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Abstract. We show that any nondeterministic read-once branching pro-
gram that decides a satisfiable Tseitin formula based on an n × n grid
graph has size at least 2Ω(n). Then using the Excluded Grid Theorem
by Robertson and Seymour we show that for arbitrary graph G(V, E)
any nondeterministic read-once branching program that computes a sat-

isfiable Tseitin formula based on G has size at least 2Ω(tw(G)δ) for all
δ < 1/36, where tw(G) is the treewidth of G (for planar graphs and
some other classes of graphs the statement holds for δ = 1). We also
show an upper bound of O(|E|2pw(G)), where pw(G) is the pathwidth
of G.

We apply the mentioned results to the analysis of the complexity
of derivations in the proof system OBDD(∧, reordering) and show that
any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula

based on a graph G has size at least 2Ω(tw(G)δ).

Keywords: Tseitin formula · Read-once branching program ·
Treewidth · Grid

1 Introduction

This paper continues the study of representation of satisfiable Tseitin formulas
by read-once branching programs.

A Tseitin formula TSG,c [20] is defined for every undirected graph G(V,E)
and labelling function c : V → {0, 1}. We introduce a propositional variable for
every edge of G. The Tseitin formula TSG,c represents a linear system over the
field GF(2) that for every vertex v ∈ V states that the sum of all edges adjacent
to v equals c(v). It is well known that a Tseitin formula is satisfiable if and only
if the sum of values of the labeling function for all vertices in every connected
component is even [21].

In 2017 Itsykson et al. [13] showed that any OBDD representing satisfiable
Tseitin formulas based on d-regular expanders on n vertices has size at least

The research was supported by Russian Science Foundation (project 16-11-10123).

c© Springer Nature Switzerland AG 2019
R. van Bevern and G. Kucherov (Eds.): CSR 2019, LNCS 11532, pp. 143–155, 2019.
https://doi.org/10.1007/978-3-030-19955-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19955-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-19955-5_13


144 L. Glinskih and D. Itsykson

2Ω(n). Then Glinskih and Itsykson [9] extended this lower bound to nondeter-
ministic read-once branching programs (1-NBP).

In this paper we consider an n × n grid and study the complexity of repre-
sentation of Tseitin formulas based on it by read-once branching programs. In
Theorem 2 we prove that any 1-NBP computing a satisfiable Tseitin formula
based on an n × n grid has size 2Ω(n). Although an n × n grid graph has some
edge-expansion properties, we could not prove the lower bound based only on
these properties; our proof requires careful analysis and we use the geometric
properties of the grid.

As an important corollary we establish a connection between the complexity
of 1-NBP representation of a satisfiable Tseitin formula and the treewidth of
the underlying graph. The treewidth is one of the most important structural
measures of a graph and it is one of the main parametrizations for computa-
tional graph problems. Theorem 3 states that any 1-NBP computing a satisfi-
able Tseitin formula TSG,c has size at least 2Ω(tw(G)δ) for all δ < 1/36, where
tw(G) denotes the treewidth of the graph G. The proof is based on the Excluded
Grid Theorem by Robertson and Seymour [19]: there is a function g such that
if a graph G has treewidth at least g(t), then G contains a grid of size t × t
as a minor. Recent results of Chekuri and Chuzhoy [4] and [5] give polynomial
upper bound on the function g. Hence we know that every graph G has a t × t
grid as a minor, where t = Ω(tw(G)δ) for all δ < 1/36. For several classes of
graphs it is possible to improve the value of δ, for example, for planar graphs
δ = 1 [11,18]. Thus Theorem 3 is followed by Lemma 8 stating that if H is a
minor of G, then for every S and for every 1-NBP of size S that computes a
satisfiable Tseitin formula TSG,c there is an 1-NBP that computes a satisfiable
Tseitin formula TSH,c′ of size at most S. This lemma is proved separately for
every operation: an edge deletion, a vertex deletion and an edge contraction. We
use the non-determinism in the case of an edge contraction: we replace nodes
labelled with contracted edges by guessing nodes.

In Theorem 4 we show that for every satisfiable Tseitin formula based on a
graph G(V,E) has an OBDD of size O(|E|2pw(G)), where pw(G) is the pathwidth
of G (note that the pathwidth differs from the treewidth by at most a logarithmic
factor: tw(G) ≤ pw(G) ≤ O(tw(G) log |V |)). Since the pathwidth of an n × n
grid is O(n), our upper and lower bounds for grids match up to a constant in
the exponent.

There are several known approaches to defining the treewidth of CNF for-
mulas. Ferrara, Pan and Vardi [7] considered a graph on variables of a CNF
formula where two variables are connected iff they share a common clause. They
proved that if a graph associated with CNF formula has the treewidth t, then
the formula has an OBDD of size nO(t) (it is very similar to Theorem 4 but it
uses another notion of treewidth). Razgon [17] showed that this bound is tight
and there is a family of CNF formulas with the treewidth at most k that requires
1-NBP of size nΩ(k). In the case of a Tseitin formula TSG,c, the associated graph
is the edge-graph of G, where the vertices are the edges of G and two edges are
connected iff they are incident to the same vertex of G. For example, if G is a
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star on n + 1 vertices (a star is a tree and, hence, it has the treewidth 1), then
the edge-graph is the complete graph Kn−1 and it has the treewidth n − 2.

Applications to Proof Complexity. The interest of the study of Tseitin formulas
comes from the propositional proof complexity; unsatisfiable Tseitin formulas
are one of the basic examples of hard formulas for many proof systems.

The study of representations of satisfiable Tseitin formulas by read-once
branching program was motivated by the study of proof systems based on
OBDDs introduced by Atserias, Kolaitis and Vardi [2]. Itsykson et al. [13] stud-
ied the proof system OBDD(∧, reordering); a proof of unsatisfiability of a CNF
formula ϕ in this proof system is a sequence of OBDDs: D1,D2, . . . , Ds such
that Ds is a constant false OBDD and for all i ∈ [s], Di either represents a
clause of ϕ, or represents the conjunction of Dk ∧ D�, where k, � < i and Di,Dk

and D� use the same order, or represents the same function as D� but using
another order, where � < i. The paper [13] gives an exponential lower bound on
size of OBDD(∧, reordering)-refutations of unsatisfiable Tseitin formulas based
on constant degree expanders. The lower bound proof is organized as follows:
for any refutation of Tseitin formula TSG,c of size S it is possible to construct
an OBDD of size at most S2 representing a satisfiable Tseitin formula TSG′,c′ ,
where G′ is a graph obtained from G by the deletion of several edges. Thus it is
sufficient to prove lower bound on the size of OBDD representation of TSG′,c′ .
We adapt this approach and show in Theorem 6 that our results imply that
any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula TSG,c

has size at least 2Ω(tw(G)δ), where δ is a constant as above. In particular we get
a lower bound 2Ω(n) on the complexity of OBDD(∧, reordering)-refutations of
Tseitin formulas based on the n × n grid.

The recent paper by Buss et al. [3] shows that this proof system cannot
be polynomially simulated by Resolution and even by Cutting Planes. The
paper shows that any Resolution proof of Tseitin formula based on the com-
plete graph on log n vertices Klog n has size at least 2Ω(log2 n), while it has an
OBDD(∧, reordering)-refutation of polynomial size. It is well known that the
size of the shortest regular Resolution proof of any unsatisfiable CNF formula
φ equals the size of the minimal read-once branching program for the following
search problem Searchφ: given an assignment of variables of φ, find a clause that
is refuted by this assignment [15,16]. Our upper bound implies that satisfiable
TSKlog n,c can be computed by an OBDD of size poly(n). Thus we have that
computing of SearchTSKlog n,c

for an unsatisfiable TSKlog n,c is superpolynomi-
ally harder than computing of a satisfiable TSKlog n,c′ for read-once branching
programs.

Tseitin formulas based on the grid graphs were studied in proof complexity.
The first superpolynomial lower bound for regular resolution was proved for
grid graphs in 1968 by Tseitin [20]. In 1987 Urquhart proved a lower bound for
Tseitin formulas based on expanders in unrestricted Resolution [21] but tight
lower bounds for grids were proved by Dantchev and Riis only in 2001 [6]. In the
recent paper [12] Hastad proved lower bound on Bounded depth Frege refutations
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for Tseitin formulas based on n × n grid graphs that implies that polynomial
size Frege proofs of such formulas should use formulas with almost logarithmic
depth.

The treewidth was also studied in the context of resolution refutations of
Tseitin formulas. Alekhnovich and Razborov [1] considered a hypergraph that
corresponds to every CNF formula, where variables are vertices and clauses
as sets of variables form hyperedges. For Tseitin formulas the branch-width of
this hypergraph is up to a constant factor equal to the Resolution width [1].
For constant degree graphs the treewidth is equal to the branch-width of the
hypergraph up to a multiplicative constant. Galesi, Talebanfard and Torán in
the recent paper [8] consider cop-robber games on graphs that is very similar to
games characterising the treewidth, they used such games in an analysis of the
complexity parameters of resolution refutations of Tseitin formulas.

Proofs omitted due to space constraints can be found in [10].

2 Preliminaries

Branching Programs. A deterministic branching program (BP) is a form of rep-
resentation of Boolean functions. A Boolean function f(x1, x2, . . . , xn) is repre-
sented by a directed acyclic graph with exactly one source and two sinks. All
nodes except sinks are labeled with a variable; every internal node has exactly
two outgoing edges: one is labeled with 1 and the other is labeled with 0. One
of the sinks is labeled with 1 and the other is labeled with 0. The value of the
function for given values of variables is evaluated as follows: we start a path
from the source such that for every node on its path we go along the edge that
is labeled with the value of the corresponding variable. This path will end in a
sink. The label of this sink is the value of the function.

A nondeterministic branching program (NBP) differs from a deterministic
in the way that we also allow guessing nodes that are unlabeled and have two
outgoing unlabeled edges. So nondeterministic branching program may have
three types of nodes: guessing nodes, nodes labeled with a variable (we call
them just labeled nodes) and two sinks; the source is either a guessing node
or a labeled node. The result of a function represented by a nondeterministic
branching program for given values of variables equals 1, if there exists at least
one path from the source to the sink labeled with 1 such that for every node
labeled with a variable on its path we go along an edge that is labeled with
the value of the corresponding variable (for guessing nodes we are allowed to
choose any of two outgoing edges). Note that deterministic branching programs
constitute a special case of nondeterministic branching programs.

A deterministic or nondeterministic branching program is (syntactic) read-k
(k-BP or k-NBP) if every path from the source to a sink contains at most k
occurrences of each variable.

Let π be a permutation of the set {1, . . . , n} (an order). A π-ordered binary
decision diagram is a 1-BP such that on every path from the source to a sink
variable xπ(i) can not appear before xπ(j) if i > j. An ordered binary decision
diagram (OBDD) is a π-ordered binary decision diagram for some π.
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Lemma 1 ([22]). Assume that Boolean functions f1 and f2 have π-ordered
OBDDs of sizes k1 and k2 respectively, then (1) f1 ∧ f2 has a π-ordered OBDD
of size at most k1k2; (2) for any partial substitution ρ, f1|ρ has a π-ordered
OBDD of size at most k1.

Tseitin Formulas. Let G(V,E) be an undirected graph without loops but possi-
bly with multiple edges, c : V → {0, 1} be a labeling function that matches every
vertex with a Boolean value. We associate every edge e ∈ E with a propositional
variable xe. A Tseitin formula TSG,c based on a graph G and a labeling function
c is the conjunction of the following conditions: for every vertex v the sum of
variables xe for all edges e that are incident to v equals c(v) modulo 2. More

formally:
∧

v∈V

(
∑

e is incident to v

xe = c(v) mod 2
)

.

Usually, Tseitin formulas are written in the CNF. If the maximal degree of
a graph is upper bounded by a constant d, then a sum modulo 2 can be written
as a d-CNF of size at most 2d, hence the size of CNF representation of TSG,c is
at most O(2dn).

We will use the following criterion of the satisfiability of Tseitin formulas:

Lemma 2 ([21]). A Tseitin formula TSG,c is satisfiable if and only if for every
connected component of the graph G the sum of values of the function c for all of
the vertices is even. I.e., for every connected component U the following holds:∑

v∈U

c(v) = 0 mod 2.

Remark 1. Note that a substitution of a value to a variable xe := α transforms
Tseitin formula TSG,c to a Tseitin formula TSG′,c′ , where graph G′ is obtained
from the graph G by deleting the edge e, c′ equals c in every vertex except two
vertices that are incident to edge e. On these two vertices the values of c and c′

differ by α.

For a graph G(V,E) let kG(l) be the maximal number of connected com-
ponents that can be obtained from G by the deletion of l edges. The following
lower bound on the size of 1-NBP for satisfiable Tseitin formula is known:

Lemma 3 ([9], Corollary 20). For every connected graph G(V,E) and arbi-
trary 1 ≤ l ≤ |E| any 1-NBP evaluating a satisfiable Tseitin formula TSG,c has
size at least 2|V |−kG(l)−kG(|E|−l)+1.

Proof (sketch). If a graph H(U,F ) consists of k connected components, then a
satisfiable Tseitin formula TSH,f has exactly 2|F |−|U |+k satisfying assignments
([9], Lemma 2). For every l we estimate the number of nodes of an 1-NBP
for TSG,c on the level l. The graph G is connected, hence TSG,c has exactly
2|E|−|V |+1 satisfying assignments. For every satisfying assignment of TSG,c we
consider an accepting path of the 1-NBP corresponding to it. We consider the
beginnings of these paths of length l. The number of accepting paths with the
same beginning of length l is at most 2|E|−l−|V |+kG(|E|−l) (it is an upper bound
on the number of satisfying assignments for Tseitin formulas on subgraph of G
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with |E| − l edges). Thus, the number of different beginnings of length l of the
accepting paths is at least 2l−kG(|E|−l)+1. The number of different beginnings of
length l of accepting paths that go through a fixed vertex on the level l is at most
2l−|V |+kG(l) (it is an upper bound on the number of satisfying assignments for
Tseitin formulas on subgraph of G with l edges). Finally, the number of vertices
on the l-th level is at least 2|V |−kG(l)−kG(|E|−l)+1. ��
Lemma 4. Let G be an undirected graph, c and c′ be such that Tseitin formulas
TSG,c and TSG,c′ are satisfiable. Then sizes of minimum-size 1-NBPs (1-BPs
and OBDDs) for TSG,c and TSG,c′ are equal.

Treewidth, Pathwidth and Minors. A tree decomposition of an undirected graph
G(V,E) is a tree T = (VT , ET ) such that every vertex u ∈ VT corresponds to
a set Xu ⊆ V and it satisfies the following properties: 1. The union of Xu for
u ∈ VT equals V . 2. For every edge (a, b) ∈ E there exists u ∈ VT such that
a, b ∈ Xu. 3. If a vertex a ∈ V is in the sets Xu and Xv for some u, v ∈ VT , then
it is also in Xw for all w on the path between u and v in T .

If a tree T is a path, then this representation is a path decomposition.
The width of a tree decomposition is the maximum |Xu| for u ∈ VT minus one.
A treewidth of a graph G is the minimal value of the width among all tree decom-
positions of the graph G. We denote it as tw(G). The pathwidth of a graph G
is the minimal value of the width among all path decompositions of a graph G.
We denote it as pw(G).

Lemma 5 ([14]). For every graph G on n vertices pw(G) = O(log(n) · tw(G)).

A minor of an undirected graph G is a graph that can be obtained from a
graph G by a sequence of edge contractions, edge deletions and vertex deletions.

Theorem 1 ([5]). For every constant δ < 1/36 every graph G contains a t × t
grid as a minor, where t = Ω(tw(G)δ).

3 Lower Bound for Grids

In this section we prove the following Theorem.

Theorem 2. Let Tn be an n × n grid graph. Then if a Tseitin formula TSTn,c

is satisfiable, then every 1-NBP that computes TSTn,c has size at least 2Ω(n).

Proof. Tn contains (n + 1)2 vertices and 2n(n + 1) edges. In order to prove this
theorem we use Lemma 3 for l = n(n + 1) (so l is the half of the number of
edges). So we have to prove that if we delete half of the edges of Tn, then the
resulting graph will have at most (n+1)2

2 − ε · n connected components for some
constant ε > 0. Hence, by Lemma 3, every 1-NBP for TSTn,c has size at least
22εn+1.

We call a subgraph of Tn optimal if it contains l edges and has the maximal
number of connected components. The plan of the proof is the following. At first
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we show that there exists an optimal subgraph H that has one connected com-
ponent that contains all edges and all other connected components are isolated
vertices. Then we estimate the number of connected components of H.

Lemma 6. There is an optimal subgraph of Tn that has exactly one connected
component with at least two vertices.

Proof. Consider all optimal subgraphs of Tn. Choose among them a subgraph
H that contains a connected component M with the maximal number of edges.
If M contains all edges of H, then the lemma is proved. Further we assume that
not all edges are in M .

Consider the properties of the chosen graph H.

1. All the edges of the grid Tn between vertices of M are in M . Indeed, otherwise
we can delete an edge from another connected component and add it to M .
After this operation the number of connected components does not decrease,
but the number of edges in M is strictly increased. This is a contradiction
since M has the maximal number of edges among all the optimal subgraphs.

2. Every connected component, except M , is edge-biconnected (i.e. it is impos-
sible to increase the number of connected components by the deletion of an
edge from it). Indeed, assume that for some connected component except M
it is possible to delete an edge from it such that the number of connected
component increases. Then we delete this edge and add an edge of the grid
that connects M with a vertex out of M . In this case the number of con-
nected components is not changed but the number of edges in the maximal
component would be increased. This is a contradiction.

3. There is no vertex v of Tn such that it is not in M but there are at least two
edges between v and vertices of M in Tn. Proof by contradiction, assume that
such a vertex exists. Consider a connected component K that differs from M
and has edges. Consider a set of the lowest vertices in K and let u be the
leftmost vertex among them. There are no edges to the left or down from the
vertex u in the graph H. Since the connected component K has edges, there
is at least one edge that is incident to u. By the previous property, K is edge-
biconnected, hence, u has precisely two incident edges. Let us delete the two
edges incident to u from K and add two edges that connect the vertex v and
M . The number of connected components doesn’t decrease, but the number
of edges in the maximal component increases. This is a contradiction.

4. Every 1 × 1 square of the grid Tn contains 0, 1 or 4 edges from M . A 1 × 1
square cannot contain exactly 3 edges because it contradicts the property 1.
Let an 1×1 square contains exactly 2 edges from M . If these are two incident
edges then we get a contradiction with the property 3 or the property 1. If
these are two opposite edges, then we get a contradiction with the property 1.

5. For every u, v ∈ M , the minimal rectangle of the grid that contains both u
and v (with all interior edges) is a subgraph of M (one of the sides of the
rectangle could be of zero length, in that case it’s just a line of the grid).
It can be easily shown by the induction on the length of the shortest path
between u and v using the property 4.
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6. M is a rectangle of the grid with all edges of this rectangle. Consider the
maximal rectangle of the grid that is fully contained (with all edges) in M . If
there are vertices in M that are not in this rectangle, then we could increase
this rectangle using the property 5.

So M is a rectangle of the grid. We say that M can be moved one step to
the left (right, down or up) if all left (right, down or up) neighbours of the left
(right, down or up) border of M are isolated vertices in H. Such a move doesn’t
change the number of connected components and the number of edges in them.
Consider some connected component K that differs from M and contains edges.
We move M one step closer to K in the way of decreasing the distance between
them while it is possible. By the distance we understand the minimal L1-distance
between two vertices from M and K. After some step it is not possible anymore;
it means that one of the borders of M (w.l.o.g. it is the upper border) has upper
neighbours from connected components that consist of more than one vertex.

Let M be a rectangle x×y, where x, y are non-negative integers. That means
that every horizontal line of M contains x + 1 vertices. Assume that among
upper neighbours of the upper border of M there are m vertices that are in
some connected component that consists of more than one vertex. Let these m
vertices be in k connected components. Assume that there are r edges of the
graph H between x + 1 upper neighbours of M (see an example on the left part
of Fig. 1). Since every edge between upper neighbours of M decreases the number
of connected components, the following inequality holds k ≤ m − r. Obviously,
r ≤ x.

Fig. 1. Example: x = 6, y = 4, r = 3, k = 3, m = 7 Fig. 2. Spines

Consider the following modification of the graph H: we move the rectangle
M one step up and add edges down from r vertices on the bottom border of
M (see example on the right part of Fig. 1). The number of edges after this
transformation is not changed since r edges overlapped and we added r edges.
Now we estimate the number of connected components. On the bottom border
we add (x+1)−r new connected components. On the upper border (x+1)−m+k
connected components disappeared (were merged to one). Finally, the number
of connected components increased by m − k − r, that is at least zero since
k ≤ m − r. But the number of edges in the maximal connected component
increases, this contradicts the choice of the graph H. So we get a contradiction
with the assumption that there are more than one connected components with
at least one edge. ��
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So we may assume that there is an optimal graph H that has one connected
component M with at least two vertices and t isolated vertices. Notice that M
is not necessary a rectangle now (in Lemma 6 we only show that it has to be a
rectangle under the assumption that the statement of the lemma is wrong). We
are going to estimate kTn

(l) = t + 1 from the above.
For every connected component K we define a set of spines that go out of it.

We assume that Tn is a part of the infinite grid. An edge e of the infinite grid
is a spine of K if it connects a vertex u from K with a vertex out of K and u is
the right or bottom endpoint of e (see Fig. 2). Note that spines can go outside
of the square Tn if u is on the upper or left border of Tn. If a component is an
isolated vertex, then it has exactly two spines.

The same edge cannot be a spine for two different connected components
since we choose only the edges that go up or to the left from the component.
Let h be the total number of all spines for all of the connected components of
H. Every spine is either an edge of the square Tn that is not in H or is among
2(n + 1) edges that go outside the square Tn. Hence, 2(n + 1) + n(n + 1) ≥ h.

Let X be the number of spines of the connected component M , then we
get that h = 2t + X. Using the previous inequality we estimate t as follows:
t ≤ (n + 1)(n + 2)/2 − X/2 = (n + 1)2/2 + (n + 1 − X)/2. Hence, we need to
show that X ≥ (1 + ε)n for some constant ε.

Consider the minimal grid rectangle that contains M . Assume it has size
(a − 1) × (b − 1), where a, b are natural numbers. Then there are spines of M in
every of a vertical lines and in every of b horizontal lines. Then we get that X ≥
a + b ≥ 2

√
ab. On the other hand, the component M contains exactly n(n + 1)

edges, they need to be embedded into a rectangle (a − 1) × (b − 1) that contains
a(b−1)+b(a−1) edges. Then we can estimate 2ab > a(b−1)+b(a−1) ≥ n(n+1)
and we get X ≥ √

2n(n + 1) >
√

2n.
Using the upper bound on t, the number of connected components can be

estimated as: kTn
(l) = t+1 ≤ (n+1)2/2−(

√
2−1)n+ 3

2 . Then by Lemma 3, every
1-NBP for a satisfiable Tseitin formula TSTn,c has size at least 22(

√
2−1)n−2. ��

4 Treewidth

The main goal of this section is to prove the following theorem.

Theorem 3. Let TSG,c be a satisfiable Tseitin formula. Then every 1-NBP for
TSG,c has size at least 2Ω(tw(G)δ) for all δ < 1/36.

Lemma 7. Let D be a 1-NBP computing a Boolean function f : {0, 1}n →
{0, 1}. If we change every node in D labeled with the variable x1 by a guessing
node and remove all labels of all its outgoing edges, then we obtain a valid 1-NBP
that computes ∃x1f(x1, x2, . . . , xn).

Lemma 8. Let H be a minor of an undirected graph G and Tseitin formulas
TSG,c and TsH,c′ be satisfiable. Then for every S and every 1-NBP of size S
that computes TSG,c, there is a 1-NBP that computes TSH,c′ of size at most S.
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Proof. It suffices to prove the statement of the lemma for the case when H is
obtained from G by the application of one operation. Let us consider all types
of operations separately.

1. H is obtained from G by the deletion of an edge e. Let σ be a satisfying
assignment of TSG,c. We apply the partial assignment xe := σ(xe) to TSG,c

and get the satisfiable formula TSH,c′′ . It is well known that the application
of a substitution does not increase size of the 1-NBP. By Lemma 4, sizes of
the minimal 1-NBPs for TSH,c′′ and TSH,c′ are equal.

2. H is obtained from G by the deletion of a vertex v. Since all the variables of
Tseitin formulas are associated with edges, this case can be considered as a
sequence of edge deletions.

3. A graph H(VH , EH) is obtained from a graph G(V,E) by the contraction of
an edge e = (u, v). Let us define a labeling function c′′ : VH → {0, 1} as
follows: for all the vertices that differ from the joined vertex {u, v} it has the
same value as in the labeling function c and c′′({u, v}) = c(u) + c(v) mod 2.
By the construction, every connected component U of H corresponds to a
connected component U ′ of G with the same sum of the labeling functions:∑

w∈U c′′(w) =
∑

w∈U ′ c(w) mod 2. Hence, by Lemma 2, TSH,c′′ is satisfiable.

��
Lemma 9. Formulas TSH,c′′ and ∃xeTSG,c define the same function.

By Lemma 7, the minimal size of a 1-NBP for ∃xeTSG,c (that is by Lemma 9
equivalent to TSH,c′′) is at most the minimal size of a 1-NBP for TSG,c. By
Lemma 4, minimal sizes of 1-NBPs for TSH,c′′ and for TSH,c′ are equal. ��
Proof (Proof of Theorem 3).

By Theorem 1, the graph G contains a t × t grid graph as a minor, where
t = Ω(tw(G)δ). The theorem follows from Theorem 2 and Lemma 8. ��

We also obtain an upper bound:

Theorem 4. Every satisfiable Tseitin formula TSG,c can be represented as
OBDD of size |E|2pw(G)+1 + 2.

Corollary 1. Any satisfiable Tseitin formula based on a graph G(V,E) can be
represented as OBDD of size O(|E||V |O(tw(G))).

Proof. Follows from Theorem 4 and Lemma 5. ��

5 Lower Bound in the Proof System OBDD(∧, reordering)

In this section we show that any refutation of an unsatisfiable Tseitin formula
TSG,c in the proof system OBDD(∧, reordering) has size at least 2Ω(tw(G)δ) for
all δ < 1/36.
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If F is a formula in CNF, we say that a sequence D1,D2, . . . , Dt of OBDDs
is an OBDD(∧, reordering)-refutation of F if Dt is an OBDD that represents the
constant false function, and for all 1 ≤ i ≤ t, Di is an OBDD that represents a
clause of F or can be obtained from the previous Dj ’s by one of the following
inference rules: (conjunction or join) Di is an OBDD with order π, that represents
Dk ∧ Dl for 1 ≤ l, k < i, where Dk,Dl have the same order π; (reordering) Di is
an OBDD that is equivalent to an OBDD Dj with j < i (note that Di and Dj

may have different orders).
We say that a graph H is t-good if H is connected and every OBDD-

representation of any satisfiable Tseitin formula TSH,c has size at least t. The
following theorem can be proved using ideas from [13]:

Theorem 5 (cf. [13]). Let G(V,E) be a connected graph and degrees of all
vertices of G be bounded by a constant. Assume that the graph G has the following
properties: (1) if we delete any vertex from G, we get a t-good graph; (2) for every
two vertices u and v of G there is a path p between them such that if we delete
all vertices from p, we get a t-good graph. And if we delete from G vertices u
and v and the edges of the path p, we also get a connected graph.
Then any OBDD(∧, reordering)-refutation of an unsatisfiable Tseitin formula
TSG,c has size at least Ω(

√
t).

Proof (sketch). We consider the last step of the OBDD(∧, reordering)-refutation:
the conjunction of OBDDs F1 and F2 is the identically false function but both
F1 and F2 are satisfiable. Both F1 and F2 are conjunctions of several clauses of
TSG,c.

Since G remains connected after removing of any single vertex, F1 and F2

together contain all clauses of TSG,c. Assume that there are two nonadjacent
vertices u and v such that F1 does not contain a clause Cu that corresponds to
the vertex u and F2 does not contain a clause Cv that corresponds to v (if this
assumption is false, the proof is rather straightforward). We consider two partial
substitutions ρ1 and ρ2 that are both defined on the edges adjacent to u and
v and on the edges of the path p between u and v. The substitutions ρ1 and
ρ2 assign opposite values to edges of the path p and are consistent on all other
edges. The substitution ρ1 satisfies Cv and refutes Cu and ρ2 satisfies Cu and
refutes Cv.

By the construction F1|ρ1 ∧F2|ρ2 is almost a satisfiable Tseitin formula based
on the graph that is obtained from G by deletion of the vertices u and v and all
edges from the path p. However, it is also possible that this formula does not
contain some clauses for the vertices from p. Thus we make additional partial
substitution τ that substitute values from a satisfying assignment for all remain-
ing edges for vertices from p. (F1|ρ1 ∧F2|ρ2)|τ is satisfiable Tseitin formula based
on the graph that is obtained from G by deletion of all vertices from the path
p. The size of an OBDD representation of such a formula is at least t by the
condition of the theorem. Hence by Lemma 1 we get that either F1 or F2 has
size at least Ω(

√
t) in the given order. ��
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Theorem 5 is used in the proof of the main result of this section:

Theorem 6. Let G be a connected graph and TSG,c be an unsatisfiable formula.
Then every OBDD(∧, reordering)-refutation of TSG,c has size at least 2Ω(tw(G)δ)

for all δ < 1/36.
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