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3.1	 �Introduction

Due to the ongoing shift in the distribution of the 
world’s population towards old age, we recently 
experience a dramatic increase in comorbidities 
like diabetes or venous and arterial insufficiency. 
This results in a raising number of chronic wounds 
which have become not only an individual medical 
but also a significant economic burden, consuming 
2–4% of health care budgets worldwide [1].

Wound healing is a complex system depend-
ing on the timed coordination of several cell 
types, intra- and extracellular mechanisms, pro-
teins, and pathways, but also on several external 
factors like infections or mechanical irritation 
(Fig.  3.1). Defect or dominance of one factor 
can cause to a sudden breakdown of localized 
healing capacity, leading to formation of chronic 
wounds. A famous example for the fragility of 
the cellular mechanism for tissue homeostasis 
and repair is the connection between vitamin C 
deficiency and scurvy resulting in nonhealing 
wounds and spontaneous bleeding known since 
the sixteenth century [2, 3]. Mentioned first in 
journey books of Christopher Columbus as a 
result of monotone diet, the pathomechanism 
remained unclear until the twentieth century. 
Then it could be demonstrated that vitamin C 
represents a main cofactor for collagen cross-
linking and an important factor to reduce oxida-
tive stress [4]. This example shows how 
impactful minimal alterations in our metabo-
lism can be for tissue regeneration. Therefore, a 
complete understanding of all molecular and 
cellular players involved in wound healing is 
pivotal for developing treatment strategies and 
effective drugs.

In this chapter, we summarize the most 
promising recent advances in wound healing 
therapeutics with the corresponding challenges 
and shed light on possible solutions for effec-
tive application.
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3.2	 �Recent Advances in Wound 
Therapeutics

3.2.1	 �Growth Factor Therapy

The wound healing promoting effect of growth 
factors is broadly known. Although they have 
shown to act beneficial in preclinical studies, 

large clinical studies supporting this are still 
missing. A meta-analysis based on the Cochrane 
database showed a general benefit of growth 
factor-induced wound healing without any sig-
nificant general adverse effects [5]. The platelet-
derived growth factors (PDGF), vascular 
endothelial growth factor (VEGF), epidermal 
growth factor (EGF), fibroblast growth factor 
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Fig. 3.1  Phases of adult wound healing with main affect-
ing cells and signals. (Left) Coagulation and inflamma-
tion—day 0–3. Platelets: formation of platelet plug and 
secretion of platelet-derived growth factor and transform-
ing growth factor for chemotaxis of neutrophils. 
Neutrophils: secrete interleukin 1 for the beginning of 
chemokine-cascade for chemotaxis of inflammatory cells; 
macrophages: phagocyte bacteria and secrete paracrine 
factors for keratinocyte-based epithelization and fibro-
blast activation. (Middle) Proliferation—day 4–21. 

Beginning of angiogenesis, dependent on endothelial 
cells: activated by vascular endothelial growth factor. 
Formation of the extracellular matrix based on fibroblast 
activation: activated by basic fibroblast growth factor, 
interleukin 1, and platelet-derived growth factor. 
Epithelialization: keratinocyte based as a response to 
keratinocyte growth factor. (Right) Maturation phase—
day 21–1  year. Wound contraction: transformation of 
fibroblasts to myofibroblast. Collagen remodeling: 
effected by myofibroblasts and macrophages
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(FGF), and the transforming growth factor-beta 
(TGF-β) are in current focus of research.

PDGF-BB, administered in hydrogels and 
available as “Regranex” (Ortho-McNeil, 
Raritan, NJ), is the only growth factor therapy 
that is currently approved for treatment of non-
healing wounds [6]. Although there has been 
shown advantage in hypertensive leg ulcers, the 
application of this gel should be considered 
only as ultima-ratio treatment due to a higher 
rate of malignancies in patients treated with 
PDGF-BB [7].

As another growth factor VEGF was success-
fully used for accelerated wound closure in dia-
betic mice. Preclinical study showed less than 
half of resurfacing time in VEGF-treated group 
than in a non-treated group [8]. Also non-treated 
wounds on the contralateral site of animals with 
VEGF therapy showed an accelerated wound clo-
sure time. This leads to the suggestion of an addi-
tional systemic effect of local VEGF treatment 
with the possibility of interacting with tumor 
growth and of promoting malignant tendencies. 
There has been only one clinical trial comparing 
VEGF treatment and placebo showing no signifi-
cant benefit for VEGF [9].

Several study groups investigated the effect of 
intralesional EGF injections on wound closure 
[10–12]. Although first clinical trials have been 
performed in Cuba in 2006 and have shown 
accelerated wound healing of high-grade dia-
betic foot healing and complete wound closure 
in up to 85% of cases, it is still no treatment 
option in western countries. A meta-analysis 
performed by Yang et  al. [13] confirmed these 
first results strengthening the hopes for a new 
clinical treatment option for diabetic and avascu-
lar wounds.

B-FGF is one of the first growth factors that 
has been investigated. A clinical study by Richard 
et al. in 1995 involved 17 patients and could find 
no promoting effect of b-FGF [14]. Up to now the 
efficacy of b-FGF in wound healing remains 
unclear. While there exist clinical studies show-
ing a promotion of diabetic wound healing 
effected by injectable b-FGF, others deny a sig-
nificant effect of b-FGF releasing sponges while 
preclinical trials have shown a promising effect 
[15–17]. Furthermore, not only b-FGF but also 

acid-FGF has been tested for wound healing and 
similarly showed inconclusive results [18].

Although the TGF-β family, including TGF-
β-1, 2, and 3, has shown to be involved in both 
promotion of wound healing and scarring, it has 
not become a possible treatment option in clini-
cal routine yet [19]. The wound healing ability of 
TGF-β-1 and TGF-β-2 in murine models are well 
described. Although first clinical phase I and II 
trials have shown efficacy and safety of a TGF-β-
releasing scaffold for treatment of venous ulcers, 
there exist no supporting phase III study [20].

Despite the fact that growth factor therapy has 
shown to be effective in preclinical and some 
clinical trials, only few of these substances hold 
promise to enter the clinical routine. A therapy 
containing only one growth factor is most likely 
not sufficient to efficiently promote wound heal-
ing, especially compared to NPWT, which has 
shown to significantly enhance a plethora of 
autologous growth factor levels.

3.2.2	 �Negative-Pressure Wound 
Therapy

The use of negative-pressure wound therapies 
(NPWT = vacuum-assisted closure = VAC) pro-
vides an effective and elegant way to close 
wounds, prevent infections, and simultaneously 
increase local growth factor levels. NPWT has 
shown benefit on bacterial contamination rate. It 
also temporarily creates relative hypoxia in the 
wound region, resulting in significant higher lev-
els of the main growth factors (VEGF, TGF β, 
and basic FGF), angiopoietin 1 (essential for neo-
angiogenesis), and bone morphogenetic protein 2 
(BMP 2—involved in cartilage and bone metabo-
lism) [21–25]. Several studies suggest that micro-
deformation of the wound surface leads to 
accelerated cell migration and matrix production 
(Fig.  3.2) [23–25]. Interestingly, the temporary 
hypoxia induces the osteogenetic differentiation 
of MSCs. Therefore NPWT seems to be the per-
fect option for treatment of soft tissue defects 
involving bone defects and infected or potentially 
infected wounds. Further research has to be car-
ried out to confirm these hypotheses in a clinical 
setting.

3  Basic Principles and Current Approach for Soft Tissue Regeneration



10

Technical development has led to change in 
handling of NPWT systems. Dressing changes 
only three times a week instead of twice daily as 
recommended in the first trails using NPWT has 
led to the possibility of a long-term use. By 
using silver-coated foams, that additionally hin-
der bacterial growth, NPWT became even more 
successful [26]. In aggregate, NPWT provides 
an effective and elegant way to treat difficult 
wounds by enhancing local growth factor levels 
and decreasing bacterial contamination of 
wounds.

3.2.3	 �Antioxidants and Wnt 
Modulation

The human skin is constantly exposed to envi-
ronmental factors such as UV light, radiation, 
ozone (O3), or air pollution inducing reactive 
oxygen species (= ROS). Additionally, cellular 
metabolism leads to ROS as side products. The 
causality between free radicals and aging has 
been described by different groups within the 
last century [27–31]. By causing accumulation 
of oxidative toxic products in long-living mole-
cules such as collagen, it leads to peroxidation 
and dysfunction of these molecules. ROS-
induced damaging of the DNA is directly fol-
lowed by base loss/modification or breakage. 
ROS can further lead to glycation of proteins fol-
lowed by degradation. According to this, ROS 
can significantly inhibit endogenous ability for 

wound healing by destruction of cells, key pro-
teins, or parts of the ECM (Fig. 3.3).

Antioxidant treatment has been used since 
several years as a product improving the quality 
of skin. The most popular and most commonly 
used antioxidant is a polyphenol, also called aloe 
vera. As the main component of ointments or gels 
its therapeutic effect is related to the stimulation 
of collagen syntheses on the one hand and to anti-
oxidative effects on the other hand [32]. But the 
use of anti-oxidants is not only limited on aes-
thetic treatment options. Some iron chelators like 
deferoxamine (= Desferal or more potent, 
desferriexochelin-772SM (D-Exo)) [33], deferi-
prone, and deferasirox are already in use in dif-
ferent medical fields [34]. Next to being well 
known as treatment option for beta-thalassemia 
[35, 36], anti-oxidant drugs have shown benefits 
mainly due to their anti-inflammatory potential to 
increase the retention rate of fat grafts, the sur-
vival rate of free flaps, and the healing process of 
diabetic wounds [37, 38]. This can be explained 
by the ability of free iron to induce the prolyl-
hydroxylation of the hypoxia-inducible factor 1α 
(HIF-1α), a process leading to inactivation and 
degradation of HIF-1α [39]. Less free iron results 
in a higher expression of HIF-1α and thereby 

Epidermis

Dermis

NPWT

VEGF

b FGF

Angiopoetin1

BMP 2

TGF β

Subcutis

Fig. 3.2  Molecular 
mechanism of negative-
pressure wound therapy

Covalent binding DNA
Proteins
Lipids

[R. ]

Fig. 3.3  Mechanism of reactive oxygen species (ROS) 
damage

M. M. Aitzetmüller et al.



11

leads to benefits in local neovascularization and 
tissue regeneration. Harnessing these effects, a 
transdermal delivery system releasing DFO 
showed accelerated wound healing in diabetic 
ulcers. Prophylactic use of this system has a pre-
ventive effect on ulcer formation [40].

But not only antioxidative agents, also wnt 
pathway manipulation is a promising new alley 
of wound healing research. The wnt pathway rep-
resents a sequence of factors that can easily be 
targeted by nanoparticles. The wnt pathway was 
found to play an important role in embryonic ver-
tebrae development, in the development of differ-
ent malignancies, and additionally in tissue repair 
and scarring [41–44]. Pyrvinium, an antihelmin-
thic drug, inhibits the wnt pathway by promoting 
the effectivity of the casein kinase 1α (CK1α), 
leading to accelerated degradation of casein, a 
factor of wnt pathway [45, 46]. Studies using 
pyrvinium show a 1.4-fold increase of MSC pro-
liferation by simultaneously inhibiting the osteo-
genic and chondrogenic differentiation. These 
changes were initiated by a pyrvinium-releasing 
sponge. Pyrvinium only affected the proliferation 
rate of MSCs. Other cell lines like HUVECs have 
shown no significant changes compared to non-
treated cells [47].

Additionally, the wnt pathway has also shown 
to play a significant role in scar formation. By 
stimulation of the wnt pathway and the FGF 
pathway, the regeneration of hair follicles could 
be induced. Hair follicle secretes bone morpho-
genetic protein (BMP), which again stimulates 
myofibroblasts to differentiate into adipocytes. 
This pathway leads to inhibition of scar forma-
tion. Targeting and mimicking these three path-
ways to either prevent scarring or treat 
hypertrophic scars or keloids is a future goal of 
drug development [48–50].

3.2.4	 �RNA Interference-Based 
Therapy

Gene expression initially starts in the nucleus 
with transcription—the production of mRNA 
(messenger-RNA) followed by an export to the 
cytoplasm. Translation of mRNA leads to the 

production of proteins. After this process the 
mRNA is degraded.

The basic principle of RNA interference 
(RNAi-based therapy) is based on body’s own 
mechanism for mRNA degradation: By binding 
to mRNAs, endogenous miRNAs (micro-RNAs) 
or synthetic siRNAs (small interfering RNAs) 
lead to mRNA degradation or to formation of 
double-stranded RNA and as a result to suppres-
sion of their translation [51, 52]. Synthetically 
produced siRNA can be used for knocking down 
factors which inhibit neo-angiogenesis and 
inhibit keratinocyte migration followed by re-
epithelialization [53–55].

For example, endogenous miRNA-21 is one 
of the best studied miRNAs. It has been shown 
to regulate re-epithelialization, cell prolifera-
tion, wound contraction, and formation of gran-
ulation tissue [54, 56, 57]. RNAi is not limited 
to wound healing applications, but also offers 
new possibilities in cancer therapy or treatment 
of genetic diseases like amyotrophic lateral 
sclerosis (by targeting and destroying wild-type 
mRNAs) [58, 59].

Difficulties for the application of this novel 
therapy include delivery to specific cells and 
problems with internalization of i-RNA to certain 
cell types [60, 61]. Additionally, a high degrada-
tion rate through RNases leads to a short intracel-
lular half-life. However, further development of 
this technique may lead to new ways to enhance 
tissue regeneration and to bring us closer to the 
holy grail of scarless wound healing [62, 63].

3.2.5	 �Stem Cell-Based Therapy

Mesenchymal stromal cells (MSCs) can be uti-
lized to treat challenging wounds, such as wounds 
followed irradiation, ischemic or diabetic 
wounds. The basic principle is a potential differ-
entiation of stromal cells and a higher local level 
of growth factors. Although preclinical and clini-
cal studies showed promising results, there still 
remain several problems. Irregularities are caused 
by patient’s individual factors, such as diabetes or 
age [64, 65]. These uncertainties still limit the 
clinical use.
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But stem cell-based therapy is not only limited 
to the regenerative potential of MSCs harvested 
from bone marrow or adipose tissue. Also periph-
eral blood cells (PBCs) have shown to secrete a 
mixture of the pro-angiogenetic factors VEGF and 
HIF-1, when being temporally conditioned under 
hypoxic stress [66]. These findings have been used 
for developing both an implantable and an inject-
able wound healing system and seem to be a prom-
ising approach to accelerate wound healing [67].

3.2.6	 �Scaffolds and Skin 
Equivalents

Bioactive dressings are engineered from compo-
nents that are naturally present in the ECM or 
composed of polymers to mimic this unique 
matrix [68]. Biomimetic collagen hydrogels have 
been shown to accelerate early wound healing by 
modifying cell recruitment and augmenting gran-
ulation tissue formation [69]. Recently biologic 
matrices have evolved from being simple ECM 
replacements towards drug and cell delivery 
vehicles. Novel regenerative matrices are capable 
of both skin replacement and stimulation of 
endogenous cells [70]. For example, pullulan (a 
polysaccharide polymer)-collagen matrices was 
seeded with mesenchymal stem cells (MSCs) and 
showed to enhance cell survival [71]. MSCs 
delivered in such a structured matrix environ-
ment have demonstrated enhanced efficacy by 
increased angiogenic cytokine expression [72]. 
Therefore, scaffolds can represent an intelligent 
and efficient drug-delivery vehicle to overcome 
certain problems of cell-based therapies [73].

In addition to improving wound healing and 
skin regeneration by increased neovasculariza-
tion, scaffold-seeded progenitor cells can also 
enhance tissue repair by inducing a specific 
immune response. Delivery in the correct niche 
environment can further enhance the immune-
modulatory effects of MSCs and have positive 
impact on scar formation. ASCs delivered to 
cutaneous excisional wounds via an ECM patch 
attenuate wound fibrosis more effectively than 
ASCs applied without scaffold support [74].

Despite significant scientific advancements 
and early clinical trials, clinical translation of 

progenitor cell-seeded biomimetic scaffolds for 
skin regeneration still remains a challenge. 
However, innovative therapies based on emerg-
ing concepts arising from the intersection of 
engineering, molecular signaling, and stem cell 
biology will potentially result in the transforma-
tion of fibrotic healing into skin regeneration. 
Looking ahead, understanding the genetic and 
epigenetic indicators that might predispose a 
patient to impaired wound healing or excessive 
scarring may enhance tissue regenerative 
approaches further.

3.3	 �Conclusions

A growing number of patients suffering from 
chronic wounds have brought soft tissue regen-
eration into spotlight of current research. The 
ideal treatment for wound healing is cheap and 
effective for most wounds. Furthermore, it is 
essential for upcoming devices to avoid side 
effect, to provide long-lasting application and 
should not be impaired by patient-dependent fac-
tors such as chronic systemic diseases. Several 
different approaches have been developed and 
have shown promising results in preclinical stud-
ies. Nevertheless, only NPWT has made the step 
to clinical routine. Possible reasons for this big 
gap between basic science and clinical imple-
mentation include several uncertain factors such 
as possible malignancy (growth factor-based 
therapy), high degradation rate (RNAi, growth 
factor, and stem cell-based therapy), systemic 
side effects (pyrvinium), uncertain retention 
rates, and individual limitations (stem cell-based 
therapy). Further approached should strive for a 
holistic attempt to correct the plethora of molecu-
lar defects that lead to nonhealing wounds rather 
than a one-factor replacement therapy.
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