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Foreword

Plastic surgery, by its very nature, takes care of nearly every part of the
human body including the skin, muscles, bones, nerves, and blood vessels.
As Joseph G. McCarthy, my former Chief at NYU, once said, plastic sur-
geons are problem-solvers. They are called upon by other practioners to
develop creative solutions to unsolvable problems in nearly every anatomic
region. Thus, it is not surprising that plastic surgeons have flocked to the
burgeoning field of regenerative medicine, which promises even more ele-
gant solutions to clinical problems found everywhere in the human body.
Regenerative medicine proposes using cellular and molecular processes to
recreate the exact same tissues that plastic surgeons perform long opera-
tions to recreate.

It is logical that plastic surgery would be at the forefront of the field of
regenerative medicine. And this is indeed the case at stem cell conferences
and tissue engineering symposia, where plastic surgeons often outnumber all
the other clinical attendees combined. However, up until now, there did not
exist an authoritative reference documenting all the ways that plastic surgical
practice and regenerative medicine science overlap or provide a road map for
the future of both specialties. Drs. Duscher and Shiffman have provided a
valuable service by gathering in one place the leading voices in these two
fields in clear and concise manner.

Reading through this work, one is impressed by both the breadth of plastic
surgery practice and the enormous potential of regenerative medicine to cure
a multitude of human diseases. One also sees the potential for regenerative
medicine to be integrated into clinical plastic surgery. With beautiful clinical
images and artwork, this book will be a central companion to both practicing
plastic surgeons who wish to remain abreast of upcoming technological
advances and regenerative medicine researchers who wish to understand the
current state of the art of surgical reconstruction. The analogies between the
two disciplines are clearly laid out, and the possibilities for advances in clini-
cal care leap off the pages.

Ultimately, regenerative medicine may make many operations plastic sur-
geons perform obsolete. This is familiar territory for plastic surgeons who
always need to look for the next clinical arena for innovation. I am confident
that clinical plastic surgeons will remain at the forefront and become leaders
in this emerging field. In your hands is a comprehensive encyclopedia of two
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Foreword

rapidly converging fields. Drs. Duscher and Shiffman have done an outstand-
ing job of highlighting the interdependent relationship between plastic
surgery and regenerative medicine. Ultimately, this is to the benefit of both
fields.

Stanford, CA Geoffrey C. Gurtner



Preface

A surgical success will impact the patient in question, but a research success
can impact a global population. This thought came to me at the end of medi-
cal school and still is the main reason for my fascination for science today.
Driven by my desire to create knowledge and discover new things, I found the
seemingly endless possibilities of the young field of regenerative medicine
particularly enchanting.

Through channelling the power of stem cells to repair or replace damaged
tissues, regenerative therapies are making their way into mainstay clinical
routine. As both case-based stem cell therapy and global understanding
evolve, we are entering an era in which we can design treatments for some of
the world’s most devastating diseases. Innovative therapeutic concepts borne
of the intersection of clinical medicine, engineering, and cell biology have
potential to change the way we practice medicine.

The international efforts put into this field have created an unyielding body
of literature. Staying abreast of the genetic, epigenetic, cellular, stromal,
hematopoietic, and pathologic research emerging each year is critical. A
comprehensive, up-to-date reconnaissance of these parameters in the field of
regenerative medicine is therefore a valuable tool. The expertise required to
generate such a text far exceeded that of its editors, and the roots of this book
are nourished in the soul of collaboration. I am indebted to the scores of
renowned specialists who have contributed their expertise and ingenuity to
this work. This book is intended for surgeons and scientists, for biologists and
engineers, and for students of medicine, biomedical engineering, cell biol-
ogy, and biotechnology, simply for everyone who is interested in the extraor-
dinary potential that regenerative medicine has to offer. The first edition of
this book represents an attempt to organize the current knowledge in the field.
However, knowledge is of no value unless you put it into practice. Thus, we
all need to strive for the clinical translation of the principles presented here to
make the dream of tissue and organ regeneration become reality.

You can have results or excuses. Not both.
—Arnold Schwarzenegger

Munich, Germany Dominik Duscher
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Definitions

Dominik Duscher, Matthias M. Aitzetmuller,

and Elizabeth A. Brett

1.1 Regenerative Medicine

Regenerative medicine is an area of biomedicine,
bridging the gap between life science and engi-
neering [1]. Combining tissue engineering and
stem cell biology with a focus on translational
aspects, it aims to achieve replacement and engi-
neering/regeneration of cells, tissues, and organs.

1.2  Tissue Engineering

Tissue engineering has the ultimate translational
goal to utilize scaffolds, cells, and active mole-
cules to form fully functional tissue. It is an inter-
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disciplinary field that applies the principles of
engineering and life sciences toward the develop-
ment of biological substitutes. The goal functions
include restoration, maintenance, or improve-
ment of tissue or organ [2].

1.3  Stem Cells

Stem cells are undifferentiated cells belonging to
multicellular organisms. They are capable of giv-
ing rise to identical daughter cells, or alternate
phenotypes through differentiation. Stem cells
are the building blocks of life, whose un-mutated
genetic pool is the hallmark of health. However,
stem cells are also the building blocks for molec-
ular medicine in the twenty-first century [3].
Following the principle of regenerative medicine,
stem cell-based therapies have the potential to
treat countless human diseases.
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History of Regenerative Medicine

Maximilian Zaussinger and Dominik Duscher

2.1 History
Regenerative medicine is associated with engi-
neering or regeneration of human cells, tissues, or
organs and to restore or establish normal function
[1]. Historically, regenerative medicine was first
introduced by Kaiser in 1992, who described
technologies which would impact the future of
medicine [2]. Far earlier, in 1968 the first success-
ful bone marrow transplantation in humans was
performed [3]. Subsequently, this development
grew and led to achieving further milestones in
the fields of stem cells and transplantation.
Although regenerative medicine is considered
as a novel target of medical research, the idea of
creating artificial organs is not so recent. Already
in 1938, Alexis Carrell, a Nobel Prize winner for
his work on vascular anastomosis, and Charles
Lindbergh, the first pilot who crossed the Atlantic
sea alone, published the book The Culture of New
Organs [4]. In 1954, the kidney was the first organ
to be substituted in a human. No rejection reaction
occurred due to the factor of identical twins [5].
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The regenerative potential of body parts is a
common phenomenon in nature; salamanders are
able to restore an amputated limb in a few days.
Even the human potential of regeneration was well
known in ancient times, as described by the myth
of the great Titan Prometheus: an eagle was eating
his liver during the day and it regenerated itself
completely overnight [6]. During the last centuries,
regenerative medicine strove to construct artificial
organs mimicking natural tissue by combining
modulated cells with extracellular matrix-hybrid-
ized synthetic polymers that have produced bio-
logically functioning artificial tissues [1]. These
developments open new avenues for curing patients
with malignant and impaired tissues.

In 1989, a book titled Tissue Engineering [7]
was published with the first expressive definition
of tissue engineering given by Robert Nerem:

Tissue engineering is the application of the prin-

ciples and methods of engineering and the life sci-

ences towards the fundamental understanding of
structure/function relationships in normal and
pathological mammalian tissues and the develop-

ment of biological substitutes to restore, maintain,
or improve functions.

The evolution from tissue engineering into
regenerative medicine was driven by intense
developments in the financial, research, and
political landscape. However, from a financial
point of view, the last two decades, anticipated to
bring the biotechnological revolution, were char-
acterized by a disconnect between expectations
and reality. Current strategies to pursue the objec-
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tives of regenerative medicine are based on three
concepts:

— Cell-based therapy

— Either biological or synthetic materials to
restore cells and tissues

— Implantation of scaffolds seeded with cells

Understanding innovative technologies is fun-
damental to developing successful approaches in
the biotech sector and hence is influential in devel-
oping the field of regenerative medicine [8]. To
date, only a multidisciplinary team, including doc-
tors, biologists, bioengineers, surgeons, and chem-
ists, is able to master all key steps in these
revolutionary fields of regenerative medicine.
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Basic Principles and Current
Approach for Soft Tissue

Regeneration

Matthias M. Aitzetmdller, Elizabeth A. Brett,
Matthias A. Sauter, and Dominik Duscher

3.1 Introduction

Due to the ongoing shift in the distribution of the
world’s population towards old age, we recently
experience a dramatic increase in comorbidities
like diabetes or venous and arterial insufficiency.
This results in a raising number of chronic wounds
which have become not only an individual medical
but also a significant economic burden, consuming
2-4% of health care budgets worldwide [1].
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Wound healing is a complex system depend-
ing on the timed coordination of several cell
types, intra- and extracellular mechanisms, pro-
teins, and pathways, but also on several external
factors like infections or mechanical irritation
(Fig. 3.1). Defect or dominance of one factor
can cause to a sudden breakdown of localized
healing capacity, leading to formation of chronic
wounds. A famous example for the fragility of
the cellular mechanism for tissue homeostasis
and repair is the connection between vitamin C
deficiency and scurvy resulting in nonhealing
wounds and spontaneous bleeding known since
the sixteenth century [2, 3]. Mentioned first in
journey books of Christopher Columbus as a
result of monotone diet, the pathomechanism
remained unclear until the twentieth century.
Then it could be demonstrated that vitamin C
represents a main cofactor for collagen cross-
linking and an important factor to reduce oxida-
tive stress [4]. This example shows how
impactful minimal alterations in our metabo-
lism can be for tissue regeneration. Therefore, a
complete understanding of all molecular and
cellular players involved in wound healing is
pivotal for developing treatment strategies and
effective drugs.

In this chapter, we summarize the most
promising recent advances in wound healing
therapeutics with the corresponding challenges
and shed light on possible solutions for effec-
tive application.
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Fig. 3.1 Phases of adult wound healing with main affect-
ing cells and signals. (Left) Coagulation and inflamma-
tion—day 0-3. Platelets: formation of platelet plug and
secretion of platelet-derived growth factor and transform-
ing growth factor for chemotaxis of neutrophils.
Neutrophils: secrete interleukin 1 for the beginning of
chemokine-cascade for chemotaxis of inflammatory cells;
macrophages: phagocyte bacteria and secrete paracrine
factors for keratinocyte-based epithelization and fibro-
blast activation. (Middle) Proliferation—day 4-21.

3.2 Recent Advances in Wound
Therapeutics
3.2.1 Growth Factor Therapy

The wound healing promoting effect of growth
factors is broadly known. Although they have
shown to act beneficial in preclinical studies,

Collagen llI

 Macrophages

Fibroblasts

Myofibroblasts

day 21 Maturation 1 year
Beginning of angiogenesis, dependent on endothelial
cells: activated by vascular endothelial growth factor.
Formation of the extracellular matrix based on fibroblast
activation: activated by basic fibroblast growth factor,
interleukin 1, and platelet-derived growth factor.
Epithelialization: keratinocyte based as a response to
keratinocyte growth factor. (Right) Maturation phase—
day 21-1 year. Wound contraction: transformation of
fibroblasts to myofibroblast. Collagen remodeling:
effected by myofibroblasts and macrophages

large clinical studies supporting this are still
missing. A meta-analysis based on the Cochrane
database showed a general benefit of growth
factor-induced wound healing without any sig-
nificant general adverse effects [5]. The platelet-
derived growth factors (PDGF), vascular
endothelial growth factor (VEGF), epidermal
growth factor (EGF), fibroblast growth factor
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(FGF), and the transforming growth factor-beta
(TGF-p) are in current focus of research.

PDGF-BB, administered in hydrogels and
available as “Regranex” (Ortho-McNeil,
Raritan, NJ), is the only growth factor therapy
that is currently approved for treatment of non-
healing wounds [6]. Although there has been
shown advantage in hypertensive leg ulcers, the
application of this gel should be considered
only as ultima-ratio treatment due to a higher
rate of malignancies in patients treated with
PDGF-BB [7].

As another growth factor VEGF was success-
fully used for accelerated wound closure in dia-
betic mice. Preclinical study showed less than
half of resurfacing time in VEGF-treated group
than in a non-treated group [8]. Also non-treated
wounds on the contralateral site of animals with
VEGEF therapy showed an accelerated wound clo-
sure time. This leads to the suggestion of an addi-
tional systemic effect of local VEGF treatment
with the possibility of interacting with tumor
growth and of promoting malignant tendencies.
There has been only one clinical trial comparing
VEGEF treatment and placebo showing no signifi-
cant benefit for VEGF [9].

Several study groups investigated the effect of
intralesional EGF injections on wound closure
[10-12]. Although first clinical trials have been
performed in Cuba in 2006 and have shown
accelerated wound healing of high-grade dia-
betic foot healing and complete wound closure
in up to 85% of cases, it is still no treatment
option in western countries. A meta-analysis
performed by Yang et al. [13] confirmed these
first results strengthening the hopes for a new
clinical treatment option for diabetic and avascu-
lar wounds.

B-FGF is one of the first growth factors that
has been investigated. A clinical study by Richard
et al. in 1995 involved 17 patients and could find
no promoting effect of b-FGF [14]. Up to now the
efficacy of b-FGF in wound healing remains
unclear. While there exist clinical studies show-
ing a promotion of diabetic wound healing
effected by injectable b-FGF, others deny a sig-
nificant effect of b-FGF releasing sponges while
preclinical trials have shown a promising effect
[15-17]. Furthermore, not only b-FGF but also

acid-FGF has been tested for wound healing and
similarly showed inconclusive results [18].

Although the TGF-f family, including TGF-
B-1, 2, and 3, has shown to be involved in both
promotion of wound healing and scarring, it has
not become a possible treatment option in clini-
cal routine yet [19]. The wound healing ability of
TGF-B-1 and TGF-B-2 in murine models are well
described. Although first clinical phase I and II
trials have shown efficacy and safety of a TGF-f3-
releasing scaffold for treatment of venous ulcers,
there exist no supporting phase III study [20].

Despite the fact that growth factor therapy has
shown to be effective in preclinical and some
clinical trials, only few of these substances hold
promise to enter the clinical routine. A therapy
containing only one growth factor is most likely
not sufficient to efficiently promote wound heal-
ing, especially compared to NPWT, which has
shown to significantly enhance a plethora of
autologous growth factor levels.

3.2.2 Negative-Pressure Wound
Therapy

The use of negative-pressure wound therapies
(NPWT = vacuum-assisted closure = VAC) pro-
vides an effective and elegant way to close
wounds, prevent infections, and simultaneously
increase local growth factor levels. NPWT has
shown benefit on bacterial contamination rate. It
also temporarily creates relative hypoxia in the
wound region, resulting in significant higher lev-
els of the main growth factors (VEGF, TGF §,
and basic FGF), angiopoietin 1 (essential for neo-
angiogenesis), and bone morphogenetic protein 2
(BMP 2—involved in cartilage and bone metabo-
lism) [21-25]. Several studies suggest that micro-
deformation of the wound surface leads to
accelerated cell migration and matrix production
(Fig. 3.2) [23-25]. Interestingly, the temporary
hypoxia induces the osteogenetic differentiation
of MSCs. Therefore NPWT seems to be the per-
fect option for treatment of soft tissue defects
involving bone defects and infected or potentially
infected wounds. Further research has to be car-
ried out to confirm these hypotheses in a clinical
setting.
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Fig. 3.2 Molecular
mechanism of negative-

pressure wound therapy Epidermis

Dermis
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Technical development has led to change in
handling of NPWT systems. Dressing changes
only three times a week instead of twice daily as
recommended in the first trails using NPWT has
led to the possibility of a long-term use. By
using silver-coated foams, that additionally hin-
der bacterial growth, NPWT became even more
successful [26]. In aggregate, NPWT provides
an effective and elegant way to treat difficult
wounds by enhancing local growth factor levels
and decreasing bacterial contamination of
wounds.

3.2.3 Antioxidants and Wnt
Modulation

The human skin is constantly exposed to envi-
ronmental factors such as UV light, radiation,
ozone (Oj;), or air pollution inducing reactive
oxygen species (= ROS). Additionally, cellular
metabolism leads to ROS as side products. The
causality between free radicals and aging has
been described by different groups within the
last century [27-31]. By causing accumulation
of oxidative toxic products in long-living mole-
cules such as collagen, it leads to peroxidation
and dysfunction of these molecules. ROS-
induced damaging of the DNA is directly fol-
lowed by base loss/modification or breakage.
ROS can further lead to glycation of proteins fol-
lowed by degradation. According to this, ROS
can significantly inhibit endogenous ability for

ok VEGF
o TGF B

+ Angiopoetini

DNA
Proteins
Lipids

Covalent binding
[R] >

Fig. 3.3 Mechanism of reactive oxygen species (ROS)
damage

wound healing by destruction of cells, key pro-
teins, or parts of the ECM (Fig. 3.3).
Antioxidant treatment has been used since
several years as a product improving the quality
of skin. The most popular and most commonly
used antioxidant is a polyphenol, also called aloe
vera. As the main component of ointments or gels
its therapeutic effect is related to the stimulation
of collagen syntheses on the one hand and to anti-
oxidative effects on the other hand [32]. But the
use of anti-oxidants is not only limited on aes-
thetic treatment options. Some iron chelators like
deferoxamine (= Desferal or more potent,
desferriexochelin-772SM (D-Exo)) [33], deferi-
prone, and deferasirox are already in use in dif-
ferent medical fields [34]. Next to being well
known as treatment option for beta-thalassemia
[35, 36], anti-oxidant drugs have shown benefits
mainly due to their anti-inflammatory potential to
increase the retention rate of fat grafts, the sur-
vival rate of free flaps, and the healing process of
diabetic wounds [37, 38]. This can be explained
by the ability of free iron to induce the prolyl-
hydroxylation of the hypoxia-inducible factor la
(HIF-1a), a process leading to inactivation and
degradation of HIF-1a [39]. Less free iron results
in a higher expression of HIF-la and thereby
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leads to benefits in local neovascularization and
tissue regeneration. Harnessing these effects, a
transdermal delivery system releasing DFO
showed accelerated wound healing in diabetic
ulcers. Prophylactic use of this system has a pre-
ventive effect on ulcer formation [40].

But not only antioxidative agents, also wnt
pathway manipulation is a promising new alley
of wound healing research. The wnt pathway rep-
resents a sequence of factors that can easily be
targeted by nanoparticles. The wnt pathway was
found to play an important role in embryonic ver-
tebrae development, in the development of differ-
ent malignancies, and additionally in tissue repair
and scarring [41-44]. Pyrvinium, an antihelmin-
thic drug, inhibits the wnt pathway by promoting
the effectivity of the casein kinase la (CKlaw),
leading to accelerated degradation of casein, a
factor of wnt pathway [45, 46]. Studies using
pyrvinium show a 1.4-fold increase of MSC pro-
liferation by simultaneously inhibiting the osteo-
genic and chondrogenic differentiation. These
changes were initiated by a pyrvinium-releasing
sponge. Pyrvinium only affected the proliferation
rate of MSCs. Other cell lines like HUVECs have
shown no significant changes compared to non-
treated cells [47].

Additionally, the wnt pathway has also shown
to play a significant role in scar formation. By
stimulation of the wnt pathway and the FGF
pathway, the regeneration of hair follicles could
be induced. Hair follicle secretes bone morpho-
genetic protein (BMP), which again stimulates
myofibroblasts to differentiate into adipocytes.
This pathway leads to inhibition of scar forma-
tion. Targeting and mimicking these three path-
ways to either prevent scarring or treat
hypertrophic scars or keloids is a future goal of
drug development [48-50].

3.2.4 RNA Interference-Based
Therapy

Gene expression initially starts in the nucleus
with transcription—the production of mRNA
(messenger-RNA) followed by an export to the
cytoplasm. Translation of mRNA leads to the

production of proteins. After this process the
mRNA is degraded.

The basic principle of RNA interference
(RNAi-based therapy) is based on body’s own
mechanism for mRNA degradation: By binding
to mRNAs, endogenous miRNAs (micro-RNAs)
or synthetic siRNAs (small interfering RNAs)
lead to mRNA degradation or to formation of
double-stranded RNA and as a result to suppres-
sion of their translation [51, 52]. Synthetically
produced siRNA can be used for knocking down
factors which inhibit neo-angiogenesis and
inhibit keratinocyte migration followed by re-
epithelialization [53-55].

For example, endogenous miRNA-21 is one
of the best studied miRNAs. It has been shown
to regulate re-epithelialization, cell prolifera-
tion, wound contraction, and formation of gran-
ulation tissue [54, 56, 57]. RNAI is not limited
to wound healing applications, but also offers
new possibilities in cancer therapy or treatment
of genetic diseases like amyotrophic lateral
sclerosis (by targeting and destroying wild-type
mRNAs) [58, 59].

Difficulties for the application of this novel
therapy include delivery to specific cells and
problems with internalization of i-RNA to certain
cell types [60, 61]. Additionally, a high degrada-
tion rate through RNases leads to a short intracel-
lular half-life. However, further development of
this technique may lead to new ways to enhance
tissue regeneration and to bring us closer to the
holy grail of scarless wound healing [62, 63].

3.2.5 Stem Cell-Based Therapy

Mesenchymal stromal cells (MSCs) can be uti-
lized to treat challenging wounds, such as wounds
followed irradiation, ischemic or diabetic
wounds. The basic principle is a potential differ-
entiation of stromal cells and a higher local level
of growth factors. Although preclinical and clini-
cal studies showed promising results, there still
remain several problems. Irregularities are caused
by patient’s individual factors, such as diabetes or
age [64, 65]. These uncertainties still limit the
clinical use.
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But stem cell-based therapy is not only limited
to the regenerative potential of MSCs harvested
from bone marrow or adipose tissue. Also periph-
eral blood cells (PBCs) have shown to secrete a
mixture of the pro-angiogenetic factors VEGF and
HIF-1, when being temporally conditioned under
hypoxic stress [66]. These findings have been used
for developing both an implantable and an inject-
able wound healing system and seem to be a prom-
ising approach to accelerate wound healing [67].

3.2.6 Scaffolds and Skin
Equivalents

Bioactive dressings are engineered from compo-
nents that are naturally present in the ECM or
composed of polymers to mimic this unique
matrix [68]. Biomimetic collagen hydrogels have
been shown to accelerate early wound healing by
modifying cell recruitment and augmenting gran-
ulation tissue formation [69]. Recently biologic
matrices have evolved from being simple ECM
replacements towards drug and cell delivery
vehicles. Novel regenerative matrices are capable
of both skin replacement and stimulation of
endogenous cells [70]. For example, pullulan (a
polysaccharide polymer)-collagen matrices was
seeded with mesenchymal stem cells (MSCs) and
showed to enhance cell survival [71]. MSCs
delivered in such a structured matrix environ-
ment have demonstrated enhanced efficacy by
increased angiogenic cytokine expression [72].
Therefore, scaffolds can represent an intelligent
and efficient drug-delivery vehicle to overcome
certain problems of cell-based therapies [73].

In addition to improving wound healing and
skin regeneration by increased neovasculariza-
tion, scaffold-seeded progenitor cells can also
enhance tissue repair by inducing a specific
immune response. Delivery in the correct niche
environment can further enhance the immune-
modulatory effects of MSCs and have positive
impact on scar formation. ASCs delivered to
cutaneous excisional wounds via an ECM patch
attenuate wound fibrosis more effectively than
ASCs applied without scaffold support [74].

Despite significant scientific advancements
and early clinical trials, clinical translation of

progenitor cell-seeded biomimetic scaffolds for
skin regeneration still remains a challenge.
However, innovative therapies based on emerg-
ing concepts arising from the intersection of
engineering, molecular signaling, and stem cell
biology will potentially result in the transforma-
tion of fibrotic healing into skin regeneration.
Looking ahead, understanding the genetic and
epigenetic indicators that might predispose a
patient to impaired wound healing or excessive
scarring may enhance tissue regenerative
approaches further.

3.3  Conclusions

A growing number of patients suffering from
chronic wounds have brought soft tissue regen-
eration into spotlight of current research. The
ideal treatment for wound healing is cheap and
effective for most wounds. Furthermore, it is
essential for upcoming devices to avoid side
effect, to provide long-lasting application and
should not be impaired by patient-dependent fac-
tors such as chronic systemic diseases. Several
different approaches have been developed and
have shown promising results in preclinical stud-
ies. Nevertheless, only NPWT has made the step
to clinical routine. Possible reasons for this big
gap between basic science and clinical imple-
mentation include several uncertain factors such
as possible malignancy (growth factor-based
therapy), high degradation rate (RNAi, growth
factor, and stem cell-based therapy), systemic
side effects (pyrvinium), uncertain retention
rates, and individual limitations (stem cell-based
therapy). Further approached should strive for a
holistic attempt to correct the plethora of molecu-
lar defects that lead to nonhealing wounds rather
than a one-factor replacement therapy.
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4.1  Introduction

Loss or the dysfunction of bone tissue may occur
due to trauma, injury, disease, or aging [1].
Currently there are excessive amount of materials
to be applied to bone regeneration [2]. In turn, the
autograft-, allograft-, or xenograft-based bone
regeneration techniques have their disadvantages
such as the need for extra surgical procedures,
infection, chronic pain, or tissue rejection, which
in turn has increased the importance of tissue
engineering and regenerative medicine [3]. The
main goal of tissue engineering is to assemble
isolated functional cells and biodegradable tissue
scaffolds made from bioengineered materials
with the aim of regenerating diseased or damaged
tissue. Many scientists from this multidisci-
plinary field have focused on designing and gen-
erating appropriate scaffolds for various tissues,
by primarily overcoming cell-dependent prob-
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lems in addition to scrutinizing tissue engineer-
ing structures in vitro and in vivo [4].

This chapter aims at describing the impor-
tance of renewable materials which have great
potential for use in bone tissue engineering. In
this context, the chapter offers new approaches
in the improvement of polymeric composite

matrices with the aim of obtaining 3D
tissue-engineered scaffolds from renewable
biomaterials.

4,2 Biology of Bone Tissue:

Structure and Function

Bone tissues are responsible for many crucial
assignments, the most notable ones being struc-
tural support and protection against external
forces in the vertebrates. Its ability to self-repair
and rebuild by promoting mechanical require-
ments makes this tissue very unique in a struc-
tural sense. However, healthy bone functions can
be influenced by many different pathological sit-
uations or diseases. On the other hand, the bone
tissue has been established to have limited regen-
erative capacities depending on patient age, ana-
tomical site, and fracture size since it is hard for
the body to repair huge gaps by itself [5, 6].
Critical-sized fractures (~5 mm) do not have the
ability to heal on their own and need surgical pro-
cedures to ensure the appropriate restoration.
Typical fractures seldom give rise to the forma-
tion of a hole of critical size, whereas some trau-
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matic defects, cancer, infections of the bone, or
age-related degenerations result in areas where
the bone cannot renew by itself. Thus, bone tissue
transplantation is the second most performed
procedure after blood, with over 100 million
operations a year, where patients only in the USA
pay approximately $800 billion for treating bone
diseases annually [6].

Bone, an enduring and extremely vascular-
ized tissue, can keep reconstructing itself
throughout a life span. Within its dynamics are
different mechanical, biological, and chemical
functions which act in controlled harmony.
These include structural support, protection and
regulation and storage of restorative cells and
minerals, in addition to protection and regulation
of Ca and P ions by arrangement of crucial elec-
trolyte concentrations in the blood [7]. It actively
contributes to the generation of various types of
blood cells (known as hematopoiesis) by regulat-
ing homeostasis [8]. The bone structure has a
complementary role in mobility, through the
skeletal structure which has sufficient load-bear-

ing capability and behaves as a protective cover
for the sensitive interior organs of the body [9].
For a better understanding of the mechanical
features of a compact bone tissue, it is significant
in understanding the hierarchical constructional
behavior they possess: (1) cancellous and corti-
cal bone; (2) the microstructure (from 10 to
500 pm); Haversian systems, osteons, single tra-
beculae; (3) the sub-microstructure (1-10 pm);
lamellae; (4) the nanostructure (from a few hun-
dred nanometers to 1 micron): molecular struc-
ture of constituent elements like fibrillar collagen
and embedded mineral; and (5) the sub-nano-
structure (less than a few nanometers): molecu-
lar structure of component elements such as
minerals, collagen, and non-collagenous organic
proteins (Fig. 4.1). Thus, the components of
bone material are both heterogeneous and aniso-
tropic in nature [10].

The bone ultrastructure is composed of colla-
gen and minerals such as tricalcium phosphate,
and hydroxyapatite (HA), Ca;((PO,)s(OH),.
Synthetic HA is one of the most preferred bioc-
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eramic structures used in the construction of bone
substitutes. When examined in detail, bone mac-
romolecules are formed from collagen type I
(90%) and over 200 different types of non-
collagenous matrix proteins (i.e., osteocalcin,
osteonectin, glycoproteins, proteoglycans, and
sialoprotein) [11, 12]. These non-collagenous
matrix proteins induce intermediate extracellular
signals which tend to regulate the homeostasis of
various cell types such as osteoblast, osteocyte,
and osteoclast. The other crucial section of bone
is the mineralized inorganic components (com-
posed of 4-nm-thick plate-like carbonated apatite
mineralities). Moreover, the compact structure
composed of collagen and HA gives this tissue a
unique compressive strength and high fracture
toughness [12].

HA is a bioactive, biocompatible, osteocon-
ductive, nontoxic, noninflammatory, and non-
immunogenic ceramic for bone tissue engineering
and one of the most widely used biomaterials due
to its resemblance to the inorganic constituent of
the vertebrae, bone and its ability to encourage
cell-scaffold adaptation [13]. Hydroxyapatite
nanoparticles (HAp) in collagen fibers reach for
supporting assistants by activating the production
of alkaline phosphatase in bone, resulting in its
overwhelming endurance [14]. Nanoscale HAp
(50 x 25 x 3 nm?) is crucial for appropriate gen-
eration of osteocytes in the bone matrix. Naturally
produced HAp has a Ca:P ratio of 1.67 which
needs to be imitated in the production of HAp to
acquire the necessary biological response, solu-
bility, and mechanical sensitivity [15].

Autogenous bone implants are widely selected
in bone replacement. Nevertheless, this treatment
technique is limited due to insufficiency of
donors, infection, veto of implant, etc., especially
in wide fractures [17]. Various studies have been
conducted since the discovery of the differentia-
tion potential of human adipose-derived mesen-
chymal stem cells (hAMSCs) into osteogenic
lineage, and hence these cells have been consid-
ered as an excellent source for bone tissue engi-
neering applications. Even though first practices
included the direct implementation of stem cells
into fracture locations, nowadays scaffolds com-
bined with stem cells, particularly MScs, are

applied, so that they promote cell colonization,
immigration, growth, and differentiation [18].

An optimal scaffold for bone tissue engineer-
ing practices should permit or enhance cell via-
bility, attachment, proliferation, homing,
osteogenic differentiation, vascularization, host
integration, and high load-bearing capacity
(Fig. 4.2). In addition, it should be simple to
apply and susceptible to minimally invasive
implant treatment. It should be reproducible on
an industrial scale and at the same time be sterile.
Eventually, all its features should be practical and
meet the demands [19].

An Overview of Biomaterials
in Tissue Engineering

4.3

The field of tissue engineering involves chemis-
try, biology, medicine, and engineering
approaches, with the aim of repairing and/or
replacing injured tissues and organs with the aid
of bioartificial substitutes using biopolymers,
cells, and biologically active agents such as
growth factors and cytokines (Fig. 4.3). This is a
thriving interdisciplinary field presenting new
opportunities to scientists [7, 20]. The extracel-
lular matrix comprises a complex combination
of structural and functional proteins, glycopro-
teins and proteoglycans that are organized in a
unique tissue-specific three-dimensional struc-
ture. They play a vital role in morphogenesis,
composition, and function of tissues as well as
organs [21].

Providing a suitable microenvironment, that is
to say, fabricating scaffolds or decellularized
extracellular matrices for cell growth, migration,
and proliferation is crucial in tissue engineering
(Fig. 4.4). This is due to the fact that scaffolds
which include growth factors or other signaling
molecules serve as a so-called niche for cells [7,
23, 24]. In essence, big progress in the fabrication
of novel three-dimensional (3D) tissue-
engineered scaffolds, using biodegradable poly-
mers for the purpose of therapy, has been
achieved. An extensive number of attempts at
developing new scaffold technologies using both
polymers and cells, including stem and/or
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somatic cells, isolated from various tissues have
been made. Polymers used in the fabrication of
scaffolds in regenerative medicine can usually be
categorized as synthetic or natural, where the
commonly used polysaccharides (starch, alginate,
chitosan, hyaluronic acid derivatives, etc.) and
proteins (collagen, fibrin gels, silk, keratin, etc.)
are examples for natural polymers (Table 4.1).
On the other hand, synthetic polymers such as
polylactic acid (PLA), poly(L-lactic acid)
(PLLA),  poly(D,L-lactic-co-glycolic  acid)
(PLGA), polyglycolic acid (PGA), and polycap-
rolactone (PCL), approved by U.S. Food & Drug
Administration (FDA), can be easily processed
and handled in contrast to natural polymers
which is their superiority (Table 4.2) [25]. Major

advances seen in biomaterials technology in
recent years have led to the development of
sophisticated materials [26]. Ideally, functional-
ized biomaterials like ceramics and natural/syn-
thetic biodegradable polymers can be utilized for
the production of 3D scaffolds which tend to sup-
ply not only mechanical support but also
microscale architecture for neo-tissue construc-
tion allowing in vitro and in vivo cell growth,
attachment, migration, and proliferation [24, 27,
28]. These biomaterials are seen to have a wide
range of applications, including replacement of
biological tissues and development of instru-
ments for injury and surgical applications, and
medical diagnosis has led to a revolution in bio-
material science [26].
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Fig. 4.3 The repairing mechanism of femur fractures and common complications that may occur [9]

4.4 The lmportance of Popular
Renewable Materials

for Regenerative Medicine

The applicability of native materials containing
polysaccharides and proteins in the structure of
hydrogels has been well studied. These materials,
including ECM proteins such as collagen, elastin,
fibrin, keratin, hydroxyapatite, and hyaluronic
acid, show significant bioactivity in biomedical
applications [30].

Bone is a complicated material consisting of
mostly collagen, proteins, with hydroxyapatite
in organic component. Although HA is the
essential inorganic constituent of bone, it does
not have the ability to be applied as bone heal-
ing material alone because of its delicate and
brittle nature. At present, many researchers have

devoted themselves to the development of dura-
ble hybrid biomaterials of hydroxyapatite with
proteins and alternative synthetic polymers [31—
35]. For many years, HA ceramics that can
improve bone mass and formation of the implant
and the bone interface have become quite impor-
tant as bone grafting material, due to their great
mechanical properties, corrosion resistance,
biocompatibility, bioactive properties, and per-
fect osteoconductive features [17, 36, 37]. Using
an enhanced hygienic, nontoxic and in addition
to an environmentally friendly approach, HA
powders have been obtained utilizing bioprod-
ucts such as corals, cuttlefish shells, natural
gypsum, natural calcite, bovine bone, sea
urchin, starfish, and eggshell [38—41]. Chemical
studies have demonstrated that these bio-wastes,
contrary to popular opinion, are rich in calcium
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in the form of carbonates and oxides. Eggshells
are one of the best examples for bio-waste.
Millions of tons of eggshells are produced by
people as bio-waste on daily basis throughout
the world. The eggshell constitutes ~11% of the
whole weight of an egg and consisted of cal-
cium carbonate (~94%), calcium phosphate
(~1%), and organic matter (~4%) [42]. In addi-
tion, eggshells are inexpensive, abundant in
nature, biocompatible, yet not osteoconductive.
Therefore, transforming these powders in HA
before implantation is favorable [43].

Keratins are structural proteins that display
high mechanical resistance owing to numerous
intra- and intermolecular disulfide bonds contain-
ing a fair amount of cysteine [44]. Keratin is
mostly consisting of -sheets, a small number of
a-helices, and loops [45, 46]. Waste keratins are
generally obtained from human hair (Fig. 4.5),
animal nails, horns, hoofs, wool, and feathers
[47]. Additionally, about 300,000 tons of hair is
wasted in hair salons, hospitals, and similar
places each year [48]. Keratin obtained from

renewable sources is highly biocompatible, pos-
sesses cellular interaction sites, and exhibits
enhanced biodegradability. In contrast to alterna-
tive natural materials, human hair keratins have
different benefits like being abundant, bioactive,
having a powerful capacity to self-assemble
inside hydrogels, and being an exact source of
autologous proteins [49, 50]. Likewise, in addi-
tion to enhancing mechanical properties, this
autologous protein has some signaling patterns
like Leucine-Aspartic Acid-Valine (LDV) and
Glutamic Acid-Aspartic Acid-Serine (EDS) pep-
tide regions which increase the adhesion charac-
teristics of cells [47, 51]. Nonetheless, new
improvements have been made to obtain keratin
easily from human hair which has resulted in
good tissue engineering applications [52].
Collagen is the most widespread protein in
the body and provides endurance and construc-
tional stability to tissues containing skin, blood
vessels, tendons, cartilage, and bone [27]. The
characterizing property of the collagen is its
molecular form that is defined by a unique
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Table 4.2 Well-known synthetic polymers used in tissue engineering and regenerative medicine [29]

Polymer
Biocompatibility

Disadvantage

Biodegradability

Application

Poly(lactic acid)

Minimal cytotoxicity,
mild foreign body
reaction, minimal
inflammation

Local inflammation,
random chain
hydrolysis

Bulk, 24 months

Skin, cartilage,
bone ligaments,
tendons, vessels,
nerves, bladder,
liver

Poly(glycolic acid)

Minimal cytotoxicity,
mild foreign body
reaction, minimal
inflammation

Local inflammation,
random chain
hydrolysis

Bulk, 6-12 months

Skin, cartilage,
bone ligaments,
tendons, vessels
nerves, bladder,
liver

Poly(lactic-co-

Minimal cytotoxicity,

Local inflammation,

Bulk, 1-6 months

Skin, cartilage,

glycolic acid) mild foreign body random chain bone ligaments,
reaction, minimal hydrolysis tendons, vessels,
inflammation nerves, bladder,
liver
Poly(caprolactone) | Minimal cytotoxicity, Hydrophobic Bulk, 3 years Skin, cartilage,
mild foreign body bone ligaments,
reaction, minimal tendons, vessels,
inflammation nerves
Poly(ethylene Mild foreign body Complex Bulk, Skin, cartilage,
oxide) reaction, no biodegradability 1 month-5 years bone, muscles
inflammation
Polyanhydrides Minimal foreign body Limited mechanical | Surface erosion, Bone
reaction, minimal property controllable
inflammation, minimal
cytotoxicity
Poly(propylene Mild foreign body Weak mechanical Surface erosion, Bone
fumarate) reaction, minimal property 1 week—16 months
inflammation
Poly(orthoester)s Mild inflammation, ‘Weak mechanical Bulk ~ several Ear, bone, cartilage
mild foreign body property months
reaction
Polyphosphazene Minimal foreign body Wide molecular Surface erosion, Skin, cartilage,

reaction, minimal
inflammation

weight distribution

1 week-3 years

bone, nerves,
ligaments

conformation which is a three a-polypeptide
chain of one or more spaces formed in a triple-
helical structure of [Gly—X-Y], arrangement in
one of the main sorts of constructional ECM
proteins [30, 53]. This design comprises a
supercoiled triple helix that consists of three
left-handed polyproline-like chains twisted
together into a right-handed triple-helix.
Hydroxyapatite and collagen, the most impor-
tant structural protein present in bone, are two
main constituents of bone. They compose 89%
of the organic matrix and 32% of the volumet-
ric constituent of bone. Therefore, it is a special
protein that promises to produce bone from cul-
tured cells [54]. Collagen is one of the most

frequently used materials due to its superior
biocompatibility, biodegradability, weak immu-
nogenicity, and cell-adhesive properties in tis-
sue engineering [55, 56]. Although collagen
can be produced from different organisms, gen-
erally, bovine skin, tendon, and porcine skin-
derived collagens for tissue engineering
practices are preferred. Yet, collagen obtained
from bovine sources includes the risk of infec-
tion with illnesses such as bovine sponge-like
encephalopathy. Additionally, particularly por-
cine-derived mammalian collagens are refused
for religious reasons [57]. Marine living
creatures are also a native origin of collagen
and, probably, are more secure source than
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Fig. 4.5 The microscopic structure of hair [52]

mammals. Recent studies focus primarily on
the extraction and characterization of collagen
from various fish types like salmon, shark or
deep-sea redfish and marine sponges. Jellyfish,
which is also of marine origin, is another alter-
native charming source of collagen [58-61].
The worldwide growth of the jellyfish popula-
tion has caused great concern in the ecological
environment. Their potential for utilization in
tissue engineering, in addition to the food
industry and medicine, we believe, will assist in
the preservation of the jellyfish population.
Jellyfish has more than 60% collagen, thus the
potential to become a perfect source for in bio-
medical applications [62—64].

Fabrication of 3D Scaffolds
from Keratin-Collagen-nHA
for Bone Tissue Engineering

4.5

Keratin is insoluble in several prevalent sol-
vents like dilute acids, alkalines, water, and
organic solvents. Soluble hair keratins can
directly be obtained from human hair utilizing
reducing assistant solutions in alkaline or
acidic media (Fig. 4.6) [49, 50]. A common
way of obtaining keratin includes the utiliza-
tion of reducing assistants because the natural

structure is difficult to extract, owing to its
extremely cross-linked status with disulfide
bonds [65-67].

Hydroxyapatite is usually obtained through
chemical methods by way of calcium hydroxide
or nitrate as pioneers [69]. Recently the synthesis
of nanostructures using native resources or waste
like eggshell, fish scale, or bovine bone has
become an outstanding issue. Eggshell, one of
the main residual outputs of the food industry, is
a great resource of calcium carbonate (95%)
enabling its use in the synthesis of HA. There are
many different studies related to the synthesis of
HA utilizing eggshells [70, 71]. Nanostructured
HA has been obtained via various techniques,
like homogeneous precipitation, hydrothermal
synthesis, combination of electrospinning and
thermal treatment, and application of fibrous
p-Ca(POs;), crystalline as pioneer [72-74].
Derkus et al. [31] have demonstrated a signifi-
cantly novel method, the sonochemical synthesis
technique, which is a more applicable, homoge-
nous, and cheap method for the synthesis of
nanostructured HA (nHA) utilizing various
resources. This technique was implemented in
the synthesis of nHA using eggshells as the
resource (Fig. 4.7), for the design and application
of an aptasensor, which has emerged as an inter-
esting application in literature [31].



Y.E. Arslan et al.

Human hair
Step 1: Washing
and Disinfection

Step 6: Centrifuge at
14000 rpm and 25
minutes

Fig. 4.6 Keratin extraction process from human hair [68]

Sonicator Probe
Po,*
i c

a2+
3- i ’
PO, -
Ultrasounds (20 kHz)
Ca2+
‘.‘.:5 PO,
e ey . 2+
o Jé“y Nucleation Ca
“ 70 nm
. y PO
5 p Hydroxyapatite
Nanoparticles

Fig. 4.7 nHA synthesis from eggshell by sonochemical
method [77]

.

¥

lMJ‘
P Step 3: Extraction
Step 2: Delipidization

e
N

Step 5: Dialysis Step 4: Centrifuge at

600 rpm and 15 minutes

Powder keratin

Collagen-originated biomaterials are actually
based on three basic techniques and sub-
techniques of these. The first one is to decellular-
ize the collagen matrix protecting the primary
tissue form and ECM architecture, whereas the
second method 1is based on extraction,
purification, and polymerization of collagen and
its various constituents in order to create a handy
scaffold and finally to obtain a collagen solution
from different biomolecules. All methods could
be applied to several cross-linking techniques
and protocols that can be applicable to a large
arena of tissue resources [75, 76].

The collagen matrix or ECM could be pro-
duced through decellularization methods. Gilbert
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et al. [76] have discussed the three ways for tissue
decellularization: physical, chemical, and enzy-
matic. Physical techniques include snap freezing,
which disturbs cells by forming ice crystals, lead-
ing to high pressure that explodes cells and in
turn agitates and stimulates cell lysis. The
chemical processes of decellularization involve
multiple reagents that remove the cellular ingre-
dient of ECM. These materials range from acids
to alkaline tests, which are as good as chelating
agents like EDTA, ionic or non-ionic detergents
and solutions of excessive osmolarity. Enzymatic
therapies like trypsin, which particularly sepa-
rates proteins and nucleases, evacuating DNA
and RNA, are usually utilized to fabricate decel-
lularized scaffolds as well. Nevertheless, all of
these methods are unable to fabricate an ECM
exactly free of cellular waste on their own; there-
fore a combination of different techniques is fre-
quently necessary for this purpose [75].

The alternative source for collagen-originated
biomaterials are actually marine resources as pre-
viously defined. Various ways were applied and
enhanced to obtain collagen from jellyfish so as
to be able to fabricate collagen-originated bioma-
terials (Fig. 4.8). Advanced isolation techniques
were asserted on three major bases of solubility:
in acid solutions, in inactive salt solutions, and in

Rhizostoma pulmo

proteolytic solutions. Proteolytic extraction
changes collagen molecular architecture by sepa-
rating the terminal telopeptide areas resulting in
the proportional decrease of tropocollagen self-
assembled fibrils. In order to prevent this effect,
endogenous proteases could be inhibited during
acid solubilization. Nevertheless, acid ejection
which utilizes light pepsin solubilization is the
most efficient technique in terms of yield,
although some telopeptides do separate or are
partly denatured [77].

There are a limited number of studies con-
cerning the application of bioengineered kera-
tin, jellyfish collagen, and nHA scaffolds to
bone tissue engineering. Arslan et al. [17] fabri-
cated 3D tissue-engineered osteoinductive bio-
composite scaffolds utilizing human hair
keratin, jellyfish collagen, and eggshell-derived
nanostructured spherical HA (Fig. 4.9). Two dif-
ferent osteoinductive scaffolds, collagen-nHA
and collagen-keratin-nHA, were produced uti-
lizing the freeze-drying method. hAMSCs were
then seeded into these scaffolds and the early
osteogenic differentiation markers were evalu-
ated. The collagen-keratin-nHA osteoinductive
biocomposite scaffolds were observed to have
the potential of being used in bone tissue
engineering.

Atelocollagen

Process 4: JF sheets (approx.
1 gram) are homogenized in
0.5M 100 ml acetic acid for 2
minutes at 4°C. Then 100 mg
Pepsin (600-1200 U/mg) is

Pre-treatment

Process 3: To remove non-
collagenous substances, 1

gram of sample is treated with

0.1M NaOH at 4°C for 2 days =*

2

JF Sheets
Process 2: JF pieces are treated in Ethanol
(99.9%) for 4-6 hours. Then the pieces are
allowed to dry at RT for ovemight. Collagen
sheets are freezed, and lyophilized. They
have to be stored at-86°C if they aren’tused.

Raw Jellyfish (JF)
Process 1: JF is washed
several times in cold pure
water

Scaffold Fabrication

Process 9: The pepsin-soluble  Lyophilization

Process 8: The pepsin-soluble

Centrifuge for Cleaning
Process 7: The soluble is
centrifuged at 10.000g for 2
minutes at 4°C

JF collagen is lyophized
overnight to fabricate 3D spongy
scaffold.

JF collagen is molded and freezed
at-80 °C for overnight.

Fig. 4.8 Process steps of jellyfish collagen isolation [31]

(the solution is changed once
a day). Then, samples are
washed in pure water until the
neutral pH is achieved.

Collagen sheets
in 0.1M NaOH

Dialysis

Process 6: JF solution is dialysed
against 0.02M Na:HPO, (pH: 8.8)
for 3 days at 4°C

Centrifuge for Cleaning
Process 5: The solution is
centrifuged at 3400g for 5
min. at 4°C

added into this solution and the
suspension is stirred for 3 days

at 4°C.
Viscous
Liquid
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Fig. 4.9 Keratin-
collagen-nHA 3D
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4.6 Conclusions

The field of tissue engineering and, in particu-
lar, bone tissue engineering has been studied
extensively. Polymeric products, in combination
with mineral based nanostructures, have been
used by various research groups in order to trig-
ger the osteogenic differentiation. Recently,
natural resources have become popular due to
their cost efficiency, nontoxic nature and easy-
to-produce materials suitable for bone tissue
engineering. Different research groups have
focused on the synthesis of hydroxyapatite bio-

ceramics, which constitute the inorganic phase
of bone, using various waste material like mus-
sel shells, flue gas desulfurization gypsum, fish
bones, and eggshells. Likely, some research
groups have been focused on the isolation of
collagen with low immunogenicity and high
purity from different kind of species such as jel-
lyfish instead of the traditionally used skin or
rodent tail. In our opinion, adaptation to this
approach is like “killing two birds with one
stone.” Firstly, waste is evaluated as a renewable
material resource of unlimited volume and
chemical diversity. Secondly, it will have a posi-
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tive effect on waste accumulation in the envi-
ronment. Provided that biomaterials obtained
from waste resources have low immunogenic
response and toxicity, this technology can be
expected to become available for clinical use in
the next few years.
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Mechanotransduction in Wound
Healing and Scar Formation

Dominik Duscher

5.1 Introduction

Scar formation belongs to the most complex bio-
logical processes and represents a substantial
source of morbidity worldwide. In humans, scar-
ring is the typical response to tissue injuries. The
process of fibrotic repair, providing early restora-
tion of tissue integrity rather than functional
regeneration, offers a survival advantage and is
therefore evolutionary highly preserved [1, 2].
Despite extensive research efforts dedicated to the
expansion of our understanding of the mecha-
nisms underlying scar formation, effective clini-
cal therapies for scar mitigation are only beginning
to be developed. A detailed understanding of the
numerous signaling pathways involved is essen-
tial to develop remedies for fibrosis and scarring.
Initial research efforts concentrated on the bio-
chemical mechanisms involved in scar formation,
however, evidence begins to emerge that mechan-
ical forces play a previously underestimated role
in the modulation of these pathways. The impact
of mechanical forces on cutaneous scarring has
been first observed as early as the nineteenth
century [3], but only recently the underlying sig-
naling mechanisms begin to be elucidated.

D. Duscher (D<)

Department for Plastic Surgery and Hand Surgery,
Division of Experimental Plastic Surgery,
Technical University of Munich, Munich, Germany

© Springer Nature Switzerland AG 2019

Mechanotransduction, which refers to the mecha-
nisms by which mechanical forces are converted
to biochemical stimuli, has been closely linked to
inflammation and is believed to play a pivotal role
in cutaneous fibrosis [4]. There is increasing evi-
dence that all phases of wound healing are influ-
enced by mechanical forces [5], but the field of
wound mechanobiology is still in its infancy.
However, utilizing the recent insights into how
mechanotransduction of environmental cues
effects the behavior of cells and tissues will help
us to formulate effective therapeutics and may
lead to the achievement of the ultimate goal, to
transform fibrotic healing into tissue regeneration.

Molecular Biomechanics of
Scar Formation

5.2

The field of mechanobiology continues to
advance rapidly. The application of innovative
in vitro and in vivo models leads to a more thor-
ough understanding of the effects of mechanical
forces on biological processes [6]. It could be
demonstrated that cells are able to convert
mechanical stimuli into biochemical or transcrip-
tional changes via the process of mechanotrans-
duction [7]. Signal transduction from the
microenvironment involves numerous proteins
and molecules of the ECM, the cytoplasmic
membrane, the cytoskeleton, and the nuclear
membrane, which transport mechanical cues

35

D. Duscher, M. A. Shiffman (eds.), Regenerative Medicine and Plastic Surgery,

https://doi.org/10.1007/978-3-030-19958-6_5

5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19958-6_5&domain=pdf

36

D. Duscher

down to the nuclear chromatin to alter cellular
programs at the genetic and epigenetic level [8].
Several attempts to define the role of mechani-
cal influences in molecular biology have been
made. The most widely accepted system linking
the different levels of mechanotransduction is
known as tensional integrity or “tensegrity” [9].
First described as an architectural concept [10],
this principle was adapted and developed by
Ingber et al. to explain how cellular structures
and processes are influenced by mechanical
force. However, a complete understanding of the
complex mechanotransduction pathways in liv-
ing organisms remains elusive. Nevertheless, the
observations made in small and large animal
studies implicate a significant involvement of
mechanical influences in the development of

Exposure of
~_ hidden domains

Alteration of
spatial density

cutaneous scarring. Translating these findings
into clinical therapies must be our principal goal.

Extracellular
Mechanotransduction

5.3

The extracellular matrix (ECM) is much more
than just an inert three-dimensional network pas-
sively offering structural support. It is a dynamic
and living tissue responsible for numerous func-
tions. The ECM governs cell adhesion, migra-
tion, differentiation, proliferation, and apoptosis
and is highly involved in the complex processes
of mechanotransduction (Fig. 5.1) [11, 12].
Mechanical cues transported through the ECM to
cells can directly affect gene expression, because

Extracellular
matrix

Mechanical
forces

Release of
stored factors

LY

Fig.5.1 Extracellular mechanotransduction. Biomechanical
cues directly affect the extracellular matrix (ECM), which is a
dynamic structure with multiple functions. Mechanical stim-
uli can expose hidden domains and alter spatial concentration

Plasma
membrane

of growth factors within the ECM, resulting in changes of
cellular behavior and phenotype. Additionally, stored factors
within the ECM can be released based on the effects of
mechanical force. Reproduced with permission [44]
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of a direct link between structural proteins of the
ECM to nuclear chromatin [13].

Additional evidence supporting the theories
how ECM can alter cell functionality and pheno-
type is provided by the fact that tissue stiffness
and rigidity could be linked to tumor growth and
malignancy [14]. The extracellular environment
can function in both ways, being pro-oncogenic
[15], but also reverse malignant behavior if cor-
rected [16]. Similarly, microenvironmental sig-
nals can influence scarring and fibrosis [17-19].
It could be demonstrated that scar progression
results from a positive feedback loop connecting
the accumulation of ECM and increased matrix
stiffness to enhancement of fibroblast prolifera-
tion and collagen production via mechanorespon-
sive mechanisms [20, 21].

In addition to direct effects on cell behavior
via ECM-cell membrane/cytoskeletal interfaces,
mechanical cues can also execute indirect affects.
Specifically, alterations in ECM structure can
expose normally hidden domains and binding
sites that have regulatory capabilities [22]. The
ECM can also alter the spatiotemporal composi-

Stretch-
activated
ion channels

(L
S —

Fig. 5.2 Intracellular mechanotransduction. Key players
of mechanotransduction on the cellular level are mecha-
noresponsive ion channels (e.g., Ca®"), growth factor and

tion of the microenvironment by changing the
concentrations of soluble and matrix-bound
effector molecules and growth factors, such as
transforming growth factor beta (TGF-f), result-
ing in considerable impact on biological func-
tions [23].

Intracellular
Mechanotransduction

54

The complexity of the mechanisms by which
cells “feel” and interact with their environment is
incompletely understood. However, recent efforts
have led to the identification of key signaling
pathways involved in intracellular mechanotrans-
duction. The central mediators of mechanotrans-
duction include mechanoresponsive ion channels
(e.g., Ca*"), growth factor and cytokine receptors
(e.g., for TGF-p and SDF-1), integrin-matrix
interactions, and G protein-coupled receptors
(GPCRs) (Fig. 5.2) [24, 25].

The fact that conformational alterations of ion
channels govern numerous cellular functions is

Extracellular
matrix

Mechanical

G-protein
coupled
receptors

Plasma
membrane
MAPK PRK) s
\\ \ X Actin
Transcripﬁon factors cytoskeleton
Machanoresponsive genes ——p Nucleus

cytokine receptors (e.g., for TGF-p or SDF-1), integrin-
matrix interactions, and G protein-coupled receptors
(GPCRs). Reproduced with permission [44]
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an established biological concept. However, an
understanding of how mechanoresponsive cal-
cium channels influence fibrotic pathways only
recently begins to emerge [26]. Specifically,
calcium-dependent ion channels have been dem-
onstrated to be heavily involved in the arrange-
ment of elements of the cytoskeleton, which are
associated with ~mechanotransduction [27].
Additionally, Ca** influx caused by mechanical
stimulation of the cell membrane activates
mitogen-activated kinases (MAPKSs), which
enhance pro-fibrotic gene expression [28].
Growth factors and cytokines together with
their receptors are implicated in all stages of
wound healing and the development of cutaneous
scarring. Recent work has shown promising
results regarding scar formation and appearance
when the cytokine system is manipulated [29].
Specifically, modulating the ratios of subsets of
transforming growth factor beta in the wound
microenvironment has received significant atten-
tion (see below). Mechanical stimuli result in the
release of TGF-f from its reservoir in the extra-
cellular latent complexes [30-32]. This growth
factor is associated with numerous fibrotic dis-
eases, and acts mainly via the transforming
growth factor-p receptor 2 and its downstream
effector proteins Smad 2 and 3. The TGF-p sig-
naling cascade controls numerous pro-fibrotic
mechanisms, such as collagen production and
fibroblast to myofibroblast differentiation [33,
34]. Another mechanoresponsive signaling mol-
ecule responsible for the regulation of cutaneous
healing and fibrosis is stromal cell-derived factor
1 (SDF-1 or CXCL12). It has been demonstrated
that mechanical stretching can upregulate SDF-1a
in skin which directly leads to the recruitment of
circulating pro-regenerative MSCs through the
SDF-1a/CXCR4 axis [35]. However, somewhat
contradictory results regarding the influence of
SDF-1 on wound healing and scar formation
have been reported. Whereas hypertrophic burn
scars could be associated with increased SDF-1a/
CXCR4 signaling [36], it could also be demon-
strated that the therapeutic application of SDF-1
to cutaneous wounds of mice and pigs leads to
enhanced healing with decreased fibrosis [37,
38]. Additionally, a local increase of SDF-1 has

been identified as the potential underlying mech-
anism of noncontact, low-frequency ultrasound
therapy, which has been shown to have beneficial
effects in the treatment of chronic wounds [39].
This further corroborates the pivotal role of cyto-
kines at the intersection of mechanotransduction
and tissue healing, which strongly merits further
investigation.

Although ion channels and cytokines certainly
play an important role in the mechanobiology of
scar formation, the most extensively studied cel-
lular elements in this context are integrins. The
members of this family of heterodimeric trans-
membrane receptor proteins possess a cytoplas-
mic domain, which communicates with the actin
cytoskeleton, and an extracellular domain-
binding molecules of the ECM [40]. Integrins
carry out both “outside-in” communication of
environmental mechanical cues to the cell and
“inside-out” interactions via forces produced by
the cytoskeleton [40]. This two-way signaling
process is influenced by intracellular proteins,
which bind to integrins to form large macromo-
lecular structures, the so-called focal adhesions
[41, 42]. The most prominent of these intracellu-
lar binding proteins is the focal adhesion kinase
(FAK). Conformational changes in the complex
macrostructure of the focal adhesions caused by
mechanical stimuli lead to an activation of the
non-receptor protein tyrosine kinase FAK via
autophosphorylation. While integrins have
no intrinsic enzymatic activity, they can affect
downstream signaling pathways via FAK.
Specifically, FAK signaling has been heavily
linked to wound healing aberrations [4, 43].
While mechanical stimuli influence all cell types
involved in wound healing [44], the effects of
FAK activation demonstrate how mechanical
cues can change biological mechanisms in differ-
ent cell types in diametrically opposed directions.
Our laboratory has previously demonstrated that
FAK is a key regulator of mechanosensing in
cutaneous fibroblasts and that a fibroblast-
specific deletion of FAK leads to reduced fibrosis
after injury in a mouse model of scar formation
[4]. In stark contrast, the loss of FAK in cutaneous
keratinocytes leads to a significant delay in
wound healing and dermal proteolysis in mice



5 Mechanotransduction in Wound Healing and Scar Formation 39

[43], suggesting a skin layer-specific effect of
FAK signaling with a complex influence on
extracellular matrix repair.

Further highlighting the important role that
FAK plays in the mechanical regulation of tissue
repair, our laboratory recently demonstrated how
mechanically activated pathways link scar forma-
tion with extracellular-related kinase (Erk, part of
the family of mitogen activated kinases
[MAPKSs]). Erk could be identified as a key medi-
ator in the FAK-related response to wound ten-
sion, leading to the overproduction of collagen
and the pro-fibrotic chemokine monocyte che-
moattractant  protein-1 (MCP-1) [4, 45].
Moreover, other groups have shown involvement
of other MAPKs in tension-induced fibrotic reac-
tions, namely c-Jun N-terminal kinase (JNK) and
p38 isoforms [46, 47]. However, their specific
roles in the mechanobiology of wound healing
and scar formation need further clarification.

Fig. 5.3 The Hippo

pathway in

mechanotransduction.

The two main Tension
downstream Hippo-

effectors YAP and TAZ \

Contraction

FAK also executes its effects via the Rho fam-
ily of GTPases. The activity of RhoGTPases
could be linked to cell motility, adherence, and
cytoskeletal dynamics, as well as to the stimula-
tion of myofibroblast differentiation [48, 49],
demonstrating their extensive mechanosensing
utility. Moreover, evidence is accumulating that
FAK-RhoGTPases signaling influences mecha-
nobiology via two downstream effectors of the
mammalian Hippo pathway. The Hippo pathway
is an evolutionary highly conserved signaling
pathway involved in cell proliferation, apoptosis,
differentiation, stem cell function, and malignant
transformation (Fig. 5.3) [50, 51]. Specifically,
the mechanoresponsive Hippo-effectors YAP
(Yes-associated protein) and TAZ (transcrip-
tional coactivator with PDZ-binding motif, also
known as WWTRI1) have been identified as key
factors of tissue regeneration [52—54], and have
pivotal roles in cutaneous wound healing [55].

Biomechanical Cues:

Stiff matrix

Spreading

have recently been
identified to orchestrate
biomechanical
influences to alter cell
behavior via the
transcription of
pro-fibrotic signaling
molecules such as
connective tissue growth
factor (CTGF) and
TGF-p. This predisposes
YAP and TAZ as
potential targets for
anti-fibrotic therapy.
Reproduced with
permission [86]
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Stimulated via biomechanical cues, YAP and
TAZ are stabilized and trigger the transcription
of pro-fibrotic targets such as connective tissue
growth factor (CTGF) and TGF-f [54, 56]. YAP
and TAZ have recently been characterized to be
GPCR regulated. Specifically, G12/13 and
Gs-coupled receptors act upstream of these tran-
scriptional coactivators to modulate the Hippo
pathway [57]. Remarkably, GPCRs function
generally as cell surface mechanoreceptors and
have been shown to influence similar intracellu-
lar pathways as the focal adhesion complexes
[24, 25]. Despite the need for further research to
fully understand the involvement of the Hippo
pathway in biomechanics of wound healing and
scar formation, it is likely that YAP and TAZ sig-
naling is an attractive target for anti-fibrotic
treatment approaches.

5.5 Modulation of Cutaneous
Biomechanics to Reduce
Scarring

5.5.1 Pharmacological Approaches

Excessive scarring often results from aberrant
signaling in response to injury. Deregulation of
signaling pathways at the intersection of mecha-
notransduction and inflammation leads to a dis-
ruption of homeostasis between collagen
production and collagen degradation. Therapies
targeting fibrosis consequently seek to modulate
these pathways for a shift from fibrosis towards
regenerative healing [58-61].

Transforming growth factor beta (TGF-f)
controls collagen synthesis, and consequently
fibrosis, which suggests its suitability as a target
in anti-fibrotic therapy. TGF-p exists in at least
three isoforms. While TGF-B1 and 2 have pro-
fibrotic effects, TGF-B3 acts as an anti-fibrotic
[62]. Based on the diverse effects of the TGF-§3
family on tissue fibrosis, strategies for therapeu-

tic application include neutralizing antibodies to
TGF-B1 and 2, or alternatively, means to raise
TGF-B3 levels. Surprisingly, the promising pre-
clinical results of TGF-p antibodies have not
been able to be translated from bench to bedside.
Clinical trials evaluating anti-TGF-f antibodies
for systemic sclerosis [63] and scleroderma [64]
concluded with disappointing results. Similarly,
TGF-B3 had no clinically significant anti-fibrotic
effect despite promising results in experimental
studies and failed in an international Phase III
clinical trial [65].

In addition to the TGF-p family, alternative
therapeutic targets for the treatment of fibrosis
are under current investigation. Promising areas
of research include the hedgehog pathway [66],
extracellular cross-linking enzymes (transgluta-
minases, lysyl oxidases, and prolyl hydroxylases)
[67-69], early growth response gene-1 [58],
canonical Wnt [59], heat shock protein 90 [61],
histone deacetylase [60], and IL-10 [70-75].

Despite remarkable results in preclinical mod-
els, translation of substances influencing mecha-
noresponsive pro-fibrotic pathways has been
lagging behind expectations and further innova-
tion and refinement is needed before the clinical
application of such therapies. The key to any
mitigation of scar formation is the coordinated
modulation of numerous cellular and molecular
processes. Targeting a single element of a process
as complex as scar formation is unlikely to yield
clinically significant results and it is likely that
only therapeutic approaches tackling multiple
effectors in the aberrant physiology of problem
wounds will be successful.

5.5.2 Mechanomodulatory
Approaches

Evidence is accumulating that a mitigation of
fibrosis in the setting of cutaneous injury can be
achieved by modulating traction forces on wounds
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via mechanical off-loading. Environmental cues
play a critical role in scar formation and develop-
ment and studies suggest that mechanical tension
is a driver of fibrosis [4, 76]. Based on this theory
it is not surprising that trials utilizing compression
dressings [77-81] or just paper tape for stable
wound approximation [82] have revealed moder-
ate efficacy in scar reduction.

Building upon these findings, approaches
utilizing active mechanical off-loading in con-
trast to passive approximation have recently
been developed. Minimizing tension across
healing wounds has proven effective in both
preclinical and clinical studies resulting in
decreased scarring via influencing numerous
mechanoresponsive signaling pathways [4, 83].
Moving these insights from bench to bedside, a
phase I clinical trial [83] as well as two multi-
center randomized controlled trials [84, 85]
have demonstrated that stress-shielding of sur-
gical incisions leads to a significant reduction
of scar formation (Fig. 5.4). Lim AF et al. [84]
showed that utilizing the principles of mecha-
nomodulation significantly improves aesthetic
outcomes following scar revision surgery.
Similarly, Longaker MT et al. [85] observed a
significant reduction of scarring following
abdominoplasty surgery in a 12-month, pro-
spective, open-label, randomized, multicenter

clinical trial providing the first level I evidence
for postoperative scar reduction. Collectively,
these findings suggest that the complexity of
the pathways involved in fibrosis and the limi-
tations of our current understanding necessitate
mechanomodulatory rather than pharmacologi-
cal approaches to mitigate fibrosis, at least in
the cutaneous setting.

Conclusions and Future
Perspectives

5.6

A profound understanding of the biomechanical
principles influencing scarring and fibrosis is
imperative to combat this significant pathology
that represents a substantial healthcare burden
worldwide. Elucidating how mechanoresponsive
signaling pathways affect scar development is the
only way how effective strategies to mitigate
fibrotic ~ processes can be  formulated.
Consequently, advances at the intersection of
biology and material science already lead to
novel therapeutics for hypertrophic scarring
recently beginning to enter the clinical realm.
However, a complete understanding of the mech-
anobiology of scar formation has yet to be
achieved to potentially ultimately transform tis-
sue fibrosis into regenerative healing.
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Fig. 5.4 Mechanomodulation therapy to reduce cutane- mechanically off-load the wound. Randomized controlled
ous scarring. The embrace™ device is an elastomeric sili- ~ clinical trials have demonstrated that mechanomodulation
cone dressing. The user applies the device using an  of the wound environment using embrace™ significantly
applicator that pre-strains the dressing. The dressing is  reduces scar development. Adapted with permission [84,
applied directly over the center of the closed incision to ~ 85]
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6.1  Introduction

Stromal-derived factor 1 (SDF-1) is a highly
potent chemoattractant protein that critically reg-
ulates cell migration and behavior during
embryogenesis, hematopoiesis, tissue repair, and
regeneration. Through similar molecular mecha-
nisms, SDF-1 may also regulate the migration
and behavior of cancer stem cells. Impaired
SDF-1 signaling, on the other hand, is a feature
of aging and certain disease states such as diabe-
tes. This chapter outlines the structure of SDF-1
and its function in development, homeostasis,
and disease.

6.2 SDF-1 Structure

and Function

SDF-1, also known as CXC chemokine ligand-12
(CXCL12), is a small molecular weight protein
belonging to the CXC motif family of chemo-
kines with several isoforms. SDF-1 exists as two
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alternative splice variants, SDF-1a and SDF-1p,
which are identical except for the addition of 4
amino acids at the carboxyl-terminus of SDF-1p.
The functional significance of this difference is
not known [1]. SDF-1 is located on chromosome
10, unlike the remainder of the CXC subfamily,
which cluster on chromosome 4, or the CC che-
mokines which cluster on chromosome 17. Also
unique among chemokines, SDF-1 has remained
evolutionarily conserved, with 99% homology
between mouse and human SDF-1 [1-3]. SDF-1
is constitutively and ubiquitously expressed in
many tissues and cell types, including the stromal
and endothelial cells located in bone marrow [4],
cardiac tissue [5-7], skeletal muscle [8, 9], liver
[10], neural dendritic tissue [11, 12], and the kid-
ney [7, 13].

Studies at the molecular level demonstrate
that the promoter region of the SDF-1 gene con-
tains hypoxia inducible factor-1 (HIF-1) binding
sites, as revealed by chromatin immunoprecipita-
tion analysis, and that SDF-1 expression is
upregulated in endothelial cells by HIF-1a [14,
15]. HIF-1 consists of an oxygen-sensitive
a-subunit, and a constitutive f-subunit [16]. In
normoxia propyl hydroxylases (PHDs) prepare
the a-subunit for degradation [17, 18]. In hypoxia,
HIF-1ais stabilized, and can accumulate, translo-
cate to the nucleus [19], and bind to the hypoxia-
responsive region of the SDF-1 promoter,
upregulating SDF-1 expression [15]. SDF-1
expression is normally directly proportional to
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decreased local tissue oxygen tensions but can
also be activated under normoxic conditions by
HIF-1 mimetics [15, 20].

The biologic effects of SDF-1 are mediated
by the chemokine receptors CXCR4 and
CXCR7. CXCR4 is the primary receptor of
SDF-1. Unusual in chemokine signaling, SDF-1
is the only ligand of CXCR4 [21]. CXCR4 (aka
fusin and CD184) is a 352 amino acid rhodop-
sin-like transmembrane-specific G protein-cou-
pled receptor (GPCR).Various cell lines express
CXCR4, including muscle cells, endothelial
cells, leucocytes, and progenitor cells. The
expression of CXCR4 is upregulated by HIF-1a
and nuclear factor-kb (NF-kb) [22, 23].
Numerous stem cells express functional CXCR4
and follow SDF-1 gradients, including
hematopoietic cells [24], embryonic pluripotent
stem cells (PSC) [25, 26], primordial germ stem
cells (PGC) [27-29], and various tissue-
committed stem cells including neural [30, 31],
skeletal/smooth muscle [8, 9], cardiac [5, 32],
hepatic [10, 33], nervous [34], endothelial [15,
35], renal tubular- [13], and retina pigment-
epithelial cells [36]. The SDF-1-CXCR4 axis
has a central role in chemotactic responses, cell
mobility, and paracrine signaling. SDF-1-
CXCR4 binding can alter cellular expression of
adhesion molecules, metalloproteinases, and
angiogenic factors including vascular endothelial
growth factor (VEGF) [25]. By activating and/or
modulating the function of several cell surface
integrins, SDF-1 increases cellular adhesion in
response to VCAM-1, intercellular adhesion
molecule-1, fibronectin, and fibrinogen [37].
The SDF-1/CXCR4 axis is also involved in
maintaining hemostasis of the bone marrow
niche [38, 39], and hematopoiesis [40].
Additionally, SDF-1 may directly affect cell
proliferation and survival [41, 42], including
myeloid progenitor cells [43]. CXCR7 (RDCI)
has more recently been identified as the second
SDF-1 receptor, regulating distinct physiological
processes [39, 44].These cellular and molecular
mechanisms underpin the actions of SDF-1 in
the developing embryo, as well as in homeostasis,
regeneration, and repair in the adult.

6.3 Embryological Development
During embryological development, SDF-1 is
expressed in parallel with its receptor CXCR4 in
numerous adjacent tissue pairs, including the
ectoderm/mesoderm in gastrulation and the
mesoderm/endothelium in neuronal, cardiac,
vascular, thyroid hematopoietic, and
craniofacial development [45]. Transgenic
mice, deficient in either CXCR4 or SDF-1,
have lethal embryonic phenotypes with multiple
congenital malformations, including defects in
intestinal vasculature, cardiac ventricular
septum, lymphoid and myeloid hematopoiesis,
neuronal migration of cerebellar neurons, and
hematopoietic colonization of embryonic bone
marrow (BM) [4, 30, 31, 46, 47]. Rapid tissue
growth during embryonic development
continually outpaces the supportive vasculature,
creating localized areas of hypoxia. Hypoxia
upregulates the expression of SDF-1, which in
turn acts to guide the migration of CXCR4-
expressing embryonic stem cells to hypoxic
areas where they can contribute to tissue
regeneration and neovascularization [45].
Embryonic hematopoietic stem cells (HSCs),
for example, migrate from the liver to the fetal
BM in the third trimester along SDF-1 gradients
[48], and BM colonization is disrupted in both
SDF-1 and CXCR4 knockout mice [4].

Likewise, aortopulmonary septal cells
express CXCR4 and migrate towards the SDF-
l-rich regions in the cardiac outflow tract
during conotruncal development [4]. In the
cerebellum SDF signaling prevents premature
ventral migration of external granular layer
(EGL) cells. In early development CXCR4-
expressing EGL cells are bound to pia mater
cells on the dorsal edge of the cerebellum,
which in turn express SDF-1. This chemotactic
attraction is thought to hold EGL cells in posi-
tion until they are ready to differentiate.
CXCR4- or SDF-1-deficient mice have EGL
cells that exhibit early pathological ventral
migration [30, 31, 45]. In summary, SDF-1
gradients  orchestrate  complex  cellular
migration during embryogenesis.
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6.4 BM Maintenance

In addition to its embryologic role, SDF-1 also
regulates the bone marrow microenvironment
postnatally [24, 49-55]. Bone marrow is
physiologically hypoxic [15] and SDF-1 is
constitutively expressed by BM endothelial cells
and mesenchymal stromal cells, including
osteoblasts [4, 45, 56]. A subset of BM cells,
known as “CXCLI12 abundant reticular cells”
(CAR), highly express SDF-1 and form networks
within the BM surrounding all sinusoidal
endothelial cells [57]. SDF-1 expression by BM
stromal cells and CAR cells serves as a potent
chemoattractant for CXCR4-expressing
immature and mature hematopoietic stem and
progenitor cells [3, 58, 59]. This generates a
unique hypoxia-induced microenvironment in
which SDF-1 maintains HSC niche homeostasis
[57]. Proteolytic degradation of bone marrow
SDF-1 or disruption of SDF-1-CXCR4 binding
by granulocyte colony-stimulating factor
(G-CSF) mobilizes and disrupts the quiescence
of hematopoietic progenitor cells within the bone
marrow, leading to differentiation and egress into
the peripheral circulation [54, 60]. This
mobilization is  mediated through the
metalloproteinase-9 (MMP-9) release of Kit-
ligand, evidenced by the observation that HSC
mobilization is suppressed in MMP9-deficient
mice [50].

SDF-1 expression by BM cells also facilitates
the homing of transplanted HSCs [24]. HSCs
injected into the peripheral bloodstream, in both
clinical and experimental data, migrate to the
bone marrow and repopulate it with myeloid and
lymphoid cell lines [61]. BM-derived progenitors
virally transfected to express a modified SDF-1-
intrakine, which has altered structure and func-
tion, blocked the expression and function of
CXCR4 and impaired B lymphopoiesis and
myelopoiesis, compared to  BM-derived
progenitors transduced to express SDF-1 [62].
Cytokines such as Kit-ligand (stem cell factor,
SCF) and interleukin-6 (IL-6) upregulate CXCR4
expression on mouse CD34+ HSCs and improve
HSC engraftment [24, 63]. BM SDF-1 levels
increase after irradiation or with treatment using

other cytotoxic DNA-damaging agents, including
Cy or 5-fluorouracil (5-FU). The increase in
SDF-1 correlates with increases in BM-homing
and/or repopulation by primitive human HSCs
[56].

SDF-1 mediates homing of CXCR4-
expressing hematopoietic stem and progenitor
cells by inducing integrin-mediated arrest under
shear stress on BM endothelium [21, 24, 37, 64].
SDF-1 rapidly and transiently upregulates
CD34+ HSC adhesion to both CS-1/fibronectin
and vascular cell adhesion molecule-1 (VCAM-
1) expressed by BM stromal cells, and enhances
very late antigen-4 (VLA-4)-dependent cell
adhesion in primitive LTC-IC and committed
CD34 cells [65]. Activation of lymphocyte
function-associated antigen-1 (LFA-1), a4 and
aSpl (VLA-5) converts the rolling of CD34+
cells into a stable arrest on the BM endothelium
[37]. Blocking CXCR4 inhibits the homing and
engraftment of CD34+ human progenitor cells in
NOD/SCID mice (Fig. 6.1) [24].

The SDF-1-mediated niche microenvironment
within the BM maintains HSCs in an
undifferentiated quiescent state [50, 66]. Induced
deletions of CXCR4 in mice result in large
numbers of HSCs entering the cell cycle [56, 67,
68]. The CXCR4/SDF-1 axis is associated with
differentiation of both pre-B cells and the
megakaryocytic progenitors [69, 70], which has
led to SDF-1 being called “pre-B-cell growth-
stimulating factor.” Synergistic action of SDF-1
with other cytokines may also enhance survival
[71, 72]. SDF-1 acts with thrombopoietin or
KitL, to suppress apoptosis and trigger CD34+
cells to progress from GO into the S and G2/M
phases of cell cycle [67]. In summary, the SDF1/
CXCR4 signaling pathway plays critical roles in
supporting HSC  mobilization, migration,
engraftment, proliferation, and survival.

6.5 Tissue Repair

and Regeneration

The SDF-1/CXCR4 axis is essential for the traf-
ficking of mature and immature hematopoietic
stem and progenitor cells from the bone marrow
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BONE MARROW

Fig. 6.1 Homing of the CXCR4-expressing hematopoi-
etic stem/progenitor cells to the bone marrow. SDF-1
enhances the adherence and arrest of hematopoietic stem/

to areas of tissue injury. HIF-1a is stabilized in
the endothelial cells of ischemic tissue and
induces expression of SDF-1. This results in ele-
vated plasma SDF-1 and decreased bone marrow
SDF-1 levels. This has been observed across a
variety of injury models including following
cardiac infarction [6], limb ischemia [73, 74],
toxic liver damage [10, 33], excessive bleeding
[6], and total body irradiation or chemotherapy
[56]. Disrupting the BM-to-peripheral blood
SDF-1 gradients stimulates CXCR4-expressing
cells to egress from the BM into the circulation
and towards sites of increased SDF-1 expression
(Fig. 6.2). Mobilized cells include lymphocytes,
monocytes, neutrophils, megakaryocytes, hema-
topoietic stem/progenitor cells (HSPCs), as well
as non-hematopoietic stem/progenitor cells
(NSPCs) with repopulating potential (CFU-S) [3,
4, 59, 75-77]. These SDF-1-responsive cells
populate the peripheral blood in tandem with
increasing plasma SDF-levels [78-80].

Hematopoietic Stem/
Progenitor cells

High SDF-1

o
ooo

. 0
o °oo oo

progenitor cells to endothelial cells by increasing VCAM-
1, VLA-4, VLAS, LFA-1, and VL1

SDF-1 gradients direct the CXCR4+ HSCs and
NSPCs to the respective sites of injury, where they
proliferate and assemble for tissue regeneration
[15, 25, 33, 58, 81]. SDF-1 signaling is localized
to endothelial cells, providing a luminal signal to
facilitate adhesion and egression of CXCR4+ cells
from the circulation into ischemic tissue, similar to
what has been reported in the BM (2, 64). The
binding of SDF-1 to the CXCR4 receptor initiates
a cascade of signaling processes within the
CXCR4+ cells, initiating adhesion, transgression
across the endothelial basal lamina, paracrine
activity, and cell retention at the target organ [15,
32, 64]. SDF-1 activates lymphocyte function-
associated antigen-1 (LFA-1), very late antigen-4
(VLA-4), and VLA-5, which enable cells to firmly
adhere to vascular endothelium and begin to
migrate out of the circulation [37]. When the
CXCR4+ cells encounter the extra cellular matrix
(ECM)-rich basal lamina membrane, SDF-1
induces the secretion of matrix metalloproteinases
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Fig. 6.2 Egression of the CXCR4-expressing hematopoietic stem/progenitor cells from the bone marrow into the
bloodstream as a result of disrupting the resting SDF-1 gradient

(MMPs) MMP-2 and MMP-9, enzymatically
degrading the ECM basal lamina membrane [33,
82]. Interestingly, MMP-9 inhibitors completely
inhibit SDF-1-mediated cell migration [83].
Neural progenitor cells may also secrete MMP-3 in
response to SDF-1 [84].

A critical component of tissue regeneration is
neovascularization, the formation of new blood
vessels. SDF-1 induces the secretion of nitric
oxide NO and angiogenic factors, including
VEGEF, in resident endothelial cells and lympho-
hematopoietic cells, promoting neovasculariza-
tion [41, 85]. In addition, SDF-1 recruits
circulating progenitor cells, which contribute to
neovascularization through either paracrine stim-
ulation of resident cells, incorporation into newly
forming blood vessels, or vasculogenesis [86],
the de novo formation of blood vessels distinct
from angiogenesis, the sprouting of vessels from
existing vascular structures. Vasculogenesis is
largely attributed to putative BM-derived endo-
thelial progenitor cells (EPCs), which are

recruited to hypoxic tissue by SDF-1 [15].
Vasculogenesis is abundant throughout embryo-
genesis, and is believed by some to contributes to
post-ischemic vascular regeneration by similar
regulatory pathways in the adult [87], though this
is controversial (Fig. 6.3). Transplanted
BM-derived progenitor cells have been detected
in ischemic tissue as proliferative clusters outside
existing blood vessels [88]. These -clusters
eventually form cords aligned in the direction of
hypoxic gradients and have been co-stained with
von Willebrand factor, believed to confirm their
endothelial phenotype. However, these results
have been questioned and many believe that puta-
tive EPCs instead serve a largely paracrine func-
tion that enhances the local angiogenic process.
Regardless, ischemic tissue recruits EPCs and
other BM-derived progenitor cells via SDF-1,
promoting neovascularization and enhancing
tissue regeneration [89]. Restoration of normal
tissue oxygenation levels eventually decreases
SDF-1 to baseline levels.
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Fig. 6.3 Vasculogenesis: endothelial progenitor cells (EPCs) home to the area of ischemic tissue by SDF-1 gradients,

proliferate, and assemble to form new blood vessels

6.6 Disease States

6.6.1 Underexpression
Impaired HIF/SDF-1function, present in certain
disease states, limits the capacity for neovascular-
ization and tissue repair. In the setting of aging,
HIF-1, and subsequently SDF-1, expression is
reduced during wound healing [PMID:
19182665]. Aged mice also have reduced num-
bers of CXCR4-expressing mesenchymal stem
cells (MSCs) and stromal cells within their bone
marrow and fewer CXCR transcripts within those
cells that are CXCR4+. HSCs from young mice
transplanted into the SDF-1 deficient bone mar-
row of aged mice demonstrated higher cycling,
reduced engraftment, and myeloid biased differ-
entiation, all of which are features of aging, sug-
gesting the effects of aging are intrinsic to both
the HSCs and their supportive stromal cells.
Interestingly, aged stroma demonstrated increased
reactive oxygen species (ROS), and treatment
with N-acetyl-cysteine (NAC) for 1 week
improved SDF-1 expression and niche supporting
activity in terms of proliferative potential and
attenuated the HSC aging phenotype [90].
Diabetes impairs the synthesis and stabilization
of HIF-1a, hastens its degradation, and hypergly-
cemia-induced increases in ROS prevent HIF-1a
from binding to the SDF-1 promoter [91-93].

In diabetic mice, wound HIF-la protein levels
are reduced [93], and myocardial cell HIF-1a
activity is reduced, which is associated with an
increased myocardial infarction size after an
ischemic insult [94]. Hyperglycemia impairs
HIF-1a activity in hypoxic aortic smooth muscle
cells, which accelerates smooth muscle cell pro-
liferation and atherosclerotic disease progression
[95]. Human dermal fibroblasts (HDFs) and
dermal  microvascular  endothelial  cells
(d-HMVECsS) biopsied from diabetic ulcers have
decreased HIF-la compared to the same cells
biopsied from nondiabetic venous ulcers [96].
Reduced HIF-1a leads to reduced expression of
SDF-1 and impaired neovascularization. Reduced
SDF-1 levels in diabetic cutaneous wounds have
been associated with impaired progenitor cell
recruitment [97, 98], further impacting tissue
repair. Diabetic mice also demonstrate fewer
circulating CXCR4+ cells circulating in the
cerebral circulation following middle cerebral
artery (MCA) occlusion [99].

6.6.2 Overexpression

Hypoxia-driven SDF-1 expression also appears to
mediate both tumor progression and metastasis
[14] and the recruitment of progenitor cells by
tumor vasculature [100]. Tumors are thought to



6 Stromal Cell-Derived Factor 1 (SDF-1) Signaling and Tissue Homeostasis 53

depend on a small population of cancer stem cells
(CSCs) for their continuous growth. CSCs possess
tumor initiation and self-renewal capacity and can
give rise to bulk populations of non-tumorigenic
cancer cell progeny through differentiation [101].
SDF-1 signaling acts in CSCs through both the
CXCR4 [102] and CXCR7 axes [102]. CSCs, like
NSPCs, are responsive to an SDF-1 gradient
[103]. Thus, the SDF-1-CXCR4 axis mediates
numerous other neoplastic processes which
enhance and facilitate cancer survival. CXCR4+
tumor cells are guided towards organs with high
levels of SDF-1 expression, including the lymph
nodes, lungs, liver, or bones. Indeed, a number of
CXCR4+ cancers, such as breast, ovarian, and
prostate  cancer, rhabdomyosarcoma  and
neuroblastoma, have been shown to metastasize
through the blood to the bones and lymph nodes

in an SDF-I-dependent manner [11, 104].
Additionally, tumors continually outgrow
their blood supply, creating a hypoxic

microenvironment, which in turn is associated
with chronically elevated SDF-1. This seemingly
constitutive expression of SDF-1 recruits EPCs
and BM-derived CXCR4 responsive stromal
cells, promoting neovascularization [105], and
differentiation of recruited fibroblasts into tumor-
associated myofibroblasts [106]. Together these
cells provide a supportive stromal environment
that promotes tumor growth.

SDF-1 signaling may also facilitate cancer
survival via other mechanisms, dependent on the
cancer subtype. For example, the interaction
between SDF-1 and CXCR4 plays a key role in
retaining acute lymphoid leukemia and acute
myeloid leukemia (AML) cells in the BM and
protecting these cancer cells from apoptosis [107,
108]. In AML cells, the SDF-1-CXCR4 axis
mediates VLA-4-VCAM-1 interactions, which
promotes their survival and drug resistance [109,
110].

6.7  Future/Therapy

As our understanding of SDF-1 signaling across
various biological processes has increased, so
have the opportunities to therapeutically
manipulate this pathway [111]. We discuss a few

examples of therapeutic strategies manipulating
different aspects of this pathway.

For successful BM transplantation host HSCs
must be mobilized into the peripheral blood to
facilitate extraction. Disrupting the SDF-1/
CXCR4 binding by blocking the CXCR4 receptor
with ADM3100 [51], by MMP-mediated
enzymatic cleavage using GCSF [54], or blocking
SDF-1 using diprotin [112] successfully
mobilizes HSCs into the peripheral circulation.

Numerous approaches have been attempted to
augment the deficient SDF-1/CXCR4 signaling
in diabetes. Sitagliptin inhibits dipeptidylpepti-
dase-IV (DPP-1V), the enzyme which usually
catabolizes SDF-1, and results in increased
SDF-1 signaling. In a non-randomized clinical
trial of type 2 diabetes Sitagliptin was able to
mobilize  progenitor cells [113]. Direct
administration of SDF-1 into diabetic wounds
can also promote homing of circulating
progenitors and enhance wound healing [98].
HIF-1a and SDF-1 have been applied to diabetic
wounds using plasmid-based and viral methods
for delivery, and both were successful in
improving neovascularization and accelerating
wound healing [1-3, 114, 115].

BM fibroblasts and adipose derived stromal cells
(ASCs) made to overexpress SDF-1 in cell-based
therapies promote wound healing [116, 117] and
improve survival of ischemic skin flaps on diabetic
mice [118]. Autologous BM progenitor cells from
diabetic mice treated with SDF-1 promote diabetic
murine wound healing and neovascularization
[119], and this approach circumvents the difficulties
of using allogeneic cells.

In cancer therapy, in contrast, the aim is to
block or inhibit SDF-1/CXCR4 signaling to
inhibit growth and metastasis of tumors. Small
molecule CXCR4 antagonists (e.g., T140) have
been employed to inhibit growth and metastasis
of experimental tumors in animal models [120,
121]. Chetomin has been identified as a small
molecule that inhibits the transcriptional co-
activation of HIF-1a. Systemic administration of
chetomin-inhibited hypoxia inducible transcrip-
tion of HIF-1a regulated genes within tumors and
inhibited tumor growth in mice [122]. The
emergence of more targeted and efficient
approaches to modulating SDF-1 signaling will
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permit the augmentation of endogenous pathways
of tissue repair and regeneration while preventing
them from being hijacked by neoplastic processes.

6.8  Conclusions

SDF-1 critically regulates chemotaxis and plays
a pivotal role in the response to ischemic insult.
SDF-1 expression by injured tissue is mediated
by hypoxia and HIF-1 and stimulates mobiliza-
tion and recruitment of circulating progenitor
cells. Through a similar mechanism, stem cells
selectively home to the bone marrow compart-
ment after intravenous infusion. Reduced expres-
sion of SDF-1 has been linked with impaired
tissue repair in the setting of disease, while over-
expression has been linked with the unregulated
tissue growth of cancer. The SDF-1/CXCR4 axis
is also significantly associated with several dis-
eases which have not been a focus of this chapter,
including HIV, cancer, WHIM syndrome, rheu-
matoid arthritis, pulmonary fibrosis, and lupus.
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Stem Cell Differentiation Directed
by Material and Mechanical Cues

Caitlyn A. Moore, Alexandra Condé-Green,
Pranela Rameshwar, and Mark S. Granick

7.1  Introduction

Stem cells self-renew and have the capacity to
differentiate into specialized cell types under cer-
tain physiologic or experimental conditions,
making them critical for tissue regeneration. The
breast is home to both adipose stem cells (ASCs)
and mammary epithelial stem cells. These cells
are responsible for maintaining the glandular and
adipose networks of the breast, respectively.
Adipose tissue is primarily responsible for breast
volume [1]. The mammary gland is composed of
multiple systems of branched ducts that connect
functional glandular units called acini to the nip-
ple, allowing milk to be produced and released
from the breast [2].

Ideally, for regenerative medicine applica-
tions, adult stem cells should be abundantly
available from harvesting through minimally
invasive procedures. Furthermore, adult stem
cells can differentiate into multiple cell lineages
in a manner that is both reproducible and able to
be regulated, safely and effectively transplanted,
and manufactured in accordance with Good
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Manufacturing Practice guidelines [3]. Hence,
these aspects must be considered when determin-
ing the utility of a particular stem cell in a tissue
engineering application, especially for eventual
translation into clinic.

Stem cell properties are regulated and main-
tained using various approaches that could mod-
ulate them to suit the application. The desired
outcomes include, but are not limited to, genetic
regulation, soluble factors, and interactions with
the extracellular matrix (ECM). Recently, ECM
has been found to contribute significantly to
alterations in cell phenotype and behavior, pro-
viding cues to ensure specific structure, biochem-
ical, and mechanical properties [4]. For instance,
fiber alignment, pore size, matrix density, matrix
composition, and material stiffness serve as envi-
ronmental signals from ECM that are transduced
into downstream gene expression and stem cell
fate [5]. Although there are several critical design
parameters that must be assessed in tissue engi-
neering, it is of the utmost importance to consider
mechanical and material properties of scaffolds
because, as a substitute for native ECM, scaffolds
are an important player in regulation of cell
behavior. As a result, understanding the role of
such cues on stem cell maintenance and differen-
tiation has grown concomitantly with advances in
three-dimensional (3D) culture systems and bio-
material scaffolds.

Due to the high global prevalence of breast
cancer and increasing incidence of breast
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reconstruction procedures following mastec-
tomy, there is a necessity to develop approaches
to regenerate breast tissue de novo and restore
healthy tissue appearance and function. Since the
breast is home to both ASCs and mammary epi-
thelial stem cells, this chapter will focus on the
mechanical and material cues that control differ-
entiation of stem cells in mammary tissues. We
will also discuss current approaches in breast tis-
sue engineering that aim to restore healthy
tissue.

7.2  Technique

7.2.1 Breast Reconstruction
Mastectomy is commonly performed for women
who have been diagnosed with breast cancer or
who are at elevated risk of developing breast can-
cer, as in the case of individuals with the BRCA1
mutation. This procedure involves removal of all
breast tissue. Following mastectomy, patients
have the opportunity to undergo breast recon-
struction surgery in which a plastic surgeon rec-
reates a breast shape using an artificial implant, a
flap of autologous tissue, or both simultaneously.
Breast tissue must be properly reconstituted after
mastectomy to recover the aesthetic and, if pos-
sible, some functional properties of the breast.
Donor site morbidity, inadequate supply of donor
tissue, patient comorbidities, and patient choice
may lead surgeons to perform prosthetic recon-
struction using acellular dermal matrices (ADMs)
rather than performing an autologous reconstruc-
tion [6].

Human ADMs are widely used in conjunc-
tion with breast implants, with many advan-
tages. ADMs are derived from full-thickness
skin that has been physically or chemically
treated to remove cells and cellular components
(by repeated freezing and thawing, osmotic
solution, enzyme digestion) and retain the
native structure of the dermal fiber meshwork.
It is mainly composed of collagen I, a structural
protein with a stable triple helix structure that
conceal amino acid differences from the host
immune system, and once transplanted into the

host, the ADM degrades over time and the triple
helix collagen structure collapses [7]. Bacterial
collagenases are used to further degrade the
ADM [8]. Their availability and quality depend
on the ability of a tissue bank to recover suit-
able dermal tissue, process and decontaminate
the tissue, and release the tissue that meets
appropriate sterility standards [9]. The process
of decellularization is very important as studies
have shown that extracellular components in
cell-free dermal matrices or ADM are critical
for success in biomedical applications as
scaffolds.

ADMs are advantageous for this indication
due to improved aesthetic outcomes, reduction
in postoperative pain, decreased operative time,
and improved structural strength and vascular
ingrowth [6, 10-12]. Further, ADMs have been
reported to provide better control of the mastec-
tomy space, optimize implant positioning, allow
for increased intraoperative expansion, and pre-
vent migration of the implant [11]. Despite the
many benefits, literature is accumulating in
which ADMs are associated with increased inci-
dence of postoperative complications, such as
infection or seroma formation [6].

Past generations of implanted materials were
designed with a focus on establishing a natural-
looking breast. More recent generations utilize
tissue engineering techniques in which biode-
gradable scaffolds containing appropriate cells
and factors are implanted into the defect area to
stimulate cells de novo tissue regeneration
(Fig. 7.1). Alternative methods are being inves-
tigated to regenerate breast tissue while address-
ing the limitations of currently utilized
techniques. Tissue engineering scaffolds that
successfully integrate with host tissue, support
growth, and biodegrade in a controlled manner
to be replaced by new tissue, all while achieving
ease of use and low price-points, directly
address these limitations. Advancements in our
understanding of the breast and the influence of
materials on cell behavior have enabled for sig-
nificant improvements toward regenerative con-
structs. Fabrication and optimization of such
scaffolds would drastically improve standard of
care for breast reconstruction patients.
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Fig. 7.1 Summary of breast tissue engineering
approaches. Relevant types of stem cells are seeded on a
scaffold. The mechanical and material properties of the
scaffold provide signals to the stem cells that contribute to
changes in cell size, shape, polarization, adhesion

7.2.2 Mechanical Cues

Stiffness, or elasticity, is the key mechanical fac-
tor that dictates stem cell behavior. Cells can
“feel” the softness of a material based on the dis-
tribution of focal contacts and their ability to pull
against the ECM, triggering cellular mechano-
transducers to produce downstream signals based
on the magnitude of force needed to deform the
matrix [13]. Therefore, mechanical cues imparted
on stem cells cannot be ignored by tissue engi-
neering and regenerative medicine.

Depending on the niche, the mechanical prop-
erties of the tissue can vary widely. For instance,
brain tissue stiffness is about 0.1 kPa, whereas
that of calcified bone is greater than 30 kPa [14].
Natural variations in ECM stiffness manifest dur-
ing development to guide stem cell migration and
differentiation into various tissues [15-17]. The
concept that cells migrate preferentially onto
stiffer surfaces, otherwise known as durotaxis, is a
fundamental process during embryonic morpho-
genesis [18]. Moreover, mesenchymal stem cells
(MSCs) will either differentiate into bone or fat
when exposed to a stiff or compliant matrix,
respectively, mimicking the mechanical proper-

4

Breast Tissue Regeneration

strength, cytoskeletal organization and stiffness, and other
characteristics. These changes trigger downstream gene
expression changes that lead stem cells to differentiate
into various progenitor cells in order to regenerate the
breast tissue

ties of the natural tissue [19, 20]. Particularly, in
terms of breast tissue, mammary cells within
compliant matrices demonstrate growth control,
organization of glandular architecture, expression
of proteins consistent with more “differentiated”
phenotype, and support cell polarization [21, 22].
In contrast, mammary cells on stiff matrices are
more proliferative and experience increased pro-
liferative signals, characteristics that are not
exhibited in normal mammary tissue [23-26].
Mechanical regulation within stem cells has
been proposed to occur through three avenues:

1. Force-sensitive  protein  conformational
changes in focal adhesions or in matrix.

2. Changes in Rho activity.

3. Stretch-activated calcium channels [5, 18].

These regulatory pathways are susceptible to
dysfunction if the microenvironment becomes
abnormally rigid, as is frequently seen in malig-
nant tissues. With rigid ECM, cell-generated
forces are dissipated within the cells themselves,
likely altering the conformation of proteins that
connect cytoskeleton and ECM [4, 27]. It has
been shown that stiff ECM induces differentiation
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of mesenchymal stem cells (MSCs) into cancer-
associated fibroblasts (CAFs), supporting carci-
noma progression [28].

Other important mechanical cues include fluid
flow and substrate strain. These external mechan-
ical forces stimulate stem cell differentiation
through enhancement of adhesion strength, cyto-
skeletal stiffness and organization, and mechano-
transductive signals [29, 30].

7.2.3 Material Cues

ECM and 3D scaffolds also provide structural and
biochemical cues to stem cells, such as topogra-
phy, fiber alignment, density, pore size, and com-
ponent composition [31, 32]. These aspects
communicate more intimate details about the
niche to the stem cells. Although pore size pro-
vides a direct physical constraint on cell size and
shape, which is known to determine intracellular
downstream signaling, ECM topography relays
important biophysical signals critical to stem cell
differentiation [20, 33, 34]. Instead of directly
affecting cytoskeletal tension, such topographical
cues appear to directly modulate the molecular
arrangement, dynamic organization, and signal-
ing of alpha- and beta-integrins [5, 14, 18]. Upon
binding of stem cells to ECM, integrins cluster to
form dynamic adhesion structures called focal
adhesions (FAs) [35]. On the cytoplasmic side of
FAs, cytoplasmic tails of integrins can interact
with different adaptor and signaling proteins that
provide direct physical linkage to the actin cyto-
skeleton [5, 35]. Also, ECM-integrin binding can
activate tyrosine kinase and phosphatase signal-
ing which elicits downstream biochemical signals
important to gene expression and stem cell fate
regulation [36].

Glandular breast tissue is revered for its ability
to involute and regenerate, regulating milk pro-
duction based on hormonal control. Since a func-
tional unit of the mammary gland is an epithelial
cell and adjacent ECM, it is logical that respon-
siveness of mammary epithelial cells to hor-
mones is facilitated by concomitant modification
of the ECM [37, 38]. Hence, ECM tensile require-
ments change in order to accommodate the dis-

tinct demands required for different stages of
breast tissue regeneration. This is exemplified by
the fact that fibronectin (FN) and a5bl-integrin,
two highly prevalent mammary tissue compo-
nents, are under endocrine control [39, 40]. FN is
responsible for modifying the mechanics and
structure of collagen fibers; the more FN in the
ECM, the higher the fraction of linear collagen
fibers relative to cross-linked collagen, resulting
in decreased tissue elasticity [32,41] Additionally,
aSbl-integrin binding is required for assembly of
secreted FN into fibrils which is thought to be a
mechanism for precise temporal-spatial integra-
tion between FN assembly, local tissue tension,
and specific cell or tissue requirements [42, 43].

7.3 Discussion

7.3.1 Tissue Engineering Constructs
for Breast Reconstruction

7.3.1.1 Mammary Adipose Tissue

When fat grafting is performed, the lipoaspirate
incorporates terminally differentiated mature adi-
pocytes and stromal vascular fraction (SVF),
which includes preadipocytes and multipotent
adipose-derived stem cells (ADSCs) [44]. The
proliferation and differentiation of SVF-derived
cells is key for graft survival. ADSCs and preadi-
pocytes cooperate to encourage angiogenesis and
adipogenesis through growth factor release and
differentiation into mature adipose cells [45].
Major limitations of fat grafting are resorption,
volume loss, and necrosis that may lead to long-
term inflammation and progressive calcification
[46, 47]. To address such undesirable outcomes,
experimental work using laminin-alginate beads
as carriers of preadipocytes has proven effective
in vitro and in vivo [48].

Engineered adipose tissue approaches gener-
ally utilize natural and synthetic polymer con-
structs. Synthetic scaffolds include those fabricated
with PLA, PGA, PLGA, PET, PTFE, and PEGDA
scaffolds [49]. Natural polymers utilized mainly
consist of collagen, hyaluronic acid, natural ECM,
and Matrigel [50]. Synthetic and natural hydrogel
biomaterials, in particular, are well suited for this
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application because the polymers are porous and
deform easily, mimicking the properties of the
native ECM [51]. Conversely, rather than replicat-
ing the physical structure of the native tissue, solid
scaffolds aim to guide the regeneration process by
designing a scaffold architecture to guide tissue
formation [52, 53]. A critical obstacle in design of
solid biomaterials is their potential for interference
with diagnostic imaging for early stage breast can-
cer detection.

7.3.1.2 Mammary Epithelial Tissue
Tissue-engineered mammary epithelium has
been developed to meet the increasing clinical
need for breast tissue regeneration that is not
achieved through addressing adipose tissue loss
alone. Currently, they primarily serve as useful
models of mammary gland development, regen-
eration, and tumorigenesis, enabling better
understanding of healthy and unhealthy breast
epithelial tissue [2, 54-57].

Several studies have successfully modeled
acinar and ductal structures in vitro. A 3D culture
system was fabricated in which hormone action
on human breast epithelium can be suitably stud-
ied [57]. This model is responsive to major mam-
motropic hormones and the influence of those
hormones on epithelial morphogenesis can be
observed in vitro. Similarly, specialized 3D
hydrogels can be fabricated by incorporating
ECM proteins with relevant growth factors to
grow primary breast cells [58]. Such scaffolds
can recapitulate the endogenous morphology and
development, allowing for creation of a life-like
in vitro system with which to study the mammary
gland. Further, the advent of 3D bioprinting tech-
nology allows for high precision control of cel-
lular and structural deposition when creating
tissue-engineered solutions [59]. This approach
has been recently utilized for the reconstruction
of the nipple-areola complex [60].

7.4  Conclusions

Substantial evidence has accumulated regarding
the response of stem cells to mechanical and
material cues in both healthy and pathological

microenvironments. Similarly, cancer stem cells,
which share many properties of healthy stem
cells, are implicated in cancer recurrence and are
sustained by cues from the microenvironment.
Therefore, it is critical to evaluate the degree to
which tissue-engineered constructs for breast
reconstruction may potentially cultivate cancer
resurgence. This increases the importance of
deliberately designing scaffolds that support
regeneration while deterring cancer regrowth.

Tissue engineering approaches to breast
reconstruction offer promising alternatives to
current techniques, addressing limitations that
impact patient outcomes. Future directions focus-
ing on mechanical and vascular support,
regeneration-inducing factors, dynamic compos-
ite biomaterial scaffolds, and high-precision fab-
rication techniques will offer improved control
over the mechanical and material parameters of
scaffolds. With these improvements, scaffolds
can relay more appropriate signals to the stem
and progenitor cells within, leading to more regu-
lated and reproducible tissue regeneration.
Advancements will positively change the land-
scape of the field of breast reconstruction and,
importantly, will drastically enhance patient
quality of life.
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Bacteriophages: A New (Yet Old)
Weapon Against Infections

Stephen K. Mathew and Reba Kanungo

8.1 Introduction

The alarming spread of antimicrobial resistance,
identified by the WHO as a global threat, is draw-
ing healthcare into the post-antibiotic era [1, 2].
Healthcare-associated infections (HAIs) are
among the top five leading causes of morbidity
and mortality in industrialized countries [3].
Infections by extensively drug-resistant bacteria
are being increasingly reported: just one,
methicillin-resistant ~ Staphylococcus
(MRSA), kills more Americans every year than
emphysema, HIV/AIDS, Parkinson’s disease and
homicide combined [4, 5].

Bacteria are extremely adept at developing
mechanisms to survive hostile environments.
This is underscored by the isolation of Escherichia
coli, Klebsiella pneumoniae and Acinetobacter
baumannii strains resistant to even silver salts
present in antibacterial preparations [6].

Development of new antibiotics has been
hampered by rising costs of drug development
coupled with relatively low returns of investment
due to the rapid development of resistance to the
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new agent [7, 8]. In the face of ever-increasing
resistance, this dearth of research and develop-
ment has been called “the perfect storm” [9].
With only a few large multinational pharmaceuti-
cal companies involved in antibiotic discovery,
the Infectious Diseases Society of America
(IDSA) launched the “10 x ‘20 Initiative” with
the aim of supporting the development of ten new
systemic antibiotics by 2020, which was success-
ful in identifying seven novel agents targeting
Gram-negative bacilli [10, 11]. However, resis-
tance against agents such as ceftolozane-
tazobactam has already been observed [10, 12].
Surgical site infection (SSI) currently ranks as
the most common cause of nosocomial infection,
accounting for 31% of all hospital-acquired
infections, and is associated with a mortality rate
of 3% [13-16]. The additional cost of managing
an SSI exceeds $20,000 per admission, and more
than $90,000 perinfection where an antimicrobial-
resistant organism is responsible [14, 17]. The
economic burden of antibiotic-resistant infec-
tions to the US healthcare system is estimated to
be more than $20 billion each year [5].
Postoperative infection, though rare following
plastic surgery, can significantly affect the cos-
metic outcome, which also increases the risk of
malpractice suits [13, 18]. It complicated approx-
imately 1% of clean surgeries and 4% of clean
contaminated surgeries [19]. As cosmetic surgery
becomes increasingly popular, SSIs, particularly
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those caused by MDR bacterial strains and are
difficult to treat, become a pressing issue [18].
The “perfect storm” threatening to derail
much of the progress in medicine could also be
an opportunity for alternate antimicrobial modal-
ities to emerge [20]. One of these modalities cur-
rently generating significant interest was
discovered more than a century ago, in the pre-
antibiotic era. Felix d’Herelle discovered bacte-
riophages and also realized their potential as
antibacterial agents, following which it was used
to contain human infections in several countries.
The new world of antibiotics that was soon dis-
covered, and the promise it brought—the end of
infectious diseases—however, dwarfed much of
the interest in phage therapy. Acceptance of bac-
teriophages as a therapeutic modality was further
hampered by poorly designed studies generating
conflicting results. Bacteriophage preparations
available in the early twentieth century, apart
from being of questionable quality, were also
being marketed for pathologies not necessarily
caused by bacterial infections [20]. While phage
research died out in the western world, it
remained an active area of research and use in
parts of Eastern Europe and former Soviet Union.
Following the rediscovery of phages by the
western world, the first randomized controlled
trial (RCT) which was published in 2009 saw
researchers treat chronic otitis and venous leg
with bacteriophage-based preparations [21-23].

8.2 Current Status of Skin

Infections in Plastic Surgery

Between 2006 and 2009, a conservative estimate
of 1.9% of surgical procedures in the United
States was complicated by surgical site infections
(SSIs) [17]. In 2006, the Surgical Care
Improvement Project (SCIP) drafted nine mea-
sures to reduce surgical complications; of these,
six focussed on prevention of postoperative
infections [24]. However, a decade later, despite a
high level of compliance with the core measures,
infection rates remain largely unaffected and
have only been further complicated by resistance
to commonly used antimicrobial agents. SSIs

now reportedly complicate over a tenth of inpa-
tient and outpatient procedures [25-27].

The incidence of wound infections following
breast plastic surgery, considered a “clean sur-
gery”, ranges from 3% to 30%, and is more than
50% among women undergoing reconstruction
after treatment for breast cancer [13, 28]. Wound
care is particularly problematic in burn patients,
in whom 50% of all deaths are due to resultant
infections [29, 30].

A rise in infective complications has been
accompanied by a dramatic increase in the use of
antibiotics. In plastic surgery alone, there has
been up to a 200% increase since 1975 [31].
Prophylactic antibiotics are widely used even in
procedures, such as rhinoplasties, that are rarely
complicated by postoperative infections [32].
The overuse of antibiotics, due to lack of consen-
sus, specific guidelines and a fear of litigation,
has further contributed to antimicrobial resis-
tance, and could paradoxically make empirical
prophylactic antibiotics ineffective [32, 33].

8.3  History of Bacteriophage

Therapy

While anecdotes of river waters possessing the
ability to cure infectious diseases can be found
in historical and religious texts, the idea of bac-
teriophages and their action as an antibacterial
can be traced back to 1896, when British bacte-
riologist Ernest Hankin suggested the presence
of an unidentified, heat-labile, filterable sub-
stance in the rivers Ganga and Yamuna in India
with antibacterial activity against Vibrio chol-
erae which possibly helped to limit the spread of
cholera [34].

Frederick Twort [34], a bacteriologist from
England, reported a similar phenomenon almost
20 years later and advanced the possibility of
this being due to a virus. Twort, however, did
not pursue this finding and it was another
2 years before Felix d’Herelle, a microbiologist
at the Institut Pasteur in Paris, France, officially
discovered bacteriophages. He observed the
bacteriophage phenomenon in 1910, in Mexico,
while studying methods of controlling an epi-
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zootic among locusts. D’Herelle, who a few
years later was called to investigate an outbreak
of severe dysentery among French troops, sta-
tioned on the outskirts of Paris, observed the
appearance of small, clear areas on agar cul-
tures when Shigella strains isolated from the
patients were incubated with bacterium-free
filtrates from the faecal samples. He termed
these clear areas as “plaques”, and proposed the
name “bacteriophage” for a “virus parasitic on
bacteria” [34]. Not long after, d’Herelle carried
out what could be labelled a phase I trial when
he along with his family members ingested
phage preparations to demonstrate their safety
before administering it to children with dysen-
tery at the Hopital Des Enfants-Malades, Paris,
all of whom exhibited signs of recovery [5].
However, the results of these studies were not
immediately published and, therefore, the first
reported use of phages to treat infectious dis-
eases in humans came from Bruynoghe and
Maisin in 1921, who used bacteriophages to
treat staphylococcal skin disease [34, 35].

D’Herelle continued his studies on phages and
some of his most sensational work was carried
out in India, where he visited in 1927. There were
reportedly no deaths among cholera patients in
Calcutta and Lahore who received d’Herelle’s
phage preparations orally and intravenously, in
contrast to a mortality rate of 40% among patients
who received conventional injections of fluids
and salts [36, 37].

Contrasting these successes, several scientists
highlighted d’Herelle’s failure to meet scientific
standards for research. Combined with the intro-
duction of penicillin to medical practice, this led
to dwindling interest in d’Herelle’s research [38].

Commercial phage preparations began with
d’Herelle as well, whose laboratory produced at
least five phage preparations: Bacté-coli-phage,
Bacté-rhino-phage, Bacté-intesti-phage, Bacté-
pyo-phage, Bacté-staphy-phage—marketed by
Societé Francaise de Teintures Inoffensives pour
Cheveux (now, L’Oreal). Therapeutic phage
preparations began to be available in the United
States since the 1930s, with companies such as
Eli Lilly and Abbott Laboratories taking an inter-
est. Commercial production, however, was

plagued with quality control issues: d’Herelle
also reported that some preparations being mar-
keted contained no detectable biologically active
phage [37]. Though commercial production in
the Western world declined with the advent of
antibiotics, phage preparations were available in
France till 1978 at d’Herelle’s company, and at
the Institut Pasteur till the 1990s [5, 37]. Phages
continued to be used therapeutically in Eastern
Europe and the former Soviet Union, centred
around the Eliava Institute of Bacteriophages,
Microbiology and Virology in Thilisi, Georgia,
and the Hirszfeld Institute of Immunology and
Experimental Therapy in Wroclaw, Poland [34].
The former was focussed on phage cocktail for-
mulation and production (the Eliava Institute had
a production capacity of up to two tons per week),
and the work at the latter has been extensively
documented [37].

8.4 Whatls a Bacteriophage?
Bacteriophages are essentially viruses; as obli-
gate parasites, they infect, replicate within and
finally lyse the bacterium [20]. Over 6000 differ-
ent bacteriophages have been discovered, which
have been classified into 13 families depending
on morphology, type of nucleic acid, and pres-
ence or absence of an envelope. About 96% of the
discovered phages are “tailed”, possessing an
icosahedral head and a double-stranded DNA
genome. Tailed phages, which comprise the order
Caudovirales, are classified into 3 families based
on the morphological features of the tail:
Myoviridae (contractile tail), Siphoviridae (long,
non-contractile tail) and Podoviridae (extremely
short tail). The remaining 4% of the phages, clas-
sified into 10 families, may contain single-
stranded or double-stranded RNA or DNA. These
phages are cubic, filamentous or pleomorphic.
Most therapeutic phages are tailed; some cubic
and filamentous phages have also been used for
therapy [21, 39].

Bacteriophages attach to receptors on the bac-
terial surface via tail fibres or base plate spikes,
following which they inject their genome into the
cell [40]. The nature of the receptor, its chemical
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composition and spatial configuration, along
with the structure of viral-receptor binding pro-
teins play a major role in stabilizing the bacterial
cell-bacteriophage interaction [41]. These recep-
tors might be the same antigens determining the
serotype of the bacteria, or transport channel pro-
teins, or pili [7]. Importantly, receptor binding
confers specificity on the bacteriophages. Termed
the host range, this specificity is typically nar-
row—Ilimited to a single bacterial species, or to a
few strains within a species, or even a single
strain.

Phages can also be divided roughly into two
groups, according to their life cycle: lytic or lyso-
genic. In the lytic cycle, the bacterial cell machin-
ery is hijacked to assemble and package progeny
phages, which are released following death of the
host cell and its rapid lysis with the help of holins
and lysins [40]. Phages with a large burst size—
the number of progeny phages released from
each infected bacterial cell—are preferred for use
in therapeutics [7]. Temperate phages undergo
lysogeny, where the phage genome integrates
with the bacterial genome and are transmitted
vertically through successive generations of the
bacteria. The genome of temperate phages may
encode transmissible bacterial virulence factors,
as seen with Corynebacterium diphtheriae where
only isolates that harbour tox* phages produce
diphtheria toxin [42]. At the same time, host
genes for virulence and toxin production may be
packaged into the bacteriophages during replica-
tion, which may in turn be transferred to other
bacteria. As a result, temperate phages are
thought to be less suitable than lytic phages for
use in therapeutic preparations. However, it may
be possible to inactivate genes responsible for
lysogenicity and toxin production by genetic
modifications, overcoming a disadvantage of
lysogenic phages [39].

8.5 Why Should We Consider

Bacteriophage Therapy?

Bacteriophages are a potent, natural antibacterial
capable of inducing rapid bacterial cell lysis [21].
They are also ubiquitous, with up to 1 x 108 par-

ticles per gram of soil, and can be readily isolated
from various environments. It is estimated that
they destroy one-half of the bacterial population
worldwide every 48 h [40]. Billions of years of
this co-evolutionary predator-prey relationship
have made bacteriophages a potentially rich
source of antibacterial agents [29, 40].

Strain specificity, briefly mentioned earlier,
allows for targeted therapy, limiting the deleteri-
ous effect on the normal microbial flora. This can
help prevent adverse effects associated with anti-
biotic use, such as Clostridium difficile colitis, a
leading cause of nosocomial diarrhoea particu-
larly associated with the use of cephalosporins
and clindamycin [33]. Bacteriophages also have
little or no effect on eukaryotic cells, thus staving
off more of the adverse effects associated with
antibiotic use [21, 29]. Application in the nose
and sinuses in an animal model did not alter the
normal architecture of the mucosa [43]. Oral
administration in patients with diarrhoea did not
lead to adverse events [44, 45].

An added advantage, in contrast to antibiotics,
is that the concentration of bacteriophages
increases after reaching the site of infection due
to self-replication [46]. As a result, the required
dose of phages would generally be much less
than that of antibiotics [47]. Economic consider-
ations also favour bacteriophage therapy over
conventional antibiotics, as the cost and com-
plexity of developing a phage system is less than
that of developing a new antibiotic [8]. While it is
unlikely that bacteriophages will replace antibi-
otics, phage therapy could decrease antibiotic
resistance by reducing the need for antibiotics
[29]. Phages can also find use in situations where
the necessary antibiotics are contraindicated,
such as nephrotoxic antibiotics in patients with
impaired renal function [37].

8.6 What Is the Evidence that

Bacteriophages Work?

While bacteriophages as a therapeutic option
failed to take off in the United States and Western
Europe particularly following the discovery of
antibiotics, clinical research with bacteriophages
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continued in the former Soviet Union and Eastern
Europe. These studies were published primarily
in non-English languages, and as a result, not
readily available to the global scientific commu-
nity [34]. Interest in phages in the Western world
was partly rekindled by the work of Smith et al.
who demonstrated the effectiveness of a single
intramuscular dose of phage in potentially lethal
infections in animals by Escherichia coli. This
was in contrast to the need for multiple doses of
antibiotics such as tetracycline, ampicillin and
chloramphenicol to control the infection. The
emergence of phage-resistant strains of E. coli
over the course of the experiments was however
noted [48, 49].

Numerous experiments studying various
infection models (bacteremia, central nervous
system infection, sinus infection, lung infection,
urinary tract infection, osteomyelitis, skin and
wound infection, including burns) caused by bac-
terial pathogens such as Pseudomonas aerugi-
nosa, E. coli, Klebsiella pneumoniae,
Staphylococcus aureus and vancomycin-resistant
Enterococcus faecium have since been con-
ducted. Bacteriophage therapy decreased mortal-
ity in several studies. Where it was compared to
antibiotics as controls, a more positive outcome
was observed. No adverse effects were observed
in mice following inoculation with high doses
[21, 29, 30, 39, 43]. Phage treatment was shown
to improve survival in mice infected with
methicillin-resistant ~ Staphylococcus — aureus
(MRSA), and lethal doses of Vibrio vulnificus
[29, 50, 51]. Bacteriophages have also been
shown to be effective against Yersinia pestis,
responsible for plague, and against Burkholderia
pseudomallei, a Category B bioterrorism agent
that causes melioidosis [52, 53].

There is currently a lack of consensus on the
most effective route of administration to target
specific infections. Where some studies suggest
that aerosolized formulations of phages are effec-
tive against respiratory infections, others have
found systemic administrations to yield better
access to bacteria in the lungs [54, 55]. This is
also an important consideration in severe skin
and soft tissue infections with a propensity to
progress to septicaemia. Phages administered

systemically offered better protection than when
administered locally in a mouse burn wound
model [30]. Orally delivered phages were effec-
tive against gastrointestinal infections caused by
E. coli and Campylobacter jejuni, but concerns of
phage inactivation due to gastric acidity need to
be addressed [54].

Bacteriophages can also help to tackle bio-
films which prove to be a significant challenge to
conventional treatment. Biofilms are commonly
associated with chronic, refractory infections,
due to indwelling medical devices, and can be a
thousand times more resistant to antibiotics than
free-floating bacteria [29]. Treatment of silicone
catheters with bacteriophage significantly
reduced biofilm formation by Staphylococcus
epidermidis, P. aeruginosa, E. coli and Proteus
mirabilis [54, 56]. Bacteriophages have several
advantages over antibiotics in treating infections
caused by biofilms. Replication at the site of
infection allows for a high concentration of
phages on the biofilm; they are able to infect dor-
mant cells within the biofilm; and phages may
possess or induce the bacterial cells to express
enzymes capable of dissolving the biofilm matrix
[20]. Phage treatment has been shown to signifi-
cantly reduce biofilm biomass and cell density in
experimental models [29].

Lysin, a phage genome-encoded protein
expressed by tailed phages, which enables libera-
tion of progeny phages from infected bacteria, is
also a candidate therapeutic agent against Gram-
positive bacteria because of its ability to destroy
peptidoglycan, a vital component of the cell wall
[39].

Bacteriophages have complex pharmacokinet-
ics that are yet to be fully elucidated. Most
researchers observed that phages afforded best
protection when given within a few hours of bac-
terial inoculation, but computerized models have
predicted that inoculations given too early could
either be less effective or fail completely [51, 57,
58]. Paradoxically, some antibiotics can even
diminish the effectiveness of phages [58].
Available data from animal experiments suggests
that phages enter the bloodstream following a
single oral dose within 2—4 h and are found in the
internal organs within 10 h. Phages were
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preferentially compartmentalized to the liver and
spleen, irrespective of the route of administration
[29]. In the human body, administered phages
can remain for up to several days [5]. A better, if
not complete, understanding of the behaviour of
bacteriophages in vivo is necessary to achieve
consistent and predictable results with bacterio-
phage therapy.

Concerns
with Bacteriophage Therapy

8.7

Since phages capable of infecting across bacterial
species or genera are few in number, rapid and pre-
cise identification of the pathogenic bacteria is
necessary in order to select an appropriate bacte-
riophage from an established phage library [39].
Such an individualized approach has been by and
large successfully followed in Poland [37]. Use of
phage cocktails targeting commonly encountered
bacterial species and strains can potentially tackle
this shortcoming. However, these cocktails would
have to be re-formulated regularly taking into
account prevalent species and strains [21]. Even
when mixed to form cocktails, the host range can
remain relatively narrow [37]. This also limits the
role of bacteriophages in empirical therapy [7].
Experiments have extended the host range of
phages through genetic modifications that allow
them to overcome barriers to adsorption and infec-
tion [59]. There is also much to be understood of
the interaction between phages and the target bac-
terial hosts at the site of infection, as opposed to
under laboratory conditions [60].

Phages administered intravenously can acti-
vate the immune system. Subsequently, phage
titres may fall due to innate immunity and phago-
cytosis in the blood and liver. While non-
neutralizing antibodies have been observed
following certain phage injections, clinical and
animal trials have not demonstrated serious
immunological reactions. Long-term intrasinus
application of phages did not alter the local pro-
file of immune cells in an animal model [43]. The
immunological response against every phage
considered for parenteral therapy, however,
would need to be studied [7]. The large size of the

phage particles, when compared to antibiotic
molecules, also limits the concentrations that can
be achieved in therapeutic preparations—solu-
tions may become viscous at high concentrations,
more than 10'* phages per mL [7]. Models cre-
ated to calculate dosage requirements would
need to take into account the complex pharmaco-
kinetics of bacteriophages [47].

Some bacteriophages, though mostly temper-
ate phages, enhance virulence by transferring
genetic elements vital to the bacteria. The ability
to produce exotoxin in Vibrio cholerae is carried
and transferred by phages, as is Shiga toxin pro-
duction in E. coli, as well as virulence determi-
nants in P. aeruginosa, Shigellae and S. aureus
[20, 61]. This potential problem with therapeutic
bacteriophages may be overcome by selection of
phages incapable of such transfer, or by geneti-
cally modifying them. The genome sequence of
therapeutic phages needs to be characterized,
which would also help to confirm the absence of
undesirable genetic elements. The safety and effi-
cacy of phages should also be demonstrated [20,
39, 40, 46].

A possible side effect of phage therapy, also
seen with bactericidal antibiotics, is the release of
cell wall components which are mediators of sep-
ticaemia, such as endotoxins from Gram-negative
bacteria [62]. Patients receiving phages have
occasionally experienced right hypochondrial
pain and fever a few days into treatment, possibly
due to the release of endotoxins [63]. Genetically
modified, non-replicating phages designed to
digest bacterial genomic DNA kill bacteria with
minimal release of endotoxin. The survival rate
of mice infected with P. aeruginosa was signifi-
cantly higher with non-replicating phages that do
not cause endotoxin release, than with lytic
phages; this was also correlated with lower levels
of inflammation [62].

As with antibiotics, the development of resis-
tance by the bacterial targets could blunt the effi-
cacy of phages. Resistance to phages is often due
to changes, as a result of mutations or acquisition
of genes, in the receptors on the bacterial surface
[30]. However, phages rapidly co-evolve with
bacteria and bacteriophages capable of
overcoming protective bacterial systems have
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been isolated [7, 39]. Phage cocktails effective
against various bacterial strains and possible
mutants arising during therapy could pre-empt
the rise of resistance [54]. Bacteriophages can
multiply within bacteria only if their density
exceeds a threshold [47]. On the other hand, a
higher-than-necessary concentration would lyse
the target bacteria before secondary phage multi-
plication can be initiated, necessitating multiple
doses to eradicate infection [47]. Dosage would
also depend on duration of infection at initiation
of therapy. Phage preparations administered up to
10 days after infection have been successful [54].

Therapeutic preparations will need to be sta-
ble and viable during transportation and storage
[40]. Purified phages remained stable for up to
2 years when maintained at 4 °C [52, 53, 64].
Further research is required on phage delivery
formulations, and on long-term stability of the
phages within formulations [54].

The pharmaceutical industry has largely stayed
away from phage therapy probably because it
does not see large investments being profitable
[60].The risk of mutations developing during the
course of therapy also challenges large-scale pro-
duction as it would require rigorous monitoring
[46]. Institutes such as the Eliava Institute,
Georgia, and Queen Astrid Military Hospital,
Brussels, Belgium, have shown that small-scale
production of bacteriophage cocktails, following
strict quality-control protocols, is possible [64].

Current regulations requiring full clinical trials
for each therapeutic bacteriophage make it diffi-
cult for bacteriophages to find their way to routine
clinical use. While stringent legislation is neces-
sary for any therapeutic product licensed for
human use, factors unique to phages need to be
taken into account. Regulatory authorities would
need to discuss and consider whether phage ther-
apy merits a distinct set of rules [7, 46].

Non-human Uses
of Bacteriophages

8.8

Strain specificity has an already established use in
the laboratory in typing systems used for identifi-
cation of bacterial strains and newer diagnostic

tests such as KeyPath (MicroPhage, Inc.,
Longmont, Colorado) to rapidly identify MRSA
from blood cultures [65]. The Eliava Institute has
been using phages to track enteric pathogens in
the environment, and for rapid detection of
anthrax and brucellosis [66].

Anti-Listeria phage cocktails were among the
first phage products to obtain a Generally
Recognized as Safe (GRAS) status from the
United State Food and Drug Administration
(FDA) [59]. ListShield™ and LISTEX™ P100
are marketed as food additives intended to disin-
fect processed poultry products and meat.
Omnilytics, Inc. (US) specializes in supplying
customized phage preparations (Omnilytics’
Agriphage™) tailored against the prevalent crop
pathogens  for  agricultural use  [67].
Staphylococcus aureus phage lysate Staphage
Lysate® has been shown to be effective in treating
and controlling recurrent pyoderma in dogs [68].

8.9 Human Applications

of Bacteriophages

Work with phages carried out in the 1930s report
successful treatment of skin infections, surgical
infections, typhoid fever, Salmonella and Shigella
spp--related colitis, septicaemia, and urinary tract
infections [21, 69]. One of the largest studies,
involving 30,769 children, on the effectiveness of
phages against bacterial dysentery was conducted
in Thilisi, Georgia, in 1963—1964. Children liv-
ing on one side of the streets were given anti-
Shigella phages orally and those on the other side
served as the controls. The incidence of dysen-
tery was 2.6-fold higher in the control group [70].

Numerous reports of successful topical appli-
cations of phages, particularly from Eastern
European countries, are available [54]. Oral
administrations may be useful in fighting enteric
infections due to C. difficile [40]. Nestlé Research
Centre and other subsidiaries of Nestlé S.A. have
conducted RCTs on patients, including children,
suffering from diarrhoea [44, 45].

The first fully regulated, placebo-controlled,
double-blinded, randomized Phase I/II trial on
phage therapy was conducted in the UK in 2009
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on patients suffering from chronic P. aeruginosa-
otitis. A single local application of a cocktail of
phages (Biophage-PA) resulted in decreased col-
ony counts on culture, improved symptoms and
clinical indicators, without adverse reactions [23].

Much of the published research on human
application of phages is from case studies subject
to experimenter’s bias [37]. This can be traced
back to d’Herelle’s first known use of phages at
the Hospital Des Enfants-Malades where phages
were administered to all the sick patients without
a placebo group [5]. In order to conclusively
demonstrate the consistent efficacy of phages,
more double-blind, randomized controlled trials,
complying with regulatory and ethical guide-
lines, are required for greater acceptance of phage
therapy [71].

8.9.1 Bacteriophage Therapy

for Skin Infections

Topical application of bacteriophages is the most
studied route of administration. Phages have
been successfully used against ulcers, pyogenic
infections, burns, and wounds [22, 37, 63, 72].

PhageBioDerm®, a commercially successful
biodegradable wound dressing consisting of a
stabilized hydrogel system impregnated with cip-
rofloxacin, benzocaine, chymotrypsin, bicarbon-
ate, and 6 lytic phages against S. aureus,
Streptococcus spp., P. aeruginosa, E. coli, and
Proteus spp., was approved for human use in
Georgia in 2000 [40, 54]. Studies have reported
successful treatment of ulcers that failed to
respond to conventional therapy [72]. Phase I tri-
als on chronic venous leg ulcers and burn wounds
have not reported any adverse events associated
with bacteriophage use [22, 37].

Phages against Propionibacterium acnes
involved in the pathogenesis of acne have dis-
played a broad ability to kill clinical isolates of P.
acnes [73]. These phages, incorporated into an
aqueous cream, retained their antibacterial activ-
ity up to 90 days when stored appropriately [74].
A number of trials evaluating phage therapy for
burn wound infections, diabetic foot, and acne
have been registered in the USA over the past few
years [75-77].

8.10 Future Possibilities
for Bacteriophage Therapy

Phage therapy can be an important component of
personalized medicine, tailored against bacteria
isolated from the site of infection [46]. This
approach has been shown to be successful at
some centres, but would require facilities for
phage susceptibility testing [37]. Bacteriophages
have been used to transfer gene cassettes that
confer susceptibility to antibiotics, thereby
reversing drug resistance in bacteria [21].

Phages bearing chloramphenicol on the sur-
face have been shown to specifically target S.
aureus in vitro [40]. Preparations of bacterio-
phage lysins could be effectively used in infec-
tions caused by Gram-positive bacteria: lysins
against Bacillus anthracis, Enterococcus spp.,
and Streptococcus pneumoniae have been identi-
fied [40]. Liquid-based phage skin disinfectants
could be formulated to target difficult-to-treat
nosocomial  pathogens such as MRSA,
Pseudomonas aeruginosa or Acinetobacter bau-
mannii, without affecting the normal flora [78].

8.11 Conclusions

Bacteriophages have been shown to be potent
antibacterial agents targeting most of the known
human bacterial pathogens. Animal and human
studies have so far not reported serious adverse
effects. Local applications of phages have been
effective in treating ulcers, wound and burn infec-
tions. Commercially successful wound dressings
such as PhageBioDerm® have been in use for
almost two decades. Similar topical formulations
against local infections could be among the first
to gain widespread use.

While using bacteriophages therapeutically
appears promising, care must be taken to ensure
that resistance does not develop. One of the
ways that this may be done is to ensure that ade-
quate concentrations of the phages are main-
tained at the site of infection during therapy.
Therapeutic use must be preceded by rigorous
clinical trials. Regulations, definitions and stan-
dards need to be established by internationally
recognized organizations.
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Though it is unlikely that phages will replace
conventional antibiotics anytime in the near future,
robust studies providing reliable and reproducible
results will enable bacteriophage therapy to com-
plement antibiotics. Pharmaceutical companies
play a critical role in bringing phage therapy to
patients suffering from infectious diseases.

While we move towards developing and
adopting new weapons to fight infections, it is
imperative that we avoid the mistakes that led to
the development and spread of antimicrobial
resistance.
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Bacteriophages as Biocontrol
Agents of Biofilm Infections
Associated with Abiotic
Prosthetic Devices

Shilpa Deshpande Kaistha, Pramila Devi Umrao,
Ravish Katiyar, and Neelima Deshpande

9.1 Introduction

Abiotic prosthetic devices or cellular, tissue, or
organ substitutes which help restore biological
functions in the face of total organ failure form an
essential part of regenerative medicine [1]. A
combination of advances in the fields of bionic
engineering, material science, tissue engineering,
nanoengineering, and electrical engineering has
led to phenomenal developments in modern
healthcare treatments for various ailments.
Commonly used prosthetic devices include cen-
tral venous and urinary tract catheters, artificial
muscles in prosthetic limbs, orthopedic prosthe-
ses and joints, heart valves, endotracheal tubes,
intrauterine devices, extended wear lenses,
meshes, retinal and cochlear implants, etc. [2, 3].
A potential threat in the successful implantation
of the abiotic prosthetic devices is the possibility
of microbial infections. Infections at the site of
device insertion, septic thrombophlebitis, septi-
cemia, endocarditis, mesh erosion and tissue
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decay, perforation and encapsulation of intrauter-
ine devices, metastatic abscesses and their trans-
lation into invasive infections are a cause for
significant morbidity and complications that are
difficult to diagnose and treat [2]. Comparative
microscopic, microbiological, and biochemical
studies show microbial growths in the form of
biofilms associated with infections on abiotic
prosthetic devices as they provide a suitable sub-
strate for microbial adsorption and colony matu-
ration [4, 5]. Microbial colonies adhering onto
implants in the body secrete an outer covering
made of exopolymeric substances (EPS), which
protects its residents from the external stressors
such as the immune response as well as antimi-
crobial drugs [6]. According to a study by the
National Institute of Health, 65% of infectious
disease is associated with biofilms and 80% of
such are chronic infections. Such biofilm-
mediated infections are difficult to diagnose and
highly persistent in the face of antimicrobial
treatments [7].

Biofilm-mediated persistent infections and
their mechanisms of acquiring antibiotic and host
defense resistance have been extensively
researched [7-9]. Several biofilm control strate-
gies have been devised in order to prevent the
development of biofilms on the substratum pro-
vided by such devices [2, 10, 11]. A promising
and unexplored strategy involves the use of bio-
logical control agents such as bacteriophages,
which specifically target the pathogen while
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having no ill effects on the human eukaryotic
cells [12-14]. Bacteriophages are intracellular
parasitic lytic agents of bacterial hosts, typically
nanometer in size, composed of a genome made
of DNA or RNA ensconced within a protein-
aceous coat (capsid) [15]. Use of bacteriophages
(phages) in targeting in vivo infections has an
ancient history which fell into disuse in major
parts of the world during the era of antibiotics
[16, 17]. However, with the alarming increase in
antimicrobial resistance particularly amongst
biofilm-associated infections, phage therapy is
again being explored in earnest [18-20]. This
article focuses on recent understanding of the
role of bacteriophages as control measures for
biofilm-related infections associated with abiotic
prosthetic devices.

Biofilm Formation on Abiotic
Prosthetic Devices

9.2

Microbial growths in the form of biofilms on abi-
otic prosthetic devices or implants have serious
healthcare and economic consequences [2, 3].
The patients’ normal flora or microorganisms
from the surrounding environment are likely to
be the sources of infection occurring either dur-
ing peri- or postoperative stage. Many infections
occur during hospitalization and are referred to
as nosocomial or hospital-associated infections
(HAJ) [2]. Typically, insertion of abiotic device is
likely to be present either for short duration, i.e.,
catheter tubes, or for years as in case of prosthetic
limbs, heart valves, etc. In either cases, the risk of
biofilm-related infections and resulting compli-
cations are always a potential threat. Although
biofilm formation is highly heterogeneous based
on the type and strain of infecting species, it can
be broadly divided into the four stages (Fig. 9.1).

9.2.1 Stage 1. Adsorption

Microorganism adhesion onto the surface is
affected by several factors including surface
charge, energy, hydrophobicity, and surface
topography [21]. Surrounding host proteins

such as fibrinogen, fibronectin, vitronectin,
immunoglobulin, and albumin adsorb onto the
surfaces of implants developing it into a surface
that accelerates bacterial adhesion [22]. The
role of microbial surface components recogniz-
ing adhesive matrix molecules (MSCRAMMs),
polysaccharide intercellular adhesin (PIA),
accumulation-associated protein (Aap), extra-
cellular matrix protein (Emp), protein A, and
Staphylococcus aureus surface protein G (SasG)
help in biofilm colonization [21, 23]. Physical
forces associated with bacterial adhesion
include Van der Waals forces, steric interac-
tions, and electrostatic (double layer) interac-
tion, collectively known as the DVLO
(Derjaguin, Verwey, Landau, and Overbeek)
forces [21]. In these early stages, the biofilm can
be easily eradicated before reversible adsorption
converts to an irreversible process. Biofilm bio-
control is most effective when initial adhesion
of microbes can be prevented.

9.2.2 Stage 2. Colony Formation

Following irreversible adhesion to suitable sub-
strate, the genetic switch between free living
and biofilm mode is induced by secondary mes-
senger molecules cyclic guanosine mono phos-
phate (cGMP) [24]. cGMP downregulates
motility and upregulates the genes responsible
for the production of multicomponents which
comprise the architecture and biomass of the
biofilm exopolymeric matrix (EPM) [24]. The
composition of the EPM although Ilargely
dependent on the nutrients available in the sur-
rounding milieu is also highly species specific
and maybe comprised largely of water with
extracellular DNA, proteins, lipids, as well as
heteropolymers of soluble polysaccharides [25—
27]. Confocal and atomic force microscopy has
defined layers of spatial architectures within
biofilms with channels and pores for an effec-
tive circulatory system within its confines [28,
29]. As the biofilm grows, heterogeneity wthin
the structure regarding genotypes and metabolic
phenotypes emerge, resulting in the develop-
ment of chemical gradients and environmental
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Fig. 9.1 Stages in biofilm formation: adhesion, micro-
colony formation, maturation, and dispersal leading to
swarm cells which may form a fresh biofilm by adhesion
to suitable substrate. Following phage application to bio-
film, phage replication cycle in a single cell of the biofilm
will consist of following steps: (a) adsorption of phage on
specific host receptor, (b) entry of genomic material.
Phage life cycle may enter one of two alternative states:
lysogency (c¢) or lytic cycle (d). (¢) Lysogeny wherein

c

phage DNA integrates into host chromosome and be
transferred to daughter cells until lytic cycle is reactivated.
(d) Lytic cycle: Phage DNA replicates to create several
virion DNA copies. (e) Several copies of structural capsid
and proteins of phage are formed. (f) Assembly of
genomic DNA within the capsid structure occurs followed
by cell lysis and release of progeny phage to continue the
life cycle
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micropockets [27]. This heterogenity further
contributes to the antibiotic recalcitrant nature
of the biofilm.

9.2.3 Stage 3. Maturation [30]

Acquiring certain cell density within the con-
fines of the exopolymeric substances turns on
the production of autoinducer signaling mole-
cules by the cells which control the formation of
quorum sensing molecules (QSM) [11]. Quorum
sensing (QS) is a cell population-dependent gene
regulatory mechanism for coordinated commu-
nity behavior which is characteristic of biofilms
[31]. QS signal molecules have a low molecular
weight and belong to a wide range of chemical
classes including acyl homoserine lactones
(AHLs), furanosyl borate diesters (Al2), cis-
unsaturated fatty acids (DSF family signals), and
peptides. QSM and their regulation have been
excellently reviewed and also a major target for
anti-biofilm strategy development [32]. LuxI/
LuxR and RhII/R quorum sensing systems are
typically seen in gram-negative bacteria such as
Ps. aeruginosa and Enterobacteriaceae family
using specific or a combinations of acyl homo-
serine lactones (AHL) as QSM [30]. The secreted
AHL molecules (synthesized by autoinducer
synthetase LuxI) upon attaining a certain con-
centration bind to LuxR-like protein, which in
turn activate transcription of several downstream
genes which determine the coordinated biofilm
behavior. In gram-positive bacteria, signaling
peptides are recognized by a two-component
signal transduction system which consists of a
histidine kinase-based ATP-binding cassette
(ABC) membrane protein and a cytoplasmic
response regulator protein represented by the
agrBDCA quorum sensing system in S. aureus
[31]. In Streptococcus species a conserved quo-
rum sensing system represented by ComCDE
quorum sensing system regulates bacteriocin
production as well as several virulence factors
including biofilm formation [33]. A LuxS/AI2
autoinducer interspecies quorum sensing mole-
cule composed of interconvertible furanosyl
borate diester has been described for many

gram-negative and gram-positive bacteria [34].
In a mature biofilm, QS circuits has been reported
to affect antibiotic resistance by upregulating
antibiotic degrading enzymes, multiple drug
efflux pumps, horizontal gene transfer of antibi-
otic resistant carrying extrachromosomal ele-
ments as well as retarding antibiotic permeability
by production of exopolymeric matrix [11, 32].
Also, horizontal gene transfer within the close
architecture of the biofilms permits the transfer
of antibiotic resistance genes via extrachromo-
somal elements as well as extracellular DNA [8].

9.2.4 Stage 4. Biofilm Dispersal

During the stationary phase of the biofilm
wherein cell density is so high as to cause nutri-
ent deficiency, QSM initiate the dispersal or dis-
assembly of the biofilm [35]. Initially, as
synthesis of EPM is inhibited, QSM induce pro-
duction of biofilm EPM degrading enzymes as
well breakdown of non-covalent interactions
within the biofilm begins. An increase in num-
ber of swarming motile cells which break away
from the parent biofilm for fresh colonization of
niches is observed [36]. In P. aeruginosa, Lasl/
LasR positively regulates the expression of the
periplasmic tyrosine phosphatase TpbA [35].
TpbA  dephosphorylates the membrane-
anchored GGDEF protein TpbB deactivating its
DGC activity and thus reducing c-di-GMP lev-
els in the cell. As a result, the c-di-GMP recep-
tor PelD is no longer bound to c-di-GMP and
PEL polysaccharide production is decreased
[37]. QSM such as AHL and PQS signals also
promotes the synthesis of biosurfactant rhamno-
lipids whose overproduction results in biofilm
detachment [38]. In cases of immunocompro-
mised patients, such dispersed biofilms may
result in spread of systemic infections [2].

The main concerns associated with biofilm
formation on abiotic prosthetic devices are
heightened resistance to antibiotic regimens and
the development of persister cells within the bio-
film niches which are difficult to eradicate [6-8].
The various mechanisms for antibiotic resistance
within biofilms are summarized in Table 9.1.
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Table 9.1 Mechanisms of antimicrobial resistance in biofilm associated with abiotic prosthetic devices

Property Mechanisms References
Biofilm exopolymeric substances | Retard penetrations of antimicrobial compounds [6,25-27]
(EPS) and matrix Adsorb antimicrobial compounds
Harbor antibiotic degrading enzymes
Heterogeneity in growth rate and | Biofilm composed of aerobic and microaerophilic pockets, | [27]
metabolism nutrient deficient/rich areas create conditions causing cells
to become refractory to effect of antibiotic action
Quorum sensing Regulate virulence factors including antibiotic resistance [31, 32, 34]
genes, motility and virulence factors
Multiple drug efflux pumps Upregulated within the biofilm population under stress [9]
conditions
Genetic transfer Biofilms matrix also contains eDNA and permits genetic [6]
transfer of antibiotic resistance gene by conjugation,
transformation and transduction
Persister cells Stationary phase cells develop into dormant persister cells | [7, 8]
which are highly antibiotic resistant

Biofilm Infections Associated
with the Use of Abiotic
Prosthetic Devices

9.3

In the multidisciplinary regenerative medicine
field, replacement of non-functional organs or
systems with artificial implants has revolution-
ized modern medicine [1]. Indwelling abiotic
prosthetic or implant devices have also become a
niche area for the development of highly
antibiotic-resistant device-related biofilm infec-
tions. Device-related infections (DRI) are defined
by Center for Disease Control (CDC) as infection
in a patient with a device (intravascular catheter,
endotracheal tube or indwelling urinary catheter)
that was in use for at least 48 h before the onset of
infection [39]. The most frequently isolated bac-
terial biofilm formers associated with DRI
include gram-negative Klebsiella pneumonia,
Pseudomonas aeruginosa, Acinetobacter bau-
mannii,  Escherichia  colli, gram-positive
Staphylococcus aureus, and emerging pathogens
coagulase-negative  Staphylococci ~ (CoNS).
Candida sp. amongst fungi are most commonly
isolated with implant devices. Most of these are
opportunistic pathogens derived from normal
microflora or they may be nosocomial in origin
[2, 39, 40].

The following is a brief account of the com-
mon DRI associated with biofilms. The various

biomaterials used with medical devices and the
associated biofilm-related infections are summa-
rized in Table 9.2.

9.3.1 Catheters

Catheter is a thin tube made from medicine grade
material that can be inserted in the body or used
for drainage, supply of fluids or gases, surgical
operations applicable for cardiovascular, urolog-
ical, gastrointestinal, cardiovascular, and oph-
thalmic uses [41]. The most common
biofilm-related infections are reported for the
use of indwelling vascular and urinary catheters.
Catheter-associated urinary tract infections
(CAUTI) accounts for 80% of urinary tract
infections leading to patient morbidity which
may develop into further complications such as
cystitis, pyelonephritis, gram-negative bactere-
mia, prostatitis, epididymitis, endocarditis, ver-
tebral osteomyelitis, septic arthritis,
endophthalmitis, and meningitis [42, 43, 59].
Acidic pH of the urine also results in the forma-
tion of crystalline biofilms within the catheter
which is the cause of bladder and urethral trauma
[2]. In situ central venous catheters (CVC) are
sites for biofilm formation both on the outer
sides and luminal region [2]. Catheter-related
bloodstream infections (CRBSI) or central line-
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Table 9.2 Biofilm related infections on commonly used abiotic prosthetic devices

Abiotic prosthetic

devise Biomaterials used Diseases Biofilms References
Intravascular Polyvinyl chlorine, CVC septicemia Staphylococcus aureus, [41, 42]
catheters polyurethane, latex, Candida,
silicone Enterobacteriaceae
Indwelling urinary Silicone rubber, nylon, Bacteriuria, Pseudomonas aeruginosa, E. | [42, 43]
tract catheters polyurethane, polyethylene | CAUTI coli, Proteus, Klebsiella,
terephthalate (PET) Enterobacteriaceae,
Enterococcus, Enterob acter
faecalis
Intracardiac Titanium, graphite, Endocarditis Enterococci, S. aureus [44-47]
prostheses, total pyrolytic carbon, and CoNS, Klebsiella sp., E.
artificial heart, polyester coli, Streptococci,
permanent Hemophilus sp.,
pacemakers (PPMs), Actinobacillus
implantable actinomycetemcomitans,
cardioverter Cardiobacterium hominis,
defibrillators (ICDs), Coryneb acterium sp.,
cardiac Chryseobacterium sp.,
resynchronization Bacillus sp., Mycobacteria
devices (CRTDs)
Endotracheal tubes Polyvinylchloride, Nosocomial Streptococci, Ps. aeruginosa, |[2, 48,
(ETT) polyurethane pneumonia, Acinetobacter baumannii, 49]
ventilator- Staphylococcus aureus,
associated Candida albicans
pneumonia
Corneal/ retinal Polymethylmethacrylate Endophthalmitis, | S. aureus, CoNS, [50, 51]
implants (PMMA), silicone, keratitis, Propionibacterium acnes,
hydrophobic and periorbital and Pseudomonas aeruginosa,
hydrophilic acrylate and sclera buckle non-tubercle mycobacteria,
collamer photovoltaic infections Serratia, Fungi
conjugated polymers
Orthopedic Titanium (and its alloys), Prostheses Pseudomonas aeruginosa, [45, 52]
prostheses stainless steel, cobalt- infections MRSA, Propionibacterium
chromium, various acnes, Haemophilus
polymeric biomaterials influenzae, Enterococci,
(e.g., ceramics, Streptococcus viridans,
hydroxyapatite, and Escherichia coli,
polyethylene, PMMA, Citrobacter, Acinetobacter,
cement) Serratia marcescens,
Klebsiella pneumoniae,
Coryneb acterium
Dental implants, Titanium, zirconium, Peri-implantitis Prevotella intermedia, [3, 53,
periodontal ceramics Porphyromonas gingivalis, 54, 55]
reconstruction Aggregatibacter
actinomycetemcomitans,
Prevotella nigrescens,
Treponema denticola,
Bacteriodes forsythus
Intrauterine Copper, stainless steel, Endometritis, Staphylococci, Group B [56-58]
contraceptive plastics—PVA pelvic Streptococci, Micrococcus,
devices, penile progesterone, silver inflammatory Corynebacteria, Candida
prosthetics disease,

peritonitis
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associated bloodstream infections (CLABSI) are
chronic complications associated with biofilms
of CoNS, S. aureus, and members of
Enterobacteriaceae family which require cathe-
ter removal which is in itself a high-risk proce-
dure [41, 60].

9.3.2 Endotracheal Tubes (ETT)

Biofilm formation on the inner surface of ETT in
mechanically ventilated patients has a very high
rate of incidence and it has been related to the
pathogenesis of ventilator-associated pneumonia
(VAP) and nosocomial pneumonia [48, 49, 61].
Advances imaging techniques such acoustic
reflection technique, optical microscopy, and
atomic force microscopy have been used for
imaging the ETT biofilm in clinical study along
with microbiological colonization data [49].
Majority of biofilm were correlated with VAP
pathogens with 73% of the cases being mainly
Pseudomonas species, Staphylococcus aureus,
Candida albicans, Enterobacteriaceae.
Streptococcus viridans, Acinetobacter bauman-
nii, CoNS, and diphtheroid bacilli were also
found to colonize ETT.

9.3.3 Orthopedic Implants

Orthopedic implants are an integral part of the
treatments of osteoarthritis as well as bone frac-
ture management. Periprosthetic joint infections
(PJI) are a cause of high morbidity and eco-
nomic loss to operated patients [52]. Trampuz
and Zimmerli (2008) classified PJI into three
categories based on infection onset: (i) early
infection in less than 3 months post implanta-
tion caused by highly virulent organisms, e.g.,
S. aureus, E coli; (ii) delayed infection occur-
ring 3-24 months post implantation caused by
CoNS or Propionibacterium acnes; and (iii) late
infection post 24 months caused by S. aureus,
Streptococci, and gram-negative rods usually as a
consequence of hematogenous spreading from
skin or soft tissue infections [44]. Biofilms can be
found attached to the hardware, cement, bone,

and fibrous tissue and even in joint fluids [45,
46]. Diagnosis of PJI is cumbersome and difficult
wherein direct culture of organism is one criteria
for which molecular diagnostic methods such as
polymerase chain reaction amplification of 16 s
rDNA sequence of biopsy or joint fluid in addi-
tion to fluorescent in situ hybridization (FISH)
techniques have been employed [52].

9.3.4 Intracardiac Implants

Intracardiac prostheses, total artificial heart, per-
manent pacemakers (PPMs), implantable cardio-
verter defibrillators (ICDs), and cardiac
resynchronization devices (CRTDs) are some of
the devices associated with cardiovascular
implantable electronic device infections (CIED)
[40, 47, 62]. Prosthetic valve endocarditis (PVE)
is a biofilm infection on the heart valve and asso-
ciated heart tissue wherein S. aureus, CoNS S.
epidermis, Candida, and Enterococcus are impli-
cated in 80% of the cases [63]. PVE occurs in
71% cases within the first year of implantation
and complications include heart failure (32.8%),
stroke (18.2%), intracardiac abscesses (29.7%),
cardiac surgery (48.9%), and hospital death
(22.8%) [63].The pacemaker pocket as well as
leads of the implantation in the endocardium are
susceptible to S. epidermis and Candida bio-
films. Treatment regimen requires rigorous anti-
biotic therapy and in most cases implant
replacement  [64].  Corynebacterium  sp.,
Propionibacterium acnes, gram-negative bacilli
including Pseudomonas aeruginosa, and non-
tubercle Mycobacteria species account for a
minority of CIED infections [62].

9.3.5 Intrauterine/ Penile Prosthetic

Devices

An important risk factor for recurrent vulvovagi-
nal candidiasis was found to be biofilm-related
infections associated with intrauterine devices
(IUD) [56]. In a study wherein 56 IUD were stud-
ied, 26 were Candida positive which were repre-
sented with highest biofilm formation in Candida
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krusei and C. glabrata strains, followed by C.
albicans and C. tropicalis. The minimum inhibi-
tory concentrations for fluconazole and ampho-
tericin B were 64-1000 times higher for
biofilm-forming isolates over the free-living
counterparts [57]. Patients treated for erectile
dysfunction, prostate cancer, and Peyronie’s dis-
ease, amongst others, are being treated with
inflatable penile prosthesis implants. Biofilm-
related infections were found on penile prosthesis
devices in 80% of the cases where clinical symp-
toms associated with biofilm infections included
pus and induration over the device with presenta-
tion of fever, erythema, and chronic pain [58].

9.3.6 Dental Implants

Oral rehabilitation systems regularly replace old
teeth with dental implants (artificial teeth) in
combination with artificial crowns. Dental
implant-supported fixed prosthesis are in con-
tact with oral fluids and abutments on one part
while the other is in contact with tissue.
Maximum biofilm formation has been reported
around the implant-abutment connection or
below the original bone margin level [3].
Implant-related biofilm infections may lead to
peri-implantitis that results in the progressive
loss of bone tissue [30]. The bacteria that cause
per-implantitis and periodontitis are mainly
anaerobic gram-negative bacteria such as
Prevotella intermedia, Porphyromonas gingiva-
lis, Aggregatibacter actinomycetemcomitans,
Prevotella nigrescens, Treponema denticola,
and Bacteroides forsythus [30].

9.3.7 Other Device-Related
Infections

Cochlear implant, intraocular lens, breast
implants, and implantable neurological simula-
tors are some of the other biofilm-associated
device-related infections [2, 6, 50, 51]. Microbial
biofilms formed on breast implants might con-
tribute to a chronic inflammatory response and
thus formation of capsular fibrosis and subse-

quent capsular contracture [65]. Pathophysiology
of biofilm-related CC suggests the involvement
of Staphylococcus epidermidis is a part of the
microflora of the skin and the endogenous flora
of the breast. Other bacteria isolated from bio-
films on implants include Propionibacterium
acne, Staphylococcus members of
Staphylococci, Streptococci, Bacillus species,
Escherichia  coli, Mycobacterium  species,
Corynebacterium, and Lactobacilli [2].

aureus,

9.4 Bacteriophage as Biocontrol

Agents (Phage Therapy)

One of the most abundant predatory acellular
biological entities on our planet are viruses which
structurally consists of genetic material (either
DNA or RNA) encapsulated in a proteinaceous
coat. Viruses that infect bacteria are known as
bacteriophages [15]. These bacteriophages
(phages) are nano-sized intracellular obligate
predators with a high degree of specificity for
bacterial cells. Following specific phage-host
receptor interaction, the genetic material of the
phage is injected into the host. The successive
spatial and temporal events in the phage life cycle
may follow any of the following turns: Lytic
infections involve hijacking of the host replica-
tion machinery for the generation of several cop-
ies of progeny virion, its assembly and eventual
host cell lysis for progeny release in the sur-
rounding milieu. Alternatively, in lysogeny, the
phage genome may integrate into the host chro-
mosomal material or assume episomal status
within the cytosol for several host multiplication
rounds. Upon encountering fortuitous times, the
phage may reactivate its lytic genes and ensue the
lytic course of events. Hence, lytic phage infec-
tions can successfully eradicate an entire bacte-
rial population without affecting surrounding
human cells and be contained when the vulnera-
ble population has been cleared (Fig. 9.1).

Use of appropriate phages in combating infec-
tious pathogens has been aptly termed as phage
therapy and has been in use since the 1920s. Its
historical significance has been extensively cov-
ered in recent excellent reviews on the subject



9 Bacteriophages as Biocontrol Agents of Biofilm Infections Associated with Abiotic Prosthetic Devices 89

[19, 66]. The advent of antibiotic era cast a
shadow on the use of phage therapy post World
War, although it has been practiced successfully
since in the Eliava Institute in Tbsilli, Georgia,
and the Hirsfeld Institute, Wroclaw, Poland. The
interest in phage research and therapy however
continued in research institute all over the world
as evidenced by their large numbers in the litera-
ture databases. The translation of phage therapy
in research laboratories to their use in the bio-
technology industry and its commercial applica-
tions has taken on a furious pace with rapidly
emerging antimicrobial drug resistance amongst
bacteria.

Bacteriophages are naturally occurring bacte-
rial population control predators which thrive
when provided with hosts confined within the
biofilm EPS and hence serve as effective biofilm
control agents [14, 67]. The advantages of bacte-
riophages as biofilm-controlling strategies are
manifold as described below:

1. Target specificity: Biofilms offer large num-
bers and concentrated host for rapid multipli-
cation of the phages. Unlike antimicrobial
drugs, phages can differentiate between
pathogens and beneficial microbiomes. Since
bacteriophages are highly specific in their tar-
get identification and lysis, the phages can be
directed for pathogenic biofilm and beneficial
normal microflora can be spared during treat-
ment regimen.

2. Autodosing: Phage thrive on the presence of
host. Once phages have been delivered to tar-
get locations, they perpetuate as long as hosts
are present and eventually are eliminated from
the system and there are no side effects of
extra dosage. This system of autodosing
makes phage therapy highly attractive.
However, in practice, presence of immune
response and other environmental factors may
require repeated application of phage treat-
ment for efficacy.

3. Non-toxicity: Typically lytic tailed phages
belonging to the Myoviridae, Siphoviridae,
and Podoviridae families are used for phage
therapy. Phages are nucleoprotein and there is
no evidence of any harmful effects of phage

on the immune response. However, it is
imperative that highly purified phage prepara-
tion be used for human applications.

4. Phage genetic engineering: Phage genome
show great plasticity and it has been possible
to genetically re-engineer phage as homing
devices to infectious sites [68]. Phage display
technology helps express peptides, antibodies,
enzymes, quorum sensing antagonists, and
antimicrobial compounds within the phage
capsid. Phage-mediated delivery of CRISPR/
Cas-encoded RNA-guided nucleases (RGNs)
is a recent strategy in causing digestion of tar-
get bacterial DNA in a sequence-specific
manner. Staphylococcal $pMNIphage parti-
cles carrying CRISPR/Cas in engineered
phagemid with spacers targeting certain S.
aureus virulence genes killed virulent, but not
avirulent, S. aureus. A reduction was observed
in virulent S. aureus strain cells on a skin
infection mouse model [69]. Use of multiple
CRISPR spacers encoded on phage genomes
were found to be efficient in degrading multi-
ple DNA targets in the infected host cell [13].

5. Stability and formulation diversity: Phage
preparations are stable and can be formulated
into various creams, ointments, and colloid
suspensions and impregnated into surfaces
without losing their viability or biofilm con-
trol potential [70].

9.5 Strategies Adopted for Anti-
Biofilm Phage Treatments
9.5.1 Phage-Modified Polymeric

Substrates

Phage sequestered onto the adsorbing biomateri-
als or coating surfaces with hydrogel-containing
phages have been developed to prevent micro-
bial adhesion [71] (Fig. 9.2a). Covalent anchor-
age of phages onto adsorbing surfaces ensures
that the phage is capable of injecting its genetic
material in the adsorbing bacteria and result in
the generation of several copies of progeny
which are free living. E. coli- and S. aureus-spe-
cific T1 and ¢ phages were simultaneously cova-
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A Preventing microbial adsorption

‘Qo%yc

(a) Phage coating on
abiotic prosthetics
prevents microbial

adsorption.

Qo’y‘o

(b) Encapsulated Phage
polymers prevents biofiims
formation

(c) Engineered Phages
expressing enzymes,
antibodies, siRNA,
ribozymes, antibiotics, anti
microbial drugs

B Mitigating mature biofilms using in vivo phage applications

(d) Lytic Natural/
Engineered Phages expressing
EPS depolymerases & lysins
penetrate through EPS and
infect biofilms on devices

Fig. 9.2 Bacteriophage applications to prevent biofilm
infections on abiotic prosthetic devices. (A) Prophylactic
prevention by inhibiting microbial adsorption and adhe-
sion by phage coating (a), encapsulated phage polymers
(b), or coating with engineered phages expressing antibio-
film compounds (c). Phage coating can also function as
biosensors for diagnostic applications. (B) Therapeutic
approach by phage application on mature biofilms.
Penetration through mature biofilm exopolymeric sub-

lently adsorbed onto polyethylene and
polytetrafluoroethylene surfaces which could
effectively eliminate biofilm formation [72]. A
US patent (US20160010077 A1) has also been
filed by the University of Southern Mississippi
for a method for the covalent attachment of bac-
teriophages on to polymeric surfaces (http:/
www.google.sr/patents/US20160010077).
Triggered release of phages from agarose/hyal-
uronase hydrogel matrixes for the control of skin
biofilm infection model of S. aureus was also
found to be an effective strategy [73].

(e) Lytic Natural/Engineered
Phages expressing antibiotics,
Quorum sensing antagonists,
dispersive products proliferate

within biofilm

(f) Biofilm disrupted:
Natural/Engineered Phages
virions released from cell
disruption and available for
autodosing

stances (EPS) by production of depolymerases and lysins
(d). Upon phage penetration, lysis of biofilm residents by
natural or genetically engineered phages expressing anti-
biotics, quorum sensing antagonists or biofilm-dispersive
products like nitric oxide and enzymes (e). Once the bio-
film is disrupted, virions would be released and available
for mitigation of other biofilms on abiotic devices via
autodosing regime (f)

9.5.2 Recombinant Filamentous
Phages as Nanocoatings

Filamentous phages such as M13 phage, RS2
RNA phage, and T4 phage are being used as
nanoengineering biosystems which are being
used as nanoscaffolds to express antimicrobial
compounds and as biosensors [20, 74, 75].
Filamentous phages coat proteins coated with
aptamers, ribozymes, siRNA and vaccines form
excellent nanocarriers [74].
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9.5.3 Phage Therapy, Phage
Cocktails, and Cotherapy

Phage therapy for biofilms is usually carried out
by direct application over the biofilm formed on
the abiotic prosthetic device surface. Factors
affecting biofilm clearance success in direct
applications include phage dosage, route of
administration as well as the stage of biofilm
maturation and its resident clinical species [16,
76, 77]. Phage cocktails (combination of phage
with varying host specificities) have also proved
very efficacious in controlling polymicrobial
infections on abiotic prosthetic devices [78].
Medical applications of phage therapy have
undergone clinical trials as in the case of phage
burn (funded by European commission), a phage
cocktail targeting Ps. aeruginosa and E. coli
infections associated with burn patients [20].

Use of phages alongside sub-minimum inhib-
itory concentrations of antibiotics in solution or
in an immobilized form have been shown to be
efficacious in controlling mature biofilms [79,
80]. Meropenem-phage and amikacin-phage
combination showed synergistic activity in
reducing planktonic and biofilm formed Ps.
aeruginosa biofilms [81]. Phage antibiotic syn-
ergistic treatment for Ps. aeruginosa PA14 bio-
film was tested with phage and 5 different
bactericidal antibiotics [82].

9.5.4 Phage Enzybiotics

Phage-derived products such as bacteriolytic
enzymes: lysins, depolymerases, as well biofilm
exopolymeric matrix degrading enzymes are
being exploited as anti-biofilm agents while cir-
cumventing potential threats associated with the
use of live phages [83, 84]. Engineered bacterio-
phage enzymes have been employed to disperse
biofilms by breaking down components of the
extracellular polymeric matrix [85]. These
phage-derived endolysins, including the novel
Artilysins, show activity against persister cells
of gram-positive, gram-negative, as well
Mycobacterial origin [86]. The T7 phage was

genetically engineered to express the dsp B gene
encoding biofilm-dispersing enzymes from
Acinobacillus — actinomycetemcomitans which
drastically reduced E. coli biofilm counts even as
such enzymes have low substrate specificities
[87]. Use of T7-engineered phages expressing
quorum sensing quenching enzymes AiiA lac-
tonase effectively inhibited mixed biofilm of Ps.
aeruginosa and E.coli [88]. S. aureus biofilm
control with the use of a chimeric protein
CHAPSH3b derived from peptidoglycan hydro-
lase of phage vB_SauS-philPLA88 and lyso-
staphin was reported [89].T4 lysozyme is fused
with cellulose-binding module for facilitating
phage on wound dressings and retained antimi-
crobial activity against E. coli and Micrococcus
lysodeikticus bacteria [90].

9.5.5 Phage Directly Affecting
Antibiotic Resistance within
the Biofilm

Antibiotic resistance is one of the major problems
of biofilm-associated prosthetic device infections.
Isolation of phages that exert selective pressure on
bacteria to confer them sensitive to the current
regimen of antibiotics is a new strategy in phage
biocontrol. A lytic bacteriophage OMKO1 (fam-
ily Myoviridae) of Pseudomonas aeruginosa that
utilizes the outer membrane porin M (OprM) of
the multidrug efflux systems MexAB and MexXY
as a receptor-binding site has been isolated [91].
Phage-OMKO/ -resistant strain (oprM knockout)
showed increased sensitivity to ceftazidime, cip-
rofloxacin, tetracycline, and erythromycin antibi-
otics. A novel method of introducing antibiotic
sensitizing gene cassette through genes rpsL and
gyrA to two antibiotics, streptomycin and nali-
dixic acid, respectively, through temperate phage
therapy to reverse engineer antibiotic resistance in
E. coli pathogens is reported [92]. Gene transfer
of antibiotic resistance genes through conjugative
plasmids has higher frequency rates within the
closely confined populations within the biofilm. A
lytic plasmid-dependant phage PRDI and
antibiotic-resistant plasmid RP4 co-evolution was
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studied in E. coli and Salmonella enteric.
Infections with PRD1 drastically reduced the fre-
quency of antibiotic resistance cells [93].
Bacteriophages could play a significant role in
restricting the spread of plasmid-encoded antibi-
otic resistance [94].

9.5.6 Overcoming Bacterial Phage
Defense Systems and CRISPR-
Dependent Biofilm Inhibition

Development of resistance to phage infections by
the host may result in ineffective biofilm control.
Bacterial cells may acquire resistance either by
altering phage entry receptors or through viral
nucleic acid degradation post entry via the
CRISPR (Clustered regularly interspaced short
palindromic repeats) and CRISPR-associated
Cas9 cascade proteins [69, 95]. CRISPR are pro-
karyotic adaptive immune systems which involve
an array of repetitive sequences with spacers
acquired from potential foreign DNA sources
such as viruses, plasmids, or transposons. Upon
reinfection with foreign DNA source, CRISPR
RNA (crRNA) activates Cas proteins to degrade
the complimentary foreign DNA.
Bacteriophages in response encode anti
CRISPR proteases that inhibit the CRIPR defense
system [96]. Genetically engineered phages that
encode anti CRISPR proteases have been
designed. Pseudomonas DMS3 temperate phage
through elegant experiments involving the
CRIPR Cas system was shown to modulate bio-
film formation and swarming motility behavior
[97]. In Streptococcus thermophilus phages
mutations within the protospacer regions provide
protection against CRISPR cas system. In Vibrio
cholera phage-encoded CRISPR/Cas system is
used to counteract a phage inhibitory chromo-
somal island of the bacterial host. A recent study
describes a novel Bacteriophage extrusion
(BREX) system which involves a six cassette
gene system in Bacillus subtilis wherein host
DNA is methylated at fifth position of a non-
palindromic 5-TAGGAC-3 hexamer sequence
and phage inhibited by blocking phage DNA rep-
lication of both lytic and temperate phages [98].

Phage-transferable CRISPR-Cas systems are
capable of specifically killing pathogens or resen-
sitizing them to antibiotics [69, 99].

9.5.7 Phages and Quorum Sensing

In a recent work, it was shown that phage
phiCDHMI infecting Clostridium difficile har-
bors QS gene homologs (agr3) which can influ-
ence pathogen behavior [100]. The decision
between lytic and lysogenic behavior of phage
infection is also shown to be guided by arbitrium
system which consists of the production of oligo-
meric signaling peptides [101]. Understanding
phage communication signals can help better
manipulate biofilm dispersal strategies using
phage therapy. Engineered T7 phages expressing
quorum quenching molecules lactonases have
successfully inhibited Ps. aeruginosa and E. coli
biofilm [88].

9.5.8 Phages as Theranostics

Theranostics combines specific targeted therapy
wherein diagnosis and therapy are combined in a
single agent [102]. Classical phage typing involv-
ing the use of specific phages for bacterial strain
identification has now been extended to the use of
phages as biosensors or diagnostic markers [20].
Fluorescent-labeled Mycobacteriophage DS6A
can differentiate between members of MTB com-
plex [103]. NanoLuc reporter phage has been
developed for the detection of E. coli OH:157
foodborne pathogen [104]. Similar technological
advances can be applied for the diagnosis as well
as therapy of DRI-associated biofilms.

9.5.9 Phages as Vaccine Delivery
Agents

Prophylactic measures using phage nanosystems
used as vaccine-carrying agents prior to a
planned implantation for the prevention of bio-
film formation by common skin microflora or
nosocomial infections are being explored [75]. A
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combination of phage display vaccines and
phage DNA vaccines are being developed
wherein antigens as fusion products are
expressed on the major surface proteins of
phages such as M 13 and T4 phages while it car-
ries gene for vaccine candidate in its genome
under a strong expression promoter [105].

9.6 Control of Biofilm-
Associated DRI with Phage

Applications

Applications of the above phage control strate-
gies are being successfully applied for the mitiga-
tion of biofilm-related infections on medical
implants in in vitro studies, animal models, and
human therapies. The control of catheter-induced
urinary tract infections (CAUTI) caused by
in vitro-induced Proteus mirabilis biofilms with
two novel virulent phages, the podovirus vB_
PmiP_5460 and the myovirus vB_PmiM_5461
was reported [106]. Further, phage-coated cathe-
ters using a dynamic biofilm model simulating
CAUTIs showed a significant reduction of P.
mirabilis biofilm formation up to 168 h of cathe-
terization [106]. The potential of a 3 phage cock-
tail in treatment of established infection as well
as early colonization of in vitro model of cathe-
terized urinary tract infection showed significant
decrease in crystalline biofilm formation [107].
Another study investigated the effect of pretreat-
ing hydrogel-coated silicone catheters with mix-
tures of mixed species (Pseudomonas aeruginosa
and Proteus mirabilis) bacteriophages on the
development of single- and two-species biofilms
in a multiday continuous-flow in vitro model
using artificial urine media. Phage pretreatment
reduced P. aeruginosa biofilm counts by 4 log10
CFU/cm2 (P < 0.01) and P. mirabilis biofilm
counts by >2 logl0 CFU/cm? (P < 0.01) over
48 h [108].

Catheter-related  bloodstream  infections
(CRBSI) are indicative in patients requiring long-
term treatment of parenteral nutrition, chemo-
therapy, or hemodialysis [60]. Antibiotic lock
therapy (ALT) is a catheter sterilization method
using high concentrations of antibiotics into the

catheter lumen for extended periods of time. In a
rabbit model, treatment of 24-h S. aureus biofilm-
infected central venous catheters with a S. aureus-
specific bacteriophage K antimicrobial-lock
technique significantly reduced S. aureus bacte-
rial colonization and biofilm presence [109].
Mean colony-forming units (CFU/ cm?) of bio-
film measured in the distal catheter segment were
significantly decreased in experimental animals
(7.6 x 10° CFU/cm?) as compared with controls
(1.2 x 10° CFU/cm?). Scanning electron micros-
copy demonstrated that biofilms were present on
the surface of five of five control catheters but
only one of five treated catheters (P = 0.048).

In catheter-induced aortic vegetation and
experimental endocarditis due to Ps. aeruginosa
biofilm studied in Wistar rats, synergistic action
between intravenous supply of phage cocktail
and antibiotic ciprofloxacin reduced bacterial
load in comparison to control [90]. Synergistic
activity of phage and antibiotic combination has
proved to be highly effective in controlling
antibiotic-resistant biofilms. In vitro fibrin clots
as well as aorta-induced experimental endocardi-
tis treated with phage/ciprofloxacin combina-
tions were highly synergistic, killing >6 log
CFUs/g of vegetations in 6 h and successfully
treating 64% (n = 7/11) of rats in comparison to
single-dose phage therapy or ciprofloxacin mono
treatments that killed 2.5 log CFUs/g of vegeta-
tions in 6 h (P < 0.001 vs. untreated controls) .

Prosthetic joint infections (PJI) are a devastat-
ing postsurgical complication [46]. S. aureus bio-
films account for 20-40% arthoplasty infections
following knee or hip joint replacements leading
to prolonged antibiotic treatments, multiple sur-
geries, and replacement of prosthetics or eventual
amputations. The use of engineered bacterio-
phages targeting S. aureus and other microbial
infections has been successfully demonstrated in
the following studies. In an implant-related infec-
tion model in rats, MRSA and Pseudomonas
aeruginosa-specific bacteriophages were tested
with antibiotic regimen of teicoplanin for MRSA
and imipenem, cilastatin, and amikacin for Ps.
aeruginosa, respectively [110]. S. aureus-specific
phage along with linezolid (incorporated in
hydroxymethyl propyl cellulose biopolymer)
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allowed gradual release of the two agents at the
implant site in a mouse model of prosthetic joint
infection with S. aureus ATCC 43300(MRSA)
resulting in reduction in bacterial adherence as
well inflammation [111].

Bacteriophage treatments in face of chronic
symptomatic antibiotic-resistant infections have
also been implicated in having anti-inflamma-
tory properties [112]. In a clinical study, thirty-
seven patients, some with periprosthetic
infections with chronic antibiotic-resistant bac-
terial infections, were treated with oral bacterio-
phage therapy and their inflammation markers
such as C reactive protein and mean WBC were
found to diminish [112].

9.7 Outlooks and Challenges

Biofilm infections of prosthetic devices not only
cause inflammatory responses but also lead to
complications due to loosening of implanted
devices, wound dehiscence, or disruption of pros-
thetic valves and embolism. Bacteriophage ther-
apy is a promising alternative to counter effects
of recalcitrant biofilms and several phage strate-
gies have been described for the control of infec-
tious microorganisms. Even so, specific study
targeting their behavior with biofilms is still
being explored. Some of the greatest challenges
that phages face within the biofilm are penetra-
tion through the exopolymeric substances (EPS)
which is being hopefully addressed with several
genetically engineered phages expressing lysins
and EPS degrading enzymes. Even within bio-
films, the presence of multiple species is com-
mon and hence the use of broad range phages is
required for effective biofilm removal [113]. A
host range expansion protocol wherein cocultur-
ing of several Ps. aeruginosa cultures with four
phage mix was used to develop a phage cocktail
with the requisite host range [114]. Two sequen-
tial multihost strategies have been evolved for
the isolation of polyvalent bacteriophages PX1
of the Podoviridae family and PEfl of the
Siphoviridae family using Pseudomonas putida
F1 or Escherichia coli K-12 and subsequently
used to infect model problematic bacteria [115].

Phage dosing for biofilms clearance on pros-
thetic devices is very critical. Initial high dose of
phage application when bacterial density is high
results in an immediate arrest of biofilm growth.
However, if there is low bacterial density, initial
phage concentrations may decay as a conse-
quence of lack of adequate host supply [116].
Slow release of appropriate dosages of phages
using phage encapsulation technology can be
used to maintain in situ phage amplification in
response to microbe within the biofilm [117,
118].

Immune response to phage administered is
still of concern in human phage therapy and stud-
ies documenting humoral responses to phages
have been recorded [119]. Immune response to
Pseudomonas phages F8 and T4 in mice showed
an upregulation of innate (phagocytes) and spe-
cific immune response (antibodies) to the circu-
lating phages similar to that observed for
eukaryotic viruses [120]. Mathematical modeling
of the experimental data also showed that preim-
munization or natural pre-exposure to a phage
may hamper its effectiveness as a therapeutic
agent.

Use of biofilm-dispersing agents in co-therapy
approaches or the use of genetically engineered
phages expressing dispersive enzymes, nitric
oxides, and quorum sensing antagonists is effec-
tive in targeting biofilms [68, 87]. Following a
biofilm-dispersive regimen, the use of antimicro-
bial agents at much lower inhibitory concentra-
tions appears to be a comprehensive antibiofilm
strategy.

Detection of biofilms remains one of the great-
est challenges of biofilm infections [5]. New
molecular methods should be introduced in the
practice along with microscopy which can sub-
stantially reduce time taken in conventional cul-
ture methods [4]. These innovative methods are
expected to provide a more sensitive bacterial
enumeration and detection that would contribute
to better treatment regimens. Phage theranostics
combine diagnosis and therapeutic applications
for effective and timely control of biofilm-
associated device-related infections [102].

Apart from preventing infections on pros-
thetic devices, bacteriophages are also finding
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use in regenerative medicine as nanoscaffolds
for tissue regeneration [20]. Genetically engi-
neered M 13 phages have long rod-shaped nano-
structures which self-assemble as scaffolds
used for tissue regeneration [71]. Additionally,
the M13 major coat protein can be genetically
engineered to express cellular differentiating
markers helping in osteogenesis and neovascu-
larization. Phage-based regenerative medicine
shows great promise with developing technolo-
gies such as 3D printing and precision-based
nanomedicines [20].

Since there is currently no legislation regard-
ing the use of bacteriophage therapy, the develop-
ment of bacteriophages as novel drugs comes
under the purview of the Food and Drug
Administration (FDA) in the United States.
Similarly the efficacy of phage therapy is yet not
approved by the European regulatory standards
[121]. Developing a cost-effective phage therapy
module requires deliberation from both the legis-
lative/regulatory bodies and the pharmaceutical
industry. In Belarus, Russia, and Ukraine, a num-
ber of companies including Microgen are already
marketing phage cocktails for a number of infec-
tions which are available as registered medicines
[122]. Intralytics Inc. in the USA has developed a
patented and FDA-approved phage cocktail
against E. coli and Listeria monocytogenes for
the food industry marketed as ListShield™
(http://intralytix.com/). It is hoped that coordi-
nated efforts from the medical community, phar-
maceutical companies, and legislative bodies will
make phage therapy an economical and highly
effective treatment option for the control of DRI.

9.8 Conclusions

Awareness regarding the potential of phage usage
has increased manifold. Commercial patents
afforded for biofilm control of infections in food
industry as well as the success of clinical trials
worldwide are providing a major credence to
phage therapy. It is hoped that combination treat-
ments will gain popularity in mainstream medi-
cine with phage treatment units in hospitals
worldwide.
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10.1 Introduction

Cell-based therapies have been widely used in
experimental and clinical studies as a new thera-
peutic approach for several diseases. In particu-
lar, transplantation of mesenchymal stem/stromal
cells (MSCs) is a very promising therapy option
to support organ and tissue regeneration. During
embryonic development MSCs originate from
the somatic lateral plate mesoderm [1]. Later,
MSCs can be isolated from umbilical cord/cord
blood, amniotic fluid and the placenta, but also
from nearly all tissues and organs of the adult
organism [2]. In vivo MSCs can be traced close
to the vasculature, but they can also be detected
in other distinct localizations such as the endos-
teum or the medullary cavity of the bone [3, 4].
Observations that MSCs can be differentiated
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in vitro into mesodermal lineages such as osteo-
cytes, chondrocytes, and adipocytes [5] sug-
gested a “stem cell” character of MSCs. However,
this has been heavily debated due to lack of evi-
dence, or at least inconsistent reproducibility, of
functional MSCs’ transdifferentiation into non-
mesodermal cell types [6]. Yet, the existence of
MSCs subpopulations featuring different degrees
of stemness or plasticity in vivo and in vitro can-
not be completely ruled out [4, 6, 7].

Currently, the most widely used MSC isola-
tion technique is outgrowth and subculturing of
adherent fibroblastoid cells, and MSCs ex vivo
expansion is feasible for up to 50 cumulative
population doublings [8], hereby providing sub-
stantial cell numbers for manufacture of MSC
therapies. MSCs research has been growing
steadily for decades, and MSCs productions for
clinical applications are on the rise [9]. But what,
besides their relatively simple isolation proce-
dure and their ex vivo upscaling potential, makes
MSCs attractive as cell therapeutics for regenera-
tive medicine? MSCs have been successfully
evaluated for decades in a great variety of pre-
clinical disease models such as cardiac and cere-
bral ischemia, lung injury, bone defects, as well
as autoimmune diseases [10-14]. Meanwhile,
MSCs have been used in the clinic and current
clinical indications for MSCs (mainly derived
from bone marrow and adipose tissue) in regen-
erative medicine, such as organ ischemia or
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skeletal degenerations, are measuring up to
immunomodulation therapy of graft-versus-host
disease (GvHD) [9].

Despite promises and hopes for successful
treatment of severe conditions by MSCs, there
are substantial challenges to overcome before
MSC therapies can be sustainably implemented
in clinical medicine. Particularly, MSCs’ hetero-
geneity [2] and lack of deep understanding their
mechanisms of action are hampering rapid prog-
ress. What we know so far is that MSCs produce
various growth factors and cytokines suggesting
that both their regenerative and immunomodula-
tory functions are mediated by such secreted and/
or released proteins interacting with local effec-
tor cells [9, 15]. Specifically, extracellular vesi-
cles (EVs) are regarded as a relevant means for
factor trafficking between MSCs and other cell
types [16], and, as proof-of-principle, MSC-
derived EVs have been already successfully
applied in the clinic [17].

In the following, the concept of MSC-EVs, as
well as approaches to enhance their release and to
improve their therapeutic potential, will be
discussed.

10.2 Extracellular Vesicles

All eukaryotic cells and even prokaryotes
release nano-sized, membranous vesicles,
termed EVs [18]. Initially believed to take part
only in waste management [19], it has mean-
while become clear that EVs are involved in
many biological processes and diseases, and
that they may have great potential as biomarkers

and possibly also for therapy development in
regenerative medicine [20, 21]. According to
their origin and size, the following particle types
are subsumed under the EV concept: exosomes
(about 30—150 nm, released by exocytosis from
multivesicular bodies), microvesicles (ca. 100—
1000 nm, shed from the plasma membrane), and
apoptotic bodies (about 400-5000 nm, released
by blebbing of apoptotic cells) (Table 10.1)
[22]. According to our current understanding,
exosomes are primarily described as mediators
of short- and long-range communication, while
they, together with microvesicles and apoptotic
bodies, take also part in waste disposal and
recycling [23-26]. EVs’ cargo can consist of
proteins, cytokines, lipids, RNA [e.g., mRNA,
ncRNA], and DNA (e.g., mitochondrial DNA)
(Fig. 10.1) [22, 27, 28]. EV-mediated changes in
cellular activity in both healthy and diseased
conditions can be affected by exosomes carry-
ing MHC complexes [29], anti-inflammatory
noncoding RNA [30], factors promoting angio-
genesis (e.g., PDGF, EGF, VEGF, NF-xB path-
way proteins) [31], or wound healing [32]. Key
in isolation of EVs and EV subpopulations are
reproducible, affordable, and efficient technolo-
gies. Current methods can only enrich but not
selectively purify EV subpopulations, and pro-
tein-RNA-complex contaminations are still an
issue [33-35]. Therefore, it is of no surprise that
EV studies suffer from inconsistencies of repro-
ducibility [36]. However, the number of studies
dealing with EVs has continuously increased in
the past decade and therefore many efforts to
standardize isolation and characterization are
made. Current techniques for EVs isolation are

Table 10.1 Extracellular vesicles: characterization by size, markers, and contents [21, 22]

Type Origin Size Markers Contents
Exosomes Multivesicular bodies 30- Tetraspanins, ESCRT Proteins, lipids,
(endosomal pathway), 150 nm components, PDCDG6IP, coding and
internal budding, exocytosis TSG101, flotillin, MFGES8 noncoding RNA,
cytosol
Microvesicles | Plasma membrane budding | 100— Integrins, selectins, CD40 Like exosomes
1000 nm | ligand
Apoptotic Cell fragmentation/blebbing | 400— Phosphatidylserines Proteins, lipids,
bodies 5000 nm DNA, rRNA,
organelles and
cytosol
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Fig. 10.1 Overview of characteristic extracellular vesicle (EV) contents. LBPA lysobisphosphatidic acid, PS phospha-
tidylserine, LPC lysophosphatidylcholine, ncRNA noncoding RNA

precipitation, differential ultracentrifugation,
density gradient enrichment, size-exclusion
chromatography, and immune-affinity capture
technology. Differential ultracentrifugation is
widely used but without further purification
steps (such as sucrose density gradient ultracen-
trifugation) contaminating proteins are often
present in the EV preparations [20]. Also, ultra-
centrifugation produces aggregates of EVs and
non-vesicular macromolecules [37] and intro-
duces many, likely uncontrollable parameters,
like g-force, rotor-type, and angle [36]. In com-
parison, immune-affinity purification holds
promise for more pure isolates [22].Currently,
there are more and more supporters for size-
exclusion chromatography [34, 38], especially
in combination with preceding concentration
steps [39], as it delivers better preserved bioac-
tive vesicles compared to other isolation tech-
niques [40].

10.3 Preconditioning Regimens
to Enhance MSCs
Regenerative Potential

Cell-based therapies have been widely used in
experimental and clinical studies as a new thera-
peutic approach for several diseases. The protec-
tive effects of MSCs, their conditioned medium
(CM), or EVs derived from MSCs have been
shown to promote regeneration after various
organ and tissue injuries. The mechanisms by
which MSCs enhance regeneration and ease
inflammation and injury are not completely
understood, but multiple pathways might mediate
the release of soluble mediators, EVs, organelle
transfer, and cell-to-cell contacts [41].
Comprehensive profiling of the factors secreted
by MSCs revealed that their secretome consists
of various cytokines, chemokines, growth fac-
tors, extracellular matrix proteins, and molecules
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of vascularization and hematopoiesis pathways.
Factors that limit the regenerative capacity and
the therapeutic efficacy of transplanted MSCs are
their poor migration and survival in the target tis-
sue. Transplantation of MSCs or application of
their CM including EVs or even purified EVs
requires MSCs with maximum regenerative
capacity. Therefore, the rationale should be pri-
marily to develop new strategies for improve-
ment of the regenerative efficiency of MSCs and
the vesicles released by MSCs (Table 10.2). In
vitro pretreatment (“preconditioning”) strategies
have been shown to enhance survival, engraft-
ment, and paracrine properties of MSCs and,
therefore, optimize their reparative and regenera-
tive capacity [9].

Recent data indicate that the regenerative
potential of MSCs could be boosted by pretreat-
ment with environmental or pharmacological
stimuli, enhancing their therapeutic efficacy. The
factors and vesicles released by preconditioned
MSCs are manifold and exert immunomodula-
tory, anti-apoptotic, pro-angiogenic, and trophic
effects [42]. Currently used MSCs precondition-
ing regimens include their culture in a hypoxic or
anoxic atmosphere, incubation with trophic fac-
tors (growth factors, cytokines, or hormones),
application of lipopolysaccharides or pharmaco-
logical agents, as well as overexpression of spe-
cific factors by genetic modification of the cells
[43—46]. Nevertheless, genetic modifications
such as overexpression of genes involved in

migration, apoptosis, or survival can be complex
to translate into clinical-grade protocols.
Therefore, alternative preconditioning regimens
without active manipulation in the genome might
be considered.

Hypoxic preconditioning has been shown to
enhance cell survival, proliferation, and also the
angiogenic potential of MSCs [47-50]. Also,
hypoxic preconditioning protects MSCs by acti-
vation of anti-apoptotic signaling mechanisms
and enhances their angiogenic potential by
induction of the expression of proangiogenic
genes in vitro [51]. Furthermore, preincubation
under hypoxia leads to metabolic changes result-
ing in higher in vivo cell survival after transplan-
tation [48], and also induces the expression of
genes that are involved in migration and homing
(e.g., CXCR4 and SDF-1) [52]. The downstream
signaling pathway during hypoxic pretreatment
is the induction and translocation of HIFla to
the cell nucleus with the activation of gene
expression (e.g., VEGF), and also the generation
of reactive oxygen species (ROS) [50]. The find-
ings of Lee and coworkers showed that hypoxic
preconditioning of MSCs promotes proliferation
and angiogenic cytokine secretion via the
HIF1a-GRP78-Akt  signal pathway, and
improves the survival of the cells in an in vivo
model of hind limb ischemia [53]. MSCs treat-
ment by anoxia also enhances their survival and
promotes their regenerative capacity [54]. As
underlying mechanism of these beneficial effects

Table 10.2 Characteristics of extracellular vesicles derived from MSCs (Modified from [95])

Type [Human] Protein content

RNA content

Adipose-derived MSCs CD105, CD90

miR29¢c, miR150

Wharton-Jelly MSCs CD9, CD44, CD63, CD73

miR15a,-15b,-16

Bone marrow MSCs

AGO2

CD44, CD29, a4- a5-integrins, CD73,
TIA, TIAR, HuR, STAU1, STAU2,

POLR2E, SENP2/SUMOI, RBL1, CXCR7,
LTA4H, CLOCK, IRF6, CRLFI, ILIRN,
miR-24, -103-1, -140, -143-5p, -340, -223,
-451, -564

Embryonic MSCs OCT4, WNT3 [isoform A and B] OCT4, NANOG, GATA4, SOX2, KLF4,
LIN28, miR-292, -294, -295
MSCs from induced CD9, CD24, CD63, CD81, integrins, OCT4, NANOG, SOX2, miR-302/367

pluripotent stem cells glycoproteins

cluster miRNASs

Liver-derived MSCs CD29, a4-integrin, CD44

MATK, MREI11A, CHECK2, MYHI11,
VASP, CDK2, STAU2, miR-451, -223, -24,
-125b, -31, -122
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anoxia induced increased phosphorylation of
cell survival factors such as Akt and endothelial
nitric oxide synthase [55].

ROS and reactive nitrogen species are biologi-
cally active oxidants and are regarded as impor-
tant physiological signaling molecules. Various
reports indicate the role of ROS as second mes-
sengers in the O, sensing [56, 57]. Preconditioning
by ROS has been shown to enhance the proangio-
genic properties of MSCs [57]. ROS generation
increased MSCs secretion of the proangiogenic
and anti-apoptotic factors VEGF and HGF, but
did not affect MSCs ability to differentiate into
cells with endothelial phenotype in vitro [57].
Applying a pharmacological preconditioning
strategy with the mitochondrial inhibitors to
modulate ROS generation in MSCs, Carriere
et al. [57] described a strongly improved revascu-
larization and increased number of CD31positive
cells in the ischemic area of their in vivo model.

In vitro pretreatment with pharmacological
or chemical agents is an alternative precondi-
tioning concept to boost MSCs regenerative
potential. For example, preincubation with
sildenafil (or a silencing vector to phosphodies-
terase-5) significantly improved viability and
decreased necrosis and apoptosis of MSCs. It
increased the release of growth factors in
MSCs, and enhanced their regenerative poten-
tial in an in vivo model of myocardial infarction
[58]. Incubation of MSCs with deferoxamine,
an iron chelating drug, has been shown to stabi-
lize HIF-1a under normoxic conditions as well
as the activity of two metalloproteases [59].
The stabilization of HIF-la resulted in its
increased translocation to the nucleus and in
increased transcription of genes involved in cell
migration [60]. In addition, deferoxamine pre-
conditioning prior to transplantation increased
homing of MSCs through modulating the
expression of chemokine receptors as well as
metalloproteases [59]. Other pharmacological
approaches include the pretreatment with atorv-
astatin [61], diazoxide [62], or curcumin [63].
For example, curcumin has been reported to
cause potent antioxidant and anti-inflammatory
properties, and free radical-scavenging activity

[63]. Consequentially, pretreatment of MSCs
with curcumin improved tolerance to oxidative
stress injury and resulted in enhancement of
their therapeutic potential in myocardial repair
after myocardial infarction [63].

Another promising approach to enhance
MSCs therapeutic potential is the preincubation
with growth factors or other small molecules via
the culture medium (reviewed in [9]). In this
regard, the growth factors EGF, GDNF, and IGF-
1, the pro-inflammatory cytokine TNFa, the che-
mokine SDF-1 (CXCL12), or hormones such as
angiotensin-II have been shown to enhance
regenerative capacity or the paracrine functions
of MSCs [64-72]. EGF promoted in vitro expan-
sion of MSCs without altering their multipotency
[71-73] and enhanced MSCs motility and migra-
tion [72-74], and also the release of factors like
VEGF, HGF, HB-EGF, and interleukin (IL)-6
and -11 [71, 75]. Others have shown that pretreat-
ment with TGF-f increased VEGF production of
MSCs in vitro [66]. TNF-a pretreated MSCs
increased the release of cytokines, chemokines,
and proteases compared to untreated MSCs. In
this study, the enhanced secretion of 118 proteins
into the culture medium upon TNF-a incubation
was identified [76], specifically, many of them
known to be critically involved in inflammatory
processes (e.g., IL-6, IL-8, and MCP-1).
Inflammation is a key response to organ and tis-
sue injury, with cytokines and chemokines also
being associated with regeneration processes.
Enhanced expression of IL-6, IL-8, or MCP-1
goes along with enhanced migration of mono-
cytes to the site of injury, hereby promoting apro-
inflammatory response.

Taken together, enhancement of the regenera-
tive capacities of MSCs by preceding in vitro pre-
conditioning regimens is a promising strategy for
regenerative therapies, which may also decrease
the amount of cells for transplantation and, there-
fore, possibly reduces the risk of side effects.
Due to the proposed main mechanistic concept
by paracrine activation, the application of CM
(including regenerative factors and EVs) or EVs
might be an alternative or complement of the cell
therapy.
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10.4 Current Approaches
to Enhance the Release
and Potential of MSC-EVs

Although there are a substantial number of stud-
ies showing the highly promising effects of pre-
conditioning strategies on the therapeutic
potential of MSCs or their CM, only few studies
have been published to date focussing on the spe-
cific involvement of isolated EVs in this context.
Increasing amounts of experimental data have
revealed that MSC-derived EVs can stimulate
angiogenesis, modulate the immune status, and
exert paracrine effects that improve organ or tis-
sue regeneration following injury. EVs were
shown to carry variety of biomolecules such as
growth factors, receptors, enzymes, transcription
factors, signaling and immunomodulatory mole-
cules, DNA, RNA transcripts, and noncoding
RNA including retrotransposons, vault RNA,
long noncoding RNAs, and microRNAs
(Fig. 10.1) [77, 78], and are major communica-
tion mediators between cells [79-81]. EVs are
taken up by cells and can alter gene expression or
activate intracellular signal cascades. Hypoxic or
anoxic microenvironment or oxidative stress can
increase the amount and concentration of EVs in
culture [82—84]. In this context, in vitro precondi-
tioning regimens of MSCs prior to EV isolation
and their transplantation in an in vivo injury
model seem to be promising approaches to
enhance the regenerative potential of EVs.

It has been shown that hypoxic precondition-
ing not only stimulates the secretion of growth
factors, cytokines, and other proteins, but also the
release of exosomes and microvesicles from
MSCs. EVs from hypoxia-preconditioned cells
had better therapeutic effects in organ injury
through specific cargoes compared to EVs from
non-preconditioned cells [85]. A recent study by
Cui and coworkers examined whether exosomes
derived from hypoxia-preconditioned MSCs
(hypEx) and non-preconditioned MSCs (npEx)
could prevent memory deficits in Alzheimer dis-
ease (AD) [86]. The results showed that neuro-
logic conditions were significantly improved,
plaque deposition and A levels were lower, and
expression of many effector proteins was differ-

ent in the hypEx group compared to the npEx
group. Furthermore, hypEx increased the level of
miR-21 in the brain of AD mice [86], which may
induce a positive effect during pathophysiologi-
cal processes in the brain [87]. Others investi-
gated whether hypEx were superior for
myocardial repair, compared to exosomes from
normoxia-treated MSCs [88]. The study showed
that infusion of hypEx resulted in significantly
higher survival, smaller scar size, and better car-
diac functions recovery. In addition, significantly
higher levels of miRNA-210 were detected in
hypEx. Hypoxia treatment of MSCs increased
the expression of neutral sphingomyelinase 2
(nSMase2) which is crucial for exosome secre-
tion. Blocking the activity of nSMase2 resulted
in reduced miR-210 secretion and abrogated the
beneficial effects of hypEx. The authors therefore
concluded that hypoxia augme