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Abstract
RNA degradation is considered a critical post-
transcriptional regulatory checkpoint, main-
taining the correct functioning of organisms. 
When a specific RNA transcript is no longer 
required in the cell, it is signaled for degrada-
tion through a number of highly regulated 
steps. Ribonucleases (or simply RNases) are 
key enzymes involved in the control of RNA 
stability. These enzymes can perform the RNA 
degradation alone or cooperate with other pro-
teins in RNA degradation complexes. 
Important findings over the last years have 
shed light into eukaryotic RNA degradation 
by members of the RNase II/RNB family of 
enzymes. DIS3 enzyme belongs to this family 
and represents one of the catalytic subunits of 
the multiprotein complex exosome. This 
RNase has a diverse range of functions, mainly 
within nuclear RNA metabolism. Humans 

encode two other DIS3-like enzymes: DIS3L 
(DIS3L1) and DIS3L2. DIS3L1 also acts in 
association with the exosome but is strictly 
cytoplasmic. In contrast, DIS3L2 acts inde-
pendently of the exosome and shows a distinc-
tive preference for uridylated RNAs. These 
enzymes have been shown to be involved in 
important cellular processes, such as mitotic 
control, and associated with human disorders 
like cancer. This review shows how the impair-
ment of function of each of these enzymes is 
implicated in human disease.
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4.1  Introduction

RNA is a labile molecule, by its chemical nature, 
and a plethora of events and factors ensure its 
protection or decay. The termini of cytoplasmic 
mRNAs are usually protected by a 7-methyl gua-
nosine (m7GpppG) at the 5′ end cap, and by a 
long terminal poly(A) tail at the 3′ end, which 
promotes the association of Poly(A) Binding 
Proteins (PABPs) (Fig. 4.1a). These RNA modifi-
cations in the ends of the mRNA molecules war-
rant their stability. Specific protein factors 
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associate with each of the structures in the mRNA 
extremities, and its physical interaction holds the 
mRNA in a circular conformation [1, 2]. This 
closed-loop mRNA structure is recognized by 
specific translation initiation complexes [2–5]. 
When a specific RNA is no longer required for 
the cellular metabolism, the molecule is signaled 
for degradation through a number of highly regu-
lated steps (Fig. 4.1a).

4.2  Mechanisms of Cytoplasmic 
mRNA Degradation 
in Humans

The stability of mRNAs depends on intrinsic fea-
tures of its sequence and on the cellular demands 
for the protein it encodes. For instance, specific 
features such as AU rich elements (AREs) that 
consist on stretches of adenine and uracil nucleo-
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Fig. 4.1 (a) Overview of RNA degradation pathways in 
humans. RNA transcripts first undergo removal of the 3′ 
poly(A) tail through a deadenylation step (performed by 
PAN2/PAN3 complex followed by the CCR4/NOT). 
Following this step, the RNA becomes vulnerable and can 
be degraded 3′-5′ by the Exosome-DIS3/DIS3L1 or by 
DIS3L2 (that prefers uridylated RNA substrates), inde-
pendently of the exosome. Following deadenylation, 
RNAs can also be decapped by DCP1/DCP2 (removal of 

the 5′-cap), a step stimulated by Lsm1–7–Pat1 complex, 
exposing the transcripts to the 5′-3′ exoribonuclease 
XRN1. (b) Correlation between DIS3 enzymes and 
human disease. Scheme of human diseases that have been 
related with overexpression or dysfunction of DIS3, 
DIS3L1 and DIS3L2. Dashed arrows correspond to cor-
relations that need further confirmation. Each enzyme- 
disease association represented in the picture is developed 
in the main text, with the respective references 
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tides within the 3′UTR of some mRNAs [6–9] 
are able to promote or protect RNA from degra-
dation [10–12]. The 3′UTR of the mRNAs can 
also contain other specific sequences that target 
its decay trough the binding of regulatory 
microRNAs (miRNAs) [13–15].

Under particular circumstances, like in cellu-
lar quality control mechanisms, endonucleolytic 
cleavage can directly disrupt the closed-circle 
RNA conformation and trigger subsequent decay, 
from either of the RNA extremities ([16, 17]; see 
other chapters in this volume for details on qual-
ity control mechanisms). Though, in general, 
mRNAs must be first deadenylated or decapped 

to enable the access of exoribonucleases and trig-
ger degradation.

For many cytoplasmic mRNAs, decay starts 
with the shortening or removal of the poly(A) 
tail. Deadenylation releases the PABPs that pro-
tect the (A) tail and leaves the 3′ end exposed to 
exoribonucleases. This is considered the main 
event that signals mRNAs for degradation from 
the 3′ end. The length of the poly(A) tail depends 
on the organism, but the regulation of its exten-
sion is always a dynamic process that involves 
the concerted action of poly(A) polymerases 
(PAPs) and poly(A) specific 3′ exonucleases 
(deadenylases). This allows the fine-tuning con-
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trol of mRNA stability. Eukaryotic genomes 
encode a wide variety of deadenylases [18]. In 
humans, initial deadenylation is performed by the 
PAN2/PAN3 complex (reviewed in [19–21]) fol-
lowed by the action of the CCR4/NOT complex 
(Fig. 4.1a) [22–26].

Following deadenylation, degradation can 
alternatively proceed from the 5′ end requiring the 
prior removal of the 5′-cap of the mRNA. The dec-
caping process is regulated by a plethora of activa-
tors and inhibitors [27–29]. One of these, the 
Lsm1–7-Pat1 complex, preferentially binds the 
shortened 3′-terminal adenosine extensions of the 
deadenylated mRNAs to stimulate decapping and 
inhibit exosome attachment [30, 31]. The reaction 
products of decapping enzymes are the 5′ m7GDP 
cap and an unprotected 5′ monophosphate RNA 
that is then accessible for XRN1 processive and 
complete degradation [32, 33]. Decapping process 
commits RNAs to 5′-3′ degradation since XRN1 
directly interacts with the decapping enzymes 
(DCP1/DCP2) [32] (Fig. 4.1a).

In contrast to the 5′-3′ pathway, where XRN1 
is the only known cytoplasmic 5′-3′ exoribonu-
clease, there are several options in the degrada-
tion from the 3′ end. After initial deadenylation, 
the multisubunit RNA exosome complex may 
further degrade the shortened oligo(A) tail and 
proceed  with the 3′-5′ degradation into the 
mRNA body. Exosome activity depends on the 
presence of specific cofactors, called “superkill-
ers” or Ski proteins that regulate its activity. 
Human homologs of the Ski family  – SKIV2L 
(Ski2), TTC37 (Ski3) and WDR61 (Ski8), asso-
ciate in the Ski complex [26, 34]. The remaining 
mRNA fragment with its 5′-cap (m7GpppG) is 
hydrolyzed by the scavenger decapping enzyme 
(DCPS) [35]. DCPS is a m7G-specific pyrophos-
phatase that shows specificity towards RNA frag-
ments not longer than 10 nts (Fig. 4.1a) [36–38].

DIS3 enzyme is the essential catalytic subunit 
of the exosome. The human genome encodes 
three members of DIS3 family: DIS3, DIS3L1 
and DIS3L2 enzymes and their characteristics 
and specifications will be described therein in 
this chapter. While both DIS3 and DIS3L1 inter-
act with the exosome ring, in different cellular 
locations [39–43], DIS3L2 does not. The enzyme 

represents a 3′-5′ RNA decay pathway alterna-
tive to degradation by XRN1 and the exosome 
[44, 45]. DIS3L2 shows a distinctive preference 
towards uridylated substrates, which prompted 
the discovery of new roles for 3′-uridylation in 
cytoplasmic mRNA decay. It was proposed that 
the requirement of deadenylation as an mRNA 
decay signal can be overcome trough 3′ oligouri-
dylation of transcripts. It can either stimulate 
decapping and consequent degradation in the 
5′-3′ direction, through Lsm1–7/Pat1 binding, or 
directly activate 3′-5′ DIS3L2 dependent degra-
dation [46] (Fig.  4.1a). The importance of this 
uridylation-dependent pathway in bulk mRNA 
degradation was highlighted by the substantial 
technological progresses in RNA analysis in the 
recent years. Novel approaches as TAIL-seq 
revealed that 3′ end mRNA modifications such as 
urydilation, cytidylation or guanylation are also 
frequent [47]. The use of oligo(dT)-based prim-
ing methods, due to the long poly(A) tails in the 
3' end of eukaryotic mRNAs, had previously 
underestimated its presence.

In general, regulation of gene expression in 
eukaryotic cells occurs through multiple parallel, 
partially redundant, mRNA decay pathways. This 
is further illustrated by the multiplicity of 
enzymes, which are able to catalyze the same 
reaction, and their functional redundancy. 
RNases’ activity is also important for RNA sur-
veillance and processing. Their high degree of 
conservation in different organisms and the spe-
cific phenotypes following their individual loss 
suggest defined roles within the cell.

Beyond the advances on the mechanisms 
whereby these enzymes affect cellular processes, 
structural information is crucial to explain the 
mechanism of action and exact function of the pro-
tein alone or in the context of a multiprotein com-
plex. Structural changes across species provide 
insight into the evolution and conservation of the 
protein architecture. In fact, important findings 
over the last years have shed new light onto the 
mechanistic details of RNA degradation by mem-
bers of the RNase II/RNB family of exoribonucle-
ases, including DIS3 enzymes [45, 48–56]. A 
phylogenetic comparison of different Dis3 homo-
logues in eukaryotes indicates a clear division of 
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three Dis3-like protein families, with the Dis3 
group being the most conserved and the Dis3L1 
and Dis3L2 groups being more divergent [45].

A growing number of publications associate 
DIS3-enzymes with several human diseases [57–
60]. In this review we will try to sum up the 
mechanistic and structural details of these RNase 
II-like enzymes, and how human disorders can 
result from the associated defects.

4.2.1  DIS3

DIS3 (defective in sister chromatid joining) gene 
is located on human chromosome 13 (q22·1), and 
it encodes for a highly conserved ribonuclease 
(also known as Rrp44 in yeast) that contains both 
3′-5′ exoribonuclease and endoribonuclease activ-
ities [40, 42, 61]. This RNase constitutes an essen-
tial catalytic subunit of the exosome [62]. This 
multiprotein  complex is composed of a catalyti-
cally inert ring-shaped 9-subunit core with a prom-
inent central channel and associated catalytic 
subunits [61, 63–65]. The composition of its cata-
lytic subunits varies accordingly to cellular local-
ization. Exosome-associated DIS3 enzyme exists 
mainly in the nucleus, where it acts on a vast array 
of different RNAs, and has a diverse range of func-
tions in RNA metabolism including processing, 
maturation and quality control [66–71].

The specific domains of DIS3 dictate its deg-
radation preferences. DIS3 is composed by two 
cold shock domains (CSD1 and CDS2), followed 
by an RNB and an S1 domain. Both CSDs and 
the S1 domain contribute to RNA binding. At the 
N-terminal region, it contains a PilT N-terminal 
(PIN) domain [40, 42, 51, 72] and also a CR3 
motif involved in the binding of DIS3 to the exo-
some [73]. Both RNB and PIN domains are 
responsible for RNA degradation activity. The 
RNB catalytic domain is a hallmark of the RNase 
II protein family, and confers to DIS3 the ability 
to cleave RNA in a highly processive manner [51, 
61, 74]. Arraiano’s lab contributed to the resolu-
tion of the crystal structure of the family proto-
type, E. coli RNase II, and to its extensive 
functional characterization [49–51]. This was an 
important breakthrough in the understanding of 

the mechanism of action of this ubiquitous family 
of proteins. Moreover, the determination of the 
electron microscopy structure of yeast Rrp44 
(Dis3) suggested that the RNA recruitment 
mechanism is conserved [75]. The knowledge 
acquired by these model organisms was crucial 
for the construction of the 3D model of human 
DIS3. Its exoribonuclease activity is dependent 
on four conserved aspartic acid residues (D488, 
D487, D485, D489) that coordinate two magne-
sium ions in the catalytic center [61, 63]. The 
RNB active site in DIS3 is responsible to hydro-
lyze single-stranded RNA (ssRNA) in a 3′–5′ 
direction, releasing one nucleotide at a time and 
leaving an end product of 4 nts [51, 70, 76–78]. 
Only ssRNAs with a minimum length of 7 nts can 
be cleaved [76]. Dis3/Rrp44 is also able to 
unwind and digest structured RNAs as long as 
there is an unstructured region of ~4 nts at the 3′ 
terminus [79].

The PIN domain in DIS3 confers the ability to 
cleave RNA endoribonucleolytically [40, 42, 43]. 
PIN-like domains constitute a widespread 
 superfamily of nucleases with representatives in 
all kingdoms of life [80, 81]. Combination of 
endoribonuclease and exoribonuclease activities is 
a widespread feature of RNA-degrading machines 
from bacteria to humans [48]. Both DIS3 activities 
cooperate with each other in the degradation of 
RNA molecules [40, 42, 43, 82]. The PIN domain 
is able to cleave circular and linear ssRNAs, pref-
erentially with a 5′ monophosphate [40, 42]. Its 
active site is composed of four acidic amino acids 
essential for endoribonuclease activity (E97, D69, 
D177 and D146) that coordinate two divalent 
metal ions, and Mn2+ is  the preferred ion for its 
activity [40, 42]. It was proposed that the role of 
the PIN domain is to assist in the release of RNA 
substrates that are stalled at sites with strong sec-
ondary structures [83]. Besides its endoribonucle-
ase activity, the PIN domain has also a structural 
role, being necessary for DIS3 association with the 
core exosome [39, 42, 43, 84].

Like in other organisms, such as Drosophila 
and yeast, human DIS3 is essential for survival 
[85, 86]. This RNase together with the exosome 
complex play a crucial role in maintaining the 
fidelity of gene expression. In the nucleus, the 
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exosome-associated DIS3 is involved in the deg-
radation of a vast range of RNAs, including 
protein- coding RNAs, stable RNA species such 
as ribosomal RNA (rRNA), transfer RNA (tRNAs) 
and small nucleolar RNAs (snoRNAs), introns, 
long non-coding RNAs (ncRNAs), miRNAs and 
also unstable RNAs products, like Promoter 
Upstream Transcripts (PROMPTs) [87].

An impaired RNA surveillance system can 
compromise RNA homeostasis, having detrimen-
tal consequences for multiple biological processes, 
which may result in malignancy [88]. Indeed, an 
increasing number of publications have associated 
dysregulation of DIS3 with human disease, namely 
cancer (reviewed by [60, 89]). Sequencing data 
have identified DIS3 gene as one of the most fre-
quently mutated genes in multiple myeloma (on 
average in 11–18.5% of patients) [58, 90–93]. This 
constitutes the second most frequent hematologic 
tumor after lymphomas [94]. In multiple myeloma 
patients, DIS3 mutations were detected in highly 
conserved regions along PIN, CSD2, RNB and S1 
domains [58, 90, 91, 93]. However, the mutations 
in the RNB domain seem to be more prevalent for 
the development of the  disease [58, 90, 91], 
and contain mutational hotspots (D488, E665 and 
R780) [90, 93].

Tomecki and co-workers have studied 
Multiple myeloma mutations that abolish or 
cause dysfunction, without total inactivation, of 
DIS3 RNB activity in vitro [85]. The results indi-
cated that the point mutations D487N, S477R, 
G766R and R780K cause significant aberrations 
on exoribonucleolytic activity. DIS3 amino acid 
changes with significantly decreased activity in 
vitro gave rise to a slower cellular proliferation 
rate in HEK293-derived cells [85]. DIS3- 
mutations such as R780K, an amino acid involved 
in RNA binding, also revealed an abnormal RNA 
metabolism, with accumulation of 5.8S process-
ing intermediates, tRNAs, RNA polymerase III 
transcripts and PROMPTs [85].

Szczepińska and co-workers also observed a 
major role of DIS3 in maintaining RNA polimer-
ase II transcriptome homeostasis and in the regu-
lation  of PROMPTs  [87]. PROMPTs are 
transcribed in reverse orientation to most active 
protein coding genes, and cover ∼1% of the 

human genome [72, 95]. Although the biological 
role of PROMPTs has yet to be elucidated, there 
are evidences that these RNAs could serve impor-
tant functions in human cells [96]. For instance, 
the PROMPT HIF2PUT was suggested to be a 
novel regulator of osteosarcoma, the most com-
mon primary bone malignancy [96]. The observa-
tion that PROMPTs were the most prominent 
targets of DIS3 (>50-fold increase in DIS3 mutant 
cells), indicates that there are no alternative path-
ways for their decay, making their connection 
with DIS3 and disease necessary to be explored.

Multiple myeloma associated mutations were 
also mapped on PIN domain, showing only small 
effects on cell growth [85]. However, when muta-
tions in PIN and RNB domains are combined, a 
synergistic effect in the proliferation and meta-
bolic activity is observed in human cells [85, 87].

Human cells bear two DIS3 isoforms that dif-
fer in the size of the PIN domain. Isoform 1 
encodes a full-length PIN domain, whereas the 
PIN domain of isoform 2 is shorter and misses a 
segment with conserved amino acids [52]. A 
study by Robinson and co-workers [52] antici-
pated that different ratios of the two PIN iso-
forms could be characteristic of several 
haematological cancers, namely Multiple 
Myeloma [52]. Isoform 1 was found in higher 
levels than isoform 2  in Multiple Myeloma 
patient samples and all cancer cell lines tested 
[52]. Contrastingly, healthy donors and Acute 
Myeloid Leukemia and Chronic Myelomonocytic 
Leukaemia patients have similar levels of both 
isoforms. Regarding leukaemias, in Acute 
Myeloid Leukemia (a cancer of the myeloid line 
of blood cells) missense mutations in DIS3 
account for 4% of patients and were all found in 
the RNB domain [59]. In patients with Chronic 
Lymphocytic Leukemia (a monoclonal disorder 
characterized by a progressive accumulation of 
abnormal lymphocytes) DIS3 locus, 13q22, is 
often deleted [97]. This evidence together with 
DIS3 mutations in several cancers, suggest that 
DIS3 may function as a tumor suppressor gene.

Increased levels of DIS3 mRNA and protein 
have also been proposed as one of the causes of 
other types of cancer. This is the case of epithelial 
ovarian cancer in which DIS3 was observed to be 
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significantly up-regulated in plasma from patients 
in the late stage of the disease (FIGO III/IV) [98]. 
The majority of cancer deaths are due to metastasis 
of neoplastic cells from the primary tumor to dis-
tant organs. Metastasis is thus the most important 
factor that determines  bad prognoses for cancer 
patients. In 1997, DIS3 was reported to have a 
38-fold higher expression in primary tumors and 
metastatic cells from patients with colorectal can-
cers and liver metastases (compared to adenomas) 
[99]. The same study has classified DIS3 as an 
oncogene, being positively correlated with the inci-
dence of metastasis and consistent with its involve-
ment in the regulation of mitosis in 
Schizosaccharomyces pombe, Saccharomyces 
cerevisiae and Drosophila [66, 100–102]. Other 
studies also reported a significant overexpression 
of DIS3  in colorectal carcinomas (compared to 
adenomas) [103, 104]. This overexpression could 
be explained by an amplification of the DIS3 locus, 
13q22, frequently observed in colorectal cancer.

DIS3 was also found to be differentially 
expressed in melanoma cells [105]. Specifically, 
in superficial spreading melanoma cells, DIS3 
has a reduced expression, contrarily to nodular 
melanoma cells, where DIS3 is overexpressed 
(compared to normal melanocytes) [105] 
However, in 2013, a wide-genome analysis resul-
tant from five melanoma microarrays datasets did 
not recognize DIS3 as a melanoma biomarker 
[106]. DIS3 has also a role in pancreatic tumori-
genesis and breast cancer, however their linkage 
has to be further explored [107, 108].

All examples presented here strongly sug-
gest that both DIS3 overexpression and lack of 
function can lead to the manifestation of differ-
ent cancers. This seems contradictory, but it is 
in agreement with the fact that DIS3 may func-
tion as either oncogene or tumor suppressor. 
Some genes are known to have both functions, 
and recently it was reported that most of these 
genes are transcription factors or kinases that 
can regulate transcription positively and nega-
tively [109]. Since RNases are responsible to 
control post- transcriptionally gene expression, 
it is not surprising that DIS3 would also have a 
dual function. For instance, DIS3 is known to 
facilitate the maturation of the tumor suppres-

sor let-7 miRNA. When the levels of the mature 
let-7 miRNA are reduced, translation of onco-
genes (MYC and RAS) increases, enhancing 
tumorigenesis [110]. Human DIS3 also appear 
to function in the Ran signaling pathway 
required for nuclear import of proteins [111]. 
Ran was associated to cancer progression and 
has been investigated as a target for cancer ther-
apy. In sum, the precise and dual role of DIS3 in 
cancer is not fully understood lacking further 
investigation.

4.2.2  DIS3L1

Human DIS3 and DIS3L1 have a similar domain 
composition, however only the first has an active 
endoribonuclease  domain. Two important 
 residues (E97 and D146N) are absent in DIS3L1 
PIN domain rendering it inactive. The aspartic 
acid D146 is the most conserved in the PIN 
domains and its single mutation is reported to 
abolish its activity in vivo and in vitro [43, 112, 
113]. The E97 is not strictly conserved across the 
PIN- domain family [112].

Both human DIS3 and DIS3L1 associate 
with the exosome ring. In contrast to the mainly 
nuclear localization of DIS3, DIS3L1 is strictly 
cytoplasmic [57, 72, 114]. The stable associa-
tion of DIS3L1 with the cytoplasmic exosome 
suggests that it acts in concert with the core of 
the exosome in the degradation of cytoplasmic 
RNAs. One of the RNA substrates degraded by 
the exosome-associated DIS3L1 is the 28S 
rRNA. The degradation proceeds through poly-
adenylated intermediates, which accumulate 
upon DIS3L1 knockdown [115, 116]. DIS3L1 
was also implicated in the degradation of inter-
mediary products generated by DNA-based 
antisense oligonucleotides (ASOs), as part of 
the RNA surveillance machinery. These agents 
recruit RNase H1 that after endonucleolytic 
cleavage of the ASO-targeted mRNAs gener-
ates both a 5′ and a 3′ fragments. DIS3L1 
appears to be involved, together with the exo-
some, on the 3′-5′ exoribonucleolytic degrada-
tion of the cytoplasmic upstream cleavage 
products [117].
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Less is known about DIS3L1 association with 
human disease, but there are a few reports show-
ing its implication on diverse pathologies, 
directly or indirectly related with its function 
over specific substrates. It was suggested that 
DIS3L1 could be implicated in the regulation of 
steady state levels of Y RNAs, an abundant class 
of small non-coding RNAs with a role in a range 
of cellular processes, such as RNA quality con-
trol, DNA replication, cellular stress responses 
and histone mRNA processing [118, 119]. 
Several enzymes are involved in Y RNAs matura-
tion, both on its 3′ end adenylation and subse-
quent trimming. Poly(A)-specific ribonuclease 
(PARN) is one of the enzymes involved on its 3′ 
end processing and, in its absence, oligo(A) tails 
are degraded by the exoribonuclease DIS3L1. It 
was seen that PARN mutations cause a severe 
form of dyskeratosis congenita (DC), a telomere 
biology disorder characterized by dysplastic 
nails, lacy reticular pigmentation of the upper 
chest and/or neck, and oral leukoplakia [120]. 
The loss of PARN reduces the levels of human Y 
RNAs. At the same time, low levels of Y RNAs 
intensify the effect of PARN depletion on telo-
mere maintenance, leading to the same severe 
DC phenotype. PARN seems to be responsible to 
stabilize Y RNAs by removing the oligoadenyl-
ated tails that recruit DIS3L1 for degradation 
[121]. Moreover, it was recently demonstrated 
that PARN is also involved in miRNAs stabiliza-
tion by removing their oligo(A) tails – the signal 
for the recruitment of the cytoplasmic exonucle-
ases DIS3L1 or DIS3L2. Therefore, upon PARN 
knockdown there is decrease in miRNAs’ levels, 
namely several that target p53 mRNA (a gene 
that plays a central role in cancer). This was the 
missing link to explain the p53 accumulation that 
is observed in PARN-defective patients [122].

DIS3L1 also seems to play a role in cancer, 
similarly to DIS3 (see above) and DIS3L2 (see 
bellow) homologues. The Hedgehog (Hh) path-
way controls cell proliferation and differentiation 
in response to a gradient of secreted Hh ligands, 
and its aberrant activation can promote tumori-
genesis. The transcriptional factor Zfx is a com-
mon cell-intrinsic regulator of diverse Hh-induced 
tumors. hDIS3L1, the human gene encoding 

DIS3L1 was identified as direct transcriptional 
target of Zfx, in the context of skin basal cell car-
cinoma (BCC) and cerebellar medulloblastoma 
(MB) models in vivo and in vitro [123].

Two independent exome sequencing studies 
(technique that sequences all protein-coding 
genes in a genome) have reported an association 
of hDIS3L1 with cardiac risk. First, in a study to 
identify genetic variants that confer susceptibility 
to myocardial infarction (MI) in the Asian popu-
lation (Korean individuals), several single nucle-
otide polymorphisms (SNPs) on hDIS3L1 gene 
were associated with MI risk. However, how the 
gene influences MI pathogenesis would have to 
be determined and confirmed in other ethnic pop-
ulations [124]. In another study, novel SNPs were 
also identified in the hDIS3L1 gene of individuals 
with Hyperalphalipoproteinemia (HALP). This 
condition of high-density lipoprotein cholesterol 
(HDL) levels is inversely correlated with coro-
nary heart disease (CHD), and hDIS3L1 gene 
was identified as a candidate gene associated 
with HALP [125].

4.2.3  DIS3L2

Human DIS3L2 is the third member of the RNase 
II/RNB family of enzymes. This protein is a pro-
cessive 3′-5′ exoribonuclease (mainly cytoplas-
mic) able to degrade structured RNA molecules, 
as long as they possess a 2 nt 3′ overhang as a 
“landing platform” [44, 45]. Unlike its family 
counterparts (DIS3 and DIS3L1), DIS3L2 lacks 
the PIN and the CR3 domains on its structure, 
both necessary for the interaction with the exo-
some complex [39, 43, 45, 72, 73].

In mammalian cells, DIS3L2 is involved in 
miRNA maturation and in the decay of numer-
ous RNA-species, namely bulk mRNA, ARES 
and ncRNAs [126–129]. Several studies associ-
ated DIS3L2 with a degradation pathway that 
relies on the addition of untemplated uridines to 
several classes of RNAs, in a process called uri-
dylation [44, 45, 127, 129–132]. This process 
was reported for the first time in S. pombe [133], 
in which Dis3L2 was shown to degrade uri-
dylated poly(A)-containing mRNAs [45]. Later 
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on, uridylation was found to be widespread and 
to have a decisive impact on RNA′s fate. There is 
a negative correlation between the addition of 
short (1–4) uridine residues with mRNA stabil-
ity [47, 130]. Oligo(U) tailed mRNAs are recog-
nized by Lsm1–7 complex stimulating 3′-5′ 
degradation by DIS3L2, however it can also trig-
ger decapping by DCP2 allowing 5′-3′ degrada-
tion by XRN1 [44, 45, 129, 130, 133–135]. 
DIS3L2 crystal structure unveiled the DIS3L2 
RNA pathway, revealing three uracil-specific 
zones that explain how DIS3L2 recognizes, 
binds and processes preferentially oligo(U)-
tailed RNAs [132].

The uridylation process is achieved by proteins 
termed uridyltransferases (TUTases). Humans 
have seven TUTases that are strictly cytoplasmic, 
except TUTase-1 (TUT1) that can also be found 
in mitochondria [133, 136]. Two TUTases were 
implicated in mRNA uridylation at the 3′ end, 
TUT4 and TUT7 [130]. In the same study, Lim 
and colleagues showed that these TUTases were 
able to sense the length of the poly(A) tail, and 
preferentially uridylate mRNAs with a tail rang-
ing between 0–25 As. On the contrary, PABPs 
preferentially bind longer poly(A) tails protecting 
them from the action of TUT4/7 [130].

This so called TUT-DIS3L2 mRNA decay 
mechanism was found to prevail in cells under 
apoptosis. Apoptosis is the most common physi-
ological program of cell death, which plays a 
vital role in pathogen immune defense, removal 
of damaged cells, cancer surveillance and cancer 
therapy effectiveness [137]. Thomas and col-
leagues [138] observed in human apoptotic cells, 
that apoptosis triggers global mRNA decay, and 
the RNA products generated are 3′-uridylated by 
TUT4/7 and subsequently degraded by DIS3L2. 
Knockdown of the exoribonuclease inhibits 
mRNA decay and suppresses cell death; con-
versely, DIS3L2 overexpression enhances apop-
tosis, supporting that mRNA decay is a hallmark 
of cell death [138]. Recently, Liu and colleagues 
[139], brought another player to this process, a 
mitochondrial exoribonuclease called PNPT1 
that evolved from bacterial PNPase [48, 139, 
140]. The work performed in human colon can-
cer cells, demonstrated that, upon apoptosis trig-

gering, PNPT1 and DIS3L2 act in the same 
pathway. PNPT1 is released from mitochondria, 
and starts to degrade RNA from the 3′ end. 
PNPT1 stops whenever it encounters an obstacle 
(e.g. ribosome, RNA-binding protein or highly 
structured sequence), being the RNAs further 
degraded by the TUT-DIS3L2 pathway [139].

DIS3L2 is also involved in the regulation of 
let-7 miRNA expression in pluripotent cells, 
establishing a role of this enzyme in cell differen-
tiation [128, 131, 132, 141]. Indeed, let-7 pre- 
miRNA biogenesis is one of the best characterized 
DIS3L2-mediated pathways. miRNAs from the 
let-7 family function as tumor suppressors and 
are involved in stem cell renewal [128, 131]. In 
undifferentiated cells, the expression of let-7 
miRNAs is blocked by Lin28, a pluripotency fac-
tor that also functions as an oncogene in several 
cancers [142]. This RNA-binding protein binds 
to let-7 precursors and promotes their uridylation 
by TUT4/7. These RNA precursors are thus 
marked for DIS3L2 degradation, leading to inhi-
bition of let-7 biogenesis.

A recent study has also found a role of 
DIS3L2  in nonsense-mediated decay (NMD), a 
quality control pathway that degrades aberrant 
and physiological mRNAs to maintain cellular 
homeostasis (as discussed in Chap. 3). In this 
context, DIS3L2 acts over 3′ ends of NMD decay 
intermediates that were previously subject to uri-
dylation  (L.  Romão, personal communication 
and [143]).

The involvement of DIS3L2  in such cellular 
important processes, like apoptosis, cell differen-
tiation and RNA quality control (NMD) antici-
pates its role in human disease. In fact, this RNase 
has been related with several human disorders. 
DIS3L2 is associated with Perlman syndrome, 
which is a rare congenital overgrowth disease 
[57, 144]. Children affected with Perlman syn-
drome display macrocephaly, facial abnormali-
ties, neurodevelopmental delay, fetal gigantism, 
kidney abnormal enlargement and high neonatal 
mortality. These children also present nephrobla-
stomatosis, an important precursor for Wilms’ 
tumor, a kidney cancer also known as nephro-
blastoma. Astuti et al. [57] demonstrated that the 
affected children have germline mutations con-
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sistent with DIS3L2 loss of function. DIS3L2 
mutations were also associated with Wilms tumor 
susceptibility [57, 144]. It has been recently sug-
gested that regulation of the growth-promoting 
gene, insulin growth factor 2 (IGF2), by DIS3L2, 
could be the link between this RNase and Wilms 
tumorigenesis [145]. Interestingly, Gregory RI 
and colleagues have found that DIS3L2 has no 
effect on the steady state mRNAs levels in 
DIS3L2-deficient cell lines and knockout mouse 
kidneys.  Instead, it  rather specifically perturbs 
endoplasmic reticulum (ER)-mediated transla-
tion (R.I. Gregory, personal communication).

Besides its well documented role in Perlman 
syndrome and Wilms’ tumor, DIS3L2 was also 
found to be mutated in 3–6% of carcinomas [57, 
146]. Also, DIS3L2 has been associated with a 
Marfan-like syndrome with skeletal overgrowth 
[147]. The Marfan syndrome is a disorder of the 
connective tissue that causes high mortality for 
untreated patients, mainly due to aortic complica-
tions [148]. Patients in which DIS3L2 gene was 
affected showed skeletal overgrowth and malfor-
mations, including severe scoliosis (abnormal 
curvature of the spine), arachnodactyly (long, 
slender fingers, curvature of the hands and feet) 
and mild syndactyly (interdigital webbing) [147, 
149, 150].

4.3  Concluding Remarks

RNA degradation is a set of highly regulated 
steps that maintain cellular integrity and homeo-
stasis. DIS3-enzymes act over a panoply of RNA 
substrates in eukaryotic cells and it is clear their 
role in human disease, namely in cancer develop-
ment and progression. In this chapter, we 
explored the consequences of DIS3-enzymes 
impairment on the physiology of human cells. 
From this group of proteins, the most well- 
characterized is DIS3, however its role in cancer 
is not completely understood. Less is known 
about the mechanism of action and specific RNA 
targets of its homologs DIS3L1 and DIS3L2. The 
molecular mechanisms that link both proteins 
with disease are still unexplored. Despite the 

progress that has been made, there is still much 
work to perform in order to completely under-
stand how DIS3-enzymes regulate cellular path-
ways, and how they are related with disease 
progression. Clinical medicine will certainly 
benefit from this kind of fundamental research.
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