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Abstract. We re-consider the problem of solving systems of differen-
tial equations approximately up to guaranteed absolute error 1/2n from
the rigorous perspective of sequential and parallel time (i.e. Boolean cir-
cuit depth, equivalently: Turing machine space) complexity. While solu-
tions to general smooth ODEs are known “PSPACE-complete” [Kawa-
mura’10], we show that (i) The Cauchy problem for linear ODEs can be
solved in NC2, that is, within polylogarithmic parallel time O(log2 n) by
Boolean circuits of polynomial size. (ii) The Cauchy problem for linear
analytic PDEs, having a unique solution by the Cauchy-Kovalevskaya
theorem, can be also solved in polylogarithmic parallel time, thus gener-
alizing the case of analytic ODEs [Bournez/Graça/Pouly’11]. (iii) Well-
posed Cauchy and boundary-value problems for linear PDEs in classes
of continuously differentiable functions are solvable in the counting com-
plexity class #P#P: improving over common numerical approaches yield-
ing exponential sequential time or parallel polynomial time. Our results
build on efficient algorithms and their analyses for real polynomial,
matrix and operator powering which do not occur in the discrete case
and may be of independent interest.

1 Introduction and Brief Summary of Main Results

Recursive Analysis provides a rigorous algorithmic foundation to Numerics, that
is, to operations on continuous data by means of approximations [18]. It has a
long history of thorough investigations regarding ordinary (ODEs) and partial
differential equations (PDEs) with respect to computability and real complexity.
For example, it has been established that (a) ODEs with a polynomial/analytic
right-hand side can be solved in (appropriately parameterized) sequential poly-
nomial time [3]; while (b) general non-linear ODEs are optimally solved by
Euler’s Method using an amount of memory polynomial in the output precision
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parameter n [9], equivalently: in polynomial parallel time [2]; and (c) solving
Poisson’s linear PDEs corresponds to the complexity class #P [11].

The main definitions and notions of real complexity theory (the framework
in which we work) are summarized in Sect. 2. The discrete complexity hierarchy1

[17, Corollary 2.34] translates to the real setting (see Definition 4) as

RNC1 ⊆ RSPACE(log n) ⊆ RNC2 ⊆ RPTIMESPACE(log2 n) ⊆ RNC4

and more generally RNCi ⊆ RPTIMESPACE(logi n) ⊆ RNC2i . . . ⊆ (1)
RPTIME ⊆ R#P ⊆ R#P#P ⊆ RPSPACE = RPAR ⊆ REXP .

The present work continues the above complexity investigations for linear
ODEs and PDEs with the following contributions (see rigorous formulations
later in this section and ideas of proofs in Sect. 4):

(a) Theorem 1 establishes linear systems of ODEs computable in polylogarith-
mic parallel time (=depth), specifically in RNC2, the real counterpart to
NC2.

(b) Also linear analytic PDEs can be solved in polylogarithmic parallel time
according to Theorem 3, generalizing the case of analytic ODEs.

(c) By Theorem 2, a large class of continuously differentiable linear PDEs with
boundary conditions, classically treated with numerical difference schemes,
can be solved with computational complexity RPSPACE;

(d) For many cases with periodic boundary conditions this can be improved
to R#P#P (probably even R#P, which will be a subject of future
investigation).

In all these cases, the output consists of (approximations up to error 2−n to)
the real value u(t) or u(t, x) of the solution at given time/space t and x. Our
results are obtained by applying matrix/operator exponentials, known but rarely
used in classical Numerics. They in turn rely on efficient recursive algorithms
for powering polynomials, matrices and operators developed in this paper (see
Sect. 3), which may be of independent interest:

(e) Given A ∈ [−1; 1]poly(n)×poly(n) with bounded powers ‖Ak‖ ≤ 1, its power
Apoly(n) can be computed in polylogarithmic depth RNC; see Proposi-
tion 6(c). This result is used to prove Theorem 1.

(f) If the entries of A ∈ [−1; 1]2
n×2n

are computable in polynomial time, then
the entries of A2n

are computable in RPSPACE, and this is optimal in gen-
eral; see Proposition 6(g). This result is used to prove Theorem 2, general
case of a difference scheme approximating the considered system of PDEs.

(g) For circulant matrices A of constant bandwidth with polynomial-time com-
putable entries and bounded powers this result can be improved: the entries
of the matrix power A2n

are computable in R#P, see Theorem 7, where also
powering of polynomials as an important auxiliary tool is considered. These
results are used to prove Theorem 2, particular case of a difference scheme.

1 Rigorously speaking, #P is a class of integer functions rather than decision problems
and should here be read as PTIME#P.
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(h) Theorem 8 and Example 9 establish complexity of powering and exponentia-
tion of (e.g. differential) operators in Banach spaces. These results are used
to prove Theorem 3.

Note that the hypothesis on uniformly bounded powers of the matrices in (e) and
(g) makes the problems trivial over integers2, yet interesting and new in the real
case under consideration. The matrices corresponding to convergent difference
schemes for PDEs meet this hypothesis because of the stability property required
for a difference scheme to be convergent. Our work can be regarded as instances
and confirmation of [1].

When translating the classical discrete parallel/depth complexity to the real
setting, we restrict to 2�-Lipschitz functions f . A family Cn of Boolean circuits
is required to approximate y = f(x) up to error 2−n for every x ∈ dom(f),
the latter given by approximations up to error 2−�−n. Space complexity of f is
formalized as the number of working tape cells used by a Turing machine, not
counting input nor output tape, to similarly approximate y = f(x) up to error
2−n: see Sect. 2 for details. We thus follow the general paradigm of measuring
computational cost (depth=parallel/sequential time, memory) over the reals,
other than in the discrete setting with finite inputs, in dependence on n reflecting
roughly the number of correct bits of the output approximation attained in the
worst-case over all (uncountably many) continuous arguments. ‘Binary’ error
bounds 2−n, rather than ‘unary’ 1/n, capture roughly n correct binary digits
and yield stronger statements.

We consider Cauchy (i.e. initial-value) problems for autonomous linear evo-
lutionary differential equations in a general form

∂
∂t�u(t) = A�u(t), t ∈ [0; 1], �u(0) = �ϕ. (2)

Here A is a matrix in the case of ODEs and a more general operator (including
partial differentiation for PDEs) for other cases. Similarly, �ϕ is an initial real-
valued vector for ODEs and an initial function in a more general setting. Let us
now formally state our main contributions regarding differential equations:

Theorem 1. Given A ∈ [−1; 1]d×d and �v ∈ [−1; 1]d and t ∈ [0; 1], the solution

�u(t) = exp(tA)�v :=
∑

k

tk

k!
Ak�v (3)

to the system of linear ordinary differential Eq. (2) is computable by Boolean
circuits of depth O(

(log d + log n)2
)

and size polynomial in d + n.

Recall that circuit depth is synonymous for parallel time. Theorem 1 thus for-
mally captures the intuition that solving ODEs in the linear case is easier than
in the analytic case [3], and much easier than in the general C1 smooth case
proven “PSPACE-complete” [9]. It is no loss of generality to impose unit bounds
on A,�v, t: the general case is covered by rescaling.
2 Cmp. Geoff Robinson’s answer on https://math.stackexchange.com/q/59693.

https://math.stackexchange.com/q/59693
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Our next result is concerned with finitely-often differentiable solutions to
Eq. (2) with A =

∑
|α|≤k

bα(x)Dα
x and �ϕ = �ϕ(x). They can be reduced [4], by

adding extra variables, to first-order linear systems of PDEs with

A =
m∑

j=1

Bj(x)
∂

∂xj
, (4)

where Bj(x) are matrices of a suitable dimension.

Theorem 2. For m ∈ N and a convex open bounded Ω ⊆ R
m consider the

initial-value problem (IVP) (2) with the operator (4), and the boundary-value
problem (BVP) with additionally given linear boundary conditions Lu(t, x)|∂Ω =
0, (t, x) ∈ [0, 1] × ∂Ω. Suppose the given IVP and BVP be well posed in that the
classical solution �u : [0; 1] × Ω → R (i) exists, (ii) is unique, and (iii) depends
continuously on the data ϕ(x) and Bi(x) (for the BVP also on coefficients of
L). More precisely we assume that u(t, x) ∈ C2 and its C2-norm is bounded lin-
early by C2-norms of the data (in functional spaces guaranteeing all the required
properties). Moreover suppose that the given IVP and BVP admit a (iv) stable
and (v) approximating with at least the first order of accuracy difference scheme
(An) in the sense of Definition 10.

(a) If the difference scheme (meaning its matrix) An and the initial condition
ϕ are (vi) computable in depth s(n) ≥ log(n) in the sense of Definition 5,
then evaluating the solutions u : [0; 1]×Ω � (t, x) 	→ u(t, x) of both IVP and
BVP is feasible in depth O(

s(2n) + n · log n
)
.

(b) If An and ϕ are (vi’) computable in polynomial sequential time and An is
additionally circulant of constant bandwidth, then the solution function u
belongs to the real complexity class R#P#P.

This second result establishes polynomial parallel time (equivalently: polyno-
mial space or depth) complexity for the considered PDEs in the binary output
precision parameter n and further down to the second level of the Counting
Hierarchy. As a main tool we modify the classical difference schemes approach:
standard step-by-step iterations would yield only exponential sequential time; we
replace them with efficient matrix powering according to Proposition 6 and The-
orem 7 below. It complements work like [14] measuring bit-cost in dependence
on N = 2O(n), the size of the grid under consideration, and implicitly sup-
posing the difference scheme and initial data computable in logarithmic depth
s(n) = O(log n): where we consider the output precision parameter n, and allow
for more involved difference schemes with s(n) = O(log2 n), say. Theorem 2
also complements rigorous cost analyses considering approximations up to out-
put error 1/n, or up to fixed error and in dependence on the length of the
(algebraic) input [15,16]; and it vastly generalizes previous works on the com-
putational complexity of Poisson’s PDE [11].

Between linear ODEs and finitely-often continuously differentiable PDEs are
analytic PDEs, captured by the Kovalevskaya Theorem; and their computational
complexity also turns out to lie between the aforementioned two:
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Theorem 3 (Polynomial-Time/Polylogarithmic-Space Kovalevskaya).
Let f1, . . . , fe : [−1; 1]d → R

e×e and v : [−1; 1]d → R
e denote real functions

analytic on some open neighborhood of [−1; 1]d and consider the system of linear
partial differential equations

∂t�u(�x, t) = f1(�x)∂1�u + · · · + fe(�x)∂e�u �u(�x, 0) ≡ v . (5)

If f1, . . . fe are computable in sequential polynomial time, then the unique real
analytic local solution �u : [−ε; +ε]d+1 � (�x, t) 	→ �u(�x, t) ∈ R

e to Eq. (5) is again
computable in sequential polynomial time.
If f1, . . . fe are computable in polylogarithmic depth, then so is �u.

We emphasize that the constructive proof of Kovalevskaya’s Theorem [4, §4.6.3]
expresses the solution’s j-th coefficient as a multivariate integer polynomial pj

in the initial condition’s and right-hand side’s coefficients; however as pj ’s total
degree and number of variables grows with j, its number of terms explodes
exponentially. Symbolic-numerical approaches employ Janet, Riquier or Gröbner
bases whose worst-case complexity however is also exponential [13].

2 Real Complexity Theory

We consider the computational worst-case cost of computing continuous real
functions on a compact domain, formalized as follows:

Definition 4. Equip R
d with the maximum norm and fix 2�-Lipschitz f : Ω ⊆

[−2k; 2k]d → [−2m; 2m], k, �,m ∈ N.

(a) Consider a Turing Machine M with read-only input tape, one-way out-
put tape, and working tape(s). M is said to compute f (w.r.t. μ) if, given
0n1bin(�a) ∈ {0, 1}n+1+d·O(k+�+n) for �a ∈ {−2k+�+n, . . . , 0, . . . + 2k+�+n}d

with |�x − �a/2�+n| ≤ 2−�−n for some �x ∈ Ω, M outputs bin(b) for some
b ∈ {−2m+n, . . . , 0, . . . , 2m+n} with |f(�x) − b/2n| ≤ 2−n and stops. Here
bin(�a) ∈ {0, 1}∗ denotes some binary encoding of integer vectors.

(b) Fix s, t : N → N with t(n) ≥ n and s(n) ≥ log2(n). The computation from
(a) runs in time t and space s if M stops after at most t

(
n + m + d ·

O(n + k + �)
)

steps and uses at most s
(
n + m + d · O(n + k + �)

)
cells

on its work tape, not counting input nor output tape usage and regardless
of �a as above. In this case write f ∈ RTIME(t) ∩ RSPACE(s). Polynomial
time is abbreviated RPTIME =

⋃
i RTIME

(O(ni)
)
, polynomial space means

RPSPACE =
⋃

i RSPACE
(O(ni)

)
, and RPTIMESPACE(logi n) := RPTIME∩

RSPACE(logi n).
(c) Consider a Boolean circuit Cn having O(n + m) binary outputs and d ·

O(k + � + n) binary inputs. Such a sequence (Cn) computes f if Cn, on
every (possibly padded) input bin(�a) with |�x − �a/2n+�| ≤ 2−k−� for some
�x ∈ Ω, it outputs some bin(b) such that |f(�x) − b/2n| ≤ 2−n.
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(d) We say that f is computable in depth t, written f ∈ RDEPTH(t), if there
exists a sequence (Cn) of Boolean circuits over basis binary NAND, say, of
depth at most t

(
n + m + d · O(n + k + �)

)
computing f . RNCi abbreviates

RDEPTH
(O(logi n)

)
with the additional requirements that (i) the circuits be

logspace uniform and (ii) their size (#gates) grows at most polynomially in
n+m+d·O(n+k+�). Similarly, RPAR abbreviates

⋃
i RDEPTH

(O(ni)
)

with
the additional requirement that the (possibly exponentially large) circuits Cn

be polynomial-time uniform in that a polynomial-time Turing machine can,
given n ∈ N in unary and I < J ∈ N in binary with respect to some fixed
topological order, report whether in Cn the output of gate #I is connected
to gate #J .

(e) We say f belongs to R#P if it can be computed by a Turing machine Mϕ

in polynomial time (b) given oracle access to some counting problem ϕ in
the discrete complexity class #P.
Similarly for R#P#P.

We follow the classical conception of real numbers as ‘streams’ of approxima-
tions, both for input and output [6]: the alternative approach based on oracles
[8,12] involves a stack of query tapes to ensure closure under composition.

Common numerical difference schemes are matrices Am whose dimension
Dm grows exponentially with the precision parameter m and therefore cannot
be output entirely within polynomial time; instead Definition 5 requires any
desired entry (Am)I,J to admit efficient approximations, where indices I, J are
given in binary such that their length remains polynomial in m:

Definition 5. (a) Computing a vector �v ∈ R
D means to output, given

J ∈ {0, . . . D − 1} in binary and n ∈ N in unary, some a ∈ Z in binary
such that |vJ−a/2n| ≤ 2−n; similarly for matrices A ∈ R

D×D, considered as
vectors in R

O(D·D) via the pairing function (I, J) 	→ (I+J)·(I+J+1)/2+J .
(b) For in both arguments monotonically non-decreasing t(n,m) and s(n,m) ≤

t(n,m), a sequence �vm ∈ R
Dm of vectors is computed in sequential time

t and space s if its entries have binary length at most polynomial in its
dimension supJ |vm,J | ≤ 2poly(Dm) and it takes a Turing machine at most
t(n,m) steps and s(n,m) tape cells to output, given J ∈ {0, . . . Dm − 1} in
binary and m ∈ N in unary, some a ∈ Z in binary with |vm,J −a/2n| ≤ 2−n;
similarly for sequences of matrices Am ∈ R

Dm×Dm .
(c) Polynomial sequential time/space and poly/logarithmic space means polyno-

mial and poly/logarithmic in n + m, respectively. R#P for (sequences of)
vectors consists of those �vm ∈ R

Dm computable in polynomial time by a
Turing machine with a #P oracle; similarly for (sequences of) matrices.

(d) A sequence �vm ∈ R
Dm of vectors is computed in depth s(n,m) if its entries

have binary length at most polynomial in Dm: supJ |vm,J | ≤ 2poly(Dm), and
a family of Boolean circuits Cn,m of depth s(n,m) can output, given J ∈
{0, . . . Dm − 1} in binary, some a ∈ Z in binary with |vm,J − a/2n| ≤ 2−n.

(e) Polylogarithmic depth means Boolean circuits Cn,m in (d) of depth polylog-
arithmic in n + m; RNCi abbreviates RDEPTH

(O(logi n)
)

with additional
requirements (i) and (ii) as in Definition 4(f); similarly for RPAR.
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Note that already reading J in (b) takes time of order log Dm ≤ t(n,m), and
space of order s(n,m) ≥ loglog Dm. Similarly, a circuit of depth s(n,m) can
access at most 2s(n,m) ≥ log Dm input gates.

3 Efficient Real Polynomial/Matrix/Operator Powering

A major ingredient to our contributions are new efficient algorithms for real poly-
nomial/matrix/operator powering, analyzed in dependence on various parame-
ters that do not occur/make sense in the classical discrete setting:

Proposition 6. (a) For D,K ∈ N and A,A′, B,B′ ∈ [−2L; 2L]D×D, it holds
|AK |∞ ≤ 2KL · DK−1 and |A · B − A′ · B′|∞ ≤ D · 2L+1 · max

{|A − A′|∞,

|B − B′|∞
}
, where |B|∞ := maxI,J |BI,J |.

(b) For D,K ∈ N, matrix powering [−2L; 2L]D×D � A 	→ AK is computable by
circuits Cn of depth O(

log(K) · (log n + log D + log K + log L)
)

and size
polynomial in n + D + K + L.

(c) Refining (b), if |Ak|∞ ≤ 2L holds for all k ≤ K, the depth of circuits
computing R

D×D � A 	→ AK can be reduced to O(
(log n+log D+loglogloglogloglogK +

log L) · log K
)
.

(d) Suppose sequences �um, �vm ∈ [ − 2Lm ; +2Lm
]Dm are computable in depth

s(n,m) ≥ log(n)+log(m) and have inner product �u⊥
m ·�vm ∈ [−2Lm ; +2Lm

]
.

Then said inner product is computable in depth O(
log(Dm) + s(n + Lm +

log Dm),m
)
.

(e) Suppose sequences �vm, �wm are computable in polynomial sequential time.
Then their inner product �u⊥

m · �vm ∈ R is in R#P; and this is optimal in
general.

(f) Suppose Am ∈ R
Dm×Dm are computable in depth s(n,m) ≥ log(n) + log(m)

and satisfy Ak
m ∈ [ − 2Lm ; 2Lm

]Dm×Dm for all k ≤ Km. Then the powers
AKm

m ∈ R
Dm×Dm are computable in depth

O
(

log(Km) · (log n + log Lm + log Dm + loglog Km)

+ s
(
n + (Lm + log Dm) · log Km,m

))

(g) If Am is computable in polynomial time and same for N � Km < 2poly(m),
then the powers AKm

m are computable in RPSPACE; and this is optimal in
general.

Proof (Sketch). Claims (b), (c) and (f) are based on repeated squaring, each
matrix multiplication being D2 inner products, realized as prefix sums (carry
look-ahead) and known logarithmic-time integer multiplication (d). Regarding
(g), encode PSPACE-complete reachability as matrix powering. �


Theorem 7. For a uni-variate polynomial p =
∑d

j=0 pjX
j ∈ R[X], let |p| :=∑

j |pj | denote its norm. Fix d ∈ N.
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(a) Given a, b ∈ R with |a| + |b| ≤ 1 and J ≤ K ∈ N,
(
K
J

) · aJ · bK−J can be
approximated to 2−n in time polynomial in n and the binary length of K.

(b) Given a1, . . . , ad ∈ R with
∑

j |aj | ≤ 1 and given J1, . . . Jd,K ∈ N with
∑

j Jj = K,
(

K
J1,...Jd

) · aJ1
1 · · · aJd

d can be approximated up to error 2−n in
time polynomial in n and the binary length of K. Here

(
K

J1,...Jd

)
= K!

J1!···Jd!
denotes the multinomial coefficient.

(c) For p =
∑d

j=0 pjX
j ∈ R[X] with |p| ≤ 1 and polynomial-time computable

coefficients, the coefficient vector

∑

J0+J1+...+Jd=2n

J1+2J2+···+dJd=J

pJ0
0 · · · pJd

d ·
(

2n

J0, . . . Jd

)
, J ≤ d · 2n (6)

of p2
n

belongs to R#P.
(d) Let Cm ∈ R

2m×2m

denote a circulant matrix of bandwidth d with polynomial-
time computable entries c−d, . . . c+d ∈ R such that |p−d| + . . . + |p+d| ≤ 1.
Then the matrix power C2m

m belongs to R#P.

We omit the proof of Theorem7 because of space constraints. Item (d) is
proved by means of Items (a)–(c). Items (a) and (c) use the Gaussian Distribution
as approximation. Note that, again, Items (c) and (d) are trivial over integers;
considering the real setting makes them meaningful and crucial for cost analyses
of difference schemes.

Our next tool is about efficient operator powering. It generalizes Proposi-
tion 6(b) to compact subsets of some infinite-dimensional vector space.

Theorem 8. Fix a Banach space B with norm ‖ · ‖ and linear map A : B → B.
And fix an increasing sequence Vd ⊆ Vd+1 ⊆ B of non-empty compact convex
symmetric subsets such that

(i) AK : Vd → Vpoly(d+K) is well-defined for all d,K ∈ N and
(ii) satisfies ‖AKv‖ ≤ O(1)d · dK · K! for all v ∈ Vd

(iii) and is computable in sequential time polynomial in n + d + K
(iii’) or is computable in polylogarithmic depth poly(log n + log d + log K).

u(t) := exp(tA)v =
∑

K
tK · AKv/K! ∈ B

is well-defined for all �v ∈ Vd and all |t| < 1/d and satisfies ut = Au. Moreover
Vd × [0; 1/2d] � (v, t) 	→ u(t) is computable in sequential time polynomial in n+d
(iii) or (iii’) in depth poly(log n + log d).

Proof (Sketch). Under hypothesis (ii), the series u(t) =
∑

K tK ·AKv/K! permits
differentiation under the sum for |t| ≤ 1/2d and hence solves ut = Au. Moreover
the first n terms of the series approximate u up to error 2−n. �
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Notice that a näıve hypothesis (i’) A : Vd → V2d would only imply AK : Vd →
V2Kd: blowing up exponentially in K. The stronger hypothesis (i), as well as (ii)
to (iii’), are for instance satisfied for Vd := [−2d; 2d]D by every A ∈ [−2d; 2d]D×D;
recall Proposition 6(a). A more involved case revolves around univariate analytic
functions.

Example 9. Consider the space B of complex-valued functions v : [−1; 1] → C

infinitely often continuously differentiable on the real interval. Write v(j) for its
j-th iterated derivative, and abbreviate |v|∞ := supx |v(x)|. For each d ∈ N let

Vd =
{
v : [−1; 1] → C, ∀j ∈ N |v(j)|∞ ≤ 2d ·j! ·dj

}
, ‖v‖ :=

∑
j
|v(j)|∞/(j!)2

Represent each v ∈ Vd by the (2d + 1)-tuple of its germs around positions 1,
(d − 1)/d, . . . , (−d + 1)/d, 1 ∈ [−1; 1]; and represent each germ by its power
series coefficient sequence.

(i) ∂K : Vd � v 	→ v(K) ∈ V3d+�K log d	+�K log K	 is well-defined.
(ii) satisfies ‖∂Kv‖ ≤ (2e2)d · dK · K! for all v ∈ Vd

(iii) ∂K
∣∣
Vd

is computable in sequential time polynomial in n + d + K

(iii’) and in polylogarithmic depth poly(log n + log d + log K).
(iv) Vd is compact.

Proof (Sketch). For (i) and (iii) see the proof of Theorem 16(d) in [7, §3.2].
The underlying algorithm basically shifts and scales the coefficient sequences to
symbolically take the derivative of the power series: easy to parallelize [19]. It
also needs to add new germs/points of expansion in [−1; 1]: which again can be
performed in parallel, thus establishing (iii’). �


4 Complexity of Differential Equations

In this section we apply results on matrix/operator powering from the previous
section to prove Theorems 1–3.

Proof (Theorem 1, sketch). Recall from Proposition 6(a) that Ak has entries
bounded by dk−1. Hence the tail

∑
k>K

tk

k!A
k�v is bounded, according to Stirling

formula, by
∑

k>K
1/k! · 2k·log d ≤

∑
k>K

O(
2−k·(log k−log d)

) ≤
∑

k>K
2−k = 2−K

for K ≥ 2d. Thus we can calculate the first K := max{2d, n} terms of the power
series in Eq. (3) simultaneously within depth O(

log(max{n, 2d}) ·(log n+log d+
log log max{n, 2d})

)
= O(

(log n + log d)2
)

(by Proposition 6(c)); and then add
them, incurring additional depth of the same magnitude, which completes the
proof of the theorem. �

Proof (Theorem 3, Sketch). Example 9 generalizes to functions of several vari-
ables [10]. The statements of the theorem thus follow from Theorem 8 with
A := f1∂1 + · · · + fe∂e. �
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Before proceeding to the proof of Theorem 2 let us briefly recall basic def-
initions and facts about difference schemes. Theorem 2 implicitly assumes the
domain Ω be “good enough”; w.l.o.g. we will consider uniform grids Gh on Ω̄
and Gτ

h on [0, 1] × Ω̄ for BVPs (resp. on the intersection of the domain of exis-
tence and uniqueness with [0, 1] × Ω̄ for IVPs). Here h, τ are respectively the
space and time steps. Unlikely choosing them heuristically as it is usually done
in Numerics, we will compute them from the output precision as h = Ch/2n,
τ = Cτ/2n, giving precise estimates on Ch, Cτ . That’s the reason why we denote
the matrix of the difference scheme An (depending on n) in Definition 10 below.

Definition 10. (a) For the IVP or BVP for a system of PDEs considered in
Theorem2, an explicit difference scheme is a system of algebraic equations

u(h,(l+1)τ) = Anu(h,lτ), u(h,0) = ϕ(h) (7)

Here An is a difference operator, which is in our case linear, i.e. a matrix of
dimension O(2n) (for BVPs it also includes the boundary conditions);
u(h,lτ) and ϕ(h) are grid functions, i.e. vectors of dimension O(2n),
approximating the corresponding continuously differentiable functions.

(b) The scheme (7) is said to approximate the given differential problem with
order of accuracy p (where p is a positive integer) on a solution u(t, x)
of the considered boundary-value problem if

∣∣∣(ut − Au)|Gτ
h

− Lhu(h)
∣∣∣ ≤

C1h
p, and

∣∣∣ϕ|Gh
− ϕ(h)

∣∣∣ ≤ C1h
p for some constant C1 not depending on h

and τ . Here u(h) = {u(h,lτ)}M
l=1, Lh is the linear difference operator corre-

sponding to (7) rewritten in the form Lhu(h) = 0, M is the number of time
steps.

(c) The difference scheme (7) is called stable if its solution u(h) satisfies |u(h)| ≤
c2|ϕ(h)| for a constant c2 independent of h, τ and ϕ(h).
Here | · | is the sup-norm, i.e. the maximal value over all grid cells.

(d) We will call the complexity of the difference scheme (7) be the complexity
of the corresponding matrix An in the in sense of Definition 5(b).

Fact 11 (Well-known facts, see e.g. [5]): (a) Let the difference scheme be stable
and approximate (1) on the solution u with order p. Then the solution u(h) of
the recursively defined linear algebraic systems (7) uniformly converges to the
solution u in the sense that

|u|Gτ
h

− u(h)| ≤ Chp (8)

for C not depending on h and τ (but possibly depending on the inputs; this
dependence will occur later in the proofs).

(b) The difference scheme (7) is stable iff there is a constant C2 uniformly
bounding all powers of An:

|Aq
n| ≤ C2, q = 1, 2, . . . ,M. (9)

The stability property implies τ ≤ νh; ν is called the Courant number.
(c) The convergence constant in (8) is C = C1 · C2, where C2 is from (9);

C1 is from the approximation property.
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Proof (Theorem 2, sketch). To evaluate the solution u at a fixed point (t, x)
with the prescribed precision 2−n and estimate the bit-cost of the computation,
consider the following computation steps.

1. Choose binary-rational grid steps h = 2−N (where N = O(n)) and τ ≤ νh
(where ν is the Courant number existing due to stability property): τ just
any binary-rational meeting this inequality; h defined by the inequality (12)
below.

2. For a grid point (t, x) put l = t
τ (note that l ≤ M =

[
1
τ

]
= O(2n)) and

calculate the matrix powers and vector products

u(h,lτ) = Al
nϕ(h). (10)

Note that (10) uses matrix powering instead of step-by-step iterations initially
suggested by the difference scheme (7).

3. For non-grid points take (e.g.) a multilinear interpolation ũ(h) of u(h) com-
puted from the (constant number of) “neighbor” grid points.

Due to well-known properties of multilinear interpolations,

sup
t,x

|ũ(h)(t, x)| ≤ C̃ sup
Gτ

h

|u(h)|; sup
t,x

|ũ |Gτ
h
(t, x)| ≤ C̄ sup

t,x
|D2u(t, x)| · h2, (11)

where C̃ and C̄ are absolute constants. Based on (11) and on the continuous
dependence property, as well as on linearity of the interpolation operator, infer

sup
t,x

|u(t, x) − ũ(h)(t, x)| ≤ sup
t,x

(
|u(t, x) − ũ |Gτ

h
(t, x)| + |ũ |Gτ

h
(t, x) − ũ(h)(t, x)|

)

≤ C̃C0 supx |D2ϕ(x)|h2 + C̄C1C2 · h ≤ 2−n.

Thus choosing a grid step h = 2−N such that

h ≤ Ch · 2−n, Ch = C̃C0 supx |D2ϕ(x)| + C̄C1C2, (12)

will guarantee the computed function ũ(h) approximate the solution u with the
prescribed precision 2−n (here Ch depends only on the fixed s(n) space com-
putable functions ϕ, Bi and therefore is a fixed constant).

According to (10), item (a) of Theorem 2 follows from items (f) and (d) of
Proposition 6; item (b) of Theorem 2 follows from item (d) of Theorem 7 com-
bined with item (d) of Proposition 6. �


Conditions of Theorem 2 hold for large classes of IVPs and BVPs for
linear PDEs. E.g. for certain BVPs for symmetric hyperbolic systems ut +
m∑

i=1

Biuxi
= 0 with constant matrices Bi = B∗

i (to which also the wave equa-

tion ptt − a2
m∑

i=1

pxixi
= 0 can be reduced), as well as for the heat equation
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pt−a2
m∑

i=1

pxixi
= 0, difference schemes with circulant constant bandwidth matri-

ces can be constructed. For equations with non-constant coefficients the matrices
are more complicated, thus the corresponding problems might have higher com-
plexity. Deriving optimal complexity bounds for the considered (and possibly
broader) classes of equations is one of the directions of future work.
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