
On the Complexity of Restarting

Jan-Hendrik Lorenz(B)

Institute of Theoretical Computer Science, Ulm University, 89069 Ulm, Germany
jan-hendrik.lorenz@uni-ulm.de

Abstract. Restarting is a technique used by many randomized local
search and systematic search algorithms. If the algorithm has not been
successful for some time, the algorithm is reset and reinitialized with
a new random seed. However, for some algorithms and some problem
instances, restarts are not beneficial. Luby et al. [12] showed that if
restarts are useful, then there is a restart time t∗ such that the so-called
fixed-cutoff strategy is the best possible strategy in expectation.

In this work, we show that deciding whether restarts are useful is NP-
complete. Furthermore, we show that there is no feasible approximation
algorithm for the optimal restart time t∗. Lastly, we show that calculating
the expected runtime for a known probability distribution and a given
restart time is #P-complete.

Keywords: Restarts · Fixed-cutoff strategy ·
Probability distribution · Computational complexity · NP · #P ·
Inapproximability

1 Introduction

Some (randomized) algorithms employ an algorithmic paradigm called restart-
ing: If a solution is not found after a certain number of steps, then the algo-
rithm is reset and the search starts over with a new random seed. Restarts
are especially prevalent in stochastic local search (e.g. [13,17]) and randomized
systematic search algorithms (e.g. [3,9]). In practice, restarts help to improve
the performance of some algorithms by orders of magnitude, and are presently
employed in most state-of-the-art SAT solvers [4].

For Las Vegas algorithms the runtime behavior is often modeled with prob-
ability distributions. For example, Arbelaez et al. [1] use lognormal and expo-
nential distributions to describe the runtime behavior of two SAT solvers. Frost
et al. [8] model the runtime behavior of solvable CSP instances with Weibull
distributions and the behavior of unsolvable CSP instances with lognormal dis-
tributions. Both papers use empirical observations to fit these distributions to
the observed runtimes. Hence, it also seems natural for theoretical purposes to
model the runtime behavior with cumulative distribution functions (cdfs) or
probability mass functions (pmfs). It allows to succinctly represent the runtime
behavior on a large (possibly infinite) support.
c© Springer Nature Switzerland AG 2019
R. van Bevern and G. Kucherov (Eds.): CSR 2019, LNCS 11532, pp. 250–261, 2019.
https://doi.org/10.1007/978-3-030-19955-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19955-5_22&domain=pdf
https://doi.org/10.1007/978-3-030-19955-5_22


On the Complexity of Restarting 251

From the theoretical perspective, Luby et al. [12] showed that the so-called
fixed-cutoff strategy is an optimal strategy w.r.t. the expected runtime for some
restart time t∗. The fixed-cutoff strategy allows an unbounded number of restarts
and the algorithm always restarts after t∗ steps. It is, however, necessary to have
nearly complete knowledge of the runtime behavior to compute the optimal
restart time t∗.

A good restart strategy should improve the performance of the algorithm
in question. For the case when the distribution is known, Lorenz [11] derived
formulas to evaluate whether there is any restart strategy which is beneficial
w.r.t. the expected runtime. Furthermore, the formulas can be used to calculate
an optimal restart time.

Another crucial property for restart strategies is that the calculation of
restart times should be efficient. In other words, the time spent choosing a restart
strategy should be significantly less than the time dedicated to the actual algo-
rithm that uses the restart strategy. So far, the complexity of choosing a restart
strategy has not been considered.

Our Contribution: We study the computational complexity of problems
directly related to restarts. It is assumed that the probability distribution is
known and provided in symbolic form, i.e., the formulas of either the cdf or pmf
of the distribution are known. Section 3 considers decision problems. It is shown
that deciding whether there is a restart time such that the expected runtime is
less than a threshold is NP-hard (Theorem 2) while a relaxation of the problem
is still NP-complete (Theorem 1). Furthermore, Theorem 3 and Corollary 2 show
that there is no feasible approximation algorithm for the restart time w.r.t. the
expected runtime.

In Sect. 4, we investigate underlying reasons why the decision problems men-
tioned above are hard. Moorsel and Wolter [14] showed that restarts are bene-
ficial if and only if E[X] < E[X − t | X > t] for some t, where X is a random
variable describing the runtime. Here, we show that calculating both sides of the
inequality is #P-complete (Theorems 4 and 5).

Related Work: Initiated by the work of Batu et al. [2], property testing gained
traction in recent years. In this field, the general objective is determining whether
a probability distribution fulfills a specific desired property. For example, an
algorithm should decide whether the pmf of a distribution is unimodal [7]. For
an in-depth overview of the topic, refer to [6]. The difference to our model is that
in the framework of property testing the probability distribution is not explicitly
known. Instead, it is assumed that sample access to the distribution is available.
In other words, there is an oracle which returns an element x with probability
p(x). Therefore, the pmf p cannot be observed directly, while in our model p
is known. To the best of our knowledge, complexity properties of probability
distributions provided in symbolic form have not been studied before.



252 J.-H. Lorenz

2 Preliminaries

We presume that the reader is familiar with the basic notions of complexity
theory. For a detailed description of the topic, we refer to a standard book on the
topic like [16]. We assume that the runtime distribution is known and provided
as input in symbolic form. First, the structure of the functions is specified: In this
work, it is only required that a function F is well-defined on a bounded interval
I = {0, . . . , a} with 0 < a < ∞. In this work, we consider discrete cumulative
distribution functions and probability mass functions.

Definition 1. Let X be an integer-valued random variable. Then, the cumula-
tive distribution function (cdf) FX of X is defined by

FX(i) = Pr (X ≤ i).

The probability mass function (pmf) pX of X is defined by

pX(i) = Pr (X = i) .

In the following, the subscripts are often omitted. Cdfs and pmfs are bounded
from below by zero and bounded from above by one. Moreover, cdfs are
monotone on I. Let p be a pmf then its corresponding cumulative function
F (k) =

∑k
i=0 p(i) is required to be a cdf.

Each function F is defined with binary encoded input, i.e., F : {0, 1}n �→ [0, 1]
where n is a suitable integer. The function F is given in symbolic form or in other
words: as a formula. We use uniform families of arithmetic circuits to describe
the formulas. In an arithmetic circuit, the gates are arithmetic operations, like
addition or multiplication. An overview of arithmetic circuits can be found in
[19]. We use binary encoded integers as input. Also, there is a large number of
non-standard functions which could be used to achieve a succinct representation
of an arbitrary function. Therefore, we only allow the use of addition, subtrac-
tion, multiplication, exponentiation, and division gates. Another work using a
model with the same gates is, for example, described in [5]. Another significant
property which is required for the following results is that F (x) can be evalu-
ated in polynomial time for all x. In the following, when we refer to formulas,
we implicitly mean formulas which are given as arithmetic circuits.

In this work, it is often necessary to encode a conjunctive normal form (CNF)
formula as a function G using only multiplication and subtraction such that the
SAT formula is satisfiable iff G(a) = 1 for some input a. It is known that negation
¬x can be expressed by 1 − x, a logical and x ∧ y is given by xy, and a logical
or x ∨ y is 1 − (1 − x)(1 − y).

Here, we formally define the fixed-cutoff strategy.

Definition 2 ([12]). Let A(x) an algorithm A on input x. Let t be a positive
integer. A modified algorithm At is obtained by introducing a counter T = 0.
Then, A(x) is allowed to run. Increment T after each step of A(x). If T exceeds
t reset and reinitialize A(x) with a new random seed and set T to zero. If at



On the Complexity of Restarting 253

any point A(x) finds a solution, then At(x) returns this solution. Repeat these
steps until A(x) finds a solution. The integer t is called restart time. This
algorithmic approach is called fixed-cutoff strategy.

In this work, we only address fixed-cutoff strategies. Hence, whenever we
refer to restart strategies or restarts, we implicitly mean a fixed-cutoff strategy.

Let X be a discrete random variable with cdf F and let t ∈ N be an arbitrary
restart time. The expected value with restarts after t steps is denoted by E[Xt].
Luby et al. [12] showed that E[Xt] is given by

E[Xt] =
1 − F (t)

F (t)
t + E[X | X ≤ t] =

1
F (t)

(

t −
∑

x<t

F (x)

)

. (1)

They also introduced some useful bounds in their work:

Lemma 1 ([12]). Let l∗ = inft E[Xt] be the optimal expected value under
restart, then

l∗ ≤ min
t

t

F (t)
≤ 4l∗ (2)

holds.

For the rest of this work, the quotient t/F (t) is called the upper bound (of the
expected value with restarts).

3 Hardness and Inapproximability

We first focus on the upper bound t/F (t) and show that this version of the
problem is computationally hard.

Restart-upper-bound-cdf
Input: A cdf F : N �→ [0, 1] and an integer k. The cdf F is given as an

arithmetic circuit and F (t) can be evaluated in polynomial time
for every t < k. The symbolic form of F must be composed of
summation, subtraction, multiplication and division operations.

Question: Is there a restart time t such that t
F (t) < k?

Theorem 1. Restart-upper-bound-cdf is NP-complete.

Proof. We first show that Restart-upper-bound-cdf is in NP. It is easy to
see that the inequality t

F (t) < k only holds if t < k. Then, the inequality t
F (t) < k

can be verified in polynomial time since by hypothesis F can be evaluated in
polynomial time for every fixed t < k. Thus, Restart-upper-bound-cdf is in
NP.

Secondly, let G be any SAT formula with n variables. Any 0 ≤ t ≤ 2n −1 can
be interpreted as an assignment of the variables in G; this assignment is denoted



254 J.-H. Lorenz

by αt. In the following, Gα denotes the numeric value of G evaluated with the
assignment α. We define the function FG : {0, 1}n+1 �→ [0, 1]:

FG(t) =

{
t+Gαt

2n , 0 ≤ t ≤ 2n − 1
1, t ≥ 2n

(3)

The function FG(t) can be evaluated in polynomial time for all t ≤ 2n because the
division by 2n can be expressed in polynomial length with the standard binary
representation. Clearly, FG is bounded from below by zero and from above by
one. The formula FG is monotonically increasing which can be derived from the
fact that Gαt ≤ 1 + Gαt+1 holds.

Gαt ≤ 1 + Gαt+1

⇔ t + Gαt

2n
≤ t + 1 + Gαt+1

2n

What remains to be shown is that FG can be expressed with summation, subtrac-
tion, multiplication and division. Each of the two cases can clearly be expressed
with these operations, since a CNF formula can be expressed as a function as
described above. Only the case distinction has to expressed with the allowed
operations. This can be achieved with the following representation:

FG(t) =
t + Gαt

2n
· (1 − xn+1) + xn+1.

Where xn+1 is the (n + 1)-st bit of the binary representation of t. Hence, FG is
a cumulative distribution function which can be evaluated in polynomial time
for each t < 2n + 1. Let U be an unsatisfiable formula, then FU (t) = t

2n for all t
with 0 ≤ t ≤ 2n. Therefore,

t

FU (t)
= 2n

holds for all t ≤ 2n. On the other hand, let S be any satisfiable formula and let
x be any integer such that αx is a satisfying assignment of S. Then,

x

FS(x)
=

x

x + 1
2n < 2n.

A SAT instance G is satisfiable if and only if there is a t with t/FG(t) < 2n.
Therefore, Restart-upper-bound-cdf is NP-complete. ��

The version shown above is for the computation of an upper bound of the
expected value under restart. This raises the question whether the exact version
is also computationally hard. The next section addresses this problem. For this,
the used function is also allowed to use the exponentiation operation.

Restart-exact-cdf
Input: A cdf F : N �→ [0, 1] and an integer k. The arithmetic circuit of

F must be composed of summation, subtraction, multiplication,
division and exponentiation operations.

Question: Is there a restart time t such that E[Xt] < k?



On the Complexity of Restarting 255

Theorem 2. The problem Restart-exact-cdf is NP-hard.

Proof. Let G and αt be defined as in the proof of Theorem 1 and define the
function FG:

FG(t) =

⎧
⎪⎨

⎪⎩

0, t < 1
1 − 2−t−Gαt−1 , 1 ≤ t ≤ 2n

1 − 2−t, t > 2n

(4)

The value of F (t) in standard binary representation is 0.11 . . . 1 with t + Gαt−1

ones in the decimal places. This can be exponential in the length of the input.
However, the value of F (t) can be encoded unambiguously by just saving the
number of ones in the decimal places. Thus, a representation of F (t) can be
computed in polynomial time. The function F is a cdf which can be verified in
the same way as in Theorem 1. We define a random variable X such that F
is the cdf of X. If U is an unsatisfiable SAT instance, then FU is a geometric
distribution with success probability 0.5. For this geometric distribution, it is
known that E[Xt] = 2 for every t ∈ N. If S is a satisfiable SAT instance and t is
an integer such that Gαt−1 = 1, then the expected value E[Xt] is at most

E[Xt] ≤ 2 · 1 − 2−t

1 − 2−t−1
< 2.

Hence, a SAT instance is satisfiable if and only if there is a t with E[Xt] < 2. ��
Instead of the cdf, it is also possible to use the pmf for both problems.

Let Restart-upper-bound-pmf and Restart-exact-pmf denote those prob-
lems. I.e., instead of a cdf the input consists of an arithmetic circuit calculating
a pmf.

Corollary 1. Restart-upper-bound-pmf and Restart-exact-pmf are
NP-hard.

Proof. Let F be a cdf which can be evaluated in polynomial time and which
is given as an arithmetic circuit. Then, p(t) = F (t) − F (t − 1) is a pmf which
can be expressed as an arithmetic circuit. This can be used as a reduction from
Restart-upper-bound-cdf to Restart-upper-bound-pmf and respectively
from Restart-exact-cdf to Restart-exact-pmf. ��

The results shown so far are for the decision whether a restart strategy
should be applied. Another important problem concerning restarts is the choice
of a good restart time. In the following, we show that restart times cannot be
approximated in polynomial time up to an arbitrary constant c unless P = NP.
To make the notion more precise: Let X be a discrete random variable and let t∗

be an optimal restart time such that the optimal expected value under restart is
E[Xt∗ ]. Then, there is no polynomial-time algorithm which finds a restart time
t such that E[Xt] ≤ c · E[Xt∗ ]. First, we show that the upper bound t/F (t) is
also inapproximable.



256 J.-H. Lorenz

Theorem 3. Let X denote a discrete random variable, p the pmf of X and
t∗

F (t∗) its optimal upper bound for the expected value under restart. Let c > 1 be
any arbitrary constant. Unless P = NP, there is no polynomial-time algorithm
A(p) such that A(p) finds a restart time t such that the upper bound t

F (t) is at

most c t∗
F (t∗) with p as input.

Proof. Let G and αt be defined as in the proof of Theorem 1. We define the
function pG:

pG(t) =

⎧
⎪⎨

⎪⎩

Gαt−1
2n+1 , 1 ≤ t ≤ 2n

1
2n+1 , t = c · 2n

0, else
(5)

The function pG is a pmf since it is non-negative for every t and sums up to
at most one. Let U be an unsatisfiable SAT instance and let FU (t) =

∑t
i=0 pU (i)

be the cdf which corresponds to pU . Let lU denote the minimum of the upper
bound t/FU (t). The value of FU (t) is greater than zero iff t ≥ c2n. Thus, the
upper bound is minimal at t = c2n:

lU = min
t

t

FU (t)
= c(2n + 1)2n.

On the other hand, let S be a satisfiable SAT instance and, again, let FS

be the cdf which corresponds to pS . Let lS denote the minimum of the upper
bound t/FS(t). The upper bound is minimal for t such that there is no x < t
with Sαx−1 = 1. Then, (2n + 1)2n bounds lS from above:

lS = min
t

t

F (t)
≤ 2n

F (2n)
≤ (2n + 1)2n.

Hence, a SAT instance G is satisfiable if and only if there is a restart time t with
t/FG(t) < c(2n + 1)2n.

Let A be a polynomial-time algorithm which takes a pmf as input such that
A(p) finds a restart time x with

x

F (x)
≤ (c − ε)min

t

t

F (t)
,

where ε is an arbitrary constant with 0 < ε < c. Consider the properties of
A(pS): The algorithm finds a restart time x such that

x

F (x)
≤ (c − ε)lS ≤ (c − ε)(2n + 1)2n < c(2n + 1)2n = lU .

As the constant c can be chosen arbitrarily, the existence of any polynomial-time
approximation algorithm implies that checking whether the predicted restart
time is less than c · 2n decides SAT in polynomial time. ��



On the Complexity of Restarting 257

Corollary 2. Let X denote a discrete random variable, p the pmf of X and
E[Xt∗ ] its optimal expected value under restart. Let c > 1 be any arbitrary con-
stant. Unless P = NP, there is no polynomial-time algorithm A(p) which always
finds a restart time t such that the expected value under restart E[Xt] is at most
cE[Xt∗ ] with p as input.

The proof is analogous to the proof of Theorem 3 and is therefore omitted.

4 The Hardness of the Mean

Valiant [18] introduced the complexity class #P. The following, equivalent defi-
nition is from [20].

Definition 3 ([18], [20]). Let M be any non-deterministic Turing machine and
let accM (x) denote the number of accepting computations of M on input x. Then
#P is given by

#P = {f | f : Σ∗ �→ N such that f = accM for some polynomial time
non-deterministic Turing machine M}.

In the following, we use metric reductions as defined by Krentel.

Definition 4 ([10]). Let f , h be functions. The function f is metrically
reducible to h if and only if there are two functions g1, g2 which are computable
in polynomial time such that f(x) = g2(x, h(g1(x))).

The formal definition of #P-hardness and completeness requires Cook reduc-
tions. However, polynomial-time many-one reductions and metric reductions
both imply the existence of Cook reductions (compare [15]). Thus, the formal
definition of Cook reductions and #P-hardness is omitted. We refer the reader
to [18] for both definitions. A canonical #P -complete problem is finding the
number of satisfying assignments for a given boolean formula [18]. For the rest
of this work, this problem is called #SAT.

#SAT
Input: A boolean formula F in conjunctive normal form.
Question: What is the number of satisfying assignments for F?

In the following, #SAT(G) denotes the number of satisfying assignments of
a SAT formula G in CNF. Let A be an algorithm on some input x and let X be a
random variable describing the runtime distribution of A(x). Moorsel and Wolter
[14] showed that A(x) benefits from restarts if and only if there is a t > 0 with
E[X] < E[X − t | X > t]. Moreover, the expected runtime E[Xt] with restarts
requires the conditional mean E[X | X ≤ t] (compare Eq. 1). Hence, computing
the expected value E[X] and the conditional expected values E[X | X > t] and
E[X | X ≤ t] is an important task in the context of restarts.A relevant step
in computing the conditional expected value is calculating partial moments:
μX(N) =

∑N
i=0 iPr (X = i). This is because E[X | X ≤ N ] = μX(N)

Pr (X≤N) and



258 J.-H. Lorenz

E[X | X > N ] = E[X]−μX(N)
Pr(X>N) . More generally, the k-th partial moment μ

(k)
X (N)

is defined as:

μ
(k)
X (N) =

N∑

i=0

ik Pr (X = i).

Here, we address the computational complexity of calculating partial
moments. First, we study the complexity of computing the partial expectation
μ
(1)
X (N). To achieve a better fit to standard computational models we restrict

the allowed functions such that each cdf can easily be mapped to integers. More
precisely, only functions of the form F (i) = c(i)

M for some natural number M and
some function c : N �→ N are considered. Then, ME[X] is computed instead of
the expected value itself.

Partial-expectation-cdf
Input: An integer N , a polynomial-time function c : {0, . . . , N} �→ N

and an integer M , such that F (i) = c(i)
M is a (partial) cdf.

Question: What is the partial expectation Mμ
(1)
X (N), where F defines X.

Here, a partial cdf denotes a function which is monotonically increasing and
does not exceed 1.

Theorem 4. Partial-expectation-cdf is #P -complete with respect to met-
ric reductions.

Proof. First, we show that Partial-expectation-cdf is in #P. Note that F
has bounded support due to its definition. The partial expectation is then given
by

Mμ
(1)
X (N) = M

N∑

i=1

(1 − F (i)) =
N∑

i=1

(M − c(i)).

We design a non-deterministic polynomial time Turing machine T such that the
number of accepting computation paths of T is equal to Mμ

(1)
X (N). The Turing

machine T takes c, N , M as input. A positive integer i ∈ {0, . . . , N} is chosen
non-deterministically and c(i) is evaluated. Then, add M − c(i) accepting paths
to T which are identified by additional non-deterministic bits. For this, observe
that the difference M − c(i) is a positive number since F is a (partial) cdf. The

total number of accepting paths of T is then
N∑

i=1

(M − c(i)) = Mμ
(1)
X (N) which

shows that Partial-expectation-cdf is in #P.
Next, each c(i) is bounded by M because otherwise, F would not be a cdf.

Therefore, the computation of Mμ
(1)
X (N) is in #P. In the following, we reduce

#SAT to Partial-expectation-cdf to show the #P-hardness. Let G and αt

be defined as in the proof of Theorem 1. The function FG(t) is given by:

FG(t) =

{
(t−1)+Gαt−1

2n , 1 ≤ t ≤ 2n

1, t > 2n
(6)



On the Complexity of Restarting 259

Let X be the random variable defined by FG. Here, M is equal to 2n and N is
(at most) 2n, the function c is given by c(t) = (t − 1) + Gαt−1 for t ≤ 2n and
c(t) = 2n for t > 2n. Note that μ

(1)
X (N) is equal to the expected value E[X].

Observe the value of 2nE[X]:

2nE[X] =
2n∑

i=1

2n − c(i) = 22n −
2n∑

i=1

(i − 1) + Gαi−1

= 22n − 2n−1(2n − 1) −
2n−1∑

i=0

Gαi

= 22n − 2n−1(2n − 1) − #SAT (G).

Therefore, #SAT can be metrically reduced to Partial-expectation-cdf by
encoding the SAT instance as a cdf as in FG for g1 and setting g2(G, k) to
− (

k − 22n + 2n−1(2n − 1)
)
. ��

The problem can also be defined with probability mass functions as input.

Partial-moment-pmf
Input: An integer N , a polynomial-time function c : {0, . . . , N} �→ N,

an integer k and an integer M , such that p(i) = c(i)
M is a (partial)

pmf and such that ik · c(i) is a natural number for all i.
Question: What is the partial moment Mμ

(k)
X (N), where F defines X.

Theorem 5. Partial-moment-pmf is #P-complete with respect to
polynomial-time many-one reductions.

Proof. We show that Partial-moment-pmf is in #P. The partial moment
Mμ

(k)
X (N) is given by M

∑N
i=0 ikp(i). By definition, Mikp(i) is a natural number

which can be computed in polynomial time. Therefore, Partial-moment-pmf
is in #P.

Let G and αt be defined as in the proof of Theorem 1.

pG(t) =

{
Gαt−1
2n·tk , 1 ≤ t ≤ 2n

0, else
(7)

Here, M and N are 2n and the function c(t) is given by Gαt−1
tk

. The function pG(t)
is a partial pmf since the sum

∑2n

t=1
Gαt−1
2n·tk does not exceed 1 for all positive k.

Clearly, the product tkc(t) = Gαt−1 is a natural number for all t with 1 ≤ t ≤ 2n.
The partial expectation 2nμ

(k)
X (2n) is given by

2nμ
(k)
X (2n) =

2n∑

i=1

ik · c(i) =
2n∑

i=1

Gαi−1 = #SAT(G).

Therefore, #SAT is polynomial-time many-one reducible to Partial-moment-
pmf which completes the proof. ��
We conclude that the computations required to decide E[X] < E[X − t | X > t]
and to calculate E[Xt] are #P-complete.



260 J.-H. Lorenz

5 Conclusion and Outlook

There are three major questions related to restarts in randomized algorithms:

1. Should the algorithm use a restart strategy?
2. If yes, when should it restart?
3. What is the expected runtime of the restarted process?

In this work, we evaluate the computational complexity of all three problems.
We assume that the formula of the underlying probability distribution is known.
I.e., the formula of either the probability mass function (pmf) or the cumulative
distribution function (cdf) is used as input.

Deciding whether a restart strategy should be used is NP-hard (Theorems 1,
2 and Corollary 1). Finding a good restart time is addressed for the case when
the pmf is known.

Theorem 3 and Corollary 2 show that there is no polynomial-time algorithm
which only uses the pmf and has the following properties: The algorithm com-
putes a restart time such that its corresponding expected runtime is worse by
only a constant factor compared to the best restart strategy. Lastly, an essential
step for computing the expected runtime with restarts is the computation of
the so-called partial expectation. We show that the computation of the partial
expectation is #P-complete (Theorems 4 and 5).

There are some loose ends in this work: We showed that there is no feasible
approximation algorithm for the restart time if the pmf is known. However, the
question whether there is an approximation scheme in the case when the cdf is
known remains unanswered. Furthermore, while the general problems presented
in this work are hard, there might be subclasses of problems which can be solved
in polynomial time. On the other hand, we showed that Restart-exact-cdf
is NP-hard. It would be interesting to find out more about its computational
complexity. We believe the problem could be undecidable if the support of the
cdf is unbounded.

Moreover, we assume that the formulas provided as input describe cdfs or
pmfs. Therefore, the properties proven in this work can be viewed in the context
of promise problems. In fact, it is a non-trivial task to check whether the input
formula is indeed either a cdf or a pmf.

Furthermore, to the best of our knowledge, the properties of probability dis-
tributions have not been studied before in the setting of computational complex-
ity if the distribution is known as a formula. There are other attributes which
could be analyzed, e.g., the hazard rate or the computation of quantiles.

References

1. Arbelaez, A., Truchet, C., O’Sullivan, B.: Learning sequential and parallel runtime
distributions for randomized algorithms. In: ICTAI 2016, San Jose, California,
USA, pp. 655–662. IEEE (2016)



On the Complexity of Restarting 261

2. Batu, T., Fortnow, L., Rubinfeld, R., Smith, W., White, P.: Testing that distri-
butions are close. In: Proceedings of the Foundations of Computer Science, pp.
259–269. IEEE (2000)

3. Biere, A., Fröhlich, A.: Evaluating CDCL restart schemes. In: Proceedings of the
International Workshop on Pragmatics of SAT (POS 2015) (2015)

4. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability. IOS Press, Ams-
terdam (2009)

5. Bshouty, D., Bshouty, N.H.: On interpolating arithmetic read-once formulas with
exponentiation. J. Comput. Syst. Sci. 56(1), 112–124 (1998)

6. Canonne, C.: A survey on distribution testing: your data is big. But is it blue?
In: Electronic Colloquium on Computational Complexity (ECCC), vol. 22, no. 63
(2015)

7. Canonne, C., Diakonikolas, I., Gouleakis, T., Rubinfeld, R.: Testing shape restric-
tions of discrete distributions. Theor. Comput. Syst. 62(1), 4–62 (2018)

8. Frost, D., Rish, I., Vila, L.: Summarizing CSP hardness with continuous probability
distributions. In: Proceedings of the AAAI 1997/IAAI 1997, pp. 327–333. AAAI
Press (1997)

9. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through random-
ization, pp. 431–437. AAAI Press (1998)

10. Krentel, M.: The complexity of optimization problems. J. Comput. Syst. Sci. 36(3),
490–509 (1988)

11. Lorenz, J.-H.: Runtime distributions and criteria for restarts. In: Tjoa, A.M., Bella-
treche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS,
vol. 10706, pp. 493–507. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-73117-9 35

12. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms.
Inf. Process. Lett. 47(4), 173–180 (1993)

13. Mengshoel, O., Wilkins, D., Roth, D.: Initialization and restart in stochastic local
search: computing a most probable explanation in bayesian networks. IEEE Trans.
Knowl. Data Eng. 23(2), 235–247 (2011)

14. Moorsel, A., Wolter, K.: Analysis and algorithms for restart. In: Proceedings of
the First International Conference on the Quantitative Evaluation of Systems, pp.
195–204 (2004)

15. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision
version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
741–752. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 64

16. Papadimitriou, C.: Computational Complexity. Addison Wesley Pub. Co., Boston
(1994)

17. Schöning, U.: A probabilistic algorithm for k-SAT and constraint satisfaction prob-
lems. In: 40th Annual Symposium on Foundations of Computer Science, pp. 410–
414 (1999)

18. Valiant, L.: The complexity of computing the permanent. Theoret. Comput. Sci.
8(2), 189–201 (1979)

19. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Texts in
Theoretical Computer Science, An EATCS Series. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-3-662-03927-4

20. Welsh, D.: Complexity: Knots, Colourings and Countings. Cambridge University
Press, New York (1993)

https://doi.org/10.1007/978-3-319-73117-9_35
https://doi.org/10.1007/978-3-319-73117-9_35
https://doi.org/10.1007/11821069_64
https://doi.org/10.1007/978-3-662-03927-4

	On the Complexity of Restarting
	1 Introduction
	2 Preliminaries
	3 Hardness and Inapproximability
	4 The Hardness of the Mean
	5 Conclusion and Outlook
	References




