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Networks of mRNA Processing 
and Alternative Splicing 
Regulation in Health and Disease

Peter Jordan, Vânia Gonçalves, Sara Fernandes, 
Tânia Marques, Marcelo Pereira, 
and Margarida Gama-Carvalho

Abstract
mRNA processing events introduce an intri-
cate layer of complexity into gene expression 
processes, supporting a tremendous level of 
diversification of the genome’s coding and 
regulatory potential, particularly in vertebrate 
species. The recent development of massive 
parallel sequencing methods and their adapta-
tion to the identification and quantification of 
different RNA species and the dynamics of 
mRNA metabolism and processing has gener-
ated an unprecedented view over the regula-
tory networks that are established at this level, 
which contribute to sustain developmental, 
tissue specific or disease specific gene expres-

sion programs. In this chapter, we provide an 
overview of the recent evolution of transcrip-
tome profiling methods and the surprising 
insights that have emerged in recent years 
regarding distinct mRNA processing events – 
from the 5′ end to the 3′ end of the molecule.

Keywords
Cancer · Regulatory networks · RNA process-
ing · Splicing · Transcriptomics

1.1  Introduction

Human cells depend on the continuous expression 
of genes that encode the production of proteins and 
non-coding RNAs. Whereas some genes are con-
tinuously expressed, others require specific physi-
ologic or developmental stimuli [1, 2]. The 

P. Jordan (*) · V. Gonçalves
Department of Human Genetics, National Institute  
of Health Doutor Ricardo Jorge, Lisboa, Portugal

Faculty of Sciences, BioISI – Biosystems & 
Integrative Sciences Institute, University of Lisbon, 
Lisboa, Portugal
e-mail: Peter.jordan@insa.min-saude.pt

S. Fernandes
Instituto de Medicina Molecular, Faculdade de 
Medicina da Universidade de Lisboa,  
Lisboa, Portugal

Department of Chemistry and Biochemistry,  
Faculty of Sciences, University of Lisbon,  
Lisboa, Portugal

T. Marques
Department of Chemistry and Biochemistry,  
Faculty of Sciences, University of Lisbon,  
Lisboa, Portugal

1

M. Pereira
Faculty of Sciences, BioISI – Biosystems & 
Integrative Sciences Institute, University of Lisbon, 
Lisboa, Portugal

M. Gama-Carvalho (*)
Faculty of Sciences, BioISI – Biosystems & 
Integrative Sciences Institute, University of Lisbon, 
Lisboa, Portugal

Department of Chemistry and Biochemistry,  
Faculty of Sciences, University of Lisbon,  
Lisboa, Portugal
e-mail: mhcarvalho@fc.ul.pt

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19966-1_1&domain=pdf
mailto:Peter.jordan@insa.min-saude.pt
mailto:mhcarvalho@fc.ul.pt


2

underlying mechanisms that regulate gene expres-
sion patterns are complex and operate in various 
layers along the molecular pathway leading from 
gene to gene product. One key step is the transcrip-
tion of the gene by RNA polymerases into a pri-
mary RNA transcript, a process regulated at the 
levels of chromatin conformation at the gene locus 
and the binding of transcription factors to the gene 
promoter [3, 4]. This transcript then needs to be fur-
ther processed in order to produce a mature RNA 
product, e.g. messenger RNA (mRNA), ribosomal 
RNA (rRNA), microRNA (miRNA or miR), small 
nuclear RNA (snRNA) or long non-coding RNA 
(lncRNA). This can involve various processing 
steps including RNA cleavage at specific sites, 
intron removal or splicing, or modifications at the 
RNA extremities, like the addition of a poly-ade-
nosine tail to the 3′ end and a 7-methyl-guanosine 
‘cap’ modification to the 5′ end of RNA polymerase 
II transcripts (Fig. 1.1). The final RNA product can 
undergo further post-transcriptional modifications, 
like the editing of selected nucleotides. All of these 
modification steps can have profound influence on 
the RNA life cycle, for example influencing mRNA 
properties such as half-life, nuclear export, or rate 
of translation at the ribosome [5, 6].

Recently developed massive parallel sequenc-
ing technologies have transformed our ability to 
identify gene regulatory networks by allowing 
for the genome-scale characterization of chroma-
tin modifications, regulatory sequence elements, 
and transcriptome diversity and dynamics [7–10]. 
In this review we will discuss in more detail the 
current understanding of how post-transcriptional 
mRNA processing events contribute to transcrip-
tome complexity and lead to functional networks 
of genes, both in normal physiology and in dis-
eases like cancer.

1.2  New Technologies – New 
Insights: Contributions 
of Large-Scale Methods 
to Understanding Gene 
Expression Networks

The concept of transcriptome was used for the 
first time in a 1997 publication describing the 
application of the SAGE  – Serial Analysis of 

Gene Expression – technology [11] to perform a 
detailed characterization of the universe of genes 
expressed in yeast [12]. Although the general fea-
tures of gene expression patterns had begun to be 
explored almost two decades before, with the 
demonstration of the existence of different 
classes of transcripts regarding expression levels 
and stability, the detailed and systematic charac-
terization of transcript abundance, structure and 
modifications required the much more recent 
development of highly parallelized methods. 
Following the generalization of gene expression 
profiling using microarrays, including splicing- 
sensitive arrays [13, 14], setting the stage for the 
first comprehensive characterization of transcrip-
tome level regulatory networks, the advent of 
third generation sequencing methods and their 
application to transcriptome sequencing  – or 
RNA-Seq – has had a tremendous impact on our 
current understanding of gene expression pro-
cesses [7, 15]. In the wake of the new transcrip-
tomic approaches, large international consortia 
aiming at the functional characterization of the 
human genome, like ENCODE (ENCyclopedia 
Of DNA Elements) [16], FANTOM (Functional 
ANoTation Of Mammalian genomes) [17], GTEx 
[18] and The Cancer Genome Atlas  – TCGA 
[19], started providing an unprecedented view of 
the organization of gene expression processes 
and even re-defining our concept of gene. The 
currently accepted definitions have moved 
beyond the reference to genomic regions with 
transcriptional activity to focus on the biological 
function of the transcripts, either in the form of 
protein or RNA, establishing the determination 
of functionality as the critical challenge to over-
come [20]. In spite of all advances, the accurate 
characterization of transcript structure and diver-
sity is an ongoing pursuit that still requires the 
effective implementation of methods for the sen-
sitive sequencing of full-length transcripts. Single 
Molecule Real Time Sequencing (SMRT) 
approaches such as the ones pioneered by PacBio 
[21] and the more recent solutions developed by 
Oxford Nanopore, supporting the high through-
put direct sequencing of intact RNA molecules 
including the identification of base modifications 
[22] are promising to change the rules of the 
field. Coupled to the consolidation of single cell 
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5’ capping
splicing

mRNA
AAAAAA
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3’ cleavage and polyadenylation
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5’-end processing 3’-end processing

cytoplasmic 
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Fig. 1.1 Global view of differential co-transcriptional 
and post-transcriptional mRNA processing events dis-
cussed in this chapter. (a) During transcription, the pre-
RNA undergoes co- transcriptional modifications such as 
the addition of the 5′-cap, alternative splicing and 3′-end 
cleavage and polyadenylation, all of which can be differ-
entially regulated to define functional networks of tran-
scripts. In the cytoplasm, several types of 
post-transcriptional modifications can also take place: the 
5′-end can be processed through a cycle of de-capping and 

recapping, with the possibility of differential cap usage 
(b) and the 3′-end can be processed through cleavage and 
shortening of the 3′ untranslated region (UTR) associated 
with alternative polyadenylation, and the generation of 
stable, uncapped mRNA tails (c). These modifications 
contribute to the diversification of molecules present in 
the cell. The different sequence features arising from post-
transcriptional modifications can dictate the efficiency of 
either protein translation or decay for each transcript or 
population of transcripts (d)
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transcriptomics [23], these advances hallmark a 
new and exciting era for this expanding field.

1.2.1  The Basics: Characterizing 
the Transcriptome 
with RNA-Seq

The advent of highly parallelized sequencing 
methods with the ability to perform the simulta-
neous identification of the nucleotide sequence 
of millions of molecules in a quantitative way 
opened for the first time the possibility for the 
unbiased mapping of the transcriptome of differ-
ent organisms, tissues or cell types [7]. However, 
the specific technical requirements for the imple-
mentation of these methods have a significant 
impact on their ability to achieve an accurate 
description of the RNA molecules present in 
each system. Taken to the letter, this would call 
for the ability to quantitatively identify full-
length transcripts with differing structural 
arrangements (for example, with and without 
poly-A tails), varying from ten to hundred thou-
sand nucleotides in length, with abundances that 
differ in the same orders of magnitude. Currently, 
there is no method that will support such a chal-
lenging application in a single assay. In fact, 
even the less ambitious aim of mapping the pro-
tein coding transcriptome is still faced with sig-
nificant challenges due to technical limitations. 
Most of these limitations are related to the criti-
cal step called ‘library preparation’, whose com-
plexity and impact on the final sequencing profile 
is often under-appreciated [24, 25]. In fact, given 
the high robustness and low error rate of the pre-
dominant massive parallel sequencing technolo-
gies, this is indeed the most critical step, during 
which significant biases can be introduced that 
may alter the relative representation of different 
RNA species in the sample, thus interfering with 
the accurate quantification of the target tran-
scriptome [26]. A first problem to consider is the 
need to enrich the sample for the desired target 
in order to achieve appropriate sampling or 
“sequencing depth” for robust quantitative anal-
ysis [27].

Compared to the previous generation of 
hybridization-based methods for transcriptome 
analysis, sequencing based methods bring a novel 
concept – quantification is performed in a digital 
fashion, involving the detection (1) or absence of 
detection (0) of a given transcript. This implies 
that these methods are highly sensitive to the 
depth of sampling, which is reflected in the con-
cept of “sequencing depth”, i.e. the number of 
sequences or “reads” acquired per sample. 
Considering that ribosomal RNA makes for over 
90% of the cellular transcriptome, its removal is 
imperative to achieve proper sequencing depth 
for other transcript families, either coding or non- 
coding [25]. Second, the sequencing-by- synthesis 
approach used by the predominant technologies 
requires the conversion of the target RNA mole-
cules to their cDNA counterparts, i.e., a reverse-
transcription step. Furthermore, since these 
methods can only sequence relatively short seg-
ments of DNA  – usually between 50 and 300 
base pairs (bp) and thus usually called “frag-
ments” or “reads” – sample fragmentation is nec-
essary to ensure an appropriate coverage across 
all of the transcriptome. Several approaches have 
been developed to try to achieve the ideal aim of 
a random fragmentation of the sample, generat-
ing a uniform distribution of molecular sizes, 
each of them linked to different problems and 
biases [25, 28, 29].

The need for fragmentation further leads to 
another set of problems that must be addressed. 
On the one hand, because of fragmentation, the 
likelihood of detecting a given transcript or iso-
form will not only be proportional to its abun-
dance in the sample, but also to its size, as a larger 
molecule will generate a higher number of signa-
ture fragments. On the other hand, the recon-
struction of the actual transcript isoforms present 
in the sample and the mapping of variations in 
splice site usage become very significant data 
analysis challenges. Finally, the actual sequenc-
ing reactions require that the target molecules are 
tagged on both ends through the addition of adap-
tors. Again, different technical solutions, each 
introducing different types of bias, have been 
developed [25]. The limited efficiency of all the 
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steps involved in library preparation requires the 
use of PCR-based amplification steps, which can 
lead to changes in the relative representation of 
the RNA species present in the original sample 
[30, 31]. Depending on the specificities of the 
application, the design of the adaptors can pro-
vide additional value, such as supporting strand- 
specific sequencing, which distinguishes the 
orientation of the original RNA molecule present 
in the sample; paired-end sequencing, which sup-
ports sequencing from both ends of the fragment, 
increasing the sample coverage per assay and 
providing additional information on the structure 
of the transcript; and the ability to identify 
 fragments that have been duplicated during the 
library amplification steps [25].

The requirement for all these steps to produce 
a library that is appropriate for sequencing can 
obviously lead to multiple deviations from the 
composition of the original transcriptome. After 
the sequencing step, these problems will be com-
pounded by the difficulties faced in the data 
analysis. In the simpler cases, the data analysis 
step aims to generate an image of the relative 
abundance of each transcript in the transcrip-
tome, typically represented by an ‘expression 
count table’, where each known gene, transcript 
or exon ID is associated to the number of 
sequenced reads. This process generally relies 
on (1) the mapping of the sequenced reads to a 
known genome (although it is possible to per-
form direct transcriptome assembly); (2) the 
identification of uniquely annotated regions cor-
responding to the reads (thus creating problems 
in the case of transcripts or partial sequence ele-
ments that are encoded in multiple loci); and  
(3) the tentative reconstruction of the transcript 
structure from the assembly and parsimonious 
distribution of reads, in particular those mapping 
on exon-exon junctions [32]. Multiple data anal-
ysis pipelines exist that try to find accurate and 
efficient solutions for these problems, many of 
them focusing on the characterization of differ-
ential expression states between samples  – for 
example, differences in expression at the gene, 
exon or splice-junction level, thus foregoing the 
need to generate an accurate representation of 
the transcriptome [33].

In spite of all the challenges highlighted 
above, RNA-seq studies are effectively generat-
ing an unprecedented detailed view of the mam-
malian transcriptome, with multiple adaptations 
of the library preparation methods that allow 
researchers to move beyond the characterization 
of expression steady states and provide detailed 
insights into gene expression dynamics and the 
underlying regulatory mechanisms and networks 
(Fig. 1.2).

1.2.2  Mapping Interactions, 
Dynamic Processes and Base 
Modifications

Standard transcriptomic approaches, either using 
RNA-seq or the previous microarray-based tech-
nologies, only allow for the steady-state charac-
terization of transcript levels. However, since the 
advent of these methodologies, multiple adapta-
tions to the sample preparation method have been 
implemented to allow researchers to obtain rele-
vant information regarding both the regulation 
and dynamics of RNA processing events. These 
approaches generally involve the use of selective 
transcript enrichment, transcript labeling or tran-
script modification approaches. There are cur-
rently well over 50 different variations of 
RNA-seq based methods, for which we provide a 
few examples covering the different types of 
approach and discuss their application to the 
study of specific RNA processing events.

Selective transcript enrichment methods can 
be used for focusing RNA sequencing libraries 
on a target population or region of interest, gain-
ing bigger sampling depths. In fact, most RNA- 
seq assays for gene expression analysis actually 
rely in the enrichment for mRNA molecules 
based on the use of oligo-dT molecules coupled 
to beads to capture poly-adenylated 
RNA. Alternatively, a similar process can be used 
to perform depletion of ribosomal RNA and thus 
perform a “negative” enrichment for other mole-
cules [25].

More elaborate enrichment methods have 
been used to specifically capture and enrich sam-
ples for the starts and ends of transcripts in order 

1 Networks of mRNA Processing and Alternative Splicing Regulation in Health and Disease
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to generate focused data on these regions. Among 
this family of applications, methods that specifi-
cally target the 3′UTRs have been critically 
important in the global characterization of 3′-end 
processing. The analysis of 3′UTRs typically 
relies on the capture of RNA molecules contain-
ing poly-A tails and identification of the immedi-
ate upstream region. However, due to the frequent 
presence of internal poly-A stretches in mRNA 
molecules, more complex approaches than just 
sequencing after poly-A based reverse transcrip-

tion have been developed. For example, 3′-Seq 
allows for highly quantitative profiling of 3′UTR 
isoform expression by using a nick-translation 
step after reverse transcription to specifically 
capture the terminal 50–70  nt upstream of the 
poly-A tail [34] (Fig. 1.2a).

Capture approaches can also be applied to 
provide increased focus on transcript 5′ ends, 
thereby allowing a precise mapping of transcrip-
tion start sites (TSS). The first high-throughput 
approaches for characterizing transcription  
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Fig. 1.2 RNA-seq 
derived methods for 
global analysis of 
mRNA processing. Four 
methods representative 
of the different types of 
strategy behind 
RNA-seq based 
approaches to 
characterize 
transcriptome diversity, 
dynamics and 
regulation. (a) 3′-Seq 
uses a poly-A based 
capture and controlled 
cleavage approach to 
focus on the 
identification of poly-A 
sites; (b) 5′-GRO-Seq 
uses pulse labeling and 
5′-end capture to look at 
transcription start sites; 
(c) RIP-Seq relies on 
affinity purification of 
RNA-protein complexes 
to map RBP targets and 
binding sites; (d) 
PSI-Seq uses chemically 
based modification of 
pseudouridines to 
support the mapping of 
their positions on 
mRNA molecules. A 
more detailed 
description of the 
methods is presented in 
the main text. RT reverse 
transcription
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initiation at the genome level were derived from 
the CAGE method (Cap-Analysis of Gene 
Expression) [35–37], which uses a chemical- 
based oxidation method to promote the biotinyl-
ation of RNAs at the 5′-cap site, trapping 
associated first-strand cDNAs in an ensuing puri-
fication step [38]. Alternative approaches rely on 
the replacement of the cap structure with oligori-
bonucleotides [39–41]. This method consists of 
removing the 5′ cap with tobacco acid pyrophos-
phatase followed by ligation of oligos to the de- 
capped mRNAs. The prior removal of 
5′-phosphates of non-capped RNAs with alkaline 
phosphatase makes this oligo-capture specific to 
the 5′ cap. Following cDNA synthesis, libraries 
compatible with massive parallel-sequencing 
methods are generated to profile TSS with nucle-
otide level resolution. The combined use of these 
methods on the same sample has been applied to 
the detection and relative quantification of capped 
and uncapped mRNAs in different experimental 
conditions (see below).

By conjugating capture methods with the 
labeling of transcripts that are undergoing active 
transcription, it becomes possible to focus on 
dynamic processes while improving the ability to 
detect unstable transcripts. This approach was 
pioneered by Core and co-workers, who devel-
oped the GRO-Seq (Global Run-On) method, 
using the ribonucleotide analog 5-bromouridine 
5′-triphosphate to label and purify newly synthe-
sized RNA before preparing sequencing libraries 
[42]. This method was then refined to focus on 
the mapping of TSS by coupling it to 5′ end 
oligo-capture: the GRO-Cap [40] or 5′GRO-Seq 
[41, 43] methods (Fig.  1.2b). Global measure-
ments of mRNA stability can be achieved by 
similar techniques, using for example 
4- thiouridine (4sU) to pulse label newly synthe-
sized RNAs, followed by a chase period. Newly 
synthesized and pre-existing mRNA fractions 
can then be separated on the basis of incorporated 
4sU and processed according to an mRNA 
sequencing protocol for comparison with the 
total mRNA fraction in a time-course experiment 
[44]. Profiling of mRNAs engaged in active 
translation can be performed using ribosome pro-
filing or Ribo-Seq [45], an adaptation of the older 

concept of polysome profiling [46] that allows 
for precise mapping of ribosome position. 
Together, these approaches have highlighted the 
importance of translational control by revealing 
significant differences in the dynamics of trans-
lating and steady-state mRNA levels (see below).

Alternative RNA processing is generally 
determined by the recognition of regulatory 
sequence elements by RNA binding proteins 
(RBPs). Methods to identify the interactions 
between these proteins and their RNA targets are 
based on the immunoprecipitation of the protein 
under conditions that preserve its interactions 
with RNA molecules (RNA Immuno- 
Precipitation or RIP), followed by the identifica-
tion of the bound molecules. This was originally 
performed using microarrays  – RIP-Chip [47, 
48]  – and was later adapted to RNA-seq meth-
ods – RIP-Seq [49]. RIP-Seq may be conjugated 
with RNAse digestion to provide positional 
information regarding the RBP binding site 
(Fig. 1.2c). However, this type of mapping is bet-
ter suited for situations where the target RNA and 
protein are stably bound, for example using UV 
Cross-Linking Immunoprecipitation coupled to 
sequencing, as in the CLIP-Seq method [50].

The systematic mapping of RNA-protein 
interactions using genome wide approaches has 
become a central approach for the study of post- 
transcriptional regulatory mechanisms in health 
and disease [51, 52]. The functional annotation of 
mRNA targets and analysis of enriched sequence 
motifs has supported the post-transcriptional 
operon hypothesis [53], which proposed a role 
for RBPs in the establishment of functional gene 
expression networks, as well as the development 
of regulatory network models that describe the 
mechanisms underlying the coordinated regula-
tion of pre-mRNA splicing [54, 55].

The prevalence and relevance of RNA base 
modifications on the post-transcriptional control 
of gene expression has become increasingly clear 
in the past few years [56]. RNA-seq methods 
have been adapted to support the mapping of 
these modifications in different cellular RNAs. 
These methods either rely on the use of antibod-
ies that recognize the modified RNA bases like 
N6-methyladenosine (m6A) [57], or on the 
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chemical treatment of RNA molecules to specifi-
cally target the modified nucleotide. For exam-
ple, Pseudouridine Site Identification sequencing 
(PSI-seq) uses N-Cyclohexyl-N′-(2- 
morpholinoethyl) carbodiimide to selectively 
modify pseudouridine residues, effectively halt-
ing reverse transcription during library prepara-
tion [58]. The positions of pseudouridines can 
then be mapped by sequencing of the truncated 
cDNAs and comparison with the annotated tran-
scriptome (Fig.  1.2d). Using a very similar 
approach, pseudouridylation was detected in 
>200 yeast and human mRNAs involved in the 
response to nutrient deprivation [59]. These 
methods are opening the doors to the world of 
epi-transcriptomics, whose relevance and impact 
in mRNA metabolism have just began to be 
uncovered. RNA modifications are the object of a 
recent review [60] and, together with RNA edit-
ing, will not be explored in-depth in this chapter.

1.2.3  Emerging Views 
of Transcriptome Complexity

The first profiling studies of mammalian tran-
scriptomes using RNA-seq began generating an 
unprecedented characterization of the abundance 
and diversity of RNA species, opening the doors 
to a deeper understanding of the underlying gene 
regulatory networks [7, 15, 61, 62].

Given the historical dependence of transcrip-
tome profiling methods on 3′-end capture, sys-
tematic mapping of TSSs at single nucleotide 
resolution proved to be a challenging task in the 
early days of genomics. The first steps towards 
the genome wide unravelling of mammalian pro-
motor regions were pioneered by the developers 
of the CAGE method [63], and later by the 
FANTOM consortium, who performed a system-
atic characterization of TSSs across the human 
and mouse genomes, generating the first compre-
hensive promoter landscape of a mammalian 
genome [35] and revealing for the first time the 
existence of generalized anti-sense transcription 
[64]. The methodology was then adapted for 

massive parallel sequencing approaches [17], 
providing a detailed view of transcriptional activ-
ity across a very large number of human and 
mouse tissues and cell types [65]. In a compli-
mentary approach, the ENCODE consortium 
focused on generating systematic maps of the 
underlying regulatory events on selected cell 
lines, including chromatin modification and tran-
scription factor binding sites [16]. The ENCODE 
project’s high- depth analysis revealed that, in 
contrasts with the prevailing view of junk-DNA 
littered genomes, approximately 76% of human 
DNA sequences are actually transcribed to RNA, 
further reporting the identification of 8800 and 
9600 genes encoding for small and long noncod-
ing RNA molecules, respectively [16].

The conjugation of such RNA-seq based 
methods for genome wide mapping of TSSs 
using nucleotide level resolution with transcript 
labelling approaches like Gro-Seq, led to 
increased sensitivity for the detection of highly 
unstable molecules [42]. The results where sur-
prising: in addition to revealing that transcription 
extends beyond the pre-mRNA 3′ cleavage site 
and confirming the prevalence of antisense tran-
scription, these studies showed that most human 
promoters have an engaged polymerase upstream, 
moving in the opposite orientation to the anno-
tated gene. Later work confirmed that bidirec-
tional transcription occurs at these locations, with 
the productive sense being defined with the help 
of the pre-mRNA processing machinery. Indeed, 
the U1 snRNP was shown to engage the sense 
transcript in productive splicing versus system-
atic cleavage of the newly synthesized products 
at interspersed polyadenylation signals on the 
antisense direction [66]. Analysis of RNA-seq 
data across mammalian transcriptomes suggests 
that alternative transcription start and termination 
sites may play a greater role in transcript diversi-
fication than alternative splicing [67, 68]. 
However, by looking at steady state data, these 
analyses may fail to capture the dynamic pro-
cesses that generate such variations, assuming 
their transcriptional, rather than post- 
transcriptional nature (see below).
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1.3  Differential 5′-End 
Processing

All RNA polymerase II transcripts, both coding 
and non-coding, are subjected to a modification 
of their 5′-end termed “capping”, which consists 
on the addition of a 7-methylguanosine nucleo-
tide through an unusual 5′-PPP-5′ inverted bond. 
The basic cap structure, or “Cap0” is added co- 
transcriptionally in the nucleus by a complex of 
two proteins that performs three successive enzy-
matic activities: the removal the γ-phosphate 
from the 5′ triphosphate end of the transcript, the 
transfer of a GMP group to the resulting 5′ 
diphosphate, and the addition of a methyl group 
to the N7 amine of the guanine cap (reviewed by 
[69]). The capping enzyme (RNA guanylyltrans-
ferase and 5′ phosphatase; CE or RNGTT), catal-
yses the first two steps, while the third is 
performed by the RNA guanine-7 methyltrans-
ferase (RNMT), with the help of the activating 
subunit RNMT Activating Miniprotein (RAM). 
The subsequent 2′O methylation of the first 
nucleotide or of the first two nucleotides of the 
transcript leads to the formation of the “Cap1” or 
“Cap2” structure, performed by the Cap 
Methyltransferase enzymes, CMTR1 and 2, 
respectively. While the Cap0 structure has been 
known for a long time to be central to the protec-
tion of mRNA from exonucleases and in the rec-
ognition of mRNA molecules for export and 
translation [70], the 2′O ribose methylations play 
a critical role in the discrimination between self 
and viral RNA molecules by the innate immune 
system [71, 72]. Given the central role of the 
5′-cap structure in mRNA metabolism, this RNA 
processing event was traditionally considered as 
a core and irreversible step in the mRNA biogen-
esis pathway. Recent results, however, have 
started to suggest that there is a hidden layer of 
differential regulation linked to 5′-capping that 
can not only have a profound impact on tran-
scriptome diversity but also contribute to the defi-
nition of networks of co-regulated RNAs with 
significant impact in health and disease.

1.3.1  Differential Cap Modification

RNA capping is a powerful processing event with 
profound impact on the life of mRNA molecules, 
namely regarding their recruitment to the ribo-
some under standard translation conditions. 
Interestingly, the formation of the Cap0 structure 
has been shown to be regulated by the Myc and 
E2F1 transcription factors, being a critical 
requirement for cell transformation [70]. Early 
studies characterizing c-myc transcriptional con-
trol led to the surprising observation that its 
transactivation domain was able to promote cel-
lular proliferation through a transcription inde-
pendent increase in CDK7/9 levels [73]. This was 
shown to occur through increased cap methyla-
tion, which in turn led to enhanced recruitment to 
the ribosome and ensuing increase in translation 
efficiency. This behaviour was shared by a subset 
of other Myc transcriptional targets, thus demon-
strating for the first time the differential impact of 
regulated 5′ cap methylation events. This obser-
vation was in agreement with previous results 
showing a Myc-dependent enhancement of 
VEGF mRNA translation [74]. Later studies have 
consolidated these observations, showing a simi-
lar pattern for the E2F1 transcription factor [75]. 
Thus, these transcription factors regulate CTD- 
phosphorylation leading to enhanced recruitment 
of active RNGTT enzyme and, consequently 
mRNA capping of specific mRNA targets critical 
for cell transformation [70, 76].

In addition to RNGTT, the RNMT enzyme 
function is known to be regulated by the CDK1B 
cyclin, allowing for the coordination of cap meth-
ylation with G1 phase transcription [77]. This 
regulatory event does not have a significant 
impact on steady state mRNA levels but controls 
the recruitment of specific cellular mRNAs to the 
translating ribosome, including molecules encod-
ing proteins involved in cell cycle control and 
apoptosis, regulating cell proliferation. The RNMT 
Activating Miniprotein RAM has further been 
shown to be the target of ERK-dependent phos-
phorylation, leading to enhanced ubiquitination 
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and degradation. This regulatory event has a 
downstream effect on specific networks of tran-
scripts involved in the regulation of pluripotency 
and neuronal differentiation [78]. Thus, high lev-
els of active RAM were shown to be required for 
the expression of pluripotency genes in embry-
onic stem cells, including Sox2, Oct4 and Klf4, 
whereas RAM inhibition promotes the up- 
regulation of neuronal-specific genes required for 
neural differentiation. Interestingly, although 
RAM was shown to have a global positive impact 
on mRNA translation levels, the gene specific 
effects were only observed at the level of tran-
script abundance. This could occur either as a 
consequence of reduced transcript stability or 
enhanced RNA Pol II transcription. Thus, the 
core mRNA capping machinery is subject to dif-
ferential regulation of its activity, with an impact 
on specific transcript networks that are linked to 
proliferation, differentiation and transformation 
events [70].

In addition to Cap0 formation, the events lead-
ing to Cap1 and Cap2 structures are also regu-
lated, resulting in the differential usage of these 
modifications. Although 2′O methylation of the 
first RNA nucleotide that defines the Cap 1 struc-
ture is prevalent among mRNAs, being critical 
for the immune recognition of self-RNAs as well 
as for translation, recent work suggests that the 
DNMT1 enzyme is regulated by DHX15 [79]. 
The DNMT1-DHX15 interaction controls the 
ribosomal recruitment and translation of a subset 
of cellular mRNAs critical for proliferation, thus 
providing the first example of a Cap 1-dependent 
gene regulatory network. In contrast to the gener-
alized presence of the 2′O methylation on the 
first nucleotide, the modification of the second 
nucleotide leading to the Cap2 structure was only 
detected in about half of the cellular mRNAs in 
human cells [80, 81]. These studies, dating back 
to the 1970’s, suggest that Cap2 formation is a 
primarily cytoplasmic event, leading to enhanced 
recruitment of the modified mRNAs to active 
ribosomes. The actual mRNA populations 
involved in this process have yet to be identified, 
but these observations clearly suggest another 
potential regulatory layer for cap-dependent dif-
ferential expression [82].

In addition to these nucleotide modifications, 
first nucleotide adenosine 6-methylation is pres-
ent in 20–30% of the mRNAs containing the Cap 
1 structure (m6Am) [83]. The functional conse-
quences of this modification are unclear but given 
that different cap binding proteins and RBPs dis-
play different affinities for specific nucleotides 
and structures, it is possible that it has a differen-
tial impact on mRNA translation efficiency and 
may support the establishment of distinct regula-
tory networks [70]. In agreement with this 
hypothesis, the abundance of first nucleotide 
m6Am on specific mRNAs was shown to vary 
across different mouse tissues [84]. Furthermore, 
given that this modification is nucleotide depen-
dent, these observations imply that the choice of 
the first nucleotide of the transcript, either defined 
by the TSS or by post-transcriptional processing 
(see below) can have a significant impact on 
mRNA expression. In fact, a recent study has 
shown that cap-proximal nucleotides mediate a 
translational response program to cellular stress 
via alternative promotor usage and differential 
binding to the eukaryotic translation initiation 
factor eIF4E [85].

The development of RNA mass-spectrometry 
methods is supporting the identification of a pre-
viously unsuspected diversity of RNA 5′ cap 
structures and modifications [86, 87]. Among 
these is the recent identification of a 5′-end 
Nicotinamide Adenine dinucleotide cap in human 
cells, which was shown to act to destabilize 
mRNA molecules [88–90]. These discoveries are 
in line with the recent explosion of results regard-
ing the presence of RNA nucleotide modifica-
tions in the body of mRNA and ncRNA molecules 
and their impact on gene expression processes, 
which have been recently reviewed in [56, 60].

1.3.2  Cytoplasmic Re-capping

Removal of the mRNA cap structure is one of the 
critical events leading to XRN1-dependent 
mRNA degradation [91]. However, several stud-
ies aiming at the identification of mRNA mole-
cules targeted by endonucleolytic cleavage 
started hinting at the fact that stable un-capped 
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mRNA molecules are present in eukaryotic cells 
[92–94]. These studies relied on the capture of 
polyadenylated mRNAs with mono- 
phosphorylated 5′ ends coupled to either micro-
array analysis or RNA-Seq. As a consequence, 
highly regulated populations of uncapped mRNA 
molecules where identified, both in plants and 
mammals [92, 94]. In the former case, the mRNA 
molecules were found to display significant func-
tional enrichment for regulatory proteins as well 
as characteristic sequence elements in their 
5′-ends. These observations led to the suggestion 
that regulated post-transcriptional mRNA cleav-
age might present as a novel mechanism to diver-
sify the eukaryotic transcriptome and, in 
particular, as an energy-efficient alternative to 
transcription initiation regarding the ability to 
generate varying 5′ mRNA ends [94]. However, 
such model requires the demonstration that un- 
capped mRNAs can become translationally 
active rather than just representing intermediary 
degradation products. The identification of a 
cytoplasmic mRNA capping complex [95], later 
shown to be composed by the RNGTT capping 
enzyme, the NCK adapter protein 1 NCK1 and 
an as yet unidentified 5′-end kinase was a critical 
observation that supported the concept of mRNA 
re-capping as a mechanism for regulating gene 
expression [96, 97]. Ensuing genome wide stud-
ies by the same lab identified specific mRNA 
populations that are the target of cytoplasmic 
capping and showed that this was critical for their 
association with the translation machinery [98]. 
In this study, uncapped cytoplasmic mRNAs 
were identified through susceptibility to in vitro 
degradation by the 5′-3′ exonuclease XRN1 cou-
pled to microarray profiling of treated/untreated 
samples. By comparing the transcript popula-
tions between cells expressing a cytoplasmic 
dominant negative mutant of the capping enzyme 
and control cells, the authors not only identified a 
relatively large number of uncapped transcripts 
that are present at steady state levels in mamma-
lian cells but, more importantly, a population of 
uncapped molecules that only accumulates upon 
inhibition of the cytoplasmic capping complex 
[98]. The fact that these mRNA targets only 
appear without a cap upon inactivation of the 

cytoplasmic capping complex implies that they 
are regulated by de-capping and re-capping 
events. These authors further showed that cyto-
plasmic capping was required to maintain the 
transcript’s association with actively translating 
ribosomes. Interestingly, functional enrichment 
analysis of these “recapping targets” revealed a 
significant association to the mitotic cell cycle 
and RNA localization processes, including a sig-
nificant number of RNA metabolic proteins that 
are linked to motor neuron diseases (FUS and 
GLE1) and Fragile X syndrome (FMR1), several 
of the CNOT proteins, HNRNPD (Auf1), and 
both exosome subunits (EXOSC2, EXOSC4, and 
EXOSC9) and exosome-associated 30 exonucle-
ases (EXOSC10 and DIS3). Furthermore, a rela-
tively large population of mRNAs, with enriched 
GO term annotations for “nucleotide binding” 
and “protein localization”, whose stability 
depends on the presence of an active cytoplasmic 
capping complex was also identified in this study. 
These correspond to the roughly 2500 genes 
whose uncapped transcripts are present at high 
levels in control cells and disappear when cyto-
plasmic capping is inhibited. This observation 
suggests that there is a population of “natively 
uncapped” cytoplasmic transcripts, as previously 
reported by [94, 99], which undergoes cycles of 
de-capping and re-capping that are critical for the 
stability of the transcripts, establishing a cyclic 
process that the author’s termed “cap homeosta-
sis” [98]. The Schoenberg lab went on to demon-
strate that this process occurs independently of 
polyA tail shortening or lengthening, thus firmly 
establishing a novel regulatory mechanism 
whereby the translation of a subset of cellular 
mRNAs is regulated by active de-capping and re- 
capping cycles [100]. This process may be conju-
gated with differential RNA stability and, 
depending on the precise site of cleavage that 
leads to the generation of an uncapped mRNA, 
can have profound impact on transcriptome and 
proteome diversity. Possibilities include the gen-
eration of transcripts encoding the same protein 
but with shortened 5′UTRs influencing their 
translation efficiency or subcellular localization, 
N-terminal truncated proteins, or novel non- 
coding RNAs. The mechanisms that define these 
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alternative 5′ ends of the mRNAs still remain to 
be characterized in detail but include Drosha or 
Ago2 dependent cleavage or other forms of endo-
nucleolytic cleavage and pausing sites for XRN1 
5′-to-3′ degradation [97]. Since identified re- 
capping mRNAs display specific sequence char-
acteristics, like increased usage of alternative 
3′-end processing (see below), enrichment of 
AU-rich elements in their 3′UTR and increased 
poly-A tail modifications [98, 100], it is possible 
that cap homeostasis is differentially regulated 
across tissues and in response to specific stimuli. 
In fact, results from a recent study link cytoplas-
mic re-capping to Hedgehog signaling, a path-
way that is dysregulated in a wide range of human 
diseases, including cancer and neurodevelop-
mental disorders [101]. Future work will be cru-
cial to determine the extent of interaction between 
regulated mRNA 5′ capping and altered gene 
regulatory networks in development and disease.

1.4  Differential Exon Usage

The unexpected discovery that the coding infor-
mation in eukaryotic genes is discontinuous, con-
taining intervening non-coding segments in the 
primary RNA transcript [102], has not only led to 
the discovery of mRNA splicing, but also pro-
vided the foundation for our current understand-
ing that, through a regulated process known as 
alternative splicing, one gene can give rise to 
multiple, functionally distinct transcripts. The 
potential to generate final mRNA products with 
different exon combinations can be observed in 
over 95% of human genes [15, 62, 103].

Constitutive and alternative splicing of pre- 
mRNA follow the same basic rules. Both rely on 
the spliceosome, a multi-protein ribonucleopro-
tein (RNP) complex that assembles in an ordered 
and stepwise fashion to complete the splicing 
reaction [104, 105]. Continuous efforts to purify 
and characterize the spliceosome protein com-
position have revealed that it contains five core 
small nuclear RNA containing RNPs and sev-
eral additional regulatory protein factors [106]. 
The stepwise assembly of this complex confers 

a dynamic cyclic nature to the splicing process. 
One important aspect to ensure the specificity of 
the splicing reaction is the initial step of exon 
definition, in which consensus sequences at the 
exon-intron borders are recognized, as recently 
reviewed [107]. In addition, the efficiency with 
which the snRNPs are recruited to a given exon 
is also defined. This is achieved by virtue of 
short cis-regulatory sequence elements in the 
pre- mRNA, designated as splicing enhancers or 
silencers, to which regulatory splicing factors 
bind, either promoting or repressing exon rec-
ognition by snRNPs. Besides aiding in the cor-
rect choice of splice sites during constitutive 
splicing, the interplay between active transcrip-
tion and the available sequence-specific splicing 
factors at a given moment in the cell will deter-
mine which exon-exon junctions are created 
during the splicing process and, thus, which 
mature mRNA is made by alternative splicing 
[108–110]. The actual combination of enhanc-
ing and silencing splicing factors, in addition to 
splice sites strength, local RNA secondary 
structures, chromatin modifications, splicing 
enhancers or silencers availability, exon/intron 
architecture and the speed of RNA polymerase 
II transcription, is what controls alternative 
splicing [111], as described in more detail 
below.

Several different types of alternative exon 
usage can occur. The most frequently observed 
type of event in human transcripts is the inclusion 
or skipping of individual (cassette) exons, 
accounting for about 45% of all alternative splic-
ing events. A variation of this type of event can 
occur at the 5′ or 3′ end of the transcript when 
either alternative promoters determine distinct 
transcription initiation sites or when alternative 
terminal exons determine the use of different 
polyadenylation sites. Another event type found 
in 5–20% of alternative transcripts occurs in 
exons carrying more than one splice site so that 
their length, and thus the coding content, vary 
through the use of different 3′ or 5′ splice sites. 
Two other low-frequency events are the inclusion 
of one of two mutually exclusive exons or the 
retention of intronic sequence in the mRNA.
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1.4.1  Functional Consequences 
of Alternative Splicing

A single primary gene transcript can be differen-
tially spliced and yield distinct splice variants. 
One impressive example is the human Titin gene, 
encoding a structural sarcomere component. The 
gene is composed of 363 coding exons and at 
least 498 splicing variants were detected in 
human muscle [112]. Although such a complex-
ity of transcripts derived from a single gene is not 
the rule, over 95% of human genes can generate 
at least two transcript variants through alternative 
splicing [15, 62, 103].

Splice variants can have two major outcomes 
on gene expression regulation. First, the expres-
sion levels of the affected gene can be rapidly 
reduced. So-called poison exons can be included 
or skipped, leading to a frame-shift and a 
 premature stop codon in the resulting mRNA. This 
will be recognized by the cellular quality control 
machinery during the initial round of translation 
and lead to mRNA degradation through the 
nonsense- mediated RNA decay (NMD) pathway 
[113] (as reviewed in Chap. 3). In such cases, 
alternative splicing is an effective means to rap-
idly downregulate transcript levels expressed 
from a given gene without the requirement to 
alter the transcription rate. Prominent examples 
for this regulatory mechanism are the transcripts 
for some splicing factors of the SR (serine and 
arginine-rich) or hnRNPs (heterogeneous nuclear 
ribonucleoproteins) protein families [114, 115]. 
Moreover, a variety of alternative splicing events 
became detectable when NMD was impaired by 
depletion of UPF proteins in HeLa cells [116]. 
Alternative splicing coupled to the use of alterna-
tive polyadenylation sites (see below) can also 
result in the down-regulation of gene expression 
through the generation of transcripts with alter-
native 3′UTRs that differ in the presence of miR 
binding sites and, consequently, in the degree of 
translation inhibition [117, 118]. In addition, the 
presence of binding sites for RNA-binding pro-
teins in specific exons can determine the effi-
ciency with which a transcript variant is exported 
from the nucleus to the cytoplasm, is translated at 
the ribosome, or the efficiency of its turnover, 

thus affecting the resulting gene expression lev-
els [119]. Second, alternative splicing can gener-
ate mRNA transcripts that encode protein 
isoforms with altered functional properties. For 
example, an exon can encode a functionally rele-
vant protein domain or a subcellular localization 
signal. In this case, its inclusion or skipping will 
generate distinct in-frame transcripts encoding 
two related but functionally distinct proteins. 
Recent genome-wide data suggest that about 
75% of alternative variants detected in human 
cells, especially the cassette-exon type, were also 
captured at ribosomes, suggesting their transla-
tion into protein-coding isoforms [120]. Many 
examples of functionally distinct variant proteins 
were described in relation to their development 
of cancer [121, 122]. For example, (i) the skip-
ping of exon 3b to generate a hyperactive 
survival- promoting variant of the small GTPase 
RAC1 [123], (ii) the retention of exon 2 yields 
the anti-apoptotic variant BCL-X(L) [124], (iii) 
the skipping of exon 11 generates a receptor tyro-
sine kinase RON that stimulates invasion and cell 
motility [125], or (iv) the replacement of exon 9 
with exon 10  in pyruvate kinase variant PKM2 
promotes metabolic reprogramming of tumour 
cell glycolysis [126]. Through these possibilities, 
genes can encode different functional protein iso-
forms and this greatly expands the protein- coding 
capacity of the genome. Since nearly all human 
genes are alternatively spliced, cell-type-specific 
protein isoforms can modify cell fate or viability 
during normal and pathologic cell physiology.

1.4.2  Recent Findings 
on Recursive- and Back- 
Splicing

Two novel regulatory layers in transcripts pro-
cessing have been more recently discovered. 
First, the consensus sequence motifs that define 
exon-intron borders were also found deep within 
introns. Here, they serve to remove long introns 
in a stepwise manner during the splicing process 
before, in a final step, the two flanking exons are 
joined together. This process is called recursive 
splicing and was identified as a conserved and 
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widespread mechanism in human [127, 128] 
and Drosophila tissues [129]. Although there is 
still much to be discovered about the molecular 
basis of recursive splicing, it can be expected to 
represent another regulatory step during alterna-
tive splicing, besides being a potential mutation 
target leading to human genetic diseases [130]. 
Second, a novel type of long non-coding RNAs 
(lncRNAs) can be generated by alternative 
splicing. Downstream splice donor sites were 
found to become reversely joined with an 
upstream splice acceptor site by the spliceo-
some (back-splicing). This results in a cova-
lently closed circular RNA (circRNAs), which 
may contain intronic sequence or display alter-
native splicing patterns [128, 131]. CircRNAs 
are highly nuclease resistant, ubiquitously 
expressed in eukaryotic cells and display cell-
type, tissue-type and developmental- stage spe-
cific expression patterns. It is yet unclear how 
the splicing machinery discriminates between 
either canonical, alternative or back- splicing 
[132–134] or even trans-splicing between tran-
scripts from different genes [135]. Notably, cir-
cRNAs were found to have regulatory functions 
in gene expression, including the regulation of 
transcription, alternative splicing or translation. 
In particular, they can operate as competing 
molecular sponges that absorb and sequester 
miRs or form protein complexes with RNA-
binding proteins or splicing factors [133, 136]. 
Like miRs, circRNAs were reported to exhibit 
altered expression under pathological condi-
tions and may have great potential as novel 
diagnostic biomarkers as well as therapeutic 
agents for various diseases [137, 138].

1.4.3  Dynamic Regulation 
of Alternative Splicing Profiles

The identification of which genes are alterna-
tively spliced at a given moment in a cell or tis-
sue may convey the impression of a static and 
persistent pattern of the expressed transcriptome. 
However, the past few years have provided sub-
stantial evidence for a much more dynamic tran-
scriptome plasticity, in particular due to the 

connection established between signal transduc-
tion pathways and corresponding responses at 
the splicing level [139–141]. From the mecha-
nistic point of view, this dynamic nature relies 
on the combinatorial control of the splicing pro-
cess. As mentioned above, splice site choice 
depends not only on consensus RNA sequence 
motifs at the exon-intron borders but is also 
enhanced or silenced by means of sequence- 
specific splicing factors that strengthen or 
weaken the recruitment of the spliceosome, 
respectively. The corresponding splice regula-
tory enhancer or silencer sequences can be 
located within exons or introns and will influ-
ence a given alternative splicing event in two 
possible manners: first, a regulatory RNA 
sequence can contain two overlapping binding 
motifs for different competing splicing factors, 
sometimes with antagonistic effects [142]. In 
this case, the absolute or locally available con-
centration of splicing factors in the cell will 
determine whether an enhancer or silencer effect 
prevails. For example, the sequence motif recog-
nized by the enhancer SRSF2 overlaps that of 
the silencer hnRNP A1 in exon 2 of the HIV tat 
gene [143]. Second, a variety of regulatory RNA 
sequence elements are present to regulate a given 
alternative splicing event and the effective splic-
ing outcome is determined by the net result of 
enhancing versus silencing factors bound in a 
given cell at any given moment. This was ele-
gantly documented in experimentally designed 
exons containing different enhancer and silencer 
combinations [144]. Thus, the effective combi-
nation of enhancing and silencing splicing fac-
tors is what controls the cellular decision on 
alternative splicing [111]. This mechanism also 
provides an explanation for how simple single-
nucleotide alterations can lead to disease- causing 
loss-of-function splicing mutations in patients 
[145, 146]. To completely understand how cells 
regulate alternative splicing, we need to deter-
mine both how individual SFs recognize and 
regulate a given splice event and how the combi-
nation of multiple SFs becomes integrated.

How can cells modulate the balance between 
enhancing and silencing splicing factors in order 
to modulate alternative splicing decisions?
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First and on a longer term scale, alternative splic-
ing profiles of a tissue or cell differentiation 
state can be stabilized by regulating the rela-
tive expression levels of antagonistic splicing 
factors. This implies transcriptional regulation 
of the respective genes but also includes the 
above described autoregulation by alternative 
splicing of SR protein or hnRNP family mem-
bers [114, 115]. The same may apply to dis-
eased tissues, and indeed altered SF levels 
have been widely described, for example, dur-
ing tumorigenesis [121, 122, 147, 148]. An 
impressive observation was that overexpres-
sion of the SRSF1 gene exerts a clear onco-
genic effect by disturbing the balance between 
cooperating or antagonizing splicing factors 
in genome-wide splicing decisions [149].

Second, epigenetic changes induced, for exam-
ple, by environmental cues, were shown to 
influence splicing events. They operate 
through changes in DNA methylation and 
post-translational histone modifications to 
modulate the binding affinity among histones 
and between histones and DNA.  This alters 
chromatin density and nucleosome occupancy, 
allowing transition between a more open or 
more condensed chromatin structure, which 
then affects the elongation rate of transcrip-
tion by RNA polymerase II. A decreased elon-
gation rate allows more time for the 
co-transcriptional binding of lower-affinity 
splicing regulators and results in alternative 
splicing [150]. In addition, certain histone 
modifications such as H3K36me3 can directly 
participate in the recruitment of splicing fac-
tors through intermediate chromatin-binding 
proteins [150, 151].

Third and of more dynamic nature, alternative 
splicing can be regulated by post-translational 
modification of SFs, especially their phos-
phorylation. These modifications generally 
represent a response to a cell signalling event. 
Growth factors, inflammatory cytokines or 
cellular stress conditions activate diverse sig-
nal transduction pathways including the RAS/
ERK, PI3K or Wnt pathways and lead to 
changes in the phosphorylation state of a vari-
ety of proteins, including SFs [140, 141, 152]. 

For example, growth factor stimulation of the 
mitogen-activated protein kinase (MAPK) 
ERK phosphorylates the SF SAM68 and 
enhance its RNA-binding activity to the 
3′UTR of the SRSF1 transcript [153]. This 
promotes intron retention and assures genera-
tion of a full-length SRSF1 transcript so that 
ERK activation results in increased levels of 
SRSF1 protein. Another outcome of SF phos-
phorylation can be changes in nuclear local-
ization. Stress signals, for example, were 
shown to activate the p38-MAPK pathway 
and induce hnRNP A1 phosphorylation in the 
nucleus followed by its export into the cyto-
plasm [154, 155]. Such a decrease in nuclear 
SF abundance is sufficient to change alterna-
tive splicing patterns.

Drug treatment can also trigger a dynamic 
splicing response via signal transduction path-
ways. When colon cancer cells were treated with 
the non-steroidal anti-inflammatory drug ibupro-
fen, the tumour-related alternative splicing of 
RAC1b was rapidly repressed by a mechanism 
involving reduced phosphorylation of SRSF1 by 
its protein kinase SRPK1 [156].

1.5  Functional Transcript 
Networks via Alternative 
mRNA Processing

The ability to determine genome-wide changes in 
the transcriptome has led to the hypothesis that 
specific subsets of alternative splicing variants 
are co-regulated and that their functions in the 
cell contribute to the same biological processes 
or pathways. This has been designated as splicing 
networks. Indeed, alternative exons from such 
networks have been shown to contribute to criti-
cal biological functions [157, 158].

A common molecular mechanism underlying 
splicing networks may reside in the observation 
that alternative exons frequently encode disor-
dered protein regions that are enriched in post-
translational modification sites or contain 
conserved protein binding motifs. This way, 
tissue- specific splicing may allow tissue-specific 
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protein-protein interaction networks that are 
important for maintaining tissue identity. 
Accordingly, genes containing tissue-specific 
exons were found to occupy central positions in 
protein interaction networks or select distinct 
interaction partners [159, 160]. On one hand, 
splicing networks can define tissue-specific prop-
erties. In the brain, for example, tissue-specific 
expression of some RNA-binding proteins can 
regulate a wide spectrum of neuron-specific 
alternative splicing events [161, 162]. When ana-
lyzed in different tissues, the majority of alterna-
tive splicing or polyadenylation events presented 
with tissue-specific expression levels of the vari-
ous isoforms, involved in defining tissue identity 
[62, 163, 164]. Other tissue-specific or develop-
mental alternative splicing profiles were 
described in heart or skeletal muscle, and also in 
spermatogenesis, adipogenesis or stem cell pluri-
potency [164–166]. Tissue-specific splicing 
might not only contribute to the  functional versa-
tility of proteins in different tissues of multicel-
lular organisms but also promote novel 
phenotypes or regulatory complexity during 
organismal evolution. On the other hand, the 
pathways targeted by splicing networks charac-
terize disease states, including cancer develop-
ment. Altered splicing networks were found in 
some tumour types to result from mutations in 
genes encoding splicing factors or core spliceo-
somal subunits [167, 168]. More frequently, 
however, tumours show a disrupted balance of 
the expression of antagonistic RNA-binding pro-
teins and this affects a concerted set of transcripts 
acting in specific cellular responses. For exam-
ple, overexpression of the SRSF1 gene was 
reported in tumours of the colon, breast and lung 
[149] and led to specific changes in alternative 
splicing.  Also, the identification of epithelial 
splicing regulatory proteins 1 and 2 (ESRP1 and 
ESRP2) revealed a central role as regulators of a 
transcript network activated when cells undergo 
the epithelial–mesenchymal transition [169, 
170]. Similarly, the transcription factor Myc is 
frequently overexpressed in tumours and was 
found to promote expression of the genes encod-
ing the alternative splicing factors PTBP1 and 
HNRNPF.  As a consequence, several splicing 

isoforms with a known role in colon tumorigen-
esis were upregulated [171]. These cancer-spe-
cific findings hold promise for the identification 
of biomarkers for tumour-stage, disease progres-
sion or therapy- response, but may also identify 
crucial targets for innovative RNA-based thera-
pies able to correct splicing alterations. Similar 
principles apply to other diseases [172].

Altogether, genome-wide splicing networks 
have now been recognized as an important layer 
of post-transcriptional control of gene expres-
sion, besides the layers of transcriptional and epi-
genetic regulation.

1.6  Differential 3′-End 
Processing

A significant number of post-transcriptional reg-
ulatory events involve the 3′UTR region of 
mRNA molecules [173]. Although 3′UTRs are 
generally less conserved than protein coding 
regions, their degree of conservation supersedes 
that of other non-coding regions, such as promot-
ers, introns and 5′UTRs, being notably conserved 
among vertebrates [174, 175]. Unlike DNA- 
based regulatory elements, which operate through 
their sequence, RNA-based regulatory motifs can 
exert their regulatory activity either through pri-
mary sequence motifs, secondary structure, or 
through a combination of both. These sequence 
and structural elements in the 3′UTRs have been 
shown to influence mRNA stability, transport, 
localization and translation efficiency primarily 
through interactions with regulatory RNAs and 
RBPs [173].

The most widely recognized group of regula-
tory RNAs to function in this context is a class of 
noncoding RNAs termed microRNAs (miRs). As 
the name suggests, miRs are small RNA mole-
cules that target short sequence motifs (6–8 
nucleotides) with perfect base-pairing to the so- 
called miR ‘seed’ region [176]. miR-3′UTR 
interactions typically lead to an inhibition of pro-
tein production, with miRs functioning predomi-
nantly by inducing mRNA decay, concomitant 
with translational inhibition [176–178]. 
Alongside with transcription and splicing,  
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miR- dependent regulation has been clearly 
shown to contribute to the establishment of regu-
latory network interactions that define critical 
developmental and cell differentiation programs, 
often tightly intertwined with transcription factor 
regulation. The structure and functional signifi-
cance of these networks has been widely reviewed 
in the literature and will not be discussed in detail 
in the present chapter [179–181].

Interactions between 3′UTRs and RBPs are 
mediated by regulatory motifs whose sequence 
and structural features vary considerably. RBP- 
3′UTR interactions can bring about either a stim-
ulation or an inhibition of protein production, 
with different RBPs exerting different effects 
over mRNA stability and translation efficiency, 
in a context-dependent manner [173, 182]. 
Furthermore, RBP-3′UTR interactions can facili-
tate mRNA transport and thus regulate transcript 
localization to the correct subcellular compart-
ment [183]. More recently, 3′UTRs have been 
implicated in protein localization through the for-
mation of scaffolds, mediating the establishment 
of protein-protein interactions [173, 184].

1.6.1  Alternative Polyadenylation

An additional level of complexity associated with 
post-transcriptional regulation ties in with the 
fact that a considerable number of genes give rise 
to mRNAs with alternative 3′UTRs through a 
process termed alternative polyadenylation 
(ApA). mRNA polyadenylation occurs co- 
transcriptionally and is triggered by a sequence 
motif termed the polyadenylation signal (PAS), 
regulated by upstream and downstream sequence 
elements [185]. The recognition of this signal by 
the polyadenylation machinery leads to the endo-
nucleolytic cleavage of the precursor mRNA at 
the polyadenylation site, located 10–30 nucleo-
tides downstream of the PAS, and subsequent 
addition of the poly-A tail [185]. Alternative 
polyadenylation occurs when more than one PAS 
is present. In most cases, these alternative PAS 
are located in tandem in the 3′UTR region, with 
ApA leading to the production of alternative 
transcripts that differ exclusively in the length of 

their 3′UTRs. These 3′UTRs are referred to as 
alternative 3′UTRs or ‘tandem 3′UTRs’ [185, 
186]. Some transcript isoforms display alterna-
tive 3′-end formation due to the presence of PAS 
upstream of the last terminal exon, often in an 
alternatively spliced intron. When this intron is 
retained, the transcript will be cleaved and termi-
nated at the first PAS; if an alternative splicing 
event takes place and the intron is removed, the 
transcript will be processed at a downstream 
PAS.  These alternative UTRs resulting from 
‘upstream-exon ApA’ are usually referred to as 
‘alternative terminal exons’ [185, 186]. The 
selection of alternative polyadenylation signals 
determines the sequence content of the 3′UTR 
and thus the landscape of regulatory motifs in the 
mRNA that are available to interact with miRs 
and RBPs. Since longer 3′UTRs tend to have 
additional regulatory motifs, their regulatory 
potential is greater than that of shorter 3′UTRs. 
Thus, ApA can have a substantial functional 
impact on gene expression.

With the advent of transcriptomics and the 
subsequent development of RNA-Seq 3′-end 
focused methods, the high conservation and 
widespread prevalence of ApA has become 
apparent [186, 187]. Current estimates suggest 
that approximately half of the protein coding 
genes in the human, mouse, zebrafish, fly and 
worm present alternative 3′UTRs through 
ApA. Moreover, these studies have revealed that 
alternative PAS usage is regulated in both a 
developmental and tissue-specific manner [187]. 
The characterization of ApA during Drosophila 
[188], zebrafish [189] and mouse [190] develop-
ment suggested the existence of a regulatory pro-
gram that promotes a switch from proximal do 
distal polyadenylation sites, with longer 3′UTRs 
correlating with more differentiated states. 
Additionally, specific tissues appeared to follow 
a global pattern favoring mRNAs with shorter or 
longer 3′UTR isoforms [188–190]. This was par-
ticularly significant in the brain, which has longer 
3′UTRs than any other adult tissue [34, 188]. 
Conversely, analysis of ApA events in cancer and 
proliferating cells revealed an apparent shorten-
ing of 3′UTR lengths [117, 191, 192]. These 
observations led to the proposal that global 
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programs for distal to proximal ApA selection 
would be in place to promote proliferative pheno-
types, acting to liberate mRNA molecules from 
the regulatory control of miRs through the loss of 
miR targeting motifs that results from 3′UTR 
shortening. In contrast, transcripts expressed in 
differentiated cells would be subjected to a tighter 
control. This model was further substantiated by 
observations connecting shorter 3′UTR lengths 
to higher protein outputs, with striking examples 
regarding the expression of oncogenes, which on 
average show an increase of tenfold in protein 
levels estimated to result from the use of proxi-
mal PAS [117]. However, a more careful analysis 
of the prevalence and consequences of ApA 
based on the development of a highly quantitative 
3′UTR RNA-seq method argues strongly against 
this [34].

The results obtained from the profiling of 14 
human tissues and cell lines confirm the 
 prevalence of ApA in human genes, with 7020 
out of 13,718 genes (51%) classified as multi-
UTR genes. 3′UTR isoforms were found to be 
present across all tissues. However, within a spe-
cific tissue or cell type, the relative proportion of 
these isoforms was found to change dramatically 
for some genes, which were termed “poly-adeno- 
modulated” (pAM) multi-UTR genes [34]. These 
changes occur both towards longer and shorter 
3′UTRs, with the exception of the brain, where 
no tissue-specific usage of proximal PAS was 
observed. Most strikingly, this study revealed 
that tissue specific genes tend to have single 
3′UTRs and be transcriptionally regulated, 
whereas pAM genes were found to encode ubiq-
uitous regulatory proteins with tissue-specific 
functional signatures [34]. These observations 
support the current vision that ApA usage is regu-
lated for specific subsets of genes at a tissue spe-
cific level, correlating with target mRNA escape 
from the regulation of ubiquitously expressed 
miRs. Of note, available evidence does not show 
a significant connection between UTR length, 
mRNA stability and protein expression levels 
[193, 194]. This is in agreement with the fact 
that, in spite of the well-established relevance of 
miR-3′UTR interactions, systematic surveys of 
3′UTR sequence elements identify both positive 

and negative regulatory motifs regulating mRNA 
stability and protein translation [195, 196]. 
Furthermore, it is possible that the function of the 
prevalent longer alternative 3′UTRs found in 
some tissues, in particular in brain, is primarily 
related to RNA localization and localized transla-
tion. Taken together, these studies point to a cen-
tral role for 3′-end processing in the establishment 
of coordinated gene expression programs at the 
tissue-specific level, involving a combination of 
distinct events depending on target and context, 
dismissing the concept of a global regulatory pro-
gram controlling ApA [187].

1.6.2  Post-Transcriptional 
Processing at the 3′-End

Recently, the occurrence of post-transcriptional 
cleavage at proximal 3′UTRs coupled to polyad-
enylation was described [197]. This event leads 
to the formation of a functional mRNA with a 
shortened 3′UTR, and an autonomous, uncapped, 
3′UTR RNA fragment in the cytoplasm. To deter-
mine the scale of this type of events, the authors 
performed a parallel sequencing study using 
5′end and 3′end enrichment methods coupled to 
RNA-sequencing and compared the relative 
abundance of the coding and 3′UTR regions of 
the same gene. The results obtained suggest that 
thousands of autonomous stable, uncapped 
“RNA tails” generated by post-transcriptional 
cleavage of mRNA at alternative poly-A sites 
exist in the cytoplasm of human cells. These 
results are supported by previous observations 
reporting a non-random imbalance between 
3′UTR and coding sequence and 3′ abundances 
in in situ hybridization studies in mouse embryos 
[198]. In several cases, the authors observed that 
3′UTR abundance reached a threefold excess 
compared to the coding sequence, in a robust pat-
tern that varied according to the gene and tissue, 
thus suggesting a regulated event. In line with 
this is the recent identification of a widespread 
accumulation of ribosome-associated 3′UTRs in 
neuronal cells, evidenced by a relative enrich-
ment of UTR versus coding transcript regions 
[199]. However, in this case the authors associate 
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this event to brain aging and oxidative stress, in 
connection with ribosome stalling and mRNA 
cleavage by No-Go decay under conditions of 
deficient ribosome recycling.

To determine the potential functional impact 
of their observations, Malka and co-workers 
explored the interaction of two miRs, well known 
to be expressed in HEK cells and having multiple 
validated targets, with cellular mRNAs assuming 
their intact or cleaved nature. This was assessed 
by analyzing the effect of over-expressing the 
two miRs on the transcriptome using RNA-seq 
and correlating the observed impact on the 
expression levels of mRNA targets predicted 
considering the presence of miR binding sites on 
the mRNA molecule as a whole, or on the sepa-
rate “body” and UTR “tail” parts. The authors 
found that mRNAs predicted to be miR targets 
based only on the presence of binding sites on the 
“body” part showed a significantly higher 
decrease in expression than the subset that was 
predicted to be targeted based on the presence of 
sites in the whole (uncleaved) mRNA molecule. 
These intriguing observations suggest that esti-
mation of mRNA expression levels, in particular 
when based on microarray approaches that pre-
dominantly target the 3′UTR, may be profoundly 
biased, as well as studies focusing on the charac-
terization mRNA-miR regulatory networks. 
Whether the 3′UTR tails have the ability to exert 
any regulatory roles remains to be established, 
but one possibility is that they may act as compet-
ing endogenous RNAs for post-transcriptional 
regulation [200]. Together with the complemen-
tary observations of cytoplasmic re-capping, 
these recent results shed new light on the tran-
scriptome and call for a new perspective on the 
post-transcriptional regulation of genes involving 
a highly dynamic processing of mRNA mole-
cules to generate new layers of regulatory 
complexity.

1.7  Future Tendencies

The ingenious application of RNA-seq method-
ologies to the characterization of transcriptome 
composition and the dynamics of transcriptional 

and post-transcriptional processes has generated 
a wealth of unexpected insights into regulatory 
networks underlying the robust but highly 
responsive behaviour of molecular processes in 
eukaryotic systems. Recent results have consoli-
dated previous observations pinpointing the rele-
vance of network-based gene expression modules 
and multi-layered interactions in the definition of 
cellular programs for normal cellular function, as 
well as for the establishment of disease pheno-
types, in particular during cellular transforma-
tion. Additionally, they are revealing a whole 
wealth of unexpected diversity in both the play-
ers and the processes that sustain them. As the 
technologies for characterizing system compo-
nents at a genome wide scale improve, new trends 
related to a more precise mapping of players, 
interactions and quantitative measurements of 
dynamic processes are likely to gain momentum. 
These include the development of methods for 
direct sequencing of intact mRNA molecules 
with identification of their nucleotide modifica-
tions, for example through the use of nanopore- 
based sequencing [22]; the expansion of methods 
for real-time and single-cell measurement; and 
the ability to integrate the multiple layers of 
information that have been generated into com-
prehensive models that explain and predict com-
plex network behaviour. Given the current state 
of the art, it is highly likely that we will also wit-
ness the expansion of the current universe of 
post-transcriptional regulatory events, including 
the identification of new types of non-coding 
RNA elements – like the still mysterious circular 
RNAs [201] or the intronic Alu elements that 
regulate the activation of the anti-tumoral 
dsRNA-induced interferon response [202]; the 
identification of non-genetic roles of RNA – like 
the ability to modulate phase transitions in the 
cell [203]; and of new types of regulatory events – 
like the identification of novel information flows 
such as the recently reported transmission of 
3′UTR-encoded genetic information to proteins 
[204]. The surprising nature of these recent 
observations foreshadows all the exciting discov-
eries that are waiting ahead in the quest for 
understanding the function and roles of post- 
transcriptional regulatory networks.
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Abstract
Post-transcriptional regulation of gene expres-
sion is fundamental for all forms of life, as it 
critically contributes to the composition and 
quantity of a cell’s proteome. These processes 
encompass splicing, polyadenylation, mRNA 
decay, mRNA editing and modification and 
translation and are modulated by a variety of 
RNA-binding proteins (RBPs). Alterations 
affecting RBP expression and activity contrib-
ute to the development of different types of 
cancer. In this chapter, we discuss current 

research shedding light on the role of different 
RBPs in gliomas. These studies place RBPs as 
modulators of critical signaling pathways, 
establish their relevance as prognostic mark-
ers and open doors for new therapeutic 
strategies.
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activator of transcription 3
NPC Neuronal precursor cells
RRMs RNA recognition motifs
FGFR fibroblast growth factor 
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ABCC1 ATP binding cassette subfam-
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VEGF Vascular endothelial growth 

factor
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DNA-PKcs DNA-Protein Kinase 
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Protein Kinase

2.1  Introduction

The large majority of cancer studies dedicated to 
the identification of “driving events” and genes 
contributing to tumor development have focused 
on processes occurring at the DNA level, such as 
mutations and chromosomal defects, changes in 
methylation status, and transcriptional regula-
tion. Recent studies performed in different spe-
cies and scenarios have shown a poor correlation 
between mRNA and protein levels for the major-
ity of the transcriptome. These results support the 
role of “RNA-based” mechanisms as key modu-
lators of gene expression in both, normal and 
tumorigenic cells [1, 2]. Such regulatory mecha-
nisms are primarily driven by RNA-binding pro-
teins (RBPs). Large-scale quantitative methods, 
next-generation sequencing, and modern protein 
mass spectrometry (MS) have been employed 
recently to expand the RBP catalogue, to identify 
their protein co-factors and target transcripts. The 
number of known RBPs in the human genome is 
over 1500 [3, 4], which represent ~7.5% of 
human coding genes. RBPs form complexes with 
pre-mRNA, mRNA, and a variety of ncRNAs 
(lncRNAs, miRNAs, rRNAs, etc.), to modulate 
an array of processes that include splicing, poly-
adenylation, maturation, modification, transport, 
stability, localization, and translation. RBPs exert 
their effect by recognizing specific sequences 
and/or secondary structures present in untrans-
lated regions (UTRs), coding sequences and/or 
introns [3, 5].

Mutations and alterations in the expression 
levels of numerous RBPs are observed across 
tumor tissues and known to impact the expres-
sion of large set of genes, contributing to tumor 
initiation and growth [6–8]. This scenario is 
observed in gliomas, an heterogenous group of 
brain tumors encompassing astrocytomas, oligo-
dendrogliomas, oligoastrocytomas and glioblas-
toma multiforme [9]. Gliomas are responsible for 
the majority of deaths caused by primary brain 
tumors. The absence or presence of anaplastic 
features is used by the World Health Organization 
(WHO) for assigning grades of malignancy [9, 
10]. Among them, glioblastoma multiforme 
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(GBM, grade IV) is the most aggressive and 
accounts for 45.2% of all malignant primary 
brain and CNS tumors, and 54% of all gliomas 
[11]. The number of well-characterized onco-
genic RBPs in gliomas is still relatively small. As 
indicated by a recent genomic study from our lab, 
aberrant RBP expression is a common feature in 
GBMs and dozens of these proteins potentially 
contribute to the acquisition of cancer pheno-
types [12].

In the next sections, we discuss the role of 
some of the best characterized RBPs in the con-
text of gliomas, namely Heterogeneous nuclear 
ribonucleoproteins (hnRNP), Polypyrimidine- 
tract- binding protein (PTBP), Adenosine deami-
nases that act on RNA (ADARs), Hu antigen R 
(HuR), Musashi1 (MSI1), Insulin-like growth 
factor II mRNA binding proteins (IGF2BPs/

IMPs), and Quaking (QKI)  – In Fig.  2.1 we 
depict the global biology of these RBPs in glioma 
development.

2.2  Heterogeneous Nuclear 
Ribonucleoproteins

Heterogeneous nuclear ribonucleoproteins are a 
family of RBPs that includes approximately 20 
genes termed hnRNPs A1-U, which range in size 
from 34 to 120 kDa [13]. Several hnRNPs have 
been implicated in the development of various 
tumor types and their expression levels have been 
linked to patient survival [14]. HnRNPs regulate 
different aspects of pre-mRNA processing in gli-
omas and their expression levels are altered in 
both low and high grade astrocytomas [15–17].
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Fig. 2.1 Schematic representation of the involvement of 
RNA-binding proteins (RBPs) in glioblastoma develop-
ment. We show the RBP families discussed in this article, 

the region of the mRNA where they make target, their 
most relevant target genes, and both the processes and 
pathways affected by the described regulation
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In gliomas, hnRNPA1/A2 is associated with 
the regulation of glucose metabolism, where it 
influences Pyruvate-kinase (PK) splicing and 
function. PK is a rate-limiting enzyme in glucose 
metabolism and is encoded by two paralogous 
genes, PKLR and PKM. Both genes are alterna-
tively spliced; therefore, resulting in four PK iso-
forms in mammals [18, 19]. The PKM gene 
consists of 12 exons, of which exons 9 and 10 are 
alternatively spliced in a mutually exclusive fash-
ion, producing the PKM1 and PKM2 mRNA iso-
forms, respectively [19]. Interestingly, the 
expression of hnRNP A1/A2 and PTBP is regu-
lated by the oncogenic transcription factor c-Myc 
[20]. In cancer cells, hnRNP A1/A2 and PTBP 
bind to PKM pre-mRNA and repress the inclu-
sion of exon 9. When expression levels of 
hnRNPA1/A2 and PTBP are reduced, PKM exon 
9 inclusion is promoted and more PKM1 tran-
scripts are produced; the end result is a decrease 
in glucose consumption and lactate production 
[21]. This is an example of a critical dialogue 
between RBP-mediated splicing and modulation 
of metabolism and cell proliferation.

Astrocytomas display mutations in growth- 
factor- receptor genes, such as epidermal growth 
factor receptor (EGFR). Alterations in the splic-
ing profile of EGFR are also frequently observed. 
The most relevant one gives rise to a transcript 
encoding EGFR variant III (EGFRvIII) [22]; the 
resulting protein is constitutively active and con-
tributes to a major shift in GBM cell metabolism 
[23]. Babic et  al. (2015) demonstrated that in 
GBM cells expressing EGFRvIII, the Myc- 
binding partner Max is alternatively spliced. 
hnRNPA1 binds upstream of exon 5 of the Max 
pre-mRNA and facilitates its inclusion, leading 
to the production of a truncated Max protein 
referred to as Delta Max. Increased Delta Max 
production contributes to the expression of the 
glucose transporter GLUT3 and HK2 and pro-
motes GBM cell proliferation in glucose- 
containing media [24].

Evasion of programmed cell death, tissue 
invasion, and metastasis are three important hall-
marks of cancer [25]. A number of studies have 
described hnRNPs as regulators of apoptosis and 
cell invasion via its impact on RNA processing. 

For instance, hnRNPH regulates the splicing of 
Insuloma-glucagonoma protein 20 (IG20) and 
Recepteur d’Origine Nantais (RON), a death- 
domain adaptor protein and a tyrosine kinase 
receptor that participate in apoptosis and cell 
invasion, respectively. Alternative 5′ splice site 
usage in exon 13, plus inclusion/skipping of exon 
16 generates four main splicing isoforms of IG20 
(MADD), which have been described to be aber-
rantly expressed in tumors [26, 27]. In the case of 
RON, exon 11 exclusion generates RONΔ11, a 
transcript that gives rise to a protein missing part 
of the extracellular domain. This active isoform 
promotes cell motility and mediates epithelial- 
mesenchymal transition (EMT) [28] . hnRNPH 
binds to UGGG elements in the 5′ region of 
exons 16 and 11 of IG20 and RON pre-mRNAs, 
respectively, and inhibits its inclusion [29]. 
Knockdown of hnRNPH promotes inclusion of 
the exons that are normaly spliced out, and is 
associated with a decrease in cell viability and 
migration in gliomas [29]. Binding of hnRNPC 
to pre-miR-21, which promotes maturation, rep-
resents an example of interactions between 
hnRNPs and miRNAs. Silencing of hnRNPC 
decreases miR-21 levels, upregulating expression 
of Programmed cell death protein 4 (PDCD4), 
thus affecting the proliferative and metastatic 
potential of GBM cells [30].

2.3  Polypyrimidine-Tract- 
Binding Protein

Polypyrimidine tract-binding proteins (PTBPs) 
are a family of RNA binding proteins whose most 
of its members are preferentially expressed in the 
brain [31, 32]. PTBP2 (also known as neural 
PTB) for instance is specifically expressed in 
post-mitotic neurons [33]. PTBP3 is the least 
studied of the three PTB paralogs. In rat and 
human it is encoded by the gene ROD1. In rats, it 
is predominantly expressed in hematopoietic 
cells or organs of embryonic and adult individu-
als. In humans, ROD1 overexpression inhibits 
pharmacologically-induced differentiation of 
both megakaryocytic and erythroid K562 leuke-
mia cells, supporting the notion that ROD1 plays 
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a role in differentiation control in mammalian 
cells [34]. These RBPs shuttle between the 
nucleus and cytoplasm, functioning in large and 
diverse number of cellular processes, including 
mRNA splicing, polyadenylation, stability and 
translation. PTBPs preferentially bind to 
polypyrimidine- rich stretches through its four 
RNA recognition motifs (RRMs) [35, 36]. As a 
splicing factor, PTBP1 induces exon skipping in 
pre-mRNAs encoding proteins involved in prolif-
eration (FGFR1, FGFR2), invasion (CSRC), 
motility (ACTN, FBN), apoptosis (FAS, CASP2), 
and multi-drug resistance (ABCC1) [37].

Several studies have reported significant dif-
ferences in the expression of PTBP1 in gliomas 
[37, 38]. PTBP1 regulates numerous splicing 
events relevant to gliomagenesis. Global exon 
array analysis identified Nogo (also known as 
RTN4) as one of the main targets of PTBP1. 
Nogo triggers a rearrangement of actin filament 
extensions in neighboring cells to inhibit neurite 
outgrowth [39]. Nogo has multiple mRNA iso-
forms, but only three characterized protein vari-
ants: Nogo-A, Nogo-B and Nogo-C [40]. Cheung 
et al, (2009) showed that Nogo-B is the predomi-
nant mRNA isoform expressed in glioma cells, 
where high levels of PTBP1 ensure that exon 3 is 
skipped [37]. Functional assays suggest that reg-
ulation of Nogo splicing by PTBP1 plays a role 
in proliferation and migration [37]. Another 
study identified the FGFR-1 pre-mRNA as 
PTBP1 target [41]. FGFR1 is implicated in 
growth and differentiation pathways and precise 
regulation of its splicing is critical [42]. PTBP1 
interacts in a sequence-specific manner with the 
intronic RNA sequence, termed ISS-1 element, 
located upstream of the α exon of FGFR-1 pre- 
mRNA.  This interaction induces exon α exclu-
sion and leads to the production of a receptor 
with enhanced affinity for fibroblast growth fac-
tor (FGFR-1β) [41]. Beta form of FGFR-1 is the 
predominant isoform and has been described to 
drive tumor progression [42]. Another PTBP1 
target is the kinase MARK4, which belongs to 
the family of AMP protein kinases. The two 
MARK4 splicing isoforms (MARK4L and 
MARK4S) differ in relation to their C-terminal 
end [43]. While MARK4L is upregulated in gli-

oma cells and is expressed at high levels in neural 
progenitor cells, MARK4S is found predomi-
nantly in normal brain tissue and terminally dif-
ferentiated neurons [44]. Bioinformatic and 
biochemical approaches identified PTBP1 bind-
ing sites in intron 15 of the MARK4 pre-mRNA, 
indicating that PTBP1 regulates the inclusion of 
exon 16. This process influences splicing of exon 
18 which contains a stop codon; the result are 
two alternative protein products containing or not 
the C-terminal kinase 1 domain [45].

2.4  Adenosine Deaminases that 
Act on RNA

RNA editing is an important mechanism in which 
RNA modifications are used to modulate gene 
expression and function [46]. Adenosine deami-
nases that act on RNA (ADARs) are key regula-
tors of RNA editing and changes in ADAR 
expression levels may lead to the development of 
different neoplasms, including gliomas. They are 
responsible for adenosine (A) to inosine (I) con-
version in RNAs. These RNA modifications often 
lead to changes in amino acid incorporation that 
could ultimately affect protein properties [47]. In 
vertebrates, three members of the ADAR family 
have been identified. ADAR1 and ADAR2 are 
ubiquitously expressed and exhibit catalytic 
activity, whereas ADAR3 is specifically expressed 
in the brain and has no catalytic activity. ADAR3 
has been revealed to competitively inhibit the 
deaminase activity of other ADARs by binding to 
dsRNA [48]. In particular, ADAR2 editing activ-
ity is crucial for the function of many proteins 
expressed in central nervous system and is essen-
tial for normal brain development [49].

In mammals, the catalogue of genes affected 
by RNA editing has been expanding. Among 
them are the glutamate receptors (GluR) sensitive 
to AMP (B, C and D subunits) and those sensitive 
to kainate (5 and 6 subunits). A to I editing causes 
the substitution of the neutral amino acid gluta-
mine (Q) for an arginine (R), located in the pore 
domain of GluR. The positively charged Arginine 
prevents the passage of Ca2+. This editing occurs 
in a majority of AMPA receptors in the central 
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nervous system and acts as a protective mecha-
nism against excitotoxicity mediated by massive 
Ca2+ influxes [50]. Due to the critical importance 
of accurate RNA editing in normal brain func-
tion, deregulation of editing may influence the 
progression of pathophysiological processes, 
such as neuro-degeneration and tumorigenesis 
[51].

Analyses of GluR-B transcripts in normal 
brain tissue showed that 100% of Q codons are 
edited to R codons in both gray and white matter. 
In contrast, GBM tissue showed a reduction in 
Q/R-site editing (12–31% decrease). This comes 
as a result of a decrease in the ADAR2 enzymatic 
activity [51]. Another study linked a reduction in 
editing of GluR-B (sites R/G and Y/C) and 
GluR-6 (sites I/V, Y/C and Q/R) transcripts to 
grade of malignancy in pediatric astrocytomas 
[47]. This editing has been attributed to altera-
tions in ADAR2 catalytic activity. It has also been 
observed that elevated levels of ADAR2 inhibits 
proliferation and migration of astrocytoma cell 
lines [47]. Galeano et  al. (2012) reported that 
ADAR2 editing affects proliferation of astrocy-
toma cells in vitro and in vivo via cell cycle mod-
ulation. Increased ADAR2 expression 
considerably prolonged survival and significantly 
inhibited astrocytoma growth in vivo [49].

Alternative splicing is also a critical mecha-
nism that regulates ADAR2 activity [49, 50]. A 
splicing variant of ADAR2, which contains a 
47-nucleotide insertion, is increased in gliomas 
in comparison to normal brain. Furthermore, the 
presence of this splicing variant correlates with 
malignancy [52]. Alternative splicing of exon 5a 
is also an important event in gliomas [53]. 
Transcripts containing exon 5a encode a protein 
with ~50% reduced activity that is predominantly 
expressed in gliomas [53].

ADAR2 is also essential for the editing and 
modulation of 90 miRNAs in glioblastomas. 
Rescue of ADAR2 activity in glioblastoma cells 
recovered the expression of onco-miRNAs and 
tumor suppressor miRNAs to levels observed in 
normal human brain. Wild-type ADAR2 activity 
was shown to inhibit miR-221, miR-222, and 
miR-21 maturation, causing accumulation of 
their precursors in different cell lines, impacting 
cell proliferation and migration [54].

2.5  Hu Antigen R

Hu antigen R (HuR) is a member of the embry-
onic lethal abnormal visual (ELAV) family, ini-
tially identified in Drosophila as a factor involved 
in neuronal development, plasticity and memory 
[55, 56]. HuR is ubiquitously expressed, whereas 
other members of the family (HuB, HuC and 
HuD) are tissue specific [56]. HuR regulates a 
variety of target mRNAs associated with pro-
cesses like inflamation [57], cell cycle [58], 
angiogenesis [59], cell survival, and apotosis 
[60]. HuR preferently binds uracil-rich sequences 
and has been shown to regulate mRNA stability, 
splicing and translation [61, 62]. Recent studies 
have also linked HuR activity with microRNA 
metabolism and function [63, 64].

Angiogenesis is required for glioma develop-
ment. Vascular endothelial growth factor 
(VEGF)-A is considered the major mediator of 
angiogenesis in malignant tumors, including 
high-grade astrocytomas [59]. HuR regulates 
VEGF-A expression and, under hypoxic condi-
tions, inhibition of HuR cytoplasmic transloca-
tion by leptomycin B reduces VEGF-A 
upregulation in astrocytic tumor cells [59, 65]. In 
gliomas, it was shown that HuR also regulates the 
expression of angiogenic factors via mRNA sta-
bility [66, 67].

Several studies support a role of HuR in cell 
survival. In GBM, HuR binds the 3′UTR of bcl-2 
family members and promotes both mRNA sta-
bility and translation. Using a mouse model, 
Filippova et al. (2011) showed that silencing of 
HuR promotes apoptosis by decreasing bcl-2 
family members levels [68].

The development of an inflammatory micro-
environment has long been considered important 
for the initiation and progression of glioblastoma. 
GBMs display high levels of the pro- inflammatory 
cytokines like IL-1β, IL-6 and IL-8 [69]. HuR 
increases the stability of IL-6 mRNA, leading to 
increased pro-inflammatory cytokine IL-6 protein 
production and secretion [57, 67].

Several studies have shown that HuR regu-
lates the cell cycle in a variety of ways. One of 
them involves HuR phosphorylation at serine 202 
by CDK5. Prolonged disruption of the balance 
between phosphorylated and unphosphorylated 
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HuR provokes an arrest of cell cycle progression 
in glioma cells by altered cyclin A levels [70]. 
Oscillation of cyclin A levels occurs during mito-
sis and is critical for DNA replication and centro-
some duplication [71]. Moreover, SRC and c-Abl 
kinases regulate HuR sub-cellular trafficking and 
influence its accumulation in the pericentriolar 
matrix (PCM) via a growth factor dependent sig-
naling mechanism [72]. Finally, HuR phosphory-
lation in the nucleus by Pyruvate kinase M2 
(PKM2), results in increased glioma cell growth. 
The loss of the nuclear interaction between 
PKM2 and HuR leads to cytoplasmic re- 
distribution of HuR and subsequently an increase 
in cap-independent mRNA translation of cyclin- 
dependent kinase inhibitor p27 mRNA, resulting 
in cell cycle arrest [73]. Some of the molecular 
mechanisms involved in the expression or activ-
ity of HuR in gliomas are mediated by growth 
factors. AKT/HSF1/HuR axis impacts Rictor 
expression, a component of the mTORC2 com-
plex. EGF and IGF stimulation increases HuR 
transcription mediated by HSF1. HuR in turn, 
enhances Rictor mRNA translation which leads 
to elevated mTORC2 activity, tumor growth and 
invasion in GBM [74]. HuR is also subject to 
microRNA regulation. Yang et  al. showed that 
miR-146b-5p overexpression could reverse HuR 
overexpression in glioma stem cells (GSCs). This 
regulation affects GSCs viability and cell cycle 
progression [75].

2.6  Musashi1

Musashi1 (MSI1) is a highly conserved RBP that 
controls the balance between self-renewal and 
differentiation [76]. MSI1 has been described as 
a pro-oncogenic factor in multiple tumor types 
[77]. High levels of MSI1 have been observed in 
several cancers, including medulloblastoma, 
hepatocarcinoma, cervical carcinoma, breast 
cancer and gliomas, and is linked to poor survival 
[78–82]. MSI1 regulates both translation and 
mRNA decay by binding to UAG motifs present 
in stem loops [83].

Uren et al. (2015) identified more than 1000 
MSI1 target mRNAs in glioblastoma cells, using 
individual-nucleotide resolution cross-linking 

and immunoprecipitation (iCLIP) [83]. These 
targets are preferentially located in cancer rele-
vant pathways such as focal adhesion, adherens 
junction, Wnt, JAK/STAT, p53, MAPK, VEGF, 
and ErbB. Functional assays showed that MSI1 
knockdown impairs cell adhesion, migration, 
invasion, apoptosis, proliferation, and cell cycle 
regulation [83].

MSI1 has been linked to radio- and chemo- 
resistance. MSI1 expression increases in response 
to DNA damage in glioblastoma cells [84]. MSI1 
knockdown increases radiosensitivity by affect-
ing DNA damage repair through regulation of 
DNA-activated catalytic polypeptide (DNA- 
PKcs). DNA-PKcs is a key enzyme involved in 
the classic nonhomologous end-joining (NHEJ) 
pathway of DNA double-strand break repair in 
mammals [84]. In addition, it has been demon-
strated that overexpression of MSI1 effectively 
protects GBM cells from drug-induced apopto-
sis, like cisplatin, via down-regulation of pro- 
apoptotic genes [85].

2.7  Insulin-Like Growth Factor II 
mRNA Binding Proteins

The Insulin-like growth factor 2 (IGF2BP/IMPs) 
family of proteins consists of three members, 
IMP1 (IGF2BP1), IMP2 (IGF2BP2) and IMP3 
(IGF2BP3), which are mainly expressed in early 
stages of embryogenesis [86]. High expression of 
IMP proteins has been observed in a broad range 
of cancer types, including pancreatic, lung, renal 
cell, ovarian, endometrial, cervical, and glioblas-
toma [87].

IMP3 is involved in the activation of MAPK 
and PI3K pathways through the activation of 
IGF-2, affecting cell proliferation and invasion of 
GBM cells [88]. Multivariate analysis identified 
high IMP3 as an unfavorable prognostic factor 
for pediatric [89] and adult astrocytoma patients 
[88, 90, 91].

Recent studies have shown that IMPs promote 
mRNA stability by preventing miRNA-mediated 
silencing [87]. In gliomas for instance, IMP2 
protects mRNAs from let-7-dependent silencing 
by binding to the corresponding miRNA-binding 
sites [92].
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2.8  Quaking

Quaking (QKI) belongs to the signaling trans-
duction and activation of RNA (STAR) family 
of proteins. QKI pre-mRNA undergoes exten-
sive alternative splicing to generate at least four 
transcripts producing isoforms termed QKI-5, 
QKI- 6, QKI-7, and QKI-7b. These QKI iso-
forms share an RNA-binding KH domain, but 
differ by several amino acids at the C-terminus 
[93]. Analysis of glioma tumors found a high 
incidence of expression alterations in the 
human quaking gene [94]. It has also been 
reported that lost of the QKI-7 isoform 
decreases expression of genes involved in inter-
feron (INF) induction, suggesting a role for 
QKI-7 as a regulator of the inflammatory path-
way in glioblastoma [95]. QKI-6 expression 
correlates positively with glioma grade and 
promotes migration and invasion of glioblas-
toma cells via activation of PI3K/AKT and 
ERK pathways [96]. Recently, an in-frame 
MYB-QKI gene fusion was identified as hall-
mark genetic alteration in the majority of angio-
centric gliomas [97–99]. The MYB-QKI 
rearrangement disrupts both MYB and QKI, 
resulting in hemizygous deletion of 3′ portion 
of MYB and the 5′ portion of QKI [99]. In vitro 
and in vivo studies show that the MYB-QKI 
fusion promotes tumorigenesis [97].
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Abstract
Nonsense-mediated mRNA decay (NMD) is a 
well characterized eukaryotic mRNA degra-
dation pathway, responsible for the identifica-
tion and degradation of transcripts harboring 
translation termination codons in premature 
contexts. Transcriptome-wide studies revealed 
that NMD is not only an mRNA surveillance 
pathway as initially thought, but is also a post- 
transcriptional regulatory mechanism of gene 
expression, as it fine-tunes the transcript levels 
of many wild-type genes. Hence, NMD con-
tributes to the regulation of many essential 
biological processes, including pathophysio-
logical mechanisms. In this chapter we dis-
cuss the importance of NMD and of its 
regulation to organism development and its 
link to the cellular stress responses, like the 

unfolded protein response (UPR) and the inte-
grated stress response (ISR). Additionally, we 
describe how tumor cells have explored both 
NMD functions to promote tumorigenesis. 
Using published data and databases, we have 
also performed a network-based approach that 
further supports the link between NMD and 
these (patho) physiological processes.

Keywords
Nonsense-mediated mRNA decay · mRNA 
surveillance · Gene expression regulation · 
Unfolded protein response · Integrated stress 
response · Tumorigenesis · Human disease

3.1  Introduction

As already discussed in the previous chapter, 
eukaryotic mRNAs go through a complex pro-
cess as they pass the genetic information from 
DNA to protein. This includes many stages, such 
as transcription, capping, pre-mRNA splicing, 
polyadenylation, transport, translation and degra-
dation. Some of these steps may determine the 
production of different mRNAs with the conse-
quent generation of distinct proteins encoded by 
the same gene. Cells have developed many sur-
veillance mechanisms to control the quality of 
the mRNAs throughout this process to ensure 
correct protein synthesis [1, 2]. Among them is 
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nonsense-mediated mRNA decay (NMD), a 
translation-dependent surveillance mechanism 
that detects and rapidly degrades transcripts with 
premature translation termination codons (PTCs) 
produced by mutated genes or by errors in the 
mRNA processing. By doing so, NMD protects 
the cell from the production of potentially harm-
ful truncated proteins [3, 4].

The development of high throughput technol-
ogies revealed an additional function of NMD 
that was unknown for many years. Transcriptome 
profiling of cells depleted of NMD factors 
showed that NMD also modulates the levels of 
many transcripts that encode normal, full-length 
proteins [5–15]. Thus, NMD arises as a mecha-
nism of gene expression regulation. This new 
feature suggests that NMD might play an impor-
tant role in the regulation of many essential bio-
logical processes. In this chapter, we briefly 
discuss the role of NMD during mammalian 
development and cellular stress responses, and 
how its time-dependent regulation is important 
for these mechanisms. We also describe how 
tumor cells have explored both the quality and 
regulatory NMD functions to leverage tumori-
genesis in their own microenvironment. In the 
end, to further explore and support the links 
between NMD and development, stress and can-
cer, we show a network-based approach using 
publicly available data.

3.2  Nonsense-Mediated mRNA 
Decay: The Mechanism 
and Its Dual Function 
in the Cell

Since its discovery, NMD has been described as a 
surveillance mechanism responsible for targeting 
and rapidly degrading eukaryotic mRNAs har-
boring PTCs. This protects the cell from the 
potential deleterious effects that could arise from 
the generation of C-terminally truncated proteins 
[16, 17]. NMD was also implicated in human dis-
eases, such as β-thalassemia, cystic fibrosis, 
Duchenne’s muscular dystrophy and cancer [17, 
18]. This is not surprising, since it is estimated 
that around 30% of the genetic diseases arise as a 

consequence of PTC-introducing mutations that, 
therefore, can be affected by NMD [18].

There are two main models explaining the 
NMD mechanism: the classical EJC-dependent 
and the EJC-independent model (Fig. 3.1) [19]. 
The EJC-dependent model states that NMD 
depends on the interaction of the translation ter-
mination complex with a multiprotein complex, 
called exon junction complex (EJC) (Fig. 3.1a) 
[20–23]. The EJCs are deposited 20–24 nucleo-
tides (nts) upstream of most exon-exon junctions 
during splicing, remaining associated with the 
mRNA during its transport to the cytoplasm [20, 
22, 23]. It is well established that translating 
ribosomes displace the EJCs from the open read-
ing frame (ORF) during the pioneer round of 
translation [24, 25]. However, the ribosome is not 
able to displace the EJCs whenever an mRNA 
contains a PTC located more than 50–54 nts 
upstream to the last exon-exon junction 
(Fig.  3.1a.1) [20, 26]. Consequently, when the 
ribosome stops at a PTC, the translation eukary-
otic release factors (eRF) 1 and 3 interact with 
the EJC(s) [27]. The ribosome-EJC interaction is 
mediated by a multiprotein complex called 
“SURF”, composed by the eRF1 and eRF3, the 
phosphatidylinositol 3-kinase (PI3K) related 
kinase, SMG1, associated to SMG8 and SMG9, 
and UPF1 (Fig.  3.1a.2) [27, 28]. SMG8 and 
SMG9 bind to the SMG1 in its inactive confor-
mation, mediating its transition to an active state. 
At the same time, the EJC containing UPF3B 
interacts with UPF2, which then links the SURF 
complex to the EJC through its interaction with 
UPF1, forming the decay- inducing complex 
(DECID) (Fig.  3.1a.3) [29, 30]. This “SURF-
DECID” model was recently challenged by data 
from Neu-Yilik et al., showing that UPF3B rather 
than UPF1 interacts with eRF3 during premature 
translation termination to promote peptide 
release and dissociation of the termination com-
plexes [31]. UPF1 may also be present at the ter-
minating ribosomes but in an inactive state. They 
have also shown that UPF3B can directly interact 
with UPF1, contradicting the previous idea that 
UPF2 bridges this interaction [31]. Despite this 
model is consistent with some mechanistically 
aspects of NMD, it requires further testing and 
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establishes contradictions with previously pub-
lished data that need to be clarified [32].

According to the prevailing model for the 
decay phase of NMD, the interaction between 
UPF1, UPF2 and UPF3B leads to a conforma-
tional change in UPF1, allowing its phosphoryla-
tion at serine and threonine residues of the 
C-terminal domain, accomplished by the SMG1 
protein (Fig.  3.1a.3) [27, 29, 33–37]. More 
recently, a new relevant player for the SURF- 

DECID transition was unveiled, the DHX34 pro-
tein. The DHX34 was shown not only to operate 
as a scaffold protein for UPF1-SMG1 interaction, 
but also to promote the interaction between UPF1 
and UPF2 [38, 39]. Thus, DHX34 appears to be 
relevant for UPF1 phosphorylation that ulti-
mately leads to NMD triggering by the recruit-
ment of the NMD factors SMG6, SMG5–7 
heterodimer, or SMG5 and the proline-rich 
nuclear receptor co-regulatory protein 2 (PNRC2) 
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Fig. 3.1 Simplified representation of the NMD models. 
(a) The EJC-dependent model. When the ribosome stops 
at a PTC with a downstream EJC, the interaction of UPF1 
and eRF3 induces premature translation termination and 
triggers NMD (a.1). After this interaction, the SURF com-
plex is formed by eRF1, eRF3, SMG1 associated with 
SMG8 and SMG9, DHX34 and UPF1 (a.2). UPF1 inter-
acts with UPF2-UPF3B bound to the EJC downstream of 
the PTC to form the DECID complex, which allows the 
SMG1-mediated phosphorylation of UPF1. At this point, 
translation has terminated with the dissociation of the 
ribosomal subunits, the release factors and the nascent 
peptide (a.3). (b) The EJC-independent model. In this 

model, when the ribosome reaches a PTC, the physical 
distance between eRF3 and the PABPC1 favors the inter-
action of eRF3 with UPF1, determining a premature 
translation termination process that triggers NMD (b.1). 
After this interaction, the SURF complex is formed (b.2). 
UPF2 and UPF3B diffused in the cytoplasm interact with 
UPF1, favoring its phosphorylation by SMG1 and form-
ing the DECID complex (b.3). (c) The NMD decay phase. 
Phosphorylated UPF1 recruits the factors that lead to 
mRNA degradation: SMG6, which produces an endonu-
cleolytic cleavage, SMG5-SMG7 dimer, which recruits 
the CCR4-NOT deadenylase complex, and/or PNRC2, 
which recruits the decapping complex (DCPC)
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(Fig.  3.1c) [37–40]. The SMG6 recruitment to 
PTC-containing mRNAs induces an endonucleo-
lytic cleavage in the vicinity of the PTC [41, 42]. 
The SMG6 endonucleolytic cleavage, is medi-
ated by its C-terminal PilT N terminus (PIN) [41, 
43], which generates unprotected mRNA ends 
that condemn it to degradation [44–46]. SMG5- 
SMG7 or SMG5-PNRC2 complexes further 
recruit decapping enzymes (DCP1 and DCP2) 
and the CCR4-NOT deadenylation complex that 
remove the 5′ and 3′ modifications (Fig.  3.1c), 
allowing 5′-to-3′ and 3′-to-5’ RNA degradation 
by XRN1 and the RNA exosome, respectively 
[41, 42, 47–50].

In contrast with the EJC-dependent NMD 
model, the EJC-independent NMD pathway 
(Fig.  3.1b) postulates that the recognition of a 
stop codon as a PTC depends on the physical dis-
tance between the termination complex at the 
PTC, and the cytoplasmic poly(A)-binding pro-
tein 1 (PABPC1) bound to the poly(A) tail. This 
seems to rely on the PABPC1 and UPF1 competi-
tion for the interaction with the eRF3 at the ter-
minating ribosome (Fig.  3.1b.1) [51–54]. If 
PABPC1 is in close proximity to the termination 
complex at the PTC, it represses NMD by inter-
acting with eRF3 and preventing the UPF1-eRF3 
interaction [51–54]. The eRF3 interaction with 
PABPC1, is proposed to be crucial for normal 
termination [27, 55, 56]. However, other studies 
have found that NMD suppression by PABPC1 
may occur even without the interaction with 
eRF3 [57, 58]. Instead, it can suppress NMD 
through interaction with the eIF4G [57, 59]. 
Nevertheless, according to this model, since there 
is no EJC to potentiate NMD, the interaction 
between UPF1, UPF2 and UPF3 may occur by 
diffusion of the two last factors present in the 
cytoplasm to the mRNA-bound UPF1 
(Fig. 3.1b.2) [19]. The following steps of NMD 
are the same from the EJC-dependent model 
(Fig. 3.1a.3, 3.1b.3, 3.1c).

Interestingly, while UPF1 is required for both 
the EJC-dependent and EJC-independent NMD 
pathways, UPF2 and UPF3B abundance appear 
to be more relevant for the EJC-independent 
NMD pathway [19]. Indeed, Metze et al. showed 

that silencing UPF2 and UPF3B alone or together 
strongly inhibits the EJC-independent NMD, 
while NMD of EJC-containing reporters is only 
slightly affected. The authors suggest that lower 
cellular concentrations of UPF2 and UPF3B 
affect mainly the diffusion of these factors to the 
target mRNA in the cytoplasm rather than the 
EJC-bounded factors [19]. This dependence on 
distinct NMD factors suggested the existence of 
NMD branches. In higher eukaryotes, it was 
observed that NMD could be either UPF2- 
independent, UPF3-independent or, as mentioned 
above, EJC-independent [23, 60, 61]. Supporting 
this, Huang et al. found that NMD owns an auto- 
regulatory feedback loop mechanism that is 
dependent on the different branches of 
NMD. Apparently, the UPF3B-dependent branch 
regulates UPF1 and SMG7 transcripts, the EJC- 
dependent branch regulates UPF1 and SMG5 
transcripts, and the UPF2-dependent branch reg-
ulates SMG1 mRNA levels [19, 62]. Recently, it 
was found that the SRSF1 splicing factor pro-
motes NMD by binding directly to UPF1, 
enhancing the binding of the latter to the 
mRNA. Moreover, the SRSF1 action is UPF3B- 
and UPF2-independent, which could constitute a 
new branch of NMD [63].

Although initial studies identified NMD as a 
quality control mechanism that degrades aberrant 
transcripts derived from mutated genes or from 
errors in the mRNA processing, in the recent 
years transcriptome-wide studies revealed that 
NMD also degrades many mRNAs from normal, 
functional protein-coding genes. NMD, thus, 
arises also as a mechanism of post-transcriptional 
control of gene expression, being directly or indi-
rectly responsible for the regulation of ~3–20% 
of transcripts in eukaryotes from yeast to mam-
mals [5–14]. These endogenous, natural NMD 
targets may present specific features  – NMD- 
inducing features – that are responsible for elicit-
ing their decay. As seen above, the presence of an 
exon-exon junction downstream of a stop codon 
allows the interaction between the SURF com-
plex recruited to a PTC and the EJC, triggering 
NMD (reviewed in [64]). Upstream open reading 
frames (uORFs) in the 5′ untranslated region 

R. Fernandes et al.



45

(UTR) of the transcripts can also trigger NMD, 
possibly because the stop codon of the uORF is at 
the 5′-end of the mRNA with downstream EJCs, 
placing it in a premature context [65]. Another 
NMD-inducing feature is a long 3’UTR.  How 
NMD targets these transcripts to decay is not 
completely understood, but it may involve a 
mechanism that depends on the physical distance 
between the stop codon and the PABPC1 at the 
poly(A) tail, which has been related to translation 
termination efficacy and to NMD [53, 54, 66–
68], as mentioned above.

The ability to regulate a subset of normal tran-
scripts, suggested that NMD could play impor-
tant roles in the regulation of normal biological 
pathways beyond its quality control function. 
Indeed, intensive research during the past years 
implicated NMD activity in organism develop-
ment, cell differentiation, cell stress and immune 
responses [69]. In the following sections we will 
discuss these physiological and pathophysiologi-
cal roles of NMD in mammalian cells, focusing 
on organism development, cell stress and cancer.

3.3  NMD is Required 
for Embryonic Viability 
and Influences Mammalian 
Development

The impairment of many core NMD factors, 
including UPF1, UPF2, UPF3A, SMG1, SMG6 
and SMG9, revealed that these proteins are essen-
tial for mammalian embryogenesis (reviewed in 
[69]). As an example, while mouse embryos het-
erozygous for Upf1 knockout present no pheno-
typic abnormalities, embryos with a complete 
knockout of Upf1 with total loss of NMD are only 
viable before implantation [embryonic day 3.5 
(E3.5)] [69, 70]. In addition, cultured Upf1−/− pre-
implantation blastocysts show strong apoptosis 
induction after 5  days in culture [70]. In agree-
ment, Smg6 knockout mouse embryos die soon 
after implantation, apparently because Smg6 
deletion induces sustained expression of pluripo-
tency genes normally repressed by NMD, thus 
impairing embryonic stem cell differentiation 

[71]. Also, Upf2 and Smg1 knockout experiments 
showed that mouse embryos lose viability 
between E3.5 and E9.5 [8, 69] and before E12.5 
[72], respectively. In recent studies, Upf3a−/− 
mouse embryos died between E4.5 and E8.5, 
showing poor morphology and defects at E3.5 
[30]. Additionally, intercrosses of heterozygous 
mice for a null allele of Smg9 yielded no homozy-
gous progeny, suggesting an embryonic lethal 
phenotype. Smg9−/− embryos harvested at E15.5 
presented variable and incompletely penetrant 
phenotypes including edema, hemorrhage and 
exencephaly [73]. Together, these findings point 
out the relevance of NMD for normal develop-
ment. However, as some NMD factors also play a 
role in other NMD-independent biological pro-
cesses, it is still important to confirm whether the 
observed embryonic lethality is related to NMD 
inhibition per se, or if it is a consequence of the 
impairment of non-NMD roles [69]. For example, 
there is evidence that UPF1, SMG1 and SMG6 
are involved in telomere maintenance [74, 75]. 
Additionally, UPF1 also plays roles in cell cycle, 
histone mRNA degradation and Staufen (STAU) 
1-mediated mRNA decay (SMD) (reviewed in 
[75]). To confirm that the developmental defects 
observed after the knockout of NMD factors were 
due to NMD impairment, Li et al. used the cul-
tured Smg6−/− mice embryonic stem cells 
(mESCs), that proliferate normally but present a 
differentiation blockage, to reintroduce variants 
of the Smg6 protein either lacking domains 
important for NMD or for telomere maintenance 
[3, 71]. Their observations revealed that mESCs 
differentiation process only requires NMD-
proficient mutants of Smg6 [71], suggesting that 
NMD inactivation is the one responsible for the 
developmental defects. One possible explanation 
for the embryonic lethality observed after the 
knockout of NMD factors comes from the ability 
of NMD to degrade specific endogenous targets. 
For instance, in Drosophila melanogaster it was 
found that depletion of the growth arrest and DNA 
damage inducible 45 (Gadd45) gene restores the 
viability of Upf1- and Upf2-null mutant flies [76]. 
Gadd45 is a pro-apoptotic protein encoded by an 
mRNA that is normally degraded by NMD in 
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order to dampen its deleterious effects. 
Interestingly, the knockdown of the NMD target, 
GADD45β, partially rescues the apoptosis 
induced by UPF1 depletion in  mammalian cells, 
suggesting that the NMD-mediated regulation of 
GADD45 expression is important to maintain 
mammalian cell viability [76]. Additionally, 
another pro-apoptotic factor targeted by NMD is 
the growth arrest-specific 5 (GAS5) RNA [77]. 
GAS5 is a long non-coding RNA (despite being 
translationally active) that induces cell-cycle 
arrest and apoptosis by binding to the glucocorti-
coid receptor, antagonizing its transcriptional 
activity [77]. The siRNA- mediated downregula-
tion of GAS5 in several human lymphocyte cell 
lines relieves the growth arrest observed after 
UPF1-knokdown [78], indicating that, similarly 
to what is observed for GADD45β, the NMD-
mediated regulation of GAS5 is important for cell 
viability and development.

Given the observed importance of NMD to 
normal development, it can be reasoned that its 
magnitude is regulated throughout the develop-
mental process. Different NMD efficiencies at 
specific stages would allow the organism to alter 
the expression levels of many direct or indirect 
NMD-targeted transcripts, and thus determine 
the levels of several proteins with developmental 
implications [79]. Supporting this, Lou et  al. 
demonstrated that differentiation of human 
embryonic stem cells (hESCs) into endoderm, 
mesoderm and ectoderm is accompanied by 
divergent NMD modulation [80]. The authors 
showed that NMD regulates the expression of 
many genes involved in signaling cascades, and 
suggested a model where NMD downregulation 
drives endoderm differentiation by stimulating 
the transforming growth factor-β (TGF-β) signal-
ing, and NMD upregulation drives mesoderm/
ectoderm differentiation through bone morpho-
genetic protein (BMP) signaling activation [80].

The notion that NMD is a developmentally 
regulated process is further supported by many 
studies reporting several biological contexts 
(described below) in which NMD activity and/or 
its regulation are necessary for tissue-specific dif-
ferentiation programs, not only during embry-
onic development, but also after birth.

3.3.1  Liver Development 
and Regeneration

Liver-specific UPF2 knockout in mice embryos 
results in perinatal lethality. Histological analy-
ses of embryonic livers at E16.5 and E18.5 dem-
onstrated that UPF2 loss during liver development 
leads to the presence of cells with abnormal 
nuclear morphology arrested in mitosis. However, 
the overall cell proliferation is not affected. Gene 
expression profiling of RNA from livers at these 
developmental stages indicated that UPF2 abla-
tion in the developing liver determines the dys-
regulation of hundreds of genes related to liver 
function. Among them are genes involved in 
metabolic pathways, in the complement and 
coagulation cascades, in mRNA processing, and 
in the DNA damage response pathway. These 
findings suggest that UPF2 depletion during fetal 
organogenesis impairs the development of a met-
abolically functional liver, which is incompatible 
with postnatal life [81]. Additionally, it was also 
found that UPF2 is essential for maintenance of 
the adult liver homeostasis and for regeneration 
after partial hepatectomy, and that liver-specific 
loss of UPF2 leads to liver damage and death 
shortly after its deletion [81]. The authors of this 
study inferred that these observations are due to 
impairment of the NMD activity because of 
UPF2 depletion. However, the direct link remains 
to be tested.

3.3.2  Spermatogenesis

There are several studies providing evidence that 
NMD plays a role in male germ line development 
and fertility. In one of them, conditional ablation 
of Upf2 in mice embryonic Sertoli cells (SC) 
causes severe testicular atrophy and male sterility 
in adulthood due to complete depletion of SC and 
germ cells during prepubertal testicular develop-
ment [82]. RNA-sequencing analyses of Upf2 
knockout testes revealed impaired transcriptomic 
homeostasis, with accumulation of PTC- 
containing transcripts and transcriptome-wide 
dysregulation of genes essential for SC fate con-
trol [82]. On a second study, Bao et al. focused 
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their attention to the germ cells, generating 
prospermatogonia- specific and spermatocyte- 
specific Upf2 conditional knockout mice. In both 
cases the adult males were infertile, presenting a 
drastic reduction in testis size and with seminif-
erous tubules almost depleted of germ cells [69, 
83]. The authors observed that Upf2 knockout 
spermatocytes and round spermatids express a 
reservoir of mRNAs with short 3’UTRs that are 
essential for spermatogenesis and male fertility, 
and proposed that this reservoir is, at least in part, 
generated via elimination of longer 3’UTR tran-
scripts derived from ubiquitously expressed 
genes by UPF2-mediated NMD [83]. Similarly, 
spermatocytes and round spermatids homozy-
gous for a null allele of Tudor domain-containing 
protein 6 (TDR6) show an accumulation of tran-
scripts with long 3’UTRs [84]. TDR6 is a protein 
of the chromatoid bodies that is essential for 
UPF1 localization to these perinuclear organelles 
of the spermatids, and for UPF1-UPF2 interac-
tion. It was observed that depletion of TDR6 
leads to UPF1 mislocalization, blocking its inter-
action with UPF2 and inhibiting the long 3’UTR- 
triggered NMD pathway [84]. These findings 
indicate that NMD is required for normal sper-
matogenesis, and that UPF2 plays an important 
role in the process.

Another NMD factor that seems to be essen-
tial for spermatogenesis is UPF3A.  For several 
years, the UPF3A was believed to exert the same 
function as its paralog, UPF3B, on the DECID 
complex [85]. However, this protein was recently 
suggested to be a NMD repressor that competes 
with UPF3B for UPF2 interaction. Apparently, in 
conditions where UPF3B is absent, UPF3A 
inhibits NMD by sequestering UPF2 from the 
NMD machinery [30]. Interestingly, the testis is 
the only adult tissue in which UPF3A protein and 
UPF3A mRNA are highly expressed, probably 
because of the transcriptional silencing of UPF3B 
in spermatocytes (that leads to low UPF3B 
mRNA levels in these cells) [30, 86]. Given these 
evidences, Shum et al. tested UPF3A function in 
male germ cells. They have shown that Upf3a 
knockout mice present reduced sperm counts and 
defective spermatocyte progression [30]. 
Additionally, they found that UPF3A levels must 

be tightly controlled to allow normal spermato-
genesis, based on the observation that heterozy-
gous mice for a null allele of Upf3a also present 
impaired spermatocyte progression [30]. 
Together, these findings support the notion that 
UPF3-dependent NMD and its tight regulation 
are necessary for normal spermatogenesis. 
However, we cannot rule out the hypothesis that 
other UPF3-independent mechanisms might also 
be involved in this process.

3.3.3  Myogenesis

As mentioned above, in addition to its participa-
tion in the NMD pathway, UPF1 is also required 
for SMD.  This translation-dependent mRNA 
decay pathway has several common features with 
NMD and is triggered when STAU1, together 
with UPF1, bind to an mRNA 3’UTR [79, 87], at 
least 25 nucleotides downstream of the stop 
codon of the main ORF [87]. RNA analysis of 
STAU1-depleted HeLa cells revealed that, like 
NMD, SMD regulates gene expression, influenc-
ing the levels of approximately 2% of the mRNAs 
[79, 87]. Interestingly, Gong et  al. found that 
SMD and NMD are competitive pathways. The 
first evidence supporting this idea came from the 
observation that STAU1 and UPF2 binding to 
UPF1 appear to be mutually exclusive, since the 
STAU1-binding site within UPF1 overlaps with 
the UPF2-binding site. Furthermore, SMD inhi-
bition by RNA interference-mediated STAU1 
downregulation, stimulates NMD activity, 
whereas NMD inhibition due to UPF2 downregu-
lation, increases SMD efficiency [88]. The com-
petition between NMD and SMD was proven to 
be physiologically relevant, particularly to the 
myogenic process, during which SMD efficiency 
was seen to be increased, while NMD activity 
was decreased [87, 88]. Consistent with this, dur-
ing myogenesis, the interaction of UPF1 with 
STAU1 increases while its interaction with UPF2 
decreases [88]. Accordingly, Gong et  al. found 
that the promyogenic transcription factor, myo-
genin, is encoded by an NMD target that is 
upregulated during C2C12 (mouse-derived myo-
blasts) cell differentiation from myoblasts to 
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myotubes, as a result of NMD inhibition. 
Conversely, they found that the antimyogenic 
factor, paired box protein Pax-3 (PAX3), is a 
SMD target that is downregulated during the dif-
ferentiation process, due to SMD enhanced activ-
ity [88]. Together, these findings suggest that the 
UPF2-dependent NMD branch and SMD are 
antagonistically regulated to drive the myogenic 
process.

Curiously, Gong et al. also found that, in dif-
ferentiating C2C12 cells, UPF3B appears upreg-
ulated and not downregulated as UPF2, and its 
interaction with UPF1 is higher in myotubes than 
in myoblasts [88]. These observations suggest 
that the UPF3-dependent branch of NMD must 
be active during muscle differentiation. Indeed, 
UPF3B-dependent NMD targets were found to 
be decreased in differentiated cells [88]. 
Altogether, these in vitro observations allow us to 
reason that these different mRNA decay mecha-
nisms and their respective mRNA substrates are 
tightly and conversely regulated to drive a spe-
cific developmental process [79].

3.3.4  Neural Development

While studying the possibility of NMD being 
regulated by microRNAs (miRNAs) during 
development, Bruno et al. identified two similar 
miRNAs  – miR-128-1 and miR-128-2  – that 
directly target two NMD factors: UPF1 and met-
astatic lymph node gene 51 protein (MLN51, a 
core component of the EJC with a role in the 
EJC-dependent branch of NMD) [60, 89]. The 
authors showed that expression of miR-128  in 
HEK293 and HeLa cells decreases the protein 
levels of UPF1 and MLN51, acting through this 
ability to repress NMD in mammalian cells [89]. 
Interestingly, miR-128 is brain-enriched and its 
expression is induced between E9.5 and E12.5 in 
the mouse brain, continually increasing during 
postnatal development into adulthood [89]. Its 
upregulation during brain development is accom-
panied by a decrease in the levels of UPF1 [89, 
90]. Ectopic expression of miR-128  in mouse 

neural stem cells (mNCSs) revealed that it upreg-
ulates hundreds of transcripts encoding proteins 
important for neural development and function, 
many of which apparently being NMD targets 
[89]. Based on gain- and loss-of-function experi-
ments in P19 (mouse-derived embryonal carci-
noma) cells subjected to neural differentiating 
conditions with retinoic acid (RA) and in mNSCs, 
Bruno et al. suggested that miR-128 expression 
and its ability to repress NMD is critical for the 
neural differentiation process [89], proposing a 
model where the induction of miR-128 during 
neuron differentiation decreases NMD magni-
tude, allowing the upregulation of specific tran-
scripts that encode pro-neural factors, and thus 
triggering the necessary neural program to drive 
neuron differentiation [79, 89]. Supporting this 
model and the notion that NMD is reduced dur-
ing neural development, Lou et  al. found a 
decrease in the mRNA levels of many NMD fac-
tors, including UPF1, UPF2, UPF3B, SMG1 and 
SMG6, during in vitro neural differentiation of 
mNSCs and human neural progenitor cells 
(hNPCs) [90]. In order to address the impact of 
NMD regulation in the neural differentiation pro-
cess, Lou et al. overexpressed UPF1 in differenti-
ating P19 cells treated with RA.  This UPF1 
overexpression inhibits neural differentiation and 
sustains a proliferative state, as indicated by the 
upregulation of stem-cell markers and downregu-
lation of differentiation markers [90]. On the 
other hand, UPF1 knockdown revealed to be suf-
ficient to elicit neural differentiation and matura-
tion of P19 cells in the absence of RA [90]. 
Furthermore, isolated mNSCs from UPF3B-null 
mice presented high levels of early neural mark-
ers, suggesting that UPF3B suppresses the differ-
entiation ability of these cells [90]. These findings 
indicate that NMD modulation is important to 
determine the proliferation/differentiation state 
of the cells during brain development. This can 
be explained by the fact that NMD targets subsets 
of mRNAs encoding proliferation inhibitors and 
neural differentiation factors [3, 90]. Altogether, 
these results suggest that NMD downregulation 
induces normal differentiation and maturation of 
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neural cells, which is achieved, at least in part, by 
miR-128-mediated UPF1 downregulation during 
neural development.

In addition to its role in neuron differentiation, 
NMD is also important for axon guidance in later 
stages of neural development. During this pro-
cess, when the commissural neurons pass the spi-
nal cord midline, floor plate signals rapidly 
induce translation of a splice variant of the round-
about homologue 3 (ROBO3) gene, the ROBO3.2, 
which contains a PTC in a retained intron pre-
dicted to induce NMD [91, 92]. The resulting 
protein is a receptor that contributes to the repul-
sion of the axon from the midline, guiding its cor-
rect trajectory [3, 91]. Depletion of UPF2  in 
mouse commissural neurons leads to increased 
levels of ROBO3.2 receptor, which determines 
an abnormal migration of the axons with enlarged 
repulsion from the floor plate [92]. This suggests 
that NMD activity is essential to degrade 
ROBO3.2 mRNA after a few rounds of transla-
tion, fine-tuning the expression of ROBO3.2 pro-
tein in a spatiotemporal manner [92].

The relevance of NMD for neural develop-
mental is further confirmed by several studies 
reporting mutations in the UPF3B gene that are 
related to X-linked mental retardation, schizo-
phrenia and autism [93–96]. The consequent loss 
of a functional UPF3B protein is accompanied by 
the dysregulation of genes involved in neural 
function [93], which can explain some character-
istic phenotypes of the mental disorders. Copy 
number variations in other NMD factor-coding 
genes, including deletions in UPF2 and deletions 
and/or duplications in UPF3A, SMG6, EIF4A3 
and RNPS1, were also seen in patients with vari-
ous forms of intellectual disability [96]. 
Interestingly, most part of the genes found dys-
regulated in patients with UPF2 deletions over-
lap with the ones found in patients with UPF3B 
mutations [96]. These data suggest that the phe-
notypes of intellectual disability found in patients 
with UPF2 and UPF3B alterations are similar as 
a consequence of impaired NMD, which deter-
mines the dysregulation of identical genes related 
to neural function.

3.4  NMD and Stress Responses 
are Linked by a Dynamic 
Regulatory Circuit

A consistent finding in many transcriptome-wide 
studies where depletion of NMD factors was per-
formed is the upregulation of mRNAs that encode 
stress-related proteins [6, 8, 11, 14, 81, 97]. This 
upregulation could either indicate that these 
mRNAs are NMD targets or that NMD impair-
ment induces stress and consequently potentiate 
their expression [3]. Oren et  al. provided evi-
dence supporting the latter hypothesis by showing 
that NMD inhibition, through siRNA-mediated 
knockdown of UPF1, increases the phosphoryla-
tion level of the alpha subunit of eukaryotic ini-
tiation factor 2 (eIF2α) [98]. Phosphorylation of 
eIF2α is a phenomenon that occurs during stress 
conditions due to the activation of specific 
kinases in response to diverse stress stimuli. For 
instance, amino acid deprivation induces general 
control nonderepressible 2 (GCN2) kinase, endo-
plasmic reticulum (ER) stress, hypoxia and reac-
tive oxygen species (ROS) induce protein kinase 
R (PKR)-like endoplasmic reticulum kinase 
(PERK), and viral infection induces PKR kinase. 
Phosphorylation of eIF2α in all these conditions 
causes a reduction in global protein translation 
while allowing the selective synthesis of proteins, 
including the master transcription factor, activat-
ing transcription factor 4 (ATF4), and its down-
stream target, CCAAT-enhancer-binding protein 
homologous protein (CHOP), responsible for 
transcribing genes involved in cell recovery and 
survival, as part of an adaptive pathway termed 
integrated stress response (ISR) (reviewed in 
[99]).

The PERK-eIF2α-ATF4 cascade is also part 
of another stress-response pathway, called 
unfolded protein response (UPR). The UPR is 
induced by ER stress when misfolded proteins 
accumulate in the ER due to protein-coding 
mutations, abnormal high translation in the ER 
and/or inefficient protein folding capacity as a 
consequence of decreased expression of chaper-
ones or perturbations in the cell energy levels, 
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calcium homeostasis or redox status [5, 98]. The 
misfolded proteins are sensed by three 
ER-resident proteins, PERK (the common factor 
between ISR and UPR), inositol-requiring 
enzyme 1 (IRE1) and ATF6, which correspond to 
the three branches of the UPR. When activated, 
they induce the expression of downstream tar-
gets, initiating a cascade of events aiming cell 
homeostasis restoration or, in the case of a strong/
prolonged stress stimulus, cell death induction 
(reviewed in [100]). Briefly, when IRE1 is acti-
vated its α subunit (IRE1α) undergoes trans- 
autophosphorylation that then mediates the 
cytoplasmic excision of a 26-nucleotide intron of 
the pre-mRNA encoding the X-box-binding pro-
tein 1 (XBP1) [101]. This produces an active 
transcription factor termed spliced XBP1 
(XBP1s), that then translocates to the nucleus to 
induce the upregulation of genes encoding chap-
erones and the ones involved in the ER-associated 
degradation (ERAD) of misfolded proteins [100, 
101]. On the other hand, ATF6 activation during 
the UPR induces its translocation to the Golgi, 
where it is cleaved to produce an active transcrip-
tion factor responsible for the expression of genes 
encoding ERAD factors, XBP1 and chaperones, 
like binding immunoglobulin protein (BIP) 
[100]. Finally, and as mentioned above, PERK 
activation by ER stress induces eIF2α phosphor-
ylation, decreasing the rate of protein translation 
initiation and allowing the cell to cope with the 
high content of unfolded proteins present in the 
ER.  Simultaneously, the specific translation of 
ATF4 and CHOP induces the expression of genes 
important for autophagy and, eventually, apopto-
sis [5, 100]. Curiously, and refuting the idea that 
NMD impairment induces cell stress, supported 
by Oren et al., Karam et al. found that depletion 
of NMD factors do not activate the ISR nor the 
UPR, since the mRNA levels of BIP, XBP1s and 
CHOP (markers of ATF6, IRE1 and PERK acti-
vation, respectively) do not significantly increase 
after UPF1 or UPF3A/B depletion [102]. While 
this controversy is not solved, there are already 
many evidences showing that subsets of stress- 
related mRNAs are indeed NMD targets in 
unstressed cells [97, 98, 102–105], suggesting a 
link between NMD function and stress.

3.4.1  Stress-Responses Regulate 
NMD Magnitude

Many of the stress-related-NMD-sensitive tran-
scripts present sequence features known to induce 
NMD, including uORFs and long 3’UTRs [11, 
102]. Interestingly, in stress conditions these 
mRNAs evade NMD and become upregulated 
[97, 102–104]. This is possible because stress can 
modulate NMD activity, repressing it. The first 
evidence for this was brought by Mendell et al., 
in a study where amino acid starvation induced 
NMD inhibition and the upregulation of tran-
scripts required for amino acid homeostasis [11]. 
Later, it was demonstrated that other stresses, 
including hypoxia, ROS and ER stress could also 
inhibit NMD [97, 102–106]. Indeed, a recent 
study reported a strong positive correlation 
between ER stress and NMD inhibition, in Na2 
cells treated with the potent ER stressor, thapsi-
gargin, in a dose-dependent manner [106].

There are many experiments showing that the 
stress-mediated NMD inhibition depends on the 
phosphorylation of eIF2α [97, 102, 103, 105, 
106]. Nevertheless, the exact mechanism by 
which eIF2α phosphorylation does this is not 
clear yet. Since NMD depends on protein transla-
tion to recognize the stop codons in premature 
contexts to promote rapid mRNA decay, it could 
be reasoned that the ability of eIF2α phosphory-
lation to reduce translation would be the one 
responsible for NMD inhibition during stress. 
However, there is evidence showing that eIF2α 
phosphorylation only attenuates around 20 to 
45% of the global protein synthesis [97, 107]. 
Additionally, NMD only requires a small per-
centage of translation to occur [108] and several 
NMD targets are translated even in the presence 
of stress and phosphorylated eIF2α [97, 103]. 
Hence, it is unlikely that suppression of transla-
tion is the only mechanism by which eIF2α phos-
phorylation mediates NMD repression [109]. In 
order to further explore this issue, Gardner stud-
ied and proposed another possibility for the 
eIF2α-mediated NMD inhibition, based on the 
spatial separation of the mRNAs and the RNA 
degradation machinery during stress [103]. 
Processing bodies (p-bodies) are foci scattered 
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through the cytoplasm lacking a membrane or 
physical delimitation, that contain RNA- 
degrading enzymes and RNAs, including PTC- 
containing transcripts [110]. Stress granules, on 
the other hand, are locals of translational repres-
sion formed in response to eIF2α phosphoryla-
tion during stress conditions [111, 112], that 
contain many translation initiation factors, 
untranslated mRNAs [112] and NMD factors, 
such as UPF1, SMG1 and UPF2 [113]. Using 
immunofluorescence assays, Gardner demon-
strated that in hypoxic conditions, eIF2α phos-
phorylation induces the formation of stress 
granules, that sequester UPF1 and, possibly, 
NMD targets, while the decapping enzymes 
required for RNA decay are localized to p- bodies, 
providing a plausible explanation for the impair-
ment of NMD activity [103]. This theory is sup-
ported by a recent report showing that, in 
unstressed cells, NMD activity is inhibited by 
cytoskeleton disruptors, with accumulation of 
UPF1, UPF3B and PTC-containing transcripts in 
p-bodies [114]. This indicates that, in fact, the 
p-bodies and the transit of NMD factors/sub-
strates to or from these cytoplasmic foci are 
important for normal NMD activity [114]. 
Although well supported, the model proposed by 
Gardner requires further investigation to answer 
some still open questions.

The presence of uORFs in some stress-related 
transcripts may provide an alternative mecha-
nism by which eIF2α phosphorylation inhibits 
NMD activity. In this case this is accomplished 
by specific, rather than global regulation of NMD 
[5]. One possible example of this is the ATF4 
mRNA that contains two uORFs, one of them 
overlapped with the main ORF. In unstressed 
cells, the low levels of phosphorylated eIF2α 
allow the translation of the uORFs, thus inhibit-
ing the translation of the downstream main 
ORF. However, in stress conditions, the increased 
levels of phosphorylated eIF2α induce translation 
reinitiation at the main ORF after translation of 
the first uORF, permitting ATF4 expression 
[115]. Indeed, it was demonstrated that ATF4 
mRNA is a direct NMD target and that the trans-
lation of the uORFs is related to its decay in 
unstressed cells, and to its increased stability in 

hypoxic cells [103]. Other likely examples of this 
type of regulation could be the stress-responsive 
proteins, CHOP and general control protein 
GCN4 (GCN4), both encoded by uORF- 
harboring transcripts [116, 117].

3.4.2  NMD Regulates 
the Magnitude 
of the Stress-Responses

Among the stress-related transcripts targeted by 
NMD in normal conditions, we can find some 
mRNAs that encode important factors of the ISR 
and UPR, such as PERK, ATF4, ATF3 and CHOP 
[11, 97, 103]. More recently, it was found that 
NMD also targets many components specific of 
the UPR, including IRE1α, fibronectin type III 
and SPRY domain containing 1 like (FSD1L), 
homocysteine-induced endoplasmic reticulum 
protein (HERP), toll-like receptor-specific co- 
chaperone for HSP90B1 (TNRC5) and TNF 
receptor associated factor 2 (TRAF2) [102]. 
Confirming the ability of NMD to target these 
stress-responsive genes, a recent proteomic study 
revealed that several UPR proteins upregulated 
by the ER stressor, dithiothreitol, were also 
upregulated after UPF1 knockdown [107]. This is 
particularly relevant, because it shows that NMD- 
mediated degradation of the mRNAs that encode 
these UPR factors is reflected at the protein level, 
suggesting a physiological role of NMD in cell 
homeostasis. Given this, it could be reasoned that 
NMD has the ability to regulate the magnitude of 
the ISR and the UPR.

The first evidence that NMD is able to regu-
late stress-responses came from a study con-
ducted by Gardner [103]. The author has shown 
that in U2OS (human-derived bone osteosar-
coma) cells rendered hypoxic, the eIF2α- 
dependent inhibition of NMD results in the 
upregulation and stabilization of the mRNAs that 
encode ATF4, ATF3 and CHOP. Additionally, the 
protein levels of these factors are higher in UPF1- 
depleted U2OS cells treated with tunicamycin, 
when compared to normal cells treated with the 
same ER-stressor. On the contrary, UPF1 overex-
pression decreases the mRNA levels of the ISR 
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factors. These findings indicate that NMD activ-
ity suppresses ISR magnitude, while its inhibi-
tion during stress increases the ISR [103]. On 
another study, Karam et al. assessed the physio-
logical impact of NMD in the UPR [102]. They 
found that UPF3B-depleted HeLa cells and mice 
exhibited higher UPR activation than control 
cells or littermate mice in response to the same 
doses of tunicamycin. Furthermore, they also 
studied the temporal kinetics of the UPR in the 
same cells treated with a low dose of tunicamycin 
and concluded that NMD-deficient cells exhib-
ited more rapid and increased expression of 
mRNAs encoding markers of UPR activation. 
Together, these data provided evidence that NMD 
raises the activation threshold of the UPR, and 
that by targeting and downregulating UPR fac-
tors, NMD prevents the triggering of a stress 
response in conditions of innocuous ER stress 
[102]. When the stimulus ceases and the stress is 
resolved, the UPR must be shut down, or other-
wise, it can activate pro-apoptotic pathways 
[100]. To test if NMD has an effect in the attenu-
ation of the UPR, Karam et al. induced a severe 
UPR with high doses of tunicamycin in the same 
UPF3B-depleted cells as above. They observed 
that in the termination phase of the stress response 
the NMD-deficient cells fail to downregulate the 
mRNAs encoding UPR activation markers, indi-
cating that NMD normally promotes the termina-
tion of the UPR, in a time-dependent manner 
[102].

The ability of NMD to shape stress responses 
allied to the previously discussed fact that it regu-
lates pro-apoptotic factors, suggest that NMD 
can also be involved in the apoptotic pathways 
derived from prolonged stress. Indeed, Sakaki 
et al. found that siRNA-mediated SMG6 knock-
down in HeLa (human-derived cervix cancer) 
cells and murine immortalized hepatocytes 
treated with tunicamycin induces a ~50% reduc-
tion in cell survival, when compared to control 
cells. In contrast, SMG6 overexpression increases 
survival of HeLa cells treated in the same condi-
tions [118]. Notably, this overexpression 
decreases the induction of CHOP that activates 
UPR-related pro-apoptotic pathways in situa-
tions of prolonged stress, further supporting that 

the pro-apoptotic response is reduced by overex-
pression of SMG6 [118]. In agreement with the 
observations from Sakaki et al., Karam et al. have 
shown, both in vitro and in vivo, that UPF3B 
depletion increases the apoptotic percentage of 
cells also treated with tunicamycin [102], indicat-
ing that NMD is critical for survival in response 
to ER stress.

Altogether, these results unveil a bi-directional 
control between NMD and the UPR with impor-
tant physiological implications for cell homeo-
stasis and survival. This regulatory link comprises 
several aspects: (i) by suppressing UPR, NMD 
imposes a threshold that filters the harmful stim-
uli; (ii) when bona fide stress is encountered, the 
UPR inhibits NMD activity, so that the cell can 
upregulate stress-responsive components and 
properly respond to the stress; (iii) when the 
stress is solved, NMD resumes and the UPR is 
terminated. It is worth noting that one mecha-
nism by which NMD accomplishes this, is 
through its ability to degrade the IRE1α mRNA, 
as tested by Karam et al. through rescue and gain- 
of- function experiments [102]. This is further 
supported by the proteomic study conducted by 
Sieber et al., where UPF1 depletion upregulated 
target-proteins of the IRE1α and the PERK path-
ways, while proteins activated by ATF6 were 
either downregulated or simply just did not 
respond to NMD inhibition [107]. This suggests 
that NMD and the UPR are linked by the PERK 
and IRE1α branches, but not by the ATF6 branch 
of the UPR.

3.5  NMD Presents 
a Pathophysiological Role 
in Cancer

So far, we have discussed the physiological 
implications of the gene expression regulation 
exerted by NMD.  However, NMD activity and, 
sometimes, its regulation, may also contribute to 
phenotypic aspects characteristic of several 
human diseases, being implicated in many patho-
physiological mechanisms. One such example is 
cancer, in which the tumor cells have exploited 
both the quality-control and the gene expression 
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regulatory facets of NMD to potentiate the devel-
opment of the disease [2]. On one hand, the 
selective acquisition of PTCs in tumor- suppressor 
genes allows the unconstrained growth of tumor 
cells. On the other hand, by fine-tuning NMD 
activity, these cells can favor the upregulation of 
specific genes required for the adaptation to the 
tumor environment [2, 119].

3.5.1  Cancer Selects Tumor- 
Favoring Mutations 
Through NMD

After performing a meta-analysis of thousands of 
mutations in human genes, Mort et  al. revealed 
that while oncogenes present mostly missense 
mutations, tumor-suppressor genes exhibit a 
higher number of nonsense mutations, many of 
which predicted to induce NMD [120]. 
Interestingly, several examples of PTC- 
introducing mutations in tumor suppressor genes 
have been reported in a diversity of cancers. For 
instance, microarray analysis after NMD inhibi-
tion with the translational-repressor, emetine, in 
mantle-cell lymphoma cell lines revealed that 
mutations in the tumor suppressor genes, p53 and 
retinoblastoma 1 (RB1), originate PTC-harboring 
transcripts. These were stabilized by emetine, 
suggesting that they are targeted by NMD [121]. 
Additionally, a PTC-harboring mutant transcript 
of p53 found in breast cancer presented increased 
mRNA stability after NMD inhibition, as did the 
resulting C-terminal truncated protein, when 
compared to the correspondent wild-type vari-
ants [122]. In patients with hereditary diffuse 
gastric cancer, around 80% of the mutations in 
the tumor suppressor E-cadherin gene generate a 
PTC.  The resulting E-cadherin mRNAs are 
upregulated in response to protein translational 
inhibitors and to knockdown of NMD factors, 
suggesting that their normal downregulation is 
mediated by NMD [123]. Similarly, around 80% 
of the PTC-bearing alleles found in breast cancer 
type 1 susceptibility protein (BRCA1) gene, in 
breast and ovarian cancers, are capable of trigger-
ing NMD [124]. The same was observed for 
breast cancer type 2 susceptibility protein 

(BRCA2) gene in breast cancer, where most of 
the PTC-introducing mutations apparently desta-
bilize the generated transcripts [125]. In these 
examples, the quality-control function of NMD is 
important to degrade the mutated transcripts and 
prevent the production of proteins with potential 
dominant-negative activity that could induce 
tumorigenesis [2], as has been shown for the 
tumor-suppressor genes WT1, in kidney cancers 
[126], and p53, in pancreatic adenosquamous 
carcinoma (ASC) [127]. However, there are sce-
narios where this protective NMD-function may 
work in the opposite direction. For instance, if 
the PTC-bearing allele encodes a protein without 
dominant-negative properties that, instead, pre-
serves part of the normal function, NMD activity 
would potentiate the development of cancer by 
degrading the correspondent mRNA [2].

While trying to understand the rules that gov-
ern NMD targeting in human cells by matching 
exome and transcriptome data from human 
tumors, Lindeboom et  al. found that PTCs are 
enriched in regions of tumor-suppressor genes 
predicted to trigger NMD [128]. This study has 
also exposed how tumors use NMD activity to 
impair tumor-suppressor gene function and pro-
mote cancer. The first possibility is the combina-
tion of a PTC-bearing allele that is targeted by 
NMD with an heterozygous deletion of the wild- 
type allele, achieving biallelic inactivation of the 
tumor-suppressor. Another possibility is the com-
bination of the PTC-bearing allele with a haplo-
insufficient version of the wild-type allele. 
Alternatively, PTCs positioned in regions that fail 
to trigger NMD may lead to truncated proteins 
that can be functionally inactive, degraded, or, in 
the worst case, present dominant-negative activ-
ity [2, 128].

3.5.2  NMD Normally Works 
as a Tumor Suppressor 
Pathway

There is both experimental and clinical evidence 
suggesting that NMD, as an expression regulator 
of some wild-type transcripts, can suppress 
tumorigenesis. Firstly, Wang et  al. found that 
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overexpression of UPF1  in many cancer cell 
lines, including prostate cancer (PC3), colon can-
cer (HCT116) and melanoma (A375), reduced 
the number and size of the tumor cell colonies 
formed in soft agar, when compared to the con-
trol cells [97]. Similarly, no significant tumor 
growth was verified after injection of UPF1- 
overexpressing PC3 cells as tumor explants in 
nude mice [97]. After performing an expression 
array analysis in U2OS cells with repressed 
NMD, the authors found that NMD targets a wide 
variety of transcripts that encode important fac-
tors for tumorigenesis, including proteins 
involved in cell growth, cell cycle, growth factor 
signaling, apoptosis and cell migration [97]. In 
addition to these findings, clinical studies have 
reported UPF1 somatic mutations in patients 
with ASC [127] and inflammatory myofibroblas-
tic tumors (IMT) [129], with relevant conse-
quences for the patients. These mutations were 
found to cause alternative splicing of the UPF1 
pre-mRNA, leading to low or undetectable levels 
of UPF1. Consequently, NMD efficiency is 
decreased in these tumors, as suggested by an 
increase in the mRNA levels of specific NMD 
targets [127, 129]. Interestingly, one of the 
increased NMD substrates found in IMTs was the 
mRNA encoding the mitogen activated protein 
kinase kinase kinase 14 (MAP3K14 or NIK), a 
potent activator of the proinflammatory NF-κB 
signaling pathway. IMTs with UPF1 mutations 
presented elevated levels of chemokines and 
immune cells, supporting a model in which UPF1 
mutations impair NMD activity, leading to NIK 
upregulation and NF-κB induction, which con-
tributes to the immune infiltration characteristic 
of IMTs. [129]. Reduced UPF1 expression, due 
to promoter hypermethylation, was also found in 
hepatocellular carcinoma (HCC) cells and tis-
sues, and was correlated with poor prognosis 
[130]. Similarly, in lung adenocarcinoma (ADC) 
UPF1 was found to be downregulated with the 
consequent upregulation of various TGF-β sig-
naling components, which are essential for the 
epithelial-to-mesenchymal transition that drives 
the disease [131]. Altogether, these studies sug-

gest that, by targeting transcripts encoding 
important factors for cell growth, differentiation, 
proliferation and survival, NMD acts as a tumor 
suppressor pathway. On the contrary, in tumors 
with impaired NMD, these transcripts can be sta-
bilized, creating favorable conditions for tumor 
proliferation.

3.5.3  The Tumor Microenvironment 
Inhibits NMD and Promotes 
Tumorigenesis

The presence of UPF1 mutations in many can-
cers with favorable implications to the tumori-
genic process may indicate that NMD impairment 
is part of the adaptive mechanisms that tumor 
cells have adopted to leverage survival and prolif-
eration. In fact, NMD inhibition appears to be a 
consequence of the tumor microenvironment 
[97], where the increased cell mass and the insuf-
ficient vasculature induce cell stresses that 
include hypoxia, nutrient deprivation, ROS pro-
duction and ER stress [132]. As discussed above, 
these type of stimuli determine the phosphoryla-
tion of eIF2α and the consequent decrease in the 
NMD magnitude [97, 102, 103, 105]. Supporting 
this notion, Wang et  al. found that PC3 cells 
grown as three-dimensional tumor explants in 
mice present decreased NMD efficiency, when 
compared to PC3 cells cultured in monolayers 
[97]. Additionally, the tumor explants presented 
areas of significant cytoplasmic eIF2α phosphor-
ylation [97]. On another line of investigation, 
Wang et  al. showed that overexpression of the 
oncogene, MYC, in a B-cell tumor line also 
induces eIF2α phosphorylation and NMD inhibi-
tion, apparently through induction of ROS [105]. 
A major implication of this stress-mediated 
NMD inhibition in tumors is the stabilization and 
upregulation of transcripts encoding stress- 
responsive factors, including the ones from the 
ISR and the UPR. This triggers a set of adaptive 
mechanisms that allow the tumor cells to prolif-
erate in the harmful microenvironment they gen-
erate [97, 133, 134].
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Tumor formation is frequently accompanied 
by the production of ROS as a result of homeo-
static imbalances or from mutations in mitochon-
drial genes or oncogenes, like MYC [104, 105, 
132]. The ROS-mediated oxidative damage can 
be avoided with the production of Glutathione 
(GSH), a tripeptide comprised of cystine (oxi-
dized form of cysteine), glutamic acid, and gly-
cine, that neutralizes free radicals and reactive 
oxygen compounds [5, 104]. The cystine/gluta-
mate exchanger SLC7A11 is a subunit of the 
xCT amino acid transporter system, a rate- 
limiting channel responsible for the cellular 
uptake of cystine for GSH production [104]. 
Interestingly, SLC7A11 mRNA is an NMD target 
that is upregulated in stress conditions [104]. It 
was shown that the NMD inhibition mediated by 
the stress-induced eIF2α phosphorylation stabi-
lizes the SLC7A11 transcript. This is reflected 
into an increase in the SLC7A11 protein expres-
sion and the intracellular GSH levels, which con-
fers cell resistance to oxidative stress [104].

Another stress experienced by tumors is the 
insufficient supply of amino acids. This induces 
NMD inhibition through phosphorylation of 
eIF2α by the GCN2 and PERK kinases as part of 
the ISR and the UPR, allowing the upregulation 
of ATF4 and its downstream targets that include 
genes involved in amino acid synthesis and trans-
port [11, 134]. In these conditions, NMD inhibi-
tion also induces autophagy, an adaptive recycling 
mechanism that allows the cell to replenish its 
amino acid and energy stocks in conditions of 
metabolic stress [135]. During autophagy, the 
cell involves the targeted organelle or protein 
aggregate in auto phagosomes that then fuse with 
lysosomes, responsible for the recycling process 
[134, 135]. The stabilization of ATF4 mRNA due 
to NMD inhibition is, at least in part, responsible 
for autophagy induction during stress. Indeed, 
Wengrod et al. have shown that ATF4 depletion 
rescues autophagy inhibition in the face of 
impaired NMD [135]. The authors have also 
found that inhibition of autophagy with chloro-
quine in HCT116 cells depleted of UPF1 or 
UPF2 present decreased cell viability and 

increased apoptosis. In contrast, UPF1 overex-
pression reduces the sensitivity of the cells to the 
effects of chloroquine, suggesting an intolerance 
to NMD inhibition in the absence of autophagy 
[135]. Together, these results support the idea 
that autophagy is an adaptive response to NMD 
inhibition, which can be used by tumor cells to 
survive in conditions of metabolic stress.

Although NMD inhibition appears to be an 
important mechanism for tumor progression, it 
seems to be contradicting with the fact that UPF1 
depletion and reduced NMD activity are also 
related to cell death. Further densifying this para-
dox, two recent studies have shown that different 
pro-apoptotic agents, including chemotherapeu-
tics, have the ability to inhibit NMD through 
caspase-mediated cleavage of UPF1 and UPF2 
[136, 137]. These truncated forms present 
dominant- negative activity that lead to the upreg-
ulation of apoptosis-related NMD targets, creat-
ing a positive feedback loop responsible for 
driving cell death [136, 137]. One possible expla-
nation for the opposite outcomes of NMD inhibi-
tion during tumorigenesis may rely on the tumor 
background and on the combination of mutations 
that it has acquired overtime, which may help 
tumor cells to overcome deleterious aspects 
derived from the normal biological processes [2].

3.6  Integrative Network 
Approach to Explore Links 
Between NMD, 
Development, Stress 
and Cancer

There are significant and important links between 
biological processes that can be unveiled through 
protein physical interactions, and by regulatory 
modules that control the condition specific acti-
vation of the related protein complexes [138]. 
These physical interactions may be the basis of 
information flow in signaling events (phosphory-
lation, dephosphorylation or other protein modi-
fications), or be relevant for correct protein 
function by controlling protein subcellular local-
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ization, conformation or stability. The search in 
molecular interaction databases for an enrich-
ment in physical interactions between proteins 
involved in NMD and other processes may con-
firm already known mechanisms, but can also 
highlight new plausible links between processes 
that are not yet mechanistically understood. By 
reviewing published data about protein-protein 
interactions, we present an independent network- 
based approach to uncover complementary evi-
dences of interactive and cooperative relationships 
between NMD, development, stress and cancer. 
The data integrated in this approach was extracted 
from different publicly available databases.

The first step of our analysis was to search for 
proteins associated with each molecular cate-
gory: 703 cancer-related proteins extracted from 
the Catalogue Of Somatic Mutations In Cancer 
(COSMIC) database [139, 140]; 293 stress- and 
963 development-related proteins extracted from 
Reactome database [141, 142]; 24 NMD-factors 
extracted from published work [143]. Each group 
of proteins was used to query a human protein- 
protein interactome to obtain protein-protein 
interactions (PPI) between NMD-factors and the 
proteins associated with the other categories. The 
interactome is composed by an overlay of differ-
ent human PPI databases: The Human Reference 
Protein Interactome (HuRI) [144–148], Agile 
Protein Interactome DataAnalyzer (APID) [149], 
OmniPath [150] and inBio Map [151]. These 
interactions were submitted to a statistical analy-
sis (hypergeometric test) to avoid non-specific 
interactions. In this way, only proteins that were 
statistically enriched in interactions with NMD- 
factors were included in the NMD-cancer-stress- 
development network. From this query, 526 
interactions between NMD-factors and 193 
cancer- related proteins, 471 between NMD- 
factors and 133 stress-related proteins and 718 
between NMD-factors and 225 development- 
related proteins were obtained. The fact that these 
proteins have in average 3 interactions with 
NMD-factors support the relation between these 
processes. Additionally, it is important to note 
that some of these PPI are shared between cate-

gories, since some proteins are associated simul-
taneously with more than one of the three studied 
processes (development, cancer and stress).

Since PPIs depend on the presence of both 
proteins in the same place at the same time, 
coregulation events and coexpression among 
such proteins strengthens the functional rele-
vance of the interactions. Transcription factors 
(TFs) and miRNAs are important regulators of 
gene expression and their action can translate 
into highly coordinated coregulation events. This 
coregulation can also be analyzed via a network 
approach [152, 153], looking for regulators in 
common between NMD-factors and other pro-
teins in the NMD-cancer-stress-development net-
work. For a stricter analysis, only regulators 
targeting more than two NMD-factors were con-
sidered (miRNA [154]; TFs [155–157]). In aver-
age, these proteins have 1 miRNA and 8 TFs in 
common with three or more NMD-factors. A 
complementary view of coregulation is coexpres-
sion. Therefore, coexpression data [158] was 
used to detect which proteins are coexpressed 
with NMD-factors. Interestingly, we detect a 
coexpression interaction with 4 NMD-factors, in 
average. Altogether, the coregulation and coex-
pression interactions increase the strength of 
molecular links already revealed by the PPIs.

The analysis, above described, produced a 
large network of interactions displaying how 
NMD-factors are linked to proteins associated 
with cancer, stress and/or development (a table 
with the network proteins and attributes can be 
found in Annex 1). Considering the size of the 
network, a set of cutoffs was applied in each type 
of data to present a subnetwork with the most rel-
evant proteins (Fig.  3.2). Apart from NMD- 
factors, the proteins presented must interact with 
at least 3 NMD-factors, are coregulated with 
NMD via 1 miRNA and 5 transcription factors 
(or more) and are coexpressed with at least 2 
NMD-factors. The subnetwork is composed of 
37 proteins related to different cancer types (11 
germline tumors and 63 somatic tumors), 45 pro-
teins related to stress (3 associated with the 
unfolded protein response, 34 with heat stress 
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and 8 with hypoxia-induced stress) and 37 related 
to development (11 associated with activation of 
HOX genes during differentiation, 25 with axon 
guidance, 8 with transcriptional regulation of 
pluripotent stem cells and 1 with transcription 
regulation of white adipocyte differentiation). 
The statistical significance of these findings can 
be assessed by a randomization test, repeating the 
same analysis 1000 times, using random groups 
of 24 (the number of NMD-factors) neighbors of 
cancer, development and stress proteins. After 
applying the above-mentioned thresholds, the 
results showed a maximum of 13 cancer-, 13 
stress- and 13 development-related proteins sup-
porting that the number of cancer-, stress- and 
development-related proteins with strong interac-
tions with NMD is significantly higher than 
expected by chance (p  <  0.001). Additionally, 
75% of the random analysis showed 2 or less can-

cer- and stress-related proteins, and only 1 or 
none of development-related proteins. This con-
firms that the number of proteins associated with 
these processes that are linked to NMD-factors is 
extremely unlikely to be observed by chance, 
suggesting its biological significance. 
Furthermore, since many NMD-factors are also 
auto-regulated through NMD, additional infor-
mation regarding NMD targeting was introduced 
in the analysis. Taking advantage of published 
expression data in NMD inhibited conditions 
(accomplished via UFP1 knockdown) it is possi-
ble to identify proteins targeted directly or indi-
rectly by NMD [137]. This step revealed the 
presence of NMD-targets in the subnetwork: 13 
cancer-, 18 stress- and 17 development-related 
proteins.

Looking into the subnetwork proteins 
(Fig. 3.2), we can observe proteins already known 

Fig. 3.2 A subnetwork of the analysis output that shows 
the NMD factors at the center and the proteins related to 
the other biological processes at the periphery. Protein- 
protein interactions are represented by straight lines 

(edges) that link pairs of proteins (nodes). Proteins are 
labeled with their official gene symbols. The NMD targets 
are highlighted with black colored borders
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as modulators of the NMD pathway, such as 
PABPC1 [52], ETF1 (also known as eRF1) [27, 
52], GSPT1 [27, 52] (also known as eRF3A), 
nuclear cap-binding protein subunit 2 (NCBP2) 
[159], DCP2 [49], EIF4G1 [160] and serine/
threonine- protein phosphatase 2A regulatory 
subunit A (PPP2R1A) [161], suggesting that 
Fig. 3.2 depicts some links that represent mecha-
nisms already studied in the NMD context. An 
example related to cancer is the cellular tumor 
antigen p53 protein (TP53), where NMD plays a 
critical role regulating the expression of p53β 
isoform. Since the aberrant expression of p53β 
and dysfunctional NMD are implicated in can-
cers, this regulation contribute to explain the 
underlying mechanism of tumorigenesis [162]. 
An example related to stress is the serine-protein 
kinase ATM, an important kinase in DNA  damage 
response, which belongs to the same protein fam-
ily of SMG1, and like the latter, ATM is capable 
of phosphorylating UPF1 [163]. Although, the 
functional consequences of UPF1 phosphoryla-
tion by this protein remains to be elucidated, it 
opens the possibility that phosphorylation of 
UPF1 may not only modulate its activity in 
NMD, but also recruit this protein into the stress 
response network [164]. A development-related 
example is the actin-related protein 2 (ACTR2), 
tubulin alpha-1B chain (TUBA1B) and beta-4B 
chain (TUBB4B), which encode for a protein 
related with actin polymerization [165] and tubu-
lin chains (the major constituent of microtu-
bules), respectively. As mentioned above in this 
chapter, the NMD factors and substrates are 
transported through cytoplasmic foci, the 
p- bodies [110, 114]. Such transport is modulated 
by the cytoskeleton and, interestingly, the disrup-
tion of actin filaments or microtubules leads to 
the inhibition of NMD [114]. In conclusion, this 
analysis evidences a broader, multi-scale per-
spective for studying NMD and related biological 
processes, which can point to new molecular 
players through which NMD can modulate or be 
modulated by other physiological processes.

3.7  Conclusions

As discussed in this chapter, NMD is important 
to the mammalian cell, not only as a vigilant of 
the quality of the transcriptome, but also as a 
regulator of many essential biological processes 
that occur from the early stages of the embryonic 
development to adulthood and beyond. For the 
correct biological outcome to be achieved, NMD 
activity must be tightly regulated to act on the 
proper targets at the right time and place. 
Although most of the regulatory mechanisms/
pathways that affect NMD magnitude are still 
unknown, some of them already started to be 
unveiled. This is the case, for instance, of the 
miR-128 expression and the phosphorylation of 
eIF2α that, as we discussed above, are important 
regulatory events of the NMD activity during 
neural development and stress conditions, respec-
tively. In these cases, NMD downregulation has a 
positive outcome. However, there are situations 
where NMD modulation can have a pathophysi-
ological result. This is the case of cancer, where 
NMD inhibition mediated by the tumor microen-
vironment provides the adaptive conditions nec-
essary for tumor cells to survive and proliferate. 
The number of examples given here are far from 
the extensive list of biological processes and dis-
eases where NMD can be found to play important 
roles. Knowing them and understanding the com-
plexity of the molecular mechanisms and interac-
tions they present with NMD is crucial for the 
development of new and more personalized ther-
apies for related pathologies.
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Abstract
RNA degradation is considered a critical post-
transcriptional regulatory checkpoint, main-
taining the correct functioning of organisms. 
When a specific RNA transcript is no longer 
required in the cell, it is signaled for degrada-
tion through a number of highly regulated 
steps. Ribonucleases (or simply RNases) are 
key enzymes involved in the control of RNA 
stability. These enzymes can perform the RNA 
degradation alone or cooperate with other pro-
teins in RNA degradation complexes. 
Important findings over the last years have 
shed light into eukaryotic RNA degradation 
by members of the RNase II/RNB family of 
enzymes. DIS3 enzyme belongs to this family 
and represents one of the catalytic subunits of 
the multiprotein complex exosome. This 
RNase has a diverse range of functions, mainly 
within nuclear RNA metabolism. Humans 

encode two other DIS3-like enzymes: DIS3L 
(DIS3L1) and DIS3L2. DIS3L1 also acts in 
association with the exosome but is strictly 
cytoplasmic. In contrast, DIS3L2 acts inde-
pendently of the exosome and shows a distinc-
tive preference for uridylated RNAs. These 
enzymes have been shown to be involved in 
important cellular processes, such as mitotic 
control, and associated with human disorders 
like cancer. This review shows how the impair-
ment of function of each of these enzymes is 
implicated in human disease.

Keywords
Cancer · DIS3 · DIS3L1 · DIS3L2 · 
Exoribonuclease · Exosome · Polyadenylation 
· RNase · RNA degradation · Uridylation

4.1  Introduction

RNA is a labile molecule, by its chemical nature, 
and a plethora of events and factors ensure its 
protection or decay. The termini of cytoplasmic 
mRNAs are usually protected by a 7-methyl gua-
nosine (m7GpppG) at the 5′ end cap, and by a 
long terminal poly(A) tail at the 3′ end, which 
promotes the association of Poly(A) Binding 
Proteins (PABPs) (Fig. 4.1a). These RNA modifi-
cations in the ends of the mRNA molecules war-
rant their stability. Specific protein factors 
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associate with each of the structures in the mRNA 
extremities, and its physical interaction holds the 
mRNA in a circular conformation [1, 2]. This 
closed-loop mRNA structure is recognized by 
specific translation initiation complexes [2–5]. 
When a specific RNA is no longer required for 
the cellular metabolism, the molecule is signaled 
for degradation through a number of highly regu-
lated steps (Fig. 4.1a).

4.2  Mechanisms of Cytoplasmic 
mRNA Degradation 
in Humans

The stability of mRNAs depends on intrinsic fea-
tures of its sequence and on the cellular demands 
for the protein it encodes. For instance, specific 
features such as AU rich elements (AREs) that 
consist on stretches of adenine and uracil nucleo-
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Fig. 4.1 (a) Overview of RNA degradation pathways in 
humans. RNA transcripts first undergo removal of the 3′ 
poly(A) tail through a deadenylation step (performed by 
PAN2/PAN3 complex followed by the CCR4/NOT). 
Following this step, the RNA becomes vulnerable and can 
be degraded 3′-5′ by the Exosome-DIS3/DIS3L1 or by 
DIS3L2 (that prefers uridylated RNA substrates), inde-
pendently of the exosome. Following deadenylation, 
RNAs can also be decapped by DCP1/DCP2 (removal of 

the 5′-cap), a step stimulated by Lsm1–7–Pat1 complex, 
exposing the transcripts to the 5′-3′ exoribonuclease 
XRN1. (b) Correlation between DIS3 enzymes and 
human disease. Scheme of human diseases that have been 
related with overexpression or dysfunction of DIS3, 
DIS3L1 and DIS3L2. Dashed arrows correspond to cor-
relations that need further confirmation. Each enzyme- 
disease association represented in the picture is developed 
in the main text, with the respective references 
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tides within the 3′UTR of some mRNAs [6–9] 
are able to promote or protect RNA from degra-
dation [10–12]. The 3′UTR of the mRNAs can 
also contain other specific sequences that target 
its decay trough the binding of regulatory 
microRNAs (miRNAs) [13–15].

Under particular circumstances, like in cellu-
lar quality control mechanisms, endonucleolytic 
cleavage can directly disrupt the closed-circle 
RNA conformation and trigger subsequent decay, 
from either of the RNA extremities ([16, 17]; see 
other chapters in this volume for details on qual-
ity control mechanisms). Though, in general, 
mRNAs must be first deadenylated or decapped 

to enable the access of exoribonucleases and trig-
ger degradation.

For many cytoplasmic mRNAs, decay starts 
with the shortening or removal of the poly(A) 
tail. Deadenylation releases the PABPs that pro-
tect the (A) tail and leaves the 3′ end exposed to 
exoribonucleases. This is considered the main 
event that signals mRNAs for degradation from 
the 3′ end. The length of the poly(A) tail depends 
on the organism, but the regulation of its exten-
sion is always a dynamic process that involves 
the concerted action of poly(A) polymerases 
(PAPs) and poly(A) specific 3′ exonucleases 
(deadenylases). This allows the fine-tuning con-
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Fig. 4.1 (continued)
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trol of mRNA stability. Eukaryotic genomes 
encode a wide variety of deadenylases [18]. In 
humans, initial deadenylation is performed by the 
PAN2/PAN3 complex (reviewed in [19–21]) fol-
lowed by the action of the CCR4/NOT complex 
(Fig. 4.1a) [22–26].

Following deadenylation, degradation can 
alternatively proceed from the 5′ end requiring the 
prior removal of the 5′-cap of the mRNA. The dec-
caping process is regulated by a plethora of activa-
tors and inhibitors [27–29]. One of these, the 
Lsm1–7-Pat1 complex, preferentially binds the 
shortened 3′-terminal adenosine extensions of the 
deadenylated mRNAs to stimulate decapping and 
inhibit exosome attachment [30, 31]. The reaction 
products of decapping enzymes are the 5′ m7GDP 
cap and an unprotected 5′ monophosphate RNA 
that is then accessible for XRN1 processive and 
complete degradation [32, 33]. Decapping process 
commits RNAs to 5′-3′ degradation since XRN1 
directly interacts with the decapping enzymes 
(DCP1/DCP2) [32] (Fig. 4.1a).

In contrast to the 5′-3′ pathway, where XRN1 
is the only known cytoplasmic 5′-3′ exoribonu-
clease, there are several options in the degrada-
tion from the 3′ end. After initial deadenylation, 
the multisubunit RNA exosome complex may 
further degrade the shortened oligo(A) tail and 
proceed  with the 3′-5′ degradation into the 
mRNA body. Exosome activity depends on the 
presence of specific cofactors, called “superkill-
ers” or Ski proteins that regulate its activity. 
Human homologs of the Ski family  – SKIV2L 
(Ski2), TTC37 (Ski3) and WDR61 (Ski8), asso-
ciate in the Ski complex [26, 34]. The remaining 
mRNA fragment with its 5′-cap (m7GpppG) is 
hydrolyzed by the scavenger decapping enzyme 
(DCPS) [35]. DCPS is a m7G-specific pyrophos-
phatase that shows specificity towards RNA frag-
ments not longer than 10 nts (Fig. 4.1a) [36–38].

DIS3 enzyme is the essential catalytic subunit 
of the exosome. The human genome encodes 
three members of DIS3 family: DIS3, DIS3L1 
and DIS3L2 enzymes and their characteristics 
and specifications will be described therein in 
this chapter. While both DIS3 and DIS3L1 inter-
act with the exosome ring, in different cellular 
locations [39–43], DIS3L2 does not. The enzyme 

represents a 3′-5′ RNA decay pathway alterna-
tive to degradation by XRN1 and the exosome 
[44, 45]. DIS3L2 shows a distinctive preference 
towards uridylated substrates, which prompted 
the discovery of new roles for 3′-uridylation in 
cytoplasmic mRNA decay. It was proposed that 
the requirement of deadenylation as an mRNA 
decay signal can be overcome trough 3′ oligouri-
dylation of transcripts. It can either stimulate 
decapping and consequent degradation in the 
5′-3′ direction, through Lsm1–7/Pat1 binding, or 
directly activate 3′-5′ DIS3L2 dependent degra-
dation [46] (Fig.  4.1a). The importance of this 
uridylation-dependent pathway in bulk mRNA 
degradation was highlighted by the substantial 
technological progresses in RNA analysis in the 
recent years. Novel approaches as TAIL-seq 
revealed that 3′ end mRNA modifications such as 
urydilation, cytidylation or guanylation are also 
frequent [47]. The use of oligo(dT)-based prim-
ing methods, due to the long poly(A) tails in the 
3' end of eukaryotic mRNAs, had previously 
underestimated its presence.

In general, regulation of gene expression in 
eukaryotic cells occurs through multiple parallel, 
partially redundant, mRNA decay pathways. This 
is further illustrated by the multiplicity of 
enzymes, which are able to catalyze the same 
reaction, and their functional redundancy. 
RNases’ activity is also important for RNA sur-
veillance and processing. Their high degree of 
conservation in different organisms and the spe-
cific phenotypes following their individual loss 
suggest defined roles within the cell.

Beyond the advances on the mechanisms 
whereby these enzymes affect cellular processes, 
structural information is crucial to explain the 
mechanism of action and exact function of the pro-
tein alone or in the context of a multiprotein com-
plex. Structural changes across species provide 
insight into the evolution and conservation of the 
protein architecture. In fact, important findings 
over the last years have shed new light onto the 
mechanistic details of RNA degradation by mem-
bers of the RNase II/RNB family of exoribonucle-
ases, including DIS3 enzymes [45, 48–56]. A 
phylogenetic comparison of different Dis3 homo-
logues in eukaryotes indicates a clear division of 
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three Dis3-like protein families, with the Dis3 
group being the most conserved and the Dis3L1 
and Dis3L2 groups being more divergent [45].

A growing number of publications associate 
DIS3-enzymes with several human diseases [57–
60]. In this review we will try to sum up the 
mechanistic and structural details of these RNase 
II-like enzymes, and how human disorders can 
result from the associated defects.

4.2.1  DIS3

DIS3 (defective in sister chromatid joining) gene 
is located on human chromosome 13 (q22·1), and 
it encodes for a highly conserved ribonuclease 
(also known as Rrp44 in yeast) that contains both 
3′-5′ exoribonuclease and endoribonuclease activ-
ities [40, 42, 61]. This RNase constitutes an essen-
tial catalytic subunit of the exosome [62]. This 
multiprotein  complex is composed of a catalyti-
cally inert ring-shaped 9-subunit core with a prom-
inent central channel and associated catalytic 
subunits [61, 63–65]. The composition of its cata-
lytic subunits varies accordingly to cellular local-
ization. Exosome-associated DIS3 enzyme exists 
mainly in the nucleus, where it acts on a vast array 
of different RNAs, and has a diverse range of func-
tions in RNA metabolism including processing, 
maturation and quality control [66–71].

The specific domains of DIS3 dictate its deg-
radation preferences. DIS3 is composed by two 
cold shock domains (CSD1 and CDS2), followed 
by an RNB and an S1 domain. Both CSDs and 
the S1 domain contribute to RNA binding. At the 
N-terminal region, it contains a PilT N-terminal 
(PIN) domain [40, 42, 51, 72] and also a CR3 
motif involved in the binding of DIS3 to the exo-
some [73]. Both RNB and PIN domains are 
responsible for RNA degradation activity. The 
RNB catalytic domain is a hallmark of the RNase 
II protein family, and confers to DIS3 the ability 
to cleave RNA in a highly processive manner [51, 
61, 74]. Arraiano’s lab contributed to the resolu-
tion of the crystal structure of the family proto-
type, E. coli RNase II, and to its extensive 
functional characterization [49–51]. This was an 
important breakthrough in the understanding of 

the mechanism of action of this ubiquitous family 
of proteins. Moreover, the determination of the 
electron microscopy structure of yeast Rrp44 
(Dis3) suggested that the RNA recruitment 
mechanism is conserved [75]. The knowledge 
acquired by these model organisms was crucial 
for the construction of the 3D model of human 
DIS3. Its exoribonuclease activity is dependent 
on four conserved aspartic acid residues (D488, 
D487, D485, D489) that coordinate two magne-
sium ions in the catalytic center [61, 63]. The 
RNB active site in DIS3 is responsible to hydro-
lyze single-stranded RNA (ssRNA) in a 3′–5′ 
direction, releasing one nucleotide at a time and 
leaving an end product of 4 nts [51, 70, 76–78]. 
Only ssRNAs with a minimum length of 7 nts can 
be cleaved [76]. Dis3/Rrp44 is also able to 
unwind and digest structured RNAs as long as 
there is an unstructured region of ~4 nts at the 3′ 
terminus [79].

The PIN domain in DIS3 confers the ability to 
cleave RNA endoribonucleolytically [40, 42, 43]. 
PIN-like domains constitute a widespread 
 superfamily of nucleases with representatives in 
all kingdoms of life [80, 81]. Combination of 
endoribonuclease and exoribonuclease activities is 
a widespread feature of RNA-degrading machines 
from bacteria to humans [48]. Both DIS3 activities 
cooperate with each other in the degradation of 
RNA molecules [40, 42, 43, 82]. The PIN domain 
is able to cleave circular and linear ssRNAs, pref-
erentially with a 5′ monophosphate [40, 42]. Its 
active site is composed of four acidic amino acids 
essential for endoribonuclease activity (E97, D69, 
D177 and D146) that coordinate two divalent 
metal ions, and Mn2+ is  the preferred ion for its 
activity [40, 42]. It was proposed that the role of 
the PIN domain is to assist in the release of RNA 
substrates that are stalled at sites with strong sec-
ondary structures [83]. Besides its endoribonucle-
ase activity, the PIN domain has also a structural 
role, being necessary for DIS3 association with the 
core exosome [39, 42, 43, 84].

Like in other organisms, such as Drosophila 
and yeast, human DIS3 is essential for survival 
[85, 86]. This RNase together with the exosome 
complex play a crucial role in maintaining the 
fidelity of gene expression. In the nucleus, the 
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exosome-associated DIS3 is involved in the deg-
radation of a vast range of RNAs, including 
protein- coding RNAs, stable RNA species such 
as ribosomal RNA (rRNA), transfer RNA (tRNAs) 
and small nucleolar RNAs (snoRNAs), introns, 
long non-coding RNAs (ncRNAs), miRNAs and 
also unstable RNAs products, like Promoter 
Upstream Transcripts (PROMPTs) [87].

An impaired RNA surveillance system can 
compromise RNA homeostasis, having detrimen-
tal consequences for multiple biological processes, 
which may result in malignancy [88]. Indeed, an 
increasing number of publications have associated 
dysregulation of DIS3 with human disease, namely 
cancer (reviewed by [60, 89]). Sequencing data 
have identified DIS3 gene as one of the most fre-
quently mutated genes in multiple myeloma (on 
average in 11–18.5% of patients) [58, 90–93]. This 
constitutes the second most frequent hematologic 
tumor after lymphomas [94]. In multiple myeloma 
patients, DIS3 mutations were detected in highly 
conserved regions along PIN, CSD2, RNB and S1 
domains [58, 90, 91, 93]. However, the mutations 
in the RNB domain seem to be more prevalent for 
the development of the  disease [58, 90, 91], 
and contain mutational hotspots (D488, E665 and 
R780) [90, 93].

Tomecki and co-workers have studied 
Multiple myeloma mutations that abolish or 
cause dysfunction, without total inactivation, of 
DIS3 RNB activity in vitro [85]. The results indi-
cated that the point mutations D487N, S477R, 
G766R and R780K cause significant aberrations 
on exoribonucleolytic activity. DIS3 amino acid 
changes with significantly decreased activity in 
vitro gave rise to a slower cellular proliferation 
rate in HEK293-derived cells [85]. DIS3- 
mutations such as R780K, an amino acid involved 
in RNA binding, also revealed an abnormal RNA 
metabolism, with accumulation of 5.8S process-
ing intermediates, tRNAs, RNA polymerase III 
transcripts and PROMPTs [85].

Szczepińska and co-workers also observed a 
major role of DIS3 in maintaining RNA polimer-
ase II transcriptome homeostasis and in the regu-
lation  of PROMPTs  [87]. PROMPTs are 
transcribed in reverse orientation to most active 
protein coding genes, and cover ∼1% of the 

human genome [72, 95]. Although the biological 
role of PROMPTs has yet to be elucidated, there 
are evidences that these RNAs could serve impor-
tant functions in human cells [96]. For instance, 
the PROMPT HIF2PUT was suggested to be a 
novel regulator of osteosarcoma, the most com-
mon primary bone malignancy [96]. The observa-
tion that PROMPTs were the most prominent 
targets of DIS3 (>50-fold increase in DIS3 mutant 
cells), indicates that there are no alternative path-
ways for their decay, making their connection 
with DIS3 and disease necessary to be explored.

Multiple myeloma associated mutations were 
also mapped on PIN domain, showing only small 
effects on cell growth [85]. However, when muta-
tions in PIN and RNB domains are combined, a 
synergistic effect in the proliferation and meta-
bolic activity is observed in human cells [85, 87].

Human cells bear two DIS3 isoforms that dif-
fer in the size of the PIN domain. Isoform 1 
encodes a full-length PIN domain, whereas the 
PIN domain of isoform 2 is shorter and misses a 
segment with conserved amino acids [52]. A 
study by Robinson and co-workers [52] antici-
pated that different ratios of the two PIN iso-
forms could be characteristic of several 
haematological cancers, namely Multiple 
Myeloma [52]. Isoform 1 was found in higher 
levels than isoform 2  in Multiple Myeloma 
patient samples and all cancer cell lines tested 
[52]. Contrastingly, healthy donors and Acute 
Myeloid Leukemia and Chronic Myelomonocytic 
Leukaemia patients have similar levels of both 
isoforms. Regarding leukaemias, in Acute 
Myeloid Leukemia (a cancer of the myeloid line 
of blood cells) missense mutations in DIS3 
account for 4% of patients and were all found in 
the RNB domain [59]. In patients with Chronic 
Lymphocytic Leukemia (a monoclonal disorder 
characterized by a progressive accumulation of 
abnormal lymphocytes) DIS3 locus, 13q22, is 
often deleted [97]. This evidence together with 
DIS3 mutations in several cancers, suggest that 
DIS3 may function as a tumor suppressor gene.

Increased levels of DIS3 mRNA and protein 
have also been proposed as one of the causes of 
other types of cancer. This is the case of epithelial 
ovarian cancer in which DIS3 was observed to be 
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significantly up-regulated in plasma from patients 
in the late stage of the disease (FIGO III/IV) [98]. 
The majority of cancer deaths are due to metastasis 
of neoplastic cells from the primary tumor to dis-
tant organs. Metastasis is thus the most important 
factor that determines  bad prognoses for cancer 
patients. In 1997, DIS3 was reported to have a 
38-fold higher expression in primary tumors and 
metastatic cells from patients with colorectal can-
cers and liver metastases (compared to adenomas) 
[99]. The same study has classified DIS3 as an 
oncogene, being positively correlated with the inci-
dence of metastasis and consistent with its involve-
ment in the regulation of mitosis in 
Schizosaccharomyces pombe, Saccharomyces 
cerevisiae and Drosophila [66, 100–102]. Other 
studies also reported a significant overexpression 
of DIS3  in colorectal carcinomas (compared to 
adenomas) [103, 104]. This overexpression could 
be explained by an amplification of the DIS3 locus, 
13q22, frequently observed in colorectal cancer.

DIS3 was also found to be differentially 
expressed in melanoma cells [105]. Specifically, 
in superficial spreading melanoma cells, DIS3 
has a reduced expression, contrarily to nodular 
melanoma cells, where DIS3 is overexpressed 
(compared to normal melanocytes) [105] 
However, in 2013, a wide-genome analysis resul-
tant from five melanoma microarrays datasets did 
not recognize DIS3 as a melanoma biomarker 
[106]. DIS3 has also a role in pancreatic tumori-
genesis and breast cancer, however their linkage 
has to be further explored [107, 108].

All examples presented here strongly sug-
gest that both DIS3 overexpression and lack of 
function can lead to the manifestation of differ-
ent cancers. This seems contradictory, but it is 
in agreement with the fact that DIS3 may func-
tion as either oncogene or tumor suppressor. 
Some genes are known to have both functions, 
and recently it was reported that most of these 
genes are transcription factors or kinases that 
can regulate transcription positively and nega-
tively [109]. Since RNases are responsible to 
control post- transcriptionally gene expression, 
it is not surprising that DIS3 would also have a 
dual function. For instance, DIS3 is known to 
facilitate the maturation of the tumor suppres-

sor let-7 miRNA. When the levels of the mature 
let-7 miRNA are reduced, translation of onco-
genes (MYC and RAS) increases, enhancing 
tumorigenesis [110]. Human DIS3 also appear 
to function in the Ran signaling pathway 
required for nuclear import of proteins [111]. 
Ran was associated to cancer progression and 
has been investigated as a target for cancer ther-
apy. In sum, the precise and dual role of DIS3 in 
cancer is not fully understood lacking further 
investigation.

4.2.2  DIS3L1

Human DIS3 and DIS3L1 have a similar domain 
composition, however only the first has an active 
endoribonuclease  domain. Two important 
 residues (E97 and D146N) are absent in DIS3L1 
PIN domain rendering it inactive. The aspartic 
acid D146 is the most conserved in the PIN 
domains and its single mutation is reported to 
abolish its activity in vivo and in vitro [43, 112, 
113]. The E97 is not strictly conserved across the 
PIN- domain family [112].

Both human DIS3 and DIS3L1 associate 
with the exosome ring. In contrast to the mainly 
nuclear localization of DIS3, DIS3L1 is strictly 
cytoplasmic [57, 72, 114]. The stable associa-
tion of DIS3L1 with the cytoplasmic exosome 
suggests that it acts in concert with the core of 
the exosome in the degradation of cytoplasmic 
RNAs. One of the RNA substrates degraded by 
the exosome-associated DIS3L1 is the 28S 
rRNA. The degradation proceeds through poly-
adenylated intermediates, which accumulate 
upon DIS3L1 knockdown [115, 116]. DIS3L1 
was also implicated in the degradation of inter-
mediary products generated by DNA-based 
antisense oligonucleotides (ASOs), as part of 
the RNA surveillance machinery. These agents 
recruit RNase H1 that after endonucleolytic 
cleavage of the ASO-targeted mRNAs gener-
ates both a 5′ and a 3′ fragments. DIS3L1 
appears to be involved, together with the exo-
some, on the 3′-5′ exoribonucleolytic degrada-
tion of the cytoplasmic upstream cleavage 
products [117].
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Less is known about DIS3L1 association with 
human disease, but there are a few reports show-
ing its implication on diverse pathologies, 
directly or indirectly related with its function 
over specific substrates. It was suggested that 
DIS3L1 could be implicated in the regulation of 
steady state levels of Y RNAs, an abundant class 
of small non-coding RNAs with a role in a range 
of cellular processes, such as RNA quality con-
trol, DNA replication, cellular stress responses 
and histone mRNA processing [118, 119]. 
Several enzymes are involved in Y RNAs matura-
tion, both on its 3′ end adenylation and subse-
quent trimming. Poly(A)-specific ribonuclease 
(PARN) is one of the enzymes involved on its 3′ 
end processing and, in its absence, oligo(A) tails 
are degraded by the exoribonuclease DIS3L1. It 
was seen that PARN mutations cause a severe 
form of dyskeratosis congenita (DC), a telomere 
biology disorder characterized by dysplastic 
nails, lacy reticular pigmentation of the upper 
chest and/or neck, and oral leukoplakia [120]. 
The loss of PARN reduces the levels of human Y 
RNAs. At the same time, low levels of Y RNAs 
intensify the effect of PARN depletion on telo-
mere maintenance, leading to the same severe 
DC phenotype. PARN seems to be responsible to 
stabilize Y RNAs by removing the oligoadenyl-
ated tails that recruit DIS3L1 for degradation 
[121]. Moreover, it was recently demonstrated 
that PARN is also involved in miRNAs stabiliza-
tion by removing their oligo(A) tails – the signal 
for the recruitment of the cytoplasmic exonucle-
ases DIS3L1 or DIS3L2. Therefore, upon PARN 
knockdown there is decrease in miRNAs’ levels, 
namely several that target p53 mRNA (a gene 
that plays a central role in cancer). This was the 
missing link to explain the p53 accumulation that 
is observed in PARN-defective patients [122].

DIS3L1 also seems to play a role in cancer, 
similarly to DIS3 (see above) and DIS3L2 (see 
bellow) homologues. The Hedgehog (Hh) path-
way controls cell proliferation and differentiation 
in response to a gradient of secreted Hh ligands, 
and its aberrant activation can promote tumori-
genesis. The transcriptional factor Zfx is a com-
mon cell-intrinsic regulator of diverse Hh-induced 
tumors. hDIS3L1, the human gene encoding 

DIS3L1 was identified as direct transcriptional 
target of Zfx, in the context of skin basal cell car-
cinoma (BCC) and cerebellar medulloblastoma 
(MB) models in vivo and in vitro [123].

Two independent exome sequencing studies 
(technique that sequences all protein-coding 
genes in a genome) have reported an association 
of hDIS3L1 with cardiac risk. First, in a study to 
identify genetic variants that confer susceptibility 
to myocardial infarction (MI) in the Asian popu-
lation (Korean individuals), several single nucle-
otide polymorphisms (SNPs) on hDIS3L1 gene 
were associated with MI risk. However, how the 
gene influences MI pathogenesis would have to 
be determined and confirmed in other ethnic pop-
ulations [124]. In another study, novel SNPs were 
also identified in the hDIS3L1 gene of individuals 
with Hyperalphalipoproteinemia (HALP). This 
condition of high-density lipoprotein cholesterol 
(HDL) levels is inversely correlated with coro-
nary heart disease (CHD), and hDIS3L1 gene 
was identified as a candidate gene associated 
with HALP [125].

4.2.3  DIS3L2

Human DIS3L2 is the third member of the RNase 
II/RNB family of enzymes. This protein is a pro-
cessive 3′-5′ exoribonuclease (mainly cytoplas-
mic) able to degrade structured RNA molecules, 
as long as they possess a 2 nt 3′ overhang as a 
“landing platform” [44, 45]. Unlike its family 
counterparts (DIS3 and DIS3L1), DIS3L2 lacks 
the PIN and the CR3 domains on its structure, 
both necessary for the interaction with the exo-
some complex [39, 43, 45, 72, 73].

In mammalian cells, DIS3L2 is involved in 
miRNA maturation and in the decay of numer-
ous RNA-species, namely bulk mRNA, ARES 
and ncRNAs [126–129]. Several studies associ-
ated DIS3L2 with a degradation pathway that 
relies on the addition of untemplated uridines to 
several classes of RNAs, in a process called uri-
dylation [44, 45, 127, 129–132]. This process 
was reported for the first time in S. pombe [133], 
in which Dis3L2 was shown to degrade uri-
dylated poly(A)-containing mRNAs [45]. Later 
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on, uridylation was found to be widespread and 
to have a decisive impact on RNA′s fate. There is 
a negative correlation between the addition of 
short (1–4) uridine residues with mRNA stabil-
ity [47, 130]. Oligo(U) tailed mRNAs are recog-
nized by Lsm1–7 complex stimulating 3′-5′ 
degradation by DIS3L2, however it can also trig-
ger decapping by DCP2 allowing 5′-3′ degrada-
tion by XRN1 [44, 45, 129, 130, 133–135]. 
DIS3L2 crystal structure unveiled the DIS3L2 
RNA pathway, revealing three uracil-specific 
zones that explain how DIS3L2 recognizes, 
binds and processes preferentially oligo(U)-
tailed RNAs [132].

The uridylation process is achieved by proteins 
termed uridyltransferases (TUTases). Humans 
have seven TUTases that are strictly cytoplasmic, 
except TUTase-1 (TUT1) that can also be found 
in mitochondria [133, 136]. Two TUTases were 
implicated in mRNA uridylation at the 3′ end, 
TUT4 and TUT7 [130]. In the same study, Lim 
and colleagues showed that these TUTases were 
able to sense the length of the poly(A) tail, and 
preferentially uridylate mRNAs with a tail rang-
ing between 0–25 As. On the contrary, PABPs 
preferentially bind longer poly(A) tails protecting 
them from the action of TUT4/7 [130].

This so called TUT-DIS3L2 mRNA decay 
mechanism was found to prevail in cells under 
apoptosis. Apoptosis is the most common physi-
ological program of cell death, which plays a 
vital role in pathogen immune defense, removal 
of damaged cells, cancer surveillance and cancer 
therapy effectiveness [137]. Thomas and col-
leagues [138] observed in human apoptotic cells, 
that apoptosis triggers global mRNA decay, and 
the RNA products generated are 3′-uridylated by 
TUT4/7 and subsequently degraded by DIS3L2. 
Knockdown of the exoribonuclease inhibits 
mRNA decay and suppresses cell death; con-
versely, DIS3L2 overexpression enhances apop-
tosis, supporting that mRNA decay is a hallmark 
of cell death [138]. Recently, Liu and colleagues 
[139], brought another player to this process, a 
mitochondrial exoribonuclease called PNPT1 
that evolved from bacterial PNPase [48, 139, 
140]. The work performed in human colon can-
cer cells, demonstrated that, upon apoptosis trig-

gering, PNPT1 and DIS3L2 act in the same 
pathway. PNPT1 is released from mitochondria, 
and starts to degrade RNA from the 3′ end. 
PNPT1 stops whenever it encounters an obstacle 
(e.g. ribosome, RNA-binding protein or highly 
structured sequence), being the RNAs further 
degraded by the TUT-DIS3L2 pathway [139].

DIS3L2 is also involved in the regulation of 
let-7 miRNA expression in pluripotent cells, 
establishing a role of this enzyme in cell differen-
tiation [128, 131, 132, 141]. Indeed, let-7 pre- 
miRNA biogenesis is one of the best characterized 
DIS3L2-mediated pathways. miRNAs from the 
let-7 family function as tumor suppressors and 
are involved in stem cell renewal [128, 131]. In 
undifferentiated cells, the expression of let-7 
miRNAs is blocked by Lin28, a pluripotency fac-
tor that also functions as an oncogene in several 
cancers [142]. This RNA-binding protein binds 
to let-7 precursors and promotes their uridylation 
by TUT4/7. These RNA precursors are thus 
marked for DIS3L2 degradation, leading to inhi-
bition of let-7 biogenesis.

A recent study has also found a role of 
DIS3L2  in nonsense-mediated decay (NMD), a 
quality control pathway that degrades aberrant 
and physiological mRNAs to maintain cellular 
homeostasis (as discussed in Chap. 3). In this 
context, DIS3L2 acts over 3′ ends of NMD decay 
intermediates that were previously subject to uri-
dylation  (L.  Romão, personal communication 
and [143]).

The involvement of DIS3L2  in such cellular 
important processes, like apoptosis, cell differen-
tiation and RNA quality control (NMD) antici-
pates its role in human disease. In fact, this RNase 
has been related with several human disorders. 
DIS3L2 is associated with Perlman syndrome, 
which is a rare congenital overgrowth disease 
[57, 144]. Children affected with Perlman syn-
drome display macrocephaly, facial abnormali-
ties, neurodevelopmental delay, fetal gigantism, 
kidney abnormal enlargement and high neonatal 
mortality. These children also present nephrobla-
stomatosis, an important precursor for Wilms’ 
tumor, a kidney cancer also known as nephro-
blastoma. Astuti et al. [57] demonstrated that the 
affected children have germline mutations con-
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sistent with DIS3L2 loss of function. DIS3L2 
mutations were also associated with Wilms tumor 
susceptibility [57, 144]. It has been recently sug-
gested that regulation of the growth-promoting 
gene, insulin growth factor 2 (IGF2), by DIS3L2, 
could be the link between this RNase and Wilms 
tumorigenesis [145]. Interestingly, Gregory RI 
and colleagues have found that DIS3L2 has no 
effect on the steady state mRNAs levels in 
DIS3L2-deficient cell lines and knockout mouse 
kidneys.  Instead, it  rather specifically perturbs 
endoplasmic reticulum (ER)-mediated transla-
tion (R.I. Gregory, personal communication).

Besides its well documented role in Perlman 
syndrome and Wilms’ tumor, DIS3L2 was also 
found to be mutated in 3–6% of carcinomas [57, 
146]. Also, DIS3L2 has been associated with a 
Marfan-like syndrome with skeletal overgrowth 
[147]. The Marfan syndrome is a disorder of the 
connective tissue that causes high mortality for 
untreated patients, mainly due to aortic complica-
tions [148]. Patients in which DIS3L2 gene was 
affected showed skeletal overgrowth and malfor-
mations, including severe scoliosis (abnormal 
curvature of the spine), arachnodactyly (long, 
slender fingers, curvature of the hands and feet) 
and mild syndactyly (interdigital webbing) [147, 
149, 150].

4.3  Concluding Remarks

RNA degradation is a set of highly regulated 
steps that maintain cellular integrity and homeo-
stasis. DIS3-enzymes act over a panoply of RNA 
substrates in eukaryotic cells and it is clear their 
role in human disease, namely in cancer develop-
ment and progression. In this chapter, we 
explored the consequences of DIS3-enzymes 
impairment on the physiology of human cells. 
From this group of proteins, the most well- 
characterized is DIS3, however its role in cancer 
is not completely understood. Less is known 
about the mechanism of action and specific RNA 
targets of its homologs DIS3L1 and DIS3L2. The 
molecular mechanisms that link both proteins 
with disease are still unexplored. Despite the 

progress that has been made, there is still much 
work to perform in order to completely under-
stand how DIS3-enzymes regulate cellular path-
ways, and how they are related with disease 
progression. Clinical medicine will certainly 
benefit from this kind of fundamental research.
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5Translational Regulation 
by Upstream Open Reading 
Frames and Human Diseases

Joana Silva, Rafael Fernandes, and Luísa Romão

Abstract
Short upstream open reading frames (uORFs) 
are cis-acting elements located within the 
5′-leader sequence of transcripts and are 
defined by an initiation codon in-frame with a 
termination codon located upstream or down-
stream of its main ORF (mORF) initiation 
codon. Recent genome-wide ribosome profil-
ing studies have confirmed the widespread 
presence of uORFs and have shown that many 
uORFs can initiate with non-AUG codons. 
uORFs can impact gene expression of the 
downstream mORF by triggering mRNA 
decay or by regulating translation. Thus, dis-
ruption or creation of uORFs can elicit the 
development of several genetic diseases. Here, 
we review the mechanisms by which AUG- 
and non-AUG uORFs regulate translation. We 
also show some examples of uORF deregula-
tion in human genetic diseases, focusing 
mainly on cancer. The knowledge of how 
uORF deregulation drives the onset of a dis-

ease, points out the need to screen the 5′-leader 
sequences of the transcripts in search for 
potential disease-related variants. This infor-
mation will be relevant for the implementation 
of new diagnostic and/or therapeutic tools.

Keywords
Genetic disease · Non-AUG upstream open 
reading frame (uORF) · Stress · Translational 
regulation · Translatome · uORF · uORF- 
encoded peptide

5.1  Introduction

Gene expression is largely modulated at the level 
of mRNA translation, which is itself divided into 
initiation, elongation, termination and ribosome 
recycling steps [1–4]. Translation initiation is the 
rate-limiting step of translation and is tightly 
controlled by mechanisms that involve different 
regulatory elements in the 5′-leader sequence of 
the transcripts [2]. Among them are: (i) internal 
ribosome entry sites (IRES), which are highly 
structured RNA regions that recruit ribosomes to 
or near the translation initiation codon and thus 
induce translation in a cap-independent manner; 
(ii) RNA structures (hairpins, G-quadruplexes 
and pseudoknots) that impair start codon scan-
ning by the ribosome and repress translation ini-
tiation; (iii) protein binding sites where different 
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molecular ligands can interact or form stable 
ribonucleoprotein complexes, thus promoting or 
repressing translation; (iv) RNA modifications 
that unfold RNA and are usually associated with 
an efficient translation; and (v) upstream AUG or 
non-AUG open reading frames (uORFs) that 
usually inhibit the downstream translation initia-
tion at the main ORF (mORF) [2, 4–6]. A uORF 
consists of a well-studied class of small ORFs 
potentially translated, with its initiation codon 
within the 5′-leader sequence of a mRNA and its 
in- frame termination codon upstream or over-
lapped with the mORF, and ranging typically 
from two to one hundred codons [2, 7–9]. It is 
bioinformatically estimated that approximately 
49–58% of human transcripts carry at least one 
uORF [8, 10]. Indeed, uORFs are conspicuous in 
certain classes of genes, such as transcription fac-
tors, cellular receptors, oncogenes and genes 
involved in cell growth and differentiation con-
trol [10–14]. These regulatory elements are usu-
ally seen to be evolutionarily conserved, which 
suggest an important biological function [8, 15].

Under physiological conditions, uORFs are 
typically described as repressors of translation 
initiation at the downstream mORF [2, 8, 16]. 
This is explained by the process of start codon 
recognition during translation initiation: the 43S 
pre-initiation complex (PIC) composed of eIF3, 
eIF1, eIF1A, eIF5, the eIF2·GTP·tRNAi

Met ter-
nary complex, and the small 40S ribosomal sub-
unit, binds to the 5′-cap structure of the mRNA 
and scans from 5′ to 3′ until it reaches an initia-
tion codon [2, 4, 10]. Then, eIF2 ternary complex 
and other initiation factors dissociate, which 
reduces the levels of mORF expression in about 
30–80% [8, 15, 17]. However, in response to cel-
lular stress, the presence of uORFs can increase 
the expression of certain mRNAs, a mechanism 
used by stress-responsive transcripts to alleviate 
the cell from stress, and also by oncogenes dur-
ing the tumor initiating process [1, 18].

With the advent of ribosome profiling 
(RiboSeq), a highly precise technique for moni-
toring in vivo translation based in RNA deep- 
sequencing of mRNA fragments covered with 
ribosomes [19], a significant ribosomal occu-
pancy (signature of active translation) was 

shown in regions thought to be non-coding, as 
the case of the 5′-leader sequences, which is 
consistent with the widespread presence of 
translatable uORFs among the transcriptome [8, 
9, 19]. It was recently shown that, among the 
uORFs identified by RiboSeq, uORFs contain-
ing near-cognate start codons are more frequent 
compared to AUG-containing uORFs, and their 
recognition involves alternative translation initi-
ation mechanisms. The most prevalent non-AUG 
start codon is CUG [9, 18]. Non-AUG uORFs 
are important for the regulation of protein syn-
thesis of specific transcripts, including several 
with a relevant role in stress responses, and also 
oncogenes [9, 18, 20–22]. Given the wide pres-
ence and the regulatory function of uORFs, it is 
not surprising that their deregulation, for instance 
by mutations that create, delete or modify a 
uORF, may play a role in the onset of several 
diseases, including the development and/or pre-
disposition to cancer [2, 11–13].

Here, we intend to highlight the mechanisms 
that drive uORF-mediated translational regula-
tion during both physiological and stress condi-
tions. In light of the new contributions given by 
RiboSeq analyses in the widespread detection of 
translatable uORFs, especially demonstrating the 
prevalent translation of non-AUG uORFs, we 
dissect the mechanisms that regulate their recog-
nition, as well as the mechanism by which non- 
AUG uORFs control their mORF expression. 
Moreover, we describe examples of the patho-
physiological impact of uORF deregulation in 
human genetic diseases, giving emphasis to can-
cer. The implication of uORF creation, deletion 
or deregulation in the onset of several human dis-
eases, highlights the need for the application of 
high-throughput technologies to systematically 
search disease-associated variations in 5′-leader 
sequences.

5.2  uORFs as Translational 
Regulators

The cap-dependent translation initiation process 
is described as a scanning mechanism [reviewed 
in 4]. Briefly, as mentioned above, the pre-formed 
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43S PIC attaches to the 7-methylguanosine 
(m7GTP) cap structure at the 5′ end of the mRNA 
(5′ cap), forming the 48S preinitiation complex 
[4, 23]. This process is mediated by the eIF4F 
complex composed by eIF4E, eIF4G and eIF4A, 
where eIF4E establishes a link with the mRNA 5′ 
cap, eIF4G recruits PIC by interaction with eIF3, 
and eIF4A unwinds the mRNA secondary struc-
ture to allow ribosomal scanning [4, 23, 24]. PIC 
scans the 5′-leader sequence from 5′ to 3′ until it 
reaches an initiation codon (usually an AUG) at 
the peptidyl (P) decoding site of the ribosome. At 
this point, eIF5 mediates hydrolysis of eIF2-GTP, 
which promotes tRNAi

Met anticodon base-pairing 
with the start codon, the release of eIF2-GDP 
along with other eIFs, and the binding of the 60S 
large ribosomal subunit by eIF5B to form the 80S 
translating ribosome [4, 23, 25, 26].

One of the factors that can influence AUG rec-
ognition is its surrounding context, defined as the 
Kozak consensus sequence [27, 28]. The optimal 
sequence surrounding the AUG initiation codon 
was postulated to be (GCC)A/GCCAUGG, 
where the positions −3 and +4 relative to the A of 
the AUG, are the most important ones [28]. 
Additionally, the nucleotide (nt) G at the position 
−6, as well as C at positions −1 and −2, seem to 
improve translation efficiency [28, 29]. The G 
purines at positions −3 and +4 establish a link 
with the α subunit of eIF2 (eIF2α) and the 18S 
ribosomal RNA (rRNA), respectively. However, 
from these two interactions the most critical is 
the association between eIF2α and the purine at 
the position −3, which seems to stabilize the 48S 
preinitiation complex to evade dissociation by 
eIF1 [30]. The Kozak sequence context is postu-
lated not only for the main initiation codons but 
also for the uORF initiation codons. The uAUG 
of a uORF in a strong or adequate Kozak context 
can be recognized and translation initiation will 
occur, which might have a negative impact on the 
main AUG (mAUG) [28]. In fact, the inhibitory 
activity of a uORF can be associated with a strong 
upstream initiation codon context. Other features 
may also determine the repression activity of a 
uORF, such as a long distance from the 5′ end of 
the transcript to the beginning of the uORF, the 
existence of multiple uORFs (additive effect), the 

consumption of active pre-initiation complexes, a 
long uORF and/or a short intercistronic distance 
(distance from the uORF stop codon to the mORF 
start codon) [8, 10, 16, 31, 32].

Translational repression can be achieved by 
ribosome dissociation and recycling after uORF 
translation or by ribosome stalling of the elongat-
ing/terminating ribosome during the process of 
uORF translation (Fig. 5.1a) [1, 2]. While ribo-
some dissociation can be regulated either by the 
nucleotide sequence or the resulting uORF- 
encoded peptide [33, 34], ribosome stalling is 
associated with unique features in the 5′-leader 
sequence, such as the presence of secondary 
structures, the interaction with trans-acting fac-
tors, the nascent peptide sequence, or codon 
usage (rare versus common codons) [16, 31, 35–
37]. Ribosomal stalling at the uORF termination 
codon can also trigger nonsense-mediated mRNA 
decay (NMD), since the uORF stop codon can be 
recognized as a premature termination codon 
(PTC) (Fig.  5.1a) [38–40]. As an example, an 
inhibitory overlapping uORF in human and yeast 
STN1 mRNAs was recently described [41]. In 
yeast, this overlapping uORF targets STN1 to 
NMD, maintaining the low abundance of STN1 
responsible for the normal activity of telomeres 
[41].

In addition to their role as major translational 
repressors, uORFs can also work as mediators of 
mORF expression, for instance in stress condi-
tions. During a stress stimulus (oxidative and 
endoplasmic reticulum (ER) stress, hypoxia, 
nutrient deprivation, UV radiation, among oth-
ers) the cell tends to respond rapidly by repro-
gramming its gene expression pattern at the level 
of protein synthesis [14, 42]. Depending on the 
stress, four different serine-threonine kinases can 
be activated, phosphorylating eIF2: PKR-like ER 
kinase, PERK; protein kinase double-stranded 
RNA-dependent, PKR; general control non- 
derepressible- 2, GCN2; and heme-regulated 
inhibitor, HRI [42]. Phosphorylation of eIF2 at 
serine 51 on its α subunit (eIF2α-P) impairs GDP 
to GTP exchange by guanine nucleotide exchange 
factor eIF2B, necessary to obtain a new active 
form of eIF2α. Therefore, the ternary complex is 
not formed, which impairs translation initiation 
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a) uORF translation represses mORF expression by:

1. Ribosome dissociation

2. Ribosome stalling

3. NMD induction

4. uORF-encoded peptides
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mORFuORFm7G
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b) uORF facilitates mORF expression by:

1. Reinitiation

2. Ribosomal bypass or ribosomal leaky scanning

mORFuORFm7G
40S

60S
60S

40S

60S

mORFuORFm7G
40S 40S

60S

Fig. 5.1 Mechanisms of upstream open reading frame 
(uORF)-mediated translational regulation. (a) uORF 
translation can mediate main ORF (mORF) repression by 
different mechanisms: (1) ribosome dissociation with 
consequent ribosome recycling; (2) ribosome stalling, in 
which the elongating/terminating ribosomes are blocked 
usually due to (i) the presence of secondary structures in 
the uORF, (ii) the uORF nucleotide context, or (iii) the 
interaction with trans-acting factors; (3) nonsense- 
mediated decay (NMD) induction, due to stalling of the 
ribosomes at the uORF termination codon that is recog-
nized as a premature termination codon (PTC); and (4) 

uORF-encoded peptides that depending on their amino 
acids sequence and their interaction with the translational 
machinery, can induce ribosome stalling and dissociation. 
(b) uORF facilitates mORF translation by: (1) reinitiation, 
where the uORF is translated and the 40S ribosomal sub-
unit remains attached, resumes scanning and reinitiates 
translation in a downstream ORF; and  (2) ribossomal 
bypass or ribosomal leaky scanning, where the scanning 
ribosomes pass through the uORF initiation codon with-
out recognizing it and initiate translation further down-
stream, a mechanism mainly associated with the Kozak 
consensus sequence of the uORF initiation codon
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[43, 44]. The abundance of eIF2α-P determines 
global and gene-specific translation rates [34]. 
This gene expression reprogramming in condi-
tions of global translation repression, aims to 
restore cell homeostasis and cell survival by acti-
vation of the integrated stress response (ISR). If 
the stress is too long or severe, cells can be com-
mitted to programmed cell death (apoptosis) [42, 
45, 46]. Therefore, stressed cells repress global 
translation to avoid unnecessary protein synthe-
sis, but at the same time, allow translation of spe-
cific proteins aiming to solve the stress [1, 14]. 
Many of these proteins are encoded by uORFs- 
containing transcripts [4, 14, 34, 39]. However, 
the existence of a uORF is not a straight indica-
tion that the corresponding transcripts will be 
translated in stress conditions [34]. There are sev-
eral factors that can influence the balance between 
translational repression and promotion by a 
uORF: (i) its length; (ii) the intercistronic dis-
tance; (iii) the distance from the 5′ end of the 
5′-leader sequence to the uORF start codon; (iv) 
its start codon context; (v) its secondary struc-
ture; (vi) number of uORFs; (vii) the type of ini-
tiation codon, and (viii) its stop codon context [2, 
8, 33]. These features can operate alone or in 
combination to define the uORF-mediated mech-
anism of translational control orchestrated for a 
specific mRNA under physiological or stress 
conditions [1, 34].

5.2.1  Translation Reinitiation

As mentioned above, if a scanning ribosome rec-
ognizes a uORF initiation codon, it can translate 
the uORF and dissociate or stall during either the 
elongation or the termination phase of transla-
tion. However, another option exists for the ribo-
some: it can translate the uORF and remain 
associated with the mRNA, continue scanning, 
and reinitiate translation further downstream 
(Fig. 5.1b). The mechanism of translation reini-
tiation implies that after uORF translation termi-
nation, the ribosomal 60S subunit is released 
from the mRNA while the 40S subunit remains 
attached, and resumes scanning until a new com-
petent ribosome is assembled for translation ini-

tiation at a downstream initiation codon [1, 3, 
23]. One major factor influencing reinitiation is 
the availability of the ternary complex, more pre-
cisely the eIF2-GTP in this complex, which is 
hydrolyzed and released after uORF start codon 
recognition and ribosomal assembly. The abun-
dance of the ternary complex can be linked to the 
distance scanned by the 40S ribosomal subunit 
until it reaches a new initiation codon [47]. In this 
case, short uORFs and long intercistronic dis-
tances are positively related to an efficient trans-
lation reinitiation at a downstream ORF [1, 13, 
48]. On the other hand, a decrease in the reinitia-
tion rate, for instance, by longer uORFs and/or 
the presence of secondary structures that promote 
ribosome stalling, can be explained by the loss of 
several eIFs along with the ternary complex after 
uORF translation is completed [3, 31, 37]. In 
fact, some of the eIFs are transiently maintained 
associated with elongating and terminating ribo-
somes, which in turn are the ones that will resume 
scanning and reinitiate translation downstream 
[49]. It seems that if the 40S-eIF3-eIF4F com-
plex, which is responsible for the engagement of 
the 40S ribosome to the uORF initiation codon, is 
kept together until termination of uORF transla-
tion, it will allow the 40S subunit to resume scan-
ning and initiate translation at a downstream 
initiation codon [37]. Disruption of this complex 
before uORF translation is completed, destabi-
lizes the interaction between the ribosome and 
the mRNA, leading to its dissociation after uORF 
translation termination, which in the end prevents 
reinitiation at the downstream mORF [37].

The mammalian activating transcription factor 
4 (ATF4) and its yeast homolog, the general con-
trol protein (GCN4), are well described examples 
of transcripts translated via a mechanism of 
‘delayed’ reinitiation. Both are transcription fac-
tors that, when induced, activate several path-
ways of the ISR aiming to release the cell from 
stress [47, 50]. ATF4 5′-leader sequence bears 
two uORFs: a 3 aminoacid (aa)-long first uORF 
(uORF1) that is 5′ proximal, and a lengthened, 
out-of-frame and coding sequence-overlapping 
uORF2 of 59 aa, both with an AUG in a strong 
Kozak consensus context. During basal condi-
tions, the short uORF1 is translated, allowing the 
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40S ribosomal subunit to maintain attached to the 
mRNA, which resumes scanning until it acquires 
a new ternary complex (eIF2·GTP·tRNAi

Met) in 
time to reinitiate translation at the uORF2 start 
codon. This last event leads to a translational 
repression of the mORF, since the ribosome ter-
minates uORF2 translation at 3′ of the mORF 
initiation codon [50]. During stress, phosphoryla-
tion of eIF2α reduces the cellular levels of eIF2- 
GTP, which is a limiting step for the formation of 
more ternary complexes [1, 47]. In these condi-
tions, after ATF4 uORF1 translation, there is a 
delay in the reload of a new ternary complex to 
the 40S ribosomal subunit, important to initiate 
translation at the uORF2 initiation codon. 
Therefore, the ribosome bypasses the inhibitory 
uORF2 and reinitiates translation at ATF4 main 
start codon [50]. As exemplified by the inhibitory 
role of ATF4 uORF2, overlapped uORFs are 
obvious translational repressors since their termi-
nation codons are located 3′ of the mORF initia-
tion codon [1, 3]. However, it is speculated that 
the post-terminating ribosomes can scan back-
wards in a 3′ to 5′ fashion at least for a critical 
number of nucleotides (less than ten) and reiniti-
ate translation at an upstream initiation codon, 
although less efficiently [31].

In the case of GCN4, its 5′-leader sequence 
contains four short uORFs and from them only 
uORF1 is translated in both unstressed (good 
nutrition) and stressed (starvation) conditions. In 
fact, abolishing translation of the uORF1 by 
mutating its initiation codon, significantly 
impairs the expression of GCN4 mORF [47]. In 
good nutritional conditions, reinitiation occurs in 
the following uORF-initiation codons after 
uORF1 translation, since the terminating ribo-
somes are rapidly reloaded with the necessary 
factors to initiate translation, which therefore 
repress GCN4 expression [11, 47]. From the 
three downstream uORFs, uORF3 and uORF4 
are the most repressive ones [47]. During stress, 
as for ATF4 mRNA, the terminating ribosomes 
can no longer reload the required initiation fac-
tors in time to translate the inhibitory uORFs, 
resulting in the translation of the mORF [11, 47]. 
Interestingly, it is postulated that reinitiation in 
yeast diverges from mammalian reinitiation by 

the existence of specific cis-acting elements 
located upstream or downstream of the uORF 
[49]. The last codon and the 10  nt  AU-rich 
sequence located at the 3′ side of the uORF1 ter-
mination codon promote the continued binding 
of the ribosome to the mRNA to allow permissive 
reinitiation. This is explained by the lack of a 
strong base-pairing between the rRNA and the 
AU-rich sequence that, in contrast to the GC-rich 
uORF4 termination codon context, will not allow 
the terminating ribosome to dissociate, and there-
fore the ribosome will resume scanning [33]. 
Additionally, permissive reinitiation is also asso-
ciated with an upstream sequence that interacts 
with the initiation factor eIF3, mainly the eIF3a 
subunit via its N-terminal domain, which stabi-
lizes the post-terminating 40S ribosome subunit 
in the mRNA, promoting reinitiation at the GCN4 
main initiation codon [51–53].

Another relevant aspect of uORF-mediated 
reinitiation is the ability to select translation ini-
tiation codons responsible for the synthesis of 
different protein isoforms encoded from the same 
mRNA molecule [1]. This is illustrated by the 
transcription factors CCAAT/enhancer-binding 
protein-α (C/EBPα) and -β (C/EBPβ), which reg-
ulate the proliferation and differentiation of mul-
tiple cell types, that have four alternative initiation 
sites: one for an out-of-frame uORF and three 
others that encode functionally different isoforms 
(extended, p42 and p30 for C/EBPα, and LAP∗, 
LAP and LIP for C/EBPβ) [11, 54]. The presence 
of a translatable uORF between the first and third 
initiation codons of both mRNAs regulate the 
expression of each isoform, being responsible for 
the translational reinitiation of the truncated iso-
forms of C/EBPα and C/EBPβ, respectively, p30 
and LIP [11, 54, 55].

5.2.2  Leaky Scanning or Ribosomal 
Bypass

Ribosomal leaky scanning or ribosomal bypass is 
a mechanism in which the scanning ribosomes 
bypass the uORF start codon and initiate transla-
tion at the subsequent uORF or at the mORF start 
codon (Fig.  5.1b) [1–3]. Ribosomal bypass is 
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usually associated with the proximity of the 
uAUG to the 5′ end of the mRNA and, to a greater 
extent, to the surrounding context of the uORF 
initiation codon [1, 3, 56, 57]. In fact, during ER 
stress, a weak uORF initiation codon context, 
together with a stronger initiation codon at the 
mORF, are seen in mRNAs that are preferentially 
translated [34, 58, 59]. However, it is unclear if 
this mechanism is triggered by a reduced avail-
ability of the ternary complex or an alteration of 
other critical factors for the translational process 
[3]. For instance, in the case of C/EBPα and C/
EBPβ transcripts, the uORF initiation codon is 
bypassed in conditions of reduced levels of eIF4E 
and eIF2α (high abundance of eIF2α-P) resulting 
in the expression of the full-length isoforms in 
detriment to the truncated ones [54]. Another 
example of a transcript that is regulated by a 
bypass mechanism is the growth arrest and DNA 
damage-inducible protein 34 (GADD34). 
GADD34 is an important protein that regulates 
the ISR by a negative feedback mechanism. 
GADD34 controls the magnitude and duration of 
gene expression reprogramming by controlling 
the levels of eIF2α-P via interaction with the cat-
alytic subunit of protein phosphatase 1 (PP1c), 
thus leading to dephosphorylation of eIF2α and 
ISR attenuation [34, 43]. Both GADD34 uORFs 
are bypassed during stress conditions due to their 
weak Kozak context, thus increasing GADD34 
expression [34, 45]. The α isoform of inhibitor of 
Bruton’s tyrosine kinase (IBTKα) mRNA is also 
translationally regulated by a mechanism of 
bypass during conditions of eIF2α phosphoryla-
tion. In the case of the transcript IBTKα that 
encodes a protein important for the adaption and 
resolution of stress by promoting cell survival, it 
has a highly conserved 588 nts-long 5′-leader 
sequence bearing four uORFs. The IBTKα 
5′-leader sequence cloned upstream of the firefly 
luciferase reporter construct when transfected 
into mouse embryonic fibroblast (MEF) cells 
treated with thapsigargin showed an increase in 
the luciferase activity, which is associated with a 
translational deregulation of the inhibitory 
uORFs. By mutational analyses of the uORFs 
initiation codons, it was shown that uORF1 is the 
main inhibitory uORF of IBTKα expression. The 

weak IBTKα uORF1 initiation codon context, 
together with low levels of eIF2α during stress, 
allow its bypass and thus, mORF expression [58].

Interestingly, some of the transcripts contain-
ing NMD-inducing uORFs in physiological set-
tings, develop NMD-resistance under stress 
conditions [39, 60]. This is achieved by ribo-
somal bypass, where the ribosome scans through 
the uORF initiation codon, not recognizing the 
uORF termination codon as a PTC, and therefore 
saving the transcript from NMD [2]. This seems 
to be the case of the transcript 1 of interferon 
related developmental regulator 1 (IFRD1) that 
has a 52 aa-long uORF that, when translated in 
physiological conditions, represses IFRD1 
expression by triggering mRNA decay [60]. In 
conditions of ER stress induced by tunicamycin, 
IFRD1 mRNA stabilizes, as there is ribosomal 
bypass of its uORF, leading to increased protein 
levels [60]. Other stress-related mRNAs, like 
ATF4 [38, 39], as well as CCAAT-enhancer- 
binding protein homologous protein (CHOP) 
[39, 48], are also well described examples of 
uORF-containing transcripts that commit them to 
NMD.  These mRNAs are upregulated in stress 
conditions, where eIF2α-P causes uORF ribo-
somal bypass and consequent NMD impairment, 
thus enhancing the ISR [39]. For instance, CHOP 
5′-leader sequence contains a uORF with two in- 
frame uAUGs with inhibitory activity when in 
physiological conditions [48, 59]. In thapsigargin- 
induced ER stress, a translational increase of 
CHOP is reported due to leaky scanning of the 
uORF initiation codons that are seen to be in a 
weak Kozak context [48, 59, 61]. Persistent ele-
vated levels of CHOP during a prolonged ISR, 
where the cells can no longer resolve the stress 
and survive, will induce the apoptotic signaling 
cascade by transcriptional activation of pro- 
apoptotic genes [62].

5.2.3  Recognition of Non-canonical 
Initiation Codons

A large group of the uORFs identified by RiboSeq 
are seen to initiate translation at near-cognate 
AUG codons [9, 18]. However, the real number 
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of non-canonical codons acting as initiator sites 
of translation is possibly underestimated, since 
initiation at these codons shows some resistance 
to the recognition by translation initiation- 
inhibitor drugs and also because there are no reli-
able bioinformatic tools for their discrimination 
[9, 27, 63]. CUG codon, encoding for a leucine 
(Leu), is the most prevalent non-AUG codon 
used in uORFs, followed by GUG (valine; Val) 
that is present in uORFs at roughly the same 
extent as AUG, and then by UUG (Leu) [9, 18, 
20, 27]. Consistent with this data are the results 
obtained by a peptidomics study, where small 
peptides synthesized by non-AUG uORFs were 
detected [64].

Although translation initiation is poorly effi-
cient when started at non-canonical initiation 
codons compared to that at the AUG, uORFs con-
taining near-cognate start codons seem to be 
equally translated and important for the regula-
tion of protein synthesis of specific transcripts 
during stress, where global translation is 
repressed [9, 18, 20–22]. uORFs bearing non- 
AUG codons appear to regulate the expression of 
their downstream ORFs by a mechanism of ribo-
somal bypass [1, 3]. For instance, the glutamyl- 
propyl- tRNA synthase (EPRS) mRNA is highly 
expressed in conditions of eIF2α-P abundance 
induced by the ER stressor thapsigargin, due to 
the regulation of two inhibitory uORFs with non- 
canonical start codons. The first uORF initiates 
with a CUG and is overlapped and out-of-frame 
with the mORF, and the second one is a UUG- 
containing uORF. Mutation of the CUG codon at 
uORF1 to a AUG in an optimal Kozak context 
represses the downstream ORF in physiological 
conditions and during thapsigargin-induced 
stress. Thus, bypass of the uORF1, due to its non- 
canonical start codon, is necessary for the trans-
lation of the EPRS mORF.  The same holds for 
uORF2 that when its initiation codon is mutated 
to AUG one obtains low downstream expression 
during normal and stress conditions. Thus, as 
occurs for uORF1, the presence of the UUG ini-
tiation codon in uORF2 facilitates its bypass by 
some scanning ribosomes that will initiate trans-
lation at the mORF, a mechanism exacerbated 
under stress conditions due to high levels of 

eIF2α-P [65]. The growth arrest and DNA- 
damage inducible gamma (GADD45G) tran-
script, with a relevant function in cell growth and 
apoptosis regulation, also bears a CUG- 
containing uORF that, due to its overlapping and 
out-of-frame context, represses GADD45G 
expression in unstressed conditions. During star-
vation, the inhibitory uORF is bypassed essen-
tially due to the non-canonical nature of its 
initiation codon, which increases GADD45G 
protein levels [66]. One additional example of 
this mechanism is observed for the WNT signal-
ing pathway regulator FRAT2 transcript. A con-
struct carrying the bicistronic FRAT2 mRNA 
sequence, with the uORF and the mORF tagged 
differentially, shows co-expression of the uORF- 
encoded peptide and the main protein in 
HEK293T cells. The uORF translation is initi-
ated at an ACG codon that when mutated to AUG 
abolishes the expression of its mORF with con-
comitant expression of the uORF.  This agrees 
with a bypass of the FRAT2 uORF to allow 
downstream translation [64].

The conspicuous translation initiation at non- 
AUG codons raises the question of how these 
non-canonical codons are recognized as initiation 
sites by the translation machinery. It was seen 
that a CUG initiation codon is translated via a 
cap-dependent mechanism, although translation 
initiation seems to be independent on the tRNAi-
Met [63, 67, 68]. For instance, using methionine 
sulfamide, an inhibitor of the methionyl-tRNA 
synthase (responsible for the aminoacylation of 
the tRNA with methionine), in toeprinting assays, 
does not produce a significant effect on the CUG 
codon recognition. This result suggests the 
‘replacement’ of the tRNAi

Met by another 
aminoacyl- tRNA in the ribosomal P site of the 
pre-initiation complexes for the translation of 
CUG codons [63]. In fact, previous studies 
revealed that CUG is translated as a Leu and not 
as a Met residue [67]. Furthermore, it is sug-
gested that some of the 40S ribosomal subunits 
are not pre-loaded with any initiator tRNA, con-
trasting with the current model of translation, and 
that they are able to load the tRNALeu when CUG 
is encountered. Delivery of tRNALeu to the P site 
of the ribosome is also independent of 
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eIF2·GTP·tRNAi
Met and is mediated by the 

eukaryotic initiation factor 2A (eIF2A) [68]. In 
conditions of low abundance of 
eIF2·GTP·tRNAi

Met, the levels of eIF2A are found 
to be elevated [69]. Conversely to eIF2α, deple-
tion of eIF2A does not promote measurable 
global translational repression, but has a negative 
impact  on uORFs containing CUG or UUG as 
initiation codons, which supports the function of 
eIF2A in translation initiation of non-canonical 
start codons [68, 69]. This is shown for the bind-
ing immunoglobulin protein (BiP) transcript, 
where depletion of eIF2A impairs translation of 
its UUG-containing uORF.  During ER stress 
induced by thapsigargin, this depletion leads to a 
significant decrease in BiP expression, due to the 
downregulation of the UUG-uORF [69]. In paral-
lel to eIF2A, it was shown that other factors are 
involved in non-canonical translational events. 
Controlling the rate of non-AUG initiation is the 
equilibrium between the translation initiation 
factor eIF5 and the eIF5-mimic protein, 5MP, 
acting as an enhancer and a repressor, respec-
tively, of translation initiation at near-cognate 
codons [20, 70]. The repression exerted by 5MP, 
is suggested to be achieved by preventing the 
interaction of eIF5 with eIF2 in PIC in favor of its 
own interaction [20]. Moreover, start codon 
selection is also the result of a cross-regulation 
between eIF5 and eIF1, where overexpression of 
eIF1 represses non-AUG initiation [70]. Yet, the 
interplay between eIF5 and eIF2A in the promo-
tion of translation initiation at non-canonical start 
codons was not determined [20].

Similarly to what is postulated for the AUG, 
recognition of the non-AUG codons is associated 
with a strong Kozak consensus sequence. The 
optimal sequence context for translation initia-
tion at a CUG is almost the same already 
described for AUG, being TCCACCCUGG, and 
as expected, modifications of this sequence will 
weaken the recognition of the CUG [67]. In the 
case of FRAT2 mRNA, when the ACG start 
codon of the uORF is placed in a less optimal 
Kozak sequence, the uORF-encoded peptide is 
expressed at lower levels [64]. As for CUG, effi-
cient translation at the GUG codon requires the 
presence of a CCACC sequence immediately 

upstream [71]. Additionally, it was also demon-
strated that non-AUG start codons enhance their 
own translation by blocking the scanning ribo-
somes in their vicinity. This is explained by a 
high GC-rich content immediately after the non- 
AUG codon allowing the formation of hairpins 
that will impair scanning [21].

As pointed out before, it seems that there are a 
pool of ribosomes that scan specifically for the 
non-AUG codons, and that those ribosomes may 
be different from the ones initiating at the AUG 
[67]. In fact, ribosomal heterogeneity can be used 
as an explanation of the differential recognition 
of AUG and non-AUG codons [63]. This seems 
to be dependent on the rRNA composition, on 
ribosomal proteins that can be differentially 
expressed and post-translationally modified, and 
on the modification of the translation factors 
interacting with the ribosome, as well as the 
tRNAs [63, 72, 73]. These so-called specialized 
ribosomes can modulate translation of mRNAs 
depending on the presence of specific features 
such as uORFs, thus leading to the preferential 
translation of classes of mRNAs, adding another 
layer of translational regulation centered on the 
ribosome [72, 74]. Additionally, even the consti-
tutive components of the ribosome that have little 
or no variation, can have specialized activities 
when interacting with regulatory elements in the 
5′-leader sequence [72]. Moreover, it is postu-
lated that changes in the ribosomal components 
is crucial for gene expression reprograming 
depending on the cell environment, differentia-
tion and development [73].

5.2.4  Functional uORF-Encoded 
Peptides

The uORF-encoded peptides are usually poorly 
detected by the conventional proteomic methods 
based on mass spectrometry (MS) [75]. Moreover, 
despite the wide detection of uORF translation 
by RiboSeq approaches, this technique does not 
give information on the peptide encoded by these 
elements [9, 64, 76]. Thus, complementation 
between mRNA deep-sequencing and RiboSeq 
with proteomics approaches, such as MS, expand 
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overall protein identification, including the detec-
tion of uORF-encoded peptides [64, 75–77]. 
These small peptides were encountered in cells at 
concentrations equivalent to the cellular proteins 
and also with specific subcellular localizations, 
providing evidence that they have biological 
functions, others than mORF repression [64].

The uORF-encoded peptides can act as cis- or 
trans-regulators of the mORF expression 
(Fig. 5.1a) [3]. The ability of the peptides to stall 
the translation machinery in a cis-fashion can be 
explained by their specific sequence and/or their 
direct or indirect interaction with small mole-
cules (‘peptoswitch’), as occurs for 
S-adenosylmethionine decarboxylase 
(AdoMetDC) mRNA [7, 78]. The AdoMetDC 
uORF-encoded peptide has 6 aa with the sequence 
MAGDIS that seems to interact directly, via the 
fourth and fifth residues, with the last tRNA 
(tRNASer), stabilizing the ribosome near the 
uORF termination codon in the presence of high 
levels of polyamines [36, 78]. This process stalls 
the ribosomes and allows their dissociation, 
which results in the translational repression of 
the mORF [78]. In the case of the already men-
tioned GADD34 mRNA, its 5′-leader sequence 
contains two inhibitory uORFs, in which uORF2 
translation significantly represses mORF expres-
sion during basal conditions in a nucleotide- 
dependent manner [34, 45]. The uORF2-encoded 
small peptide contains a conserved Pro-Pro-Gly 
sequence at the C-terminal region that allows the 
release of the translating ribosomes, thus inhibit-
ing mORF translation [34]. An example of the 
trans-acting regulation activity of the uORF- 
encoded peptides is represented for the arginino-
succinate synthase (AS) transcript [79]. Pendleton 
and co-workers showed that the peptide encoded 
by the overlapped out-of-frame uORF of the AS 
transcript inhibits the overall  expression of 
endogenous AS protein  encoded from different 
AS isoforms, through a process dependent on the 
uORF length and sequence [79].

The uORF-encoded peptides can also interact 
with different cellular proteins, and not only with 
the products of their own coding sequence, func-
tioning as trans-acting factors, and thus have sev-
eral biological functions in the cell [7, 69]. For 

instance, the small peptides encoded by both 
non-AUG uORFs of the BiP transcript function 
as human leukocyte antigen (HLA)-presented 
epitopes recognized by human T cells [69]. The 
uORF-encoded peptides can also be develop-
mentally and/or spatially regulated, and for that 
are endowed of distinct functions compared to 
the protein encoded by the mORF [64, 80, 81]. 
An example of this developmental regulation was 
already described for the spliced transcript vari-
ant of MYCN (MYCN∆1b) where the presence of 
a uORF does not influence the translational level 
of MYCN∆1b, but instead produces a small pep-
tide (MYCNOT) that is expressed in fetal but not 
in adult brains [81]. Regarding spatial regulation, 
there is the McKusick-Kaufman syndrome 
(MKKS) transcript, where two of the three uORFs 
in its 5′-leader sequence seem to be translated 
into highly conserved peptides with mitochon-
drial localization, distinct from the cytoplasmic 
localization of the MKKS protein. This suggests 
that the uORF-encoded peptides and the main 
protein have distinct functions [80].

5.3  uORFs Deregulation 
in Genetic Disorders

The importance of uORFs in the regulation of 
different patterns of gene expression under nor-
mal and stress conditions highlights their rele-
vance, if altered, for the development of several 
human diseases, such as metabolic, hematologic 
and neurologic disorders, inherited syndromes, 
cancer and its susceptibility [2, 11–14, 22]. In 
different disease-associated variant databases, 
more than 3700 variants were identified in the 
5′-leader sequence of human transcripts that can 
alter a uORF [10]. Among these variations, the 
most harmful are the ones that originate or elimi-
nate an initiation or termination codon, and thus 
regulate the presence or absence of a uORF [10, 
11]. Additionally, other alterations could deregu-
late uORF features like the Kozak consensus 
context, the uORF length, the uORF number, and 
its distance to the 5′ end of the mRNA or to the 
CDS [11]. Several bioinformatic analyses were 
performed to map possible variations (polymor-
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phisms and mutations) within the 5′-leader 
sequence of transcripts that can interfere with the 
regulatory function of uORFs [8, 10]. Calvo and 
co-workers identified 509 transcripts bearing 
common polymorphisms associated with the cre-
ation or elimination of a uORF [8]. More recently, 
Wethmar and co-workers identified in 2610 
genes, 1375 single nucleotide polymorphisms 
(SNPs) disrupting uAUGs and 2724 SNPs affect-
ing the Kozak context of a uORF. Additionally, in 
a small percentage of genes 697 SNPs are present 
at uORF stop codons. Eight uORF-disruptive 
SNPs already have clinical association [82]. A 
well-known example of a disruptive polymor-
phism is the one identified in the factor XII (FXII) 
gene, that plays a role in the coagulation process 
[83]. The alteration of a C for a T at the position 
−4 (c.-4C>T) of the FXII 5′-leader sequence 
forms a novel uORF that negatively regulates the 
FXII plasma levels, associating this polymor-
phism to the occurrence of stroke episodes [8, 83, 
84]. Calvo and co-workers have also identified 11 
novel patient mutations in disease-associated 
genes that create or eliminate a uORF [8]. One 
example is the interferon regulatory factor 6 
(IRF6) gene associated with Van der Woude syn-
drome (VWS) and the popliteal pterygium syn-
drome (PPS), two disorders characterized by 
facial alterations, such as cleft lip and palate. 
From the several mutations identified in the IRF6 
gene, a frameshift mutation in the position −48 
of the 5′-leader sequence that alters a T to an A 
(c.-48T>A), creates a new initiation codon [85]. 
This mutation originates a uORF that signifi-
cantly represses IRF6 protein levels (70–100% of 
inhibition), which is typically associated with the 
disease phenotype [8]. Additionally, there are 
mutations that create another uORF in a uORF- 
containing mRNA, such as the case of the sex 
determining region Y (SRY) gene in gonadal dys-
genesis (c.-75G>A) and serine protease inhibitor, 
kazal-type 1 (SPINK1) gene in hereditary pancre-
atitis (c.-53C>T). This leads to the almost com-
plete inhibition of mORF expression, which is 
explained by a cumulative effect of multiple 
inhibitory uORFs [8, 86, 87].

In the reviews of Barbosa and co-workers 
(2013) and Silva and co-workers (2017) are listed 

several examples of uORF creation, elimination 
or modification in the development of several 
types of diseases, including rare disorders [2, 88], 
such as hereditary thrombocythemia (uORF 
elimination) [89, 90], melanoma predisposition 
(uORF creation) [91, 92] and Marie Unna heredi-
tary hair loss (uORF modification) [93]. Several 
new examples of genetic diseases have been 
described to have an association with uORFs 
deregulation. For instance, haploinsufficiency of 
twist-related protein 1 (TWIST1) is correlated 
with the development of Saethre-Chotzen syn-
drome (SCS), characterized by a malformation of 
the skull (craniosynostosis). From a screening of 
14 genetically undiagnosed SCS patients, two 
novel single nucleotide variants (SNVs) were 
detected in the TWIST1 5′-leader sequence (c.-
263C>A and c.-255G>A) that contribute to the 
formation of novel start sites (AUG) in a good 
Kozak context. The c.-263C>A SNV generates 
an out-of-frame uORF of 68 codons and the c.-
255G>A SNV generates an in-frame uAUG with 
the mORF that possibly forms an N-extended 
isoform of TWIST1 protein. Both alterations 
repress TWIST1 mORF expression, which is 
associated with the typical disease phenotype, 
when no common mutations in the main coding 
sequence are present [94]. Kitano and co-workers 
identified the presence of three SNPs  – 
rs542483929, rs188349884 and rs759579732  – 
in the 5′-leader sequence of the histidine receptor 
H2 (HRH2) gene that create transposon-derived 
upstream ATGs, which originate uORFs. These 
new formed uORFs downregulate mORF expres-
sion and can be potentially associated with gas-
tric cancer susceptibility, a disease already related 
to mutations in the enhancer region of HRH2 
[95].

Alterations in the pattern and function of 
uORFs in proto-oncogenes and tumor suppres-
sors genes can explain how cancer is triggered: 
mutations that lead to a loss-of-function of the 
uORF in proto-oncogenes resulting in their over-
expression or mutations that promote a gain-of- 
function of the uORF in tumor suppressor genes 
resulting in a decrease of these protective pro-
teins [11]. RiboSeq analysis studies provide evi-
dence of the widespread presence of exonic 
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cancer mutations that alter uORF start codons 
impairing their regulatory role in several onco-
genes and tumor-suppressor genes, such as MYC, 
B-cell lymphoma (BCL-2), phosphatase and ten-
sin homolog (PTEN), tumor protein p53 (TP53), 
MutS homolog 5 (MSH5), among others [96].

As mentioned above, familial melanoma pre-
disposition is a well-established uORF-related 
condition, associated with mutations in the cyclin 
dependent kinase inhibitor 2A (CDKN2A) gene 
[92]. CDKN2A impairs cell cycle progression by 
encoding two tumor suppressor proteins, p16INK4A 
and p14ARF [91, 97]. A transversion of the nucleo-
tide G to T at position −34 (c.-34G>T) in the 
CDKN2A 5′-leader sequence creates an 
 out-of- frame uAUG in the mRNA.  This uAUG 
forms a translatable uORF responsible for the 
low expression levels of the mORF, thus provid-
ing predisposition to melanoma [92].

In addition to its role in disease development, 
uORF creation has also been related to poor 
prognosis in the response to drug treatment. The 
creation of a uORF in the mRNA of the excision 
repair cross-complementation group 5 (ERCC5) 
gene generated by a polymorphic variation 
(rs751402) confers resistance to platinum-based 
chemotherapeutics in childhood ependymoma 
(malignant brain tumor). This is observed by the 
ERCC5 up-regulation mediated by its uORF fol-
lowing cisplatin-induced bulky adduct DNA 
damage. The elevated levels of ERCC5 lead to a 
higher degree of cisplatin-induced DNA damage 
repair, thus lowering the efficiency of this che-
motherapeutic [98].

An example of a genetic alteration that modi-
fies a uORF was reported in cyclin dependent 
kinase 1B (CDKN1B) gene, associated with the 
induction of inherited multiple endocrine neopla-
sia syndrome (MEN), which is characterized by 
several distinct tumors affecting at least two 
endocrine organs. CDKN1B gene encodes for 
p27KIP1, a tumor suppressor that regulates cell 
cycle and cell proliferation, by promoting cell 
cycle arrest at G1 phase [97]. A 4-base pair (4 bp) 
deletion (c.-456-453delCCTT) was identified in 
the sequence of the CDKN1B uORF, which dis-
rupts and shifts its termination codon, resulting in 

a lengthened uORF sequence and a reduced 
intercistronic space in relation to the downstream 
initiation codon. This germline mutation allows 
the translation of a lengthened uORF-encoded 
peptide that reduces mORF expression by pre-
venting reinitiation events to occur that in the end 
can be associated with cancer formation. The 
patient carrying this germline mutation has pitu-
itary adenomas and tumors in the endocrine pan-
creas, consistent with the MEN4 phenotype [99]. 
No other biological functions were associated 
with this uORF-encoded peptide that can be 
related to the disease phenotype [100]. A uORF- 
encoded peptide with an association with the dis-
ease phenotype was recently identified in the 
familial DOPA responsive dystonia (DRD). The 
c.-22C>T SNP in the 5′-leader sequence of the 
guanosine triphosphate cyclohydrolase 1 (GCH1) 
gene creates a uAUG that promotes the formation 
of an overlapped and out-of-frame uORF.  This 
uORF encodes a 73 aa-long peptide responsible 
for low levels of GCH1 protein, which impairs 
the dopamine biosynthesis pathway, resulting in 
reduced levels of dopamine and dopaminergic 
dysfunction in the brain, characteristic of 
DRD.  This 73 aa peptide also accumulates at 
considerable levels within the nucleus where it is 
predicted to be involved in transcription factor 
activities, promoting cytotoxic effects with 
reduction of cell viability [101].

A systematic search for cancer-related uORF 
mutations has been performed, screening for 
loss-of-function uORF mutations in 404 uORF 
initiation sites of 132 potential proto-oncogenes 
in 308 human malignancies. Interestingly, muta-
tions were identified in both the uAUG and the 
uORF Kozak consensus sequence. Four novel 
uORF-associated mutations caused the loss of a 
uAUG in the Src family tyrosine kinase BLK 
proto-oncogene (BLK) in a colon adenocarci-
noma; the ephrin receptor B1 (EPHB1) in a 
mammary carcinoma; the Janus kinase 2 (JAK2) 
in chronic lymphocytic leukemia; and the 
mitogen- activated protein kinase kinase 6 
(MAP2K6) in a colon adenocarcinoma. There 
was no detectable function of the mutations 
found in BLK and JAK2. Although, in the cases of 
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EPHB1 and MAP2K6, the uAUGs were mutated 
to a uGUG and a uACG, respectively, which were 
responsible for the up-regulation of the down-
stream ORF. It is worth noting that the MAP2K6 
uORF mutation was also present in normal con-
trol tissue of the affected patient, which suggests 
a relationship between this variant and the predis-
position to tumor development. In an additional 
study, a whole exome sequencing computational 
analysis of datasets of 464 colon adenocarcino-
mas revealed 53 non-recurrent somatic mutations 
that delete either the uORF initiation or termina-
tion codon [102]. This highlights the importance 
of uORF mutations in the tumorigenic process, 
although further functional studies are needed.

In addition to the role of genetic alterations 
that deregulate uORF-mediated translation, there 
are other mechanisms that can overcome or take 
advantage of the repression exerted by naturally 
occurring uORFs to promote a disease phenotype. 
For instance, MDM2 is an oncoprotein that antag-
onizes, in a feedback loop, the function of the 
tumor suppressor p53 and has been seen overex-
pressed in many tumors, such as osteosarcomas, 
gliomas and soft tissue sarcomas. MDM2 can be 
produced from two spliced isoforms with differ-
ent 5′-leader sequences as a result of the function 
of two cryptic promoters: (i) the first promoter 
(P1) transcribes a long mRNA (L-mdm2) without 
exon 2, and (ii) the second promoter (P2) tran-
scribes a short mRNA (S-mdm2) with exon 2, but 
lacking exon 1. L-mdm2 mRNAs contain two 
inhibitory uORFs in exon 1 that will repress 
MDM2 expression. However, those uORFs do not 
exist in the S-mdm2 mRNA. In choriocarcinoma 
cells, MDM2 expression is translated from the 
S-mdm2 transcript. Apparently, the transcrip-
tional switch from promoter P1 to P2 is related to 
the binding of p53 to elements in exon 1 (lacking 
in L-mdm2) which activates P2 and consequently 
induces MDM2 expression via transcription of 
S-mdm2 [103]. Additionally, BRCA1, DNA 
repair associated gene, is partially regulated by a 
similar mechanism. BRCA1 is well known to be 
the major susceptibility gene for breast and ovar-
ian cancers by showing a reduced expression 
level. It was shown that two distinct promoters are 

used to produce two BRCA1 transcript variants 
distinct in their 5′-leader sequences (named 
5’UTRa and the 5’UTRb). The mRNA containing 
the 5’UTRb is expressed in breast cancer but not 
in normal tissues, and it contains three uORFs that 
negatively modulate mORF expression [104]. 
Another alternative mechanism of uORF regula-
tion with pathophysiological relevance was 
described for the oncoprotein  Erb-B2 receptor 
tyrosine kinase 2 (ERBB2) transcript, also known 
as the human epidermal growth factor receptor 2 
(HER-2). HER-2 mRNAs have an inhibitory small 
uORF in which the stop codon is located 5  nt 
upstream of the mORF initiation codon, impair-
ing translation reinitiation and keeping HER-2 at 
basal levels under physiological conditions  [32, 
105]. However, another post-transcriptional 
mechanism seems to occur to promote overex-
pression of HER-2 in cancer cells, without having 
alterations in the mRNA sequence or size. A 
U-rich translational derepression element (TDE) 
was identified in the 3’UTR of the HER-2 mRNA, 
that associates with several trans-acting factors, 
among them RNA-binding proteins, to repress the 
inhibitory activity of the translatable uORF, 
allowing an efficient translation of the mORF in 
breast cancer cells [105].

Recently, RiboSeq data has shown that, during 
initiation of the tumorigenic process of epidermal 
cells, translation of cancer-related mRNAs is 
dependent on the translation of the uORFs pres-
ent in their 5′-leader sequences. Moreover, those 
uORFs initiate to a great extent at non-canonical 
start codons, with the CUG being the most preva-
lent. High levels of eIF2A were also detected, 
and this, as mentioned before, has a role in the 
translational regulation of those non-AUG 
uORFs, and thus this alternative translation fac-
tor is also associated with tumor progression. 
Given this, the authors speculate that for tumori-
genic initiation the translational apparatus needs 
to be redirected to the translation of uORFs in a 
cohort of cancer-related mRNAs such as catenin 
beta 1 (CTNNB1), hypoxia inducible factor 1 
subunit alpha (HIF1α), Rac family small GTPase 
1 (Rac1), cyclin-dependent kinase 1 (Cdk1), 
among others [18].
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5.4  Conclusions

As broadly evidenced by RiboSeq and transcript- 
specific studies, AUG- and non-AUG uORFs are 
ubiquitous cis-acting elements in the 5′-leader 
sequences of human transcripts. These uORFs 
have a crucial role in the translational control of 
their downstream  mORF, which is relevant for 
homeostasis maintenance of the pool of proteins 
in a cell. Furthermore, uORFs-encoded peptides 
are now recognized as having important and 
diverse regulatory functions in the cell. Taking 
into account the widespread distribution of 
uORFs, as well as their regulatory function, it is 
expected that potential alterations that create, dis-
rupt or modify the uORF function can be 
 associated with the etiology of diverse patholo-
gies that do not have the coding molecular altera-
tions usually underlying the disease. Thus, it is of 
outmost importance the systematic screening of 
5′-leader sequences in search for novel uORFs or 
uORF- altering mutations that can be linked to a 
disease with the final purpose of developing new 
diagnostic and, potentially, therapeutic 
approaches.
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Abstract
Throughout evolution, eukaryotic cells have 
devised different mechanisms to cope with 
stressful environments. When eukaryotic cells 
are exposed to stress stimuli, they activate 
adaptive pathways that allow them to restore 
cellular homeostasis. Most types of stress 
stimuli have been reported to induce a decrease 
in overall protein synthesis accompanied by 
induction of alternative mechanisms of mRNA 
translation initiation. Here, we present well- 
studied and recent examples of such stress 
responses and the alternative translation initia-
tion mechanisms they induce, and discuss the 
consequences of such regulation for cell 
homeostasis and oncogenic transformation.

Keywords
mRNA translation · Alternative translation 
initiation · Cellular stress · Cancer · IRES · 
Non-AUG

6.1  Introduction

Most eukaryotic mRNAs are translated into pro-
teins through a 5′-end m7G cap-dependent trans-
lation mechanism. Translation initiation is 
marked by the formation of a ternary complex 
(TC) composed of eukaryotic initiation factor 2 
(eIF2) bound to Met–tRNAi

Met and GTP [1]. 
eIF2B, a guanine nucleotide exchange factor 
(GEF), controls TC assembly by converting 
eIF2–GDP into the active eIF2–GTP complex 
before each round of translation [2]. Once prop-
erly assembled and active, the TC binds the 40S 
ribosomal subunit, forming the 43S pre-initiation 
complex (43S PIC). Several initiation factors, 
such as eIF1, eIF1A, eIF3 and eIF5, help this 
binding [3–8]. Separately, eIF4E binds the 5′-end 
m7G cap of the mRNA and recruits eIF4G and 
eIF4A forming the eIF4F complex [8] and stimu-
lating eIF4A’s helicase activity, which promotes 
mRNA restructuring [9, 10]. eIF4G is the scaf-
fold for the eIF4F components and binds to 
poly(A)-binding protein (PABP) and eIF3 at sub-
units c, d and e, helping recruit the 43S PIC to the 
transcript [11]. Following recruitment, 43S PIC 
will often require scanning downstream in order 
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to find the initiation codon [12, 13], unless this 
one is within close reach, in which case scanning 
is unnecessary and instead a specific Kozak 
sequence termed TISU can help prevent “leak-
age” to a downstream AUG [14, 15]. In most 
cases, however, the AUG is relatively far from the 
5′-end and the 5′ untranslated region (UTR) is at 
least mildly structured, so scanning of – or jump-
ing over, during a phenomenon named ribosomal 
shunting [16]  – the 5′ UTR by the 43S PIC is 
often a requisite for translation initiation and typ-
ically entails the hydrolysis of ATP, eIF1, eIF1A, 
and DHX29 [3, 17]. ATP hydrolysis can be used 
by eIF4A to unwind secondary structures in the 
mRNA, and actively displace the ribosome in a 5′ 
to 3′ direction. At the same time, the ribosome is 
prevented from backsliding, because the 
unwound structures behind it resume their initial 
winding conformation [18, 19]. Scanning, when 
necessary, usually stops when the 43S PIC 
reaches the first AUG codon positioned in a 
favourable Kozak context (a purine, usually ade-
nine, in position −3 and a guanine in position +4) 
[12]. At this point the 48S pre-initiation complex 
(48S PIC) is formed, with pairing of all three 
nucleotides of the anticodon and release of eIFs 
from the small subunit. Upon recognition of the 
initiation site, eIF5 and eIF5B promote the hydro-
lysis of eIF2–bound GTP [20, 21]. eIF5B–GTP 
binds to the 40S subunit and stimulates the 60S 
subunit joining, requiring a second step of GTP 
hydrolysis in order to make the 80S ribosome, 
which will be ready to start decoding the message 
[22, 23]. When this happens, eIF2 is completely 
released from the ribosome in its GDP-bound 
form that latter must be reverted to GTP-bound 
again to allow reassembly of the TC for another 
round of translation. The formed eIF2–GTP is 
only stable when Met–tRNAi

Met joins in to form 
the TC [2].

Although the translation process may be hin-
dered at several stages, the translation initiation 
phase is the rate-limiting step and involves more 
factors and sub-steps that are prone to error, and 
many of them may be inactivated, modified or 
adjusted under adverse cell conditions [24]. In 
fact, translation initiation is globally impaired 
under stress conditions and overall protein syn-

thesis is reduced, a response that has been termed 
Integrated Stress Response (ISR). Such reduction 
can happen due to eIF4E’s or eIF2’s inability to 
bind eIF4G/5′-end cap or integrate the TC, 
respectively. The first occurs for example during 
stress conditions that inhibit the mTOR prolifera-
tion and survival pathway; as inactivated mTOR 
kinase is no longer able to phosphorylate 
4E-binding proteins (4E-BP) and the resulting 
hypophosphorylated 4E-BP binds to eIF4E pre-
venting its association with eIF4G and the forma-
tion of eIF4F. The core event of the ISR however, 
is the second mechanism, involving phosphoryla-
tion of serine 51 of the eIF2α subunit by any of 
several protein kinases activated by a wide range 
of different stress conditions. This phosphoryla-
tion stabilizes the interaction between eIF2B and 
eIF2–GDP and prevents the formation of the 
eIF2–GTP–Met–tRNAi

Met complex (TC).
Repression of global protein synthesis is often 

accompanied by selective translation of mRNA 
encoding crucial stress-responsive proteins that 
can lead to either stress recovery and survival or 
cell death. This selective translation involves 
alternative initiation elements, often RNA struc-
tures or modifications, and may not require some 
of the more common elements such as the 5′-end 
m7G cap. Genes that can maintain their expres-
sion under stress conditions may contribute to 
modify cell fate if they operate on repair, survival 
or programmed death pathways. Many cancer 
cells take advantage of this ability in transcripts 
such as XIAP, HIF1α or VEGF to escape apopto-
sis, resist to hypoxic conditions, or vascularise 
the tumour surroundings, respectively. It is well 
reported that many of these stress-response tran-
scripts can maintain expression because of the 
alternative mechanisms of initiation that mediate 
their translation. Out of these mechanisms, inter-
nal ribosome entry at internal ribosome entry 
sites (IRES) has been the most widely studied 
and is accepted as a backup mechanism for cells 
to cope with conditions when canonical transla-
tion is shut down.

In this chapter, we aim to compare the differ-
ent mechanisms of translation initiation involved 
in stress-response. We will also briefly consider 
to what extent these mechanisms may create an 
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adaptive advantage to the eukaryotic cell under 
stress conditions or how sometimes this advan-
tage turns into a burden to the organism when 
coupled with processes of cellular 
transformation.

6.2  Translation Initiation 
in Stress Response

Throughout evolution, eukaryotic cells have 
devised different mechanisms to cope with stress-
ful environments. When eukaryotic cells are 
exposed to stress stimuli, they activate a common 
adaptive pathway that allows them to restore cel-
lular homeostasis: the integrated stress response 
(ISR) [25]. Most types of stress stimuli have been 
reported to activate the ISR [26, 27], including 
hypoxia [28], nutrient deprivation [29], oxidative 
stress, heat shock [30], viral infection (dsRNA) 
[31], endoplasmic reticulum (ER) stress / 
unfolded protein response (UPR) [32], UV irra-
diation [33], proteasome inhibition [34] and 
oncogene activation [35]. They all lead to the 
phosphorylation of eIF2α and consequent inhibi-
tion of TC formation, by activating kinase haem- 
regulated inhibitor (HRI), protein kinase activated 
by double-stranded RNA (PKR), general control 
non-derepressible-2 (GCN2) or PKR-like endo-
plasmic reticulum kinase (PERK) [26, 36]. As a 
consequence, there is a decrease in overall pro-
tein synthesis. However, several selected genes 
that participate in cellular stress response are still 
translated under such conditions [26, 37]. Below, 
we discuss some well-studied examples of stress 
stimuli, the inhibition they induce and the alter-
native mechanisms they activate, as well as the 
consequences of such regulation for cell homeo-
stasis and transformation.

6.2.1  Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) is a central 
organelle in which proteins are translated and 
properly folded, may undergo some post- 
translational modification and from there are sent 

to the Golgi complex and sites of action. When 
perturbations in ER homeostasis occur, causing 
an accumulation of unfolded proteins in the ER, 
these perturbations are sensed and transduced to 
the whole cell and an evolutionarily conserved 
response is activated—the unfolded protein 
response (UPR) [38–40]. The UPR consists of 
three branches, each of which can be distin-
guished by the action of a different stress sensor 
protein: inositol-requiring protein-1α (IRE1α), 
protein kinase RNA (PKR)-like ER kinase 
(PERK) and activating transcription factor 6 
(ATF6) [39, 40]. In normal conditions, the UPR 
modulators IRE1, PERK and ATF6 interact with 
molecular chaperone Binding immunoglobulin 
protein (Bip)/GRP78 and remain inactive [39–
42]. However, when unfolded proteins accumu-
late in the ER, BiP is required to assist with the 
folding and the sensor proteins are liberated and 
activated. Other proteins have also been shown to 
regulate IRE1α and the other sensors [43]. Upon 
activation, all three stress sensors induce signal 
transduction in order to deal with the stress and 
reduce the amount of misfolded proteins. This 
includes a tight reprogramming of transcription 
and translation to ensure less and more specific 
gene expression [44]. The key regulatory path-
way for this response is the PERK/eIF2α/ATF4 
pathway in which the kinase PERK phosphory-
lates eIF2α (eIF2α-P). This signal then induces 
overall translational impairment, but it also 
enables translation of the transcription factor 
ATF4 mRNA [44]. ATF4 is a transcription factor 
whose translation has been shown to be regulated 
through reinitiation at upstream open reading 
frames (uORF) [45] and also by an Internal ribo-
some entry site (IRES) stimulated by eIF2α phos-
phorylation [46] (see also below section 
“Translation initiation by internal ribosome 
entry” and Fig. 6.1).

Translation of HIAP2 (a member of the inhib-
itor of apoptosis protein family) is also mediated 
via an inducible IRES element during ER stress 
[47]. HIAP2 IRES activity is enhanced during 
ER stress through the caspase-mediated proteo-
lytic processing of eukaryotic initiation factor 
p97/DAP5/eIF4G2/NAT1 (DAP5), which produces 
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a fragment that specifically activates IRES [47]. 
In fact, DAP5 is a translation initiation factor that 
can regulate the expression of a selected group of 
mRNAs during ER stress via internal ribosome 
entry [48, 49]. Other DAP5 targets include IRES 
in c-Myc, Apaf-1, XIAP and HMGN3 mRNA. In 
this regard, DAP5-mediated translation seems to 
be crucial in cell differentiation and death, stress-
ing the role of IRES translation in deciding cell 
fate [49]. Furthermore, DAP5 translation itself is 
mediated by an IRES element within its 5′ UTR, 
thus generating a positive self-regulatory loop 
that allows its continuous translation under con-
ditions impairing 5′ end ribosome entry–depen-
dent translation [49, 50].

6.2.2  Hypoxia

Hypoxia results from the decrease in the oxygen 
available to reach the different organs and cells. 
Under hypoxic stress, a group of transcription 
factors known as hypoxia inducible factors (HIF) 
are stabilized and initiate a cascade of cell signals 
by activating target genes in the nucleus [51]. 
Inhibition of protein synthesis and consequent 
energy saving is an advantage for hypoxic cells, 
so, in order to achieve this, canonical translation 
initiation is drastically reduced under such condi-
tions. However, hypoxic cells need to translate 
mRNAs critical for an adaptive response to low 
oxygen levels [52]. To accomplish this selective 

Canonical translation initiation (5’-end m7G entry)

m7G

43S

AUG

Internal ribosome entry

AUG

43S

AUG
m6A

structured
IRES

methylated
IRES

43S

Non-AUG start

m7G

43S

CUG

Fig. 6.1 During 
canonical translation 
initiation the ribosome is 
recruited to the 
5′-terminal m7G cap 
(top). Cell stress and 
cancer induce alternative 
methods of translation 
initiation such as 
internal ribosome entry 
at a structured internal 
ribosome entry site 
(IRES) or at a 
methylated site (center). 
The 5′-end may 
sometimes still be 
required for this 
initiation (indicated by 
the dashed arrow). 
Another type of 
alternative initiation 
involves the use of 
non-AUG start codons 
(bottom)
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translation, cells use non-canonical mechanisms 
of translation initiation, such as IRES-mediated 
translation. IRES elements present within the 5 
UTRs of several transcripts have been proved to 
mediate translation of stress-regulated mRNAs, 
such as vascular endothelial growth factor 
(VEGF), HIF-1α and -2α, glucose transporter- 
like protein 1, p57(Kip2), La, BiP, and triose 
phosphate isomerase (TPI) transcripts [52].  
Many proteins share such characteristics. 
Phosphofructokinase 1 (PFK1), the major  
regulatory enzyme of the glycolytic pathway, 
converts fructose-6-phosphate to fructose-1,6- 
bisphosphate. This pathway is highly dynamic 
and may be affected by different stress condi-
tions, such as hypoxia, which is known to signifi-
cantly influence the glycolytic pathway [53, 54]. 
Ismail and colleagues showed that PFK1’ss 5′ 
UTR includes a hypoxia-responsive IRES ele-
ment, which was established to be the possible 
mechanism responsible for PFK1 protein upregu-
lation [55]. These authors found that, after 48 h of 
chemically induced hypoxia in C6 glioma cells, 
PFK1 protein levels were upregulated with no 
significant change in the counterpart mRNA lev-
els; this may explain the astrocytes’ increased 
glycolytic capacity upon brain hypoxia [55].

6.2.3  Starvation

In the absence of nutrients, amino acids, growth 
factors and cytokines, which contribute to the 
activation of signal pathways related to cell sur-
vival and proliferation, the ISR facilitates cellular 
adaptation to stress conditions through the com-
mon target eIF2α [56]. Under starvation, there 
have been examples of leaky scanning and reini-
tiation events through which cells can make alter-
native protein products by selecting downstream 
initiation codons to better respond to the stress 
[56]. Reinitiation in ATF4, for example, is gov-
erned by the eIF2α pathway and also subjected to 
regulation by mRNA m6A methylation. Zhou 
et  al. demonstrated that m6A in the 5′ UTR  
controls ribosome scanning and start codon 
selection [56].

IRES-mediated translation initiation is the 
most common alternative to canonical translation 
under starvation. One of the most widely used 
models to understand this mechanism in eukary-
otes is the X-linked inhibitor of apoptosis (XIAP) 
mRNA [57]. When ternary complex (TC) is 
available, XIAP mRNA translation is maintained 
in a 5′-end m7G cap-dependent mode; however, 
under serum deprivation, the XIAP IRES can ini-
tiate translation in an alternative eIF5B- dependent 
manner circumventing low TC numbers due to 
eIF2α phosphorylation [58]. Notably, not all cel-
lular IRES use eIF5B-dependent mode of tRNA 
delivery during serum deprivation [27].

6.2.4  DNA Damage

Apaf-1 has a central role in DNA damage- 
induced apoptosis and its depletion contributes to 
malignant transformation [59]. As such Apaf-1 
provides a good example of specialized DNA 
damage translation since the human Apaf-1 
mRNA can initiate translation through an alterna-
tive mechanism, possibly involving an IRES [60, 
61]. This internal ribosome entry site has been 
reported to require the assistance from a free 
5′-end in cis [62], though it does not need m7G 
cap recognition by eIF4E [60]. Under DNA dam-
age conditions m7G cap-binding factor eIF4E is 
often suppressed, but structured 5′ UTR regions 
such as IRES may mediate m7G cap-independent, 
5′-end-dependent translation initiation, which 
leads to preferential translation of some mRNAs 
like Apaf-1 [60]. A group of mRNAs including 
53BP1, HIF1α, BRCA-1, and GADD45a, has 
also been shown to be more actively translated in 
response to DNA damage in breast cancer cells, 
through a selective eIF4G1-dependent process 
and with reduced dependence on eIF4E [63].

6.2.5  Heat Shock

Although we can find living organisms in a wide 
range of temperatures (from the freezing point of 
water, or below, to 113 °C) [64], each of them has 
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adapted to a certain optimal growth temperature. 
Heat above such temperatures becomes a major 
stressor, with often temperatures only moderately 
above the optimum growth temperature already 
causing a significant barrier to survival [65]. Heat 
stress can cause protein unfolding, entanglement, 
and unspecific aggregation [65]. During cellular 
heat shock response, a class of molecular chaper-
ones, the heat shock proteins (Hsp), is up- 
regulated in response to protein misfolding [65]. 
Heat shock goes beyond the unfolding of 
 individual proteins, causing deleterious effects 
on the internal organisation of the cell, such as 
defects of the cytoskeleton [65].

Translation of Hsp70, a stress-induced molec-
ular chaperone that also modulates tumour cell 
responses to cytotoxic agents and inhibits apop-
tosis [66], is mediated through internal ribosome 
entry, most likely due to increased m6A modifica-
tions in its mRNA [67]. The increasing number 
of m6A-containing transcripts results from the 
exposure to different cellular stresses that drive a 
widespread redistribution of m6A [67]. A recent 
study by Coots et al. established the effect of m6A 
in the 5′ UTR translation initiation [68]. They 
showed that when eIF4F-dependent translation is 
impaired, cells use the m6A-dependent mode of 
translation initiation. They identified the ATP- 
binding cassette subfamily F member 1 (ABCF1) 
as a critical mediator of m6A-dependent transla-
tion. This protein acts as an alternative to recruit 
the ternary complex during non-canonical trans-
lation as it can interact with eIF2 and ribosomes, 
thus playing a critical role in mRNA translation 
initiation under stress conditions [69, 70]. The 
HSP70 5′ UTR has also been shown to drive m7G 
cap-independent translation via an IRES struc-
ture [71]; however, it is not yet known whether/
how both features cooperate to enhance transla-
tion of heat shock-responsive proteins. 
Translation of the BiP protein was also found to 
be enhanced by continuous heat stress that acti-
vates an IRES-dependent translation [72]. This 
suggests that the IRES-dependent mechanism of 
translation initiation can be used by cells sub-
jected to heat shock, being critical to cell survival 
and proliferation under stress [72].

Recently, the switch to activate a specialized 
ribosome for alternative translation of stress 
response genes was shown to be regulated by an 
alternative translation initiation process itself 
[73]: Mitochondrial ribosome protein-encoding 
MRPL18 mRNA was shown to translate into a 
shorter isoform from a downstream non- 
canonical CUG initiation codon following expo-
sure to heat shock and phosphorylation of eIF2α. 
The shorter isoform is translated in frame but 
lacks the mitochondrial targeting signal in the 
N-terminus and is localized to the cytoplasm 
where it integrates – not the usual mitoribosome 
but now – the cytosolic 80S ribosomes promoting 
the specific synthesis of stress-proteins such as 
Hsp70.

6.2.6  Oxidative Stress

Under oxidative stress, NRF2, a master regulator 
of the oxidative stress response, is also transla-
tionally induced through an IRES [74–76]. NRF2 
IRES-dependent translation is enhanced due to 
stimulation of an IRES element present within its 
5′ UTR by La autoantigen IRES transacting fac-
tor (ITAF) binding [76]. Translation of some 
transcription factors is also mediated by IRES 
elements upon oxidative and genotoxic stress, 
such as p53, the octamer-binding protein 4 
(OCT4) whose translation is stimulated by H2O2 
treatment in breast cancer and liver carcinoma 
cells [77], and runt-related transcription factor 2 
(RUNX2), whose translation is stimulated by 
mitomycin C [78]. BiP is also induced during 
oxidative stress through a mechanism that 
involves an alternative, less usual procedure for 
translation initiation, the usage of a non- canonical 
initiation codon, UUG, in a uORF [79]. The 
UUG-initiated uORF in the 5′ UTR of BiP and 
eIF2A were shown to be necessary for BiP 
expression during oxidative stress. At the same 
time, the uORFs generate peptides that could 
serve as major histocompatibility complex class I 
ligands.

R. Lacerda et al.



123

6.3  Mechanisms of Alternative 
Translation Initiation

6.3.1  Translation Initiation 
by Internal Ribosome Entry

Internal ribosome entry site (IRES)-mediated 
translation is an additional and alternative mode 
of translation initiation used by some transcripts, 
which can be regulated independently of the 
canonical system. IRES-mediated translation has 
been extensively investigated. It has been esti-
mated that at least 10–15% of cellular mRNAs 
can be translated by an IRES-dependent mecha-
nism, in which the 40S ribosomal subunits bind 
the transcript internally, not at the 5′-end, often in 
a cap-independent manner and with a different 
requisite of translation factors [80]. We subdi-
vided here this alternative internally initiated 
translation into two large groups: one more com-
prehensively studied, involving a structured RNA 
region usually just referred to as IRES; and a sec-
ond more recently identified mechanism for 
internal entry that involves a methylated RNA 
site (Fig.  6.1). To note that it is still currently 
unknown how often actually these two mecha-
nisms might overlap.

6.3.1.1  Internal Ribosome Entry @ 
Structured RNA Regions

According to a recent systematic screen for 
IRES-mediated translation activity, about 10% of 
all human 5′ UTRs have the potential to be IRES- 
translated [81], and these can be present in the 
coding region as well [82]. This translation initia-
tion mechanism allows cells to cope with envi-
ronmental changes affecting their viability, and 
thus must be essential for cellular life itself. In 
order to understand how central and elementary 
the mechanisms that govern IRES function are, 
Colussi et al. investigated if IRES could initiate 
translation in bacteria and saw that the IRES ele-
ment could bind directly to both eukaryotic and 
bacterial ribosomes by occupying the space nor-
mally used by tRNAs [83]. Some IRES use 
dynamic RNA structures to target core and  
conserved, ancient domains of the translation 
machinery while circumventing organism- 

specific regulations to effectively initiate mRNA 
translation of specific transcripts in a large vari-
ety of cell types and cell conditions and with few 
requirements [83]. This is important because pro-
teins with crucial roles in main cellular processes 
need backup regulation, their expression levels 
must be adjusted in response to external cues that 
impair the canonical mechanism of translation 
initiation. Indeed, alterations in their expression 
levels may account for many types of human dis-
eases that arise in human population, including 
different types of cancer, and IRES-dependent 
translation initiation may play a decisive role in 
such processes.

From our current knowledge, most structured 
IRES described so far were identified in tran-
scription factor mRNAs (21%), growth factor 
transcripts (15%), and in messages encoding 
transporters, receptors and channels (22%) [9]. 
FGF and VEGF families of proteins—growth 
factors of crucial importance to the development 
of specific tissues that play a significant role in 
promoting cell proliferation and differentiation, 
and in regulating cell survival—are translated via 
IRES elements present in the corresponding 
mRNAs [84–88]. As for transporters, receptors 
and channels, such as CAT-1, voltage-gated 
potassium channel and oestrogen receptor α, 
among others, play a critical role in signal trans-
duction as they are main vehicles in cell-cell 
communication, which turns them into key ele-
ments to maintain cell homeostasis following 
environmental changes. Thus, alterations in their 
expression associate with changes in cellular 
function, which may lead to disease development 
and progression [84]. That is why transcripts 
encoding such proteins can be translated through 
an IRES-dependent mechanism that acts as a 
back-up tool when canonical translation initia-
tion is impaired by environmental stress condi-
tions, such as ER stress. Regarding transcription 
factors, they are fundamental in gene expression 
regulation, as they respond to quick changes in 
the environment in order to adapt their expres-
sion levels to a given context—c-MYC, HIF1α 
and p53 are good examples of transcription fac-
tors whose translation initiation is mediated by 
IRES elements [85, 86, 89].
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6.3.1.2  Internal Ribosome Entry @ 
Methylated Regions

There are about 3–5 m6A modifications per tran-
script [90]. Most m6A modifications are located 
on the coding region and the 3′ UTR [91, 92]; 
however, Meyer et al. found recently that, when 
located in the 5′ UTR, such modifications could 
mediate translation initiation through internal 
ribosome entry [93] (Fig.  6.1). These authors 
have shown that m6A modifications in the 5′ 
UTR act as ribosome engagement sites (MIRES) 
[93]. The ability of m6A in the 5′ UTR to bind 
eIF3 is enough to recruit the 40S ribosomal sub-
unit to initiate translation when eIF4E is not 
available to bind the 5′-end cap structure [93]. 
Although the mechanism that permits m6A rec-
ognition by the translation machinery for subse-
quent m7G-independent initiation is not yet 
completely understood, the significance of 5′ 
UTR m6A residues has been observed in both 
ribosome profiling datasets and individual cellu-
lar mRNA analyses, such as the heat-shock pro-
tein 70 (Hsp70) [93, 94].

6.3.2  Non-AUG Translation

Another less common alternative translation pro-
cess is the initiation at non-AUG codons (for a 
recent review see [95]) (Fig. 6.1). These transla-
tion starts are not errors but regulated events, 
leading to the production of stress response pro-
teins as well as proteins involved in development. 
Impairment of this specialized translation pro-
cess may lead to diseases such as cancer and neu-
rodegeneration. It is increasingly clear that 
non-AUG translation is highly regulated by 
stress, signalling, translation factors and RNA 
structures and sequences. The most commonly 
used non-AUG codons are the near-cognate that 
differ by only one nucleotide, with CUG being 
most frequently used. Some proteins, like DAP5, 
are exclusively translated from a non-AUG 
(GUG) codon [96]. Interestingly, several proteins 
involved in activating alternative translation seem 
to be first translated from an alternative initiation 
codon: DAP5 regulates IRES-translation [97] 
and a CUG-translated shorter version of MRPL18 

protein activates specialized translation of stress 
response genes by integrating the cytoplasmic 
80S ribosome [73]. Non-AUG translation can be 
influenced by eIF2α phosphorylation during ISR, 
Kozak sequence, mRNA structures upstream or 
downstream or the expression of specific stress- 
induced translation factors like eIF2A.

6.4  Translation Initiation 
in Cancer

Oncogene activation and tumour suppressor gene 
inhibition are key events to the onset and  
development of cancer. Additionally, coding- 
independent mutations in regulatory elements, 
UTRs, splice sites and non-coding RNAs and 
synonymous mutations may also affect gene 
expression (reviewed in [98]). As any other stress 
situation, tumorigenesis includes backup mecha-
nisms that allow tumour cells to cope with stress, 
such as those involved in stress-adaptive protein 
synthesis [48, 99–103]. Many transcripts relevant 
to cancer can initiate translation through non- 
canonical translation initiation mechanisms. 
Below we will briefly present a few well-known 
examples.

6.4.1  Non-AUG Translation 
in Cancer

Though IRES-dependent translation is the most 
widely studied, we will start by discussing initia-
tion at non-AUG sites in cancer. Some of these 
sites have been shown to be regulated by eIF2A, 
which stimulates translation from non-AUG 
uORFs in cancer-related mRNAs that act to  
positively regulate the expression of their  
downstream ORFs [104]. eIF2A can initiate  
Leu-encoding codons at CUG and UUG by pro-
moting the recruitment of LeutRNACUG for ini-
tiation [79, 105, 106]. Interestingly, mutation and 
inactivation (decreased expression) of the RNA 
helicase DDX3 in cancer leads to the formation 
of RNA structures in 5′ UTR downstream of non- 
AUG initiation codons, inducing their usage 
[107].
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PTEN, a tumour suppressor gene that is fre-
quently mutated in cancer, generates an alterna-
tive protein isoform, PTENβ, by using an 
upstream non-canonical AUU start codon [108]. 
PTENβ translation requires a favourable Kozak 
sequence and an evolutionarily conserved hairpin 
that is present 18 nucleotides downstream from 
the AUU.  PTENβ negatively regulates rDNA 
transcription and cell proliferation and may have 
a role in tumour suppression [108].

FGF2 stimulates the growth and development 
of new blood vessels (angiogenesis) that contrib-
ute to the pathogenesis of cancer. In FGF2 
mRNA, at least four upstream in-frame CUG 
codons were shown to generate longer isoforms 
that localized to the nucleus due to a nuclear 
localization signal present between the CUG and 
AUG codons [109, 110]. These isoforms could 
possibly affect cell growth and differentiation 
and one of them of 34 KDa enhanced survival in 
low serum conditions.

c-myc, a well-known protooncogene, uses an 
upstream in-frame CUG codon resulting in the 
production of a larger isoform with a distinct 
N-terminus that may contribute to the oncogenic-
ity of c-myc, particularly in Burkitt’s lymphoma 
[111]. As cell density increases, as during tumour 
formation and growth, the availability of amino 
acids, specifically methionine, becomes limiting, 
and translation initiation from the CUG is pro-
moted [112].

6.4.2  Internal Ribosome Entry 
in Cancer

IRES elements within the 5′ UTR or coding 
region of transcripts encoding oncogenes, growth 
factors and proteins involved in the regulation of 
cell-cycle and programmed cell death, can medi-
ate translation under stress situations triggered by 
the tumour’s microenvironment, contributing to 
the survival of cancer cells [9, 99, 103, 113]. A 
common feature of these environments is the dif-
ficult access to oxygen. Indeed, cancer cells acti-
vate 4E-binding proteins (4E-BP) and inhibit the 
mTORC1 pathway in response to hypoxic condi-
tions, but at the same time promote a switch to 

IRES-mediated translation thus maintaining 
tumour growth and angiogenesis [100, 102]. 
Large and advanced breast cancers were shown 
to overexpress 4E-BP and eIF4G and trigger 
m7G-independent mRNA translation [102]. In 
inflammatory breast cancer, cells have adapted to 
a state of prolonged hypoxia and optimised the 
production of proteins required for tumour 
embolus survival and dissemination, a state pro-
moted by high levels of eIF4GI protein coupled 
with a constitutively active 4E-BP1 [114]. This 
leads to higher rates of translation in IRES- 
containing mRNAs, namely VEGF and p120 
catenin, which maintain high rates of angiogene-
sis, and membrane associated E-cadherin, respec-
tively [115].

FGF (Fibroblast growth factors), such as 
FGF1 and FGF2, are crucial for proliferation and 
differentiation of a wide variety of cells, and 
hence their translation has to be tightly regu-
lated—some of them contain IRES elements 
within their 5′ UTRs, which allow cap- 
independent translation initiation [116, 117]. 
IRES-mediated regulation of FGF2 translation is 
considered a critical step in tumorigenesis, not 
only in solid tumours but also in multiple 
myeloma, which turns the FGF2 IRES into the 
non-cytotoxic primary molecular target of tha-
lidomide, and therefore the preferred target of 
immunomodulatory drugs in multiple myeloma 
[114].

c-Myc IRES is also activated in multiple 
myeloma cells under thapsigangin- or 
tunicamycin- induced ER stress, or bortezomib  
(a myeloma therapeutic) treatment, thus main-
taining c-Myc protein levels [118].

Sp1 (Specificity protein-1), a protein that is 
accumulated under hypoxic conditions in an 
IRES-dependent manner in lung tumour tissue, is 
another case of a protein whose expression is up- 
regulated during tumorigenesis by activation of 
IRES-mediated translation, suggesting that trans-
lational regulation might contribute to the accu-
mulation of Sp1 during tumorigenesis [119].

CAT-1 synthesis and sodium-coupled neutral 
amino acid transporter 2 (SNAT2), two amino 
acid transporters, is controlled by IRES under 
amino acid or glucose starvation [120, 121]. 
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CAT-1 IRES-dependent translation is induced in 
tumour cells under glucose deprivation through 
phosphorylation of eIF2α by the transmembrane 
endoplasmic reticulum kinase (PERK) [121].

XIAP and sterol regulatory element-binding 
transcription factor 1 (SREBP-1) are translated 
via IRES during deprivation of growth factors in 
tumour cells, protecting them from apoptosis 
[122, 123]. IRES-dependent translation of these 
proteins allows the cell to survive under nutri-
tional stress, which is an advantage for cancer 
cell continued existence [124]. Adding to this, 
XIAP expression is up-regulated under 
γ-irradiation through IRES-dependent transla-
tion, causing tumour cells to be resistant to radio-
therapy [125, 126]. This agrees with the study by 
Holcik et al., in which they used RNA interfer-
ence to inhibit XIAP, and saw that it enhances 
chemotherapeutic drug sensitivity and decreases 
myeloma cell survival [126].

β-catenin is also translated through internal 
ribosome entry in human ovarian cancer cells 
treated with paclitaxel (PTX), a chemotherapeu-
tic drug used in the treatment of ovarian cancer—
this then regulates the expression of downstream 
factors (c-Myc and cyclin D1), reducing PTX 
sensitivity [127].

c-Myc oncogenic transcription factor and 
Bcl2-associated athanogene 1 (BAG-1) are also 
regulated by IRES under oxidative and genotoxic 
stress and increase tumour cells’ resistance to 
DNA damage-inducing drugs [128–131]. Bcl-2’s 
expression in turn, and cIAP’s are again enhanced 
by etoposide as well as arsenite via IRES- 
mediated translation [132, 133].

p53—a tumour suppressor, protooncogene 
[134] and transcriptional master regulator of the 
oxidative and genotoxic stress responses—is also 
translated through IRES-mediated processes [82, 
135–138]. The p53 transcript contains IRES 
structures that control translation of the full- 
length (FL) p53 and the N-terminally truncated 
isoform Δ40p53 from the same mRNA [82, 135]. 
Several stress conditions that induce DNA dam-
age as well as ER stress induce FLp53 or Δ40p53, 
respectively, via two different IRES structures, 
one in the 5′ UTR – for FL – and another in the 5′ 

coding region  – controlling mostly Δ40p53 
[138]. Furthermore, in response to doxorubicin, 
IRES-mediated translation of both p53 isoforms 
is stimulated by the ITAF polypyrimidine tract- 
binding protein (PTB), following PTB relocation 
from the nucleus to the cytoplasm [139]. Other 
ITAFs such as DAP5, Annexin A2, and PTB- 
associated Splicing Factor (PSF), have also been 
reported to control p53 IRES activity [140, 141]. 
Besides, identification of two other p53 ITAFs 
[translational control protein 80 (TCP80) and 
RNA helicase A (RHA)] that positively regulate 
p53 IRES activity, established a connection 
between IRES-mediated p53 translation and p53 
tumour suppressive function in two breast cancer 
cell lines. Following DNA damage, the levels of 
TCP80 and RHA are extremely low and these 
two cell lines exhibited defective p53 induction 
and synthesis, since expression of both proteins 
was required to significantly increase p53 IRES 
activity [142, 143]. Cells devised a critical  
cellular response that counteracts cellular  
transformation—the oncogene-induced senes-
cence (OIS)—which is characterized by cell 
cycle arrest and induction of p53, which prevents 
the proliferative potential of preneoplasic clones 
[144]. During OIS, there is a switch from canoni-
cal translation initiation to IRES-mediated trans-
lation, during which p53 IRES-dependent 
translation is promoted, providing a molecular 
barrier for cellular transformation [145].

In conclusion, and considering the aforemen-
tioned examples, it seems clear that the IRES- 
mediated translation of key regulators and 
pro-survival factors grant tumour cells enough 
tools for attaining resistance to chemotherapy 
and radiation [146]. On the other hand, the pres-
ence of IRES within transcripts coding tumour 
suppressor proteins can prevent cancer outbreak 
by maintaining the protein levels. Expression of 
some proteins is crucial to determine the cell fate 
under stress conditions—apoptosis or survival 
and proliferation. Thus, IRES-mediated transla-
tion is of key importance in the process of tumor-
igenesis. Furthermore, the IRES structures 
themselves and the cooperating ITAFs are vital 
targets for cancer treatment.
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Abstract
In recent years, the RNA molecule became 
one of the most promising targets for thera-
peutic intervention. Currently, a large number 
of RNA-based therapeutics are being investi-
gated both at the basic research level and in 
late-stage clinical trials. Some of them are 
even already approved for treatment. RNA- 
based approaches can act at pre-mRNA level 
(by splicing modulation/correction using 
antisense oligonucleotides or U1snRNA vec-
tors), at mRNA level (inhibiting gene expres-
sion by siRNAs and antisense 
oligonucleotides) or at DNA level (by editing 
mutated sequences through the use of 
CRISPR/Cas). Other RNA approaches 
include the delivery of in vitro transcribed 
(IVT) mRNA or the use of oligonucleotides 
aptamers. Here we review these approaches 
and their translation into clinics trying to give 
a brief overview also on the difficulties to its 
application as well as the research that is 
being done to overcome them.

Keywords
Antisense oligonucleotides · Aptamers · 
CRISPR-Cas gene editing · Modified mRNA 
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CRISPR-Cas 9 CRISPR-associated protein 
9 (Cas9)

CSF Cerebrospinal Fluid
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aminoburyate
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dsRNAs double-stranded RNAs
ExSpeU1s Exon-Specific U1 snRNAs
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GPCRs G Protein-coupled 
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HCV Hepatitis C Virus
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I2S Iduronate 2-sulfatase
IVT in vitro transcribed
LDL-C Low-density Lipoprotein 

Cholesterol
LNAs Locked Nucleic Acids
LNPs Lipid-based Nanoparticles
miRNAs microRNAs
mNIS+7 Modified Neurologic 

Impairment Score +7
mRNA  messenger RNA
NDA New Drug Application
PCK9 Proprotein Convertase 

Subtilisin/Kexin Type 9
PD Pharmacodynamics
PILs Pegylated immunoliposomes
PIWI P-element induced wimpy 

testis
PK Pharmacokinetics
PMOs Phosphoroamidate 

Morpholino Oligomers
PNAs Peptide Nucleic Acids
PS Phosphorothioate
RIS RNA-induced silencing 

complex
RNAi RNA interference
RNP Ribonucleoprotein
RTK Human Receptor Tyrosine 

Kinase

SELEX Systematic Evolution of 
Ligands by Exponential 
enrichment

sgRNA single guide RNA
shRNA short hairpin RNA
siRNAs small interference RNAs
SLNs Solid Lipid Nanoparticles
Sm Smith antigen
SMA Spinal Muscular Atrophy
SNALPs Nucleic-acid-lipid-particles
SSOs Splice Switching 

Oligonucleotides
TLRs Toll-like Receptors
TTR Transthyretin
U.S. FDA U.S. Food and Drug 

Administration

7.1  Introduction

The RNA molecule has traditionally been viewed 
as an intermediate between DNA and protein. 
Recently though, this reductive view has been 
abandoned as more classes and functions of RNA 
have been discovered as well as therapeutic 
applications involving this molecule are being 
developed. RNA therapeutics can either mimic or 
antagonize the endogenous RNA functions and 
have several advantages. They can act even on 
targets that were previously “undraggable” and, 
most importantly, they are easy to design, cost 
effective, stable and easy to combine with other 
drugs presenting also low immunogenicity. 
Despite these advantages, the use of RNAs as 
drugs requires the overcoming of two major 
obstacles: the poor pharmacological properties of 
RNA, which is rapidly degraded by RNases and 
the difficulties in its delivery to the target organs 
and tissues. In this chapter we present the major 
RNA-based therapeutics currently under 
research, discussing the challenges to their trans-
lation into the clinic and the recent advances in 
delivery strategies. RNA tools such as ribozymes, 
riboswitches and SINE-UP strategy are no less 
important but will not be discussed in this 
chapter.
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7.2  Antisense Oligonucleotides

7.2.1  Brief Overview

Antisense oligonucleotides (AONs) are short 
synthetic oligonucleotides that bind to RNA 
through standard Watson-Crick base pairing and 
can modulate the function of their target RNA [1, 
2]. AONs can function in various ways (Fig. 7.1). 
For example, AONs can mediate targeted gene 
knockdown through the recruitment of endoge-
nous RNAse H to degrade mRNA at sites of 
DNA:RNA hybridization caused by AON bind-
ing (Fig. 7.1a). They can also be designed to bind 
to translation initiation sites on mRNAs in cyto-
sol to block translation (Fig.  7.1b). Another 
approach uses single-stranded AONs to modulate 
miRNAs expression; these AONs directly bind 
target miRNAs to inhibit their function (anti- 
miRs), and thus depress their target gene 
(Fig. 7.1c). Moreover, AONs can also be used to 

modulate pre-mRNA splicing in the target gene 
bypassing the disease-causing mutation 
(Fig.  7.1d) [3, 4]. These AONs are designated 
Splice Switching Oligonucleotides (SSOs) and 
are single stranded 15–25 nucleotides long, 
which direct pre-mRNA splicing to a new path-
way by binding sequence elements and sterically 
blocking access to the transcript by the spliceo-
some and other splicing factors [1, 5–7].

The modification of gene expression, using a 
synthetic single stranded DNA, resulting in inhi-
bition of mRNA translation was demonstrated for 
the first time by Paterson and colleagues in 
1977  in a cell-free system [8]. Almost a year 
later, Zamecnik and Stephenson showed that in 
chicken fibroblast tissue culture containing Rous 
Sarcoma virus, the addition of a synthetic 13-mer 
oligonucleotide complementary to the 3′ end of 
the virus, could inhibit its replication and the sub-
sequent transformation of fibroblasts into sar-
coma cells [9]. Since then, remarkable progress 

mRNA

RNase H

a

AON

mRNA

pre-mRNA

mRNA (spliced)

Ribosome

mRNA

RISC

RISC

b

c
d

miRNA

Fig. 7.1 Antisense mechanisms of RNA-based drugs. 
Antisense oligonucleotides (AONs) impact in gene 
expression through four different mechanisms: (a) RNase 
H-mediated mRNA degradation; (b) steric block of ribo-

some binding; (c) complementary binding to target 
microRNAs (miRNAs) in order to inhibit their function 
(antagomirs); and (d) splicing modulation
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has been made in oligonucleotide drug develop-
ment and currently, antisense technology is a 
powerful tool that can be used for target valida-
tion and to correct or alter RNA expression for 
therapeutic benefit [1, 10–12].

Initially, AONs were just synthetic unmodi-
fied DNA or RNA molecules, which despite 
delivering some promising results, would prove 
to be quite ineffective in biological systems due 
to their susceptibility to degradation by nucle-
ases, poor affinity for their target mRNA, multi-
ple off-target effects, inability to cross the cell 
membrane given their negative charge, and weak 
binding to plasma proteins, leading to rapid clear-
ance by the kidney [1, 3, 13]. Therefore, a wide 
variety of chemically modified analogues of 
nucleotides have been developed since then. 
These chemical modifications were made in the 
oligonucleotides, generating three categories of 
AONs, commonly known as generations, with 
different chemical and pharmacological 
properties.

7.2.2  Antisense Oligonucleotides 
Chemistry

Several characteristics need to be fulfilled for the 
clinical application of antisense oligonucleotides. 
First, the sequence of the antisense oligonucle-
otide must be specific enough to avoid off-targets. 
Other important aspects to be taken into account 
are the chemistry of the AON and its resistance to 
degradation by nucleases in order not only to 
maintain the integrity of the molecule but also to 
ensure that it is present in an amount, which is 
sufficient for a true efficacy. In addition, ideal 
AON should have good pharmacokinetic (PK) 
and pharmacodynamic (PD) properties and, 
above all, should not be toxic. Finally, and a very 
fundamental thing to check, is whether the 
designed AONs are possible to deliver to target 
tissues or organs. To try to cope with these desired 
AON properties, several chemical modifications 
have been made to the backbone, ribose sugar 
moiety or nucleobase components, which have a 
profound effect on the enhanced stability, bind-

ing strength and specificity to the target RNA 
sequence [13] (Fig. 7.2).

The first generation of AONs is characterized 
by alterations in the backbone, the most common 
being the phosphorothioate (PS) backbone, 
accomplished by the replacement of one of the 
non-bridging oxygen atoms by a sulphur atom. 
AONs bearing PS linkages are compatible with 
recruitment of RNase H, which cleaves the target 
of AONs. This modification allows for an 
improved nuclease resistance, as well as strong 
binding to plasma proteins, reducing renal clear-
ance, but still presents poor binding affinity, low 
specificity and poor cellular uptake [1, 7, 10, 
13–15]. Despite these disadvantages, PS oligo-
nucleotides are still the most commonly used 
AONs and were the first antisense-based drug 
approved for clinical use in 1998 with fomivirsen 
(Vitravene®) used for repression of 
 cytomegalovirus mRNA translation [16]. It 
gained U.S.  FDA (U.S.  Food and Drug 
Administration) approval for intraocular treat-
ment of cytomegalovirus retinitis in immunosup-
pressed patients in 1998 [16] and was discontinued 
later due to commercial considerations.

In order to surpass the downsides of the first 
generation oligonucleotides, a second generation 
was developed through modifications at the 2′ 
position of the ribose. The most widely studied 
second generation AONs are 2′-O-methyl (2′-
OMe) and 2′-O-Methoxyethyl (2′-MOE), which 
present higher nuclease resistance and higher 
affinity for the target RNA, while also reducing 
non-specific protein binding and toxicity [7, 10, 
13, 15]. These second generation AONs, how-
ever, do not support RNase H-mediated cleavage 
of the target mRNA, which impairs their usage 
for purposes of gene downregulation [1, 14, 17]. 
This limitation has been minimized with the 
development of “gapmer” structures where 2′ 
sugar-modified residues are present on either side 
of a central “gap” region comprising 8–10 
PS-modified nucleotides. The external sugar 
modified residues thus increase affinity and 
nuclease resistance, while the internal “gap” 
region allows RNase H-mediated cleavage of the 
target RNA [1, 6, 18, 19].
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Finally, the third generation of oligonucle-
otides is characterized by modifications of the 
furanose ring of the nucleotide, with the most 
common being peptide nucleic acids (PNAs), 
locked nucleic acids (LNAs) and phosphoroami-
date morpholino oligomers (PMOs) [12, 14]. 
These modifications further increase nuclease 
and protease resistance, target affinity, specificity 
and in vivo stability of antisense drugs, while 
reduce non-specific interactions with proteins [1, 
13, 14, 20, 21]. Nevertheless, PNAs and PMOs 
present poor cellular uptake, low water solubility 
and are rapidly cleared from the blood due to 
their uncharged nature [1, 10, 20, 22] whereas 
LNAs appear to generate higher toxicity than 
other chemical modifications, questioning their 
safety for therapeutic applications [1, 20].

7.2.3  Recent Successful 
Applications of Antisense 
Oligonucleotides

The therapeutic application of AONs is very 
promising. A huge amount of preclinical data has 
been produced in recent years and many studies 
have even undergone clinical trials (Table  7.1). 
Of those, four drugs with different AON chemis-
tries and treatment targets reached, or almost 
reached clinical practice [12] (Fig. 7.3). One of 
them is Mipomersen (Kynamro®; Genzyme) that 
was approved by the U.S. FDA in 2013 for the 
treatment of familial hypercholesterolemia (FH). 
Mipomersen is a gapmer of 20 nucleotides and 
has a sequence complementary to a segment of 
the Apo b-100 mRNA.  Its binding creates a 

Fi
rs

t  
ge

ne
ra

tio
n

O Base

HO

SPO

O Phosphorothioate DNA (PS)

Se
co

nd
 

ge
ne

ra
tio

n O Base

OO

OPO

O

CH3

2’-O-methyl RNA (OMe)

O Base

OO

OPO

O

CH3O

2’-O-methoxy-ethyl  RNA (MOE)

Th
ird

 
ge

ne
ra

tio
n

O Base

OO

OPO

O Locked nucleic acid (LNA)

N
Base

O

NHO

Peptide nucleic acid (PNA)

O

N

Base

O

P

O

NO
Phosphoroamidate 
Morpholino (PMO)

Fig. 7.2 Chemical modifications of antisense oligonu-
cleotides. First generation antisense oligonucleotides 
(AONs) are characterized by phosphorothioate (PS) back-
bone; second generation AONs contain a methyl or 

methoxyethyl group at the 2′ position of the ribose; 
finally, third generation AONs are characterized by modi-
fications of the furanose ring structure

7 RNA Therapeutics: How Far Have We Gone?



138

Ta
bl

e 
7.

1 
Su

m
m

ar
y 

ta
bl

e 
of

 c
lin

ic
al

 tr
ia

ls
 f

or
 A

nt
is

en
se

 O
lig

on
uc

le
ot

id
es

 (
A

O
N

s)

C
he

m
is

tr
y

D
ru

g
Ta

rg
et

/o
rg

an
D

os
e/

ro
ut

e
In

di
ca

tio
n

K
ey

 o
bs

er
va

tio
ns

R
ef

er
en

ce
s

C
om

m
er

ci
al

iz
ed

2′
-H

 (
PS

 
ba

ck
bo

ne
)

Fo
m

iv
ir

se
n

H
C

M
V

 
U

L
12

2,
 E

ye
33

0 
μg

/e
ye

 o
nc

e 
ev

er
y 

4 
w

ee
ks

, 
IT

V

C
M

V
 r

et
in

iti
s

(1
) 

E
ff

ec
tiv

e 
fo

r 
C

M
V

 r
et

in
iti

s 
in

 A
ID

S 
pa

tie
nt

s
[2

3–
25

]

2′
-M

O
E

 (
PS

 
ba

ck
bo

ne
)

M
ip

om
er

se
n

A
P

O
B

, L
iv

er
20

0 
m

g 
on

ce
 

w
ee

kl
y,

 S
C

H
oF

H
(1

) 
R

ed
uc

tio
n 

of
 a

po
B

10
0 

co
nt

ai
ni

ng
 

lip
op

ro
te

in
 p

ar
tic

le
s;

 (
2)

 T
ar

ge
t-

re
la

te
d 

A
LT

 e
le

va
tio

ns
; (

3)
 C

lin
ic

al
ly

 m
ea

ni
ng

 
fu

ll 
to

le
ra

bi
lit

y 
is

su
es

[2
6–

29
]

2′
-M

O
E

, f
ul

ly
 

m
od

ifi
ed

 (
PS

 
ba

ck
bo

ne
)

N
us

in
er

se
n

SM
N

2 
(I

nt
ro

n 
7)

, C
N

S
12

 m
g 

on
ce

 
ev

er
y 

4 
m

on
th

s,
 

IT

SM
A

(1
) 

C
or

re
ct

io
n 

of
 S

M
N

2 
sp

lic
in

g 
de

fe
ct

; 
(2

) 
Tw

o 
ph

as
e 

3 
st

ud
ie

s 
te

rm
in

at
ed

 e
ar

ly
 

fo
r 

si
gn

ifi
ca

nt
 b

en
efi

t; 
(3

) 
N

o 
dr

ug
 r

el
at

ed
 

ad
ve

rs
e 

ev
en

ts

[3
0–

33
]

PM
O

E
te

pl
ir

se
n

D
M

D
 (

E
xo

n 
51

),
 M

us
cl

e
30

 m
g/

kg
 o

nc
e 

w
ee

kl
y,

 I
V

D
M

D
(1

) 
In

cr
ea

se
d 

pr
od

uc
tio

n 
of

 d
ys

tr
op

hi
n;

 
(2

) 
In

te
rp

re
ta

tio
n 

of
 r

es
ul

ts
 c

on
tr

ov
er

si
al

[3
4,

 3
5]

P
ha

se
 3

2′
-H

A
lic

af
or

se
n

IC
A

M
1,

 
C

ol
on

24
0 

m
g 

on
ce

 
da

ily
, E

ne
m

a
C

hr
on

ic
 

po
uc

hi
tis

Ph
as

e 
2 

fin
di

ng
s 

in
cl

ud
ed

 r
ed

uc
tio

n 
in

 
Po

uc
hi

tis
 D

is
ea

se
 A

ct
iv

ity
 I

nd
ex

 a
nd

 
en

do
sc

op
y 

su
bs

co
re

N
C

T
02

52
55

23
 [

36
]

2′
-H

M
on

ge
rs

en
SM

A
D

7,
 

In
te

st
in

e
16

0 
m

g 
on

ce
 

da
ily

, O
ra

l
C

ro
hn

’s
 d

is
ea

se
Ph

as
e 

3 
fa

ile
d 

to
 d

em
on

st
ra

te
 b

en
efi

t i
n 

pa
tie

nt
s 

w
ith

 C
ro

hn
’s

 D
is

ea
se

N
C

T
02

59
68

93
 [

37
]

N
C

T
02

60
13

00
2′

-M
O

E
In

ot
er

se
n

T
T

R
, L

iv
er

30
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
H

er
ed

ita
ry

 
A

T
T

R
Ph

as
e 

3 
fin

di
ng

s 
in

cl
ud

ed
 (

1)
 s

ig
ni

fic
an

t 
be

ne
fit

 in
 in

ot
er

se
n-

tr
ea

te
d 

pa
tie

nt
s 

in
 

bo
th

 n
eu

ro
pa

th
ic

 d
is

ea
se

 p
ro

gr
es

si
on

 a
nd

 
qu

al
ity

 o
f 

lif
e 

m
ea

su
re

s 
co

m
pa

re
d 

to
 

pl
ac

eb
o-

tr
ea

te
d 

pa
tie

nt
s,

 (
2)

 r
ed

uc
tio

n 
of

 
m

ut
an

t a
nd

 n
or

m
al

 T
T

R
, (

3)
 

th
ro

m
bo

cy
to

pe
ni

a 
(1

 f
at

al
 b

le
ed

in
g 

ev
en

t)
 

an
d 

(4
) 

re
na

l e
ve

nt
s

N
C

T
01

73
73

98
 [

38
] 

(I
on

is
 

Ph
ar

m
ac

eu
tic

al
s,

 p
re

ss
 r

el
ea

se
, 

N
ov

 2
, 2

01
7)

2′
-M

O
E

V
ol

an
es

or
se

n
A

P
O

C
3,

 
L

iv
er

30
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
FC

S
Ph

as
e 

3 
fin

di
ng

s 
in

cl
ud

ed
 (

1)
 c

on
si

st
en

t 
re

du
ct

io
n 

of
 tr

ig
ly

ce
ri

de
s,

 (
2)

 m
ea

n 
re

du
ct

io
n 

in
 tr

ig
ly

ce
ri

de
s 

of
 1

71
2 

m
g/

dL
in

 F
C

S 
pa

tie
nt

s,
 (

3)
 r

ed
uc

ed
 a

bd
om

in
al

 
pa

in
 a

nd
 p

an
cr

ea
tit

is
, a

nd
 (

4)
 F

C
S-

re
la

te
d 

th
ro

m
bo

cy
to

pe
ni

a

N
C

T
02

21
12

09
 [

39
–4

2]

M. F. Coutinho et al.



139
C

he
m

is
tr

y
D

ru
g

Ta
rg

et
/o

rg
an

D
os

e/
ro

ut
e

In
di

ca
tio

n
K

ey
 o

bs
er

va
tio

ns
R

ef
er

en
ce

s
PM

O
SR

P-
40

45
D

M
D

 (
E

xo
n 

45
),

 M
us

cl
e

30
 m

g/
kg

 o
nc

e 
w

ee
kl

y,
 I

V
D

M
D

N
ot

 p
ub

lis
he

d
N

C
T

02
50

03
81

PM
O

G
ol

od
ir

se
n 

(S
R

P-
40

53
)

D
M

D
 (

E
xo

n 
53

),
 M

us
cl

e
30

 m
g/

kg
 o

nc
e 

w
ee

kl
y,

 I
V

D
M

D
O

n 
cl

in
ic

al
 h

ol
d 

du
e 

to
 s

er
io

us
 a

dv
er

se
 

ev
en

t
N

C
T

02
50

03
81

P
ha

se
 2

2′
-M

O
E

IO
N

IS
-F

X
I R

x/
B

A
Y

 
23

06
00

1
F

11
, L

iv
er

10
0–

30
0 

m
g 

on
ce

 w
ee

kl
y,

 S
C

C
lo

tti
ng

 
di

so
rd

er
s

Ph
as

e 
2 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 r
ed

uc
tio

n 
of

 
Fa

ct
or

 X
I 

pr
ot

ei
n,

 a
nd

 (
2)

 r
ed

uc
tio

n 
of

 
th

ro
m

bo
tic

 e
ve

nt
s 

w
ith

ou
t i

nc
re

as
e 

in
 

bl
ee

di
ng

N
C

T
02

55
38

89
N

C
T

01
71

33
61

 [
43

]

2′
-M

O
E

IO
N

IS
-P

T
P1

B
R

x
P

T
P

N
1,

 L
iv

er
20

0 
m

g 
on

ce
w

ee
kl

y,
 S

C
T

2D
Ph

as
e 

2 
fin

di
ng

s 
in

cl
ud

ed
 (

1)
 r

ed
uc

tio
n 

of
 

H
bA

1c
, (

2)
 im

pr
ov

ed
 le

pt
in

 a
nd

 
di

po
ne

ct
in

 le
ve

ls
, a

nd
 (

3)
 d

ec
re

as
ed

 b
od

y 
w

ei
gh

t

N
C

T
00

45
55

98

2′
-M

O
E

IO
N

IS
-G

C
C

R
R

x
N

R
3C

1,
 L

iv
er

60
–4

20
 m

g 
on

ce
 

w
ee

kl
y,

 S
C

T
2D

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 
im

pr
ov

em
en

t i
n 

lip
id

 p
ro

fil
e,

 a
nd

 (
2)

 
at

te
nu

at
io

n 
of

 d
ex

am
et

ha
so

ne
-i

nd
uc

ed
 

he
pa

tic
 in

su
lin

 r
es

is
ta

nc
e

N
C

T
01

96
82

65
 [

44
]

2’
-M

O
E

IO
N

IS
-G

C
G

R
R

x
G

C
G

R
, L

iv
er

50
–2

00
 m

g 
on

ce
 

w
ee

kl
y,

 S
C

T
2D

Ph
as

e 
2 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 a
tte

nu
at

io
n 

of
 g

lu
ca

go
n-

in
du

ce
d 

in
cr

ea
se

 in
 b

lo
od

 
gl

uc
os

e 
le

ve
ls

, a
nd

 (
2)

 r
ed

uc
tio

n 
of

 
H

bA
1c

N
C

T
02

58
39

19
 [

45
]

2′
-M

O
E

IO
N

IS
-F

G
F R

4
F

G
F

R
4,

 
L

iv
er

10
0–

20
0 

m
g 

on
ce

 w
ee

kl
y,

 S
C

O
be

si
ty

N
ot

 p
ub

lis
he

d
N

C
T

02
46

32
40

2′
-M

O
E

IO
N

IS
-H

T
T

R
x

H
T

T
, C

N
S

10
–1

20
 m

g 
on

ce
ev

er
y 

4 
w

ee
ks

, 
IT

H
un

tin
gt

on
’s

di
se

as
e

In
 p

ro
gr

es
s

N
C

T
02

51
90

36

2′
-M

O
E

IO
N

IS
-D

G
A

T
2 R

x
D

G
A

T
2,

 
L

iv
er

on
ce

 w
ee

kl
y,

 S
C

N
A

SH
In

 p
ro

gr
es

s
N

C
T

03
33

42
14

2′
-M

O
E

A
pa

to
rs

en
H

SP
B

1,
 

T
um

or
C

el
ls

20
0–

10
00

 m
g 

on
ce

 w
ee

kl
y,

 I
V

C
an

ce
r

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 d
ec

re
as

e 
in

 
tu

m
or

 m
ar

ke
rs

 a
nd

 d
ec

lin
e 

in
 C

T
C

s
N

C
T

01
45

40
89

 [
46

]

2′
-M

O
E

A
T

L
11

02
IT

G
A

4,
 

Im
m

un
e 

C
el

ls
20

0 
m

g 
tw

ic
e 

w
ee

kl
y,

 S
C

M
S

Ph
as

e 
2 

fin
di

ng
s 

in
cl

ud
ed

 r
ed

uc
tio

n 
in

 
ne

w
 a

ct
iv

e 
le

si
on

s
[4

7]

2′
-M

O
E

A
te

si
do

rs
en

/
A

T
L

11
03

G
H

R
, L

iv
er

6 
m

g/
kg

 tw
ic

e 
w

ee
kl

y,
 S

C
A

cr
om

eg
al

y
N

ot
 p

ub
lis

he
d

A
C

T
R

N
12

61
50

00
28

95
16

(c
on

tin
ue

d)

7 RNA Therapeutics: How Far Have We Gone?



140

Ta
bl

e 
7.

1 
(c

on
tin

ue
d)

C
he

m
is

tr
y

D
ru

g
Ta

rg
et

/o
rg

an
D

os
e/

ro
ut

e
In

di
ca

tio
n

K
ey

 o
bs

er
va

tio
ns

R
ef

er
en

ce
s

2′
-M

O
E

IO
N

IS
-P

K
K

R
x

K
L

K
B

1,
 L

iv
er

20
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
H

A
E

, c
hr

on
ic

 
m

ig
ra

in
e

In
 p

ro
gr

es
s

N
C

T
03

10
84

69

2′
-M

O
E

IO
N

IS
-H

B
V

R
x

H
B

V
 S

, L
iv

er
SC

H
B

V
, c

hr
on

ic
 

at
yp

ic
al

In
 p

ro
gr

es
s

N
C

T
02

98
16

02

cE
T

A
ZD

91
50

/IO
N

IS
ST

AT
3-

2.
5 R

x

ST
A

T
3,

 
C

an
ce

r 
an

d 
St

ro
m

al
 C

el
ls

2–
4 

m
g/

kg
 o

nc
e 

w
ee

kl
y,

 I
V

C
an

ce
r

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 r
ed

uc
tio

n 
of

 
ST

A
T

3,
 (

2)
 r

ed
uc

tio
n 

in
 s

er
um

 I
L

6,
 a

nd
 

(3
) 

re
du

ct
io

n 
in

 tu
m

or
 b

ur
de

n

N
C

T
02

54
96

51
N

C
T

01
56

33
02

 [
48

]

cE
T

A
Z

D
53

12
/

IO
N

IS
A

R
-2

.5
R

x

A
R

, C
an

ce
r 

C
el

ls
15

0–
11

50
 m

g 
on

ce
 w

ee
kl

y,
 I

V
Pr

os
ta

te
 c

an
ce

r
Ph

as
e 

1 
fin

di
ng

s 
in

cl
ud

ed
 d

ec
lin

es
 in

 P
SA

 
an

d 
ci

rc
ul

at
in

g 
tu

m
or

 c
el

ls
 in

 s
om

e 
pa

tie
nt

s

N
C

T
02

14
40

51
 [

49
]

L
N

A
M

ir
av

ir
se

n
M

IR
12

2,
 

L
iv

er
3–

7 
m

g/
kg

 o
nc

e 
w

ee
kl

y,
 S

C
H

C
V

Ph
as

e 
2 

fin
di

ng
s 

in
cl

ud
ed

 in
hi

bi
tio

n 
of

 
m

iR
-1

22
 f

un
ct

io
n.

N
C

T
01

20
04

20
 [

50
, 5

1]

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-A

PO
(a

)-
L

R
x

L
PA

, L
iv

er
10

–4
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
C

V
D

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 r
ed

uc
tio

n 
of

 
L

p(
a)

N
C

T
03

07
07

82
 [

52
]

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-A

N
G

PT
L

3-
L

R
x

A
N

G
P

T
L

3,
 

L
iv

er
10

–6
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
D

ys
lip

id
em

ia
s

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 r
ed

uc
tio

n 
of

 
A

N
G

PT
L

3,
 L

D
L

 c
ho

le
st

er
ol

 a
nd

 
tr

ig
ly

ce
ri

de
s

N
C

T
02

70
98

50
 [

53
]

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-A

PO
C

II
I-

 
L

R
x

A
P

O
C

3,
 

L
iv

er
on

ce
 w

ee
kl

y,
 S

C
C

V
D

In
 p

ro
gr

es
s

N
C

T
02

90
00

27

2′
-M

O
E

, 
G

al
N

A
c

G
SK

33
89

40
4/

IO
N

IS
-H

B
V

-L
R

x

H
B

V
 S

, L
iv

er
30

–1
20

 m
g 

si
ng

le
 d

os
e/

on
ce

 
w

ee
kl

y,
 S

C

C
hr

on
ic

 H
B

V
In

 p
ro

gr
es

s
N

C
T

03
02

07
45

U
nd

is
cl

os
ed

, 
G

al
N

ac
A

Z
D

40
76

/R
G

-1
25

M
IR

10
7,

 
L

iv
er

SC
D

ia
be

tic
 N

A
SH

In
 p

ro
gr

es
s

N
C

T
02

82
65

25

U
nd

is
cl

os
ed

R
G

-0
12

M
IR

21
, 

K
id

ne
y

11
0–

22
0 

m
g 

on
ce

 w
ee

kl
y,

 S
C

A
lp

or
t 

sy
nd

ro
m

e
In

 p
ro

gr
es

s
N

C
T

02
85

52
68

P
ha

se
 1

2′
-M

O
E

E
lu

fo
rs

en
L

un
g/

re
sp

ir
at

or
y 

ep
ith

el
iu

m

In
tr

an
as

al
 (

th
re

e 
tim

es
 w

ee
kl

y 
fo

r 
4 

w
ee

ks
)

C
ys

tic
 fi

br
os

is
Ph

as
e 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 e
lu

fo
rs

en
 w

as
 

w
el

l t
ol

er
at

ed
 (

2)
 im

pr
ov

ed
 C

FT
R

 
fu

nc
tio

n

N
C

T
02

56
43

54
; [

54
]

2′
-M

O
E

B
II

B
06

7/
IO

N
IS

SO
D

1 R
x

SO
D

1,
 C

N
S

IT
Fa

m
ili

al
 A

L
S

In
 p

ro
gr

es
s

N
C

T
02

62
36

99

M. F. Coutinho et al.



141
C

he
m

is
tr

y
D

ru
g

Ta
rg

et
/o

rg
an

D
os

e/
ro

ut
e

In
di

ca
tio

n
K

ey
 o

bs
er

va
tio

ns
R

ef
er

en
ce

s
L

N
A

M
R

G
-1

06
M

IR
15

5,
 

C
an

ce
r 

C
el

ls
75

–9
00

 m
g 

on
ce

 
w

ee
kl

y,
 I

T
M

/
SC

/I
V

H
em

at
ol

og
ic

al
 

m
al

ig
na

nc
ie

s
Ph

as
e 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 im
pr

ov
em

en
ts

 
in

 c
ut

an
eo

us
 le

si
on

s,
 a

nd
 (

2)
 

tr
an

sc
ri

pt
io

na
l c

ha
ng

es
 c

on
si

st
en

t w
ith

 
ta

rg
et

 a
ct

iv
ity

N
C

T
02

58
05

52
 [

55
]

L
N

A
IS

T
H

00
36

T
G

F
B

2,
 E

ye
6.

75
–2

25
 μ

g 
si

ng
le

 d
os

e,
 I

V
T

G
la

uc
om

a
Ph

as
e 

1 
fin

di
ng

s 
in

cl
ud

ed
 (

1)
 d

os
e-

 
re

sp
on

se
 tr

en
d 

ob
se

rv
ed

 in
 p

os
t-

op
er

at
iv

e 
in

tr
ao

cu
la

r 
pr

es
su

re
, a

nd
 (

2)
 n

o 
ad

ve
rs

e 
ev

en
ts

N
C

T
02

40
68

33
 [

56
]

PO
, 2
′-O

M
e,

 
E

N
A

D
S-

51
41

b
D

M
D

 (
E

xo
n 

45
),

 M
us

cl
e

0.
1–

6.
0 

m
g/

kg
 

on
ce

 w
ee

kl
y,

 S
C

D
M

D
In

 p
ro

gr
es

s
N

C
T

02
66

74
83

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-F

B
-L

R
x

C
F

B
, L

iv
er

10
–4

0 
m

g 
on

ce
 

ev
er

y 
2 

w
ee

ks
, 

SC

O
cu

la
r 

di
se

as
e

Ph
as

e 
1 

fin
di

ng
s 

in
cl

ud
ed

 (
1)

 d
os

e-
 

de
pe

nd
en

t r
ed

uc
tio

n 
in

 f
ac

to
r 

B
 le

ve
ls

 
ac

co
m

pa
ni

ed
 b

y 
si

m
ila

r 
re

du
ct

io
n 

in
 

fa
ct

or
 B

 f
un

ct
io

n 
an

d 
co

m
pl

em
en

t s
pl

it 
fa

ct
or

 B
b,

 a
nd

 (
2)

 n
o 

dr
ug

 r
el

at
ed

 a
dv

er
se

 
ev

en
ts

A
C

T
R

N
12

61
60

00
33

54
93

[5
7]

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-A

G
T-

L
R

x
A

G
T

, L
iv

er
on

ce
 w

ee
kl

y,
 S

C
T

re
at

m
en

t 
re

si
st

an
t 

H
yp

er
te

ns
io

n

In
 p

ro
gr

es
s

N
C

T
03

10
18

78

2′
-M

O
E

, 
G

al
N

A
c

IO
N

IS
-P

K
K

-L
R

x
K

L
K

B
1,

 L
iv

er
SC

H
A

E
, c

hr
on

ic
 

m
ig

ra
in

e
In

 p
ro

gr
es

s
N

C
T

03
26

35
07

D
is

co
nt

in
ue

d
2′

-O
M

e
D

ri
sa

pe
rs

en
D

M
D

 (
E

xo
n 

51
),

 M
us

cl
e

6 
m

g/
kg

 o
nc

e 
w

ee
kl

y,
 S

C
D

M
D

R
ej

ec
te

d 
by

 F
D

A
[5

8,
 5

9]
 (

B
io

m
ar

in
 

Ph
ar

m
ac

eu
tic

al
, p

re
ss

 r
el

ea
se

, 
M

ay
 3

1,
 2

01
6)

2′
-M

O
E

C
us

tir
se

n
C

L
U

, T
um

or
 

C
el

ls
64

0 
m

g 
on

ce
 

w
ee

kl
y,

 I
V

Pr
os

ta
te

 c
an

ce
r 

an
d 

N
SC

L
C

Fa
ilu

re
 to

 m
ee

t p
ri

m
ar

y 
en

dp
oi

nt
s 

in
 p

ha
se

 3
 tr

ia
ls

N
C

T
01

57
86

55
N

C
T

01
63

07
33

 [
60

] 
(O

nc
oG

en
eX

, p
re

ss
 r

el
ea

se
, 

N
ov

 1
0,

 2
01

6)
2′

-M
O

E
IO

N
IS

-A
PO

(a
) R

x
L

PA
, L

iv
er

30
0 

m
g 

on
ce

 
w

ee
kl

y,
 S

C
C

V
D

R
ep

la
ce

d 
w

ith
 G

al
N

ac
 c

on
ju

ga
te

[6
1]

2′
-M

O
E

IS
IS

 3
88

62
6

SL
C

5A
2,

 
K

id
ne

y
50

–2
00

 m
g 

on
ce

 
w

ee
kl

y,
 S

C
T

2D
A

va
ila

bi
lit

y 
of

 s
m

al
l-

m
ol

ec
ul

e 
in

hi
bi

to
rs

 
of

 S
G

LT
2

[6
2]

(c
on

tin
ue

d)

7 RNA Therapeutics: How Far Have We Gone?



142

Ta
bl

e 
7.

1 
(c

on
tin

ue
d)

C
he

m
is

tr
y

D
ru

g
Ta

rg
et

/o
rg

an
D

os
e/

ro
ut

e
In

di
ca

tio
n

K
ey

 o
bs

er
va

tio
ns

R
ef

er
en

ce
s

2′
-M

O
E

IS
IS

 3
33

61
1

SO
D

1,
 C

N
S

0.
15

–3
.0

 m
g 

si
ng

le
 d

os
e,

 I
T

Fa
m

ili
al

 A
L

S
R

ep
la

ce
d 

by
 m

or
e 

po
te

nt
 c

om
po

un
d

[6
3]

2′
-M

O
E

IS
IS

 1
04

83
8

T
N

F
, I

m
m

un
e 

C
el

ls
0.

1–
6 

m
g/

kg
IV

, 2
00

 m
g 

on
ce

w
ee

kl
y,

 S
C

In
fla

m
m

at
or

y 
di

se
as

e
In

ad
eq

ua
te

 a
ct

iv
ity

[6
4]

2′
-M

O
E

IS
IS

 1
13

71
5

P
T

P
N

1,
 L

iv
er

10
0–

60
0 

m
g 

on
ce

 w
ee

kl
y,

 S
C

T
2D

R
ep

la
ce

d 
by

 m
or

e 
po

te
nt

 c
om

po
un

d

cE
T,

 2
′-M

O
E

IO
N

IS
-D

M
PK

2.
5R

x
D

M
P

K
, 

M
us

cl
e

10
0–

60
0 

m
g 

on
ce

 w
ee

kl
y,

 S
C

D
M

1
In

ad
eq

ua
te

 a
ct

iv
ity

N
C

T
02

31
20

11
 [

65
]

L
N

A
E

Z
N

-4
17

6
A

R
, C

an
ce

r 
C

el
ls

0.
5–

10
 m

g/
kg

 
on

ce
 w

ee
kl

y,
 I

V
Pr

os
ta

te
 c

an
ce

r
A

LT
 e

le
va

tio
ns

N
C

T
01

33
75

18
 [

66
]

U
nd

is
cl

os
ed

, 
G

al
N

ac
R

G
-1

01
M

IR
12

2,
 

L
iv

er
SC

H
C

V
C

as
es

 o
f 

hy
pe

rb
ili

ru
bi

ne
m

ia
E

ud
ra

C
T

 2
01

6-
00

20
69

-7
7 

(R
eg

ul
us

, p
re

ss
 r

el
ea

se
, J

un
 

12
, 2

01
7)

A
bb

re
vi

at
io

ns
: C

he
m

is
tr

y:
 2
′ –

 H
 2
′- 

de
ox

y,
 2
′ –

 M
O

E
 2
′ –

O
- 

m
et

ho
xy

 e
th

yl
, P

M
O

 p
ho

sp
ho

ro
di

am
id

at
e 

m
or

ph
ol

in
o 

ol
ig

om
er

, c
E

T
 (

S)
- 

co
ns

tr
ai

ne
d 

et
hy

l, 
L

N
A

 lo
ck

ed
 n

uc
le

ic
 

ac
id

, G
al

N
A

c 
N

-A
ce

til
ga

la
ct

os
am

in
e,

 E
N

A
, 2
′ –

O
, 4
′ –

C
- e

th
yl

en
e-

br
id

ge
d 

nu
cl

ei
c 

ac
id

. T
ar

ge
t/

or
ga

n:
 H

C
M

V
 U

L
12

2 
H

um
an

 c
yt

om
eg

al
ov

ir
us

 w
ith

 IE
-2

, A
P

O
B

 a
po

lip
op

ro
te

in
 

B
, S

M
N

2 
su

rv
iv

al
 o

f m
ot

or
 n

eu
ro

n 
2,

 C
N

S 
ce

nt
ra

l n
er

vo
us

 s
ys

te
m

, D
M

D
 d

ys
tr

op
hi

n,
 IC

A
M

1 
in

te
rc

el
lu

la
r a

dh
es

io
n 

m
ol

ec
ul

e,
 S

M
A

D
7 

SM
A

D
 fa

m
ily

 m
em

be
r, 

T
T

R
 tr

an
st

hy
re

tin
, 

A
P

O
C

3 
ap

ol
ip

op
ro

te
in

 3
, P

T
P

N
1 

pr
ot

ei
n 

ty
ro

si
ne

 p
ho

sp
ha

ta
se

, n
on

-r
ec

ep
to

r 
ty

pe
1,

 N
R

3C
1 

nu
cl

ea
r 

re
ce

pt
or

 s
ub

fa
m

ily
 3

, g
ro

up
 C

 m
em

be
r 

1 
(g

lu
co

co
rt

ic
oi

d 
re

ce
pt

or
),

 G
C

G
R

 
gl

uc
ag

on
 r

ec
ep

to
r, 

F
G

F
R

4 
fib

ro
bl

as
t g

ro
w

th
 f

ac
to

r 
re

ce
pt

or
 4

, H
T

T
 h

un
tin

gt
in

, D
G

A
T

 d
ia

cy
lg

ly
ce

ro
l O

-a
cy

ltr
an

sf
er

as
e 

2,
 H

SP
B

1 
he

at
 s

ho
ck

 p
ro

te
in

 f
am

ily
 B

 (
sm

al
l)

 m
em

be
r 

1 
(h

ea
t s

ho
ck

 p
ro

te
in

27
),

 I
T

G
A

4 
in

te
gr

in
 s

ub
un

it 
al

ph
a 

4,
 G

H
R

 g
ro

w
th

 h
or

m
on

e 
re

ce
pt

or
, K

L
K

B
1 

ka
lli

kr
ei

n 
B

1,
 H

B
V

 S
 h

ep
at

iti
s 

su
rf

ac
e 

an
tig

en
 (

H
B

sA
g)

, S
TA

T
3 

si
gn

al
 tr

an
s-

du
ce

r 
an

d 
ac

tiv
at

or
 o

f 
tr

an
sc

ri
pt

io
n 

3,
 A

R
 a

nd
ro

ge
n 

re
ce

pt
or

, M
IR

 m
ic

ro
R

N
A

, L
PA

 li
po

pr
ot

ei
n 

(a
),

 A
N

G
P

T
L

3 
an

gi
op

oi
et

in
 li

ke
 3

, S
O

D
1 

su
pe

ro
xi

de
 d

is
m

ut
as

e 
1,

 T
G

F
B

2 
tr

an
s-

fo
rm

in
g 

gr
ow

th
 f

ac
to

r 
be

ta
 2

, C
F

B
 c

om
pl

em
en

t 
fa

ct
or

 B
, A

G
T

 a
ng

io
te

ns
in

og
en

, C
L

U
 c

lu
st

er
in

, S
ol

ut
e 

C
ar

ri
er

 F
am

ily
 5

 M
em

be
r 

2,
 T

N
F

 t
um

or
 n

ec
ro

si
s 

fa
ct

or
 a

lp
ha

, D
M

P
K

 
D

M
1 

pr
ot

ei
n 

ki
na

se
. D

os
e/

ro
ut

e:
 I

V
T

 in
tr

av
itr

ea
l, 

SC
 s

ub
cu

ta
ne

ou
s,

 I
T

 in
tr

at
he

ca
l, 

IV
 in

tr
av

en
ou

s.
 I

nd
ic

at
io

n:
 C

M
V

 c
yt

om
eg

al
ov

ir
us

, H
oF

H
 h

om
oz

yg
ou

s 
fa

m
ili

al
 h

yp
er

ch
o-

le
st

er
ol

em
ia

, 
SM

A
 s

pi
na

l 
m

us
cu

la
r 

at
ro

ph
y,

 A
T

T
R

 t
ra

ns
th

yr
et

in
 a

m
yl

oi
do

si
s,

 F
C

S 
fa

m
ili

al
 c

hy
lo

m
ic

ro
ne

m
ia

, 
T

2D
 t

yp
e 

2 
di

ab
et

es
, 

N
A

SH
 n

on
-a

lc
oh

ol
ic

 s
te

at
oh

ep
at

iti
s,

 M
S 

m
ul

tip
le

 s
cl

er
os

is
, H

A
E

 h
er

ed
ita

ry
 a

ng
io

de
m

a,
 H

C
V

 h
ep

at
iti

s 
C

 v
ir

us
, C

V
D

 c
ar

di
ov

as
cu

la
r 

di
se

as
e,

 A
L

S 
am

yo
tr

op
hi

c 
la

te
ra

l s
cl

er
os

is
, N

SC
L

C
 n

on
-s

m
al

l c
el

l l
un

g 
ca

nc
er

, D
M

1 
m

yo
to

ni
c 

dy
st

ro
ph

y 
ty

pe
 1

. K
ey

 o
bs

er
va

ti
on

s:
 A

LT
 a

la
ni

ne
 a

m
in

ot
ra

ns
fe

ra
se

, H
bA

1c
 h

em
og

lo
bi

n 
A

1c
, C

T
C

 c
ir

cu
la

tin
g 

tu
m

or
 c

el
ls

, P
SA

 p
ro

st
at

e 
sp

ec
ifi

c 
an

tig
en

, F
D

A
 f

oo
d 

an
d 

dr
ug

 a
dm

in
is

tr
at

io
n,

 S
G

LT
2 

so
di

um
-g

lu
co

se
 c

o-
tr

an
sp

or
te

r 
2,

 A
LT

 a
la

ni
ne

 a
m

in
ot

ra
ns

fe
ra

se

M. F. Coutinho et al.



143

DNA:RNA hybrid that is substrate for the enzyme 
RNase H thus inducing the cleavage of the human 
Apo b-100 mRNA. The drug has a PS backbone, 
with 2′-MOE-modified ends, which when com-
pared with earlier antisense technologies, pro-
vides greater biological stability and higher 

affinity to the target mRNA [12, 67]. When 
administered subcutaneously at a dose of 200 mg 
per week, it was shown to reduce ApoB-100 pro-
duction and low-density lipoprotein cholesterol 
(LDL-C) in a dose-dependent fashion [68]. In 
general, the results achieved with Mipomersen 

Mipomersen

Homozygous familial hypercholesterolemia

RNAse H

ApoB mRNA

AON

Eteplirsen

Duchenne muscular dystrophy

46 47 51 52 53

46 47 51 52 53 46 47 52 53

Dystrophin mRNA

No dystrophin

AON

Shorter dystrophin

6 7 8

Nusinersen

Spinal muscular atrophy

6 8

6 7 8

SMN mRNA

Not enough 
SMN protein

More SMN protein

AON

Miravirsen

Hepatitis C

miR-122 mRNA

RISC

RISC

HCV mRNA

HCV mRNA No HCV 
replication

AON

a b

c d

Fig. 7.3 Antisense drugs for clinical practice. Currently, 
four drugs with different AON chemistries and mechanisms 
of action have either obtained U.S.  FDA approval 
(Mipomersen, Nusinersen and Eteplirsen) and reached 
clinical practice, or are seeking accelerated approval soon, 
with significant pre-clinical data supporting their rapid 
translation into clinic (Miraversen). (a) Mipomersen 
(Kynamro®; Genzyme), a 2′-MOE-modified AON 
approved by the U.S.  FDA in 2013 for the treatment of 

familial hypercholesterolemia (FH); (b) Miravirsen 
(SPC3649, Santaris Pharma), an antagomir to miR-122, 
seeking approval for hepatitis C treatment; (c) Nusinersen 
(Spinraza®, Biogen), a fully modified 2′-MOE AON, 
approved by U.S. FDA in 2016 for the treatment of spinal 
muscular atrophy (SMA) and, (d) Eterplirsen® (EXONDYS 
51TM, Sarepta), a PMO approved by the U.S. FDA in 2016 
for the use in Duchenne muscular dystrophy (lightning 
symbol means the existence of a pathogenic alteration)
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point to its efficacy, safety, and tolerability, dem-
onstrating its suitability for use in the target 
patient population, and providing a tangible tool 
for use in the management of FH and severe 
hypercholesterolemia [11, 12, 68]. However, 
mild-to-moderate injection site reactions, flu-like 
symptoms and hepatic effects (despite transient 
and generally reversible) limited its utilization 
and therefore its commercial success [11].

AONs complementary to mature miRNAs 
(antagomirs) are also being developed to coun-
teract miRNAs implicated in disease pathogene-
sis. An example is Miravirsen (SPC3649, 
Santaris Pharma), an antagomir to miR-122, a 
liver- specific microRNA that the hepatitis C 
virus (HCV) requires for replication. Miravirsen 
is designed to recognize and sequester miR-122, 
making it unavailable to HCV. As a result, viral 
replication is inhibited, and the level of HCV 
infection is reduced [12]. Positive results were 
observed in a phase II study. The use of 
Miravirsen in patients with chronic HCV geno-
type 1 infection showed prolonged dose-depen-
dent reductions in HCV RNA levels without 
evidence of viral resistance [50]. The updated 
results revealed no long-term safety issues 
among 27 Miravirsen- treated patients [51, 69]. 
Moreover, there was a prolonged decrease in 
miR-122 plasma levels in patients dosed with 
Miravirsen but the plasma levels of other miR-
NAs were not significantly affected by antago-
nizing miR-122 [69, 70].

The above examples use AONs to alter gene 
expression, either directly or indirectly, to change 
disease progression. Another precise method to 
alter gene expression is to manipulate pre-mRNA 
splicing using SSOs. This is the case of 
Nusinersen (Spinraza®, Biogen), a fully modified 
2′-MOE AON, approved by U.S.  FDA in 2016 
for the treatment of spinal muscular atrophy 
(SMA). SMA is an autosomal recessive neuro-
muscular disease caused by progressive loss of 
alfa-motor neurons in the anterior horn of the spi-
nal cord [12, 71]. The most severe form, infant 
onset or type 1, is the most common one, repre-
senting 50% of all SMA cases. Type 2 is less 
severe, but also very debilitating. These infants 

never walk, and as they grow the disease pro-
gresses and patients begin to lose the capacity of 
lift even their arms. In humans, a parolog gene of 
SMA exists, the SMN2 gene that differs of the 
SMN1 by 5–11 nucleotides. However, in the 
majority of the SMN2 transcripts the exon 7 is 
lacking, resulting in a truncated protein, which is 
rapidly degraded [72]. Nusinersen induces the 
inclusion of exon 7 in the SMN2 mRNA by tar-
geting and blocking an intron 7 internal splice 
site. This action increases SMN protein produc-
tion, thus improving its function [73]. Intrathecal 
injection of Nusinersen (every 4 months) allows 
therapeutic delivery directly into the cerebrospi-
nal fluid (CSF) bathing the spinal cord, the site of 
motor neuron degeneration and, substantially 
prolonging survival of type 1 infants, while also 
resulting in improvements in all measures evalu-
ated [32]. Similar benefit was demonstrated in 
patients with later onset type 2 SMA [33]. More 
remarkable, treatment of type 1 pre-symptomatic 
infants with Nusinersen has been demonstrated 
to result, in many cases, in achievement of motor 
milestones at the age expected for healthy infants. 
Moreover, 92% of the infants treated prior to the 
development of symptoms were able to sit with-
out support, a milestone never achieved by a type 
1 SMA infant before Nusinersen treatment was 
introduced and 50% were able to walk without 
support [74].

Another SSO, already in the market is 
Eterplirsen® (EXONDYS 51™, Sarepta) that 
was approved by the U.S. FDA in 2016 for use in 
Duchenne muscular dystrophy (DMD) patients, 
a severe, childhood-onset disease that results 
mostly from deletions within the dystrophin 
gene. DMD is a progressive, neuromuscular dis-
ease, occurring mainly in males (1 in 3500–5000 
males born worldwide) [75, 76]. It is caused by 
an absence of the protein dystrophy, a membrane- 
associated protein that forms a network with sar-
colemmal glycoproteins by linking the 
cytoskeleton actin in muscle fibers within the 
first few extracellular matrix [77], which results 
in altered myocyte integrity, muscle wasting and 
relentlessly progressive weakness. Becker mus-
cular dystrophy (BMD) is a milder disease 
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caused by dystrophin truncations (due to “in 
frame” deletions) rather than its absence. A via-
ble strategy for generating truncated, but func-
tional, dystrophin protein involves the skipping 
of exons to correct DMD-linked mutations 
(which includes 83% of mutations in DMD) 
[78]. This can reduce the severity of the disease 
and produce a milder phenotype, similar to that 
of BMD.  Eteplirsen, the first PMO drug ever 
approved, binds to the exon/intron splice site at 
the beginning of exon 51, resulting in its skip-
ping, giving origin to an in frame transcript, 
which prevents the unwanted degradation of the 
mutant transcripts by the nonsense- mediated 
mRNA decay (NMD) pathway, and allowing the 
production of an internally deleted but functional 
dystrophin protein [79]. Eterplirsen is applicable 
for approximately 14% of patients with DMD 
mutations. It is administered via intravenous 
infusion and was found to be well tolerated, with 
no adverse effects, in several clinical trials [79]. 
In addition, over 3  years of follow-up, 
Eterplirsen-treated patients showed a slower rate 
of decline in ambulation assessed by the 6-min 
walk test compared to untreated matched histori-
cal controls from two DMD natural history 
cohorts: the Leuven Neuromuscular Reference 
Center (LNMRC) and the Italian Telethon regis-
try [80]. Previously, the ability of Eteplirsen to 
induce expression of dystrophin had been dem-
onstrated by an observed increase of dystrophin-
positive fibers in skeletal muscle of DMD 
patients [35]. Recently, Kinane and coworkers 
compared the pulmonary function data from 
DMD patients, who received Eteplirsen in stud-
ies 201/202 (included 12 patients treated with 
Eteplirsen over 5 years) with the natural history 
data published. This study verified that the dete-
rioration of respiratory muscle function with 
Eteplirsen treatment as measured by forced vital 
capacity was half of that seen in natural history. 
Maximum expiratory pressure and maximum 
inspiratory pressure also declined more slowly 
in Eteplirsen treated patients compared to natu-
ral history, thus demonstrating its potential to 
preserve respiratory function in patients with 
DMD [81].

7.2.4  Antisense Oligonucleotides 
Delivery

One of the major issues for the use of AONs for 
therapeutic purposes is the efficient delivery to 
their target site. AONs need to reach the target 
tissue and, once there, they must reach the appro-
priate intracellular compartment [2, 7]. Parenteral 
injection, such as intravenous infusion or subcu-
taneous injection is the main method at the 
moment of delivery of PS modified single- 
stranded AONs formulated in a simple saline 
solution [15, 21]. However, even though AON 
activity has been observed in many tissues such 
as lung, stomach, bladder, and heart, AONs pre-
dominantly accumulate in liver, kidney, bone 
marrow, adipocytes, and lymph nodes [21]. 
Therefore, delivery problems must be considered 
in terms of sets of barriers to movement of AON 
within the body. Tissue barriers to delivery 
include the vascular endothelial barrier, first-pass 
renal excretion (which strongly affects PK and 
bio-distribution of AONs), and the blood brain 
barrier (BBB) that AONs cannot cross due to 
their size and charge, limiting their access to the 
central nervous system (CNS), in the case of 
CNS diseases. The one exception to this is intra-
thecal injection of single-stranded AONs with 
specific chemical modifications into the CSF, 
which allows AONs into the CNS [21].

Two main strategies are being developed to 
improve AON delivery: viral and non-viral deliv-
ery. Despite viral vectors are efficient systems for 
the delivery of genetic material and for the capa-
bility to infect a large number of cell types, they 
also showed some constraints, such as immuno-
genicity, tumorogenicity risks, limited loading 
capacity and scaling-up problems [7]. However, 
adeno-associated viruses (AAVs), which are non- 
integrative vectors and therefore present a low 
risk of genomic insertions, have been used in in 
vitro cells and in animal models to efficiently 
deliver AONs sequences embedded into modified 
snRNA systems (modified U1 snRNAs and mod-
ified U7 snRNAs). Indeed, promising therapeutic 
results were obtained with this strategy to induce 
exon-skipping in diseases like Leber Congenital 
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Amaurosis [82] and DMD [83–87] and exon- 
inclusion in SMA [88, 89] (for a more extended 
review on this subject see [90]). Non-viral deliv-
ery also represents a good alternative and the 
conjugation of free AONs with non-viral delivery 
carriers can be achieved by different strategies. 
One option is to conjugate AONs (or their carrier) 
to a ligand that interacts selectively with a cell 
surface receptor. Ideally, one such receptor 
should be expressed only in the tissue to be tar-
geted. Additionally, it should also be abundantly 
expressed, rapidly and extensively internalized, 
and have a high affinity to its ligands, so that they 
become readily available. Some receptors used to 
target AONs include integrins, G protein-coupled 
receptors (GPCRs), human receptor tyrosine 
kinase (RTK), scavenger receptors, asialoglyco-
protein receptor (ASGR), Toll-like receptors 
(TLRs) and folate receptor [91–97], as reviewed 
in [98]. However, receptors fulfilling all the 
above-referred criteria are not available for the 
majority of tissues and, once the AONs reach the 
cell surface of the target cell, they must be 
 internalized by endocytosis and packed into a 
vesicle, termed endosome. Then, the endosomes 
fuse with lysosomes, organelles rich in hydro-
lases, which ultimately degrade a high portion of 
the internalized AONs. In fact, one strategy to 
improve delivery of AONs is the use of short cell- 
penetrating peptides (CPPs), sequences of short 
cationic and/or amphipathic peptides (fewer than 
30 amino acids) that translocate small drugs/
cargo across cell membranes. CPPs are attached 
to their cargo through covalent linkages or 
through the formation of noncovalent nanoparti-
cle complexes [99] that can promote uptake of 
macromoleclues via endocytosis. CPPs cova-
lently conjugated to AONs were already used for 
therapeutic purposes in DMD [100–105] 
Myotonic Dystrophy type I [106] and SMA [107, 
108]. However, CPPs have a limited endosomal 
escape and overcoming the rate-limiting step of 
endosomal escape into the cytoplasm remains a 
major challenge to their successful use. Several 
studies tried to overcome this and some relevant 
results have been obtained. For instance, specific 
synthetic endosomal escape domains (EEDs) sig-
nificantly enhanced cytoplasmic delivery in the 

absence of cytotoxicity [109] and a CPP-adaptor 
system capable of efficient intracellular delivery 
was also recently developed [110]. Another pos-
sibility is to incorporate AONs into nanoparticles 
(NPs) that based on their size and materials, will 
determine the AON biodistribution and interac-
tion. In fact, the progress of nanotechnology has 
provided several nanosystems with the aim to 
increase the drug targeting efficacy. The most 
common types used for drug delivery are solid 
lipid nanoparticles (SLNs), polymer nanoparti-
cles, lipid-based nanoparticles (LNPs) and 
carbon- based nanomaterials [110]. For example, 
cationic core-shell NPs named T1 and ZM2 (a 
type of polymer nanoparticles) were used to con-
jugate AONs for exon skipping application in 
preclinical studies in DMD mice [110, 111]. As 
these obstacles of delivery are overcome, the 
advantages of antisense technology will warrant 
that antisense oligonucleotide therapeutics will 
be one of the most promising clinical approaches 
to genetic diseases in the future.

7.3  U1 snRNA-Mediated Therapy

7.3.1  Brief Overview

Since its discovery in the early days of splicing 
research, U1 snRNA has been recognized as a 
crucial player in the first stages of the splicing 
process [112–114]. U1 snRNA is a 164 nucleo-
tides long molecule with a well-defined structure 
consisting of four stem-loops, which primarily 
exerts its function in the form of a 
 ribonucleoprotein (RNP) complex (termed U1 
snRNP) containing seven Smith antigen (Sm) 
proteins and three U1-specific proteins U1A, 
U1C and U1-70K [115] (Fig.  7.4a). It is now 
well-established that U1 snRNP initiates spliceo-
some assembly by binding to the 5′ splice donor 
site (ss) through base pairing between the single 
stranded 5′ tail of the U1 snRNA molecule and 
the moderately conserved stretch of nucleotides 
at the 5′ss (CAG/GURAGU; R-purine) marking 
the exon-intron boundary [116]. However, not all 
base pairs at different 5′ss positions are equally 
important, and their contribution to splicing 
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roughly correlates with their conservation 
(Fig.  7.4b). In the 9 nucleotides consensus 
sequence the most conserved 5′ss positions lie at 
the first two intronic nucleotides (+1 and +2), and 
the sequence GU at these positions accounts for 
~99% of all 5′ss. The next most conserved 5′ss 
positions are −1G and +5G, which form strong 
G-C base pairing with U1 [117]. Once the donor 
site does not always conform to the consensus 
sequence, but can instead have a degenerate pat-
tern feature, it is understandable that many other 
additional elements such as splicing silencer and 
enhancer motifs, the presence of alternative 

splice sites, secondary structures and regulatory 
proteins can influence the splice site selection 
(Fig. 7.4a) [117, 118].

U1 snRNA is classically known for its role in 
pre-mRNA splicing events. However, the finding 
that U1 snRNA levels far exceed other spliceoso-
mal associated snRNA levels led to the notion 
that it may have additional roles in the cell apart 
from splicing regulation [115, 119]. Indeed, 
emerging evidence suggests that U1 snRNA 
plays a key role in transcription initiation and in 
the protection of pre-mRNAs from degradation, 
as also has a regulatory function in the 3′-end for-

Sm

U1-70K

U1C

U1A

ESE ISS ISEESS

Splicing

snRNA

U1snRNP

GUCCAΨΨCAUA – 5’
CAGGUAAGU….
5’ splice site

a

b

-3 -2 -1 +1 +2 +3 +4 +5 +6 +7 +8

Fig. 7.4 Role of U1 small nuclear ribonucleoproteins 
(snRNPs) in splicing. (a) The 5′ end of U1 snRNA base 
pairs to the 5′ splice site (ss) in order to define a functional 
splice donor site. This process is positively and negatively 
modulated by different splicing factors, which bind to 
exonic and intronic splicing enhancer and silencer motifs 
(ESE, ISE, ESS and ISS, respectively). (b) The 5′ss motif. 
The height of each nucleotide corresponds to its conserva-
tion at the corresponding positon (−3 to −1 are exonic 
positions, while +1 to +8 correspond to intronic posi-
tions). The most conserved 5′ss positions are +1 and +2, 
which determine the 5′ss subtype: the GU subtype 

accounts for ~99% of 5’ss. Minoritary subtypes have a 
mismatch to U1 at either +1 or +2 and include the GC and 
the very rare AU 5′ss. The next most conserved 5′ ss posi-
tions are -1G and +5G, which form strong G-C base pairs 
with U1 through three hydrogen bonds. Consensus nucle-
otides −2A, +3A, +4A, and + 6U are also conserved but 
have a lesser although important contribution to 5’ss 
strength because their base pairing to U1 involves only the 
formation of two hydrogen bonds. The 5’ss positions +7 
and +8 do not exhibit substantial conservation in humans, 
yet several lines of evidence indicate that these positions 
can base-pair to U1 and contribute to splicing
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mation, protecting pre-mRNA transcripts against 
premature polyadenylation and contributing to 
the regulation of alternative polyadenylation 
[115, 119–121].

Splicing mutations at the 5′ss, which are fre-
quent among defects that cause human disease, 
compromise U1 snRNA binding and can prevent 
spliceosome assembly and subsequent splicing, 
which results in exon skipping, intron retention 
or activation of cryptic splice sites [117, 122]. 
The most deleterious mutations at a 5′ss are those 
affecting the nearly invariant GU dinucleotide at 
the positions +1 and +2. For the remaining nine 
positions the effects on splicing are less under-
stood. Indeed, nucleotide substitutions in the less 
conserved positions can cause splicing defects in 
several but not all 5′ss, suggesting that this 5′ss 

positions and/or the general context define at 
what level splicing is changed [117, 123].

7.3.2  Two Generations 
of Engineered U1 snRNAs 
to Correct Splicing Defects

As donor splice site mutations disrupt the com-
plementarity of the donor site with the endoge-
nous U1 snRNA, restoring the complementarity 
through engineered modification of the U1 
snRNA represents a valuable approach 
(Fig. 7.5a1, a2). In fact, in the mid-80s, Zhuang 
and Weiner [124] demonstrated for the first time 
that modified U1 snRNAs were able to suppress 
5′ss mutations. Since then, the physiological role 

a1
U1snRNP

Exon Intron
5’ ss3’ ss

b

Exon-specific 
U1snRNP

U1snRNP

IntronExon
5’ ss3’ ss

Mutation-adapted 
U1snRNP

Exon Intron
5’ ss3’ ss

a2

Fig. 7.5 U1 snRNA-mediated therapy for mutations 
affecting 5′ splice site (ss). (a1) A wild-type endogenous 
U1 small nuclear ribonucleoprotein (snRNP) does not bind 
to 5′ss due to the presence of a 5′ss mutation. (a2) An exog-
enous U1 snRNP (first generation particle) is modified in 5′ 
tail with a compensatory alteration (semi-circle) that allows 
for base-pairing with the mutated 5′ss and the restoration of 

exon recognition and inclusion. (b) The presence of a 5′ss 
mutation does not allow the correct 5′ss recognition by U1 
snRNP but an exon-specific U1 snRNP (second generation 
particle) with an engineered 5′ tail which binds a down-
stream non-conserved intronic region can activate the 
mutated 5′ss, through a mechanism not yet fully under-
stood, allowing the correct exon recognition and inclusion

M. F. Coutinho et al.



149

of the U1 snRNA to promote exon inclusion in 
the presence of 5′ss mutations affecting different 
positions of the donor site, has been extensively 
exploited as a possible therapy for numerous dis-
eases. Significant correction levels have been 
achieved for mutations located in less conserved 
5′ss positions in diseases like Neurofibromatosis 
type 1 [125], Coagulation factor VII deficiency 
[126, 127], Retinitis pigmentosa [128, 129], 
Propionic acidemia [130], Phenylketonuria [131] 
and Bardet-Biedl syndrome [132, 133]. 
Furthermore, recent studies have also demon-
strated the feasibility of this approach in the more 
conserved GU region. In fact, partial correction 
of splicing defects caused by mutations in the +1 
position of 5′ss was observed, not only in a 
Fanconi anemia case [134], but also in Sanfilippo 
C disease patient cells [135]. Also, for a mutation 
in the +2 position causing Hemophilia B, the 
treatment with a modified U1 snRNA led to an 
increase in the proportion of correct transcripts 
(~20%) [136]. In general, though, results of U1 
snRNA therapeutic approaches can vary 
 depending on the nature of the mutation and on 
the overall genomic context.

Until now, modified U1s effects in vivo were 
only addressed in two studies. In the first one, 
Balestra and co-workers [137] showed the rescue 
of the expression of a splicing-defective human 
factor VII (hFVII) mutant by a mutation-adapted 
U1 snRNA which improved hFVII circulating 
levels in mice, highlighting the potential of this 
strategy as a therapy for FVII coagulation defi-
ciency. In the second study, Lee et al. [138] dem-
onstrated the therapeutic effect of a 
mutation-adapted U1 snRNA in a knock-in 
mouse model of Aromatic L-amino acid decar-
boxylase (AADC) deficiency.

In common with other rescue strategies based 
on targeting RNA by complementarity, modified 
U1 snRNAs have to deal with potential off-target 
effects. This is particularly dangerous for modi-
fied U1 snRNAs with only one base change from 
the natural U1 snRNA, which might activate nor-
mally silent cryptic donor splice sites and induce 
aberrant splicing in other genes [139]. The conse-
quences of such unwanted side reactions are hard 
to predict and depend on the function of the 

spliced transcript. However, the binding site 
sequence screening and mapping against the 
human genome to rule out sequence homologies 
should extensively decrease nonspecific events 
although their total exclusion cannot be guaran-
teed [140]. Therefore, experimental analysis 
should be performed whenever possible to test 
the effect of the U1 treatment on non-target tran-
scripts. In mutation-adapted U1 snRNA in vitro 
approaches to correct 5′ splicing defects in 
Retinitis pigmentosa [129] and Bardet-Biedl syn-
drome [133], this type of test was performed and 
no missplicing events were found in the non- 
target transcripts. Also, in the in vivo U1 snRNA 
therapeutic strategy for AADC deficiency, the 
treatment was well tolerated and no toxic effects 
were seen within the study period [138]. However, 
in the in vivo study for hFVII deficiency [137], 
the authors observed hepatotoxicity, most proba-
bly caused by the binding of the engineered U1 to 
similar consensus 5′ss in other genes.

It was previously shown that U1 snRNAs do 
not necessarily have to bind at the 5′ss to promote 
exon definition. Some atypical 5′ss are recog-
nized by U1 snRNA shifted by one nucleotide 
[141] and U1 snRNAs complementary to intronic 
sequences downstream of the 5′ss were origi-
nally reported to enhance the recognition of 5′ss 
in model gene systems [142, 143]. Given this, to 
reduce the possible interaction of modified U1 
snRNAs with non-target 5′ss, a second genera-
tion of engineered U1s called Exon-Specific U1 
snRNAs (ExSpeU1s) was developed. The 
ExSpeU1s have engineered 5′ tails that direct 
their loading into non-conserved intronic regions 
downstream of the 5′ss of a specific exon, and are 
expected to improve specificity and reduce poten-
tial off-target events [139, 144] (Fig. 7.5b). In dif-
ferent cellular models (i.e. minigene assays, 
patient’s cells or iPSC’s), a number of ExSpeU1s 
has been successfully applied, allowing an effi-
cient rescue of exon skipping caused by various 
types of splicing mutations in Hemophilia B 
[144, 145], Cystic Fibrosis [144], SMA [144, 
146, 147], Fanconi anemia [148] and Netherton 
syndrome [149]. The ExSpeU1 strategy has also 
been investigated in mouse models. For SMA, 
Dal Mas et al. [146], reported that AAV-mediated 
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delivery of ExSpeU1 corrects splicing, increas-
ing the inclusion of SMN2 exon 7 in different tis-
sues/organs. In another study, Rogalska and 
colleagues [150] created a mouse expressing a 
particular ExSpeU1 and, after crossing it with a 
severely affected SMA mouse, observed 
increased inclusion of the missing exon, followed 
by SMN protein production and increased mice 
lifespan. Possible gene expression side effects 
were also addressed and, from a panel of 12,414 
analysed genes, only 12 had altered expression 
after treatment.

ExSpeU1 molecules have also successfully 
rescued splicing in a transgenic mouse model of 
Familial Dysautonomia, a rare genetic disease 
with no treatment [151]. For Hemophilia B, 
another ExSpeU1 was explored in mice express-
ing two natural F9 splicing defective variants at 
5′ss or 3′ss, and efficiently rescued human F9 
splicing in liver resulting in an increase of the tar-
get protein and coagulation activity [152]. This 
study, as the pivotal one developed by Fernandez 
Alanis et  al. with the ExSpeU1 strategy [144], 
interestingly showed that a single ExSpeU1 can 
be used to correct exon-skipping mutations at the 
consensus 5′ss (apart from canonical GU dinu-
cleotide), the polypyrimidine tract, and even at 
exonic regulatory elements, thus extending the 
applicability of ExSpeU1s to panels of mutations 
and cohorts of patients with the same genetic 
disorder.

Despite the promising results obtained with 
ExSpeU1s in different studies, its precise mecha-
nism of action for splicing correction is not 
totally clear. Pagani and co-workers demon-
strated that ExSpeU1s are assembled as U1-like 
particles and that their splicing rescue activity is 
dependent on the U1-70K protein and on the loop 
IV structure of the U1 snRNA; not on the recruit-
ment of endogenous U1 snRNP to the upstream 
5′ss [150]. This may indicate that ExSpeU1s pro-
mote correct exon recognition through the 
recruitment of splicing factors that subsequently 
activate the mutated 5′ss [144, 146, 149–152]. 
However, it is important to stress that the splicing 
stimulator activity of ExSpeU1s was also respon-
sible for the activation of a cryptic 5′ss in an 
approach attempted to correct a splicing defect 

causing Intrahepatic Cholestasis, which resulted 
in the production of an additional splice tran-
script with intron retention [153].

Globally, both mutation-adapted U1 snRNA 
and exon-specific U1 snRNA constitute a novel 
therapeutic strategy to correct splicing defects 
associated to defective exon definition in several 
human disorders. Once the U1 snRNA-mediated 
approaches act at pre-mRNA level, they have the 
main advantage of maintaining the regulated 
expression of the targeted gene in the normal 
chromosomal context [139, 154]. Also, given that 
the U1 snRNA gene used for splicing rescue 
includes promoter and regulatory sequences, it 
has the capability of guaranteeing long term cor-
rection of the genetic defect [139]. Despite these 
advantages, U1 snRNA-mediated therapies may 
also face some problems such as the presence of 
off-target effects and low efficacies. Therefore, in 
a near future, it will be imperative not only to 
develop a specific method or tool to search for 
off-target effects, but also to adjust the expression 
levels of U1 snRNA therapeutic particles in pre- 
clinical in vivo studies [154].

7.3.3  Engineered U1 snRNAs 
Delivery

U1 snRNA-mediated therapies also have to deal 
with the challenge of an efficient delivery to a tar-
get tissue. In the in vivo studies already devel-
oped, one of the most successful gene therapy 
systems available nowadays – AAV vectors – has 
been chosen as the method for U1 snRNA- 
engineered particles delivery into mice [137, 138, 
146, 150, 151]. AAV vectors allow a highly effi-
cient delivery to various tissues following sys-
temic injection, even though dependent on the 
viral serotype used [90, 155]. Also, the low pack-
aging capacity of AAV vectors is quite adequate 
for U1 snRNA-based approaches given the small 
cassette size to package [90]. However, despite 
the modifications that have been introduced in 
viruses, the potential for antiviral immunity and 
phenotoxicity of the transgene are still major 
limitations to the use of viral vectors for therapy. 
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Possible alternatives to viruses are liposomes and 
nanoparticle delivery [155].

Among the several RNA tools enabling the 
rescue of splicing, both mutation-adapted U1 
snRNA and ExSpeU1 snRNA therapeutic strate-
gies have already shown their efficacy to repair 
different types of splicing defects at least in ani-
mal models of disease. Still, further develop-
ments will be necessary for this therapeutic 
approach to be translated to human trials.

7.4  siRNA-Based Drugs

7.4.1  Brief Overview

The last decade of the twentieth century has also 
witnessed the discovery of a new mechanism of 
gene regulation whose therapeutic potential is 
still being unveiled: RNA interference (RNAi). 
Interestingly, the first experimental observation 
of this mechanism came up from a failed genetic 
experiment aimed at developing more attractive 
petunia flowers. In fact, in 1990, Jorgensen and 
co-workers attempted to genetically engineer 
flower pigmentation genes, to be inserted into the 
target plant genome. To their surprise, however, 
instead of generating more colorful flowers, they 
ended up producing a generation of plants that 
had virtually lost all pigmentation, thus becom-
ing white. This observation prompted additional 
studies to check the expression levels of endoge-
nous genes involved in the natural pigmentation 
biosynthetic pathway and most of them were 
strongly reduced. Thus, a concept of co- 
suppression, whereby sequence-related genes 
could negatively regulate each other, was born 
[156, 157]. Still, little was known on its underly-
ing mechanism. The first major breakthrough 
came from the pivotal studies by Andrew Fire 
and Craig Mello. By introducing various forms 
of long RNA molecules into C. elegans, their 
team observed that those with a double-stranded 
presentation (double stranded RNAs, dsRNAs) 
were the actual inducers of the silencing phe-
nomenon, which was then coined RNAi [158]. 
Thus, the work by Fire and Mello, which earned 
them the 2006 Nobel Prize of Medicine, has not 

only represented a major advance in the under-
standing of RNAi basic mechanism, but also pro-
vided a simple and reproducible method by 
which long dsRNAs could be used to induce spe-
cific gene silencing in lower organisms com-
monly used in genetic research, such as C. 
elegans [159] and D. melanogaster [160]. In the 
meantime, other teams kept their focus in plant 
systems, aiming at a better understanding of the 
role that RNAi and additional silencing processes 
assume in plant homeostasis. Soon it became 
clear that gene silencing operating at the RNA 
level has roles in adaptative protection against 
viruses [161], genome defense against mobile 
DNA elements [162, 163] and developmental 
regulation of gene expression (reviewed in 
[164]). A second component of RNA silencing, 
in addition to dsRNAs, was then identified and 
coined short interfering RNAs, which resulted 
from the processing of dsRNAs into 21–26  nt 
counterparts [165]. Interestingly, those short 
interfering RNA molecules could be sorted into 
two classes depending on their size, and soon it 
became clear that each of those classes assumed 
different functions. The long ones (24–26  nt) 
were dispensable for sequence specific mRNA 
degradation, but essential for systemic silencing 
and methylation of homologous DNA [164]. 
Another interesting contribution to the deeper 
understanding of the overall RNA silencing pro-
cess came from a work of Cogoni and co- workers, 
who described a new biological function for 
RNA silencing in Neurospora called quelling, 
which can be activated upon the introduction of 
transgenic DNA.  These authors observed that 
quelling targets preferentially transgenes 
arranged in large tandem arrays and its effectors 
are also short interfering RNAs [166], reviewed 
in [167]. Altogether, these works unveiled an 
unexpected complexity in the RNA silencing 
process in plants, prompting additional studies to 
check whether the same would also apply in ani-
mals. By this time, however, no one foresaw that 
the RNAi mechanism would also work in mam-
malian systems because long dsRNAs were 
already known to induce a strong interferon 
response. The first demonstrations that RNAi 
also works in humans came from the work of two 
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independent groups in Germany, one operating at 
the Max Planck Institute, and the other at the 
University of Bayreuth, and a third one in the 
United States, operating at the NIH, Bethesda. 
The team at the Max Plank Institute showed that 
synthetic versions of short dsRNA molecules 
were able to trigger a strong gene silencing effect 
in mammalian cells without inducing the inter-
feron response. Moreover, they tested a series of 
design features for those short dsRNAs including 
length, blunt or sticky ends and chemical modifi-
cations, finding that structurally defined 21–23 
base-pair small RNAs, with 2 nucleotide unpaired 
overhangs at the 3′ ends, were the most efficient 
mediators of RNAi [168, 169]. This fundamental 
work was published in Nature in 2001, and 
became the scientific content for a key patent in 
the field called “Tuschl II”. In parallel, the NIH 
team came up with another demonstration that 
synthetic siRNAs can induce gene-specific inhi-
bition of expression in C. elegans and in cell lines 
from humans and mice. They did it by systemati-
cally comparing the level of gene expression 
decrease caused by siRNAs versus that caused by 
single stranded AONs [170]. Their work, pub-
lished in PNAS, was another step to open a path 
toward the use of siRNAs as a reverse genetic and 
therapeutic tool in mammalian cells, as the 
authors themselves have stated. Around the same 
time, at the University of Bayreuth, Kreutzer and 
Limmer had also reasoned that short fragments 
of dsRNA would putatively mediate a RNAi 
response similar to the one originally described 
by Fire and Mello and, even though their findings 
have never been published, they did file key pat-
ents around the discovery. Additional studies on 
the subject ended up unveiling the endogenous 
RNA silencing pathway that was being fed by 
small dsRNAs, from now on called small inter-
fering RNAs (siRNAs). It also became evident 
that the same pathway is also able to process 
microRNAs (miRNAs), as previously seen 
(Fig.  7.1c). Here, we will focus solely on the 
RNAi process triggered by siRNAs.

The siRNA pathway starts with the cytoplas-
mic cleavage of long dsRNAs by an enzyme 
called Dicer. As a result, short dsRNA duplexes 
are formed. Then, those dsRNAs are incorpo-

rated into the RNA-induced silencing complex 
(RISC), where the strands are separated, and one 
strand guides RISC to the complementary region 
of target mRNA (Fig. 7.6). The heart of RISC is 
the Argonaute (AGO) proteins. In humans there 
are 8 AGO proteins, 4 from AGO clade (AGO1- 
4) and 4 from P-element induced wimpy testis 
(PIWI) clade (PIWI1-4; [171]). Still, not all AGO 
proteins are cleavage competent. In fact, AGO2 is 
the sole executer that accomplishes siRNA- 
induced silencing. Thus, whenever the siRNA 
strand loaded into RISC has complete sequence 
complementarity with its target mRNA sequence, 
it triggers site-specific mRNA cleavage, which 
ultimately results in a reduced expression of that 
mRNA and of the target protein (Fig.  7.4; 
reviewed in [172]). This exact same process can 
also be induced by direct exogenous supply of 
synthetic siRNAs. Over the years, a series of 
empirical and rational guidelines started accumu-
lating from the analysis of hundreds of functional 
siRNAs. There are now a number of guidelines 
one should follow in order to design an effective 
siRNA, which have been well reviewed else-
where [173]. There are also many websites and 
companies that either offer reliable methods for 
the design of effective siRNAs or even design 
them on demand. Because of their small size, the 
chemical synthesis of siRNAs is relatively easy 
and nowadays, several companies offer them 
delivered in ready-to-transfect format. This is, 
therefore, a simple, easy-to-handle RNAi-effector 
for virtually every lab need.

Since the half-life of siRNA is short, an alter-
native RNAi-effector molecule has also been 
developed: short hairpin RNAs (shRNAs), which 
are not directly transfected into their target cells. 
Instead, shRNAs are transcribed in the nucleus 
from an exogenous DNA expression vector bear-
ing a palindromic sequence with a spacer in 
between, whose transcript folds into a short 
dsRNA with a terminal loop. The shRNA tran-
script is processed by Drosha, an RNase III endo-
nuclease. The resulting pre-shRNA is exported to 
the cytoplasm, where it can then be processed by 
another RNase III, called Dicer, and incorporated 
into RISC, thus triggering the same RNAi pro-
cess previously described (reviewed in [172]). In 
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general, shRNAs are harder to complex/internal-
ize. Still, by delivering DNA instead of the effec-
tor RNA molecule, they take advantage of the 
cell’s transcription machinery to produce specific 
shRNA transcripts, they allow for high potency 
sustainable effects using low-copy numbers. One 
such approach results in less off-target effects, 
putatively ensuring greater safety. Additionally, a 
shRNA expression vector does also cost less than 
the bulk manufacturing of siRNAs (reviewed in 
[174]).

Once all cells have the RNAi machinery and, 
in principle, any gene can be knocked down, soon 
siRNAs became invaluable tools in the lab, 
enabling the easy genetic knockdown of any 
sequence. RNAi was rapidly exploited as a tool 
to promote unbiased genome-wide screening to 

search for relevant genes involved in specific bio-
logical processes, first in invertebrate cells [170, 
175–177] and latter in mammalian cells [178–
182]. In fact, this knockdown technique provides 
a valuable tool for the functional annotation of 
mammalian genes [183, 184], for the creation of 
knockout animals [185] and for the identification 
of new drug targets (reviewed in [186]), but these 
are far from being the major application of this 
technology. In fact, RNAi has been regarded as 
one of the major breakthroughs in the field of 
molecular medicine, and its potential as a thera-
peutic effector has been largely tested over the 
last decades.

The need to optimize the technique and take it 
from bench to clinic is also prompting extra 
research efforts to gain a deeper understanding of 

Dicer

RISC

RISC

mRNA

passenger strand

guide strand

dsRNA

RISC-mediated 
cleavage of mRNA

Fig. 7.6 The RNA interference (RNAi) mechanism. 
Entry of double-stranded RNA (dsRNA) into eukaryotic 
cells results in targeted RNA-induced silencing complex 
(RISC)-mediated cleavage of messenger RNA (mRNA) 
through activation of the endogenous RNAi mechanism: 
dsRNAs are recognized and cleaved into shorter frag-
ments by Dicer, and subsequently loaded into a multipro-

tein conglomerate called RISC, which facilitates the 
separation of the two RNA strands. Once the double- 
stranded RNA is separated, one strand gets degraded 
while the other associated with RISC acts as a template 
for RISC-mediated cleavage of complementary RNA, 
thus reducing protein translation
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the overall RNAi mechanism. For example, in 
order to function, siRNAs need to escape to the 
cytosol, where the RISC works. Thus, release 
from the endosome is an important barrier. 
Understanding the mechanism(s) that promotes 
and limits endosomal release may help to opti-
mize this limiting step. This remains, though, a 
major area of investigation for all nucleic acid 
therapeutics [11].

7.4.2  Recent Successful 
Applications of siRNA-Based 
Drugs

Being a naturally occurring post-transcriptional 
gene silencing process, this mechanism has sev-
eral advantages when compared to other AON 
technologies, and that recognition triggered 
major investments in RNAi-based drug develop-
ment by large pharmaceutical and biotechnologi-
cal companies [187]. The potential of siRNA 
therapeutics was first demonstrated by Song and 
co-workers 15 years ago, when injection of Fas 
siRNAs protected mice from autoimmune hepati-
tis. Fas-mediated apoptosis is implicated in a 
broad spectrum of liver diseases, where inhibit-
ing hepatocyte death can be life-saving. These 
authors investigated the silencing effect of siRNA 
duplexes targeting the gene encoding the Fas 
receptor (Fas), to protect mice from liver failure 
and fibrosis in two models of autoimmune hepa-
titis. Intravenous injection of Fas siRNA specifi-
cally reduced both Fas mRNA and Fas protein 
expression levels in mouse hepatocytes, and the 
effects persisted without diminution for 10 days 
[188]. This pioneer work has not only shown that 
siRNA-directed Fas silencing could work in vivo 
and be of therapeutic effect for preventing and/or 
treating acute and chronic liver injury [188], but 
also provided the proof-of-principle on the poten-
tial of the overall RNAi technology to treat or 
prevent disease (reviewed in [189]). Since then, 
drug development has been rapid, with siRNAs 
facing virtually the same obstacles as AONs. 
Fortunately, some of the AON strategies could be 
adapted to siRNA therapeutics, thus accelerating 
siRNA preclinical drug development and clinical 

evaluation. In general, RNAi clinical trials are 
progressing well. Clinical Phase I and II studies 
of siRNA therapeutics have demonstrated potent 
(as high as 98%) and persistent (lasting for 
weeks) gene knockdown effects, especially in 
liver, with some signs of clinical improvement 
and without unacceptable toxicity (reviewed in 
[189]). There are also several trials in Phase III 
development (Table 7.2; reviewed in [11]).

Early this year Alnylam has announced 
U.S. FDA acceptance of New Drug Application 
(NDA) and Priority Review Status for Patisiran, 
an investigational RNAi therapeutic for the treat-
ment of hereditary transthyretin amyloidosis 
(hATTR) [225]. Almost at the same time, the 
company presented new clinical results from the 
APOLLO Phase III study of this drug at the 16th 
International Symposium on Amyloidosis. The 
APOLLO Phase III trial was a randomized, 
double- blind, placebo-controlled, global study 
designed to evaluate the efficacy and safety of 
Patisiran in hATTR amyloidosis patients with 
polyneuropathy. The primary endpoint of the 
study was the change from baseline in modified 
Neurologic Impairment Score +7 (mNIS+7) rela-
tive to placebo at 18  months. According to the 
general manager of the transthyretin (TTR) pro-
gram at Alnylam, “the clinical results presented 
further highlight the robust profile of Patisiran 
and provide evidence supporting Patisiran as a 
potentially transformative treatment approach 
for patients with hATTR amyloidosis”. Also the 
results obtained in the cardiac subpopulation, 
which corresponded to approximately 50% of the 
patients enrolled in the APOLLO study, revealed 
significant improvements in measures of cardio-
myopathy, the leading cause of death in patients 
with hATTR amyloidosis, relative to placebo 
[201]. Finally, in August 2018, the drug got its 
U.S. FDA approval, and is now commercialized 
under the designation Onpattro™ [226].

Hopefully, the approval of the first RNAi ther-
apeutic will pave the way for approval of other 
targets (reviewed in [227]), especially if we take 
into account that there are several other siRNA 
drugs under evaluation, which have recently 
advanced for phase III development (Table 7.2; 
reviewed in [11]). The most relevant examples 
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include Revusiran, which is a second siRNA drug 
under evaluation as a treatment option for patients 
with familial amyloid cardiomyopathy by reduc-
ing plasma TTR levels [220]; QPI-1002, which is 
being developed for the treatment of delayed 
graft function for kidney transplants [192]; 
Fitusiran, a potent siRNA drug under study for 
patients with hemophilia, which aims at amelio-
rating the disorder by reducing the plasma levels 
of anti-thrombin [198], and Inclisiran, which tar-
gets proprotein convertase subtilisin/kexin type 9 
(PCK9) to reduce the risk of cardiovascular dis-
ease [200], as reviewed in [11].

7.4.3  Delivery of siRNA-Based 
Drugs

Intracellular delivery of double-stranded siRNAs 
is more challenging than delivery of single 
stranded AONs [186]. Still, it is also worth men-
tioning that, as suggested by the best estimates, 
only a few hundred cytosolic siRNAs per cell are 
needed for efficient and sustained gene knock-
down [228, 229]. This happens because the guide 
strand of the siRNA remains stable within the 
RISC for weeks, even though it gets diluted with 
every cell division [230]. Thus, the same siRNA 
molecule can target multiple transcripts, knock-
ing down gene expression in slowly dividing or 
non-dividing cells over the same period. Overall, 
as noticed by several authors, this actually con-
tributes to turn the delivery obstacle into a less 
formidable one than that faced by other antisense 
mechanisms, which act on a one-to-one basis 
[230] (reviewed in [229]).

Still, knowing that the translation of siRNAs 
from the bench to the clinic would be hindered by 
their limited cellular uptake, low biological sta-
bility and unfavorable pharmacokinetics, the 
development of appropriate delivery methods 
became mandatory to proceed with preclinical 
studies. Therefore, different approaches have 
been (and are being) attempted to ensure safer 
and long-lasting delivery methods for siRNA- 
based drugs, for both systemic and targeted deliv-
ery. Most of these developments were made in 
parallel with siRNA drug development and only 

through the combined efforts of several indepen-
dent teams were these drugs modified in ways 
that allowed their clinical evaluation, with the 
promising results highlighted in the previous sec-
tion. Whatever the case, an effective delivery sys-
tem must fulfill a series of criteria, which have 
already been listed by Tatiparti et  al. amongst 
other author: be stable at the body temperature 
and pH variations, have an endocytosis promot-
ing shape, cannot be toxic, must exhibit high 
siRNA loading abilities and have a size that 
avoids rapid renal and hepatic clearance [231]. In 
general, all the delivery systems developed for 
gene therapy may also be adapted for siRNA 
delivery [232].

7.4.4  Non-targeted Delivery

Early strategies for solving the dual problems of 
intracellular delivery and rapid excretion involved 
incorporating siRNAs into LNPs – smaller, more 
homogeneous analogues of lipoplexes used for 
laboratory transfection [233–235], (reviewed in 
[189]). LPNs were first shown to be effective in 
targeting the hepatitis B virus (HBV) in mice, 
where the LPN-formulated siRNA was given in 3 
daily injections of 3 mg/Kg/day. This treatment 
regimen resulted in a decrease of HBV levels by 
1–2 orders of magnitude [236], as reviewed in 
[237]. Nevertheless, these complexes (and other 
nanoparticle strategies for siRNA delivery) accu-
mulate in the liver and other filtering organs, 
which limits their effectiveness in penetrating 
other tissues [235, 238] (reviewed in [189]). 
Furthermore, the administration of siRNAs with 
LNP delivery vehicles is quite pro-inflammatory. 
In fact, lipid-based vehicles can become 
entrapped in endosomes [237], where the Toll- 
like receptors (TLR) will recognize various moi-
eties in dsRNAs, modified siRNAs or even from 
their degradation products [239], eliciting an 
undesirable innate inflammatory response. So, in 
most circumstances the siRNAs require pretreat-
ment regimens including antihistamines, non- 
steroidal anti-inflammatories and even relatively 
high doses of glucocorticoids [190, 191, 240] 
(reviewed in [11]).
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Still, recent developments by several indepen-
dent teams have demonstrated the feasibility of 
systemic administration of either chemically 
modified or complexed siRNAs. In fact, even 
though unmodified siRNAs do not distribute 
broadly to tissues after systemic administration 
(reviewed in [11]), simple chemical modifica-
tions of the 2′-position of the ribose and substitu-
tion of phosphorothioate linkages, such as the 
ones described for AONs in the first section of 
this chapter (2′-OMe and 2′-MOE), and 2′-fluoro 
(2′-F), protect siRNAs from nuclease digestion, 
thus prolonging their half-lives, both in serum 
and other body fluids [236, 241] (reviewed in 
[189]). 2′-modifications can also prevent recog-
nition by innate immune receptors by blocking 
the binding to TLR [242–244] and reduce off- 
target effects that could arise from the suppres-
sion of partially complementary sequences [245] 
(reviewed in [189]). As already referred, these 
modifications had been previously designed for 
use in AONs and not siRNAs and, even though 
they did show effective in improving stability, 
specificity and immunogenic properties, they do 
not improve potency. Recently, however, two 
novel, siRNA-optimized 2′-O modifications, 
were shown to increase in vivo activity of siR-
NAs, not only by increasing their potency but 
also their in vivo duration compared to their 
unmodified counterparts when delivered using 
LNPs: 2′-O-benzyl and 2′-O-methyl-4- 
pyrimidine (2′-O-CH2Py(4); [246]). Several 
teams have also been assessing different com-
plexation methods with functional peptides [247] 
and/or different vectors: exosomes [248] includ-
ing lipid nanocarriers such as pegylated immuno-
liposomes (PILs; [249]), 
stable-nucleic-acid-lipid-particles (SNALPs; 
[250]), or polyhydroxyalkanoate-based nanove-
hicles [251], reviewed in [252]. Also under con-
sideration are siRNA delivery strategies that use 
viral particles. The viral delivery of siRNAs is 
composed of two main strategies: siRNAs are 
either chemically synthesized and loaded into a 
viral capsule, or they can be expressed from the 
DNA of a recombinant virus (reviewed in [253]).

Meanwhile, second generation LPNs were 
also developed. Constructed with the anionic 

lipid dilinol eylmethyl-4-dimethylaminoburyate 
(DLin-MC3-DMA), they mediate potent gene 
knockdown at reduced doses compared with first 
generation LNPs, while improving delivery [190, 
217]. Partisiran (previously termed ALN-TTR02; 
ChemIDplus-Partisiran), for example, is exem-
plary of a minimally chemically modified siRNA 
delivered primarily to the liver in a second gen-
eration liposome formulation.

7.4.5  Targeted Delivery

Overall, there has been a huge progress over the 
last decade concerning not only non-targeted but 
also targeted delivery of siRNA drugs. In fact, 
siRNAs can also be targeted for uptake in 
selected tissues or cell types by taking advantage 
of high- affinity antibody or antibody fragments 
[254–256], aptamers (nucleic acids selected for 
high-affinity binding; [257–259] or receptor 
ligands [260–264], which bind to specific cell 
surface receptors and mediate cell-specific 
uptake. The targeting moieties can be either 
directly conjugated to siRNAs (bound non- 
covalently) or incorporated into LPNs or other 
nanoparticles (reviewed in [189]). In general, 
targeted uptake has the advantages of being 
effective at a lower dose while exhibiting lower 
toxicity, which may potentially occur from 
knockdown effects in unintended tissues. It is 
also a tool of great advantage for the treatment of 
non-systemic diseases. The easiest organ to tar-
get is the liver, which is a filtering organ that 
traps nanoparticles. It is also the primary site of 
synthesis of many circulating proteins. That is 
why it has been the target organ in most early 
clinical attempts at translating RNAi (reviewed 
in [186]). Furthermore, several diseases, which 
directly affect this organ may benefit from a 
straightforward liver targeting method. The most 
successful possibility under study includes a 
series of more drastic chemical modifications, 
where siRNAs have a trivalent 
N-acetylgalactosamine (GalNAc) moiety conju-
gated to the 3′ terminus of one of the strands 
[220, 264] (reviewed in [11]). GalNAc mediates 
hepatocyte uptake through the hepatocyte- 
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restricted asialoglycoprotein receptor (ASGPR), 
thus being a suitable mediator for whole-liver 
delivery [265] (reviewed in [189]). Uptake by 
this receptor is primarily through clathrin-depen-
dent endocytosis [97]. Examples of GalNAc-
modified siRNAs include Revusiran and 
Fitusiran (ChemIDplus-Revusiran; ChemIDplus-
Fitusiran (reviewed in [11]). Also, local delivery 
to the CNS, a region that is difficult to deliver 
drugs to due to the BBB, is being addressed, 
with promising results. First preliminary evi-
dence that in vivo downregulation of specific 
genes by RNAi could work at the CNS level 
came from studies in rats and mice using inva-
sive local delivery methods (reviewed in [266]). 
Lately, however, evidence is accumulating on 
the successful brain delivery of si/shRNAs using 
specifically designed vectors and/or modifica-
tions that include the use of enzyme-sensitive 
LPNs [267], carbosilane dendrimers [268], cho-
lesterol modifications [269], and recombinant 
fusion proteins [270]. Also, the pharmaceutical 
industry is investing in developing BBB-directed 
vectors. One of those examples is a family of 
vectors that take advantage on the existence of 
specific receptors and transport systems, which 
are highly expressed at the BBB to provide 
essential substances to brain cells. These vectors 
comprise a full-length protein (Melanotransferrin) 
and may be used to facilitate receptor mediated 
drug delivery into the brain to treat CNS disor-
ders [271]. Recently, the application of this new 
peptide vector to siRNA and ongoing studies 
addressing the brain delivery of Iduronate 2-sul-
fatase (I2S) for the treatment of Hunter 
Syndrome, a rare X-linked lysosomal storage 
disorder, was discussed and its results in knock-
out mice were quite promising [272].

7.5  CRISPR-Cas Gene Editing

In addition to the most well known RNA-based 
therapeutics (antisense drugs and siRNA-based 
drugs) several other mechanisms of action are 
also potential strategies. Recently, a new gene 
editing technology, Clustered Regulatory 

Interspaced Short Palindromic Repeats (CRISPR) 
and the CRISPR-associated protein 9 (Cas9) 
(CRISPR-Cas 9) system, has received unprece-
dented acceptance in the scientific community 
for a variety of genetic applications (reviewed in 
[273]) (Fig. 7.7a). Even though this technology 
lies beyond the scope of this chapter, it does 
deserve some attention, as it may become a lead-
ing method for gene editing and even RNA-based 
therapeutics, in the long term.

Similarly to what had already happened with 
RNAi, the CRISPR-Cas system was not specifi-
cally developed as a method for gene editing. 
Instead, it is a naturally occurring prokaryotic 
immune defense strategy against non-self DNA 
based invasions (e.g., viruses, plasmids), which 
was recently discovered in bacteria and archaea 
[273–276], and latter adapted for bench applica-
tions [277, 278]. Also like RNAi, the specificity 
of CRISPR-Cas relies on the antisense pairing 
of RNAs (here termed single guide RNA, 
sgRNA) to specific genes but instead of binding 
directly to RNA, sgRNAs bind to chromosomal 
DNA. Another relevant difference between the 
RNAi and CRISPR technologies has to do with 
the transiency of their effect. In fact, unlike siR-
NAs, sgRNAs induce stable changes in gene 
expression, which are invaluable for in vivo 
gene screening. Thus, genomic targeting 
through CRISPR-Cas creates indels that can be 
adapted for stable eukaryotic genome engineer-
ing, namely Cas-mediated gene knockdown 
(reviewed in [186, 273]). In general, the appli-
cation of CRISPR/Cas9 for DNA editing as well 
as for mammalian gene editing was established 
in the 2012–2013 period and, in just 3  years, 
this technique has revolutionized the entire gene 
editing field. Currently, CRISPR-Cas gene 
knockdown in zygotes provides a fast method 
for the development of different animal models, 
when compared to homologous recombination. 
Nevertheless, it does hold a series of drawbacks 
and raises a number of concerns, particularly 
when its therapeutic potential is considered. In 
fact, since this technique has the ability to mod-
ify the genome, its ethical and safe concerns are 
enormous. Furthermore (and like every other 
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Fig. 7.7 Additional RNA-based drug mechanisms. (a) 
CRISPR/Cas9: CRISPR/Cas9 induces double strand 
breaks (DBS) when targeted to a specific genomic site by 
an appropriate guide RNA (sgRNA). This property may 
be used for mutation correction, by adding a donor DNA 
sequence that has homologous overlaps to the DBS (typi-
cally 100–1000  bp of overlap is used), thus promoting 
homologous repair of the cleaved genomic DNA; (b) 
Modified mRNAs: This approach consists in introducing 
chemically modified, stabilized mRNAs into cells to be 
translated to protein. Once internalized, sense-RNA drugs 
can be used for transient in vivo transcription (IVT) of 

mRNAs to replace mutated proteins or for vaccination 
without the risk of genomic alteration; (c) Aptamers: 
Aptamers take advantage of their selection for high- 
affinity binding to molecular ligands, often in the nano-
molar or subnanomolar range. They can be compared to 
nucleic acid antibodies, having many of the advantages of 
conventional protein antibodies. They can be either ago-
nists or antagonists, linked for bifunctional targeting and 
conjugated to other RNAs, small-molecule drugs, toxins 
or peptides. However, unless modified, they are rapidly 
excreted and do not activate immune functions, as other 
antibodies do

antisense technology), CRISPR-Cas holds 
potential for both on- and off-target effects. 
Moreover, by creating double-stranded DNA 
breaks, the Cas endonuclease can also lead to 
oncogenic gene translocations and trigger a 
DNA damage response, ultimately causing cell-
cycle arrest or even cell death. Finally, depend-
ing on the repair pathway which is activated, 
gene editing may be imprecise [186]. Still, it 
must be noticed that in the 5 years following the 

publication of the method, several improve-
ments to reduce off- target effects and provide a 
better control of the whole mechanism, while 
enhancing its efficiency have been developed 
and reported (reviewed in [186, 279]). It should 
also be mentioned that CRISPR/Cas9 is cer-
tainly a more versatile technique than RNAi, 
has it may not only induce indels but also repress 
or activate gene expression and cause both heri-
table and non-heritable genomic changes [280–

M. F. Coutinho et al.



165

282]. In fact, CRISPR/Cas9 can be adapted to 
upregulate gene expression in different ways: 
the first, most obvious approach consists in 
using this technology to stably introduce consti-
tutive active promoter elements to a gene, thus 
stably enhancing its expression. Alternatively, a 
modified Cas9 (fused to a transcriptor activator 
protein) may be targeted to any gene of interest, 
driving a transient enhancement in gene expres-
sion known as CRISPR activation (CRISPRa; 
[273]). In addition, the emergence of newer 
gene editing tools such as the Cpf1 enzyme, 
which is a single RNA- guided endonuclease, 
will eventually strengthen the portfolio of appli-
cations that may be achieved by CRISPR medi-
ated genome engineering [283]. Therefore, it is 
becoming clear that clinical CRISPR-Cas stud-
ies will also be a trend in research over the next 
years, starting with ex vivo editing of differenti-
ated cells, which may then be infused into 
patients. Furthermore, as other authors have 
already stated, it will also greatly benefit from 
the accumulated knowledge on other non-RNA-

based gene editing tools, such as zinc- finger 
nucleases and on the delivery methods previ-
ously developed for AON- and siRNA-based 
drugs.

7.6  Messenger RNA as a Novel 
Therapeutic Approach

Another RNA-based approach is to introduce 
chemically modified stabilized mRNAs into 
cells, where those exogenous mRNAs will even-
tually be translated to protein (Fig. 7.7b). In fact, 
in vitro transcribed (IVT) mRNA has recently 
come into focus as a potential new drug class to 
deliver genetic information. Such synthetic 
mRNAs can be engineered to transiently express 
proteins by structurally resembling natural 
mRNAs [186, 284]. One advantage of mRNA- 
based therapy over viral gene delivery is that 
mRNA does not transit to the nucleus, thereby 
mitigating insertional mutagenesis risks. 
Moreover, mRNA provides transient, half-life- 
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Fig. 7.7 (continued)
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dependent protein expression, while avoiding 
constitutive gene activation and maintaining dose 
responsiveness. Because of these advantages, 
IVT mRNA treatment is an emerging class of 
therapy, with multiple mRNA-based cancer 
immunotherapies and vaccines currently in clini-
cal trials [284–286]. However, the fact that IVT 
mRNA, despite its strong resemblance to natu-
rally occurring mRNA, can be recognized by the 
innate immune system may play an important 
part in its applicability. For vaccination 
approaches, the inflammatory cytokine produc-
tion resulting from mRNA-induced immune 
stimulation might add to the effectiveness of the 
evoked immune response. For non- 
immunotherapy approaches, however, the story is 
different and so far, cancer immunotherapy is the 
only field in which mRNA based therapeutics 
have reached clinical trials [287–294]. 
Nevertheless, the potential of IVT mRNA is cur-
rently being explored for a variety of applica-
tions, ranging from inherited or acquired 
disorders to regenerative medicine, all of which 
remain at the preclinical stage [295, 296]. In fact, 
an increasing number of preclinical studies has 
evaluated mRNA-based therapy for a wide range 
of diseases such as surfactant B deficiency, myo-
cardial infarction [297] sensory nerve disorders 
[298], fulminant hepatitis [299] hemophilia B 
[300, 301], congenital lung disease [302], cancer 
[303], liver and lung fibrosis [304], and 
 methylmalonic acidemia [305]. However, the 
main hurdle in implementation of mRNA for 
therapeutics, the systemic delivery of mRNA 
molecules to target cells, remains a challenge. 
Better understanding of the factors that deter-
mine translational efficiency as well as RNA rec-
ognition by innate immune receptors, has 
improved the intracellular stability and function-
ality of mRNA transfected to cells. Still, when 
aiming to harness mRNA molecules for gene 
therapy purposes, this progress was insufficient. 
The need for mRNA protection from degradation 
in extracellular compartments, as well as for 
enabling its entry to the cell, has raised the 
demand for suitable delivery platforms [285, 
295]. A possible solution for this challenge relies 
in the rapidly evolving field of nucleic acid-

loaded NPs. In fact, the progress in the field of 
NPs-mediated RNAi-based therapy, has led to 
similar development of nanocarriers for 
mRNA. Particularly, the widely investigated fam-
ily of LNPs was proposed to be such appropriate 
mRNA nanocarriers [296, 305, 306]. Moreover, 
the use of polyplex nanomicelles has also been 
explored [298, 299]. In order to achieve high effi-
cacy in vivo some IVT mRNA specific formula-
tion adjustments should be done in a near future. 
These adjustments are more important when sys-
temic administration is required. Moreover, in 
order to expand the variety of mRNA-based ther-
apies, cell specific targeted delivery systems are 
also needed especially in diseases involving a 
certain organ, which is inaccessible by standard 
LNPs, as well as in many types of solid tumors 
[296]. In conclusion, innovative design of nano-
carriers for IVT mRNAs delivery will help to 
increase their potential and turn them into a valid 
therapeutic approach.

7.7  Aptamer-Based Drugs

Another potential class of RNA therapeutics are 
oligonucleotide aptamers (see Fig.  7.7c). The 
term aptamer comes from the Latin word “aptus”, 
which means “to fix”, as a clear reference to the 
lock and key relationship of aptamers and their 
targets [307, 308].

Aptamers are short (20–70 bases) single 
stranded oligonucleotides (ssRNA/ssDNA), 
which bind to their targets through 3D conforma-
tional complementarities with high affinity and 
specificity. Unlike the previously referred strate-
gies, aptamers can be tailored selectively against 
a variety of targets, from nucleotides to amino 
acids, proteins, small molecules or even live cells 
[309]. Still, proteins are the major targets in 
aptamer research (reviewed in [310]). 
Oligonucleotide aptamers have affinity and spec-
ificity capacities, which are comparable to those 
of monoclonal antibodies, whilst having minimal 
immunogenicity, high production, low cost and 
high stability. These oligonucleotides can be 
selected trough an in vivo process called 
Systematic Evolution of Ligands by Exponential 
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enrichment (SELEX), which dates back to 1990. 
This method was originally described and per-
formed by Szostak and Gold [307, 308]. The 
whole process starts with the synthesis of a 
screening library formed by a large number of 
randomly combinatorial ssDNA and/or ssRNAs. 
Each one of those random ssDNA/ssRNAs has 
one conserved sequence at each end. That 
sequence allows primer binding and amplifica-
tion. The random library is then incubated with 
the target proteins, under proper conditions. 
Then, through a partition step, the sequences that 
had bind to target proteins are separated from 
those that did not bind. In the third step, the bind-
ing sequences are eluted and amplified with 
primers complementary to their conserved 
sequences, either by PCR (for ssDNA) or RT-PCR 
(for ssRNA). All these steps form a single SELEX 
cycle. This selection process is then repeated for 
about 7–20 rounds of incubation, partitioning 
and amplification. Ultimately, this results in the 
identification of a small number of binding 
sequences with high affinity and specificity for 
further processing and optimization. Generally, 
the binding sequences are then transformed into 
bacteria (E. coli) for further sequencing and char-
acterization (reviewed in [310]). Naturally, in the 
post-SELEX process, the synthesized aptamers 
(as every other AON) can be chemically modified 
for therapeutic purposes, to stabilize and protect 
them against nucleases in vivo. Recent advances 
in SELEX technology, with the introduction of 
chemically modified bases and the use of deep 
sequencing to analyze enriched RNAs in early 
rounds of selection, have greatly reduced the time 
needed and the likelihood of identifying high- 
affinity aptamers (reviewed in [186]).

Over approximately 10 years, starting in 2005, 
when the first aptamer Pegaptanib (PubChem, 
Pegaptanib) was approved for wet age-related 
macular degeneration (AMD) therapy by 
U.S. FDA, oligonucleotide aptamers were grow-
ing more and more popular. Until 2016, when the 
last estimates were published online, there had 
been over 900 aptamers developed against vari-
ous targets for diagnostic and therapeutic pur-
poses [311]. Nevertheless, drug development of 
aptamers is currently not very active, with big 

pharmacological companies being much more 
focused on the technologies reviewed in the pre-
vious sections of this chapter. Still, it is worth 
mentioning that these oligonucleotides could 
substitute for some applications of therapeutic 
antibodies, with lower risk of developing immu-
nological responses. They could also be used for 
targeted intracellular delivery of other molecules, 
including RNA-based drugs.

7.8  Conclusion

Over the last decades, an exceptional increase on 
the understanding of the versatile roles of RNAs 
has sparked the development of new classes of 
RNA-based drugs. Therapeutic RNA-based 
applications are emerging, in different fields, 
from inherited genetic diseases, oncology, viral 
infections and diabetes to neurological, cardio-
vascular, bone-related and ocular diseases. Over 
the last years in particular, much effort has been 
focused on the development of RNA-based thera-
peutics. Currently, even though there are a num-
ber of RNA-based therapeutic strategies, which 
may be attempted in order to either correct or 
modulate gene expression, there has been a clear 
prevalence of studies focused on splicing modifi-
cation and gene expression inhibition using dif-
ferent types of AONs. Actually, the first 
AON-based drugs were recently approved, 
closely followed by the first siRNA-based thera-
peutic drug, which was approved last year. Still, 
there is a strong need to optimize the delivery 
steps of RNA-based technologies and to improve 
the drug-like properties of therapeutic nucleic 
acids. Expanding the range of targeted cells and 
tissues will require the development of robust 
strategies for cytosolic delivery, thus overcoming 
the two major hurdles of getting across the 
plasma membrane and out of the endosome.

In conclusion, as the first generation of nucleic 
acid therapeutics become drugs, the barrier for 
investing in RNA-based therapeutics will be low-
ered, and more resources will become available 
for exploring other mechanisms of action for 
RNA-based drugs apart from splicing modula-
tion and single-gene knockdown. As already 
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pointed out by other authors, the flexibility of 
RNA design should allow for the facile construc-
tion of potent multifunctional drugs that have 
more than one mode of action and disrupt multi-
ple targets. One such multifunctional drug may 
hold the promise of substituting for drug cock-
tails in a future not so distant. There is also the 
largely unexplored potential of targeting other 
RNA species and disrupting their functions. 
Therefore, in the near future, RNA-based drugs 
may become an increasing component of the 
pharmacopoeia, greatly expanding the universe 
of druggable targets and providing affordable 
treatment options for previously untreatable dis-
eases. Ultimately, this kind of drugs may hold 
potential to actually cure genetic diseases [186].
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