be adjusted in response to external cues that 
impair the canonical mechanism of translation 
initiation. Indeed, alterations in their expression 
levels may account for many types of human dis-
eases that arise in human population, including 
different types of cancer, and IRES-dependent 
translation initiation may play a decisive role in 
such processes.

From our current knowledge, most structured 
IRES described so far were identified in tran-
scription factor mRNAs (21%), growth factor 
transcripts (15%), and in messages encoding 
transporters, receptors and channels (22%) [9]. 
FGF and VEGF families of proteins—growth 
factors of crucial importance to the development 
of specific tissues that play a significant role in 
promoting cell proliferation and differentiation, 
and in regulating cell survival—are translated via 
IRES elements present in the corresponding 
mRNAs [84–88]. As for transporters, receptors 
and channels, such as CAT-1, voltage-gated 
potassium channel and oestrogen receptor α, 
among others, play a critical role in signal trans-
duction as they are main vehicles in cell-cell 
communication, which turns them into key ele-
ments to maintain cell homeostasis following 
environmental changes. Thus, alterations in their 
expression associate with changes in cellular 
function, which may lead to disease development 
and progression [84]. That is why transcripts 
encoding such proteins can be translated through 
an IRES-dependent mechanism that acts as a 
back-up tool when canonical translation initia-
tion is impaired by environmental stress condi-
tions, such as ER stress. Regarding transcription 
factors, they are fundamental in gene expression 
regulation, as they respond to quick changes in 
the environment in order to adapt their expres-
sion levels to a given context—c-MYC, HIF1α 
and p53 are good examples of transcription fac-
tors whose translation initiation is mediated by 
IRES elements [85, 86, 89].
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6.3.1.2	 �Internal Ribosome Entry @ 
Methylated Regions

There are about 3–5 m6A modifications per tran-
script [90]. Most m6A modifications are located 
on the coding region and the 3′ UTR [91, 92]; 
however, Meyer et al. found recently that, when 
located in the 5′ UTR, such modifications could 
mediate translation initiation through internal 
ribosome entry [93] (Fig.  6.1). These authors 
have shown that m6A modifications in the 5′ 
UTR act as ribosome engagement sites (MIRES) 
[93]. The ability of m6A in the 5′ UTR to bind 
eIF3 is enough to recruit the 40S ribosomal sub-
unit to initiate translation when eIF4E is not 
available to bind the 5′-end cap structure [93]. 
Although the mechanism that permits m6A rec-
ognition by the translation machinery for subse-
quent m7G-independent initiation is not yet 
completely understood, the significance of 5′ 
UTR m6A residues has been observed in both 
ribosome profiling datasets and individual cellu-
lar mRNA analyses, such as the heat-shock pro-
tein 70 (Hsp70) [93, 94].

6.3.2	 �Non-AUG Translation

Another less common alternative translation pro-
cess is the initiation at non-AUG codons (for a 
recent review see [95]) (Fig. 6.1). These transla-
tion starts are not errors but regulated events, 
leading to the production of stress response pro-
teins as well as proteins involved in development. 
Impairment of this specialized translation pro-
cess may lead to diseases such as cancer and neu-
rodegeneration. It is increasingly clear that 
non-AUG translation is highly regulated by 
stress, signalling, translation factors and RNA 
structures and sequences. The most commonly 
used non-AUG codons are the near-cognate that 
differ by only one nucleotide, with CUG being 
most frequently used. Some proteins, like DAP5, 
are exclusively translated from a non-AUG 
(GUG) codon [96]. Interestingly, several proteins 
involved in activating alternative translation seem 
to be first translated from an alternative initiation 
codon: DAP5 regulates IRES-translation [97] 
and a CUG-translated shorter version of MRPL18 

protein activates specialized translation of stress 
response genes by integrating the cytoplasmic 
80S ribosome [73]. Non-AUG translation can be 
influenced by eIF2α phosphorylation during ISR, 
Kozak sequence, mRNA structures upstream or 
downstream or the expression of specific stress-
induced translation factors like eIF2A.

6.4	 �Translation Initiation 
in Cancer

Oncogene activation and tumour suppressor gene 
inhibition are key events to the onset and  
development of cancer. Additionally, coding-
independent mutations in regulatory elements, 
UTRs, splice sites and non-coding RNAs and 
synonymous mutations may also affect gene 
expression (reviewed in [98]). As any other stress 
situation, tumorigenesis includes backup mecha-
nisms that allow tumour cells to cope with stress, 
such as those involved in stress-adaptive protein 
synthesis [48, 99–103]. Many transcripts relevant 
to cancer can initiate translation through non-
canonical translation initiation mechanisms. 
Below we will briefly present a few well-known 
examples.

6.4.1	 �Non-AUG Translation 
in Cancer

Though IRES-dependent translation is the most 
widely studied, we will start by discussing initia-
tion at non-AUG sites in cancer. Some of these 
sites have been shown to be regulated by eIF2A, 
which stimulates translation from non-AUG 
uORFs in cancer-related mRNAs that act to  
positively regulate the expression of their  
downstream ORFs [104]. eIF2A can initiate  
Leu-encoding codons at CUG and UUG by pro-
moting the recruitment of LeutRNACUG for ini-
tiation [79, 105, 106]. Interestingly, mutation and 
inactivation (decreased expression) of the RNA 
helicase DDX3 in cancer leads to the formation 
of RNA structures in 5′ UTR downstream of non-
AUG initiation codons, inducing their usage 
[107].
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PTEN, a tumour suppressor gene that is fre-
quently mutated in cancer, generates an alterna-
tive protein isoform, PTENβ, by using an 
upstream non-canonical AUU start codon [108]. 
PTENβ translation requires a favourable Kozak 
sequence and an evolutionarily conserved hairpin 
that is present 18 nucleotides downstream from 
the AUU.  PTENβ negatively regulates rDNA 
transcription and cell proliferation and may have 
a role in tumour suppression [108].

FGF2 stimulates the growth and development 
of new blood vessels (angiogenesis) that contrib-
ute to the pathogenesis of cancer. In FGF2 
mRNA, at least four upstream in-frame CUG 
codons were shown to generate longer isoforms 
that localized to the nucleus due to a nuclear 
localization signal present between the CUG and 
AUG codons [109, 110]. These isoforms could 
possibly affect cell growth and differentiation 
and one of them of 34 KDa enhanced survival in 
low serum conditions.

c-myc, a well-known protooncogene, uses an 
upstream in-frame CUG codon resulting in the 
production of a larger isoform with a distinct 
N-terminus that may contribute to the oncogenic-
ity of c-myc, particularly in Burkitt’s lymphoma 
[111]. As cell density increases, as during tumour 
formation and growth, the availability of amino 
acids, specifically methionine, becomes limiting, 
and translation initiation from the CUG is pro-
moted [112].

6.4.2	 �Internal Ribosome Entry 
in Cancer

IRES elements within the 5′ UTR or coding 
region of transcripts encoding oncogenes, growth 
factors and proteins involved in the regulation of 
cell-cycle and programmed cell death, can medi-
ate translation under stress situations triggered by 
the tumour’s microenvironment, contributing to 
the survival of cancer cells [9, 99, 103, 113]. A 
common feature of these environments is the dif-
ficult access to oxygen. Indeed, cancer cells acti-
vate 4E-binding proteins (4E-BP) and inhibit the 
mTORC1 pathway in response to hypoxic condi-
tions, but at the same time promote a switch to 

IRES-mediated translation thus maintaining 
tumour growth and angiogenesis [100, 102]. 
Large and advanced breast cancers were shown 
to overexpress 4E-BP and eIF4G and trigger 
m7G-independent mRNA translation [102]. In 
inflammatory breast cancer, cells have adapted to 
a state of prolonged hypoxia and optimised the 
production of proteins required for tumour 
embolus survival and dissemination, a state pro-
moted by high levels of eIF4GI protein coupled 
with a constitutively active 4E-BP1 [114]. This 
leads to higher rates of translation in IRES-
containing mRNAs, namely VEGF and p120 
catenin, which maintain high rates of angiogene-
sis, and membrane associated E-cadherin, respec-
tively [115].

FGF (Fibroblast growth factors), such as 
FGF1 and FGF2, are crucial for proliferation and 
differentiation of a wide variety of cells, and 
hence their translation has to be tightly regu-
lated—some of them contain IRES elements 
within their 5′ UTRs, which allow cap-
independent translation initiation [116, 117]. 
IRES-mediated regulation of FGF2 translation is 
considered a critical step in tumorigenesis, not 
only in solid tumours but also in multiple 
myeloma, which turns the FGF2 IRES into the 
non-cytotoxic primary molecular target of tha-
lidomide, and therefore the preferred target of 
immunomodulatory drugs in multiple myeloma 
[114].

c-Myc IRES is also activated in multiple 
myeloma cells under thapsigangin- or 
tunicamycin-induced ER stress, or bortezomib  
(a myeloma therapeutic) treatment, thus main-
taining c-Myc protein levels [118].

Sp1 (Specificity protein-1), a protein that is 
accumulated under hypoxic conditions in an 
IRES-dependent manner in lung tumour tissue, is 
another case of a protein whose expression is up-
regulated during tumorigenesis by activation of 
IRES-mediated translation, suggesting that trans-
lational regulation might contribute to the accu-
mulation of Sp1 during tumorigenesis [119].

CAT-1 synthesis and sodium-coupled neutral 
amino acid transporter 2 (SNAT2), two amino 
acid transporters, is controlled by IRES under 
amino acid or glucose starvation [120, 121]. 
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CAT-1 IRES-dependent translation is induced in 
tumour cells under glucose deprivation through 
phosphorylation of eIF2α by the transmembrane 
endoplasmic reticulum kinase (PERK) [121].

XIAP and sterol regulatory element-binding 
transcription factor 1 (SREBP-1) are translated 
via IRES during deprivation of growth factors in 
tumour cells, protecting them from apoptosis 
[122, 123]. IRES-dependent translation of these 
proteins allows the cell to survive under nutri-
tional stress, which is an advantage for cancer 
cell continued existence [124]. Adding to this, 
XIAP expression is up-regulated under 
γ-irradiation through IRES-dependent transla-
tion, causing tumour cells to be resistant to radio-
therapy [125, 126]. This agrees with the study by 
Holcik et al., in which they used RNA interfer-
ence to inhibit XIAP, and saw that it enhances 
chemotherapeutic drug sensitivity and decreases 
myeloma cell survival [126].

β-catenin is also translated through internal 
ribosome entry in human ovarian cancer cells 
treated with paclitaxel (PTX), a chemotherapeu-
tic drug used in the treatment of ovarian cancer—
this then regulates the expression of downstream 
factors (c-Myc and cyclin D1), reducing PTX 
sensitivity [127].

c-Myc oncogenic transcription factor and 
Bcl2-associated athanogene 1 (BAG-1) are also 
regulated by IRES under oxidative and genotoxic 
stress and increase tumour cells’ resistance to 
DNA damage-inducing drugs [128–131]. Bcl-2’s 
expression in turn, and cIAP’s are again enhanced 
by etoposide as well as arsenite via IRES-
mediated translation [132, 133].

p53—a tumour suppressor, protooncogene 
[134] and transcriptional master regulator of the 
oxidative and genotoxic stress responses—is also 
translated through IRES-mediated processes [82, 
135–138]. The p53 transcript contains IRES 
structures that control translation of the full-
length (FL) p53 and the N-terminally truncated 
isoform Δ40p53 from the same mRNA [82, 135]. 
Several stress conditions that induce DNA dam-
age as well as ER stress induce FLp53 or Δ40p53, 
respectively, via two different IRES structures, 
one in the 5′ UTR – for FL – and another in the 5′ 

coding region  – controlling mostly Δ40p53 
[138]. Furthermore, in response to doxorubicin, 
IRES-mediated translation of both p53 isoforms 
is stimulated by the ITAF polypyrimidine tract-
binding protein (PTB), following PTB relocation 
from the nucleus to the cytoplasm [139]. Other 
ITAFs such as DAP5, Annexin A2, and PTB-
associated Splicing Factor (PSF), have also been 
reported to control p53 IRES activity [140, 141]. 
Besides, identification of two other p53 ITAFs 
[translational control protein 80 (TCP80) and 
RNA helicase A (RHA)] that positively regulate 
p53 IRES activity, established a connection 
between IRES-mediated p53 translation and p53 
tumour suppressive function in two breast cancer 
cell lines. Following DNA damage, the levels of 
TCP80 and RHA are extremely low and these 
two cell lines exhibited defective p53 induction 
and synthesis, since expression of both proteins 
was required to significantly increase p53 IRES 
activity [142, 143]. Cells devised a critical  
cellular response that counteracts cellular  
transformation—the oncogene-induced senes-
cence (OIS)—which is characterized by cell 
cycle arrest and induction of p53, which prevents 
the proliferative potential of preneoplasic clones 
[144]. During OIS, there is a switch from canoni-
cal translation initiation to IRES-mediated trans-
lation, during which p53 IRES-dependent 
translation is promoted, providing a molecular 
barrier for cellular transformation [145].

In conclusion, and considering the aforemen-
tioned examples, it seems clear that the IRES-
mediated translation of key regulators and 
pro-survival factors grant tumour cells enough 
tools for attaining resistance to chemotherapy 
and radiation [146]. On the other hand, the pres-
ence of IRES within transcripts coding tumour 
suppressor proteins can prevent cancer outbreak 
by maintaining the protein levels. Expression of 
some proteins is crucial to determine the cell fate 
under stress conditions—apoptosis or survival 
and proliferation. Thus, IRES-mediated transla-
tion is of key importance in the process of tumor-
igenesis. Furthermore, the IRES structures 
themselves and the cooperating ITAFs are vital 
targets for cancer treatment.
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