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Abstract. The isomorphism problem for groups, when the groups are
given by their Cayley tables is a well-studied problem. This problem
has been studied for various restricted classes of groups. Kavitha gave
a linear time isomorphism algorithm for abelian groups (JCSS 2007).
Although there are isomorphism algorithms for certain nonabelian group
classes, the complexities of those algorithms are usually super-linear. In
this paper, we design linear and nearly linear time isomorphism algo-
rithms for some nonabelian groups. More precisely,

• We design a linear time algorithm to factor Hamiltonian groups. This
allows us to obtain an O(n) algorithm for the isomorphism problem
of Hamiltonian groups, where n is the order of the groups.

• We design a nearly linear time algorithm to find a maximal abelian
factor of an input group. As a byproduct we obtain an Õ(n) isomor-
phism for groups that can be decomposed as a direct product of a
nonabelian group of bounded order and an abelian group, where n
is the order of the groups.

1 Introduction

Two groups (G, ·) and (H,×) are said to be isomorphic if there exists a bijective
function f : G −→ H, which is a homomorphism i.e. ∀a, b ∈ G, f(a · b) =
f(a) × f(b). The decision version of this problem is to check whether two input
groups (G, ·) and (H,×) are isomorphic or not. There are multiple ways in which
a group can be given as the input. Two of commonly used methods are by a
generating set and by the Cayley table. The complexity of the group isomorphism
problem varies with the input representation. In this paper we assume that input
groups are given by their Cayley tables unless stated otherwise explicitly.

It is not known whether the group isomorphism problem (GrISO) is in P. If it
is NP-complete then polynomial hierarchy collapses at the second level [4]. Tarjan
(see e.g., [14]) gave an nlog n+O(1) algorithm for GrISO. While this still remains
the best upper bound for the general group isomorphism problem, progress has
been made for restricted classes of groups. For solvable groups, Arvind and
Torán showed that the problem is in NP∩ co-NP under a reasonable complexity
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theoretic assumption [1]. Rosenbaum and Wagner gave a n1/2(log n)+O(1) algo-
rithm for the isomorphism problem of p-groups [17] and Rosenbaum gave an
n1/2(log n)+O(log n/ log log n) time algorithm for solvable groups [16].

The isomorphism problem for various restricted classes of groups has been
studied in the past [1,3,8,9,15,19,20]. Efficient polynomial time algorithms for
the isomorphism problem of abelian groups were designed by Savag [18], and
Vikas [20]. Kavitha gave a remarkable linear time algorithm for the isomorphism
problem of abelian groups [19]. Kavitha’s paper also provides us with a useful
tool for computing the orders of all the elements in any group in linear time.

Polynomial time algorithms have been designed for some classes of non-
abelian groups. For example, Le Gall designed an efficient algorithm for groups
consisting of a semidirect product of an abelian group with a cyclic group of
coprime order [7]. Later, Qiao, Sarma, and Tang gave a polynomial time algo-
rithm for the isomorphism problem of groups with normal Hall subgroups [15].
Babai, Codenotti and Qiao gave a polynomial time algorithm for the class of
groups with no normal abelian subgroups [2]. We believe that motivation behind
these results on the isomorphism problem of nonabelian groups was to enlarge
the family of group classes for which polynomial time algorithm is known. To
the best of our knowledge the runtime of these algorithms are superquadratic.

Our goal in this paper is to design linear or nearly linear time algorithm for
some nontrivial classes of nonabelian groups.

The isomorphism problem of nilpotent class 2 groups1 is not known to be in
polynomial time. A nonabelian group is Hamiltonian if all of its subgroups are
normal. These groups are nilpotent class 2 groups. We design an O(n) algorithm
for the recognition and the isomorphism problem of the Hamiltonian groups
where n is the size of the input groups.

A Hamiltonian group is a direct product of the quaternion group Q8 and an
abelian group with certain structure [5]. This motivates us to study the class of
groups that can be decomposed as a direct product of any arbitrary nonabelian
group of bounded order and an abelian group without any specific structure. We
design an Õ(n) algorithm for the recognition and the isomorphism problem of
such groups.

Kayal and Nezhmetdinov gave an algorithm to factorize an input group into
a direct product of indecomposable factors [12]. We note that this group fac-
torization algorithm combined with any of the polynomial time isomorphism
algorithms for abelian group gives us a polynomial time isomorphism test for
the group classes considered in this paper. However, direct application of the
result by Kayal and Nezhmetdinov only gives us superquadratic isomorphism
algorithms. One of the contributions of this paper is to use the structure of the
input groups to tweak and bypass some of the computation heavy steps of the
algorithm by Kayal et al. [12].

The main results of this paper are stated below.

Theorem 1. There exists an O(n) algorithm for the recognition and the isomor-
phism problem of Hamiltonian groups where n is the size of the input groups.
1 A group G is nilpotent class 2 if G/Z(G) is abelian.
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Theorem 2. There exists an Õ(n) algorithm for the recognition and the iso-
morphism problem of groups that can be decomposed as a direct product of a
nonabelian group of bounded order and an abelian group where n is the size of
the input groups.

2 Preliminaries

In this section, we describe some of the group-theoretic definitions and back-
ground used in the paper. For more details see [6,10,13,19]. For a group G, the
number of elements in G or the order of G is denoted by |G|. Let x ∈ G be an
element of group G, then ordG(x) denotes the order of the element x in G, which
is the smallest power i of x such that xi = e, where e is the identity element of
the group G.

For a subset S ⊆ G, 〈S〉 denotes the subgroup generated by the set S. For
a subgroup A ≤ G, the centralizer of A, denoted CG(A), is the set {g ∈ G |
ag = ga,∀a ∈ A}. The center Z(G) of group G is the subgroup with elements
{g ∈ G | ga = ag,∀a ∈ G}.

Given H ≤ G, the normal closure of H in G is the smallest normal subgroup
of G containing H and is denoted by 〈H〉G. The commutator subgroup [G,G]
of a group G is the subgroup 〈{xyx−1y−1 | ∀x, y ∈ G}〉.

Let G be a finite group and A,B be subgroups of G. Then G is a direct product
of A and B, denoted G = A × B, if (1) A � G and B � G, (2) |G| = |A||B|, (3)
A ∩ B = {e}. We say that a group G is decomposable if there exist nontrivial
subgroups A and B such that G = A×B and indecomposable otherwise. We say
that a subgroup A of G is a direct factor (or factor) of G if there exists another
subgroup B of G such that G = A × B and we will call B a direct complement
(or complement) of A.

The fundamental theorem for finitely generated abelian groups implies that
a finite group G can be decomposed as a direct product G = G1 ×G2 × . . .×Gt,
where each Gi is a cyclic group of order pj for some prime p and integer j ≥
1. If ai generates the cyclic group Gi for i = 1, 2, 3, . . . , t then the elements
a1, a2, . . . , at are called a basis of G. An elementary abelian p-group is an abelian
group in which every nontrivial element has order p. Chen and Fu [6], and
Karagiorgos and Poulakis [11] gave linear time algorithms for finding a basis of
abelian groups.

Theorem 3 (Remak-Krull-Schmidt, see e.g., [10]). Let G be a finite group.
If G = G1 × G2 × . . . × Gs and G = H1 × H2 × . . . × Ht with each Gi, Hj

indecomposable, then s = t and after reindexing Gi
∼= Hi for every i, and for

any r < t, G = G1 × . . . × Gr × Hr+1 × . . . × Ht.

A Remak-Krull-Schmidt decomposition of a group G is a decomposition such that
each direct factor of group G is indecomposable. The following lemma establishes
a relationship between two different decompositions of a group G in which one
of the factors is same.
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Lemma 1 ([12]). For a group G, suppose that G = H ×K. Then for a K ′ � G,
G = H × K ′ if and only if K ′ = {αφ(α) | α ∈ K}, where φ : K −→ Z(H) is a
homomorphism.

Model of Computation: Our model of computation is same as that of many of
the algorithms for groups given by Cayley table (e.g., [6,19]). It is a RAM model
where random access can be done in constant time. Each register and memory
unit can store O(log |G|) bits. The arithmetic, logic and comparison operations
on O(log |G|) bits take constant time. Unless stated otherwise we assume that
the elements of the group are encoded as 1, 2, . . . , |G|.

Nearly Linear Time Algorithms: A group theoretic algorithm is nearly linear
time if it has runtime O(|G| logO(1) |G|). We hide the logarithmic factor by using
the notation Õ(|G|). We list some useful nearly linear time algorithms for group
theoretic problems for groups given by their Cayley tables in the next lemma.
The ideas behind these results are either known as folklores or directly follows
from easy observations.

Lemma 2. 1. Given S ⊆ G, one can compute the elements of the subgroup 〈S〉
in O(|G| log |G|) time.

2. Finding an O(log |G|) sized generating set can be done in O(|G| log |G|) time.
3. For a group G the center Z(G) can be computed in O(|G| log |G|) time.
4. Given A ≤ G, one can check whether A � G in O(|G| log |G|) time.
5. Given two subgroups A and B of G, one can check whether G = A × B in

O(|G| log |G|) time.

Proof. We present a sketch of the proof for the statements 1 and 2 . The proof
for the other statements are easy.

Consider a directed graph X = (V,E), where V = G and E = {(g, gs)|g ∈
G, s ∈ S}. Let H = 〈S〉. Finding H amounts to computing the set R of vertices
reachable from the identity element e ∈ G. Notice that R is also a strongly
connected component with |H||S| edges. Thus, the runtime for computing the
strongly connected component is O(|H||S|). This proves (1 ) if |S| ≤ log |G|. We
use similar ideas as in the proof of 2 to handle the case when |S| > log |G|.
Hence, we first prove (2 ).

For 2 , we pick an element a ∈ G \ {e} and set S1 = {a}. The algorithm
keeps on computing sets S1, S2, . . . in stages as follows. At the ith stage we
have the set Si. If we discover G = 〈Si〉 we stop the algorithm and out-
put Si. Otherwise we pick g ∈ G \ 〈Si〉 and let Si+1 = Si ∪ {g}. Note that
2|〈Si〉| ≤ |〈Si+1〉| as 〈Si+1〉 contains the disjoint cosets 〈Si〉 and 〈Si〉g. Thus, if
the last set is Sr, then r ≤ log |G|. Let 〈Si〉 = Hi and ni = |Hi|. Computing Hi

via finding a suitable strongly connected component in a graph as mentioned
above takes time O(|Hi||Si|) = O(i|Hi|). Furthermore, we note that nr = |G|
and ni ≤ nr/2r−i. Thus, computing all the His together takes time O(

∑
i ini)

which is O(|G| log |G|). Finding an element g ∈ G \ 〈Si〉 takes time O(|G|) and
this too happens at most log |G| times. Thus, the runtime of the algorithm is
O(|G| log |G|).
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To complete the proof of 1 , we modify the algorithm for finding a logarithmic
sized generating set by setting S1 = {a} for any a ∈ S and then picking the new
elements g from S \ 〈Si〉 instead of G \ 〈Si〉.
Organization of the Paper: In Sect. 3 we give algorithms to compute quotient
groups in linear time. In Sect. 4 we discuss some nearly linear time algorithms
for finding complements of certain groups. This results are then used in Sects. 5
and 6.

3 Algorithms in Quotient Groups

Suppose we have the list of elements of a group G and a black-box for the group
multiplication. Let N be a normal subgroup of G (also given as a list or array). In
this section we show how to construct the quotient structure G/N in linear time.
More precisely, we describe a linear time algorithm to build a data structure that
can serve as a black-box to compute multiplications in G/N . Once we have the
data structure, a multiplication query in G/N can be processed in constant time
with just one query to the black-box for G.

Many of the algorithms for groups given by their Cayley table work in the
same running time if the algorithm has access to the list of group elements and
a group multiplication black-box. As a consequence of this quotient black-box
construction we can see that the algorithms by Kavitha [19], Chen and Fu [6],
and Karagiorgos and Poulakis [11] still run in linear time in quotient groups.

Suppose the list of elements of a group G and a normal subgroup N of G are
given along with a black-box for G. We construct lists Li for i = 1, . . . , |G/N |,
each containing the elements of different cosets of N in G in Algorithm 1. We also
compute the minimum elements mi (in the input order) of the list Li for each i.

Algorithm 1. Computing lists corresponding to the cosets of N in G.

1 Input : A group G and a normal subgroup N of G;
2 Find : Lists Li’s and the elements mi’s as described above;

3 Create an array flag indexed by the elements of G and set
flag[g] = 0,∀g ∈ G;

4 i ← 0;
5 for g ∈ G do
6 if flag [g ] = 0 then
7 i ← i + 1;
8 Prepare a list Li of size |G/N | with the elements of Ng;
9 mi ← min Li;

10 for g1 ∈ Ng do
11 flag [g1 ] = 1 ;
12 end
13 end
14 end
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Run-Time Analysis of Algorithm 1: In the algorithm flag [g ] = 1 line 6 indi-
cates that we have already processed the coset containing g and no further action
is required. If flag[g] = 0 then the algorithm spends O(|G/N |) time within the
“if” condition. But in the process it also discovers all the elements of the coset
Ng for which the “if” condition will not be executed in future. This shows that
the run-time of Algorithm 1 is O(|G|). �

It is easy to see that in linear time we can compute an array S of size G and
indexed by the elements of G such that S[g] = i, where Li is the list produced
by by Algorithm 1 containing the elements of Ng.

The data structure for the quotient group G/N consists of the lists Li’s, the
sequence m1,m2, . . . ,m|G/N | and the array S along with an access to the black-
box for G. The elements of G/N will be, as usual, 1, 2, . . . , |G/N |. The element i
corresponds to the list Li, which in turn corresponds to one of the cosets of N in
G. If we need to compute the product of i and j, we first compute m = mi ∗ mj

using the multiplication black-box for G and then return S[m]. By construction
S[m] is the index of the list containing the coset elements of the coset Nm.

We notice that any bounded number of repeated quotient construction can
be done in linear time using the above method.

4 Algorithms for Finding Complements

Given a group G and a normal subgroup D of G, a complement of D in G is a
subgroup B such that G = D × B. It is important to note that a complement
of a subgroup may or may not exist, and even if a complement exists it may
not be unique. Kayal and Nezhmetdinov [12] gave an algorithm for finding a
complement of a given normal subgroup D of G. Their algorithm is divided into
two cases: G/D is abelian and G/D is nonabelian. The result for the first case
can be stated as follows.

Theorem 4 ([12]). There is an algorithm to check if a complement of a normal
subgroup D of a group G exists in Õ(|G|) time, when G/D is abelian. The
algorithm also returns a complement if it exists.

Proof Sketch: A careful analysis of the complement finding algorithm given in
[12] using the results from [6,19] shows that it takes Õ(|G|) time to find a
complement of the subgroup D in G (if it exists). We use the linear time quotient
construction techniques from Sect. 3 multiple times. Additionally, we use the
facts that computing Z(G) and testing normality can be done in Õ(|G|) time by
Lemma 2.

In the second case when G/D is nonabelian, it is not clear how to make the
algorithm by Kayal and Nezhmetdinov [12] run in nearly linear time in general
(see [12]). Fortunately, for the purpose of this paper, as we would see in Sect. 6,
we only need to deal with the subcase when D is a subgroup of the center Z(G)
of G. During its execution the algorithm in [12] computes a quotient group which
can be done in linear time using results in Sect. 3.
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The algorithm by Kayal and Nezhmetdinov computes a group T =
〈{aga−1g−1 | a ∈ CG(D), g ∈ G}〉. One can verify that except for this, all
other steps in the algorithm can be made to run in Õ(|G|) time without the
assumption D ≤ Z(G). It is the computation of T where we use a different app-
roach using the fact that D ≤ Z(G) to obtain the desired nearly linear runtime.
We first mention an easy observation.

Observarion 1. If D ≤ Z(G) then CG(D) = G.

From Observation 1, it is immediate that T = 〈{aga−1g−1 | a ∈ G, g ∈ G}〉
which is nothing else but the commutator subgroup [G,G] of G. Lemma 3 gives
us a way to compute T efficiently.

Lemma 3 (see e.g., [13]). If G = 〈S〉 then [G,G] = 〈[S, S]〉G, where S is a
generating set of G and [S, S] = {aga−1g−1 | a, g ∈ S}.
We can compute a generating set S of size O(log |G|) of G in time O(|G| log |G|)
by Lemma 2. Again by Lemma 2 we can compute an O(log |G|) sized generating
set for the group 〈[S, S]〉 in O(|G| log |G|) time. Let us denote this set by Tgen.
Algorithm 2 given below computes a generating set for [G,G] (see [13]).

Algorithm 2. Algorithm to find an O(log |G|) sized generating set of [G,G]

1 Input : A group G = 〈S〉 and Tgen (defined above);
2 Find : An O(log |G|) sized generating set of [G,G];

3 Let K ← 〈Tgen〉;
4 while ∃b ∈ Tgen, a ∈ S such that a−1ba /∈ K do
5 Tgen ← Tgen ∪ {a−1ba} and K ← 〈Tgen〉;
6 return Tgen

Runtime Analysis of Algorithm 2 : Each time a new generator is added to Tgen

the size of the group K = 〈Tgen〉 is at least doubled, which implies that the
number of iterations of the while loop is O(log |G|). We maintain the group K
as an array AK indexed by the group elements g ∈ G such that AK [g] = 1 if
and only if g ∈ K. Thus, for any a ∈ S and b ∈ Tgen, we can check if a−1ba /∈ K
in O(1) time. It takes O(|G| log |G|) time to compute the group 〈Tgen〉. Now it
is easy to verify that the overall runtime of Algorithm 2 is O(|G|(log |G|)3). �

It is important to note that the inverse of an element a ∈ G can be found in
O(|G|) time (step 4). However since the number of iterations is only O(log |G|),
we would need to compute the inverse of O(log |G|) many elements, which implies
that the overall runtime to find inverses is O(|G| log |G|).

Summarising the above discussion we obtain:

Theorem 5. There exists an algorithm to find a complement of a subgroup D
of the center Z(G) of a groups G in time Õ(|G|) whenever a complement exists.
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5 Hamiltonian Group Recognition and Isomorphism

A Hamiltonian group is a nonabelian group all of whose subgroups are normal.
Since every subgroup of such a group is normal, it follows that there is a unique
Sylow subgroup of any fixed order. In this section we consider the following
problem.

Hamiltonian Group Recognition
Input : Given a group (G, ·) by its Cayley table.
Find : Is G a Hamiltonian group?

The following structure theorem is one of the main ingredients for our result.

Theorem 6 ([5, page 114]). Let G be a Hamiltonian group. Then

– G is the quaternion group Q8; or,
– G is the direct product of Q8 and B, or of Q8 and A, or of Q8, B and A,

where A is an abelian group of odd order and B is an elementary 2-group.
Moreover, every such direct product is a Hamiltonian group.

We recall that the quaternion group Q8 is a nonabelian group with eight
elements and it is generated by two elements a and b with the conditions
a4 = 1, a2 = (ab)2 = b2 (see e.g., [5]). An elementary 2-group is isomorphic
to Z

k
2 for some k. Thus, from Theorem 6 we can see that the Sylow 2-subgroup

of a Hamiltonian group is Q8 × Z
k
2 for some nonnegative integer k and the

other Sylow subgroups are all abelian. The theorem also implies that Hamilto-
nian groups are nilpotent. The Sylow decomposition can be computed in O(|G|)
time using methods2 described in [6]. Next we decompose the Sylow 2-subgroup
using Algorithm 3. If we find that the Sylow 2-subgroup is not of the form
Q8 × Z

k
2 for some k, then we can immediately conclude that the input group is

not Hamiltonian. Otherwise, we can use the techniques developed by Kavitha
[19] to test if the odd order Sylow subgroups are abelian. If that is the case then
we know that the input group is Hamiltonian. Moreover, since the odd order
Sylow subgroups are abelian, the algorithm given by Chen and Fu in [6] or Kara-
giorgos and Poulakis in [11] also give us a Remak-Krull-Schmidt decomposition
of the odd order Sylow subgroups. The decomposition of the Sylow 2-subgroup
obtained from Algorithm 3 along with the decomposition of the odd order abelian
Sylow subgroups gives us a Remak-Krull-Schmidt decomposition of the input
Hamiltonian group.

Given a Sylow 2-subgroup as input, Algorithm 3 checks if it is Hamiltonian
and also returns a Remak-Krull-Schmidt decomposition isomorphic to Q8 × Z

k
2

if the input is indeed Hamiltonian. We use the next lemma in the algorithm.

2 We can compute the Sylow decomposition in O(|G|) without using the result given
[6], if G is Hamiltonian 2-group. Note that in a Hamiltonian 2-group order of each
non-trivial element will be either 2 or 4.
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Lemma 4. Any two non-commutating elements in a Hamiltonian 2-group gen-
erate a quaternion group which is also a direct factor.

Proof. Let G be a Hamiltonian 2-group and let g, g′ ∈ G be two non-
commutating elements. To show that 〈g, g′〉 ∼= Q8 it is enough to show that
g4 = 1, g2 = (gg′)2 = g′2. As G is a Hamiltonian 2-group, G = Q8 × Z

k
2 for

some k. Thus, we can write g = (a1, b1) and g′ = (a2, b2), where a1, a2 ∈ Q8 and
b1, b2 ∈ Z

k
2 . It is easy to verify that g4 = 1, g2 = (gg′)2 = g′2. Now we prove that

〈g, g′〉 is also a factor of G. Let C = {αφ(α) | α ∈ A}, where φ : Q8 −→ Z
k
2 is a

homomorphism that maps the generators a1 and a2 of Q8 to b1 and b2 respec-
tively. Now using Lemma 1, we can see that G = C ×Z

k
2 . Moreover, it is an easy

verification to see that C = 〈g, g′〉. �

Algorithm 3. Algorithm for the recognition and decomposition of
Hamiltonian 2-groups

1 Input : A group (G, ·);
2 Decide : Is G a Hamiltonian 2-group?

3 if G ∼= Q8 then stop and return Hamiltonian 2-group, and G ;
4 P = {g ∈ G | ord G(g) = 4};
5 if P = ∅ then report “Not Hamiltonian 2-group”;
6 Pick any g ∈ P ;
7 Find an element g′ ∈ P such that gg′ �= g′g. If no such pair exists then

report “Not Hamiltonian 2-group”;
8 if 〈g, g′〉 ∼= Q8 then
9 Compute a complement C of 〈g, g′〉 in G;

10 if C exists and it is an elementary abelian 2-group then
11 return C;
12 end
13 end
14 else
15 report “Not Hamiltonian 2-group”;
16 end

We now prove the correctness of the algorithm and give the run-time analysis.
Checking whether G ∼= Q8 or not can be done in O(1) time. From now on, we
assume that G � Q8. In a Hamiltonian 2-group, all non-central elements are of
order 4 and constitutes the set P . Since we are interested in elements of order
4, P can be computed in linear time even without using results in [19].

Since the picked element g ∈ P (Line 5) is non-central, there must exist an
element g′ ∈ P such that gg′ �= g′g. If no such pair is found in P then G is not
a Hamiltonian 2-group. Otherwise by Lemma 4, 〈g, g′〉 ∼= Q8 and will also be
direct factor of G. Thus, if the check 〈g, g′〉 ∼= Q8 fails we conclude that G is not
a Hamiltonian 2-group.

Using Kavitha’s result given in [19], we can test whether C is abelian in time
O(|G|) (Line 9). If C is abelian and all the elements of C have order 2, then we
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conclude that C is an elementary abelian 2-group and the algorithm returns the
complement C.

Finally we argue that we can also compute a complement of 〈g, g′〉 in time
O(|G|) in Line 8. We can use the result of Theorem 4 to find a complement.
However, a direct application of Theorem 4 would only give us an Õ(|G|) upper
bound. Below we show that the structure of Hamiltonian group could be used
to get an O(|G|) upper bound.

The major time consuming computation tasks inside the complement finding
algorithm of Theorem 4 are computing the quotient group G/〈g, g′〉, computing
the center and testing normality (see [12]).

Since 〈g, g′〉 is the quaternian group of order 8, testing its normality in time
O(|G|) is trivial. We can compute G/〈g, g′〉 in O(|G|) time using techniques dis-
cussed in Sect. 3. If G is a Hamiltonian 2-group, then G/〈g, g′〉 will be an abelian
group. The task of checking whether G/〈g, g′〉 is abelian can be performed in
O(|G|) time using the algorithm described in [19]. If G is a Hamiltonian 2-group,
then the center of the group G consists of all order 2 elements along with the
identity. One can find all these elements in O(|G|) time. If the original group
is not a Hamiltonian 2-group then the final test, which is to confirm if we have
actually computed a valid decomposition (see Section 4.1 of [12], last line) will
identify any error that might have occurred in the computation of the center.
The final test to verify the validity of the computed decomposition can be per-
formed in linear time exploiting the structure of Hamiltonian 2-groups. These
observations imply that Theorem 4 can be modified to find a complement of
〈g, g′〉 in G in O(|G|) time.

Once we have the Remak-Krull-Schmidt decompositions of two Hamiltonian
groups the isomorphism test is trivial.

Theorem 7. There exists an algorithm that given two Hamiltonian groups G
and H tests if they are isomorphic in time O(|G|).

6 Groups with a Bounded Nonabelian Direct Factor

Taking motivation from Hamiltonian groups, which are direct product of the non-
abelian quaternion group Q8 and an abelian group, we study the recognition and
the isomorphism problem of a more general class of groups which can be decom-
posed as a direct product of a nonabelian group of bounded order and an abelian
group. For a fixed d, let Gd = {G | G = A×B, where |A| ≤ d and B is abelian}.
It is easy to see that the isomorphism problem for groups in Gd can be solved in
linear time once we have a decomposition of each of the input groups as a direct
product of a small nonabelian group with no cyclic factor and an abelian group.

In this section we show that given a nonabelian group G, it can be decom-
posed as a direct factor of a nonabelian group with no cyclic factor and an
abelian group in nearly linear time. We note that for this algorithm we do not
need any upper bound on the size of the nonabelian factor. The idea is to keep
on peeling off direct cyclic factors from the given group as long as possible. Each
time we factor out a cyclic group, the size of the other factor decreases by at
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least half. Thus, the process of factoring out cyclic groups can happen for at
most log |G| iterations. Next we define the Cyclic Factor problem below.

Cyclic Factor
Input : A group (G, ·) given by its Cayley table.
Find : A cyclic factor 〈b〉 and H � G (if they exist) such that G = 〈b〉 × H.

We show that the Cyclic Factor problem can be solved in Õ(|G|) time.
From this result and the above discussion we can immediately obtain the follow-
ing theorem.

Theorem 8. There is an algorithm that takes the Cayley table of a nonabelian
group G as input and in time Õ(|G|) returns two groups A and B, such that
G = A×B where A is a nonabelian group with no cyclic factor and B is abelian.

In the rest of the section we focus on the Cyclic Factor problem. The
following lemma helps us to solve the problem.

Lemma 5. If G has a cyclic factor then for any basis {b1, b2, . . . , b�} of Z(G),
there is i ∈ [�] such that 〈bi〉 is a factor of G.

Proof. Let G = A × B, where A is nonabelian with no cyclic factor and B
is abelian. Notice that Z(G) = Z(A) × B. Let Z(A) = 〈c1〉 × . . . × 〈cr〉 and
B = 〈d1〉× . . .×〈dk〉 be a basis decomposition of Z(A) and B. This gives a basis
decomposition Z(G) = 〈c1〉×. . .×〈cr〉×〈d1〉×. . .×〈dk〉. Let c′

1, . . . , c
′
r, b

′
1, . . . , b

′
k

be an another basis of Z(G), where c′
is and b′

js are ordered to satisfy the following
conditions from Remak-Krull-Schmidt theorem:

(i) 〈c′
i〉 ∼= 〈ci〉,∀i ∈ [r] and 〈b′

j〉 ∼= 〈dj〉,∀j ∈ [k], and
(ii) Z(G) = 〈c1〉 × . . . × 〈cr〉 × Bp = Z(A) × Bp,

where Bp = 〈b′
1〉 × . . . × 〈b′

k〉. By Lemma 1, we have Bp = {αφ(α) | α ∈ B}
for some homomorphism φ : B −→ Z(Z(A)) = Z(A). The same lemma can
be used once more to show that G = A × Bp. The result follows if we take
{c′

1, . . . , c
′
r, b

′
1, . . . , b

′
k} = {b1, b2, . . . , b�}. �

The above lemma immediately suggests an algorithm to solve the Cyclic
Factor problem for a given group G: (i) Find the center Z(G) of the group G,
(ii) Compute a basis {b1, b2, . . . , b�} of Z(G), and (iii) Try to find a complement
of 〈bi〉 in G for all i = 1, 2, . . . , �.

In step (iii) of the algorithm if we find a complement then we have solved
the problem. On the other hand, if G has a cyclic factor then Lemma 5 ensures
that the algorithm would find a cyclic factor. This shows the correctness of the
algorithm.

We now discuss the runtime of the algorithm. We can use Kavitha’s result
to check if G is abelian in linear time [19]. If G is abelian, then cyclic factors of
G can be found in O(|G|) time using results from [6]. Let us assume that input
group G is nonabelian.

We can compute the center of a group in nearly linear time using Lemma 2.
Thus, step (i) of the algorithm takes O(|G| log |G|) time.



Nearly Linear Time Isomorphism Algorithms 91

Since Z(G) is abelian we can use the linear time algorithm of Chen and Fu
[6] or Karagiorgos and Poulakis [11] for step (ii) of the algorithm. Notice that
the number of basis elements of Z(G) is at most log |G|. Thus, the maximum
number of iterations in step (iii) is at most log |G|. In general, we do not know
how to compute a complement of a subgroup in nearly linear time. However,
the fact that each 〈bi〉 is a subgroup of the center of the group allows us to use
Theorem 5. Thus, the runtime of step (iii) as well as the whole algorithm is
Õ(|G|).
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