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Abstract
Post-transcriptional regulation of gene expres-
sion is fundamental for all forms of life, as it 
critically contributes to the composition and 
quantity of a cell’s proteome. These processes 
encompass splicing, polyadenylation, mRNA 
decay, mRNA editing and modification and 
translation and are modulated by a variety of 
RNA-binding proteins (RBPs). Alterations 
affecting RBP expression and activity contrib-
ute to the development of different types of 
cancer. In this chapter, we discuss current 

research shedding light on the role of different 
RBPs in gliomas. These studies place RBPs as 
modulators of critical signaling pathways, 
establish their relevance as prognostic mark-
ers and open doors for new therapeutic 
strategies.
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Abbreviations

RBPs RNA-binding proteins
MS Mass spectrometry
UTRs Untranslated regions
GBM Glioblastoma multiforme or 

Glioblastoma
hnRNP Heterogeneous nuclear 

ribonucleoproteins
PTBP Polypyrimidine-tract-binding 

protein
ADARs Adenosine deaminases that 

act on RNA
HuR Hu antigen R
MSI1 Musashi1
IGF2BPs/IMPs Insulin-like growth factor II 

mRNA binding proteins
PK Pyruvate-kinase
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EGFR Epidermal growth factor 
receptor

HK2 Hexokinase2
GLUT3 Glucose Transporter 3
IG20 Insuloma-glucagonoma 

protein 20
RON Recepteur d’Origine Nantais
EMT Epithelial-mesenchymal 

transition
PDCD4 Programmed cell death 

protein 4
MMP Matrix metalloproteinases
STAT3 Signal transducer and 

activator of transcription 3
NPC Neuronal precursor cells
RRMs RNA recognition motifs
FGFR fibroblast growth factor 

receptor- 1, -2
FBN fibrilin
CASP2 caspase 2
ABCC1 ATP binding cassette subfam-

ily C member 1
RTN4 Reticulon 4
MARK4 Microtubule affinity- 

regulating kinase 4
GluR Glutamate receptors
ELAV Embryonic lethal abnormal 

visual
AREs AU-rich elements
VEGF Vascular endothelial growth 

factor
SIRT1 Silent mating type informa-

tion regulation 2 homolog 1
BCL-2 B-cell lymphoma 2
ProTα Prothymosin α
PCM pericentriolar matrix
SCs Stem cells
GSCs Glioblastoma stem cells
MVD microvessel density
DNA-PKcs DNA-Protein Kinase 

Catalytic Subunit
PMAs Pilomyxoid astrocytomas
QKI Quaking
INF Interferon
PI3K/MAPK Phosphatidylinositol 

3-Kinase/Mitogen-activated 
Protein Kinase

2.1  Introduction

The large majority of cancer studies dedicated to 
the identification of “driving events” and genes 
contributing to tumor development have focused 
on processes occurring at the DNA level, such as 
mutations and chromosomal defects, changes in 
methylation status, and transcriptional regula-
tion. Recent studies performed in different spe-
cies and scenarios have shown a poor correlation 
between mRNA and protein levels for the major-
ity of the transcriptome. These results support the 
role of “RNA-based” mechanisms as key modu-
lators of gene expression in both, normal and 
tumorigenic cells [1, 2]. Such regulatory mecha-
nisms are primarily driven by RNA-binding pro-
teins (RBPs). Large-scale quantitative methods, 
next-generation sequencing, and modern protein 
mass spectrometry (MS) have been employed 
recently to expand the RBP catalogue, to identify 
their protein co-factors and target transcripts. The 
number of known RBPs in the human genome is 
over 1500 [3, 4], which represent ~7.5% of 
human coding genes. RBPs form complexes with 
pre-mRNA, mRNA, and a variety of ncRNAs 
(lncRNAs, miRNAs, rRNAs, etc.), to modulate 
an array of processes that include splicing, poly-
adenylation, maturation, modification, transport, 
stability, localization, and translation. RBPs exert 
their effect by recognizing specific sequences 
and/or secondary structures present in untrans-
lated regions (UTRs), coding sequences and/or 
introns [3, 5].

Mutations and alterations in the expression 
levels of numerous RBPs are observed across 
tumor tissues and known to impact the expres-
sion of large set of genes, contributing to tumor 
initiation and growth [6–8]. This scenario is 
observed in gliomas, an heterogenous group of 
brain tumors encompassing astrocytomas, oligo-
dendrogliomas, oligoastrocytomas and glioblas-
toma multiforme [9]. Gliomas are responsible for 
the majority of deaths caused by primary brain 
tumors. The absence or presence of anaplastic 
features is used by the World Health Organization 
(WHO) for assigning grades of malignancy [9, 
10]. Among them, glioblastoma multiforme 
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(GBM, grade IV) is the most aggressive and 
accounts for 45.2% of all malignant primary 
brain and CNS tumors, and 54% of all gliomas 
[11]. The number of well-characterized onco-
genic RBPs in gliomas is still relatively small. As 
indicated by a recent genomic study from our lab, 
aberrant RBP expression is a common feature in 
GBMs and dozens of these proteins potentially 
contribute to the acquisition of cancer pheno-
types [12].

In the next sections, we discuss the role of 
some of the best characterized RBPs in the con-
text of gliomas, namely Heterogeneous nuclear 
ribonucleoproteins (hnRNP), Polypyrimidine- 
tract- binding protein (PTBP), Adenosine deami-
nases that act on RNA (ADARs), Hu antigen R 
(HuR), Musashi1 (MSI1), Insulin-like growth 
factor II mRNA binding proteins (IGF2BPs/

IMPs), and Quaking (QKI)  – In Fig.  2.1 we 
depict the global biology of these RBPs in glioma 
development.

2.2  Heterogeneous Nuclear 
Ribonucleoproteins

Heterogeneous nuclear ribonucleoproteins are a 
family of RBPs that includes approximately 20 
genes termed hnRNPs A1-U, which range in size 
from 34 to 120 kDa [13]. Several hnRNPs have 
been implicated in the development of various 
tumor types and their expression levels have been 
linked to patient survival [14]. HnRNPs regulate 
different aspects of pre-mRNA processing in gli-
omas and their expression levels are altered in 
both low and high grade astrocytomas [15–17].
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Fig. 2.1 Schematic representation of the involvement of 
RNA-binding proteins (RBPs) in glioblastoma develop-
ment. We show the RBP families discussed in this article, 

the region of the mRNA where they make target, their 
most relevant target genes, and both the processes and 
pathways affected by the described regulation
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In gliomas, hnRNPA1/A2 is associated with 
the regulation of glucose metabolism, where it 
influences Pyruvate-kinase (PK) splicing and 
function. PK is a rate-limiting enzyme in glucose 
metabolism and is encoded by two paralogous 
genes, PKLR and PKM. Both genes are alterna-
tively spliced; therefore, resulting in four PK iso-
forms in mammals [18, 19]. The PKM gene 
consists of 12 exons, of which exons 9 and 10 are 
alternatively spliced in a mutually exclusive fash-
ion, producing the PKM1 and PKM2 mRNA iso-
forms, respectively [19]. Interestingly, the 
expression of hnRNP A1/A2 and PTBP is regu-
lated by the oncogenic transcription factor c-Myc 
[20]. In cancer cells, hnRNP A1/A2 and PTBP 
bind to PKM pre-mRNA and repress the inclu-
sion of exon 9. When expression levels of 
hnRNPA1/A2 and PTBP are reduced, PKM exon 
9 inclusion is promoted and more PKM1 tran-
scripts are produced; the end result is a decrease 
in glucose consumption and lactate production 
[21]. This is an example of a critical dialogue 
between RBP-mediated splicing and modulation 
of metabolism and cell proliferation.

Astrocytomas display mutations in growth- 
factor- receptor genes, such as epidermal growth 
factor receptor (EGFR). Alterations in the splic-
ing profile of EGFR are also frequently observed. 
The most relevant one gives rise to a transcript 
encoding EGFR variant III (EGFRvIII) [22]; the 
resulting protein is constitutively active and con-
tributes to a major shift in GBM cell metabolism 
[23]. Babic et  al. (2015) demonstrated that in 
GBM cells expressing EGFRvIII, the Myc- 
binding partner Max is alternatively spliced. 
hnRNPA1 binds upstream of exon 5 of the Max 
pre-mRNA and facilitates its inclusion, leading 
to the production of a truncated Max protein 
referred to as Delta Max. Increased Delta Max 
production contributes to the expression of the 
glucose transporter GLUT3 and HK2 and pro-
motes GBM cell proliferation in glucose- 
containing media [24].

Evasion of programmed cell death, tissue 
invasion, and metastasis are three important hall-
marks of cancer [25]. A number of studies have 
described hnRNPs as regulators of apoptosis and 
cell invasion via its impact on RNA processing. 

For instance, hnRNPH regulates the splicing of 
Insuloma-glucagonoma protein 20 (IG20) and 
Recepteur d’Origine Nantais (RON), a death- 
domain adaptor protein and a tyrosine kinase 
receptor that participate in apoptosis and cell 
invasion, respectively. Alternative 5′ splice site 
usage in exon 13, plus inclusion/skipping of exon 
16 generates four main splicing isoforms of IG20 
(MADD), which have been described to be aber-
rantly expressed in tumors [26, 27]. In the case of 
RON, exon 11 exclusion generates RONΔ11, a 
transcript that gives rise to a protein missing part 
of the extracellular domain. This active isoform 
promotes cell motility and mediates epithelial- 
mesenchymal transition (EMT) [28] . hnRNPH 
binds to UGGG elements in the 5′ region of 
exons 16 and 11 of IG20 and RON pre-mRNAs, 
respectively, and inhibits its inclusion [29]. 
Knockdown of hnRNPH promotes inclusion of 
the exons that are normaly spliced out, and is 
associated with a decrease in cell viability and 
migration in gliomas [29]. Binding of hnRNPC 
to pre-miR-21, which promotes maturation, rep-
resents an example of interactions between 
hnRNPs and miRNAs. Silencing of hnRNPC 
decreases miR-21 levels, upregulating expression 
of Programmed cell death protein 4 (PDCD4), 
thus affecting the proliferative and metastatic 
potential of GBM cells [30].

2.3  Polypyrimidine-Tract- 
Binding Protein

Polypyrimidine tract-binding proteins (PTBPs) 
are a family of RNA binding proteins whose most 
of its members are preferentially expressed in the 
brain [31, 32]. PTBP2 (also known as neural 
PTB) for instance is specifically expressed in 
post-mitotic neurons [33]. PTBP3 is the least 
studied of the three PTB paralogs. In rat and 
human it is encoded by the gene ROD1. In rats, it 
is predominantly expressed in hematopoietic 
cells or organs of embryonic and adult individu-
als. In humans, ROD1 overexpression inhibits 
pharmacologically-induced differentiation of 
both megakaryocytic and erythroid K562 leuke-
mia cells, supporting the notion that ROD1 plays 
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a role in differentiation control in mammalian 
cells [34]. These RBPs shuttle between the 
nucleus and cytoplasm, functioning in large and 
diverse number of cellular processes, including 
mRNA splicing, polyadenylation, stability and 
translation. PTBPs preferentially bind to 
polypyrimidine- rich stretches through its four 
RNA recognition motifs (RRMs) [35, 36]. As a 
splicing factor, PTBP1 induces exon skipping in 
pre-mRNAs encoding proteins involved in prolif-
eration (FGFR1, FGFR2), invasion (CSRC), 
motility (ACTN, FBN), apoptosis (FAS, CASP2), 
and multi-drug resistance (ABCC1) [37].

Several studies have reported significant dif-
ferences in the expression of PTBP1 in gliomas 
[37, 38]. PTBP1 regulates numerous splicing 
events relevant to gliomagenesis. Global exon 
array analysis identified Nogo (also known as 
RTN4) as one of the main targets of PTBP1. 
Nogo triggers a rearrangement of actin filament 
extensions in neighboring cells to inhibit neurite 
outgrowth [39]. Nogo has multiple mRNA iso-
forms, but only three characterized protein vari-
ants: Nogo-A, Nogo-B and Nogo-C [40]. Cheung 
et al, (2009) showed that Nogo-B is the predomi-
nant mRNA isoform expressed in glioma cells, 
where high levels of PTBP1 ensure that exon 3 is 
skipped [37]. Functional assays suggest that reg-
ulation of Nogo splicing by PTBP1 plays a role 
in proliferation and migration [37]. Another 
study identified the FGFR-1 pre-mRNA as 
PTBP1 target [41]. FGFR1 is implicated in 
growth and differentiation pathways and precise 
regulation of its splicing is critical [42]. PTBP1 
interacts in a sequence-specific manner with the 
intronic RNA sequence, termed ISS-1 element, 
located upstream of the α exon of FGFR-1 pre- 
mRNA.  This interaction induces exon α exclu-
sion and leads to the production of a receptor 
with enhanced affinity for fibroblast growth fac-
tor (FGFR-1β) [41]. Beta form of FGFR-1 is the 
predominant isoform and has been described to 
drive tumor progression [42]. Another PTBP1 
target is the kinase MARK4, which belongs to 
the family of AMP protein kinases. The two 
MARK4 splicing isoforms (MARK4L and 
MARK4S) differ in relation to their C-terminal 
end [43]. While MARK4L is upregulated in gli-

oma cells and is expressed at high levels in neural 
progenitor cells, MARK4S is found predomi-
nantly in normal brain tissue and terminally dif-
ferentiated neurons [44]. Bioinformatic and 
biochemical approaches identified PTBP1 bind-
ing sites in intron 15 of the MARK4 pre-mRNA, 
indicating that PTBP1 regulates the inclusion of 
exon 16. This process influences splicing of exon 
18 which contains a stop codon; the result are 
two alternative protein products containing or not 
the C-terminal kinase 1 domain [45].

2.4  Adenosine Deaminases that 
Act on RNA

RNA editing is an important mechanism in which 
RNA modifications are used to modulate gene 
expression and function [46]. Adenosine deami-
nases that act on RNA (ADARs) are key regula-
tors of RNA editing and changes in ADAR 
expression levels may lead to the development of 
different neoplasms, including gliomas. They are 
responsible for adenosine (A) to inosine (I) con-
version in RNAs. These RNA modifications often 
lead to changes in amino acid incorporation that 
could ultimately affect protein properties [47]. In 
vertebrates, three members of the ADAR family 
have been identified. ADAR1 and ADAR2 are 
ubiquitously expressed and exhibit catalytic 
activity, whereas ADAR3 is specifically expressed 
in the brain and has no catalytic activity. ADAR3 
has been revealed to competitively inhibit the 
deaminase activity of other ADARs by binding to 
dsRNA [48]. In particular, ADAR2 editing activ-
ity is crucial for the function of many proteins 
expressed in central nervous system and is essen-
tial for normal brain development [49].

In mammals, the catalogue of genes affected 
by RNA editing has been expanding. Among 
them are the glutamate receptors (GluR) sensitive 
to AMP (B, C and D subunits) and those sensitive 
to kainate (5 and 6 subunits). A to I editing causes 
the substitution of the neutral amino acid gluta-
mine (Q) for an arginine (R), located in the pore 
domain of GluR. The positively charged Arginine 
prevents the passage of Ca2+. This editing occurs 
in a majority of AMPA receptors in the central 
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nervous system and acts as a protective mecha-
nism against excitotoxicity mediated by massive 
Ca2+ influxes [50]. Due to the critical importance 
of accurate RNA editing in normal brain func-
tion, deregulation of editing may influence the 
progression of pathophysiological processes, 
such as neuro-degeneration and tumorigenesis 
[51].

Analyses of GluR-B transcripts in normal 
brain tissue showed that 100% of Q codons are 
edited to R codons in both gray and white matter. 
In contrast, GBM tissue showed a reduction in 
Q/R-site editing (12–31% decrease). This comes 
as a result of a decrease in the ADAR2 enzymatic 
activity [51]. Another study linked a reduction in 
editing of GluR-B (sites R/G and Y/C) and 
GluR-6 (sites I/V, Y/C and Q/R) transcripts to 
grade of malignancy in pediatric astrocytomas 
[47]. This editing has been attributed to altera-
tions in ADAR2 catalytic activity. It has also been 
observed that elevated levels of ADAR2 inhibits 
proliferation and migration of astrocytoma cell 
lines [47]. Galeano et  al. (2012) reported that 
ADAR2 editing affects proliferation of astrocy-
toma cells in vitro and in vivo via cell cycle mod-
ulation. Increased ADAR2 expression 
considerably prolonged survival and significantly 
inhibited astrocytoma growth in vivo [49].

Alternative splicing is also a critical mecha-
nism that regulates ADAR2 activity [49, 50]. A 
splicing variant of ADAR2, which contains a 
47-nucleotide insertion, is increased in gliomas 
in comparison to normal brain. Furthermore, the 
presence of this splicing variant correlates with 
malignancy [52]. Alternative splicing of exon 5a 
is also an important event in gliomas [53]. 
Transcripts containing exon 5a encode a protein 
with ~50% reduced activity that is predominantly 
expressed in gliomas [53].

ADAR2 is also essential for the editing and 
modulation of 90 miRNAs in glioblastomas. 
Rescue of ADAR2 activity in glioblastoma cells 
recovered the expression of onco-miRNAs and 
tumor suppressor miRNAs to levels observed in 
normal human brain. Wild-type ADAR2 activity 
was shown to inhibit miR-221, miR-222, and 
miR-21 maturation, causing accumulation of 
their precursors in different cell lines, impacting 
cell proliferation and migration [54].

2.5  Hu Antigen R

Hu antigen R (HuR) is a member of the embry-
onic lethal abnormal visual (ELAV) family, ini-
tially identified in Drosophila as a factor involved 
in neuronal development, plasticity and memory 
[55, 56]. HuR is ubiquitously expressed, whereas 
other members of the family (HuB, HuC and 
HuD) are tissue specific [56]. HuR regulates a 
variety of target mRNAs associated with pro-
cesses like inflamation [57], cell cycle [58], 
angiogenesis [59], cell survival, and apotosis 
[60]. HuR preferently binds uracil-rich sequences 
and has been shown to regulate mRNA stability, 
splicing and translation [61, 62]. Recent studies 
have also linked HuR activity with microRNA 
metabolism and function [63, 64].

Angiogenesis is required for glioma develop-
ment. Vascular endothelial growth factor 
(VEGF)-A is considered the major mediator of 
angiogenesis in malignant tumors, including 
high-grade astrocytomas [59]. HuR regulates 
VEGF-A expression and, under hypoxic condi-
tions, inhibition of HuR cytoplasmic transloca-
tion by leptomycin B reduces VEGF-A 
upregulation in astrocytic tumor cells [59, 65]. In 
gliomas, it was shown that HuR also regulates the 
expression of angiogenic factors via mRNA sta-
bility [66, 67].

Several studies support a role of HuR in cell 
survival. In GBM, HuR binds the 3′UTR of bcl-2 
family members and promotes both mRNA sta-
bility and translation. Using a mouse model, 
Filippova et al. (2011) showed that silencing of 
HuR promotes apoptosis by decreasing bcl-2 
family members levels [68].

The development of an inflammatory micro-
environment has long been considered important 
for the initiation and progression of glioblastoma. 
GBMs display high levels of the pro- inflammatory 
cytokines like IL-1β, IL-6 and IL-8 [69]. HuR 
increases the stability of IL-6 mRNA, leading to 
increased pro-inflammatory cytokine IL-6 protein 
production and secretion [57, 67].

Several studies have shown that HuR regu-
lates the cell cycle in a variety of ways. One of 
them involves HuR phosphorylation at serine 202 
by CDK5. Prolonged disruption of the balance 
between phosphorylated and unphosphorylated 
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HuR provokes an arrest of cell cycle progression 
in glioma cells by altered cyclin A levels [70]. 
Oscillation of cyclin A levels occurs during mito-
sis and is critical for DNA replication and centro-
some duplication [71]. Moreover, SRC and c-Abl 
kinases regulate HuR sub-cellular trafficking and 
influence its accumulation in the pericentriolar 
matrix (PCM) via a growth factor dependent sig-
naling mechanism [72]. Finally, HuR phosphory-
lation in the nucleus by Pyruvate kinase M2 
(PKM2), results in increased glioma cell growth. 
The loss of the nuclear interaction between 
PKM2 and HuR leads to cytoplasmic re- 
distribution of HuR and subsequently an increase 
in cap-independent mRNA translation of cyclin- 
dependent kinase inhibitor p27 mRNA, resulting 
in cell cycle arrest [73]. Some of the molecular 
mechanisms involved in the expression or activ-
ity of HuR in gliomas are mediated by growth 
factors. AKT/HSF1/HuR axis impacts Rictor 
expression, a component of the mTORC2 com-
plex. EGF and IGF stimulation increases HuR 
transcription mediated by HSF1. HuR in turn, 
enhances Rictor mRNA translation which leads 
to elevated mTORC2 activity, tumor growth and 
invasion in GBM [74]. HuR is also subject to 
microRNA regulation. Yang et  al. showed that 
miR-146b-5p overexpression could reverse HuR 
overexpression in glioma stem cells (GSCs). This 
regulation affects GSCs viability and cell cycle 
progression [75].

2.6  Musashi1

Musashi1 (MSI1) is a highly conserved RBP that 
controls the balance between self-renewal and 
differentiation [76]. MSI1 has been described as 
a pro-oncogenic factor in multiple tumor types 
[77]. High levels of MSI1 have been observed in 
several cancers, including medulloblastoma, 
hepatocarcinoma, cervical carcinoma, breast 
cancer and gliomas, and is linked to poor survival 
[78–82]. MSI1 regulates both translation and 
mRNA decay by binding to UAG motifs present 
in stem loops [83].

Uren et al. (2015) identified more than 1000 
MSI1 target mRNAs in glioblastoma cells, using 
individual-nucleotide resolution cross-linking 

and immunoprecipitation (iCLIP) [83]. These 
targets are preferentially located in cancer rele-
vant pathways such as focal adhesion, adherens 
junction, Wnt, JAK/STAT, p53, MAPK, VEGF, 
and ErbB. Functional assays showed that MSI1 
knockdown impairs cell adhesion, migration, 
invasion, apoptosis, proliferation, and cell cycle 
regulation [83].

MSI1 has been linked to radio- and chemo- 
resistance. MSI1 expression increases in response 
to DNA damage in glioblastoma cells [84]. MSI1 
knockdown increases radiosensitivity by affect-
ing DNA damage repair through regulation of 
DNA-activated catalytic polypeptide (DNA- 
PKcs). DNA-PKcs is a key enzyme involved in 
the classic nonhomologous end-joining (NHEJ) 
pathway of DNA double-strand break repair in 
mammals [84]. In addition, it has been demon-
strated that overexpression of MSI1 effectively 
protects GBM cells from drug-induced apopto-
sis, like cisplatin, via down-regulation of pro- 
apoptotic genes [85].

2.7  Insulin-Like Growth Factor II 
mRNA Binding Proteins

The Insulin-like growth factor 2 (IGF2BP/IMPs) 
family of proteins consists of three members, 
IMP1 (IGF2BP1), IMP2 (IGF2BP2) and IMP3 
(IGF2BP3), which are mainly expressed in early 
stages of embryogenesis [86]. High expression of 
IMP proteins has been observed in a broad range 
of cancer types, including pancreatic, lung, renal 
cell, ovarian, endometrial, cervical, and glioblas-
toma [87].

IMP3 is involved in the activation of MAPK 
and PI3K pathways through the activation of 
IGF-2, affecting cell proliferation and invasion of 
GBM cells [88]. Multivariate analysis identified 
high IMP3 as an unfavorable prognostic factor 
for pediatric [89] and adult astrocytoma patients 
[88, 90, 91].

Recent studies have shown that IMPs promote 
mRNA stability by preventing miRNA-mediated 
silencing [87]. In gliomas for instance, IMP2 
protects mRNAs from let-7-dependent silencing 
by binding to the corresponding miRNA-binding 
sites [92].
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2.8  Quaking

Quaking (QKI) belongs to the signaling trans-
duction and activation of RNA (STAR) family 
of proteins. QKI pre-mRNA undergoes exten-
sive alternative splicing to generate at least four 
transcripts producing isoforms termed QKI-5, 
QKI- 6, QKI-7, and QKI-7b. These QKI iso-
forms share an RNA-binding KH domain, but 
differ by several amino acids at the C-terminus 
[93]. Analysis of glioma tumors found a high 
incidence of expression alterations in the 
human quaking gene [94]. It has also been 
reported that lost of the QKI-7 isoform 
decreases expression of genes involved in inter-
feron (INF) induction, suggesting a role for 
QKI-7 as a regulator of the inflammatory path-
way in glioblastoma [95]. QKI-6 expression 
correlates positively with glioma grade and 
promotes migration and invasion of glioblas-
toma cells via activation of PI3K/AKT and 
ERK pathways [96]. Recently, an in-frame 
MYB-QKI gene fusion was identified as hall-
mark genetic alteration in the majority of angio-
centric gliomas [97–99]. The MYB-QKI 
rearrangement disrupts both MYB and QKI, 
resulting in hemizygous deletion of 3′ portion 
of MYB and the 5′ portion of QKI [99]. In vitro 
and in vivo studies show that the MYB-QKI 
fusion promotes tumorigenesis [97].
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