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Abstract. An edge Hamiltonian path of a graph is a permutation of
its edge set where every pair of consecutive edges have a vertex in com-
mon. Unlike the seemingly related problem of finding an Eulerian walk,
the edge Hamiltonian path is known to be a NP-hard problem, even
on fairly restricted classes of graphs. We introduce a natural optimiza-
tion variant of the notion of an edge Hamiltonian path, which seeks the
longest sequence of distinct edges with the property that every consec-
utive pair of them has a vertex in common. We call such a sequence of
edges an edge-linked path, and study the parameterized complexity of
the problem of finding edge-linked paths with at least k edges. We show
that the problem is FPT when parameterized by k, and unlikely to admit
a polynomial kernel even on connected graphs.

On the other hand, we show that the problem admits a Turing kernel
of polynomial size. To the best of our knowledge, this is the first prob-
lem on general graphs to admit Turing kernels with adaptive oracles
(for which a non-adaptive kernel is not known). We also design a single-
exponential parameterized algorithm for the problem when parameter-
ized by the treewidth of the input graph.

Keywords: FPT · Turing kernelization · Edge Hamiltonian cycle

1 Introduction

An edge Hamiltonian path of a graph is a permutation of its edge set where every
pair of consecutive edges have a vertex in common. The notion is a classical
one, well-studied in the context of structural graph theory, and more recently,
has received attention from the computational perspective as well. Unlike the
seemingly related problem of finding an Eulerian walk, the edge Hamiltonian
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path is known to be a NP-hard problem, even on fairly restricted classes of
graphs such as bipartite graphs and graphs of maximum degree three [1,11,13].

We introduce a natural optimization variant of the notion of an edge Hamil-
tonian path, which is the following: what is the longest sequence of distinct edges
with the property that every consecutive pair of them has a vertex in common?
Note that this subsumes the question of finding an edge Hamiltonian path as a
special case, and therefore the classical hardness of the problem follows imme-
diately. For ease of discussion, we use the phrase “edge-linked paths” to refer to
sequences of distinct edges that have the property of every consecutive pair of
edges having a common vertex between them. We use the abbreviation LELP
to refer to the problem of finding the longest edge-linked path.

It turns out that studying LELP from a parameterized perspective leads to
interesting new algorithms for the problem. There are two natural parameters
that emerge for LELP: the first is the standard parameter, which is the length
of the edge sequence, and the second is the treewidth of the input graph. The
treewidth parameter turns out to be useful also in the context of the original
edge Hamiltonian path problem, see, for instance [12]. In this contribution, we
establish the following results:

– LELP is FPT when parameterized by either the standard parameter or the
treewidth. In particular, for the treewidth parameter, we demonstrate a single
exponential algorithm for this problem.

– We argue that the problem is unlikely to admit a polynomial kernel with the
standard parameter, even when the graph is connected. On the other hand,
we show that the problem does admit a Turing kernel of polynomial size.

We remark here that our demonstration of a Turing kernel is particularly
interesting, since our algorithm is based on oracle queries made in an adaptive
fashion. Recall that a Turing kernel is a polynomial time algorithm that can
solve the problem with access to an oracle for the problem, operating under the
constraint that the oracle can only answer queries for small instances. The size
of the largest instance on which we invoke the oracle is the “size” of the Turing
kernel. Turing kernels are central to the study of problems that are unlikely
to admit polynomial kernels, and yet, they have been demonstrated for only
a small number of problems. Further, most Turing kernels work by producing
polynomially many instances of bounded size without using the oracle at all1.
Indeed, only a few Turing kernels are known that take full advantage of the
oracle framework. These include the problems of finding long paths and cycles
on restricted classes of graphs [9,10] and the weighted independent set problem
on bull-free graphs [14]. Our contribution adds a natural problem to this limited
list of problems known to admit Turing kernels using oracles in an adaptive
fashion. To the best of our knowledge LELP is the first problem on general

1 These instances typically have the property that the input instance is a Yes-instance
if and only if one of these instances is a Yes-instance: therefore, the oracle can be
applied to each instance in turn to solve the problem.
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graphs to admit Turing kernels using adaptive oracles (for which a non-adaptive
kernel is not known).

Apart from the standard parameter and treewidth, we also consider a nat-
ural “above-guarantee” parameter. Note that the maximum degree of a graph
provides an easy lower bound on the length of a longest edge-linked path, since
one has the sequence of edges incident on the vertex with the largest degree.
Therefore, an interesting question to ask is if there is an edge-linked path of
length at least Δ(G) + k′, where Δ(G) denotes the maximum degree of G. This
is an example of an above-guarantee parameter, where the parameter signifies
the length of the path that is possible beyond what is structurally guaranteed
to exist. We show that LELP is also FPT by this parameterization.

Methodology. It is quite straightforward to observe that LELP is FPT when
parameterized by the standard parameter k. One method is to find a path of
length k in the line graph of the input graph. Another approach, for instance,
would be to observe that we can say Yes if either the depth of a DFS traversal
exceeds k, or if there is a vertex of degree at least k, since any usual path is
also an edge-linked path, and a vertex of degree k naturally corresponds to an
edge-linked path of length k. If both of these cases do not arise, then the size
of the graph is easily seen to be bounded as a function of k. In fact it is known
that if the depth of the DFS tree is at most k, then the treewidth of the graph
is at most k − 1. We propose an efficient algorithm parameterized by treewidth,
using techniques based on representative families. In particular, our main result
in this context is the following.

Theorem 1. Let G be an n-vertex graph given together with its tree decom-
position of width tw. Then LELP can be solved in time O

( (
1 + 2(ω+3)

)tw

twO(1) · nm
)
where m = |E(G)|, and ω is the matrix-multiplication exponent.

In the context of kernelization, we begin by observing that the problem is
unlikely to admit a polynomial kernel with the standard parameter, by a stan-
dard application of the disjoint union construction. However, the graphs obtained
by this construction are not connected, so we establish, using an explicit cross-
composition, the hardness of kernelization for connected graphs. On the other
hand, we also establish a polynomial-size Turing kernel for the problem. The
algorithm we propose makes use of Tutte decompositions, which are tree decom-
positions that have additional properties—most notably that the torsos of the
bags are 3-edge-connected. In this context, we are able to exploit the fact that
such graphs are known to admit large Eulerian subgraphs [2], which imply the
existence of long edge-linked paths. Therefore, if the Tutte decomposition of the
given graph has a large bag, then we already have a Yes-instance on our hands.
Otherwise, it turns out that we can use the decomposition to find a separation
(A,B) of order at most two where one of A or B has bounded size.

From this point, the algorithm is based on careful invocations of an oracle
that can find long edge-linked paths on the smaller side of the separation, either
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to determine that we have a Yes-instance or to discover a vertex that can be safely
removed, thus making progress at every step. This involves a careful analysis of
all possible ways in which a solution can split across the separation. The overall
approach that we employ is inspired by the techniques used for obtaining Turing
kernels for the problem of finding long paths and cycles on special classes of
graphs [10].

Theorem 2. LELP, when parameterized by k, does not admit a polynomial
kernel on general graphs and connected graphs, unless CoNP ⊆ NP/poly. On
the other hand, the problem admits a Turing kernel with O(k3.656) vertices and
O(k4.656) edges.

Finally, for parameterized “above maximum degree”, we show an FPT algo-
rithm obtained by relying on bounding the treewidth of certain connected com-
ponents in the graph.2

Related Work. The Edge Hamiltonian Path is known to be NP-complete
even on bipartite graphs or graphs with maximum degree 3 [1,11,13]. Demaine
et al. [6] presented an XP (i.e. running in time nf(k)) algorithm for Edge Hamil-
tonian Path on bipartite graphs, where k is the size of the smaller part and
asked whether it can be improved to an FPT algorithm. Lampis et al. [12]
answered this question affirmatively by giving a cubic edge kernel for Edge
Hamiltonian Path when parameterized by vertex cover. They also show that
it is FPT on hypergraphs when parameterized by the size of a hitting set. They
also studied the problem with parameters treewidth and clique-width of the
input graph. The running times of their algorithms when parameterized by
treewidth and clique width are twO(tw)nO(1) and cwO(cw2)nO(1), respectively,
where tw, cw and n are the treewidth, clique-width and number of vertices
of the input graph. To the best of our knowledge, this is the first study that
uses the length of an edge-linked path as a parameter. We also note LELP can
be solved also by using known algorithms for Long Path on the line graph
of the input graph. However, in the context of the standard parameter, this
yields no insight into the kernelization complexity. Also, when parameterized
by treewidth, this approach does not give us FPT algorithms: note that the
treewidth of the line graph can be arbitrarily larger than the treewidth of the
input graph: for instance, note that the line graph of a star (treewidth one) is a
clique (treewidth n).

2 Preliminaries

We refer the reader to [4,7] for standard terminology and notions in graph theory
and parameterized algorithms. Unless made explicit, we use standard notation
throughout. We introduce and recall some important definitions below.

2 Due to lack of space, the algorithm parameterized by treewidth and the arguments
for the above-guarantee parameter are deferred to the full version of the paper.
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For a graph G,S ⊆ V (G), and F ⊆ E(G), we use EG
in(S) to denote the set of

edges incident to vertices in S, and V (F ) to denote the set of end-vertices of F .
When the graph is clear from the context we use Ein(S) instead of EG

in(S). For
a graph G, a pair (A,B), where A,B ⊆ V (G) and A ∪ B = V (G) is called a
separation of G if there is no edge in G with one endpoint in A\B and the other
in B \A. The order of the separation (A,B) is |A∩B|. A minimal separator in a
connected graph G is an inclusion minimal vertex set S ⊆ V (G) such that G−S
is disconnected. A vertex set of a disconnected graph is a minimal separator if it
is a minimal separator for one of its connected components. For a vertex set U ,
define torso(G,U) as the graph obtained from G[U ] by adding an edge between
each pair of vertices in U that are connected by a path in G whose internal
vertices are not from U . Following simple observation is used many times in the
paper.

Observation 1. The number of odd degree vertices in a graph is even.

Definition 1. A tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T)),
where T is a rooted tree, such that (i) ∪t∈V (T)Xt = V (G), (ii) for every edge
xy ∈ E(G) there is a t ∈ V (T) with {x, y} ⊆ Xt, and (iii) for every vertex
v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth
of G is the minimum width over all tree decompositions of G and is denoted by
tw(G). The adhesion of an edge {t, t′} ∈ E(T) is |Xt ∩ Xt′ |. The adhesion of a
tree decomposition is the maximum adhesion of an edge in T.

Proposition 1. For every graph G, there is a tree decomposition (T,X =
{Xt}t∈V (T)) of adhesion at most two, called a Tutte decomposition, such that
the following conditions hold.

– For each node t ∈ V (T), the graph torso(G,Xt) is a 3-vertex-connected topo-
logical minor of G.

– For each edge {t, t′} ∈ E(T), either Xt ∩ Xt′ = ∅ or Xt ∩ Xt′ is a minimal
separator in G.

Proposition 2 (Hopcroft and Tarjan [8]). There is a linear time algorithm
to compute a Tutte decomposition of a given graph.

Recall that an edge-linked path is a sequence of distinct edges e1, e2, . . . , ek

such that every consecutive pair of edges in the sequence have a vertex in com-
mon. The length of an edge-linked path is the number of edges that belong to
the path. We introduce the following problem:

Long Edge-Linked Paths Parameter: k/tw
Input: A graph G and an integer k

Question: Does G have an edge-linked path of length at least k?
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We denote by LELP(k) the problem of finding an edge-linked path of length
at least k, parameterized by k. We will need the following result from [2]. In the
following statement, following the notation of [2], we use K3

2 to denote the graph
with two vertices joined by three parallel edges. Further, a graph is said to be
Eulerian if it is connected and all its vertices have even degree.

Theorem 3 ([2]). Let G be a 3-edge-connected graph, e, f ∈ E(G), and assume
G �= K3

2 . Then G contains an Eulerian subgraph H such that e, f ∈ E(H) and
|E(H)| ≥ (|E(G)|/6)α + 2, where α ≈ 0.753 is the real root of 41/x − 31/x = 2.

Parameterized Complexity. We refer to [4] for a detailed introduction to param-
eterized complexity. We provide some key definitions pertinent to our arguments
below.

Definition 2 (polynomial equivalence relation [3]). An equivalence rela-
tion R on Σ∗, where Σ is a finite alphabet, is called a polynomial equiva-
lence relation if the following holds: (1) equivalence of any x, y ∈ Σ∗ can be
checked in time polynomial in |x| + |y|, and (2) any finite set S ⊆ Σ∗ has at
most (maxx∈S |x|)O(1) equivalence classes.

Definition 3 (cross-composition [3]). Let L ⊆ Σ∗ and Q ⊆ Σ∗ × N be
a parameterized problem. We say that L cross-composes into Q if there is
a polynomial equivalence relation R on Σ∗ and an algorithm which given t
strings x1, . . . , xt belonging to the same equivalence class of R, computes an
instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that: (i)

(x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 ≤ i ≤ t and (ii) k∗ is bounded by a polynomial
in (max1≤i≤t |xi| + log t).

The following theorem allows us to rule out the existence of a polynomial
kernel for a parameterized problem.

Theorem 4 ([3]). If an NP-hard problem L ⊆ Σ∗ has a cross-composition
into the parameterized problem Q and Q has a polynomial kernel then coNP ⊆
NP/poly.

Definition 4 (Turing kernelization). Let Q be a parameterized problem and
let f : N → N be a computable function. A Turing kernelization for Q of size
f is an algorithm that decides whether a given instance (x, k) is contained in
Q in time polynomial in |x| + k, when given access to an oracle that decides
membership in Q for any instance (x′, k′) with |x′|, k′ ≤ f(k) in a single step.
We call such an oracle as f-oracle for Q.

3 Kernelization Complexity for the Standard Parameter

As noted earlier, the hardness of kernelization for LELP follows by a standard
disjoint union argument (see [4] for a similar example). We now demonstrate
a cross-composition algorithm for LELP(k) on the class of connected graphs.
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We introduce an auxiliary problem, where we seek to find an edge-linked path of
length at least k that starts at a specified start vertex s. We denote this variant
by LELPs(k). We will show that this version is NP-complete by a reduction
from LELP(k). We will then demonstrate a cross-composition from LELPs(k)
to LELP(k) where the composed instance will turn out to be connected. We
defer the details of all these arguments to the full version of the paper due
to lack of space. However, to provide some intuition, we describe briefly the
construction that we employ to show the NP-completeness of LELPs(k).

Let (G, k) be an instance of LELP(k). We denote the vertices of G by
{v1, . . . , vn}. Assume, without loss of generality, that |V (G)| = 2h for some
h (if this is not the case, we can obtain an equivalent instance by adding an
appropriate number of isolated vertices and at most doubling the size of the
instance). Our construction involves a complete binary tree T of height h, and
therefore, n leaves. Let r denote the root of T , and let �1, �2, . . . , �n denote the
leaves of T . We make n copies of G, denoted by G1, . . . , Gn. We make the vertex
vi in the copy Gi adjacent to the leaf �i. Denote this graph by H. Our reduced
instance is now given by (H, r, k + 2h + 1).

We now turn to the Turing kernel. Our goal will be to demonstrate a Turing
kernel with O(k3.656) vertices for LELP(k). To explain Turing kernelization for
the problem we first define a closely related problem, namely: Long Edge-
Linked Cycle. If the first edge and the last edge in an edge-linked path P =
e1, e2, . . . , ek has a common vertex, then we call P an edge-linked cycle. We use
LELC to refer to the problem of determining if a graph has an edge-linked cycle
of length at least k, parameterized by k.

Lemma 1. If there is a Turing kernel for LELC of size f , then there is a
Turing kernel for LELP(k) of size f for any computable function f .

Proof Sketch. It is easy to see that if G has an edge-linked path of length k, then
there exist u, v ∈ V (G) such that G + e has an edge-linked cycle of length k + 1,
where e = {u, v}. Moreover, for any u, v ∈ V (G), if G + e′ (where e′ = {u, v})
has an edge-linked cycle of length at least k +1, then G has an edge-linked path
of length k. As a result to test whether a graph G has an edge linked-path of
length k, it is enough to test whether G + {{u, v}} has an edge-linked cycle of
length at least k + 1 for some u, v ∈ V (G). But there is caveat here; we require
an oracle for the same problem. In fact it is not hard to show that an oracle for
LELC can be obtained using an oracle for LELP(k) and vice versa, where the
query lengths are asymptotically the same. �

Thus, in this section we focus on proving the following theorem, which when
combined with the hardness result mentioned above, amounts to a proof of
Theorem 2.

Theorem 5. There is a Turing kernel for LELC with O(k3.656) vertices and
O(k4.656) edges.

We remark that our overall methodology is inspired by the approaches used
by [10] to obtain Turing kernels for long path and cycle problems on special
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classes of graphs. Towards the proof of Theorem 5 we prove Lemma 2. Before
stating Lemma 2 we define the notion of an irrelevant vertex.

Definition 5. Let (G, k) be an instance of LELC. A vertex v ∈ V (G) is called
an irrelevant vertex for (G, k) if the following holds: (G, k) is a Yes-instance of
LELC if and only if (G − v, k) is a Yes-instance of LELC.

We would like to mention that the size bound of the f -oracle for LELC
refers to the bound on the number of vertices in the graph. Moreover, if there
is a vertex of degree at least k, then the input is a Yes-instance and thus the
bound on the edges will be at most k times the number of vertices.

Lemma 2. There is a constant c and a function f : N → N defined as f(x) =
cx3.656 for any x ∈ N, such that there is a polynomial time algorithm that given
an instance (G, k) of LELC, uses an f-oracle for LELC to:

– either correctly determine if (G, k) is a Yes-instance of LELC, or,
– output an irrelevant vertex v ∈ V (G).

Given Lemma 2, the proof of Theorem 5 is straight forward: we can either
solve the instance or make progress by deleting the irrelevant vertex. The rest
of the section is devoted to prove Lemma 2. To this end, we first introduce and
prove some auxiliary lemmas.

Proposition 3. Let k ∈ N. Any 3-edge-connected graph (or 3-vertex-connected
graph) G with at least k1.328 vertices contains an edge-linked cycle of length ≥ k.

Proof. Let G be a 3-edge-connected graph, n = |V (G)| and m = |E(G)|. The-
orem 3 implies the following argument. If k ≤ m0.753, then G has an Eulerian
subgraph with at least k edges, and hence G has an edge-linked cycle of length at
least k. Any 3-edge-connected graph G has at least 3

2 |V (G)| edges. Therefore if
k ≤ (

3
2 · n

)0.753, then (G, k) is a Yes-instance of LELC. Otherwise n ≤ 2
3 ·k1.328.

Any 3-vertex-connected graph is also a 3-edge-connected graph. �
Lemma 3 (�3). There is a constant c′ and a polynomial time algorithm which
given an instance (G, k) of LELC such that G is connected and |V (G)| >
c′k3.656, either correctly concludes that (G, k) is a Yes-instance or outputs a
separation (A,B) of G of order at most 2 such that 7k < |A| ≤ c′ · k3.656.

The proof of Lemma 3 uses Proposition 2. Next we define an equivalent
characterization for edge-linked paths and cycles in terms of trails and tours. A
trail is a walk in which no edges repeats and a tour is a closed walk in which
no edges repeats. If a trail (tour) covers all the edges in a graph G, then it
is a Eulerian path (Eulerian cycle). As a result we have the following simple
observations.

3 The proofs of results marked with � are deferred to the full version of the paper.
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Observation 2. Let G be a graph. Let C be a tour in G and P be a trail with
endpoints u and v, where u �= v. Then, (i) degree of each vertex in the subgraph
(V (C), E(C)) is even, and (ii) degree of any vertex w ∈ V (P ) \ {u, v} in the
graph G′ = (V (P ), E(P )) is even and degrees of u and v in G′ are odd.

Observation 3. Let G be a graph. Let C be a connected subgraph of G such
that dC(v) is even for all v ∈ V (C). Let P be a connected subgraph of G such
that there exist two distinct vertices x, y ∈ V (P ) with the following properties:
dP (x) and dP (y) are odd numbers, and dP (v) is an even number for all v ∈
V (P ) \ {x, y}. Then, C is a tour, and P is a trail from x to y in G.

The following observation characterizes edge linked paths and cycles in terms
of trails and tours, respectively.

Observation 4. Let G be a graph. There is an edge linked path of length k in
G if and only if there is a trail P in G such that |Ein(V (P ))| ≥ k. Also, there
is an edge linked cycle of length at least k in G if and only if there is a tour C
in G such that |Ein(V (C))| ≥ k.

Proof. Let P = u1 . . . u� be a trail in G such that |Ein(V (P ))| ≥ k. Let ei =
{ui, ui+1} for all i ∈ {1, . . . , � − 1}. Let {i1, . . . , i�′} ⊆ {1, . . . , �} be the maximal
subset such that uij appear first in ij th position in P for all j ∈ {1, . . . , �′}. For
each j ∈ {1, . . . , �′} let Sij be the set of edges incident to uij , but not in E(P )
and not incident to any uir for some r < j. For all q /∈ {i1, . . . , i�′}, Sq = ∅.
Then the sequence of edges in S1e1S2 . . . S�−1e�−1S� forms an edge-linked path
containing all the edges in Ein(V (P )). Similarly, we can prove that there is an
edge-linked cycle containing all the edges in Ein(V (C)). �

Due to Observation 4, to solve LELC, it is enough to test for the existence of
a tour C such that |Ein(V (C))| ≥ k. In the following two lemmas we summarize
the behaviour of a tour C across a separation of order at most 2.

Lemma 4. Let G be a graph and (A,B) be a separation of G. Let C be a tour
in G such that |V (C) ∩ (A ∩ B)| = 1. Let x ∈ V (C) ∩ (A ∩ B). Then, one of the
following is true.

– C is contained in G[A] or G[B].
– E(C) ∩ E(G[A]) forms a tour C ′ in G[A] and x ∈ V (C ′).

Proof. Suppose C is contained in G[A] or G[B], then we are done. Otherwise,
let F be the subgraph induced on E(C) ∩ E(G[A]). Clearly x ∈ V (F ). By
Observation 2, for any u ∈ V (F ) \ {x}, we know that dF (u) is even. Then
by Observation 1, dF (x) is even. Since C is connected, F is also connected.
Therefore, by Observation 3, F is a tour in G[A]. This completes the proof of
the lemma. �
Lemma 5 (�). Let G be a graph and (A,B) is a separation of G of order
2. Let C be a tour in G and A ∩ B = {x, y} ⊆ V (C). Let GA = G[A] and
GB = (B,E(G) \ E(GA)). Then, one of the following is true.
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1. C is contained in GB.
2. There exists a tour C ′ in GA such that E(C ′) = E(C) ∩ E(GA).
3. There exist two vertex disjoint tours C1 and C2 in GA such that x ∈

V (C1), y ∈ V (C2), and E(C1) ∪ E(C2) = E(C) ∩ E(GA).
4. There exists a trail P from x to y in GA such that E(P ) = E(C) ∩ E(GA).

By Observation 4, we know that to test for the existence of an edge-linked
cycle of length at least k it is enough to test for the existence of a tour such that
at least k edges are incident on the vertices of the tour.

Lemma 6. There exists two constant c1 and c2 (where c2 < c1 and c2 is same as
the constant in Lemma 3), and a function f : N → N defined as f(x) = c1x

3.656

for any x ∈ N such that the following holds. There is a polynomial time algorithm
A which given an instance (G, k) of LELC and a separation (A,B) of G of order
at most 2 such that 7 · k < |A| ≤ c2 · k3.656 and max degree of G at most k, uses
an f-oracle for LELC and outputs one of the following.

– Correctly concludes that (G, k) is a Yes-instance of LELC.
– Outputs an irrelevant vertex v ∈ V (G).

Proof. Let GA = G[A], GB = (B,E(G) \ E(GA)). Algorithm A first queries the
f -oracle with input (GA, k). If the oracle returns Yes, then A concludes that
(G, k) is a Yes-instance of LELC. From now on we assume that (GA, k) is a
No-instance. We have the following three cases based on |A ∩ B|.

Case 1 : |A ∩ B| = 0. In this case any edge-linked cycle is either contained in
GA or contained in GB . Since (GA, k) is a No-instance, any vertex in A is an
irrelevant vertex.

Case 2 : |A ∩ B| = 1. Let {x} = A ∩ B. First we prove the following claim.

Claim 1 (�). Let (GA, k) be a No-instance of LELC. Let k′ < k be the
largest integer such that there is a tour Q in GA such that x ∈ V (Q) and
|EGA

in (V (Q))| = k′. If there is a tour Q′ in GA − v such that x ∈ V (Q′) and
|EGA−v

in (V (Q′))| = k′ for some v ∈ A \ N [x], then v is an irrelevant vertex.

We note that the integer k′ can be identified using f -oracle as follows. We
construct a new graph G′ by adding a new cycle D of length 2k with vertices
x and 2k − 2 new vertices. Since (GA, k) is a No-instance, any tour C with
|Ein

G′(C)| ≥ 2k + k′ contains D (i.e., E(D) ⊆ E(C)). Therefore, we can identify
k′ by calling f -oracle on (G′, 2k + k1) for all k1 < k. The largest k1 for which
(G′, 2k + k1) is a Yes-instance is k′. We will set the value of c1 to be at least
c2 + 2 so that we can use f -oracle. After identifying the value k′ we again use
f -oracle to identify an irrelevant vertex v. Towards that we query f -oracle with
(G′ − u, k′ + 2k) for all u ∈ A \ N [x] and there will be at least one vertex v
for which f -oracle outputs Yes on input (G′ − v, k′ + 2k). That vertex v is an
irrelevant vertex because of Claim 1.
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Case 3 : |A ∩ B| = 2. Let A ∩ B = {x, y}. First we prove the following claim.

Claim 2. Suppose there is a path between x and y in GB and there is trail P
from x to y in GA such that |EGA

in (V (P ))| ≥ k−1. Then (G, k) is a Yes instance.

Proof. Let P ′ be a path from x to y in GB . Then the edges of P and P ′ forms a
tour C in G. Since E(P ′) is disjoint from E(GA) and |EGA

in (V (P ))| ≥ k − 1, we
have that |EG

in(V (C))| ≥ k. Then, by Observation 4, (G, k) is a Yes-instance. �
Algorithm A will test whether there is a path between x and y in GB and the

existence of a trail P from x to y in GA with |EGA
in (V (P ))| ≥ k−1 using f -oracle

as follows. We construct a graph G′ by adding a 2k length path L between x and
y. Since (GA, k) is a No-instance, and any tour C with |EG′

in (V (P ))| ≥ 3k − 1
will contain the path L. Therefore (G′, 3k − 1) is a Yes-instance of LELC if and
only if there is a trail P from x to y in GA such that |EGA

in (V (P ))| ≥ k−1. Then
by Claim 2, we conclude that (G, k) is a Yes instance.

Now on we assume that if GB contains a path between x and y, then there
is no trail P from x to y in GA with |EGA

in (V (P ))| ≥ k − 1. We use f -oracle
to output an irrelevant vertex as follows. We construct three graphs G1, G2, G3,
and G4 as follows. The graph G1 is created by adding a cycle L1 of length 4k
containing x and 4k − 1 new vertices. The graph G2 is created by adding a
cycle L2 of length 4k containing y and 4k − 1 new vertices. The graph G3 is
created by adding two internally vertex disjoint paths Q3 and Q′

3 of length 2k
each between x and y. The graph G4 is created by adding a path Q4 of length 4k
between x and y. For each i ∈ {1, . . . , 4}, we use f -oracle to compute the largest
1 ≤ ki < k such that (Gi, 4k + ki) is a Yes-instance. If no such ki exists we set
ki = −∞. Clearly this can be done by querying the f -oracle at most k times for
each i ∈ {1, . . . , 4}. For any i ∈ {1, . . . , 4}, if ki �= −∞, any tour Ci in Gi with
|EGi

in (V (Ci))| ≥ 4k +ki will contain the newly added 4k edges. Therefore all but
ki vertices in GA are irrelevant for the instance (Gi, 4k + ki). These vertices can
be identified using f -oracle. So Algorithm A identifies at most 4k vertices that
are relevant for at least one of (Gi, 4k + ki). Since |A| > 7k, there is one vertex
v ∈ A \ (N [x] ∪ N [y]) which is irrelevant for (Gi, 4k + ki) for all i ∈ {1, . . . , 4}.
Algorithm A will output such a vertex v as an irrelevant vertex for the instance
(G, k). One can show that vertex v is indeed an irrelevant vertex for (G, k). This
concludes the proof of the Lemma.

�
We are now ready to give the proof of Lemma 2.

Proof of Lemma 2. First we set constants c1 and c2 mentioned by Lemma 6.
Then we set the constant c mentioned in the lemma to be c1. Let (G, k) be the
input instance. If there is a vertex v ∈ V (G) with degree at least k, then we
conclude that (G, k) is a Yes-instance. Let H be a connected component of G. If
|V (H)| ≤ c2k

3.656, then we use f -oracle to test whether (H, k) is a Yes-instance
or not. If (H, k) is not a Yes-instance, then we output any vertex in V (H) as an
irrelevant vertex.
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Now consider the case |V (H)| > c2k
3.656. We use Lemma 3 on (H, k). If

Lemma 3 concludes that (H, k) is a Yes-instance, then (G, k) is indeed a Yes-
instance. Otherwise Lemma 3 outputs a separation (A,B′) of H of order at most
2 such that 7k < |A| ≤ c2 · k3.656. Notice that (A,B = B′ ∪ (V (G) \ V (H))) is
a separation of G of order at most 2. Now we use Lemma 6 to either conclude
that (G, k) is a Yes-instance or to output an irrelevant vertex. �

4 Concluding Remarks

In this contribution, we introduced and studied a natural optimization variant
of the notion of an edge Hamiltonian path. Specifically, we ask if a graph admits
such an edge-linked path of length at least k. We show that the problem is
FPT when parameterized by k, and admits a single-exponential algorithm when
parameterized by treewidth. The latter generalizes and improves known algo-
rithms for the special case of the Edge Hamiltonicity problem (where k = m)
when parameterized by treewidth. While we used the technique of representa-
tive families, possibly, other techniques can also be employed to obtain similar
running time dependency on the treewidth parameter (for example, using rank-
based approaches [5]).

We also studied the kernelization complexity of the problem, showing that
it is unlikely to admit a polynomial kernel even if the input graph is connected.
Our main result in this context was a Turing kernel for the problem, which
made use of Tutte decompositions and the existence of long edge-linked paths
on 3-connected graphs. An interesting open problem here is to determine the
kernelization complexity of the problem on two-connected graphs. We conjecture
that the problem remains hard for this class of graphs as well.
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